
AN001
Using SDCC with Z80 Trainer Kit

Wichit Sirichote, kswichit@kmitl.ac.th

Introduction

This applications note introduces how to use the
sdcc c compiler for the Z80 Trainer Kit. The
process will be startup code modification,
compiling method, how to load the hex file and test
run the code.

Get the compiler

The sdcc c compiler is available for download at
sdcc.sourceforge.net. I suggest to install at drive
D:\sdcc for later backup. The folder tree will look
like this.

Startup code modification

The startup code is a portion of code that CPU
runs after power up. The start address for Z80 is
0x0000 followed with interrupt vector locations.
The startup code will set stack memory, initialize
global variables then calls the main function. The
source of generic startup code, ctr0.s is located at
d:\sdcc\lib\source\z80.

;; Generic crt0.s for a Z80
.globl _main

.area _HEADER (ABS)
;; Reset vector

.org 0
jp init

.org 0x08
reti
.org 0x10
reti
.org 0x18
reti
.org 0x20
reti
.org 0x28
reti
.org 0x30
reti
.org 0x38
reti

.org 0x100
init:

;; Stack at the top of memory.
ld sp,#0xffff

 ;; Initialise global variables
 call gsinit

call _main
jp _exit

The bold instructions can be modified for our kit.
We may remove the first block of code by adding
semicolon(;) and set the start from 0x100 to
0x1800, says. The SP can be set to the new
stack at 0x8FFF.

.org 0x1800
 init:

;; Stack at the top of memory.

ld sp,#0x8fff

 Then save file with the new name, mycrt0.s.
Next step is to use Z80 assembler to convert it
to object file. Under command prompt, set path
for sdasz80 assembler.

D:\sdcc\lib\src\z80\path \sdcc\bin

mailto:kswichit@kmitl.ac.th

Now type command to complie startup code.

D:\sdcc\lib\src\z80\sdasz80 -o
mycrt0.s

The object file will be mycrt0.rel, copy it to our
folder d:\sdcc\z80 for linking with our c program.

LED.c test program

We can then edit the sample test code by toggle
the 8-bit LED having I/O address at 0x40. SDCC
uses keyword __at for locating the absolute Z80
I/O address.

// test sdcc for z80 trainer

__sfr __at 0x40 GPIO1;

void delay(int j)
{

int i;
for(i=0; i<j; i++)
continue;

}

main()
{

int n=0;

while(1)
{
 GPIO1=n++;

 delay(500);
}

}

The program has only two functions i.e., delay()
and main(). Delay() function is a simple for-loop
counting. And main() function is forever loop
writing the value of variable n (which is
incremented when it was repeated) to the
GPIO1.

Compiling c program

Compiling the source code is done by typing
command line as follows.

D:\sdcc\z80\sdcc -mz80 --code-
loc 0x1900 --data-loc 0x8000
--no-std-crt0 mycrt0.rel led.c

The options are,

-mz80 generate Z80 assembly code,

--code-loc 0x1900 place the begin of
code at 0x1900,

--data-loc 0x8000 begin address of
variables in RAM,

--no-std-crt0 do not use standard startup
code,

mycrt0.rel use this startup code instead.

Led.c is the source code.

Hex file downloading

If no error, the compiler will produce standard
Intel hex file. For our source code led.c, the hex
file will be led.ihx. This hex file can be
downloaded to the trainer kit easily with RS232
cross cable. We can use PC running terminal
emulator software to be hex file transmitter at
speed 2400 bit/s. The example shows how to
use Teraterm as the terminal emulator.

Open Serial port setup, set speed to 2400 8-data
bit, no parity one stop bit and no flow control. Set
transmit delay to1ms/char.

Press key Download and key GO, the Z80 trainer
will wait for data stream from PC.

Click file>Send File>select the led.ihx, then
ENTER

When the hex file has been received correctly, the
start message will be displayed. If there is error
with checksum byte, the display will show -Err.

Test code running

Simply press PC key to set current address to be
executed at 1800, (the address being set for code
space in the startup code). Then press GO. Did
you see the binary number counting up?

More fun with LED rotation

Suppose we want the dot LED to be rotated from
right to left, how the code will look like?

main()
{
int i=0;
int j;

while(1)
{
 n=1;

 for(j=0; j<8; j++)
 {
 GPIO1=n;
 n<<=1;
 delay(500);
 }

}

Instead of incrementing the variable n, we rotate
it with c operator <<.

Try recompile the new source code and load it to
the trainer board. It's fun! with c programming.

Now with left and right running.

main()
{
 int i=0;

while(1)
 {
 n=1;
 for(j=0; j<8; j++)

{
 GPIO1=n;
 n<<=1;
 delay(500);
}
n=0x80;

 for(j=0; j<8; j++)
{
 GPIO1=n;
 n>>=1;
 delay(500);
}

 }
}

 Conclusion

Using sdcc for Z80 trainer kit is simply done by
modifying the startup code, crt0.s mainly at the
start location of code and data memory.
Compiling the c source code is done by
command line with options. The sdcc will
produce standard Intel hex file for directly
downloading to the Z80 trainer using PC COM
port.

Tools address

1. sdcc c compiler, sdcc.sourceforge.net
2. Terminal emulator program,
http://hp.vector.co.jp/authors/VA002416/terat
erm.html

