post

SYM AIM 60K RAM board

Basic features of the board include:

Can be used on either a SYM or an AIM.
Memory selectable on 4K boundaries covering the entire 64K address space. Not all blocks can be RAM, as the SYM-1 already has up to 4K of RAM on-board, there are multiple ROM sockets, and I/O.
The top $80 bytes are not available; that area is reserved by the SYM-1.
Can allow space for BASIC or other software in ROM. My system has an 8K BASIC ROM so I did not place RAM at C000-DFFF.
Can be ordered as a bare board, a kit, or fully assembled and tested. The bare board is just that… no components. The kit includes all components and you will need to solder the parts.
The Rev 2 boards have an additional chip which works around a bug in early AIM-65 boards. We know the problem was in rev 1 and rev 0 AIM boards, and it was definitely fixed on rev 4 boards, but I don’t know exactly which revision fixed the problem. Basically the RAM_R/W signal (pin Z on the Expansion connector) had the inverted Phase 2 clock NAND’ed with R/W. The SYM and AIM were both supposed to follow the KIM standard, but Rockwell got this one signal wrong.
Rev 2 boards have replaced the jumpers with a pair of 8 position DIP switches; those are easier to set and there are no jumpers to get lost ??
When running the ROM BASIC, this is what gets displayed:

MEMORY SIZE?
WIDTH?

 32255 BYTES FREE

BASIC V1.1
COPYRIGHT 1978 SYNERTEK SYSTEMS CORP.

Nice.

I’ve configured RAM from 1000-7FFF, B000-BFFF, and F000-FF7F. That gives a lot of room to squeeze in useful add-ons to the monitor.

SYM AIM 60K RAM docx
SYM AIM 60K RAM pdf


post

Corsham projects

As you can read below in the screenshot of the last post on Corsham’s website below, Bob has left us. I will miss him, a dear friend with whom I exchanged many emails about the KIM-1.

To honor his legacy I have collected on these pages everything available, from his former website, Github repositories and information I have received from Bob, enhanced with photos of Corsham products I have bought over the years.

I have decided not to replicate his website. Instead the structure is about all of his projects, current and past, with on each page all information available to me about the product, enhanced with available material from outside.

Note that I do not have more information. I do not have the PCB designs. I do not sell any Corsham product. All I have is here is what Bob once published.

Links
The Corsham Technology website used to live at https://www.corshamtech.com
Bob’s private website is still up (August 2024) at https://k2ut.org/
The Github repositories are also still up at https://github.com/CorshamTech
The forum at groups.io is here: https://groups.io/g/CorshamTech/

Pages you find here:


The last message on the Corshamtech website with the sad news about Bob.

Bob Applegate at his desk

RetroSpy Technologies produces a range of retro (Vintage) hardware products that are of interest for the KIM-1/SYM-1/AIM 65 owner. Also the PAL-1 user may benefit from the products!
Retrospy is inspired by the Corsham Technologies products and since Bob Applegate is no more among us, produces similar/inspired products.

I bought several products from RetroSpy.
KIM-1 RAM/ROM Board
MOS 6530 Replacement for the KIM-1 SBC
PAL-1 Motherboard Expansion Kit
Bus extender

Other interesting KIM-1/AIM 65/SYM- related boards on the Retrospy shop:
AIM 65 I/O board
SYM-1 I/O board
SYM-1 SymDos I/O board
SYM-1/AIM-65 RAM/ROM board
KIM-1 I/O board
2532 to 2764 EPROM adapter
SD Card Storage System (like the Corsham one)

I should have bought he KIM I/O card also, for the 1541 connector, next time!

post

RetroSpy Technologies

RetroSpy Technologies produces a range of retro (Vintage) hardware products that are of interest for the KIM-1/SYM-1/AIM 65 owner. Also the PAL-1 user may benefit from the products!
Retrospy is inspired by the Corsham Technologies products and since Bob Applegate is no more among us, produces similar/inspired products.

I bought several products from RetroSpy.

Other interesting KIM-1/AIM 65/SYM- related boards on the Retrospy shop:
AIM 65 I/O board
SYM-1 I/O board
SYM-1 SymDos I/O board
SYM-1/AIM-65 RAM/ROM board
KIM-1 I/O board
2532 to 2764 EPROM adapter
SD Card Storage System (like the Corsham one)

I should have bought he KIM I/O card also, for the 1541 connector, next time!

2531 to 2732 EPROM adapter

By Roy Edmund Antaw

I hope others may find this useful when trying to replace 2532 ROMs.
It sure ain’t pretty, but it works perfectly.
2732 EPROM to 2532 ROM adaptor, using two 24pin sockets with three bend pins on top socket

post

2532 to 2732 EPROM adapter

By Roy Edmund Antaw

I hope others may find this useful when trying to replace 2532 ROMs.
It sure ain’t pretty, but it works perfectly.
2732 EPROM to 2532 ROM adaptor, using two 24pin sockets with three bend pins on top socket, breaking the continuity of those pins between the two sockets, and then soldering jumpers to three pins on bottom socket to swap signals on those pins as described below.

  • 2532 pin 18 to pin 21 on 2732
  • 2532 pin 20 to pin 18 on 2732
  • 2532 pin 21 to pin 20 on 2732

Using e.g, a T48 XGecu Programmer or any EPROM programmer which supports VPP up to 25V.

post

MAE ASSM/TED CW Moser

MAE (Macro Assembler Text Editor) or ASSM/TED is a program sold by Eastern House Software for the KIM-1, Apple, PET, C64 and more 6502 based machines.

RAE was the name by Synertek for MAE, as ROMs for the SYM-1 which could be installed to add the Resident Assembler/Editor (RAE). Synertek contracted Eastern House Software to port their Macro Assembler/Editor (MAE) into an 8 KB ROM. AS you can see in the reconstructed source, the adaptations were not much more than adding the SYM-1 I/O such as character I/O and tape handling, the essence of MAE stayed as RAE. It was not that popular in the SYM-1 world, even Synertek used internally another assembler, with more MOS Technology compatible syntax.

The author of MAE and RAE, was Carl Moser. MAE was sold in various forms not only for the KIM-1 and SYM-1 but also for other 6502-based computers including Commodore, Atari, KIM, and Apple and in the Netherlands the Elektor Junior. Other forms of MAE included a cross assembler for 6800 and 8085.
Carl Moser and JR Hall were founders of Eastern House Software, the company that created several products for Atari 8-bit users, including Monkey Wrench and Monkey Wrench II, and the KISS word processor.

On topic on this site are the preserved KIM-1, SYM-1 and Elektor Junior versions. I have binaries, manuals and (reconstructed) sources for these versions for download.

Note that the manuals for the SYM-1 RAE are well written, and a good addition for the manuals of MAE.

On this page:



Catalogs and flyers Eastern House Software

Eastern House Software Catalog

Eastern House Software Dealer Brochure

EHS catalog 1985

EHS catalog

EHS flyer

EHS Gazette 1981-03

PC commandline tools to manipulate MAE/RAE files

To get text into and out of the ASSM/TED program on the 6502 computer to the PC world,one can use several methods.
Written in Freepascal. Sources included, can be compiled in Linux etc.

The first method is using a terminal emulator and upload a text file or catch the output of the ASSM/TED program.
That gives some problems, mostly related to missing line numbers, or too much blanks.

Strip Blanks
The output of ASS/TED to the screen contains many blanks. When you want to uplaod the captured output, those blanks have to go

D:\myfiles\MAE\PC tools>StripblanksMoser.exe
V1.0 Strip blanks from captured ASSM/TED Moser source file
V1.0 Hans Otten, 2024
Syntax: StripBlanksMoser <sourcefile with blanks> <output source file to upload 
to ASSM/TED> [Y]
Y to overwrite outputfile without question asked

Add numbers
When you have a MAE/RAE source file without numbers, you can add those with this utility, increment of 10.

D:\myfiles\MAE\PC tools>AddNumbersMoser.exe
V1.0 Add numbers 0001-9999 to source file to make a ASSM/TED Moser source file
V1.0 Hans Otten, 2024
Add numbers 0001-9999 to ASSM/TED Moser source
AddnumersMoser <sourcefile without numbers> <output source file with numbers> [Y]
Y to overwrite outputfile without question asked

The other method is to dump or upload the text buffer as memory binary dumps.
Text is stored in memory as:
..
e.g.
the text
10 test
is stored as:
00 10 20 74 65 73 F3

RAE to TXT
Converts a binary MAE/RAE file to an ASCII text file without line numbers and normal line end

D:\myfiles\MAE\PC tools>RAEtoTXT.exe
V1.0 Convert a  ASSM/TED Moser RAE memory dump to text file
V1.0 Hans Otten, 2024
RAEtoTXT <sourcefile memorydump> <output text file  [Y]
Y to overwrite outputfile without question asked

TXT to RAE
Converts a text file to binary RAE format, with line numbers.

D:\myfiles\MAE\PC tools>TXTtoRAE.exe
V1.0 Convert a  text file to ASSM/TED Moser RAE memory dump
V1.0 Hans Otten, 2024
TXTtoRAE <textfile > <output memorydump file  [Y]
Y to overwrite outputfile without question asked

How to dump or upload the the MAE/RAE text buffer

Dump

Start ASS/TED and add some lines

C 1979 BY C. MOSER


4163-53FC  5400-5EFC  5F00
4163  5400

>10test
>20 lege regel
>set

4163-53FC  5400-5EFC  5F00
4176  5400

Current (4176 in example above is to be stored at D3 (low), D4 (high))

BR to the KIM monitor and save 4163 to 4176 to a file, remember the end address, add that to the filename!
Upload

– Start ASSM/TED and BR to monitor
– Load the text file, place the end address in D3 (low), D4 (high)
– Enter ASSM/TED via the warm start at 2003 (KIM-1) or B003 (SYM-1)

post

SYM-1 RAE

SYM-1 Resident Assembler Editor RAE

Written by C.W. Moser, other versions known as MAE or ASSM/TED. RAE is an optional ROM set for the SYM-1.
An assembler and editor in 8K.

Manuals

RAE-1 Reference manual. Version of 1980.
Scan by Rob Ward.
RAE-1 Reference manual. Version of 1981

ROM binaries

I have collected several binaries. Here working and identical versions.

Note that the 8K ROM has the same contents as the 4K ROM sets. First the E000 part, and then the B000 part!

RAE notes

A collection of documents with various notes on RAE.

RAE Reference cards

click for larger view.

Source of RAE

The source of RAE has been reconstructed by me from the source of MAE (CW Moser’s ASSM/TED). It shows that RAE and MAE are not only functional identical.

Download here the source (in general MOS assembler format).

Sources

9600 baud patch, Disassembler for RAE, RAE to ASCII converter, Crossreferencer, all in RAE source format

SYM-1 XRAY Extended RAE, manual and listing

SYM-1 XRAY Extended RAE, manual and listing
post

MTU CODOS

CODOS (Channel Oriented Disk Operating System) is the name of the Disk Operating System made by MTU for KIM-1, SYM-1 and AIM-65.
The DOS needs the K-1013 floppy disk controller, 8 inch disk drive(s) and optional the K-1008 Visible Memory.

CODOS V2 was the version for the MT-130/140. Lots of software was available, see the MT-130 page for manuals.
Dave Plummer (of Dave’s Garage) has a KIM-1 system with various MTU cards, including the K-1013.

CODOS Disk images

CODOS Manuals

CODOS Manual
CODOS User Manual
CODOS User Manual OCR’ed
QumeTrak 842 Maintenance Manual

Dave Williams has the following, not yet dumped by him, disks:

  • DMXMON
  • MACASM 1.0
  • MAGIC/L Language
  • MTU-C
  • MTU-FORTH79 2.1
  • WORDPIC
  • WOPDPIC 1.0 NEC 8023 Printer Version
  • MTU-130 User Group Diskette #3
  • MTU-140 User Group Diskette #5
post

Me and my KIM-1

My first computer is a KIM-1. Still have it! A life changing experience!

This is the story of me and the KIM-1.

Philips educational kits.

As a young child, at age 12, I was introduced to electronics with the Philips electronic kits. First a Pionier crystal radio. Easy to build, good instruction manual. Lots of listening pleasure!.

Two years later I bought the Philips EE8 Electronic Engineer kit. Again nice builds (the 8 stands for 8 experiments), with a good manual. Since the manual covered the expansion to the EE20 for 20 experiments, I bought the parts myself one by one at Aurora Vijzelgracht, Amsterdam.
More on the Philips electronic kits.

Radio Bulletin

In 1978 I bought my first computer, a KIM-1. It turned out to be a Rockwell rebadged Rev F Mos Technology board.

The beginning of lots of fun, learning, member of the KIM gg Club and making and publishing in the dutch electronics magazine Radio Bulletin and the KIM Kenner.

In 2014 the big KIM-1 machine was finally taken down in parts, the following photos showed the end result as in 1985 after many years of tinkering.

The KIM-1 system ended as a real production system until 1985, mainly to write articles, all Radio Bulletin and KIM Club Magazine related work was done with this system.

My KIM-1 workplace in 1979, no video terminal, no printer, hand assembly

My workplace setup in 1982: KIM-1, dual cassette, tv monitor, H14 printer, ASCII keyboard

1984, VT100 as videoterminal, what a progress!

Then a CP/M machine took over (a Spectravideo X’Press 738) with the same VT100 as terminal.

  • KIM-1
  • 8K RAM  in system case
  • 32K RAM in expansion case
  • Two ACIA 6850 serial
  • A PIA/VIA card with two 6820 PIA’s
  • Parallel ASCII keyboard with home made logic circuit
  • Video Display 32×32 uppercase characters on an analog TV
  • Dual cassette tape system with motor control
  • MDCR digtal cassette system in second expansion case
  • Radio Grafisch Display in second expansion case
  • Heathkit H14 matrix pinter, serial with RTS handshake via bitbanging RIOT port
  • VT100 Digital Equipment Video display unit VT100
  • Boot tape to load device drivers and Micro Ade (extended to 8K)
  • MICRO ADE assembler/editor, used for program development and article authoring
  • Microsoft Basic KB9 (not used often, nice study material!)
  • Pascal-M compiler and interpreter (mainly development and experiments, not for production)

First the KIM-1, I still have it, in working condition, in my private museum. Changes still visible, are a red acryl cover over the LED displays, a capacitor moved to the back to make it flat enough to fit the case I made and some supports to have it lay stable and safe on a table.

Why a KIM-1?

In 1977 I was reading in the electronics magazines about the revolution taking place: 8 bit microprocessors!
During my study I encountered Digital Equipment machines, PDP-8 in the lab, PDP-11 in the Mathematic Computer Science department, a Minc in Medical Physics group, my major.
The electronics department where I was doing an intern not only introduced to digital electronics and I helped them to introduce the Z80 to the instruments designed for laboratory experiments.
I learned assembler quickly, PDP-11 was a dream come true, the Z80 a bit of a nightmare but you could do so much with effort.

At the same time I started to write for the magazine Radio Bulletin, simple analog and digital circuits and continued to be an editor until 1987. I met Dick de Boer who was writing his famous Microprocessor articles and introduced the KIM-1 to the Dutch electronic engineers. So a KIM-1 with the very attractive 6502 was the logical choice for my first microprocessor system.

First case: memory, connectors, power supply

A KIM-1 itself was fun to learn with, but it quickly needed more; a permanent power supply, protection, easy to access connectors and interfaces for  a bus to have  more memory.
So the case seen in the next figure was built:

Power hungry, so lots of lineair power supplies with large cooling.

The first case I built from alu profiles contained the KIM-1, a backplane for 6 memory boards, a lot of power supplies (lineair, so heat was a problem!), a patch panel to access the expansion connector, cassette I/O, serial interface and various switches.

PCBs handmade, double sided!


Memory 2K RAM Card, BEM Bus Brutech Variant made by Hans Otten
Memory boards were made myself by drawing with Edding ink on the blank PCB, etching and drilling. Filled with 2102 RAM IC’s for 1K per board, it filled lower RAM of the KIM-1 $0400 – $13FF. The bus is a 31 pin DIN connector, based upon the BEM (Brutech) bus.

I bought two of this deck from Radio Service Twenthe, Den Haag, fascinating electroncis dump store!

The next thing I built was a video display unit. All TTL 74XX logic IC’s, a 2513 character generator, a AY-5-1013 character generator, an ASCII keyboard, display on TV 32×32 characters uppercase. RS232 input/output to the KIM-1.
On top of the VDU a dual cassette deck is shown. From the famous Dutch dump shop Radio Service Twente two audio cassette decks were bought, some audio amplifiers and power supply added, and a remote control circuit via a 6532 GPIO line (standard as in Micro Ade). Served me well for many years, in 2014 the decks strings were dried out and crumbled after many years of not being used.

Next was a real expansion cabinet with a long backplane for 32K memory with 8x 4K RAM card, 2114 based, Designed by me, published in Radio Bulletin and sold by Visser Assembling Electronics. BEM bus compatible.

4K SRAM card

4K SRAM card, Radio Bulletin September 1979 part 1  part 2


Production 4K RAM card


Prototype 4K RAM card, also hand drawn on the PCB!

In the expansion cabinet three slots were added for I/O. Two cards were designed by me and published in Radio Bulletin: an ACIA card for two 6850 Motorola ICs, and a PIA card for two PIAs, 6522 or 6520 or 6820 or 6821. I never used more than one ACIA and one PIA card. Shown are the prototype cards, in the article production quality PCBs were used.

PIA and VIA card design by Hans Otten June 1984 Radio Bulletin

ACIA Motorola 6850 by Hans Otten, 1983 Radio Bulletin

On one of the ACIAs a VT100 Digital Equipment terminal was connected, taking over from the bit banged serial interface and the homebuilt video display. ON the other ACIA a Heathkit H14 matrix printer was added, a mediocre but adequate printer.

Together with Micro Ade as assembler and editor, the dual cassette deck, 40K RAM In total, this was a nice machine! Until 1987, when I bought the Spectravideo X’Press 738 MSX and CP/M system, used for all my publishing activities.

A third expansion cabinet was built around 1983. It was driven by the PIA’s, the Radio Bulletin Grafisch Display was inside the cabinet, along with two MDCR Philips Digital cassette recorders, alo published in Radio Bulletin. The speed difference between Hypertape audio cassettes and 2400 baud MDCR speed was not that impressive.

Dirk Dral

EPROM card (Dirk Dral)