Junior display overlay and PSU PCB scans

The Junior Display print came with a transparant overlay.

Also PSU scans by Dick Blok.

post

Unilab Three Chips clone

Stephen Crozier made a clone of the Unilab Three Chips main board.

post

Das EMUF Sonderheft 2

Thanks to Mathias Ohlerich for the scan of the Sonderheft 2

MOS KIM-1 Reproduction documents added

Dave Williams, who designed and builds the MOS KIM-1 Reproductions, sent me three worthwhile documents:
– Schematic
– Board Layout
– Bill of Materials

You can find those on the MOS MOS KIM-1 Reproduction page.

post

Decapped 6530-004 TIM photo’s by Frank Wolf

post

Replacement of some old prom by a GAL, Application to a Thaler MPS-65 board

Didier form aida.org was approached by his friend Erik about a malfunctioning MPS-65.

By studying the material on this page and doing measurements on the board it was decided the PROM on the board was malfunctioning.

So Didier designed a GAL replacement for the PROM and the board came back to life!

Here the story how the design looks like.

Suppress KIM-1 echo

Original article: KIM Kenner 17 page 14, Dutch, Hans Otten. Translation 2021 Hans Otten

Problem: the KIM-1 hardware is echoing incoming serial characters to the output, no echo in software involved. Very annoying!

In the KIM Kenner 1 Siep de Vries, founder of the Dutch KIM Club mentioned how in Focal for the 6502 a trick was built in to suppress the hardware echo by manipulating the TTY out bit. I examined later how it was done, from the Focal disassembly:

34AF  E6 76       L34AF INC $76         ; random number?
34B1  2C 40 17          BIT H1740       ; check if character is incoming
34B4  30 F9             BMI H34AF       ;=> wait until startbit
34B6  AD 42 17          LDA H1742
34B9  29 FE             AND #$FE        ; clear PA7
34BB  8D 42 17          STA H1742
34BE  20 5A 1E          JSR H1E5A       ; KIM-1 input
34C1  48                PHA
34C2  AD 42 17          LDA H1742
34C5  29 FE             AND #$FE        ; isolate PA7
34C7  09 01             ORA #$01        ; set PA7 to 1
34C9  8D 42 17          STA H1742
34CC  68                PLA
34CD  18                CLC
34CE  60                RTS

Hardware echo

I took the idea and implemented the software (without knowing then in 1980 the Focal disassembly!).

The echo of incoming serial to outgoing is shown in the next figures (from the KIM user manual and the KIM Circuit poster).

The TTY KEYBD signal goes via a transistor and NAND gate U15 to PA7 port of the 6532. That signal also goes to pin 10 input  of NAND gate U26  which is the TTY out line. This is the hardware echo. When the KIM-1 sends out a character it comes from PB0 to pin 9 of of NAND gate U26 and so comes out to the TTY Out line.
Note that PB5 is connected via an inverter to NAND gate U15. The other input is TTY IN. Making PB5 high will make the TTY input PA7 deaf.
Note PB5 is also Audio out.

Suppress echo in software


The solution to suppress the echo is making output PB0 low. The NAND gate out will now stay high, ignoring any changes on the other input, which is the incoming serial character.
Only when receiving a character PBO should be made high. Also any incoming character will now not be echoed unless the program wants to receive a character!

Example program

In this routine the standard KIM-1 GETCH routine at $1E5A is encapsulated in a subroutine that prevents the echo by setting PB0. Note that this is not a complete block of the echo, it is only active when the program calls the blocking EGETCHAR. When the program sends out charactersto a dispaly, anything typed at the keyboard will also appear at the display.
The calling program is now responsible for the echoing!

0001   1000             echo .org $1000
0002   1000             ;
0003   1000             echoflag = $17E2 ; flag: 0 normal echo
0004   1000             SBD = $1742 ; KIM 6532 PIA B data register
0005   1000             GETCH = $1E5A ; KIM TTY Getch routine 
0006   1000             ;
0007   1000 AD E2 17    EGETCHAR LDA echoflag ; if notechoflag 
0008   1003 F0 08         beq normal ;  then normal echo 
0009   1005 AD 42 17      LDA SBD  ; else set TTY bit PB0 to 0 
0010   1008 29 FE         AND #$FE  
0011   100A 8D 42 17      STA SBD ; 
0012   100D 20 5A 1E    normal JSR GETCH ; get character from input
0013   1010 48            PHA ; save
0014   1011 AD 42 17      LDA SBD ; set TTY bit PB0 
0015   1014 09 01         ORA #$01 
0016   1016 8D 42 17      STA SBD 
0017   1019 68            PLA ; restore received character
0018   101A 60            RTS 
0019   101B               .end
0020   101B               tasm: Number of errors = 0

Does EGETCHAR work on the KIM-1 clones or SImulator?

Micro-KIM and PAL-1: yes, the hardware is identical, IC numbers are different
Corsham Technology: yes, though the hardware for audio is not there, there is still a NAND gate IC17C coupling PA7 and PB0.

KIM-1 Simulator V1.16 and higher: yes.

Enhanced solution: always deaf for input
If you study the hardware shown above you see PB5 also blocks the echo. The following routine tries to use this to make the input permanent deaf.

0001   1000             echo .org $1000
0002   1000             ;
0003   1000             echoflag = $17E2 ; flag: 0 normal echo
0004   1000             SBD = $1742 ; KIM 6532 PIA B data register
0005   1000             GETCH = $1E5A ; KIM TTY Getch routine 
0006   1000             ;
0007   1000             ; no echo when reading character
0008   1000             ; 
0009   1000 AD E2 17    EGETCHAR LDA echoflag ; if not echoflag 
0010   1003 F0 08         beq normal ;  then normal echo 
0011   1005 AD 42 17      LDA SBD  ; else set TTY bit PB0 to 
0012   1008 29 FE         AND #$FE 
0013   100A 8D 42 17      STA SBD ; 
0014   100D 20 5A 1E    normal JSR GETCH ; get character form input
0015   1010 48            PHA ; save
0016   1011 AD 42 17      LDA SBD ; set TTY bit PB0 
0017   1014 09 01         ORA #$01 
0018   1016 8D 42 17      STA SBD 
0019   1019 68            PLA ; restore received character
0020   101A 60            RTS 
0021   101B             ;
0022   101B             ; no echo only at wish if reading character
0023   101B             ; note that using tape I/O will leave PB5 low
0024   101B             ; 
0025   101B AD E2 17    DGETCHAR LDA echoflag ; if notechoflag 
0026   101E F0 05         beq dnormal ;  then normal echo 
0027   1020 AD 42 17      LDA SBD  ; else set TTY bit PB0 to 
0028   1023 29 FE         AND #$FE ; PB0 low
0029   1025 29 DF       dnormal AND #$DF ; PB5 low
0030   1027 8D 42 17      STA SBD ; 
0031   102A 20 5A 1E      JSR GETCH ; get character from input
0032   102D 48            PHA ; save
0033   102E AD 42 17      LDA SBD ; set TTY bit PB0 and PB5
0034   1031 09 21         ORA #$21 ; high
0035   1033 8D 42 17      STA SBD 
0036   1036 68            PLA ; restore received character
0037   1037 60            RTS 
0038   1038               .end
0039   1038               
0040   1038               tasm: Number of errors = 0

Note that using tape I/O will leave PB5 low, allowing echo, only set high when the program calls DGETCHAR.

Does DGETCHAR work on the KIM-1 clones?

Micro-KIM and PAL-1: yes, the hardware is identical, IC numbers are different
Corsham Technology: no, PB5 is not used.

KIM-1 Simulator: not yet

post

Convert to Papertape V2.2

On the Utilities page I have two programs to convert to MOS Technology papertape format: KIMpaper, a command line utility, and ConvertHexFormat, a GUI app.

All in Freepascal/Lazarus source format, and tested on Linux (Raspberry PI OS) and Windows 10 64 bit. So the programs will run everywhere Lazarus is available (MS DOS, WIndows, Linux Mac OS).

KIMPAPER  is written at the time the Micro-KIM appeared. CLI utility.  Supports Binary to/from Papertape.  Still runs fine on all platforms supported by Freepascal (Windows, MS DOS, Linux etc) after a recompilation, source available.

ConvertHexFormat is a more recent GUI utilitilty with many more 8 bit hex formats as input and output.

There were some bugs of course in older versions. V2 added the ability for multipart hex formats, records having a non-consecutive load address. That seems to wok fine since V2.1
In 2.2 a bug in MOS Papertape format for bigger files is fixed, the end-of-file record (record type 00, total line count) had a bug in the checksum calculation. KIMPAPER is and was correct in the calculation.
But in ConvertHexFormat it was wrong (as it still  is in the well known srec utility in the Unix world!).

post

PC utilities updated

The PC utilities page has seen an update of th4 Conversion hex formats utility.

Programs to manipulate the binary and hex formatted files of interest for SBC owners. Intel hex, MOS papertape, Motorola S-record, binary, hex conversion fort eh 8 bit world.
Runs on Windows, Linux, Mac due to Lazarus and Freepascal. Source included.

post

Load papertape format

The KIM-1 has two methods of loading programs:
– from audio files on the audio interface
– from papertape from a papertape reader connected to the teletype terminal

(Photos by Dave Wiliams with the MOS KIM-1 Reproduction)

The papertape method is the preferred way available for KIM-1 clone owners, since audio input input hardware is either not present or quite inconvenient and using terminal emulators is already the way we use these computers.

Now papertape format is a special MOS Technology format, already used in the TIM-1. See the KIM-1 user manual for a technical description.
This is for example the papertape output captured with the KIM-1 S command for the memory test program in the Fist Book of KIM

;1800000000A900A885FA8570A2028672A50085FBA601A57049FF850B27
;1800187191FAC8D0FBE6FBE4FBB0F5A672A50085FBA570CA1004A20FF6
;1800300291FAC8D0F6E6FBA501C5FBB0ECA50085FBA672A571CA100F73
;18004804A202A570D1FAD015C8D0F0E6FBA501C5FBB0E8C67210AD0F29
;0B0060A57049FF30A184FA4C4F1C05CE
;0000050005

Load address, data and checksums are in the records.

What the dump above does not show that the KIM-1 inserts in front of every record a series of NULL characters (a character with value 0), to give the papertape device time to do its mechnica work and also helps the slow KIM-1 load routine to do its work after a line end of a record.

A part of a real dump:

Papertape format is therefore a readable text file, but when captured from a KIM-1 output contains NULL characters.

So if we could send the papertape formatted test file to the KIM, we can load programs.

This requires solutions for the following:

Make a papertape file
The PC utilities section has programs to produce MOS papertape from binaries or other common 8 bit hex formats produced by assembler such as Intel hex, Motorola S-Record

Send a text file
Many terminal emulators that have support for serial allow to capture the serial output to a text file or send a text file to the serial input.
Good examples are nowadays Teraterm for Windows or Minicom for Linux.

Compensate for timing
The KIM-1 character routines are quite primitive and not rebust : bit-banged, not interrupt driven, no hardware ,handshake so no buffering and it is CPU intensive.
When you sent characters quite fast to the KIM-1 (and that means any baud rate from 1200 to 9600, and the KIM-1 also has to do some processing like processsing the record just received, it is to be expected the KIM-1 will be too late reading the next record, skip a record and sync at the next and leave the program received in chaso.
So we need to give time to the poor KIM-1.
1200 baud, 20 ms character delay, 200 ms line delay is conservative but reliable for me. It is slow ..

An example for Teraterm is shown here:

Decimal mode
The 6502 NMOS version is in unknown state after reset regarding decimal mode.
Most programs start with the CLD D8 instruction, but not all. Microsoft KIM-1 Basic v1.1 is one of those.

A section from the KIM Hints:

A number of KIM-1 customers have reported difficulty in achieving correct results for the sample problem shown in Sec. 2.4 of the KIM-1 User Manual. In addition, some customers have experienced problems in recording or playback of audio cassettes. (Sec. 2.5 of the KIM-1 User Manual). In all cases, the problems have been traced to a single cause: the inadvertent setting of the DECIMAL MODE.

The 6502 Microprocessor Array used in the KIM-1 system is capable of operating in either binary or decimal arithmetic mode. The programmer must be certain that the mode is selected correctly for the program to be executed. Since the system may be in either mode after initial power-on, a specific action is required to insure the selection of the correct mode. Specifically, the results predicted for the sample problem (Sec. 2.4) are based on the assumption that the system is operating in the binary arithmetic mode. To insure that this is the case, insert the following key sequence prior to the key operations shown at the bottom of Page 11 of the KIM-1 User Manual.

[AD]
[0] [0] [F] [1]
[DA] [0] [0]

This sequence resets the decimal mode flag in the Status Register prior to the execution of the sample program.

The same key sequence may be inserted prior to the key operations shown on pages 14 and 15 for audio cassette recording and playback. These operations will not be performed correctly if the decimal mode is in effect.

In general, whenever a program is to be executed in response to the [GO] key, the programmer should insure that the correct arithmetic mode has been set in the status register (00F1) prior to program execution.