MICRO
COMP

A 3-CHIP Z-80

COMPUTER

COMPLETE MICROCOMP

MOUNTED ON RETEX CASE RA-1.

Don't think this project displaces the
TEC. It goes hand in hand with it and
uses some of the ‘add-ons’ and
capabilities to assist in preparing
programs. In reality you need BOTH.
The TEC produces the programs and
the MICRO-COMP runs them.

Butif you are only starting in this field
and want a low-cost introduction into
micro-computer programming - THIS
IS IT!

There are some pre-requisites how-
ever. Although the project is simple
{according to computer standards), it
needs a degree of competence in
assembly and you should have
constructed at least 6 other TE
projects before attempting it. Digital
projects have an inherently high
degree of success however
construction requires a fine tipped
soldering iron and a lot of attention to
detail. ’

If you are not up toit, don’t do it. But if
you have made a lot of projects and
want to graduate to the next level -
this is how to go. You will be amazed
with the capabilities of the unit and it
will involve you in hundreds of hours
of programming.

SOME OF OUR ‘ADD-ONS’

At the conclusion of this project
you will:

- Know a little (a lot) about the Z 80
microprocessor.

- Learn ahout Read Only Memories
and Random Access Memories.

- Learn ahout Input and Output
ports and devices.

- Learn how a Micro system works
- Learn how to produce MACHINE
CODE programs.

855075cnmnm

comes witTH FREE
STORAGE BOX!!

Parts: $47.25
Board: $8.50

R

PHONE DIALLER

MORSE TRAINER

4 DIGIT DISPLAY

TALKING ELECTRONICS No. 13 59

This project contains everything to
get you started in Machine Code
programming. It assumes you know
nothing about micro-processors or
how they operate. The MICRO-
COMP is the simplest computer to be
offered on the market. It uses only 3
chips and a handful of small
components to prove that computers
can be tackled and mastered by
anyone interested in electronics.

As with all our projects, full kits are
available and come with a complete
back up service.

As we have said, it doesn’t displace
the TEC but compiements it. And yet
the MICROCOMP is a stand-alone
project. It is self-contained and
comes with a range of interesting
programs as shown on P. 70.

Ten programs have already been
designed and come in the pre-
programmed ROM. They inciude
COUNTING, DISPLAYING and
GAMES. The readout for these is via
the displays on the board but as the
games become more complex we
have designed plug-in modules
which connect to the main board viaa
wire-wrap/component header plug
similar to the arrangement used in
the TEC.

This has proven to be the neatest and
most rugged way of adding features
and allows you to increase and
extend the capability of the system to
quite high levels.

Some of the plug-in boards run two or
three programs and by building all the
modules, you will be able to run all
the programs in the EPROM.

Programs which have already been
completed include:
- MORSE CODE TRAINER
- MORSE RECEIVER
- TELEPHONE DIALER
- COUNTING
- MASTERMIND

JUMP RELATIVE routine for
determining the value of the
displacement byte.

The MICRO-COMP can also be
combined with the TEC and they go
together perfectly. With the
assistance of the TEC you can create
your own programs, burn them via
the EPROM BURNER or hold them in
our non-volatile RAM card for
running on the Micro-comp. This non
volatile RAM project is equivalent to
TAPE-SAVE and has the advantage
of being able to be transferred
instantly or run as a ROM.

It is a battery backed-up 6116 and
when in the power-down mode,
consumes less than 2 microamps.

Two AAA cells power the unit and are
capable of holding the information for
about a year.

The TEC and MICRO-COMP provide
a complete designing system for
creating Machine Code programs
and you can use the Micro-comp for
the execution of the program.

The Micro-comp comes complete
with a 2732 EPROM which is filled
with lots of programs. All these have
been produced entirely on the TEC
and tested on the Micro-comp. We
have not had the assistance of a
compiler, video display or Z-80
simulator, proving that programs can
be generated 'by hand'.

Agreed, this means it has taken
longer to create the programs but the
challenge was well worth it. Even the
concept of a half-byte memory for the
Phone Dialler was an innovation
never before tried.

We admit Machine Code is not a fast
method of creating programs but has
the advantage that almost anything
can be turned into a program. And it
can be done with the simplest of
equipment. The only limitation is the
programmer’s skill.

By buiiding both the TEC and Micro-
comp, you gain first-hand knowledge
of two different methods of designing
a micro system. You will also have
need for add ons such as the non-
volatile RAM and EPROM burner.

In effect you will be a self-contained
programming station capable of
turning out ‘one-offs’ or mass
copying your own programs.

Please remember: These notes use
simple terms and simple
erplanations to make programming
easy. Although they are accurate,
they do not cover everything and we
suggest you purchase a couple of
books on the Z-80. The two best
books to buy will be given later.

Since its introduction, the word
MICRO has been the most feared in
the industry because, up to now, the
operation of a -microprocessor
system has been very much a
mystery.

Never has a writer explained or
presented a system which could be
understood by beginners. They
argued it wasn’'t for beginners but
everyone must be a beginner at some
time. Because of this, Micro’s have
been a closed topic to the newcomer
and this amazing electronic device
has been left for the clever ones.

Now this has all changed.

The MICRO-COMP is here. With only
3 chips it is even simpler than a
medium sized ‘regular’ project and
yet its capabilities are beyond belief.

For the ‘brains’ of the unit we have
used the Z-80. The most popular
microprocessor on the market. Why
the most popular? Because, up to
now, industry swallowed them up
totaily and consumed the entire
production. it's only with the siump
in computer and games sales that
supplies have reached the hobby
market. And due to manufacturing
efficiency, these truly amazing chips
have come down to only a few
dollars.

This means the project will be well
within your budget.

Apart from the programs already
mentioned, we are in the process of
producing programs and modules for
an Alcohol Breath Tester, a Digital
Resistance Meter, Digital
Capacitance Meter, a Bio-feedback
Unit, a Mini Frequency Counter and a
Lung Capacity Meter.

But before we get too carried away,
let's look at the project in detail:

THE MIGCRO-COMP.

This is a 3-chip computer capable of
accepting input data, performing
operations on this data and
displaying the results. The amazing
part of this project is the three chip
count. To achieve this we have used
some very cunning- circuit designs,
some of which cannot be translated
to larger designs. However our aim
has been to produce a computer
which will execute Z80 Machine
Code with the least number of chips.
And this we have done.

The reason for the minimum chip
count is simple. Most constructors
count the chips in a project before
starting and anything over six scares
nearly everyone away. With 3 chips,
many will ‘give it a go’ and that's
where we win. We want lots of
readers to try their hand at
construction and experience the
excitement it offers.

Everyone has seen micro systems in
a hard-to-get-at form. The hrsunal
Computer. But these have never
enabled you to get into the ‘works’ or
let you find out how they operate. You
only get to see the end result -the
print-out or Video picture.

The Micro-comp is designed to break
this barrier. With only 3 chips you
will be able to follow a ‘minimum
parts’ system and understand what is
going on. Even with 3 chips you can

60 TALKING ELECTRONICS No. 13

use nearly all the Z 80 commands and
create an endless number of
programs.

This project is really a software
project. Building the Micro-comp is
purely secondary. But how can you
learn about programming without
experimenting with the real thing?
So building the Microcomp is really
an essential part of learning to
program.

Its price is low enough for everyone
to afford and it has an end-use around
the home as a controller for lighting
or security which would match any
commercial unit. You could also use
it in your hobby, model railway layout
or as a timer-controller in industry.

The MICRO-COMP doesn’t do much
when compared with a Personal
Computer. But that's not its purpose.
It is intended to teach Machine Code
programming, the code behind all
computer instructions.

The only instructions a processor
understands is Machine Code. All
other high level languages have been
invented to allow humans to under-
stand what is going on. Languages
such as BASIC and FORTH provide a
connecting link between the micro
and the human mind. This means all
inventors of languages have had to
use machine code to write their
programs. So why not use Machine
Code direct?

Using BASIC is like hiring a scribe.
Centuries ago people could not write.
So they went to a learned man and
told him what they wanted written.
After a lengthy discussion he would
write a letter. The letter represents
Machine Code. The lengthy
discussion represents BASIC.

BASIC has its advantages and a
number of disadvantage. Its
advantage is it gets you into a micro-
processor system with very little
effort and undertanding. But its dis-
advantage is it needs the 'scribe’ to
be present at all times. With machine
code its like using the typewriter
yourself.

But most important Machine Coda is
the best way for producing programs
for controlling applications. When
you consider all video games and
industrial machines are Mactine
Code based, you will see where the
future lies.

It is interestng to note that a micro
system rivals a ‘normal’ project
{using individual chips) when as few
as 10 chips are involved. When you
consider a microsystem can be
modified and altered to suit changing
circumstances, it is clearly the only
way to go.

Why this hasn't been the case, is
simply due to fear.

Everybody thought microprocessors
were complex mysteries and
preferred to stay with the building
blocks they knew and trusted.

But, in fact, the micro system is
simpler. Once the basic design is
built, it only requires programming to
perform the required function. To
change the function, the electronics
don’t need altering, only the program!

Micro systems are simply thousands
upon thousands of building blocks
stored in the form of program and to
write a program is equivalent to being
able to create your own chips.

This is what the MICRO-COMP is.
You can get it to execute your own
programs and connect all sorts of
input-output devices. You can get it
do just about anything in the
controlling and timing field but first
you have to learn how to program.

To help you with this we have
produced a number of programs to
demonstrate the capabilities of the
system and these are contained in the
lower half of a 2732 EPROM which
comes with the kit. Later you will be
able to send itin for re-burning for the
additional programs.

Before we get into the construction
of the ‘Comp, here's a brief
discussion on how it works.

HOW A COMPUTER WORKS

This is a very simple explanation to
get you started.

The operation of a computer revolves
around a chip called the CPU. This
applies to any computer and the
MICRO-COMP is a computer, even
though it is very simple. In our case
the CPU is a Z 80. It is the ‘brains’ or
‘clever chip’ in the system and
controls all the other chips.

CPU stands for Central Processing
Unit and the feature which makes it
so clever is it is good at organising
things. It keeps the whole system
operating and running smoothly.

In an audio or radio circuit there is
usually only one signal path. In a
computer there are lots of signal
paths. This is the one striking
difference between the two. In a
radio, the path can be tapped at any
point and you will be able to hear the
signal (such as voice or music). If you
tap any of the paths in a computer you
will hear a series of clicks or tones
and they will not make any sense.

This is because a computer requires a
number of lines carrying signals AT
THE SAME TIME to produce the
necessary commands and output
effects.

A single line in a computer will sound
like a tone because of the high speed
of . operation but as far as the
computer is concerned, the line is
producing a HIGH for a very short
period of time and then a LOW for the
remainder of the time.

Since a single line can only produce a
HIGH or LOW, a group of lines is
required for the transmission of
numbers. This is achieved by
assigning the lowest-value line with
‘1’, the next line with ‘2’. the next
with ‘4’, the next with '8’, the next
with “16’ and so on.

By turning on combinations of these
lines, almost any value can be
transmitted.

A group of lines such as this is called
a BUS and a computer has two
buses. One consists of 8 lines and is
called the DATA BUS, while the other
has 12 or more lines and is called the
ADDRESS BUS.

The microcomputer starts operating
after the reset button has been
pressed and released. This action
resets the Program Counter inside
the Z80 to 0000 and instructs the
chip to fetch 8 bits of information
from MEMORY. .

It does this by putting zero’'s on all the
address lines and turning on the 2732
via the Chip Enable line.

The EPROM responds by delivering
the 8 bits of data which are located at
0000 to the data bus. The Z 80
accepts these and places them in a
special instruction register which is
only accessable to the Z80.

Eight bits of information is called a
BYTE and the Z 80 determines what
to do with the byte , according to its
value.

The Z 80 will do one of two things. It
will either carry out the instruction or
request another byte. An instruction
may consists of one, two, three or
four bytes. and the Z 80 waits for a
command to be completed before
executing it.

Looking at the machine codes on the
back of issues 11 and 12 you will
notice some of them consists of one
byte while other are 2, 3 or 4 bytes
long. The Z 80 knows exactly how
long each instruction is and knows
that some contain a data byte or

TALKING ELECTRONICS No. 13 61

displacement byte. This knowledge
is inbuilt into the Z80 and only needs
to be fed a simple program for it to
respond.

The first byte from memory is always
interpreted as an instruction and the
byte or bytes which follow make up
the first command. If you add a byte
or delete one, at any time in a
program, it will not be interpreted
correctly and the Z-80 will carry out
totally incorrect commands.

The Z 80 reads a program one byte at
a time. It does not look ahead and
cannot correct any mistakes. That's
why it is important to check a
program before offering it to be run.

Information passes out of the Z 80 via
the address bus and into it via the
data bus. After the Z 80 has
processed the data, it will send the
result out via the data bus. This
means information moves in TWQ
directions along the data bus,
although not at the same time.

In our case, information from the Z 80
is passed to an output latch. This
latch is a device which fits between
the computer and say a LED, motor or
relay. The need for this chip is very
important, as you will see. Data
could be sent directly to a LED
without using a latch and it would
work. But the computer would have
to stop functioning for the whole time
when the LED is to be lit. This is
obviously not a solution and so a chip
is placed between the two which
holds the ‘turn-on’ pulse for as long
as the LED is required to be activated.

This chip is called a latch . Itis merely
a set of flip flops which hold the bits
of information for as long as is
required. This enables the Z 80 to get
on with its other operations such as
turning on a motor via another latch.
Output devices such as LEDs and
motors cannot be connected directly
to any of the data lines for two
reasons:

Firstly the current available in these
lines will not be sufficient to operate
them and secondly, the lines mustbe
available for other purposes.

This means any device wishing to be
placed on the data bus must be
separated from it until the exact
instant when it is required.

This is what an input latch does.

When these chips are not being
activated, they place no load on the
bus and allow the lines to rise up and
down. This feature is called TRI-
STATE as they are capable of
producing a HIGH or LOW when
required.

This is the basis of how a computer
starts up. More aspects will be
discussed later.

BEFORE YOU BEGIN CONSTRUCTION:

Itis posssible to construct the Micro-
comp using your own components
and on your own PC board.

That's because all the parts are
standard and the circuit board is fairly
easy to reproduce. The 2732
EPROM can be programmed via an
EPROM programmer and everything
will operate perfectly.

There are only two hitches to you
doing this.

First is the guarantee.

If you make the project from your
own parts, it cannot be sent to TE for
repair. We guarantee to fix any model
made from one of our kits as we have
had lots of experience at this. Mainly
poor soldering joints, jumper links
cut before soldering, parts inserted
the wrong way .around and broken
tracks. Small faults but enough to
keep the project from working.

Digital electronics is extremely
reliable but not if you make a mistake.

The second hitch is reliability. If you
use second-hand or unknown
components. how do you know if
they are perfect? They may have been
over-worked or damaged in a
previous project and fail when put in
the Micro-comp.

Making your own Board?

The PC board is not as easy to make
as it looks. One mistake in its etching
and a track may be etched through.
Or a hairline crack may be created in
one of the- lines which will be
extremely difficult to spot. You also
have to consider the overlay and
solder mask. These make the project
look neat and professional. You may
save a few dollars at the start but end
up costing more in the end. We have
had a few troubles with home-made
boards and unless you have made
lots of boards before, we suggest
buying a ready-made board.

Building from a kit is the safest way.
All parts are absolutely brand-new
and chips are transferred from bulk
tubes without being handled. Boards
are inspected three times during
manufacture and made on semi-
automatic equipment with very little
margin for error. A sample kit is
constructed before they are released
and at least three prototypes have
been made before the project goes to
print.

This contributes to the success of our
kits and the neatness of the finished
project is enhanced by the solder
mask on the underside of the board.
This prevents solder sticking to
unwanted areas and shorting
between tracks.

To be sure of success, buy a kit. A
number of shops are selling these kits
and you will find the cost is less than
hunting for the individual bits
yourself.

PARTS LIST

- 10R
- 100R
- 330R
- 470R
- 3k3
- 4k7
4 - 10k
- 22k
- 39k
- 100k

BNWo ==

-

100k mini trim pot
- 1n green cap
Qo0n

- 1mfd 63v electro
- 1,000mfd 25v electro

aaaNn

- 1N 4148
- 1N 4002

O

- 5mm red LED (SPEED)
- 5mm green LED

4 - 3mm red LEDs

BC 647 transistors

- BC 557 transistor

- FND 560

N=ON ==

- 74L8273 IC

- Z2-80 CPU

2732 EPROM (PROGRAMMED)
- 7805 regulator

RGN
'

- 20 pin IC socket
- 24 pin IC socket

- 40 pin IC socket

- 8 way DIP switch

- DPDT slide switch

- PC mount push switches

R QNN

- 3.5mm mono socket
- mini speaker

-t

1 - 6BA nut and bolt

4 - rubber feet

13 - matrix pins

1 - hollow pin

20cm hook-up flex

1 metre tinned copper wire

1 - female matrix pin connector
2cm heatshrink tubing.

MICROCOMP PC BOARD

62 TALKING ELECTRONICS No. 13

@ 8x1N 4148

f 3

RN EERR AR

SwiTCH
L —

ACorbC

L—o0 040 oO—————

8 WAY DIP SWITCH

Calse |

PORT (02)

16 x 3mm RED LEDs

P! k'l
2 x FND 560 { f

7717
4N

ma
T

—

1]

c
INPUTS

UNREGV

=
Trooonta

4_— 8 x 3mm RED LEDs.

8xBC 547

1H

=

ax4 BINARY
DISPLAY DiSPLAY

AUDIO
PROBE

BLOCK DIAGRAM OF MICROCOMP

TALKING ELECTRONICS No. 13 63

~.

e

ot @z Pos Dos @10 D20 a0 Pen

R
e

____ MICROCOMP

U% | DUTPUT
. BOARD

CONSTRUCTION

Lay all the components on a sheet of
paper and identify them. Make sure
all parts are present.

Start assembly by fitting the jumper
links. There are 41 of them and each
must be inserted carefully to produce
a neat result. For each, cut a piece of
tinned copper wire longer than
required and bend it to form a staple,
with the long lower section kept as
straight as possible. The two ends
must fit down the holes cleanly and
the wire must be able to be pushed
right up to the board. This means the
bends must be sharp.

If the two ends do not protrude
through the board. do not attempt to
solder the link as this will produce a
dry joint which will be very hard to
locate when troubleshooting. We
have had two cases of this and it took
hears to locate the fault.

Solder the ends of each jumper and
cut the ends off with a pair of side
cutters so that a little of the wire
emerges from the solder. Do not cut
through the solder as this will
fracture the joint and possibly cause
a fault.

Next fit the IC sockets. Make sure
each pin fits down a hole before
starting to solder. If a pin bends under
a socket it will be very hard to rectify
after the socket has been soldered.
So check before-hand.

Solder one pin at each end to keep the
socket in place while you attend to
each pin.

Solder each pin very quickly and use
fresh solder for each connection. The
solder mask prevents the solder
running along the leads or touching
any of the lines which pass between
the pins. It helps give a professional
result and makes your soldering
100% neater. But don’tuse too much
solder or blobs will result.

On the other hand don’t use too little
or the leads will not be fully
surrounded by solder.

All the components are marked on
the PC board and it is possible to
build the project without any other
help. But as a guide we will go
through the assembly and explain
everything as we go.

Basically you start with the smallest
components which are closest to the
board and progress to the highest or
largest components.

We have fitted the lowest items and
now the smallest. There are 13
connector pins on the board and one

hollow pin for the TONE QUTPUT.
The pins accept flying leads and
female connectors as used in the
plug-in modules.

Fit the 16 LEDs in the 4x4 display and
8 LEDs in the single row so that the
flat on the side of each LED is on the
right. Refer to the markings onthe PC
board. The cathode leads of the LEDs
in the 4x4 are left long and a piece of
tinned copper wire soldered across
them, about half a cm from the board.

There are 4 individual pieces of
tinned copper wire which join the
cathode leads of the LEDs to the
circuit. Refer to the drawing to see
how this is done.

Note the 4 lines
connecting the cathodes:

Next add the resistors and signal
diode in the clock circuit. All these
components touch the board and the
leads are trimmed neatly after eachis
soldered. Next fit the 4 power diodes
and eight BC 547 transistors. Almost
any NPN small signal transistor will
be suitable and BC 547 is only used
as a guide. There is one BC 557
transistor used as the input decoder
and this is indicated on the board
with a white transistor symbol. All
transistors should be pushed onto the
board leaving a space between body
and board equal to about the
thickness of a resistor.

Mount the 100k mini trim pot and
solder its leads. Push the leads of a
LED through the screwdriver slot in
the pot and bend them over so that
the body becomes a handle. By
turning the LED you will notice the
trim pot rotates too.

Now comes the need for a careful bit
of soldering. The two leads of the LED
must be soldered to the rotating part
of the pot so that the solder does not
run over the edge and touch any other
parts. If this happens the pot will be
ruined as it will no longer rotate.

Fit the two 1n greencaps into the
clock circuit.

Mount the ON-OFF switch and input
jack so that they touch the PC board
and solder the leads carefully.

The 7805 regulator is mounted under
the PC board with a nut and bolt so
that it touches the copper laminate.
This will act as a heat sink and
prevent the regulator getting too hot.

The leads from the regulator fit into
the holes on the underside of the
board and are snipped off the top side
so that they don’t protrude.

The two electrolytics must be
mounted around the correct way.
Observe the negative marking on the
component and the positive marking
on the board. The Tmfd reset electro
is bent over and lays flat on the board
to prevent it getting in the way of the
reset button. Allow enough lead for
this to be done.

A ‘POWER-ON’ LED is fitted near the
regulator to indicate 5v.

Three push buttons are the next
components to be fitted. The
positioning of these is determined by
a flat on the side of the switch
aligning with the marking on the PC
board. You can use any colour for the
switches as they are not colour
coded.

The mini speaker can be mounted
either way around as it is not polarity
sensitive. A 10cm wander lead is
required for the probe and it must be
long enough to reach over the entire
board. A short piece of stiff wire can
be soldered to the end of the lead to
act as a probe tip or alternatively the
wi;;zs can be soldered to make them
stiff.

One jumper lead is required on the
board to select either the upper half of
the 2732 or lower half. A female
socket is attached to the lead and
kept in position with a short piece of
heat-shrink tubing.

The last component to be fitted is the
8 way DIP switch. The numbers
and/or letters on this switch must be
removed before it is fitted to the
board as they are not used in this
project and may cause confusion.

Use a knife or blade and scrape the
numbers until they disappear. Next
you must determine which way
around the switch is to be inserted as
some switches are CLOSED when
the lever is UP while others are
closed when the lever is DOWN.

We require the switch to be closed or
ON when the lever is DOWN so that
each of the levers correspond to a
number on the PC board. This is not
essential and the switch will work
satisfactorily around the other way,
but to make things simple keep to our
suggestions.

64 TALKING ELECTRONICS No. 13

Check the operation of the switch
with a multimeter before inserting it
onto the board and solder it in
position when it is correct.

Fit 4 rubber feet to the underside of
the board, insert the chips and you
are ready for testing.

TESTING

Insert the power plug into the 3.5mm
socket and switch the Microcomp
ON. The power LED should come on.
Make sure all the input switches are
OFF. Push button B. The number 99
should appear on the displays. Press
button A and the numbers will
increment. Push button B and they
will decrement. This is a fairly good
indication that everything is working
perfectly and you can go on to
learning about programming.

If you do not get 99 on the displays
you may have a fault in the system.
This will require you going through a
trouble-shooting procedure as
covered on P. 6

Consider yourself lucky that the
computer doesn’t work. You will gain
a lot by trouble-shooting it yourself

and gain experience in finding the the 2732 have been
fault. covered.
OFF oN AC OR DC — ‘ 1
p 7 SEGMENT DISPLAYS &~
By SNpa02 —4— —t&— out) g- 2
B2 2-0r27 ¢ e e PUT =11 r— - G
S50 8 c LATCH [=} l ’ I @ S =
‘?,ﬂ-l—alm'_-g Z | ye—— em— _9"|8%
2= g rasers | Jllol I/ EZsIpes
’ o 2 -aaomr-t o e] 9@ = P20,
1= 2 ml 1000u | 'G5 PORT (02) © 8T T plaod
— <<
°Eetr, (=) o T E §0: Do Moo 2
04 —10K = (-] g o —10K=—]
of o ReseT SRR P prose !
=100K= @ = S10K-
Z100K~= 100K~ ° " o C] T
PORT] It - AUDIO o
3.,'“1 déS it l g Iz PROBE 2
3] 99 —— g o -Z=0Q z
%, 11 o = ety 2
sk =100k~ o0 g @ ca5 —
e SPEoEgL vo| Ny 2 o telg _._—,
J1417 ° o o0 Tt ¢
seesky | ¢ Sle| T 6 x 1 e
- [
TIP9PY lEx: ZN 3;%3“ Ty 2
1n 1n 1NS14 PR ¥ s
noin '_O IO EPROM Z
& 3 CHIP g A |3warou
-tok= 2 | Z80 MICRO |< wicRo SWITCH
D v PROCESSOR | coMPUTER MICROCOMP-1 881:\’;5|8421

Note the LED used as aknob A
for the SPEED control. SGS
transistors don’t work very
well in the clock circuit.
They freeze at high speed. To
prevent this, use 47k base
resistors.

The MORSE TRAINER is our yw—
first add-on and will be
presented as soon as the
programs in the lower half of

The overlay for the Microcomp shows all the
component locations and link positions. The
large donuts indicate the positions for the matrix

pins. A wander lead selects HIGH/LOW 2732,
while another is taken from the AUDIO PROBE
input pin.

TALKING ELECTRONICS No. 13 65

IF IT DOESN’T WORK

As we have said, digital projects are
extremely reliable and have an
enormous success rate. The chances
of this project working as soon as the
power is applied, is very high.

However, if it doesn’t snap into life,
here are same helpful suggestions.

Firstly check the power LED. It
should come on as soon as the power
is applied. If it doesn’t. the fault will
lie somewhere in the power supply.

Feel the 7805. It should get warm
after operating for a few minutes. Ifit
is very hot, you will have a shortin the
circuit. Turn off the computer and
look for a bridge between two tracks.
This may be anywhere at all on the
board and this is how to go about it:

Measure between the positive and
negative rails with an ohm-meter set
to LOW OHMS. It should measure
about 30 ohms in one direction and
50-ohms in the other. The values you
will get are mainly due to the
presence of protection diodes inside
the chips and the resistors on the
board. The actual value of resistance
does not matter. Values such as this
do not indicate a short circuit. Butif it
10 ohms or less, a short-circuit is
present.

Remove one chip at a time. If the low
value is still present after all the chips
have been removed, you will have to
look for a fault on the board itself.

Start by removing the 7805 and then
one end of each of the 41 jumper
links. Measure the resistance value
at each stage. If the short is still
present, lift one end of each resistor
and capacitor. If it is still there, it will
possibly be a short between 2 tracks.
You will need a magnifying glass and
a sharp knife. Cut between the tracks
at every location -where you have
made a connection to make sure no
wiskers of solder are shorting
between one land and another.

After this, the short should be
removed. Refit the 7805 and switch
ON. The LED shouid light. Refit all the
components and jumpers. Use
desolder wick to remove the solder
from each of the holes so that the
leads can be inserted.

If the power LED comes ON but none
of the displays, set an input value on
the switches of say 40’ and reset the
computer. This will produce ‘99" on
the displays. If they remain blank,
you will have to look into the
operation of the system.

This_is where the built-in AUDIO
PROBE comes in. The probe lead will
enable you to hear the signals on
each of the active pins of the chips.
We have specially designed the
computer to operate at a speed which
can be heard by the human ear. The
probe will let you hear the frequency
of the clock, the output of the address
and data bus and also the activation
of the latch.

Firstly turn the clock speed down and
probe the "clock-input’ at pin 6 of the
Z-80. You should hear a fairly high
pitched whistle. As you increase the
clock speed, this whistle will
increase until it gets too high to hear.
Next probe one of the data lines and
you will hear a tone which is exactly
one-eighth the frequency of the
clock. If nothing is heard, it means
the Z-80 is not operating or not
accepting the input clock waveform.
Make sure the reset pin of the Z-80,
pin 26, is HIGH, otherwise the Z-80
will be sitting in a reset state.

If nothing is heard on the address or
data buses. the fault will lie between
the Z-80 and EPROM. They must be
talking to one another for the system
to start up. Even a blank EPROM
(filled with junk of FF's) will produce
a tone on the buses.

Test pin 18 of the EPROM to make
sure it is being accessed. You should
hear a tone on this pin which means
the Z-80 is accessing the EPROM
and trying to get it to place data on
the data bus.

Some of the faults which can occur
between the Z-80 and EPROM
include non-soldered connections,
IC socket pins which do not pass
through the PC board and thus do not
connect to the circuit, power not
reaching the chips (due to a broken
track), or a fault in one of the address
or data lines near a solder
connection.

This generally occurs when you are
soldering and may be due to the iron
being too hot, taking too long to
produce the joint or moving the
component while the solder is
setting. The result is a hairline crack
where the track meets the land and
this is very hard to spot. Use a multi-
meter set to low ohms to measure the
continuity of each of the lines.

if everything seems to be correct, try
replacing the Z-80. Itdoes not matter
if you use a Z-80 or Z-80A, they will
both work equally well.

There is only one remaining
possibility. The Z-80 requires a
perfect square wave for it to function
and we have gone to a lot of trouble to
produce a near perfect waveform.

If the rise and fall time is not
extremely short, the Z-80 will not
accept it. This problem will be almost
impossible to determine, even with a
30MHz CRO. If you have come to this
conclusion, you should send your
project in for a check-up.

Once you have values appearing on
the displays, you can check for the
correct operation of the programs by
accessing our OUTPUT LATCH TEST
ROUTINE. Turn on switches 01, 08
and 20. This will give a value of 290.
Push reset and the micro will jump to
address 0290. Three LEDs should
illuminate: 01, 08 and 20. Now turn
all switches OFF. All LEDs should
extinguish. If any remain ON, the
fault could lie in the input port. Check
the soldering for shorts and all lines
for continuity.

If a fault is present in one of the lines
other than 01, 08 or 20, the micro will
not address 0290 and the wrong
program will appear.

If this is the case you will have to
experiment with various settings and
try to determine where the micro is
jumping to.

If a wrong program is picked up, you
cannot be sure it has accessed the
beginning of the program and thus
you cannot immediately determine
which line is at fault.

Turn all switches OFF and press
reset. The computer should not
address any programs as the jump
routine will be loading HL with 00 00
and jumping to the start again. Thus
it will run around a loop, back to
address zero.

If the 7-segment displays illuminate
but not the 4x4 matrix, or the row of 8
LEDs, the fault will lie in the jumper
lines which must be connected to the
cathode leads of each of the 16 LEDs.
See the construction notes for this as
it will be the first time you have come
across this method wiring the
underside of a board.

The decoding transistors for ports 1
and 2 only come into operation when
they receive the correct instruction
via the program.

When the micro is executing the
start-up program, it will be looking at
the input port twice per loop and you
will able to hear this in the mini
speaker.

The output port will not be accessed
during this time and probing the
Latch Enable line will give no tone.

You must put a value on the input port
switches to get the computer out of
the start-up routine if you want to
probe the output decoding transistor.

66 TALKING ELECTRONICS No. 13

This is done atpin 11 of the 74LS273.
If no tone is heard, trace the circuit
back to the BC 547 (near the Z2-80}
and probe the base and emitter leads.
When the transistor is being turned
ON, a tone will be heard in the
collector circuit.

If all these suggestions fail, start at
the beginning again and solder each
connection. Use desolder braid to
collect any excess solder and inspect
every joint under a bright light.

Make a continuity check of each
copper track and make sure each
land is not shorting to the one next to
it.

Check all the LEDs for correct
insertion and all chips for placement
around the correct way.

Check the regulator, the 4 power
diodes, the clock circuit, the place-
ment of the 9 transistors, the
positioning of the 3 push buttons and
the value of all the resistors.

Ask afriend to go over the projectand
carry out the troubleshooting hints.

If all this fails, there is a repair service
from TE and for $15.00 plus $4.50
postage, you can get your unit
repaired. Send it in a jiffy bag with
$19.50 and we will do our best. Up to
now every computer sent to us has
been repairable.

So. don’t despair. Send itin and we’ll
check it out.

WHAT EACH CHIP DOES

There are 5 major building blocks in
the MICRO-COMP. They are:

THE GLOCK - made up of 3 transistors
THE CENTRAL PROCESSOR UNIT

- A Z-80.

THE MEMORY - A 2732 EPROM.
THE INPUT PORT - 8-way DIP swiTCH
THE QUTPUT LATCH a 74LS273

There are also a number of other
active devices (transistors) which
perform inverting and driving
functions and also a single transistor
connected to a mini speaker to
provide an audio probe to listen to the
computer in operation.

We have intentionally kept the chip-
count down to make the project
attractive and in this chapter we will
discuss each chip and how it fits into
the circuit.

THE CLOCK

Even though this is not a chip, we
could have used one. The require-
ment of a clock is to produce a very
fast rise-time waveform at a
frequency to suit the project.

The clock in a computer controls the
speed at which data flows through
the whole system. The Z-80 will
operate at a frequency as low as 7kHz
and below this its registers will fail to
hold informaticn. This is because
they are dynamic and have to be
‘topped up’ many times per second.

At the higher end of the range, the Z-
80 will operate at 2.5MHz and a Z-
80A at 4MHz.

In our project, we want the Z2-80 to
operate as slow as possible so that
we can ‘see’ the program run and
hopefully listen to the bus lines
change tone as the program runs
through its steps.

The reason for the clock circuit
containing a diode and wave-shaping
transistor is to generate a perfect
square wave. The Z-80 is very critical
as to the shape of the wave it will
accept and the rise and fall edges
must be extremely fast - especially at
this low frequency.

In addition, we have included a speed
control in the clock circuit so that the
frequency can be adjusted from
7.5kHz to 35kHz. This is nearly a5:1
ratio and allows each of the programs
to be run at high and low speed.

Even at these speeds the Microcomp
must be one of the slowest
computers on the market as most
operate at a clockfrequency of 1MHz
to 2MHz. But don’t worry, even at
8kHz, you will see operations
performed faster than you can think.

THE Z-80

This chip is the heart of the computer.
It is called the CENTRAL PRO-
CESSING UNIT or CPU for short.
This is a truly an amazing chip and we
could fill many pages on its workings.

You will pick up a lot more on how the
Z-80 works as we progress with the
notes and the main fact is it controls
all the other chips in the system. It
takes information from the 2732 and
delivers the result of calculations and
operations to the output latch. The
speed with which it performs these
tasks is controlled by the frequency
of the clock.

The 2-80 is capable of controlling
over 100 chips and you can see our
‘comp is only a very small design.

The Z-80 is like a story-teller. It reads
the 2732 like a book and delivers its
interpretation to a child (the output
latch). The input port is like a child
telling the story-teller where to start
in the book. The clock circuit is like a
watch - telling the story-teller how
fast to read.

THE EPROM

Chip number two is the program
storage chip. It has been
programmed by TE so that a number
of programs and effects can be
produced on the displays. These
chips are bought in a blank condition
and programmed by means of an
EPROM PROGRAMMER so that
they contain the necessary set of
HIGHs and LOWSs to make the Z-80
perform the required operations.

The EPROM supplied in the kit is
ready to operate the computer but
you can program your own or get a "
friend to program one for you and it
will work just as successfully. The
full listing to do this is supplied in the
notes. ’

This is the main advantage behind the
type of programming we are covering.
It means you will be able to write
programs for your own micro-
computer controllers, produce the
EPROM and get it running without
the need for any outside help.

It is the most efficient type of
program available, in terms of
memory required. It consumes the
least amount of memory and is used
in all types of industrial applications
and video games.

THE INPUT PORT

This is an interface between the
computer and the real world. We
have already mentioned the need for
this connecting link.

The input port takes in information
from a set of switches and loads it
into the accumulator in the Z-80. The
Z-80 operates on this according to
the instructions in the program.

As well as the 8 switches. there are
also 2 push buttons which are in
parallel with the two highest value
switches. Provision for two more
switches (external to the board) is
also provided on the PC.

The input port is software controlled
and thus any of the switches can be
programmed to perform any
operation you wish. They can start a
program, stop it, call up a number,
increment a count value, decrement
it. sound an alarm, dial a phone
number and lots more.

TALKING ELECTRONICS No. 13 67

A switch places a HIGH on the data
bus, when it is closed, and only when
instructed to do so via the program.
The instruction for this is: IN A,(01)
and the input decoder transistor is
activated to allow this loading to take
place. At all other times the switches
put no load on the bus and allow the
lines to rise and fall so that the other
instructions in the program can be
performed.

THE OUTPUT LATCH

The output latch is the third and final
chip in the project. This is the chip
which drives the set of output LEDs
and displays. We have created three
different types of display and each
will produce its own special effect
according to the program being run.
The main purpose of this latch is to
hold the information coming from the
Z-80 for long periods of time so that
we can view it on the displays. This
allows the Z-80 to go away and carry
out other operations.

A set of transistors turn on one or
other of the 7-segment displays via
the 8th line so that a two digit number
can be displayed.

INPUT/OUTPUT

The Microcomp is capable of
accepting information from the
outside world as well as delivering to
the outside. This capability is called
INPUT/OUTPUT.

In a simple system such as ours, for
each address line it is possible to
connect 8 devices to the data bus and
access them individually via the
program. These devices must also be
gated into operation via the IORQ
line.

Devices can have either input or
output capability and since the Z-80
has 16 lines, this gives us a lot of
devices! This is more than we require
and to keep it simple we will consider
only one set of 8 on address line AQ
and one set on address line A1.

THE INPUT PORT

Input information is obtained from a
set of 8 DIP switches and these are
connected to the data bus. Eight
switches like this gives us the
capability of up to 256 combinations.

When address line AO goes HIGH and
IORQ goes LOW the value on these
switches is passed to the Z-80 as an
input value.

These switches are software
programmable and can be instructed
to perform many tasks, depending on
the instructions in the program. The
micro only leoks at the switches
during the instruction IN A,(01) and
during the remainder of the time the

switches are allowed to float up and
down and don’t interfere with the
data bus.

THE OUTPUT PORT

The OUTPUT PORT is a latch chip. It
must be a latch to hold the output
value long enough for us to see the
data on the displays. The latch will
retain this data until updated.

There are two gating transistors in
this project. One controls the input
port and the other controls the output
port.

Each transistor produces a LOW
output when the 1/0 Requestis LOW
and the prescribed address line is
HIGH.

The 1/0 Request line does not
determine the IN or OUT nature of the
signal, it just goes low when the Z-80
requests one of its ports. The
circuitry and instruction in the
program determines the IN or OUT
condition.

THE DISPLAYS

The Microcomp has three different
types of displays:

% Two 7-segment displays
Y A 4x4 matrix of LEDs
* A row of 8 LEDs.

Each display provides a different
effect for any given set of values and
you will be able to make a
comparison between them as the
programs run.

Here are a few facts and hints on
producing effects on the displays.

At first you may be surprised to see
two 7-segment displays operating
from one latch chip. Normally this is
not possible as all the lines from one
latch are required to drive the LEDs in
the display.

But by using only 7 lines to drive the
segments, we have one line left over
to switch between the two displays.
This eighth line is normally used to
drive the decimal point but this is the
sacrifice we have had to make. .

In our arrangement only one display
will illuminate at a time and to make
them both appear to be illuminated at
the same time we must switch
rapidly between them. This will
create a two-digit number and allow
us to produce a readout for a 00 to 99
COUNTER. It will also give us a
number of other effects as you will
see in the programs.

The 4x4 also connects to the latch
and because the LEDs are connected
in a different way to the 7-segment
displays, a completely different effect
will be created. A program for the 4x4
will not be recognisable on the 7-
segment displays and vise versa.

The 4x4 matrix can be thoughtofas a
miniature display board. It s
connected to the latch via 4
horizontal lines and 4 vertical lines.
The anodes of the LEDs are
connected to the 4 lower bits of the
latch such that the first column goes
to bit 0. Column 2 goes to bit 1,
column 3 to bit 2 and column 4 to bit
3.

The anodes of all the LEDs are
connected to the 4 higher bits of the
latch such that the lowest row
connects to bit 4. The second row
connects to bit 5, the third row
con;\ects to bit 6 and the top row to
bit 7.

This means bit O sources 4 LEDs and
so does bit 1, 2 and 3. Bit 4 sinks 4
LEDs and so does bit 5, 6 and 7.

To turn on a LED, the source bit must
be HIGH and the sink bit must be
LOW. This arrangement will allow
any individual LED to be illuminated
and even certain combinations of
LEDs. But it does not permit
absolutely any combination to be
iluminated due to our wiring.

We can overcome this by a trick in
programming called multi-plexing.
This will be covered later and can be
seen in the dice project.

To see exactly how the LEDs are
accessed, address the program at
0290. By switching off the input
switches you will turn the matrix off.
Load input values into the switches
and you will see the rows and
columns of LEDs illuminate.

The third display is a row of 8 LEDs.
This display can be referred to at any
time for both the binary value and hex
value being outputted from the latch.
The binary value is simply obtained
by looking along the row of LEDs and
noting the on-off pattern. By adding
their value in binary you obtain the
decimal value of the latch.

But decimal values are of no real use
to us in this project as we are
concentrating on hexadecimal
notation.

To find the hex value of the output
latch, add the hex values alongside
each LED. This is easy to do after a
little practice.

Using the three displays together you
will see the hex value required to
produce letters and -numbers on the

68 TALKING ELECTRONICS No. 13

7-segment displays and also see
what the micro in inputting and
outputting in binary form to create
these numbers and letters.

In all, it gives a graphic picture of
what is going on.

THE AUDIO PROBE

The audio probe consists of a single
transistor and a mini speaker. Its
prime function is to enable you to
listen to the ‘computer in operation’.

This is possible when the clock speed
is turned down and the probe touched
on each of the pins of the chips.

It is interesting to hear the HIGHs
being sent along the lines, especially
the address bus where each line is
running at half the frequency of the
previous. The Z-80 is acting like a 16-
stage divider and you can hear this on
the probe.

The probe is also wused for
determining the operation or non-
operation of the Z-80. This is one of
the tests you will be required to do
when setting up the project as the Z-
80 requires a near-perfect square
wave for it to operate.

The easiest way to see if it is
accepting the clock pulses is to listen
to the address or data lines.

The only way to know if the 2-80 is
accepting the clock is to use the
probe on pin 6 of the Z-80 and then on
one of the address lines.

The audio probe is also used during
the course of the experiments. By
comparing the program with the
tones on the buses and the Latch
Enable pin, you can determine how
often the chip is being accessed.

The audio probe also connects to pin
‘80" on the PC board which is bit 7 of
the output latch. The Tone program at
0010 outputs a HIGH 1o this line and
then a LOW to produce a click in the
speaker. This is the basis to
producing tones and by varying the
speed control, the pitch can be
altered.

WHAT IS THE 27327

The 2732 is a memory chip
containing 32,768 individual cells
which can be programmed to contain
a small charge. -

Each cell is a single P-channel MOS
transistor capable of detecting the
presence of a charge.

This charge is held on a conducting
layer above the transistor, on a thin
film of insulating material. When the

charge is present the transistor
outputs a HIGH. When the charge is
not present, the transistor outputs a
LOW.

We can access each of these 32,768
cells and supply them with a small
charge during programming. The
charge remains in place for many
years because it has no where to
jump to as each area is surrounded by
insulation.

Exposure to ultra violet light will give
the charges sufficient energy to jump
off, leaving the plate in a neutral
state.

When you look through the quartz
window you can see the array of
celis. It seems incredible that over
32,000 cells can be seen, but that's
the reality of electronics.

We access these cells 8 ata time and
this is equal to one BYTE. This is the
basic unit which is fed into a
processor and is the basis of all
Machine Code programs.

One byte can have up to 256
possibilities due to the fact that each
of the 8 cells can be either ON or OFF.

To output these 8 bits of data from
the chip we need 8 lines and these
form the DATA BUS.

We need another set of lines into the
chip so that we can locate these 8
cells. For a 2732 we need 12 lines
and these are called the address bus.

There is one interesting feature about
the address and data lines. Even
though they are identified as AO, A1,
A2,....D0, D1, D2 etc. they can be
connected to the microprocessor in
any order. This is because the cells
are uncommitted and provided you
read in the same order as it was
programmed, the correct data will be
outputted.

The only reason for keeping to an
accepted pin-out arrangement is so
the EPROM will work in other
designs and on common
programming equipment.

THE GATING TRANSISTORS

Input and output ports must only
come into operation when requested.
At all other times they must not put a
load on the data bus as it is required
for other communications.

However when aninstruction such as
IN port 1 is sent to the Z-80, there are
two lines which will be held in a
stable condition and can be used to
activate the port latch. These are 1/O
Request and address line AO. These

can be gated together and the
resulting pulse used to activate the
port.

This is called simple decoding and
since the Z-80 has a number of
address lines it is possible to
connect lots of input/output devices.

We have used only the first two lines,
A0 and A1 and they provide a simple
way to achieve an end result.

With this arrangement, the first
device wili be activated with the
instruction: IN A,(01) and the second
by IN A,(02). Further devices would
be activated via IN A,(04) IN A,(08)
and IN (10).A. By adding port values
together, more than one port can be
activated at the same time, should
this be necessary.

USING THE DIP SWITCHES

The 8 dip switches are connected to
the input port and are capable of
providing up to 256 different
combinations.

Eight lines like this is equal to one
byte and depending on the program
being run, this value can be used in
many ways. Examples can be seen in
the programs contained in the
EPROM that comes in the kit.

We will now explain the meaning of
the values on the PC board, alongside
each of the switches.

You will see numbers: 80, 40, 20, 10,
8. 4. 2, 1. These are hex values and
are an easy way for us to give values
to a set of binary switches. The other
optionistowrite: 1,1, 1, 1,1, 1,1, 1.

Hex is a successful solution to
writing values from 1 to 256 in a form
which is easy to read and only
requires 2 digits. To input a value
such as 234 refer to the Hex
Conversion table on P 16 of issue 11.
Itis equivalentto EA. Once you are in
Hex notation, you stay in Hex. This
makes it awkward when you see
values such as 10, 20 45, 80, 100 but
you must remember these are also
Hex values and a number such as 10
(one-oh) is really 16 in decimal
notation.

To place EA on the switches, you
need to know about Hex addition. For
instance E is made up of: 8, 4, 2, and
1. This is how it is done on the input
switches: The switches are
separated into two banks of four. The
low value switches are labelled 8, 4,
2, 1. The high value switches are 80,
40, 20, 10.

The vaiue EA is placed so that E will
be loaded into the high section and A
into the low section. To enter E turn

TALKING ELECTRONICS No. 13 69

on switches 80, 40 and 20. This gives
EO. To produce the value A, turn on
switches 8 and 2. The input switches
now hold EA.

After you have used them afew times
you will become familiar with their
operation.

One of the main uses is to generate a
JUMP VALUE to get to the programs
in EPROM. The computer interprets
the value on the switches as a START
ADDRESS by multiplying the value
by 10 (one-oh) and jumping to the
address of the value created.

The multiplication value of 10 is ahex
value and is equal to 16 in decimal.

For example if we load the switches
with the value ‘1’, the start-up
program will convert it to 10 and
produce the address 0010. This is the
address of the first program in
memory - a TONE routine. To address
the RUNNING NAMES routine, load
the switches with 8. This will make
the Z-80 jump to 0080, when the
reset button is pressed.

In a similar way, the start of each of
the programs can be accessed via the
switches. For instance, the Final
Message at 07A0 is addressed by
loading 7A.

Although we can only address every
16th location, the programs have
been written to start at an even Hex
value and end before an addressable
location. Some programs occupy 80
or more bytes while other take less
than 8. This means some locations
will be unused but this is the
limitation of the system.

Experiment by loading the start
address of various programs and run
them to see how they operate.

THE PROGRAMS

We now come to the programs them-
selves.

The list shows all the programs in the
lower half of the 2732. The number in
the first column is the START
ADDRESS which is loaded into the
DIP switches. Once the program has
been accessed, you can use the push
buttons and any of the DIP switches
to operate the program.

Whether you have burnt your own
EPROM from the listing or bought a
kit, you will want to know how the
programs are put together and how
they run. That's the whole purpose of
this project.

Study each program carefully,
running it at different speeds and
answer any questions associated
with the listing.

LIST OF PROGRAMS:

0000 JUMP ROUTINE

0010 TONE

0020 QUICK DRAW

0080 RUNNING NAMES

00DO - 00F4 RUNNING LETTER ROUTINE (can

be called)

100 - 1FF LIST OF NAMES

200 - 28F LOOKING AT DATA

290 - 29F FROM INPUT TO 8 LEDs
2A0 - 2BF INCREMENT VIA BUTTON A
2C0 - 2CC AUTO INCREMENT (fast)
2DO - 2DD AUTO INCREMENT (variable)
2EOQ - 2EC AUTO DECREMENT

2F0 - 2FF AUTO DECREMENT (variable)
"300 - 36F 4x4 EFFECTS

370 - 0 - 9 COUNTER

390 - 0 - F COUNTER

3A0 - A-Z 0-F COUNTER

3F0 - 3FF VERY LONG DELAY

400 - 469 00 - 99 COUNTER

470 - 51F DICE

520 - 52F EPROM IN BINARY

530 - 623 POKER

630 - 6BF BINARY CLOCK

6CO - 6CB ONE MINUTE TIMER

6D0 - 6DB 3 MINUTE TIMER

6EO - 6EB 1 HOUR TIMER

6F0 - 738 ADJUSTABLE TIMER

740 - 760 1 MINUTE DELAY

765 - 79D Table for adjustable Timer
7A0 - 7FF FINAL MESSAGE

These programs occupy the lower V2 of a 2732 EPROM.

at 0000:
THE JUMP ROUTINE

This routine will be used every time
you want to access one of the
programs.

Set the address value on the input
switches and press reset. The micro
will then jump to the program you
have selected.

Each program is a loop and the
Microcomp will run around this loop.

The input switches can now be used
for other functions according to the
demands of the program. Don’t push
reset as this will cause the micro to
jump out of the program. Only
buttons A and B are used during the
course of the programs. These are
equivalent to switches 8 and 7.

THE JUMP PROGRAM

1. LD B,00 0000 06 00

2. IN A,(01) 002 DBo1
3 LD'HL 0000 004 21 00 00
4. LD L,A 007

5. ADD HL,HL 008 129

6. ADD HL,HL 009 29

7. ADD HL,HL 00A 129

8. ADD HL,HL ooB 129

9. JP (HL) 00C E9

This routine looks at the input port
(01) and jumps to the address set on
the input switches.

The program mulitiplies the value set
on the switches by 10 (one-oh) and
jumps to this value.

If no switches are set, the program

constantly loops back to 0000,
looking for an input from the
switches.

If '1" is loaded on the switches, the
program jumps to 0010. If ‘2’ is set,
to program jumps to 0020 etc. If
switches 20, 8 and 1 are set, the
program jumps to 0290.

In this way we can access from 0010
to 07F0 in blocks of 10 hex bytes.
This is equal to every 16 bytes and
gives us a very good coverage of the
EPROM.

The way in which the program works
is this:

Line 1 loads the B register with 00
ready for a DJINZ statement as
required in some of the programs. It
has nothing to do with this program.
Line 2. The program looks at the input
port and loads the value it finds on the
switches into the accumulator.

Line 3. The HL register pair is zeroed.
Line 4. The accumulator is loaded

70 TALKING ELECTRONICS No. 13

into the L register, which is the LOW
register of the pair.

Lines 5, 6, 7 and 8 add the contents of
the HL register pair to itself four
times. Each ADD doubles the result,
making a total increment of 16 times.
A multiple of 16 is equal to 10 in hex.

Line 9. The micro jumps to the
address given by the value of the HL
register pair.

QUESTIONS:

1. Set the switches to address values
which are not the start addresses of a
program. Why do some of them
work?

2. Why does button B address the
start of the 00 - 99 counter? .

3. Could the DIP switches be
replaced with push buttons?

4. Explain what we mean by the input
switches are software programmed:
5. Name a few devices which can be
connected to the input port:

ANSWERS

1. Sometimes you can start part-way
through a program and it will run.
This is because the micro jumps into
a location it understands and it
follows the program to the end. It
then jumps to the start of the program
and produces a full display on the
screen.

2. Button B has the same value as
‘40’ on the switches and this
corresponds to address 400 in the
EPROM.

3. Yes, but remember up to seven
buttons would have to be pressed at
the same time to achieve the resuit of
the DIP switches.

4. The input switches can be
programmed to do anything, as
requested by the program.

5. Any device which has a set of
contacts such as a relay, morse key,
micro-switch, pressure mat or even
transistors acting as switches can be
used.

THE TONE ROUTINE

The TONE routine is located at 0010
and this is addressed by switching
the lowest value switch ON thus:

[T ore

The principle behind creating a tone
is to toggle an output bit. The speed
with which the bit is toggled,
produces the frequency of the tone.
To produce a 1kHz tone requires a
minimum clock frequency of about
50kHz. This is because the clock
frequency is divided by eight to run
the data bus and further clock cycles
are required for the load and output
instructions. Since the maximum

frequency of the Microcomp is about
35kHz, the highest tone which can be
produced is 700Hz.

This is not sufficient for a musical
scale or a tone generator and only a
sample tone has been included in the
EPROM.

By inserting the lead of the AUDIO
PROBE into terminal ‘80° on the
board, below the 7-segment displays,
the tone will be reproduced in the
mini speaker.

You can compare this tone with the
Latch Enable pin and the data bus and
see if the tones are different.

The TONE routine is a loop, starting
at 0010 and ending at 001F. The first
instruction is a single byte
instruction which clears (zeros) the
accumulator so that this value can be
outputted to port 2. The accumulator
is then loaded with 81 which

TONE ROUTINE:

XOR A 0010 AF
OUT (02),A o011 D30z
LD A, 81 o013 3ES81
ouT gz),A 0015 D3 02
XOR 0017 AF
OUT (02),A 0018 D302
LD 81 001A 3E81
OUT (02),A 001C D302
JR 0010 001E 18 Fo

produces a HIGH to the AUDIO
PROBE input pin and also turns on
segment ‘a’ of the firstdisplay. Thisis
the complete TONE routine. The
sequence has been repeated again to
use up the available memory before
jumping back to 0010 via a JUMP
RELATIVE instruction.

The program will loop continually
until the reset button is pressed. The
input switch must be OFF to prevent
the program being accessed again.

QUICK DRAW PROGRAM

LD C,02 0020 OE o2
LD D,08 0022 16 08
LD HL,00F5 0024 21 F§ 00
L) 0027 7E
OUT (02),A 0028 D302
DJNZ 002A 002A 10 FE
INC 002C 23
DEC D 002D 1§
JR NZ o027 ©02E 20 F7
DECC 0030 oD
JR NZ ooz2 90031 20 EF
LD A,00 0033 3E 00
ouT ozg A 0035 D302
LD DE, oboz 0937 11 02 ob
DEC D 003A 1
LD A,D 003B 7A
E 003C B3
JR NZ 003A 903D 320 FB
IN A,(01) 003F DB o1
BIT 6,A 0041 CB 77
JP NZ 0020 0043 C2 20 00
BIT7,A - 0046 CB 7F
JP NZ o020 0048 Cz 20 00
oF B 3E oF
OUT (02),A 904D D3 02
Biu 004F 06 08
DJNZ o051 0051 10 FE
LD 0053 3E B9
OUT (02),A 0055 D3 o2
IN A‘ 01 0057 DB o1
BIT 6,A NS; CB 77
JR NZ ooss 00SB 10 09
7,A 005D CB 7F
JRZ,004B O00SF 28 EA
LD A,Bo 0061 3E Bo
OUT (02),A 0063 D302
oot & 7F
BIT 7,A 00! 7
JR ZZ:”-,‘ 0068 28 0A
LD A,0b 3:% %E ob
OUT (02),A 3 02
DDARA 0otk 3k Bo
OUT (02),A 9070 D302
JR 00bA 0072 18 Fb
N
02 3 02
AALT A o018 76

This is the COUNT register for 2 rotations of the display.
D is the COUNT register for the 8 LEDs

Load HL with the start of the byte table.

Load the accumulator with the value POINTED TO by HL.
Output the accumuilator to port 2.

Register B contains 00 (via jump program) DINZ is a DELAY.
Increment HL to loak at the second byte in the table.
Increment the BYTE-TABLE COUNTER.

If gnd of table not reached, jump ta line 4. Otherwise nextline.
Decrement C and illuminate 8 LEDs again.

If C is zero, advance to next line.

The accumulator is zeroed to blank the display.

The Accumulator is autputted to port 2.

The DE register pair is available for a-long DELAY.
Decrement DE

Load D into A

OR E with the accumulator

Jump if both D and E are not zero.

Input the two switches.

Test BIT 6 to see if switch B is pressed.

Jump to start of program if button B is pressed.

Test BIT 7 to see if button A is pressed.

Jump to start of program if A is pressed.

Load A with OF to produce a 'backward C'.

Output OF to port 2.

Load B with 08 for a short DELAY ROUTINE.

DJNZ decrements register B to zero.

Load the accumulator with BS to produce 'C’ in display 1.
Output BY to port 2.

Input the two switches to see if either is pressed.

Test BIT 6 to see if B is pressed.

Jump if button B is pressed.

Test BIT 7 to see if button A is pressed.

Jump back to line 24 if not pressed and loop constantly.
If button A is pressed, load the accumulator with BS.
Output B4 to port 2 to give ‘1’ on display ONE.

The program HALTS. Reset by pressing reset button.
Test bit 7 to see if button A is also pressed.

Jump if button A is not pressed.

Load Accumulator with 06

Output 0 to get ‘1’ on display two.

Load accumulator Be.

Output B to port 2 to get ‘1’ on display ONE.

Jump back to display 1's on both displays. Keep looping.
Load the accumulator with 06,

Output 86 to port 2.

Halt. Press reset button to reset game.

TALKING ELECTRONICS No. 13 71

QUICK DRAW

Quick Draw is located at 0020 and
this is addressed by switching ON the
second lowest switch thus:

PIPT L] ooz0

Quick Draw is a reaction game for
two players. Player ‘one’ uses button
A and player ‘two’ button B.

The game is played on the two 7-
segment displays and the program
starts by illuminating segments
around the two displays. Then the
perimeter of the two displays
illuminate.

The first player to press his button is
the winner and this is shown by a ‘1’
appearing in the appropriate display.

If both players press at the same
time, both displays illuminate.

If a player ‘beats the gun’, the game
resets.

Press the reset button to start a new
game.

Data Bytes at OOF5:

81
RUNNING NAMES

To access this program, switch 8
must be ON. This will produce
address-value 0080. Do not turn on
switch 80 as this will produce 0800!
Once the program has started, the
switches can be turned OFF or set to
the value necessary to access the
name you want to appear on the
screen.

Running names is a program which
you use soon after the Microcomp
has been completed.

It displays a message saying the
builder of the project is YOU!

To do this we have included a list of
about 30 names and these are
accessed by loading the input port
with a particular value, once the
program is running.

Hopefully your name is amongst the
list. but if not, there are a few general
names at the end of the table to cover
those excluded. Names containing M
and W have been left out due to the

difficulty in displaying them on the 7-
segment displays. But for the
majority, a name can be added to the
message to add a personal flavour to
the project.

The main program consists of 4
different sections. The first produces
the message: '3-Chip uP built by".
The second looks at the list of names
and counts the FF’'s separating the
names. It compares this with the
value set on the input switches and

Part 3 of the program flashes ‘C’ on
the screen to represent copyright and
the 4th part of the program produces
the date: 1985.

The letters running across the
displays are produced by a sub-
routine which is used for the first,
second and fourth parts of the
program.

This sub-routine picks up the first
two bytes in the table and displays

displays the chosen name.

RUNNING NAMES:
MAIN PROGRAM:

LD IX 0100 0080 DD 21 00 o1
LD HL 008A 0084 21 8A 00
JP 00D0 0087 C3 Do o0
LD C,00 008A OE 00
%.P}JE S54 Soes DBo1 4%
01
(v 4 0092 - FE oo
JR Z ooAg 0094 28 13
LD D’(Alx ”; b 7E
009
[4 l%i" 009A FE FF
JR Z 00A2 009C 28 04
INC IX 009E DD 23
JR 0097 00A0 18 F5
INC C ooﬁz gs
LD AC 00A3
P IA)' 0A4 BA
JR NZ,009E 00A5 20 F7
00AB 00A7 1002
C IX oA; DD 2B
LD n&oons 00AB 21 B3 00
INCI 00AE DD 23
JP 00Do ooBo C3 Do o0
LD C,08 00B3 OE 08
B 7 o
UT (02),A 7 2
P Ni WA CoBy 10 FE
A,00 00BB 3E 00
ouT {oz),A 00BD D3 02
DJN oBF 10 FE
DEC C 00C1 oD
JR NZ ooBs 00C2 20 F1
LD I1X,01F§ 00C4
LD HL,0080 O 21 80 00

00C8
0 00CB C3 Do oo

RUNNING LETTER ROUTINE-
LD C ooDo

LD A,(lx +00) ooD2 m) 71-'. 00
SET 7 ooDs CB FF

5

ouT (’oz), ooDe D3 02
LD B oon7 06 20

DJN. % 10 FE
LD A,(IX + 01) oon DD 7E o1
OUT (02),A ooDD D3 02
LD B,20 SORY 0620
DJNZ 00Kz 1o FE
DEC C 00E4 oD
JR NZ,00D2 00E6 20 E9
BYox + o0 8] BB 73 o

+01) 00
CP FF SOEB FE FF
JR NZ,00D2 00EE 20 DE
(HL) 00Fo0 E9

them on the two displays. When the

The IX register points to the start of the byte table.

The HL register provides a return address for the sub-routine.

Jump to the RUNNING LETTER sub-routine.

‘C’is our COUNT register and is compared with an input value

IX is loaded with the start of the NAMES table.

Input the value on the switches. to the accumulator.

If the input value is 00, the program increments to line 8 and
the micro jumps to line 20. I input value is NOT zero, to to 9:

The input value is SAVED by loading it into register D.

The data byte pointed to by the IX register is loaded into A.

The accumutator is compared with FF to detect end of name.

If end of name is reached. the program jumps to line 15.

If end of name not reached, INC IX and jump to line 10, where

the next byte is loaded into A and compared with FF.

The C register is incremented, indicating end of word.

Load C into the accumulator.

Compare accumulator with D to see if word has been located.

Jump if word is not found.

Jump OVER line 20.

This line only applies to the first word in the list.

Load HL with the return address for the sub-routine.

Increment IX for the first letter of the name.

Jump to the LETTER RUNNING routine and display name.

The C register is used to count ‘COPYRIGHT flashes.

Load accumulator with §8 to produce letter ‘C’ on display.

QOutput 58 to port 2.

C remains ON for 256 loops of DINZ (B register).

Accumulator is loaded with zero.

Zero is outputted to turn OFF 'C’.

Display is OFF for 256 loops of DINZ .

The ON-OFF count register {RegisterC) is dacremented.

ON-OFF effect is repeated 8 times.

DD 21 F8 01 Register IX is loaded with 01F8, data for ‘1985,

Register HL is loaded with return address {re-start address)
Pragram jumps to RUNNING LETTER routine.

- sub routine

Each lotter appears OB times (11 times)

Load accumulator with byte pointed to by IX

SET bit 7. to tun on left-hand display

The accumulator is outputted t6 port 2.

Load B with 20 {for 32 loops of DINZ) for time delay.
Perform 32 loops of decrementing register B.

Load the accumulator with next data byte in table.

Output the accumulatar to port 2.

Load B with a value of 20. (32 in decimal)

Decrement B 32 times.

Decrement C

If C is NOT zero, jump to line 2 and repeat OB times.
tncrement the IX register

Load accumulator with next byte in table

Compare accumulator with FF.

If accumulator is not FF, jump to start and shiftletters across.
When FFis detected, micro jumps to address contained in HL.

72 TALKING ELECTRONICS No. 13

clock speed is HIGH they will appear
to be on at the same time. When the
clock speed is LOW, they will
produce a flickering effect.

The routine displays the letters for OB
cycles (11 cycles) and then looks at
the next byte. If it is FF, the micro
jumps back to the main program. If it
is not FF, the sub-routine picks up the
next byte and displays bytes 2 and 3
on the displays.

A table of names is situated at the end
of the sub-routine, which is accessed
by the main program and used by the
sub-routine.

TABLE OF NAMES:
3 4F C 39
c H 76 ¢ 44
H 39 A M A7
76 R 33 I ob
L ob L 38 G 3D
P 3 E 7 ¥F
00 Ol) D SE
u 1C FF AT
P 1 00 Vi
00
B E7 pob
3E N 3 ¥F
1% T® psg
T % E 79 0 3F
78 R 33 U 3E
B 00 00 G 3D
Y 7C 1 ob FF
6E N 37 ET79
00 P13 D SE
A FF U 3E FF
D 5 v 3E A [yl
ThE oAy A
3
B ¢ U ¢ip
s &b EN En
% O 3F
I ob 00 R 33
L 38 % G 3p
B FF 00 E7
e 00 ¥F
ED FF ¢ 3p
‘ll" 33 [4 ;z L 38
& } E 79
B 7€ F 71 F
I ob F 71 G 3D
L 38 F R 33
L 38 C 3 E 7
B FF L 3 G 3
7C 1 o6 ¥F
0 3F V 3E I 06
B ;% E E A 77
B 7¢ c3y N3t
] 3 R 33 J 1E
3 L oo 9;F
¢ 3 SeD g7
B c i Ny
c 3 FF
39 0 3 P13
RE LR Az
0 T
L 38 N
38 3 [

P73 . 40
s 6D 4
TR T &
E 79 Al G 3D
R 33 N3 U 3E
FF E3
p3s 1B gl
H O3F o
I e N3 40
L 73 Y ¢ 0
1 FF 4
P L 38 g.“r
FF L% A
R T R
A” T 78 3
L i L 38 0 3F
p 3 ET
u73 00 L 38
s O3 D3E
R L 38 P“
033 00 3
$ 3F 1 06 R 33
SE FF 0 3F
s o1y B
c" ? 53 Iﬁl"
o’% ? 53 3 F
T3 ¥F 7
[%
FF

The list of names in the table and the
corresponding Hex value which must
be placed on the input switches. If ‘'8’
is on the input, the message will read
‘ENTER INPUT VALUE’.

1 ANDY

2 BASIL

3 BERT

4 BOB

5 BRUCE

6 CARL

7 CHARLES
8 ENTER INPUT VALUE
9 CLIFF -
A CLIVE

B CRIS

Cc COLIN

D CRAIG

E DAVID

F DOuUG

10 ED

11 EVEN

12 GEORGE
13 GLEN

14 GREG

15 IAN

16 JOHN

17 PAT

18 PETER

19 PHILIP
1A RALPH
1B ROY

1C sCOTT
1D STAN

1E TONY

1F LITTLE ‘OL |
20 2?2?22

21 - - GUESS - -

22 AN OLD PRO

NUMBERS AND LETTERS

To produce numbers and letters on
the displays, you cannot load a data
value of 01 and hope to get the figure
‘1’ on the screen. You will get
segment ‘a’ illuminated. This means
the hex value of the required
segments must be added together to
achieve the required figure.

For example, to produce the figure
‘1", we must turn on segments ‘b” and
‘c’. The hex value for ‘b’ is 02 and for
‘e’ itis 04. Add these together to get
06. To create the figure ‘2’ on the
screen, we mustilluminate segments
a. b, d, e and g. The hex values for
these are: 01, 02, 08, 10 and 40.
Adding these together we get 5B.

This process has been continued for
the alphabet and numbers as shown
in the following table.

Some of the letters are hard to create
on a 7-segment display and the
closest possible resemblance has
been created.

0V MIATIAWN nN.ggtqcqmmmozgr:u-—:ommuaub
»
oy

This table gives you the full alphabet
and numbers, along with the Hex
value needed to produce the
character. Most of the letters will be
quickly recognised with ‘M’ and ‘W’
having a bar over the character to
indicate it is repeated again to create
the letter.

TALKING ELECTRONICS No. 13 73

LOOKING AT DATA

This program lets you look at data in the
EPROM. This way you can check each of
the programs we have listed.

TLLTTTT] o200

The program is located at 0200 and is
accessed by turning on switch ‘20°. Push reset
to access the program. Page zero address
0000 will be displayed. To accesspage 1,2, 3,
4, 5, 6 or 7, the appropriate switches at the
input port must be switched ON.

For page 1, turn on switch 1. For page 2, turn
on switch 2. For page 3, turn onswitches 1 and
2. etc. Switches 8, 10, 20, 40, and 80 are
masked OFF via the instruction at 206 and thus
they do not affect the page-accessing.

The program is designed to loop around
FF bytes and at page ‘2’ the program is
capable of reading itself!!

At page zero {or any other page) the program
starts by displaying the address value. This will
be shown with LOW BRIGHTNESS. Pushing
button A will display the value of data at the
address. This will be shown with FULL
BRIGHTNESS.

Pushing button A again will advance to
address 01 and pressing button A again will
show the data at this address.

A fast-forward facility is provided by pushing
button B when the address value is being
displayed. This will enable you to fast-forward
around a page to pick up a missed location.

You can select a different page number at any
time and the correct data will be displayed.

This program is very handy for reading the
contents of the EPROM and proving the data
to be as stated.

The display values are generated from a byte
table situated at the end of the program and is
as follows:

BYTE TABLE at 0280:
0 = 3F A too soon we have run out of
1 = QB space Thereare lots more programs
2= ;B in the EPROM and these will be
3 = 4? covered in the next issue.
4 =66 youv
§ = 6D Whenvou buy a kit you will be able to
® = 1n access these programs and see how
z =0 they work.

= Z.’ The Microcompis designed to fitinto
& - a cassette case and be stored like a
B = ; book. Hopefully you will be using it
C= 3 all the time and it won't see the book-
n - 5 shelf. | hope | have encouraged you
E = 79 sufficiently to buy one of the kits. I'm
F - 11 sura it'll be the best decision you will

ever make.

LD

0UT (01),A

BoNEe 0217

L

RRA

RRA

RRA

RRA

D hL m.,mo

g L,A

LD A,00

OUT (02),A
D B,10

DJNZ 022E

LD Av(‘"-)

JRZ ozu
INC E .noP. NOP

JR 0204
o
AND o

1,C
JR N2 024E

JR 024E

202
204
206

ni

27D

OE 00 CisourTESTregister. BIT's are SET or RESET inthe program.

1E 00 Register E holds the count, from 00 to FF. Zeroed at start.

DB 01 The value on the switches is loaded into the accumulator.
07 Theaccumulatoris ANDed with 7 - only 011, 02 & 04 detected.

§ The value on the switches (up to 07) is saved in 'D'".
The COUNT REGISTER is loaded in the accumulator.

AND DF removes the 4 upper bits leaving the 4 lower bits.
21 80 02 Load HL with the start of the BYTE TABLE.
85 ADD 80 to the accumulator.
oF A new value for L is created {(for later use).
3E 00 The accumulator is zeroed.
D3 02 The accumulator is outputted to port 2.
06 10 B is loaded with 10 {16 in decimal)
10 FE DJNZ A delay of 16 is created.
BE The accumulator is loaded with the value pointed
3 02 to by HL and outputted to port 2.
7B The count register is loaded into the accumulator.
iF The accumulator is rotated RIGHT. The 4 high bits
iF move down to the 4 lower places and are ANDed
1F with oF .
iF
E6 OF AND oF removes the 4 upper bits
21 80 02 HL is loaded with 0280,
85 The L register is ADDed to the accumulator.
6F A new value for L is created.
3E00 zero the accumulator.
D3 02 Output the accumulator to port 2.
06 10 Load B with 10 for a delay routine
10 FE DJINZ for 16 loops.
‘E Load the accumulator with the value POINTED TO by HL.
B FF SeT bit 7 of the accumulator to turn on display 1
D3 02 output the accumulator to port 2.
DB 01 ook at the input switches
CB 7F Testbit 7 to see if switch A is pressed.
28 0 JUMP if it is not pressed.
CB €9 seTbit 1 of the C register indicating A pressed.
CB §1 tost bit 2 of register C to ses if it ‘1" or 0",
20C Ifitis ‘1", jump to line 3. If it is zero, jump to next loop.
180 Jump to start of loop ‘2.
CB 91 Resat bit 2 of register C.
CB 77 Testbit 6 to see if button B is pressed.
B If it is not pressed. jump to line 3.

1C 00 00 increment register E

18 B6 Jumptoiine3.
21 80 02 Load HL with start of byte table.
A Load A with the data pointed to by DE.
E6 OF And the accumulator with OF.
85 Add register L to the accumulator.
oF Creats a new value for L.
E Load A with the data pointed to by HL.
B; 02 Output this data to port 2.
1A Load A with the data byte pointed to by DE.
F Rotate the accumulator RIGHT so that the 4 high order bits
iF are shifted to the 4 lower positions.
iF
iF
Eb OF . AND the accumulator with OF to remove the 4 upper bits.
21 80 02 Load HL with start of DATA TABLE.
Add register L to the accumulator.
oF Create a new value for L.
E Load A with the value pointed to by HL.
%B FF SET bit 7 of the accumulator to turn on display 1.
D3 02 ' Output the aceumulator to port 2.
DB 01 Look at the switches
cn F Detect if button A has been pressed.
28 0 JUMP if button A has not been pressed.
CB di SET bit 2 of register C indicating button A pressed.
CB 49 Testbit 1 of register C to see if button A has been released.
20 D8 Jumpifbit 1 of register Cis ‘1",
1C 00 00 increment register E.
18 .’ Jump to loop 1.
cn 8 Reset bit 1 of register C.
18 c JUMP to start of loop 2.

-3
&

TALKING ELECTRONICS No. 13

COMPUTER

COMPLETE MICROCOMP
MOUNTED ON RETEX CASE RA-1.

This is the second article on the Micro-
comp and by now we have whet a lot of
appetites.

Some constructors have gone way
beyond that covered in the first article
and investigated many of the remaining
programs in the EPROM.

One constructor even listed the entire
contents by using the LOOKING AT
DATA routine at 0200. There were a
couple of mistakes in his listing where he
forgot to change from PROGRAM to
DATA. This is one of the problems when
trying to disect a listing.

By now you will have some idea of how
the bytes appear in EPROM. They come
in a continuous string - without spaces or
identification as to the beginning or end
of a sequence. If you jump into the middle
of a program and look at a byte, you will
not know if it is an instruction, part of an
instruction or a piece of data. That's why
you must start at the beginning of a
listing.

MICRO
COMP

A 3-CHIP Z-80

\

comes witH FREE
STORAGE BOX!

_MICROCOMP CASE $15.00

Kit of parts: 350.70
PC Board: $10.20
Complete: $59.95

When trying to disect a program, write
down the values, byte by byte and you will
soon see groups which you recognise.
From there you can place the others in
groups and start to see a program
emerging.

These values are called MACHINE CODE
values and are used by the micro directly.
It doesn't need spaces or stops and starts
as it is pre-programmed within and
knows exactly what to do.

The difficulty you would experience in
disecting a program is understandable.
You are not a micro and cannot keep track.
of the flow of the program. This is a very
difficult direction to work in. The way we
will be working is from IDEA-to-machine-
code-listing. This is the forward direction
and is much easier.

Most programs are made up of lots of
small building blocks and the quickest
way to learn about these is to study a few
programs.

$59.95 :ourice

The Morse Trainer is our first add-on
and will be covered in the next issue. It
is capable of picking up morse trom a
comminications receiver and
displaying the message on the
displays. It separates the numbers
from the letters and indicates the end
of words. Speed of reception can be
adjusted from 5 words per minute (or
less) to about 17 words per minute.

TO BE RELEASED

MORSE TRAINER
$13.30complete

In this article we will be continuing with a
close study of each of the programs inthe
EPROM but before we do this we have
designed a couple of games for those who
want to do a little programming
themselves.

If you have a TEC and either the non-
volatile RAM or EPROM burner, these
programs can be typed into memory and
transferred to the microcomp for
execution.

As designed, the programs are run at
page ZERO however only a few changes
are required and they can be run at any
other location. The details of this are
included with the programs.

The two games are titled: TUG 0' WAR and
BLACK JACK. Alongside each is a flow
diagram showing what each part of the
program does. Also we have explained
each instruction with a simple sentence
to show how we converted each idea inta
a computer instruction.

Getting back to the Microcomp, we have
described a few more of the ‘ins’ and
‘outs’ of computer design and especially
the tricks we used to simplify the circuit.

Notebook No. 3 has just been released
and it contains a number of pages on the
Microcomp design as well as 2-80
Machine Code values for assembly and
Disassembly. It also includes the
interpretation of each instruction and a
listing of computer terms. This will help
you with programming and the circuit
design pages will help you with input and
output decoding and how the Z-80
communicates with all the other chips.

TALKING ELECTRONICS No. 14 59

TUG 0’
WAR

BLACK
“JACK

TWO programs for the MICROCOMP.

These two programs bring together
the TEC computer, Nan-volatile
RAM and Microcomp. They shnw
some of the techniques
displaying, inputting and runmn? a
ﬂrugram at a speed suitable for
uman invelvement.

These games were developed on
the above equipment and you can
create similar programs or adapt
them to suit your own
requirements.

TUG 0° WAR

Instead of making a TUG O° WAR game
from a kit, you can create an improved
version by producing a program and
running it on a computer.

Initially we saw this game in a popular
electronics magazine and liked the way it
worked.

It used arow of 15 LEDs and by pressing
one of two buttons, a single illuminated
LED would move towards you. Seven
LEDs were available for each player and
your opponent had the same opportunity
to make the LED travel towards himself.

The difficulty of play could NOT be
adjusted and a player would win when-
ever he pressed his button seven times
more than his opponent.

TUG 0° WAR PROGRAM:

In our version. we have made it
increasingly more difficult to reach the
end by weighing the table of increments.

The lowest value has only one
corresponding value in the table whereas
the highest value requires nine steps
before it will advance to WIN!

This can be seen by referring to the byte
table and counting the number of bytes
for each output value.

Not only does this program show you
some new techniques in programming
but will also save you a few dollars, if you
already have the items mentioned above.

in a similar way, lots of other ideas and
games can be produced and this will save
you the expense of buying special PC
boards and unusual chips.

Our version has nine steps and requires a
total of 45 pushes for one player to win
over his opponent.

This makes the game quite difficult and
you have to introduce quite a lot of
strategy to win.

DESIGNING THE PROGRAM

When designing a program, the first thing
you have to consider is the hardware
available. In our case this means the
program has to be designed around two
push buttons and two 7-segment
displays. The row of 8 LEDs does not give
us sufficient scope.

The two displays can be used to display
numbers, letters, or individual segments.
We opted to display the numbers 0-9.

The rest of the effect lies in the program.
This is how we went about designing it:

When the game starts, the two displays
are illuminated with zeros. Thisrequires a

cont. P. 62 . .

The TUG O WAR program starts below
and continues on the next page. It
requires a table of 46 bytes for the display
and this is placed at 00C0:

AT CO:
3F 70
7D
06 70
sB 0
5B 7D
sB 07
4F 07
4F 07
4F 07
4F 07
66 07
[1] 07
66 07
b 7F
66 7F
6D 7F
6D 7F
oD 7F
6D 7F
6D 7F
6D 7F
7D 7F
7D o7

60 TALKING ELECTRONICS No 14.

LD HL,00C0 0000 21 CO 00
START -UP LD DE,00C0 0003 11 Co 00
] LD C,00 0006 O 00
LD A(DE) 0008 1A
U'l‘ (oz), 0009 D3 02
™| MULTIPLEXES 000B 06 20
2 DISPLAYS .mi 200D ocoD 10 FE
XOR 000F AF
SET 7, 0010 CB FF
ADD A,(HL) 0012 86
ouT (o)A 0013 D302
1 "IN A, 0015 DB o1
LOOKS AT cP o 0017 FE Co
BUTTONS - JR Z,002D ~ 0019 28 12
CP 40 001B FE 40
- Jn Z,0033 001D 1814
* RES 0,C 001F CB 81
||l IN A,(u) 0021 DB o1
LOOKS AT CP Co 0023 FE Co
BUTTONS | JR Z,00tD—|— ocozs 1806
_] CP 80 0027 FE 80
JR Z,0077— 0029 28 4C
g RES 1 C 002B CB 89
LD B,i0 <—[-[-] 002D 06 10
Ln.mi 002F 002F 10 FE
. FIRST IR 00 %3t 18 Ds
DETECTION? > 0,C 4
£ 1 T IRNZoonsd g [0035 20EA

Load HL with start of table for Left Hand display.

Load DE with start of table for Right Hand display.

Load the BIT TESTING register with zero.

Load the accumulator with the first byte in the table.

Qutput this value to the latch

Load B with a value for a delay routine

Create 32 loops of decrementing register B.

Zero the accumulator

Set the highest BIT so that the LH display will illuminate.

ADD the byte looked at by the HL register, to the accumuiator.
Output to the latch.

Look at the switches.

Compare €0 with the to seeifboth
Jump if both switches are pressed

Compare the accumulator with 40 to see if B is pressed.

Jump if B is pressed.

Reset bit O of the C register.

Look at the input port.

Compare the accumulator with €0 to see if both switches are pressed.
Jump if both are pressed.

Compare the accumulator with 80 to see if A is pressed.

Jump if A is pressed

Reset bit 1 of the C register.

Load B with 10 for a short delay.

Create 16 loops of decrementing register B

Jump to start of multiplexing routine.

Test bit 0 to see if it is the first time B is detected.

Jump if not the first time.

are pressed.

INCB

ISB9?

BLINKS
B

DECREMENT
A
FIRST
DETECTION?

BLINKS
‘A

A

| 4

4

Y

’—:m C,10

DEC
\— JR NZ,009B

—

BIT 1,C+—
JR NZ,002D —>
SET 1,C
5

CP o7

JR NZ,00AE

LD
out Ena
LD B,10

Y-
LD Ay (D
ouUT ioz)l?A
LD B,10
DJINZ 00Ao

LD 7\° (%)E)4-
S 3F ooms
JP 002D —|—
DEC l)Eéj

JP 002]) ~r——aaid

Set bit 0 of C before processing button B.
Increment pointer for RH display.

Load A with second byte in table.

Compare the accum. with 67 to see if end of table has been reached.
Jump if end of table NOT reached. Increment if reached.

Load C with 10 for multiplexing time-length.

Load the accumulator with data pointed to by DE.

Output to the latch.

Load B with 10 for short delay.

Decrement B 16 times.

Zero the accumulator.

Set the highest bit to turn on the LH display.

ADD the byte pointed to by ML, to the accumulator.

Qutput to the latch.

Load B with 10 for short delay.

Decrement B 16 times.

Decrement C.
Jump if C not zero.
Load C with 10,
Zero A to turn off RH display to create BLINK.

Qutput to the latch.

Load B with 10 to create a short delay.

Decrement B 16 times.

Zero A.

SET the highest bit of the accumulator to turn on the LH display.
ADD the byte pointed to by the HL pair, to the accumulator.

Out put to the latch.

Load B with 10.

Decrement B 16 times.

Decrement C.

Jump if C not zero.

Jump to start of BLINKING ROUTINE.

Load A with data byte pointed to by HL.

Compare with 3F to see if LH display is zero.

Jump if not zero.

Jump to start of program if zero.

Decrement player A pointer.

Jump to start of program.

TEST bit 1 of the C register.

Jump if bit 1 is SET. Increment to next instruction if not set.
SET bit 1 of the C register.

Increment player A pointer.

Load the data byte into the accumulator.

Compare the accumulator with 67.

Jump if the two are not the same. Go to next instruction if the same.
The next 25 i i produce a i ing effect on the
two displays 5o that the LH display tums on and off in a
BLINKING pattern.

\

Increment if C is zero.

This section is very nearly identical to the
instructions between 003F to 0068,
Refer to the above for the explanations.

/

Load the accumulator with the value pointed to by DE.

Compare the accumulator with 3F to see if the RH display is zero.
Jump if player B is zero, increment to next instruction if not zero.
Jump to start of program.

Decrement player B pointer.

Jump to start of program.

TALKING ELECTRONICS No. 14 61

loop in which the value for each display is
looked after by a separate register pair.
The left hand display is looked after by the
HL register pair and the right hand display
by the DE register pair.

This choice is goverened by the fact that
the HL pair has a larger number of op-
codes available to us and thus it is more
versatile.

You will see the need for this later.

Numbers produced on the right hand
display can be created on the left hand
display simply by turning on the highest
line at the same time. This is done by
adding ‘80’ to the value of data. The same
effect can be created by SETTING bit 7 of
the accumulator and then ADDing the
value of the right hand display. This is
what we have done. The data required to
produce a number in the right hand
display has been added to the
accumulator after the highest bit has
been SET, with the result that the number
appears on the left hand display.

Before this can be done, there is one point
which must be remembered.

The accumulator must firstly be cleared
so that all bits are zero. SETTING a bit
and ADDing to the accumulator does not
clear out any initial junk.

Using these facts, and a short DJNZ
delay, will produce a loop program which
will illuminate both displays.

Also in this loop we must include an
instruction to look at the input port and
detect 3 things:

We must detect if button A is pressed,
button B and also if both buttons are
pressed at the same time.

Detecting button A will cause the
program to branch to a sub-routine,
button B to another sub-routine and both
buttons will cause the program to jump
over the other branch-instructions.

When the micro jumps to either sub-
routine, there are 4 instructions which
must be taken into account.

Firstly it looks to see if it is the first time
the sub-routine has been jumped to
(during this press of the button). It does
this by checking the debounce BIT in the
C register. We must create a debounce
condition so that the displays will
increment only one byte in the table for
each press of the button. This is achieved
by resetting the BIT(s) in the C register
while executing the main program. When
a button is pressed, the micro goes to the
sub-routine and looks at the particular bit
in question.

If it is in a RESET state, the micro runs
through the sub-routine and SETs the bit.
It then increments the pointer register to
look at the next byte in the table. It then
compares the value with 67 to see if the
end of the table has been reached. If it
has, it goes to a loop program which
flashes the winning display.

If the end of the table has not been
reached, the program looks at the
opposition value to see if itis zero. Ifitis
zero, the micro returns to the main
program. If the opposition is not zero, it
decrements the pointer register and
jumps to the main program.

The effect on the screen may or may not
be anincrement or decrement, depending
on the position of the pointer registers,
however you can be assured the byte
table has been decremented and/or
incremented correctly.

All you have to do now is put these facts
into a machine code program.

When doing this, it is very helpful to use
arrows to incdicate where the program
jumps to. You can also put labels and
notes at various locations to indicate
what the program is doing. This will
assist you when debugging and tidying
up.

Study the program on the previous 2
pages and see how it's done.

0000000000000
BLACK JACK

This program is designed around Paul's
Black Jack in issue 11.

The concept of the program is to deal a
hand of random values exactly like
playing cards.

It then keeps a tally of your hand and
adjusts the total to your advantage when
one or more ACES are dealt.

Itis the feature of the Ace being equal to 1
or 11 which adds interest to the game and
brings a little strategy into the program.

Apart from the normal requirements, the
program must keep track of an ace. When
one is included, BIT 7 of the C register is
SET. The C register is our TEST
REGISTER.

The computer keeps dealing cards until a
value over 21 is reached. It then looks to
see if an ace is included by testing BIT 7,
If this bit is SET, it subtracts ten from the
total, making the ace equal to one.

Further cards are dealt and once again a
score is kept, in an attempt to reach 21.

62 TALKING ELECTRONICS No 14.

When exactly 21 is reached, the program
jumps to a routine which flashes ‘21’ and
at the same time looks at the input port
for button B being pressed. If it is
pressed, the program returns to the start.

The other important feature to remember
when producing a program is TIMING.
By this we mean the length of time for the
things to be done, such as the numbers
appearing on the screen.

if they appear for too short a duration, it
will be annoying. A long duration will
slow down the game.

These periods are controlled by a delay
routine which is inserted into the program
to ‘waste computer time’'.

The length of these delays depends on the
clock speed and since we have a very
slow clock frequency, we have delay
routines to match.

Our maximum clock speed is 35,000
cycles per second so that if we waste
35,000 clock cycles, we produce a delay
of 1 second.

The simplest way of producing a delay is
to use DJNZ The maximum DJNZ delay
is produced by loading B with FF and this
wastes 13 x 255 cycles {3315 cycles) or
about 1/10th sec. Longer delays can be
obtained by using 2 DJNZ’s and shorter
delays by decreasing the value of B.

The other way to create a delay is to run
through a loop which gradually
decrements a delay value. This type of
program is necessary when multiplexing
is required.

The only way of obtaining a suitable value
for the delay is to study some of the
examples.

If you are unsure, insert ‘80" and trim the
value during final testing. ‘80’ represents
a mid-value and you can increase or
decrease it later.

INDEXED ADDRESSING

Black Jack uses a table {located at the
end of the program) which does three
things. Firstly it determines the character
to appear on the right hand display, then
the character for the left hand display and
finally the equivalent hex value.

This requires 3 bytes which we have
grouped together to form a 'block’.

Even when the left hand display is not
showing a value, itis being accessed with
a zero output so that uniform illumination
is produced when a value such as ‘10’ is
displayed.

To pick up the 2nd and 3rd byte in each
group, we have wused [INDEXED
ADDRESSING.

This is a handy way of jumping down a
table without incrementing the register.

If you were to increment it, you would
have to decrement it before the start of
the next loop and this would involve extra
instructions.

In our program, the register in charge of
the table is incremented only after a
multiplexing operation (which may
involve a number of passes of a loop).

When the register is incremented, it is
incremented 3 times so that it looks at the
first byte of the next group. That is the
1st, 4th, 7th 10th byte etc.

The 2nd and 3rd bytes of each group are
looked at via the indexing feature which
uses a displacement value. Forinstance
{IX + 01) looks at the second byte and {I1X .
+ 02) looks at the 3rd byte.

RELOCATING THE PROGRAM

Although the program is designed for the
Microcomp and to be run at page zero. it

There are two main types of addressing.
ABSOLUTE and RELATIVE. Relative
values refer to locations by using a
displacement value in the program and
whenever the program is shifted, these
values remain unchanged.

However absolute address values must
be changed whenever a program is
shifted as the values refer to specific
locations.

the absolute values

In our program,

include the address of the tables and
jumps which are over 80 hex bytes away.
(Relative jJumps can only cope with jumps
less than 80 hex bytes away, in either
direction).

Here's the program: Type it on the TEC,
hold it in the non-volatile RAM and play it
on the Microcomp.

At 0100:
Each hex value produces a number from 0
to 9:

[
]
©BIGIRNN=O

At o110:
The first two bytes produce the ‘CARDS’
and the third byte holds the value of the

can be shifted to any other location by card.
simply changing all the absolute address o - F
values. 7 8
40 - 00
0; o8
5 2 &7 9
‘
PLAYER ‘A’ PLAYER ‘B’ o o
02 o9
4F 3 T A
00 00
03 oB
o 4 1E J
00 00
o4 0A
:zb s ::‘ 10
. (17 0A
HL Register DE Register ™ s 3F 10
Bit 1,6 Bit 0,C The 5 CARD HAND' which wins if 21 is nat % Y
The diagram shows the two VS N0 {nto decount bt 1t wound be s Simple maies o ! L
their associated register pair. The 1 make it do so ® o %
Debounce is done in register ‘C'. ’ &7 oA
> XOR A 0000 AF Zero the Accumulator.
registers LD LA 0001 ED 47 The 1 register must be Ioaded via A. 1 reg. detects 2nd push of button.
LD i;A 0003 SF Zero E. Reg E is our tally register to detect 21' etc.
LD C,A 0004 4F Zero C. Reg C is our TEST register for ACE detection
LD IX o110 0005 DD 21 10 81 Load tX with start of DISPLAY TABLE
> —{»IN A,(01) 0009 DB o1 Button B must not be pressed when micro passes this point otherwise
CP 40 0008 FE 40 program will jump to start of routine. This prevent cheating if
JR Z,0000 000D 28 F1 the button is kept pressed.
LD 1Y.0113 000F FD 21 13 01 Load IY with start of table for displaying value of card.
LD D 0013 26 oD H counts the number of groups of bytes in the table. There are 0D
Creat LD A,(IX + 00) 0015 DD 7E 00 |,.dthe accumulator with the first byte in the table. groups.
reates OUT (02),A 0018 D3 02 Output this value to the output latch.
Multi- LD B,08 00IA o6 08 Load B with a value to produce a short delay.
r:e:'lll;‘c") ggrli‘ Amuc x:g r‘_ﬂ Creats 8 loaps of dacrementing register B
" Zero the accumulator before advancing to the next two operations.
— — SET ’I}\A 001F CB FF SET the highest BIT in the acc. so that the LH display will iftuminate.
ADD A,(IX + o1) 0021 DD 86 01 ADD the value of the second byte in the table to the accumulator.
looks for ouT {Ol) A 0024 D302 OQutput the result to the latch. The LH display will illuminate
button B IN A, (01 0026 DB o1 Input the value on the switches to the accumulator.
P 40 0028 FE 40 Compare the accumulator with ‘40",
JR l,:ﬂ‘il x:é :: oF Jump if the accumulator is equal to 40.
9 Load B with 04 ready for a short delay.
DJNBi 002E 002E 10 Create 4 loops of decrementing reg B to display the LH digit.
| _ INC 1Y 0030 FD 23 Incrementthe IY register 3 times so that it looks at the start of the next
INC 1Y 0032 FD 23 group. This register is our random number generator and increments.
L1 INCIY 0034 FD 23 censtantly, while the displays are displaying
"1 DECH 0036 125 Register H will detect the end of the hyte table
‘—.}Il‘ wu; x;z :.0 g‘c Jump to displaying RH then LH digit. if H is not zero.
— When H is zero, 1Y and IX register go to start of table
LD D,30 003B 16 30 D will govern the length of lir?«e for displaying the random number.
FPLD A (1Y + 00) 003D FD 7E 00 The accumulator is loaded with the display value for tha random No.
Displays OUT (02),A o040 D3 02 This value is outputted to port 02.
NEW LD 'i" 0042 06 20 The RH display will illuminate for a delay determined by the value of B
card for %’:‘ 044 244 10 FE) ‘
30 loops 4 The accumulator is zeroed ready for the next two instructions.
SET 7,A 0047 FF Bit 7 is SET to turn on the LH display
A.DD.SIY + 01) 0049 FD 86 01 The value of the secand byte in the group is added to the accumulator
OUT (02),A 004C D3 o2 and outputted to port 02.
i LD B,20 004E 06 20 The LH display is illuminated for a period of time as determined by the
] DJNZ o050 0050 10 FE value of B,
‘L DECD 0052 15 D is decremented by one and the program loops again.
) - JR NZ.003D 0053 20 ES When D is zera, the micro advances to the next instruction
b

TALKING ELECTRONICS No. 14 63

LD A,(IY + 02)

INCE

BIT 1,E

JR Z,0066

BIT 3,E

JR 7,006

LD Biob
PINC

DJINZ 0063

DEC A

Produces
tally
value

Looks
for ACE
JR NZ,0058
LD A,(IY + 00)
CP 77

JR NZ,0072
SET 7.lc<j
INCAA
LD LA
CP 02
JR NC,007D
j4¢——JR 0009
[——H_D D,60
XOR A
ouT q;z),A
LD B,FF
DJNZ 0084
LD HL,0100
LD AE

A,

Looks for
2nd push

vh |

Blanking
Period

CP 21

JR Z,00D4 ——
AND OF

ADD A,L

LD L,A

LD A,(HML)
OUT (02),A

LD B,10

DJNZ 0097

Displays
TALLY
for 60
loops

LD A,(HL)
SET 7,A
OUT (02),A
LD B,08
DJINZ 00AC
DEC D
L—JR NZ,0086
LD

AE

— v
CP 22

Looks for

< over 21 3 Nc,oonq-\

1 BIT 7,C «—

Subtract
10 it ACE
is present

P

OFF at
end of
game

} v ¥

| »/

e

DJNZ 00C9
DJINZ 00CB
DJNZ 0oCD
DJNZ 0oCF
JP 0000

OUT (02),A
LD B,10
DJNZ 00DC
LD A,DB
BLINKS OUT (02),A
21 DE
JR NZ,00D6
XOR A
OUR gz)yﬂ
D B,FF
DJNZ ooEE
IN A,(01)
CP 40
JP Z,0000
——JR 00D4

U

L]

FD 7E 02
1C

CB 4B
28 09

CB 5B
28 05

06 0b

Laad A with the 3rd byte in the group. We know the byte must have a
valye of one or greater and so we can safely INCrement E.
Register E is our TALLY register. We require it to add the values of the
cards and hold the result in decimal form. The problem comes when
you add one 1o 9. The register will show 0A We must convert OA to ten.
This can be done by a DAA instruction or by software. We have opted
for software. We detect OA wia bit 1 and 3 being HIGH and then
increment the E register 6 times. Each time the tally register is
incremented (apart from the decimal adjusting loop), the accumulator
is decremented and when the accumulator is zero. the program
advances

Load the accumulator with the first byte ot the group

Compare 77 with the accumulator. We are looking for an ACE

If the accumulator is not 77, the micro will jump to LD A,L If the
accumulator is 77. the program will advarice to the next instruction
and SET bit 7 of the C register.

The | register counts the number of presses of the 8 button. We are
looking for 2 or more presses so that the tally can be displayed. Thisis
the advantage of using the CARRY command

The micro jumps when | 1s 2 or MORE

Jump to start of program (button 8 has been pressed once.)
Register D produces the time for the tally to appear.

Blank the display

Output to latch

Load B with maximum delay value

Perform FF loops of decrementing register 8

Load HL with start of display values,

Load the tally register mto the accumulator

Compare 21 with the accumulator

If accumutator is 21, the micro jumps to ‘BLINKING 21

If not 21, remove high nibble by ANDing with OF

L contains ‘00’ fram address above, ADD 00 to accumulator

Load the result back into L so that the micro looks at one of the
addresses of the table. Load the value it tinds, into A

Output the byte to the latch.

Load B with a low value.

Create 16 loops of decrementing register 8.

Load the tally register into the accumulator.

Rotate the accumnulator right, effectively bringing the 4 bits of the
HIGH nibble to occupy the 4 lower places.

Remove the 4 high bits by ANDing with OF

Load the HL register with start of display table

ADD L fo accumulator to create anew valuetor L sothat welook atone
of the addresses in the table.

Load the byte from the table into the accumulator.

Set bit 7 of the accumulator so that the LH display turns on.
Output this value to the latch

Load B with a short delay value.

Create 8 loops of decrementing register B

Decrement D and go to start of multiplexing loop. When D is zero.
increment to next instruction in program

Load the tally register into the accumulator.

Compere with 22.

If tally is 22 or MORE, increment to next instructior.

Jump to start of program. It tally is less than 22, jump to BIT 7,C.
Test bit 7 of the C register to see if an ACE has been dealt

Jump if no ACE. Increment if an ACE is present.

Subtract ten from tally, making ACE equal to ONE

Load the new tally into the tally register.

Reset bit 7 to show ACE has been turned into ONE

Jump to displaying new tally

Zero the accumulator

Output 1o latch for & delay period equal 1o 4 DINZ's (with B =FF} to
indicate END OF GAME

Jump to start and re-load all registers

Load C with 10 for 16 loops of multiplexing *1" and ‘2
Load A with 06 to create ‘1" on RH display.

Output this to tatch : .

Create short delay

Decrement B to zero

Load the accumulator with DB to create ‘2" in LH display,

Output to latch

Create short delay.

Decrement B to zero. B

Decrement C and it not zero, jump to start of multiplexing the displays

zero A

Output-to latch to turn off both displays.

Load B with FF to produce a shart delay for the OFF time.

The only way of jumping out of ‘BLINKING 21" is to push button B or
reset the computer. The program inputs from the set of buttons and it
B is pressed, the program jumps to 0000. Otherwise the program
keeps loaping

64

TALKING ELECTRONICS No 14.

Before we continue our disection of the
program for the Microcomp, let us pause
for a discussion on a number of related
topics. These will help you to understand
how a micro system goes together and
how it functions.

PROGRAMMING THE 2732.

The 2732 in the Microcomp kit comes
ready programmed with a set of experi-
mental programs and only the lower half
of the ROM has been filled.

This leaves the upper half vacant. for use
in any way you wish.

There are two ways in which the upper
half can be filled. One is by using an
EPROM programmer and burning the
locations yourself. The other is to write
the program and have someone else burn
the ROM.

Burning a program is only done after you
are thoroughly satisfied with its
performance, as it is very difficult (if not
impossible) to change the program, once
itis burnt. For this reason itis best to get
the program up and running via a medium
which can be easily altered, as a program
quite often has to go through lots of
changes and modifications before you are
completely satisfied.

The most logical way is to use some form
of RAM memory, in which the locations
can be altered as many times as you like.
The only difficulty with RAM memory is it
will lose its contents when the power is
switched off. If the RAM is backed up
with a battery, the contents will be
retained.

This arrangement can then be used to
generate programs without the fear of
loss, should the computer be turned off.

The program can then be transferred from
the programming computer to the
Microcomp.

The Microcomp sees each half of a 2732
as a separate 2k block of memory.

a1l
as[Z]
2]
e
3]
Az[7]
ALE]
0]
oo[=]
01[3]
p2[5]

2732 PIN-OUT

The program-accessing routine at 0000
must be written for both the lower half
and upper half and this will enable you to
start at any address, providing it is an
even hex value.

Burning can be carried out on the TEC
EPROM BURNER and full details of this
project can be found in issue 13.

Memory is divided into PAGES and each
page consists of 256 bytes. When
programming, all address values are
written in hexadecimal form and one page
contains FF bytes. See P. 16 of issue 11
for the hex table and details on under-
standing hex notation. A 1k block of
memory has 4 pages and a 2k memory
chip such as 2716 has 8 pages. A 4k
memory chip such as 2732 will hold 16
pages of bytes.

A program can range from only a few
bytes to many pages and to give you an
idea of the compactness of machine
code, the two previous games, TUG O’
WAR and BLACK JACK, occipied about 1
page each. Obviously a more complex
game with a more complex display (such
as a video screen) would require more
instructions but one page has the
capacity to hold about 100 instructions.

This means a 2k ROM will hold about 8
simple programs.)

Programs are not fast to be produced and
it may take 10 to 50 hours to create a one-
page program. A 2k ROM may take
weeks or even months to fill!

Once you are satistied with the
performance of a program, you are ready
to burn it into an EPROM.

Before this can be done there are two
things you should do.

Firstly you should determine where you
are going to place the program. This is
importart as it will be in a different
location to where it was being created
and the absolute address values will not
apply.

Often the program is created at address
0000 and all jump_instructions relate to
this. Any address values which have
been defined are called absolute and
must be changed when the program is
shifted to a new location.

When you have determined the new
location, you should BLOCK TRANSFER
the program to the same address in the
non-volatile RAM, using the following
program:

at 0C00:

11 TO: address + 1000H
21 From:address + 1000H
ot No of bytes.

ED Bo

C7

For example, if you have produced a 148
byte program at 0000 in the non-volatile
RAM and need to shift it to 0280, here is
the Block Transfer program:

at 0C00: 44 g9 12

21 00 10
01 48 01
ED Bo
C7

At the beginning of the RAM you
need a jump routine:

06 00
DB o1
21 00 00

This is entered at 0000 in the non-volatile
RAM, which is ADdress 1000 on the TEC
(to access the start of the expansion port
socket)

Now you must change all the absolute
address values (such as the start of a
table, a jump instruction etc.)

Change the switch on the non-volatile
RAM card to 'ROM’ and switch the TEC
off. Transfer the non-volatile RAM to the
Microcomp and load ‘28" on the input
switches. Turn the comp on and push
reset. The program will run.

You should now remove all traces of the
lower program so that you are sure the
new one is the only one being run. This is
done on the TEC by loading FF into each
location of the old program

The program is now ready for transfer to
EPROM. You have confirmed its
operation and run it at its new location -
nothing more need be done.

Refer to the EPROM BURNER project in
issue 13 for the actual transfer procedure.

When you have completed a program and
burnt it into EPROM, it should be fully
documented by writing it out as shown in
our examples.

It is important to use arrows to indicate
the jumps and even a block diagram
explaining what is happening at various
locations.

A description of the program including
which buttons are doing what, will also
help as it's very easy to forget how the
game is played, after a few months.

Give the program a name and fill out the
log below to assist in identification.

If you follow these rules you will be able
to use parts of the program when creating
new ideas and save generating every-
thing afresh.

Sw. Name of
Positions: | pddress: | Program:

TALKING ELECTRONICS No. 14 65

RAM and ROM

RAM is the abbreviation for RANDOM
ACCESS MEMORY.

It is tempory storage memory in which
data is only retained while the power is
applied.

When the power is removed, the contents
are lost. Thisis because datais storedvia
a flip flop or single MOS transistor and
these require power (although very little)
for the data to be retained.

There are two forms of Random Access

Memory. STATIC and DYNAMIC.

Static Memory uses a flip flop for each bit
of information and this will hold the HIGH
or LOW as long as the power is connected
to the chip.

Dynamic Memory uses only a single MOS
transistor in which a charge on a
substrate indicates the presence of data.
Since this charge has the tendency to
leak away, it must be replenished every 2
milliseconds. This requires additional
circuitry and is inconvenient in a small
system; although it is the cheapest way
to purchase blocks of memory.

RAM is also called Read/Write memory
as it can be written into and read during
the process of executing a program,

A micro system which does not have any
RAM is called a dedicated system and is
limited to running a program contained in
ROM memory.

The need for RAM varies enormously
with the task. Sometimes you only need a
few bytes of RAM to store tempory
values and the same locations can be
written into again and again.

Othertimes you need a large amount of
RAM to store a whole screen of
information.

With as little as one page (256 bytes) a
system can be designed to perform quite
complex tasks as the data can be updated
and written-over constantly.

The Z-80 requires only two very small
sections of RAM for it to become a
‘thinking’ computer. These two areas are
called SCRATCHPAD and STACK.

The scratchpad or BUFFER zone needs
only a few bytes where such data as
displays values are kept. This frees
registers for carrying out program
commands.

The other area is STACK and this is where
bytes are loaded (in pairs) so that the
contents of a particular register can be
saved. The stack is unusual in that it
grows downwards as more bytes are
added and it is essential to keep removing
bytes at the same rate as they are added
so that the stack does not grow too large.
The other peculiar feature about the stack
is the access you have to its contents. Itis
a LAST-ON FIRST-OFF arrangement and
only the top byte (and the next) is

accessible and this is another reason for
keeping the stack manageable.

The main purpose of the STACK is to free
registers for other operations and then be
able to re-load them with the value that
had been saved.

Our Microcomp does not have RAM
memory and thus the stack and scratch-
pad features are not available.

The alternative to scratch-pad is to use a
register pair to hold 2 bytes of data and
this has been done in many of the
programs. This severly limits pro-
gramming as the working registers are
held-up as memory cells.

Without a stack, programs have to be
designed differently and may take more
programming steps, but they work just as
well.

1X, 1Y, HL and DE register pairs and also
the alternate A, BC, DE and HL registers
can be used to get around the storage
problem.

Some of the programs for the Microcomp
show how the registers have been used in

this way.
ROM
ROM is Read Only Memory.

This memory is used to store instructions
which do not have to be altered. Data in
ROM remains fixed and stable, even
when power is removed. Itis permanent.

There are different types of ROM
memory. One is programmed by the
manufacturer and cannot be changed, the
other is erasable memory and can be
programmed by the client. It can also be
erased if the contents are not required, by
exposing to ultra violet light for about 15
minutes.

In the Microcomp project, a 2732
EPROM has been used. This is the most
economical size for the job and is capable
of holding 4k of information. 4k is
equivalent to 4096 bytes and would be a
very long program if it contained a single
program!

if we assume an instruction takes an
average of 2 bytes, the program will
extend for 2048 lines! A program of this
length would take many weeks to
produce and the number of things it could
do would be quite impressive.

In the Microcomp, the 2732 is accessed
in two halves. This is done via a jJumper.
The lower half contains a range of
programs which we are currently
investigating and by taking the jumper
lead to the tower pin on the PC board, the
upper half of the EPROM is accessed.

The upper half is blank and you can fill it
with programs of your own. The first 10H
bytes must contain a jump routine
identical with the lower half to allow you
to jump to the start of each program.

In the near future you will be able to send
in your EPROM for filling with additional
routines. The programs for the ‘add-ons’

will be loaded into the upper half and
many of these are already finalized. But
firstly we want to fully explain the lower
half and get you aquainted with the
concepts.

One question we have been asked is why
the Microcomp has only 11 address lines
‘whereas the 2732 requires 12!

The answer is we are creating the 12th
address line via the jumper lead. When
the 12th line is LOW, the lower 2k is
accessed. When the jumper is HIGH, the
upper 2k is accessed. Since this is a
manual operation, a program cannot
cross the 2k border and routines in the
lower half cannot be accessed by those in
the upper section. (If you wish to cross
the 2k boundary, place the jumper on
Al1).

Because of our arrangement, the 2732
can be considered as two separate 2k
blocks, each of which is equivalent to a
2716 EPROM. In fact you canuse 2716's
without the need for any modifications.

Each 2k block is addressed in
hexadecimal notation. It starts at 0000
and goes to 07FF. The next 2k starts at
0800 and finishes atOFFF. There are 8
pages in 2k and these are: Page 0,1, 2, 3,
4, 5 6 and 7. Each page contains FF
bytes as explained previously.

All address values, data values and Jump
Relative values are Hex values and you
need to think in HEX notation when
writing Machine Code programs.

Using the Microcomp will familiarize you
with hex and encourage you to think in
this notation.

BASIC vs MACHINE CODE

Everyone has heard much about BASIC.
It introduced many of us into the world of
microcomputers and it deserves its
reputation for being the best language for
teaching computers to beginners.

And true enough, Basic has enabled
beginners to perform tasks which would

have been absolutely impaossible
otherwise.
But basic isn't the solution to all

programming. When you need a simple
program for sequencing or timing, you
don’t need basic. When you need high-
speed graphics, you don’t use Basic. And
when you want to design your own
system, you can't include Basic.

In fact you don’t use any high level
language at all. You use only the codes
which the microprocessor understands;
and these are called MACHINE CODES.

That's the language or instruction set we
are teaching: MACHINE CODE or
MACHINE CODE PROGRAMMING.

With Machine Code you can perform all
the operations and effects available to the
Basic programmer except you have to
create them all yourself.

66 TALKING ELECTRONICS No 14.

Remember that all the work and skill put
into compiling the set of Basic
instructions would represent years of
effort and we would never be able to
attain this level of development via a
simple model.

For us, we will have to be satisfied with
starting at the beginning and learning
some of the simplest forms of
programming. Even these will achieve an
amazing variety of effects and you will be
quite impressed with the results.

We are not rubbishing Basic but let’s say
itis completely removed from the field we
are covering. Machine code is is up to
10,000 times fast and takes up to 500
times less memory. But Most impressive
is a Machine code system can be created
without any external assistance. You
become the master - designing your own
system and only requiring a list of
Machine code instructions for you to be
able to complete anything from a
sequencer to a robot.

HOW TO START PROGRAMMING

All programs start with an idea. The idea
may be vague at first or you may be lucky
enough to know exactly what you want to
achieve.

Vague or concrete, the way to start
programming is by getting a sheet of
paper and jotting down notes.

Start with sketches, scribbles and bits of
data.

Put a date on the sheet and think up a
name for the project. Names and labels
help identify and strengthen your ideas.

These jottings will look feeble when you
look back on them, but at the beginning
they form the groundwork on which to
build. It's the only positive way of getting
the facts together.

Put down all you know and all you want to
do, then go away and sort it over in your
mind.

Your brain can actually put things
together much better after you have
cleared it first by writing down all the
preliminaries.

Don’t be afraid to use paper. It will take
about 6-10 pages to produce one page of
finished work.

At first the best idea is to use parts of
existing programs and modify them to
suit. Later you can think about creating
complete programs of your own.

Lastly, don't be disappointed if the
program doesn’t work first go. We have
trouble with all of ours. They rarely work
first time.

But that’s the wonderful part about pro-
gramming. The micro picks up your
mistakes .and fails to operate.

When this happens, you can spend hours
trouble-shooting the fauit.

The best advice in this situation is to give
the program to a friend aquainted with
programming and ask him to check it. A
fresh mind is more able to spot a silly
mistake.

If you don’t have anyone in this category,
you will have to work through it yourself.

If the displays fail to light up, you will not
know how far through the program the
processor has gone.

Start at the beginning and look for the
first OUT command. Immediately after
this instruction place a HALT command.
This will let you know if the micro has
travelled this far through the program.

If the display still fails to light up, you will
have to investigate each of the steps and
instructions very carefully. Work back-
wards through the program using the
DISASSEMBLY codes on the back of
issue 12 (and also in Notebook No 3) and
make sure you get the same instructions
as in the original production of the
program. :

Next check the JUMP and JUMP
RELATIVE values to confirm that the
microprocessor is actually landing on the
address intended. Read the section on
Jump Relative inissue 12 of TE, because
these are the trickiest bytes to add to a
program. Remember, they are the LAST
bytes to be inserted as you need to count
the number of bytes between the present
address and the address to be jumped to.

MO NN

Machine Code programming
allows you to create your own
system - with pen, paper and
op-codes.

ORI NEEK

When creating a program. you will not
know the value of a displacement byte
initially and it is important to put-a line in
place of the byte thus: _____ so that it
can be inserted later. This line lets you
know that one byte must be counted
when working out the displacement
values.

If the display still fails to illuminate, you
can create your own display value by
loading the accumulator and outputting it
to the display and then adding a HALT
instruction. This is a last resort! and lets
you know how far the program is
progressing.

| hope you don’t have troubles of this
complexity but if so, this will get you out.

Start with simple programs and get your
ideas flowing. It's not as difficult as you
think to convert ideas into visual effects
and its very rewarding to see them
running.

When writing a program for the
Microcomp, you start at address 0000.
This is where the processor naturally
starts when the reset button is pressed.

It can then be shifted to a higher location
and a jump routine used to access it.

Creating a program which RUNS takes a
certain amount of skill. By ‘runs’ we mean
it completes one pass of the program and
displays the appropriate information on
the displays. After you get it to run you
can concentrate on adjusting the values
of timing to achieve the most pleasing
effects.

But the main problem is getting the
program to run and we have already
mentioned how to get into the program
and force it to display. There are a couple
of other points which we forgot to
mention and they involve the placing of
tables.

Tables should be placed well away from
the program so that you don’t run out of
room. When everything works perfectly,
they can be moved up and the pointers
changed accordingly.

The idea is to get everything into a
compact block and relative addressing
uses less bytes than absolute addressing.
so use it whenever possible. Also
remove any NOPS and any holes or
spaces. Closing up a program and
neatening it up takes time but it makes it
much more presentable in the end.

We will now continue with the programs
in the monitor, explaining each and every
instruction and how the program is
intended to work.

FROM INPUT PORT TO 8 LEDS

This routine is located at 0290 and is
addressed by switching the switches ON
thus:

This program is very handy for checking
the operation of the computer in the early
stages. This may be too late for some
constructors, but for those with a
problem in the displays, it will help locate
the fault.

The program checks each line of the input
port and outputs it to the displays.

Each time you turn an input switch ON,
the corresponding LED, in the row of 8
LEDs, will be illuminated.

If this does not happen. you can trace
through the particular line and locate the
fault.

The program at 0290 contains 6 bytes.
That's all, just 6 bytes! It inputs the data
on the input port and loads it into the
accumulator. It then outputs itto port 2 to
turn on the appropriate LEDs and then
jumps back to the start of the program.

TALKING ELECTRONICS No. 14 67

This means it is rapidly looping around
the program and will update the displays
as soon as the input values are changed.

The program can also be used to compare
between the row of 8 LEDs. the 7-
segment display(s) and the 4x4 matrix.

Experiment by inputting a hex value and
see the effect you get on each of the
displays.

In this way you can create any effect you
want on the 4x4 (within limits).

FROM INPUT PORT TO BLEDS
IN A,éol
R 0290 0294

From this program you will see:

1. The value of each LED in the row of
LEDs corresponds to a switch. The
lowest value is 01, then 02, 04, 08, 10,
20, 40, 80, and this can be confirmed by
the values written on the PC board.

2. The value of each switch also
corresponds to a segment in the 7-
segment display. Turn on various
switches and see the effect(s).

Prove the following:

81 01
82 20| 40 02

90 84 ml 04
88 08

Adding ‘80" to a value will make the
display jump to the 10’'s display. Note
that 80 by itself does not turn on ANY
display.

Button ‘A’ is connected to 80 and will

Create these effects on the 4x4 matrix:

® & o o o o o O
Yoot R
LR I) b= 2NN < SR <R + 4
PR A e e @@
* = ‘ON’
® e o e & o o
e o o ¢ LR < S 3
L - G B e ® o @
-2 <K -4 = B I <4

0290 DB 01 1o0ks atinput switches and places the value in the accumulator.
OUT (02),A 0292 D3 02 Outputs accumulator to the latch
J 18 FA Jumps to start of program.

Create these on the 7-segments displays:

make the figures jump from one display to
the other.

3. The 4x4 matrix has been wired so that
each column is turned on by a LOW value.
These values are: 01, 02, 04, and 08. This
will cause all the LEDs to come on. Each
of the rows can be turned OFF and this is
done via the values 10, 20, 40 and 80.

There are some limitations as to what
combinations of LEDs can be turned on
and this is something you must be aware
of.

Experiments:
Create these effects by using the input
switches:

LI I R e)
o0 e 8T UK

Hoeoeoro oo
el et et e

()

INCREMENT via BUTTON A

This program at 02A0 increments the
display each time button A is pressed.

This will enable you to see the effects on
the display without having to manually
input values via the switches.

The accumulator is required for two
functions. It outputs the value of the
count and then looks to see if a switch is
pressed. That's why we need another
register to hold the value of the count, so
that the accumulator can be loaded with
other information. Thus the C register has
been used for temporary storage.

The program contains two small loops
and the micro is constantly executing the
top one when button A is not pressed and
the lower one when the button is
pressed. The micro jumps from one loop
to the other during the time when the
button is travelling from one state to the
other.
3E 00

This is a very simple way of creating a
debounce condition and prevents more
than one count being registered on each
press of the button.

AUTO INCREMENT (fast)

This program is located at 02C0 and lets
you sit back and watch the displays

increment automatically. You will be
interested to know that the program
takes 256 steps before it repeats!

Compare the effect on the row of 8 LEDs
with the 4x4 and seven segment displays.

Notice that they produce entirely
different effects due to the placement of
the LEDs and this can be remembered
when designing displays for advertising
etc.

LD A,00 02Co 3E 00
INC A 02C2 3C

OUT (02),A 02C3 D3 02
DINZ 025 0265 10 FE
DJNZ 02€7 02C7 10FE
DINZ02C9 02C9 10 FE
JR 02C2 02CB 18 Fs

JR 02A3

Load the accumulator with zero.

Load zero into C.

Input the value on the switches to the accumulator.
Test BIT 7 of the accumulator to see if button A is pushed.
Jump to 2A3 if NOT pressed. Go to 3A9 when pressed
Load C into the accumulator.

Increment the accumulator.

Load the answer into the TALLY register ‘C".

Output the accumulator to the displays.

Input the switches to the accumulator.

Test BIT 7.

Jump to 2AE if A is pressed. Go to 2B4 when released
Jump to 2A3.

68 TALKING ELECTRONICS No 14.

The first instruction loads the
accumulator with zero. You will notice
this address is not used again by the
program. Thus we call it a START-UP
value. The accumulator is then
incremented on each pass of the program
and the value outputted to the latch. The
next three instructions are DINZ’s in
which the B register is decremented to
zero during each instruction. After the 3
DJNZ's the program jumps to 02C2 and
outputs the next higher value.

AUTO INCREMENT (variable)

This program is located at 02D0 and the
speed with which the computer

[lelle]o[ls] o200

completes one cycle depends on the
setting of the input switches.

LD D,01 ozDo 16 01
IN A,(01) 0z2D2 DB o1
LD C,A 02D4 4F
LD A,D 0zD5 TA
ouT gn),A 0206 D3 o2
DEC o0z2Ds oD
JR NZ 02D8 o02D9 20 FD
INCD 02DB 14

JR 02D2 o2DC 18 F4

AUTO DECREMENT

LD A,00 02E0 3E 00 Load the accumulator with zero.
DEC A 02E2 3D Decrement the accumulator.

OUT (02),A 02E3 D3 02 Output the accumulator to the latch.
DJNZ 02E§ 02E5 10 FE Decrement register ‘B’ FF loops.
DJNZ 02E7 02E7 10 FE " ” . .
DJNZ 02E9 02E9 10 FE

JR 02E2 02EB 18 F5 Jump to start of program.

AUTO DECREMENT (variable)
This routine is located at 02F0 and
decrementes the display when button A is

ol lelelefe] w2

pressed. It has a fixed rate of

decrementing and is not variable.
LD E,FF 02F0 1E FF Load the COUNT HOLD register with FF.
LD A,E 02F2 7B Load the Count Hold register into the accumulator.
OUT (02),A 02F3 D3 02 Output the accumulator to the latch.
DJN 01*5 02F§ 10 FE Create a short delay with the B register.
INA,(01) 02F7 DB 01 Input the bank of switches to the accumulator.
Bit 7, 02F9 CB 7F Test bit 7 of the accumulator to see if A is pressed.
JR Z,02F2 02FB 28 F§ Jump to 02F2ifitis not pressed. Go 10 next line if pressed.
DECE ozFD 1D Decrement register E.
JR 02F2 02FE 18 F2 Jump to 02F2.

Load the TALLY register with 01.
Input the switch value to the accumulator.

Load the accumulator into ‘C’ for the delay value.

Load the TALLY into the accumulator.
Output the tally value to the displays.
Decrement register C.

Jump to 02D8 if register C is not zero.
Increment the tally register.

Jump to the start of the program.

‘D’ is the tally register and holds the value
to be displayed on the screen, so that the
accumulator can be used for other things.

‘C' is the delay register and it is
decremented very similar to a DJNZ
statement, where FF produces the
longest delay and 01 the shortest delay.

This is not quite correct, however, as you
will find out for yourself.

Load the value 81 and compare it with 00,
00 is a much longer delay and it appears
to be as long as FF! In fact this is the
casel The longast delay is produced when
aregister is loaded with 00 since the first
operation to be performed on the register
is to decrement it. The result is and
that's why it takes FF loops to bring it to
zero.

The program is designed to start with an
output value of 01 and increment auto-
matically to FF. The ON time (the delay
j(imn) is adjustable via the setting on the
input switches.

Note: We don’t have any control over the
vatues appearing on the screen, just the
speed of the increment.

AUTO DECREMENT

By changing one byte of the program at
02C0, we produce a decrementing

. °]°l°[°] 02E0

counter. The best effect of decrementing
can be seen on the 8 LEDs. Adjust the
speed control to view the effect in slow
motion.

4x4 DISPLAY

As the name suggests, the program at
0300 is designed for the 4x4 DISPLAY. It

“folo[T[TTT7] o000

will produce almost no interpretable
effects on either of the other displays.

The routine we have presented is only just
the start of what you can do with a set of
LEDs in an array. Our 4x4 can be
multiplied-up many times to produce an
enormous array of LEDs or globes and
obviously the ultimate is to produce a
video screen with coloured globes to
duplicate a TV. But the cost of this kind of
venture is enormous as the parts alone
would cost a fortune and the time taken
to wire it up would be too much for an
individual constructor.

That's why we have concentrated on a
manageable module.

One of the decisions you have to make
when outputting to LEDs, is the method
of turning them ON. One is to connect
each output of a latch directly to a LED.
The other is to multiplex the display and
scan it. The multiplex method uses the
least number of chips and is obviously the
cheaper.

The relative merits of each will be
covered in future articles and for the
moment we will study the effects which
can be produced with a display
connected in MULTIPLEX mode.

The program at 0300 is an OUTPUT
ROUTINE in which a value is loaded from
a table into the accumulator and
outputted to the display. The display
remains illuminated for a delay period and
then the next byte is picked up from the
table. This is done until all the bytes have
been used.

When the end of the table is reached, the
program starts again. This is repeated for
8 loops and then the micro advances to
the second part. This is identical to the
first except for the byte table. It has
entirely different values and the effect is
completely different. At the conclusion of
the second byte-table, the micro jumps
back to the start of the program and the
first pattern is outputted. -

The speed of presenting a pattern is
controlied by the clock and the inbuilt
delay value. The delay is fixed but the
clock can be adjusted to slow-down or
speed-up the effect.

L

TALKING ELECTRONICS No. 14 69

—— LD B,08 0300 06 o8 B is the COUNT REGISTER for the number of loops in the first program.
—>LD HL,0338 0302 21 3803 Load HL with the address of the start of the BYTE TABLE.)
LD C,18 0305 oE 18 Load C with the number of bytes for the program (There are 24 'bytes.)
DECC 0307 oD Decrement the number of bytes remaining in the table to detect the end of table.
JR Z,0318 —— 0308 28 oE If no bytes remain. decrement the number of loops and start program again.
LD A,(HL) 030A E Load the accumulator with the byte pointed to b the HL register pair.
OUT (02),A 030B D3 o2 Output this value to port 2.
INC HL 030D 23 Increment HL to point to the next byte in the table.
LD DE,o080 030E 11 80 00 Load DE with a short delay value.
DEC DE 0311 1B Decrement DE.
LD A,D 0312 TA Load D into A.
OR E 0313 B3 Logically OR the I with E to see when BOTH D and E arezero.
JR NZ,0311 0314 20 FB Jump to 0311 if the answer is NOT ZERO.
JR 0307 0316 18 EF Jump to DEC € and repeat for the second byte in the table.
——— DJNZ 0302 -« 0318 10 Decrement the number of loops and start the byte table again.
LD B,o8 031A 0b 08 Load B with 8 for the second part of the program.
—LD HL,0350 031C 21 50 03
LD C,20 031F o 20 3\
DEC C 0321 oD
JR Z,0332 0322 28 OE
LD A,(HL) 0324 7E . L . .
OUT (02),A 0325 D3 o2 This partis identical with that above
INC ISL 0327 23 except the byte table is longer and
LD DE,0080 0328 11 80 00 ‘ located at a different address. When
DEC D 032B 1B 8 loops of this part have been
1 LD A,D 032C 7A . executed the program jumps to the
ORE 032D B3 & . top program and the cycle repeats.
JR NZ, 032B 032E 20 FB
JR 0321 0330 18 EF i
l——DJNZ 031C = 0332 10 E8 J
L———JR 0300 0334 18 CA
At 0338: At 0350: To access the LEDs we have separated O 0 0O O O OO0
the output latch into two halves with the PY o e o0
o1 CF oF B D4 4 lower bits connected to the anodes and ® 00
oz 3F FF D8 D2 the 4 upper bits to the cathodes. o0 o 000
o4 CF oF ES B2 . .) e
o8 3F FF E4 B4 The following diagrams give you the OO0 00 [BN B BN)
EF ¢b oF Ez2 D4 values required to turn ON one or more
DF FF Fll: E1 D2 LEDs: 6F 7F
BF 96 0 D1 B2 “ap
FF ALL ON “OF
rw nooom ALL OFF “FF or00”. | ® ® © ® © © © ©
oC gc ;: 7: LEGEND OO0OO0O0 O00O0O0
[7 H
ot 3¢ L 0000 0000
An almost unlimited number of patt O =0\ 000 e 0690
n almost unlimited number of patterns —
and effects can be produced on the 4x4. ® = 0OFF. BF gF
However not every combination can be ;
displayed due to the limitations of how O 0°0 O 0O O0O0 o 000 O 0 00
the LEDs are accessed.
(ONNORRORNG O0O00|p000 O0O0O0OO
This means you will have to learn how to
access the LEDs and get the patterns you © 00O © 00O o000 o e 00
want. O O 0O [3N BN I J OOOO....
To turn on a LED, the cathode end must OF 1F AF BF
be taken to earth and the anode to
positive. O O OO0 O O OO0 [I BN BN) o000
This is the hex value required to O 0O OO0 O 0O 00 o000 O000O0
illuminate an individual LED: : -
000 © 0090 0000 0O0O0O0
O0O0OC @000 0000 060600
@ @ 2F aF o DF
@ @ (@ @ 0000 00OCO|eeee e0ee
: 0 00 00060 0000 00600
@ ® ® ® 0000 0co0o0c|eeee eeee
@ OOOO 0000|0000 06000
4F 5F EF FF

70 TALKING ELECTRONICS No 14.

if you don’t want all the LEDs in a row to
be illuminated, refer to the diagrams on
this page for the hex value needed to
illuminate an individual column or
columnys).

To use these values select from the first
16 diagrams to give the row(s) and from
the following 16 diagrams for the

“Ceee ecee
ceee [JoX X
ceee { NN X |
ceee | JoX X
01 02
cocee eeCeo
cocee [X YoX
coee L X JeX |
cocee eeCe
03 04
ceoe ecQCe
ceoce | NoXNeX |
ceoe | NoNo¥ |
ceoe | NeXNoX |
05 06
CoCe @000
000 e 900
O0O0e 0000
coo0e 0000
07 08
OCeeO0 eO0eo
Cee0O ©0e0
Cee0O ©0e0
Cee0O ©00O0
09 0A
[ONoN NO] "X XeoXe)
cOeo ®©00O0
0Ceo0 ®©0 00
oNoN e 'Y XeXeo)
0B oc
oX XeXeo) @000
o} NoXe @000
©C®O00 . ®000.
O®0O0 @000

0000
0000
0000
Q000

When the two diagrams are placed on top
of each other, the LEDs that are common
to both, will be illuminated. Due to the
sinking and sourcing limitations of the
output latch, all the LEDs in the 4x4 can
not be illuminated at the same time.

OF

Brightness can be improved by turning off
the 7-segment display by shorting the
base and emitter leads of the driver
transistor together with a jumper lead.
This transistor is directly below the
second display and is the middle
transistor.

VERY LONG DELAY
This routine, at 03F0, is particularly
unusual. Not only is it a very long duration

delay but 1s shows that a program can be
split up and placed in two different parts
of memory, and still run.

And this is what we have done.

Half the program is located at 03F0 and
the other half at 04§A. This makes the
Micro jump up and down in ROM as it
executes the program.

The jumping back and forth does not
occupy many clock cycles but it does
increase the overall time by about 5%.

We calculated the time delay to be so
long that you may never see the display
increment! This is due to the low clock
speed. At 70kHz, the Z-80 is operating far
below its normal.rate and a delay like this
introduces many millions upon millions of
clock cycles.

WHY DO WE NEED DELAYS?
Delays are very important in micro
programs. Due to the high speed of

instructions, some parts of the program
must be slowed down so that humans can
be involved. This may be for the video
aspect, so that the eye can see what is
being outputted on a display or for the
audio side, so that we can detect tones
and beeps.

Delays are also needed to give a
SUSPENSE EFFECT for games of chance
or strategy to give the impression that the
computer is taking time to think.

Or for a video game, to create rates-of-
movement for objects moving across the
screen.

The delays we are talking about are
PROGRAM DELAYS or SOFTWARE
DELAYS. They are produced when the
micro ‘wastes time’. The simplest way of
wasting time is to fill a register pair with a
large number and gradually decrement it
to zero.

By decrementing a single register, the
maximum number of loops which can be
executed is 256. Each loop may take 20
clock cycles and at the normal running
frequency of a system (about 1MHz), the
delay time will be very short. By using a
REGISTER PAIR, the time can be
increased 256 times. The delay becomes
more noticeable and will be about 2
seconds.

If we require longer delays we can add
another register-pair and increase the
delay to more than 131,000 seconds!

When the system is operating at only
70kHz, the delay time turns into hours,
days and months!

There is one point to note here: When a
micro is performing a very long delay, the
entire computer time is being taken up
with a COUNT DOWN sequence and this
means the micro will not be updating
information on the displays or looking at
the input port.

If you require other operations to be
attended to, they must be included in the
loop, as can be seen in the clock program
at 0630,

the execution of machine code
LD A,01 o3Fo0 3EoO1 Segment "A’ will illuminate after a delay period.
LD LA o3Fz2 ED 47 Save the ‘TALLY' in the | register (Not part of 1X).
LD DE,FFFF 03F4 11 FF FF (0ad DE with the maximum value.
LD HL,FFFF 03F7 21 FF FF Load HL with the maximum value.
DEC HL o3FA 2B Decrement HL.
LD AH o3FB 7C Load register H into the accumulator.
ORL o3FC B Logically OR the accumulator with L.
JP 045A 03FD €3 §A 04 Lump to address 045A.
JP NZ,03FA 045A €2 FA 03 if register H and L are not zero, jump to 03FA.
DEC DE 04sh 1B When HL (the inner loop) is zero, decrement DE.
LD A,D o45E A Load register D into the accumulator.
E 04SF B3 Logically OR the accumulator with register E.
JP NZ,03F7 0460 €2 F703 if resultis not zero. JUMP to 03F7 and DEC HL!
A,f 0463 7 When both HL and DE are zero, time is UP!
OUT (02),A 0465 D302 Load the TALLY register into A and output it.
INCA 0467 3C Increment A.
LD LA 0468 ED 47 Load the new tally into the TALLY register.
JP 03F4 046A €3 F4 03 Load the register pairs and start again!

TALKING ELECTRONICS No. 14 71

When we use two register pairs to create
a very long time delay, we do not place
one pair after the other as this would only
double the time delay. We place them ON
TOP of each other so that the effect is
MULTIPLICATION. This means one pair
is INSIDE the other and we say it is
HIDDEN or NESTED. This arrangement
gives rise to the term NESTED LOOP.
This is what we are creating in this
section,

The simplest method of increasing the
delay is to add the instruction: 10 FE.
This will have the effect of adding 256
cycles to the delay time. This is a DJNZ
instruction and operates with the B
register. The advantage of a DINZ is it
does not affect the accumulator. In the
Microcomp we do not have any RAM and
we cannot save the accumulator via a
PUSH operation since we do not have any
STACK. Thus it's an advantage not to
alter the contents of the accumulator.

DJNZ loops are not nested loops but are
additive and require the B register to be
zero at the start of the delay routine to
create the longest delay. At the end of a

Z the B register is zero and this is
ideal for the next DJNZ.

DJNZ's can be grouped thus:

DINZFE 10FE
DJNZFE 10 FE
DIJNZFE 10 FE
DIJNZFE 10FE
DJNZFE 10FE

0 - 9 COUNTER

The first counter we are going to study is
a 0-9 UP COUNTER. This is located at
address 0370 and will show us how to

output numbaers onto the display and how
the INCrement operation is performed.

The main fact to remember with the
program is the computer is NOT adding
numbers. It is simply going through a
table of values and it is the values it
fetches that create the increments on the
screen.

The table could be designed to produce
fetters or symbols and we would lose the
effect of incrementing.

The requirements of a counter are these:

The computer must detect when a button
is pressed and distinguish it from other
buttons. In our design button A
corresponds to BIT 7 and button B to BIT
6. of the accumulator.

The program must be running or
LOOPING at all times ready to instantly
pick up an input value.

Because the program is running at high
speed, we must include a DEBOUNCE
feature to prevent more than ONE
COUNT being registered when a button is
pressed.

With these facts in mind, we have
produced the 0-9 COUNTER.

The program contains 2 loops. One is
executed when button ‘A’ is NOT pressed
and the other when the button is
PRESSED. We also have to detect when
the end of the BYTE TABLE is reached.

0 - F COUNTER .

This routine, at 0390, increments the
display each time button A is pressed.

The main program for producing the
letters on the display is located at 03A8
and the micro jumps to this address via
the instruction JR 03A8. The main
program is also used by the A -Z, 0 - F
counter and shows how the same table
and output program can be accessed by
two different START-UP ROUTINES.

LD C,10 0390 OE 10
LD DE,03DF 0392 11 DF 03
LD HL,0390 0395 21 90 03
JR 03A8 0398 18 OF

A-Z0-FCOUNTER

This counter is located at 03A0 and

produces the letters A - F and hex values 0
- F on the display via button ‘A".

LD C,2A 03A0 OE2A
LD DE,03C5 03A2 11 C503
LD HL,03A0 03A5 21 A0 03
INA,(01) 03A8 DB
BIT 7,A 03AA CB 7F
JRZ03A8 O03AC 28 FA
DE 03AE 13
LD A(DE) 03AF 1A
OUT (02),A 03B0 D3oz2
IN A, (01 0382 DB o1
BIT 7,A 03B4 CB7F
JR NZ,03Bz 03B6 20 FA
DEC € 03Bs oD
JRZ0IBD 03B9 2802
03AS 03BB 1S EB
JP (HL) 03BD E9

The 3 counters in this section use the table at
03C6.The 0-9 counter uses only those bytes
corresponding ta 0-9. The O-F counter uses
bytes from O to the end of the table.

The A-Z.0-F counter uses all the table.
In addition, the O-F counter uses mostofthe A-

Z, O-F program and that's why it has only 4
instructions.

At 03Cé:

A hid v 1C
B IC W 4E
C 3 X 4C
D sE Y oE
E 7 z 1B
F n ° 3F
G 13D 1 06
H 2 5B
1 06 3 4F
J 1E 4 o
K 72 5 oD
L 38 ® m
M 47 7 07
N 37 8 7F
0 3F 9 &7
P 73 A 7
Q & B 7€
R 33 C 39
S oD D SE
T 18 E 79
u 3E F 71

By now you will be aware that certain
combinations of hex values produce
letters and numbers on the display.

Use the program at 0290 to produce the
numbers O - 9 and letters A - F, by
switching ON the correct switches. Use
the output display values on P68 to assist
you in this. Add the value on the switches
and compare with the table at 03Cb.

0 - 9 COUNTER

LD C,0A 0370
LD DE,03DF 0372
IN A,(01) 0375
BIT 7,A 377
JR Z,0375 0379
{l:)c D(Enz) oﬂc"
OUT (02),A 037D
IN A,(o1 037F
BIT 7,A 0381
JR NZ,037F 0383
DEC C 0385
JR Z,0370 0386
JR 0375 0388

OE 0A Register C is the counter for the BYTE TABLE. There are ten bytes.

11 DF 03 The DE register pair is loaded with the start-address of the byte table

DB o1 The input latch is tooked at and the value it holds is ptaced into the accumulator.

cn 1F The only line {or BIT) which is tested is bit 7. This is the 8th line and is button A

28 FA If it is HIGH (or SET) the program advances. If it is LOW (or RESET). it goes to: IN A,(01).
13 INCrement the DE register pair to look at address 93E0.

1A The byte at 03E0 is placed in the accumulator.

D3 02 Output this byte to the display.

DB o1 Look at the input port.

CB 7F Test bit 7 of the accumulator.

20 FA Jumpto address 037F if button A is pressed. When button is released, advance to nexttine.
oD Decrement the BYTE COUNT register.

28 ?B If end of table is reached. JUMP to start of program. If not reached, go to 037§,

18

72 TALKING ELECTRONICS No 14.

00 - 99 COUNTER

Counters and counting are a very
important part of electronics. Business
and industry needs counting. Whether it

be to keep track of money or
components, it needs to know the
answers.

3F incrementing the displays if a button is
The counter program at 0400 shows the 0400 0b kept pressed.
basics of how a counter operates and 5B
how the COUNT VALUE can be held in a 4F
single register pair. b
Functions such. as INCREMENT, :g
DECREMENT and RESET canalso be 07
included. The most involved part of the 7F
program is debouncing the switches, to [
LD E,00 0400 1E 00 Register E holds the present COUNT VALUE in decimal form.
LD Avs 0402 7B Load E into the accumulator so that it can be operated upon.
AND oF 0403 Eb OF Mask off the 4 HIGH ORDER bits. In other words, remove them.
LD HL,03E0 0405 21 E0 03 1 0ad HL with the start of the BYTE TABLE that produces the display numbers.
ADD A,L 0408 8s Add the start of the byte table to the accumulator.
LD LA 0409 oF Load the into L to produce a new pointer value,
LD Ao(HL) 040A 73 Load the accumulator with the byte pointed to by the HL register pair.
OUT (02),A 0408 D3 o2 Output this value to port 2.
LD AOE 040D 7B Load E into the accumulator again, this time to produce the 10's value.
RRA O40E 1IF Shift the bits in the accumulator one place to the right.
RRA 040F 1F Shift the bits in the accumulator another place to the right.
RRA 0410 1F . . - g - ; -
RRA o411 1F - . . - . - -
AND oF 0412 Eb OF Mask the 4 HIGH ORDER bits so that they are effectively removed.
LD HL,03E0 0414 21 E0 03 ycad HL with the start of the byte table.
ADD A,L 0417 85 Add the value of L to the value in the accumulator.
I”A 0418 6F A new pointer value is created.
LD A,(HL) 0419 7E Load the accumulator with the byte pointed to by the HL register pair.
SET 71A 041A CB FF SET bit 7 of the accumutator to "1” to turn on the 10's display.
ouT 2“ A 041C D3 02 Output the value of the accumulator to the fatch.
IN As o1 °‘lE DB o1 Input the value on the switches to the accumulator.
A 0420 CB 7F TEST bit 7 to see if button A is pressed.
JR Z,042A 0422 28 06 if it is zero, jump to 034A. If it pressed,increment to next instruction.
LD AE 0424 7B Load E into the accumulator, ready for an INCrement operation.
INC 0425 3C Increment the accumulator.
DAA 0426 27 Decimal adjust the accumulator. This means an A will be changed into 10.
LD E!A 0427 5‘ Save the new count value by loading it into the E register.
JR 0432 0428 1808 yump 1o 0431
BIT O!A 042A CB 77 From 0422, the program jumps to this address and tests for button B.
JR Z,0402 042C 28 D4 if not pressed, the program jumps to 0402, If pressed, the program increments.
LD A,E o42E 7B Load the COUNT REGISTER into the accumulator.
DECA 042F 3D Decrement the accumulator.
DAA 0430 27 Decimal adjust the accumulator. This will change a zero into a 9.
LD EVA 0431 5F Save the count value by loading it into the E register.
LD A,E 0432 7B
AND OF 0433 Eb oF
LD HL,03E0 043§ 21 Eo 03
ADD A,L 0438 85
LDLA 0439 oF
LD A,(HL) 043A 7E
OUT (02),A 043B D3 02
LD AE 3D 7B
RRA 043E 1F
RRA 043F 1F The remainder of the program keeps both
RRA 0440 1F displays iluminated by looping from 0432 to
RRA 0441 1F 0456 while either of the buttons remains
AND oF 0442 Eé6 oF pressed. As soon as the button is released, the
LD HL,03E0 0444 21 Eo0 03 program jumps back to 0402 and executes the
ADD A,L 0447 85 top loop.
D L,A 0448 oF
LD A,(HL) 0449 JE
T 7,A 044A CB FF
OUT (02),A 044C D302
IN A,(01 044E DB o1
IT 7,A 0450 CB 7F
JR NL,0432 0452 20 DE
6A 0454 CB77
JR Ni,0432 0456 20 DA
JR o402 0458 18 AS

prevent the
incrementing
pressed.

count automatically The program basically consists of two
if the button is kept loops. The top loop is executed when the
buttons are NOT pressed and the lower
when either of the buttons is pressed.
This is necessary to keep the displays
at 03E0: illuminated while at the same time

preventing the program from

TALKING ELECTRONICS No. 14 73

DICE

The DICE Program at0470 introduces a
few more programming skills.

The first of these is a RANDOM
NUMBER GENERATOR. Random
numbers are almost impossible to
generate via a computer due to it being a
very predictable machine. The only
reliable way to get a random number is to
introduce the human element.

This is what we have done in this
program.

At the start of the program a running LED
routine moves a single LED around the
4x4 matrix. The ON time for each LED is
created by a delay routine that uses the B
abd C registers. The C register is loaded
with 6 and decrements to zero. Each time
this is done, the B register is
decremented and when it reaches zero,
the LED jumps to the next location.

The random number is generated in the C
register and we can exit from the program
with a value remaining in C. Since C is the
inside loop of the delay it is decrementing
very fast and it is not possible to predict
what value C will contain.

If it were the outside loop it would be a
different matter. Players would gradually
get to understand that pressing at the
beginning of cycle would generate a low
number and at the end of a cycle, a high
number.

Owing to the unpredictability of the
human reaction, an even spread of
numbers from 1 to 6 is created with our
routine.

The second feature of the program is the
COMPARE and BRANCH.

After the random number has been
obtained, a number of flashes are created
on the screen and then the accumulatoris
compared with the random number
before jumping to the display routine.

This routine is a very simple multiplexing
routine in which three bytes are outputted
for a period of 80 cycles.

The program then detects that the input
button has been released and jumps to
the start of the program.

If a button-check was not made, the
same number would appear on the
displays due to a constant number of
cycles occuring in the program for each
game.

At 04D3:
71 K
72 E4
74 E2
78 E1
B8 D1
D8 Bi1

—» LD D,0C 0470 16 0C C is the byte table counter for the 4x4
LD Hiq‘dni 0472 21 D3 04 HL will point to the byte table address
—» LD A,(HL) 0475 7E Ais loaded with the value of the first byte in the table.
OUT (02),A 0476 D3 o2 The accumulator is outputted to port 02.
INC HL 0478 23 The byte table pointer is incremented.
LD B,1§ 0479 06 15 Load B with 15, for a delay value of 21 loops.
LD C,06 047B oE 06 Load C with 6, for the dice values: 0-6.
IN A,(01) 047D DB o1 input from the input port to the accumulator.
047F CB 7F Check to see if button A has been pressed.
JR Ni;‘u"’ 0481 20 0A If pressed, jump out of the delay routine.
DECC 0483 oD Decrement register C.
JR NZ,047D 0484 20 F7 i C is not zero, jump up, If C zero, advance.
‘—DJNZ 047B 0486 10 F3 Decremest B and if not zero, jump up.
DECD 0488 15 Decrement the byte table register D.
~|—JR Z,0470 0489 28 ES When D is zero, jump to start of program.
“—JR 0475 048B 18 ES If not zero, continue DELAY ROUTINE.
LD D,06 048D 16 06 Load D with 6 for six flashes of the display.
LD A,0F 048F 3E oF Load A 1o tum on the whole 4x4 display.
OUT (02),A 0491 D3 02 Output to port 02.
DJINZ 0493 0493 10 FE Register B is decremented to create a delay.
LD A,FF 0495 3E FF Load A with a value to turn 4x4 OFF.
OUT (02),A 0497 D302 Output to port 02.
DJN 0499 0499 10 FE Create a short delay with register B.
DEC D 049B 15 Decrement the flash-count register.
— JR NZ,048F 049C 20 F1 Loop for 6 flashes.
LD D, 7‘0 049E 16 80 Load D for BO loops for multiplexing routine.
LD A,C 04A0 79 Load our random number into the accumulator.
LD HL,O‘ED L 04A1 21 E0 04 tLoad HL with address of table for multiplex routine.
CPo i 04A4 FE 01 Compare the accumulator with 1.
4_-"’ 1104517 04A6 CA F5 04 ifthe is 1, jump to multiplex routine.
1-104 3 - 04A9 21 E3 04 (Load HL with stant address for displaying ‘2",
04AC FE 02 Compare the accumulator with 2.
[e— Jl’ "0455 O04AE CA F§ 04 1t accumulator is 2. jump to multiplex routine.
1«0435 04B1I 21 Eb 04 Load HL with start-address for displaying 3".
CP 04B4 FE 03 Compare accumutator with 3.
[¢— JP 0451’ 04B6 CA F5 04 If accumuiator is 3, jump to multiplex routine.
LD l-,“m) 04B9 21 E9 04 Load HL with start-address for displaying ‘4.
CP o 04BC FE o4 Compare the accumulator with 4.
r4¢—JP I‘“SF O4BE CA F§ 04 if accumulator is 4, jump to multiplex routine.
l..,iMEC ::g: ;lEEC 04 Load HL with start-address for displaying '5'.
0§ Compare accumulator with 5.
— -"’ °4F§ 04C6 CA F5 04 i accumulator is 5. jump to multiplex routine.
‘il-,‘u 04C9 21 EF 04 Load HL with start-address for displaying 6.
04CC FE ot Compare accumulator with 6.
— JP Z,O‘FS 04CE CA F§ 04 Jump to multiplex routine is accum is 6.
A jump vatue must be found and the micro jumps to the multiplexing routine balow and
produces a display on the 4x4 that is similar to the spots on the face of a dice. The routine
At 04E0: runs for 80 loops , makes sure button A is not pressed, then jumps to the start of the DICE
program.
B4 D2 72 52 52 52
00 00 B4 00 B4 54
% 78 D8 s8 1) 58
b LD A,(HL 04Fs 7E Load A with the value pointed to by HL.
‘;’ ouT i%z),?\ 04F6 D3 02 Output the value to port 02.
D B,0A 04F8 06 OA Load B with a short delay value.
DJINZ 04FA O04FA 10 FE Create a short delay with register B.
INC HL 04FC 123 Point to next display address
LD A,(HL o4FD 17E Load the value pointed to by HL into A.
OUT (02),A O4FE D3 o2 Output to port 02.
LD Bio A gg:: 0: :?% Load B with a short delay value.
DJNZ 0502 h ¢ Create a short delay with register B.
INC][L; 0504 23 inc HL to look at next address.
LD A,(HL) 0505 TE Load value pointed fo by HL in the accumulator.
OUT (02),A 0506 D3 oz Output to port 02.
LD nioA :g:: :: ;% Load register B with a short delay value.
DJNZ 050A 3 Decrement register B to zero.
DEC ||[,s 050C zg Dec HL to look at start of display table.
DEC HL 050D 2 o
0S0E 15 Decrement multiplex routine loop counter.
el JR NZ, 04F5 050F 20 E4 Loop again if D is not zero.
o511 AF Zero the accumulator and output to port 02 to
z A o512 D302 blank the display.
lN A o514 DBoO1 Look at the output port to see if button Ais NOT
E o516 CB7F pressed before re-starting the DICE program.
Jn Ni,o;u 0518 20 FA Loop is A is pressad.
JP 0470 051A €3 70 04 .Jump to start of DICE program.

74 TALKING ELECTRONICS No 14.

