post

With the intriquing name SUPERKIM an engineer called Paul Lamar designed a SBC around the 6502.
The main design decisions were to be a superset of the KIM-1, requiring no alteration of KIM-1 programs or user interface (the keyboard/display!) but with much more extendable resources. And the result is just right, it Is a KIM-1 with many improvements!

Read all I know here!

post

SUPERKIM

 

With the intriquing name SUPERKIM an engineer called Paul Lamar designed a SBC around the 6502.
The main design decisions were to be a superset of the KIM-1, requiring no alteration of KIM-1 programs or user interface (the keyboard/display!) but with much more extendable resources. And the result is just right, it Is a KIM-1 with many improvements!
I have never seen this system in real life here in the Netherlands, only advertisements in the then current, dedicated to the 6502, magazines.

The heart of the system is the 6502 at 1 MHz and the well-known KIM-1 RRIOT’s 6530-002 and 6530-003,  the six  seven segment led  displays, a keyboard equivalent tot the KIM-1, the cassette interface and RS-232-C serial interface.  Extra are 4kRAM (from 1K on the KIM-1), 4×6522 VIA’s, 8K EPROM , all socketed and not populated by default. A 8 bit priority encoded IRQ and space for wire wrapping on the board. Also included are fully decoded address map lines, tri-state buffers for address and data bus on wire wrap headers and a power supply for 12V, 1A input ging 5V and 12V.

The KIM-1 ’emulation’  is complete, since the KIM-1 6530’s are there, at the default location and relevant KIM-1 hardware like seven segment display and keyboard, audio cassette interface and tty interface and edge connector.

The SUPERKIMwas sold by Microproducts as shown in this advertisement page in the magazine Micro, issue 13 June 1979:

Paul Lamar initially developed Road Test Systems with the KIM-1 and the limitations in resources made him develop the SUPERKIM.

Articles describing the use of the SUPERKIM in robots and Road Test systems:

IEEE: Microprocessor based System for roll-down and acceleration tests. LA-UR 78-3234 D.K. Lynn, C. Derouin and P. Lamar

Articles about the Computerized Road Test System from Lamar Instruments

From the blog of Dennis Simanaitis:

TRACK TESTING, POST-TAPLEY METER, PRE-WHIZBANG

I came upon some photos summarizing automotive testing as practiced when I arrived at R&T in the late 1970s. One photo brought back memories of the excitement, the technical expertise, the glamor.
Weighing a test car, c. 1979.
We weighed our test cars at a local builders supply. The idea of having our own scales capable of obtaining individual corner weights was far off in a digital future. Rough and ready though the scene appeared, the supply-yard scales were California-certified and nearby.
Track testing took place at Orange County International Raceway, a local drag strip with abbreviated road course. A fabled place: Bob Bondurant used it for his first driving school, opened in February 1968. The second week, Bob had two students: actors Paul Newman and Robert Wagner, both preparing for the movie Winning. P.L. Newman continued, racing and winning.
In 1977, R&T’s John Dinkel, my predecessor as engineering editor, asked a fellow named Paul Lamar whether any new computerized gizmos might be employed in gathering acceleration and braking data.

John Dinkel, at the wheel, and Paul Lamar examine computerized data. (That’s their story; and they’re sticking to it.) This and other images from R&T, May 1977.

Paul is a cool guy. Beginning in 1966, he worked with Texan Jim Hall in developing the Chaparrals 2C, 2D and 2F. (Paul was responsible for most of the body design of the 2F.) After that, he set up his own company doing race car development and equipment design. For a long time, he has been active with aircraft applications of Mazda rotary engines, at a website proudly “Powered by Linux!”

Back in 1977, Paul said to JD (as Dinkel was known), “I recommend you consider a microprocessor. It’s the coming thing in electronics.” Paul followed up on his recommendation with devising the first computerized test equipment used by an auto magazine. Hitherto, acceleration testing was a two-person task, one driving, the other punching an array of stopwatches based on measurements of a bulky 5th-wheel.
Another gizmo, the sainted R&T Tapley Meter used to give impressive data with which we younger readers were highly impressed (“Wow! Off-scale!”), though we never really understood what it was measuring. (It turns out the Tapley Meter was a pendulum-driven accelerometer.)
When I began at R&T in early 1979, Paul’s computerized black box became an everyday part of my track testing. Its heart was an MOS Technology MCS 6502 Microprocessor Array.
The “sixty-five-oh-two” was pivotal in the computer industry: Its price was one-sixth that of comparable products and brought about a rapid decrease in competitors’ pricing and a dramatic increase in microprocessor availability. In retrospect, it likely had the computing power of a toy digital clock operated by a potato battery, but at the time it was state-of-the-art.
The Lamar black box had a keyboard for programming. (How’s your base-16? Mine is sketchy at best.)
The Lamar black box’s keyboard was one of its ways for entering a program—in hexadecimal (base-16) code! Fortunately, once debugged, the acceleration and braking programs were stored on a separate Sony
cassette tape recorder and played back into the 6502 when changing from one test to the other.
Alas, the black box had insufficient memory to store them. Also, reprogramming turned out to be occasionally heat-sensitive: I would do the acceleration testing, say, then turn on the car’s a/c to cool off the interior for a bit. Only then would the Sony convey its bops and beeps successfully to the black box.
The 6502’s liquid crystal displays gave information on time, car speed and distance traveled. The Sony cassette tape recorder to its right swapped the 6502’s programs.
Sensitive though it could be, the setup was more accurate than stopwatch-punching and it was a one-person operation. Results were printed on a strip of paper by a separate device, a modified Addo desk calculator residing on the passenger seat. (Paul’s second-gen black box had a built-in printer and enough memory to eliminate the pesky reprogramming.)
Typical results from a separate printer, a modified Addo desk calculator.
The Lamar 5th-wheel was decidedly easier to use than its traditional counterpart. It weighed 20 lbs. versus the clunky one’s 40 lbs. and attached with bungee cords, not potentially bumper-damaging clamps.
The Lamar 5th-wheel compared favorably with its traditional counterpart. It could also be disassembled for shipping.
In 1986, I documented our testing procedures in a presentation to the Society of Automotive Engineers, SAE Paper 861114, “A Magazine’s View on Automotive Testing.” The paper was accompanied by a short film completely produced by R&T, a story in itself. This was back before video cameras—and ages before smart phone imaging.
R&T’s Cecil B. “Joe” DeRusz shot the flick using an Arri Arriflex 16-mm camera, the best of its kind, rented from a Hollywood outlet. We had a vague shooting script based on the technical details of the SAE Paper. But I have vivid memories of Rusz figuring out angles, the entries into frame and exits out of it. I recall we produced the film in a few days of on-again/off-again shooting. Likely over budget. There were lunches after all.

SUPERKIM meets ET-2

In a two part article in the magazine Robotis Age 1980-1981, Don McaAllister describes the interfacing an programming of the SUPERKIM for the control of the Lour Control ET-2 robot shell.










post

65C102

Two IC’s 65C102 added to the IC collection.

Rockwell, 8639 and 9009 date codes.

post

6502 Microprocessor Kit

Design and text by Wichit Sirichote. Full text and files at his website here. The kit is available for sale, kit or assembled!

Back to 1982, when I was a student, I have learned the Z80 CPU with Multitech MPF-1 Kit. At the same time, I also have played with Apple II that uses 6502 CPU. But here in Thailand, Z80 is very popular. Many single boards computer use Z80 as a CPU. Colleges and university also teach basic microprocessor with Z80. I got two chips of 6502 CPU two years ago. At the yearend of 2014, 32 years since I was a student, I picked the 6502 CPU and designed the microcomputer kit again with HEX key and 7-segment display. I wrote the monitor program using 6502 instructions. I used TASM assembler. My intention is to design the microcomputer board that uses 6502 as a CPU. The kit is suitable for today student to learn many addressing modes and hardware of the 6502 CPU. The circuit is simple and easy build.

Hardware specification:

1. CPU: 65SC02, CMOS 8-bit @1MHz clock
2. Memory: 32kB RAM, 16kB EPROM
3. Decoder chip: GAL16V8 PLD
4. Display: 6-digit 7-segment LED
5 . Keyboard: 36 keys
6 . RS232 port: 2400 bit/s
7 . Debugging LED: 8-bit GPIO1 LED
8 . SystemTick: 10ms tick
9. Text LCD interface: direct CPU bus interface text LCD
10. Expansion header: 40-pin header

Software descriptions: Monitor program was written with 6502 instructions. The source code was translated to hex code using TASM assembler. Main body is forever loop keyboard and 7-segment display scanning. When key pressed the associated functions will be serviced. Detailers are explained as the comments in the source code.

The monitor program features are,

1.Memeory contents can be edited directly with hex keys.
2. User registers for program testing
3. Single instruction execution, no need jumper selection.
4. Relative byte calculation,
5. Download hex file,
6. Zero page display.

Old micros: SYM-1 6502 mini SBC and more

The website https://sites.google.com/site/gogleoops/home is to look at designs of older microcomputers and provide information to people to be able to build some of these for their own use. It is aimed at micro enthusiast with reasonable knowledge of electronics and digital/microprocessor theory.

There are still many older “original”microcomputer boards for sale  (on Ebay etc) .. but tend to be rather expensive and in most cases those boards are either not functioning (due to age) ..or rather limited in their operation or not being able actually connect them to anything useful  (like current PC’s or terminals).

So in my quest to play around with some of different varieties of microcomputers (like SC/MP, 6800’s, 6502’s,TMS9900’s, 68000 etc) I am sharing some of the design (like pcb’s).. so people can build their own. I do provide some components .. but this is not a commercial venture, so you might have to source other bits from different sources to complete any of the designs. Some are prototype and some are fully built sbc (single board computers).

 

SYM-1 6502 mini sbc

SYM-1 6502 mini sbc

The following article is from the site , all design and ‘me’ in the text below is by and (C)  Michael Cvetanovski
The copy here is for information and archiving only, the original is the place to go for the latest information.

Bit of History

Once upon a time .. I had a SYM-1 sbc board that I played around with. Wonderful microcomputer for its era (early 1980’s). Like most people due to non use and lack of interest I give that micro away. Since my recent eagerness to dabble with some of the older micros .. I had a go at trying to rebuild the SYM-1 to a reasonable design so I can use most of the SYM-1 features. Having a 6502 chip and a 6532 peripheral chip, I had most bits to be able to create a minimal system to say run the SYM-1 Supermon 1.1 monitor. Following is a prototype that I got working (must admit after some testing time) which is minimal in design in having basically 5 main chips and TTL-USB adapter for comms to a PC. This project is ongoing where I have also reproduced (to a reasonable degree) an imitation keypad similar to the original one from individual pcb type push button keys. Where possible I used particular IC’s (like GAL’s) to minimise the construction and size of the design.

Prototype Board

It mainly consist of the 6502 chip, 6532 peripheral chip, 2732 EPROM for Monitor, 2K 6116 Ram chip and 24pin Atmel GAL chip to provide some of the decoding and interfacing. Additional things on the board are 14pin 1Mhz crystal and an expansion socket to be able to interface to display/keypad. Flying wires are leads to a TTL to USB converter that connects to USB port of a PC. Monitor code is original version 1.1 that you can get from 6502.org. Memory map is original as per SYM-1 board for the monitor, 6532 chip and 2k RAM from 0000-07FF. Gal chip used is Atmel ATF22V10CQ/CQZ. No particular reason for this one .. but you can easily get them from RS components and not that expensive. I will provide the .pld and .jed file for the code to program these. See notes later on.

Prototype board was constructed using a vero type board with a bank of tracks to place the IC’s. Wiring was soldered point to point using wire wrap wire. After initial mounting of the components and testing for shorts etc the board was ready for use. When powered up the board draws about 220mA. See pic below.

Parts for construction

If you are an old micro buff you probably have some if not most parts to construct this mini board. In case you don’t here is few suggestions for major parts.

  • 6502, 6532 you might be lucky enough to get them from China supplies (via Alibaba or Ebay website)..be prepared to wait 3-4 weeks at least.
  • Atmel pdl (GAL chip) try RS components.. usually very quick delivery. If you cannot program pld’s I can supply the chip programmed.
  • 1Mhz crystal try element14
  • 2732 and 6116 try www.futurlec.com. If you cannot program the 2732 I can supply some Eproms as I have some spares left.
  • TTL to USB adaptor, Many supplies from China via Ebay ..take 3-4 weeks
  • Also look through some forums like this one.

Circuit Design

It basically follows from the original SYM-1 schematics, with simplification of decoding logic with a PLD chip. For minimal system you would need at least a Monitor program, some RAM and an I/O comms. Simplest would be to have RS232 type comms that you can connect to a PC and communicate to the board via terminal type program. So in that case from original design, 6532 chip did the job of communication via pins 16 and 19 to RS232 type interface. Since I was trying to use TTL to USB interface I did not have much success in interfacing the board to the PC. It wasn’t till I actually built an additional keypad to connect to the main board and played around with that I figured out the interface and comms settings. The final comms configuration involved using inverter gates for input and output to serial port (via PLD chip), and the following serial settings on comms port:

  • 4800 Baud
  • no parity
  • 8 bit
  • 1 stop bit
  • handshake none

Original notes and references to RS232 on SYM-1 refer to 3 stop bits .. which confused me initially .. hence it took a while to figure out what works properly.

Schematic and component functions

Following is a schematic of the design. It is using Diptrace software. Note I use point to point schematic (pin ID connections). It does reduce wires ..but for some people it gets bit harder to follow.

Caution: As with any circuit diagrams it is up to you to recheck and make sure it is OK before proceeding to any construction. To best of my ability this is representation of what I have used. I’ve followed other circuit diagrams on the web, only to find some info was wrong. So please check pin outs (especially against datasheets) to make sure all connections are correct. If there is any errors please email me.

Download Schematic

Looking at the schematic here is bit of explanation of some of the component functions:

  • Resistors are basically pullup resistors for inputs to CPU that are not needed.
  • R6 and D1 are just power indicator for the board.
  • S1 (on board pb switch), C5 and R5 are the reset input to 6502. Note also reset is provided from external input via terminal power block.
  • 6532 is wired similar to SYM-1 schematic: A0-A6 for on chip ram addressing. CS1 is A10 and Register Select (RS) is via  PLD chip. R/W is direct from 6502.
  • Chip selects for Rom, Ram and 6532 come from PLD.
  • CRT OUT is inverted to RxData ..so is TxData to CRT IN via PLD inverter gates.
  • PLD provides address decoding and 3 inverter gates. Phi2 and R/W are used to generate RD and WR signals for Rom/Ram.
  • 6116 and 2732 can be any brand as long as the pins are same. Also note which programming voltage is used for the 2732 chip, as they vary greatly.

PLD Function

Atmel PLD is used to provide address decoding and 3 gate inverts for A9 and serial signals. For more info see Atmel website and WinCupl software.

The code for the PLD is shown below:


Name SYM-1;
Partno 0001;
Revision 4k Mon, 2kRam, 6532 Comm;
Date 6/2/15;
Designer mc;
Company mcoz;
Location oz;
Assembly manual;
Device g22v10;

/** Inputs **/
pin [1..6] = [a10..15] ;
pin 7 = phi2;
pin 8 = rnw;
pin 9 = a9;
pin 10 = crtout;
pin 11 = crtin;

/** Outputs **/
pin 19 = !nr;
pin 20 = !nw;
pin 21 = !cs6532;
pin 23 = !csrom;
pin 22 = !csram;
pin 18 = !na9;
pin 16 = !ncrtin;
pin 17 = !ncrtout;

/** Declarations and Intermediate Variable Definitions **/

field ioaddr= [a15..9];
cs6532_eqn = ioaddr:[A4XX..A7XX];
csrom_eqn = (ioaddr:[80XX..8FXX])#(ioaddr:[F0XX..FFXX]) ;
csram_eqn = (ioaddr:[00XX..07XX]) ;

/** Logic Equations **/

ncrtout=crtout;
ncrtin=crtin;
na9=a9;
nr =phi2&rnw ;
nw = !rnw&phi2 ;
cs6532 = cs6532_eqn ;
csrom = csrom_eqn;
csram = csram_eqn;

The pinout for PLD is as follows:


View pld file

Download jed file

Testing the board

Obviously have the board connected to the PC and use appropriate comms software like Hyperterm (on XP) or RealTerm set to appropriate setting. Also set CAPS ON. (reduces errors). If all OK after pressing the RESET button …press the “Q” key on keyboard . The response should be “.” single dot …where you can give monitor commands after that. Following is snapshot of sample program that is given in Reference manual for SYM-1 that adds two numbers together from memory locations 200 and 201 and places result in 202. You can see that 202 changed from 0 to C6 which is = C1+05.

From this point on you can explore all the monitor commands. Save and Load will not work as provision is not made in this design for saving code to cassette tape. So another way of saving and loading the machine code is via SP an LP (paper tape commands).

Saving and loading code (via terminal)

Refer to paper tape format info in SYM-1 Reference manual (page D-1). So for example to save above code you would issue command

  SP 200-210

and before you press , set terminal program to capture file mode.. which will save text as it is output to the terminal.

Start capture mode and press

the listing should follow.. once character output had stopped ..Stop the capture …

To see what is captured open the captured file with Notepad..it should look like something like this …

Delete the space in first line and replace the “.” in the last line with “;00”. This creates the correct file to upload.

To retrieve the code type in

LP

and send the captured file as text using terminal program ..What you might need to do is delay the character and LF output to about 20ms so the board does not get swamped with incoming characters from the PC serial port. You can adjust the delay to smaller value till the sending of file stops working properly. 20ms+ is usually a safe bet.

Picture above shows loading of the file, listing the code, running it and then listing the result of the addition program. So there you are ..plenty of things to be able to examine ..with minimal system similar to the original SYM-1 board.

I/O via 6532 PIA chip

Ok If you are to use the mini board with RS232 interface only (that is … with NO keypad/display) then the port A (address A400) is free to use for any I/O control. The DDRA (address A401) can be set up for output or input. As a simple example using SYM monitor we can set the DDR to output on all eight PA pins (set DDRA to FF). Then changing the value of I/O Register A (A400 address) from FF to 00 will toggle output on the port A (pins 8-15) from high back to low.

If you want to use the port A as an input then set appropriate bits to 0 in DDRA. Image below shows a crude example of control via Monitor commands. Writing machine/assembly code for more complex task is possible and make the board useful as a micro controller.

Running mini @9600 Baud

It is possible to run the mini board @ 9600. Suggestions have been obtained from 6502 pages website, where following address have been changed:

8AE9 08 --> EA         '   NOP
8AEA 48 --> 60          '  RTS

8AB0 0B -->0A           ' CHANGE NUMBER OF STOP BITS

Changed binary file Supermon 1.1 file for 9600 baud can be downloaded from here. Please note as suggested, once this is changed it might not be possible to run the board at different speeds.

PCB for mini SYM-1

If you are like me I am not best at bread boarding circuits. From the mini board schematic diagram I have generated a pcb design and gerber files that you be able to make your own boards from. See link below.

Word of Caution First
I have not made any of these pcb’s so make sure you check the board out before any component mounting. In case there is any major faults let me know. One mistake that I am aware of is that the polarized caps C5,7 and 8 show the “+” on the wrong side. So make sure you mount polarized caps the correct way around. When I get time will try to correct that.

At this point I am only providing the full set of the gerber files from which you can get the boards manufactured. From more expensive pcb websites the board will work out about $30-$40 .. but if you shop around and get more than one board ..they will probably work out $10-15 each.

Top silk layout and component placement

Most of component placement is self explanatory. It is possible to power the board from TTL/USB connector (by getting +5 volts from PC USB port). But word of caution in doing that. The setup draws about 220mA, so make sure all the connection on J1 are solid. Also if you to use USB power then do not power the board from PWR/RST connector.
Bottom traces…

Top Traces …

Download set of zipped Gerber files here.

SYM-1 Keyboard

Following is info about keyboard and 6 digit 7 segment display expansion prototype board that was used with mini SYM board to run monitor program from the keypad. It is similar in layout to original SYM-1 board. Keys are made up of pcb push button switches, that have 2 square caps on them. One cap clips over the switch then another CLEAR plastic cap clips over the top again. By placing appropriate size bit of paper with text on it, ANY keyboard key indicator can be made up. (see picture)

The only issue with these switches is that they had too much horizontal (rotational) play and hence keys do not look all lined up. Placing the keys close would eliminate some of that, however mounting the switches on the pcb requires some distance between adjoining pins – so it is not possible to bring the rows close together.