TEC 1A’s can be converted to TEC
1B’s hy adding 1 push button, 147k
resistor and 1 diode. Update to
MON 2 and you have a SHIFT key for
functions such as INSERT, DELETE

98 comeiere

ete.

TEGIB b;;rdwwilh SHIFT and REET keys in foreground.

This is the fourth article on the TEC
and introduces you to more Machine
Code programming as well as two
valuable add-ons.

The NON-VOLATILE RAM has been a
real boon for assisting in program
preparation for the MICROCOMP-1
project described in this issue.

Program can be written directly into
RAM and by changing the switch, the
contents will be retained for up to a
year via the batteries mounted on the
board.

This is the answer to .|l those
requests from constructors wanting
a battery backed-up system or tape-
save facility. When the TEC is turned
off, the contents of memeory will be
saved and thus allow you to move the
TEC from one location to another.

The RAM can also be used in place of
an EPROM for the purpose of getting
a system up and running. When you
are satisfied with the design, the
program can be transferred to
EPROM.

This is where our second 'add-on’
comes in. We have designed an
EPROM BURNER to fit on the
EXPANSION PORT socket.

With all the add-ons connected to the
TEC. it was soon realized that the
power required was more than could
be supplied from a plug pack or 2165
transformer.

This led us to design a power supply
exclusively for the TEC and at the
same time include all the voltage
values needed for the various
projects.

TALKING
ELEGTRONICS
COMPUTER

EC-1A ™
EC-1B

PC board: $21.00
Parts for 1B: $77.00

Case: $21.50
Post: $6.00 MAX.

FEATURES IN THIS ISSUE:
* NON-VOLATILE RAM
* EPROM BURNER

SEE ALSO:
TEC POWER SUPPLY on P. 23.

So far we need 5v for the electronics,
12v for the relays and 26v for the
EPROM BURNER.

The TEC POWER SUPPLY is capable
of delivering these and can be
expanded to about 1.4 amps at 5v by
paralleling two 2155's.

Don‘'t forget, the DC current
capability of a 2155 is .7amps and
NOT 1 amp and this has been covered
in a previous article starting on page
5 of issue 11

As you can see, one thing leads to
another and we have sufficient add-
ons to tum the TEC into a powerful
programming tool.

The TEC itself has changed too. From
the original TEC model, we improved
the layout and upgraded the output
latches to modern 20 pin types and

TALKING ELECTRONICS No. 13 9

mounted the regulator under the
board so that it would not be broken
off.

We have now upgraded the TEC to
model 1B and this has seen the
inclusion of a shift key.

This shift feature allows the keyboard

to have a second command for each

key and opens up a world of
possibilities.

Two functions which have been
lacking on the TEC are INSERT and
DELETE. W.ith the addition of the
shift key, you will be able to make
corrections to your programs and
close up gaps as well as create
locations for new instructions.

Those who have already built the TEC
can add a shift key in one of two
ways. The lower RESET key can be
converted into a SHIFT function by
wiring aresistor and diode into circuit
and connecting to the computer. The
only problem with this is the upper
RESET button. It will be difficult to
access when the Video Display unitis
mounted over the Z-80/EPROM area.

A better solution is to drill 4 holes
near the lower RESET button and add
the necessary components under the
board.

The shift function is software
controlled and you will need the
updated MON 2 to get the shift key to
work.

The MON 2 also includes a few other
improvements. The most noticeable
of these is the location of the STACK.
You will remember the original
position of the stack is very close to
the top of the 6116.

The main problem with this location
is not knowing how far you can
program before running the risk of
hitting the stack.

The MON 2 places the stack at 08C0
and allows up to CO bytes to be
stored. There is still arisk of crashing
the computer if a stack error occurs
as the stack grows down to 0000 and
restarts at FFFF and will eventually
hit the top of your program. Between
CO and FF is a storage area for
pointers, restarts, display buffer,
keyboard buffer, register save area
and for interrupts.

This means programming starts at
0900 up to OE‘F with the on-board
6116 and you don’t have the problem
of landing in the stack area.

You can upgrade to MON 2 by
sending in your ROM and it will be re-
burnt to MON 2. The cost is $3.50
plus $1.50 post.

Pin 15
7415138 =

A shift button, 47k resistor and signal
diode is available in a separate kit for
80¢ and this will double the
capability of your computer.

] +5v

47k

1N 4148 in 9
Adding Shift to TEC-1, TEC-1A

MON 2 has 6 other shift functions
and we are in the process of writing
more software for further functions.

Shift

Qe

By the time this issue is released, we
will have completed this writing and
will include documentation with the
chip.

The cost of the TEC has risen to
$98.00 and it looks like going even
higher as the exchange rate for the
Aust. dollar drops. But we want to
keep the computer below the magical
$100 mark for as long as possible.

We have now supplied over 1,000
computers, in 3 different models.
Only the earliest model has been
fully documented. The upgraded
versions vary only slightly and you
should have no difficulty
constructing them.

The reason for this is the simplicity of
the board. Everything is fully
identified on the overlay and requires
only simple assembly.

Chances are it will operate first go
but there is always a small possibility
that something will be overlooked
and it will not come on.

If you are caught in this situation,
here is a run down on how to go about
fixing it:

You will need a LOGIC PROBE and a
MULTIMETER. A CONTINUITY
TESTER (to be presented in next
issue) will also be handy.

Firstly the visual checks:

If the displays fail to light-up and no
sound is heard from the speaker, the
most likely fault will be a broken
track or poor solder connection. Turn
the computer off and check each
track with a multimeter switched to
LOW-OHMs.

The regulator should get quite hot
and should have 5v on the output
lead. It must have at least 8v on the
input lead to prevent voltage ‘drop-
out’.

10 TALKING ELECTRONICS No. 13

The Z-80 will get quite warm, as will
the output latch near the edge of the
board.

The jumper near pin 1 of each latch
should be checked. Only one must be
inserted for each latch. This means
you have two unused holes for each
latch.

Check each of the keys for correct
positioning. All flats must be DOWN.

The notch on each chip must also be
DOWN.

Make sure all the pins of the IC
sockets go through the holes in the
PC board and are properly soldered.
We have seen some pins doubled-up
under the socket and not making
contact with the tracks.

Check the capacitor near the speed
control. It must be 100pf - not 100n.
100pfis indicated by ‘100" or ‘101" on
a ceramic capacitor whereas 100n is
shown as ‘104’ on a mono block or
100nS on a blue body.

Check for non-soldered lands,
missing links and incorrectly
soldered links. We inspected one
project in which the builder had cut
the links to the exact length BEFORE
soldering and consequently one link
did not go through the board
completely. It was too short to be
soldered but the builder didn't notice.
He soldered the land with the result
that the link looked as though it was
soldered!

Finally check for solder-bridges
between adjacent lands with a
multimeter set to LOW ohms.
Remove the chips to get an accurate
reading.

Now for the ‘in-depth’ diagnosis:

1. Turn the TEC on and check for 5v
out of the regulator. Check POWER-
ON LED. Check for 5v on each of the
chips: 74LS 273 - pin20. 2716 - Pin
24. 6116 - pin 24. Z-80 - pin 11.
4049 - pin 1 74LS138 - pin 16.
74LS923 - pin 20.

2. Check clock frequency by putting
logic probe onto pin 6 of Z2-80.

3. Check RESET pin of 2-80 is HIGH.

4. Check NMI line. (pin 17 of the 2-
80). It will go LOW when a key is
pressed. If not, aswitch may be faulty
or the keyboard scan oscillator may
not be working. Keyboard oscillator
is part of the 74C923 and the
frequency-setting capacitor and
debounce cap are the 100n and 1uf
electrolytic.

5. Check pin 19 of the Z2-80 with a
logic probe. If it is not pulsing,
program is not getting through.

6. Logic probe pin 18 of the 2716.
Pulses on this pin show the ROM is
being accessed.

7. Puises on pin 18 of the 6116 show
RAM is being accessed.

8. No pulses via checks 5, 6 or 7
indicate the full byte in an instruction
is not getting through. This may be
due to a faulty address or data line.

9. Check Do (pin 9 on the 2716, for
continuity to pin 9 of the 6116 and
also pin 14 of the Z2-80.) Check the
other 7 data lines for continuity and
also the 11 address lines.

10. With all chips still in circuit,
check each pin with the one adjacent
to it, for the 2716, 6116 and Z-80.
Our continuity checker in issue 14
will be ideal but if you can’t wait, a
multimeter can be used. Remember
protection diodes are contained in
most chips and low value resistors
may be present on some lines. Low
values of resistance may be perfectly
acceptable - you are looking for zero
ohms or short-circuits between
tracks.

11. Check pin 20 of the Z-80 - the
IN/OUT REQUEST line. If it is not
pulsing, the output of the computer
may be putting a load on the data bus.

12. Remove the two output latches
and place the negative lead of a
continuity tester on one of the pins.
Touch every other pin of the output
latch with the other lead. Move the
first lead and repeat until all pins have
been tested. Do the same with the
other latch.

This will check for shorts on the data
bus as well as between pins of the
display.

13 If these fail to locate the fault, ring
us at TE. We may be able to help you
over the phone. if not, send the TEC
in a jiffy padded bag and we will see
what the trouble is.

So far we have had about 20 TECs
sent in for checking and repair. About
8 of them suffered from voltage
surges. This occured when the
constructor shorted leads together
and/or dropped a screwdriver on the
back of the board when the TEC was
operating. This can damage the
EPROM, RAM and even the Z-80.

Don't let leads from the ‘add-ons’
dangle over the rest of the computer
or let the SELECT leads touch each
other when fitting them over the pins
on the PC board.

The TEC is really very robust and we
haven't damaged a unit yet, even
though we have three in constant use
and they are let running both day and
night.

If you are careful with construction
the TEC will work. But as with all
pieces of electronic equipment,
:xmlalss voltage will sound a death
noli.

While on this subject, we repaired
two more unusual faults this month.

Both problems were the same and
occured like this:

When the constructor was building
the TEC. one or more of the
components were soldered without
being fully pushed onto the board.

Some time later the constructor
discovered the faultand proceeded to
push the component into place while
trying to resolder the joint.

The result was the land broke away
form the copper track and created a
hairline fracture which was not
spotted.

If this occurs on either the address or
data bus, the TEC will fail to come on.

If this happens, the first pin to check
is each of the Chip Enable pins on the
two output latches.

If a probe on these pins show they
remain HIGH, they are not being
accessed.

Next check the IN/OUT select chip
{below the expansion port) and see if
it is being activated by the Z-80. No
information on pin 4 could indicate
tzhg:)the program is not getting to the

This leads you to suspect either one
of the data lines or one or more of the
address lines. They may be broken,
with the result that the Z-80 is not
receiving a full byte of program.

Before you jump to this conclusion,
check the Chip Enable pin of the
EPROM (pin 18) and see that it is
LOW. This will mean the 2716 is
being accessed and it should be
talking to the Z-80.

If the Chip Enable pinis HIGH, go to
the ROM/RAM decoder (below the
clock chip) and check pin 4 to see
that the pin is being accessed.

If one bus line is missing, the Z-80
will get the wrong op-codes and the
program will not flow correctly.

Before we continue with pro-
gramming, here are a few notes on
assembling the TEC-1B as some
changes have been made since the
original nctes in issue number 10.

The regulator is placed under the PC
and bolted to the board via a 6BA nut
and bolt. You can add heat fin if a
number of add-ons are to be driven,
but under normal circumstances, the
re?ulator and board will dissipate the
1%2 to 2 watts of heat.

The electrolytic has been changed to
1000mfd 25v and it lays fiat on the
board to keep a low profile.

The display drivers are slim-line types
and 3 alternatives have been allowed
for in the PC pattern. The overlay
shows which links are to be added for
the type chosen. Only ONE link must
be used for each chip.

Finally a Z2-80 or Z-80A can be used
as the CPU chip. We are operating
the TEC at 100kHz to 500kHz and
this is well below the maximum
speed for either type. A Z-80 will
operate up to 2.5MHz and Z-80A up
to 4MHz.

If any of the keys become worn, their
contacts become erratic and some-
times a doubie-entry occurs. This can
be overcome by increasing the value
of the 1mfd on the 74¢923 keyboard
encoder to 4.7mfd or even 10mfd.
This will mask out the contact
bounce and produce a single pulse.

A 100n up to 10mfd can be used
across the reset and it may be
necessary to use the higher value if
the Z-80 does not reset properly.

A 10k or 20k cermet can be used as
the speed control and it can be either
a VTP or HTP type. The advantage of
a cermet means you can use your
fingers to turn the pot and don't
require a small screwdriver.

SHIFT

The latest addition to the TEC soft-
ware is a SHIFT function.

This enables the number of functions
to be increased from 4 to 24.

It means each of the buttons can be
programmed to perform a second
function when combined with the
SHIFT button.

To access this second function the
SHIFT button must be pressed first
and kept pressed while the desired
key is pressed.

HOW DOES IT WORK?

The keyboard encoder uses 5 lines of
the data bus and the remaining 3 lines
are not used.

The SHIFT button is connected to
one of these lines and the monitor
program re-written to detect its
status when the keyboard is read.

Five functions are currently available.
More are in the pipeline and their
details will be explained in future
articles.

The 5 functions are:

HIFT +
This is the INSERT function. It moves
every byte in the program up to the
next higher location and inserts 00

TALKING ELECTRONICS No. 13 11

into the present address. This
operation can be repeated any
number of times to produce empty
locations.

We have mentioned MON 2 allows
programming to start at 0900 and the
shift function operates in the area
0900 to 4000, Addresses above 4000
are not catered for by the software
but can be included if required.

Addresses below 0900 may cause a
systems crash if you try to insert in
this area as it is reserved for scratch
pad, pointers and stack etc. Data
below 0800 cannot be shifted as it is
in ROM.

SHIFT — (shift, MINUS)
This is the DELETE key. It performs
the opposite of INSERT. The data at
the address currently being displayed
is removed and all data above this
address {and below 4000) will be
shifted DOWN one location. 3FFF is
loaded with 00.

These photos show our science/electranics/
computer teacher’s add-ons to the TEC and Glen
Robinson’s Robot Arm. It is made entirely from

SHIFT ADdress

This function enables you to jump
quickly to a particular location.
Suppose you require to address 0A00
on a number of occassions. By
pressing SHIFT ADdress the micro
will jump to 0A00. For this to happen,
you must load a pointer location with
the value 0A00, then every time the
SHIFT ADdress buttons are pressed,
the display will show 0A00. The
pointer area is two bytes of memory
located at 08D2 and 08D3. By
placing the JUMP ADDRESS at this
location, the operation will be carried
out.

We are loading these two locations
directly into BC register pair via a 4-
byte instruction Eﬂ 4B D208 and for
the register pair to be correctly
loaded, we must place the lower byte
first in memory and then the high
byte. .This means we must load
loiation 08D2 with 00 and 08D3 with
0A.

12 TALKING ELECTRONICS No. 13

easy-to-obtain hardware parts, géars,inib{ars and
sturdy pieces of steel. A larger photo will do it more
justice and this we will show in the next issue.

SHIFT 3

This function works exactly like
SHIFT ADdress and enables you to
have a second address to jump to.
This time the pointer area is at 08D}4
and 08DS.

SHIFT 0

This is a search function. If you want
to locate avalue in aprogram or table,
you could step through until it is
located. This could take a long time.
But with this function the value can
be found very quickly. You can also
locate the address of every other time
it appears in a program.

The value of the byte you are looking
for is placed at 08E1. Address the
Eruﬂl_-le_)m you are testing and push

HIFT 0. The display will illuminate
with the address of the byte you are
looking for. Pushing SHIFT O again
will display the second address of the
byte. This can be continued to locate
all the addresses.

More function will be inclused in

future monitors. Any suggestions will
be welcome.

SIMPLIFYING PROGRAMS

One of the most important features of
machine code is the fact that it
occupies the least amount of
memory.

The skill is to make use of this fact.

If we take the 5imp|e program from

issue 1st_column),
RONNING SEEWENT A ACROSS TH
SCREEN”, we can shorten the pro-
gram by usmg the following set of
instructions:

LD A, 01 800 3E o1
802 D3 02
our 804 D3 02
PUS 806 F§
LD DE zol-‘l-‘ 807 11 FF 20
DEC DE 80A 1B
LD AE 80B 7B
OR D 80C B2
JR NZ 080A 80D 20 FB
POP AF 8oF F1
RLCA 810 07
JR 0804 811 18 F1

This program saves 8 bytes but has
the disadvantage that the delay
routine cannot be used by any other
programs as it is hidden in the listing.

The delay could be placed apart if
desired.

Eight bytes may not seem many to
save but is a start to efficient
programming.

byte-saving

This is where the

occured:

The instruction RLCA is a one-byte
instruction to shift the contents of the
accumulator left. (It does not shift
through the carry bit but sets it, as
explained in data sheet 13.)

The listing contains a number of JR
instructions (and a displacement
byte). These are 2 byit'e instructions
whereas a instruction
requires 3 bytes

THE DISPLACEMENT BYTE.

As listings get longer and more
complex, the value of the displace-
ment byte requires a method for
determining its value.

When the jump is 5, 10 or 15 bytes
forward or backward, the displace-
ment value can be obtained by
counting the locations: such as 00,
01,02, 03 or FE, FD, FC, FB, FA etc.
But when the jump is 20, 30 or more
locations, the value can be obtained
via a simple mathematical procedure.

Determining the value of the
displacement byte requires 6 steps.
By following these you cannot make
a mistake.

Step 1. Count, via normal counting,
the number of bytes between the
displacement byte and the location
being jumped to. Include the location
you wish to land on. e.g: Take the
following example:

es between dis
2, 7B, 1B. These
Thus the

The number of b
and 1B are: 20,
are counted as 1, 2, 3, 4.
answer is 4.

We will select a higher value for our
probiem to emphasise the need for
the procedure.

Suppose the number of locations we
wish to jump back is 49.

Step 2: Convert 49 to a HEX value by
dividing it by 16:

The answer is 31H

Step 3: Convert 31H to binary:

1
0011 0001

Step 4: Change each 1 to O and each
Oto1:

Ans: 1100 1110

Step 5: Add 1 to the answer:

Ans: 1100 1111

Step 6: Convert to a HEX value:
C F

This is the value of the displacement
byte required to achieve a backward
jump of 49 bytes.

The machine code instruction will
depend on the JR condition and will
be one of the following:

28 CF, 20CF, or18CF

The steps we have performed are

called TWO's COMPLEMENT.

Using the knowledge we have
gained, we will improve the BACK
and FORTH program from P 15 of
issue 12.

Mainly aiming at byte reduction, we
will include a BIT TESTING
instruction to prevent overshoot of
the displays. Bit 0 in the accumulator
is tested and if itis a'1’, the program
will cause a change in direction by
rotating the accumulator in the
opposite direction.

With these alterations in the program
we will save about 12 bytes. Try the
program:

LD A,01 800 3E 01

OUT oz 802 D302
804 D3 o1

CALLD LAY 806 CD 00 0A

RLCA 808 07

BIT 6,A 809 CB 77

JR Z 0804 80B 28 Fb

RRCA 8oD oOF

ouT (olkA SoE D3 01

CALL DELAY 810 CD 00 0A

BIT 0,A 813 CB 47

JR Z 080D 815 28 Fb

JR 0809 817 18 Fo

at 0A00:

11 FF 20

1B

7B

B2

20 FB

F1

The program is required to test bit6 in
the accumulator. If it is found to be a
‘1, the contents of the accumulator
is shifted in the opposite direction.
Bit 0 is then tested and when found to
be ‘1’, the program jumps back and
shifts the accumulator in the original
direction.

BYTE TABLE. To use this table. the
byte following the JR instruction is
counted as BYTE ZERO. From this
byte you count in either the positive
or negative direction using decimal
counting.

TALKING ELECTRONICS No. 13 13

INTRODUCTION
TO COUNTING

A microprocessor system is ideally
suited to counting situations. It can
be programmed to count to any
particular number then sound an
alarm or operate a relay or even notify
the near-completion of a run.

It can count UP or DOWN as well as
count in sub-multiples.

Take the case of packing a box of TE
magazines.

Firstly the operator requires a count
of 10. Each 10 issues must be placed
in opposite directions in a box to
produce a level stack. The operator
then needs to know when a count of
140 is reached, which represents a
full box.

Finally the packers need to know
how many boxes of magazines have
been packed so that the delivery
docket can be filled out.

This is effectively 3 counters which
must be interconnected to achived
the required result. Ideally an audible
signal should be produced at the end
of each count of 140 so that the
packer(s) can concentrate (day
dream) on the job.

The chance of finding such adesignis
almost nil, except via individual
modules which will have to be
connected together to create the
system. The cost of doing this would
be about $300!!

But with a microprocessor system
such as the TEC, all these up-down
requirements are possible in the one
unit, by simply providing a program!

_ 0-9 COUNTER

The art of producing a suitable
program is the content of this
section.

We will start from the beginning and
explain how counting is achieved,
how to interface a’count-button’ and
progress to producing a 3-digit up-
down counter.

A count-down system is often used
as it can be pre-programmed with a
START VALUE and the counter
decrements to zero. It then sounds a
bell, activates a relay and resets to
the pre-determined start-value.

After studying the 3-digit counter you
will be able to create a 4, 5 or 6 digit
counter and even incorporate sub-
values to facilitate packing etc.

The counter can also be designed to
have 2 concurrent tallies, one being
permanently displayed while the
other is available on call-up via the
press of a button.

They would be displayed for a few
seconds and fall back into memory.

Absolutely any combination,
application or requirement can be
catered for, it only requires
programming.

To make it easy to understand, we

have started with a simple program.
But, as explained, this type of
program soon runs out of capability.
Thus a more complex system of time-
sharing of the displays must be used.

But this too has limitations and finally
an even more complex (as far as

understanding is concerned) use of
registers, must be employed.

With this high-level system, the
scope is enormous. The system can
be increased to 8 digits, two or more
separate readouts, and have tally
values available on call-up.

This is where we start . . .

Creating your own COUNTING
MACHINE is one of the capabilities
of our micro. You can produce a
display which increments or
decrements by a count of one or more
on each press of a button. And the
button doesn’t have to be the ‘1’
button. In our case we have used the
‘4’ button to show that any button
can be used.

By changing the values in the ‘look-
up’ table, you can create the up or
down condition - something which is
virtually impossible with discrete
counting-chip construction.

You can even produce letters of the
alphabet and increment each time ‘2’
or ‘F" or 'X’ appears. You can do
anything from counting by 2's to
dividing by ‘2.

For our first exercise we will produce
a counter which counts t0 9. Thisis a
very simple program. Only one
display will be accessed and thus we
can output to it so that it turns on
HARD, while the computer is in the
HALT mode, waiting for an interrupt
from the keyboard.

It is important to note the computer
does not produce the numbers 0-9,
the program creates them. The table
at 0900 contains values which turn
on various segments of the display to
create the numbers.

LD A,01 800 3E 01
OUT (1),A 802 D3o1
LD HL,0900 804 21 0009
LD A,(HL) 807 7E
OUT (2),A 808 D302

B,0 80A 06 0A
HALT 80C 76
CP o4 Ison FE 04
JR NZ Halt—I80F 20 FB
INC HL 811 23
LD A,(HL) |81z 7E
ouT z&,A 813 D3 o2
DJN alt—{815 10 F§

L_JP Z 0800 817 CA o008

The accumulator is loaded with 01 and outputted to port 01. This connects the

cathode of the first display to earth.
Load HL pair with the address of the number table.
Load the first byte of the number table into the accumulator.

Connect segments of the display to the positive rail to get first number.
Register B is our ‘counting register’. it counts 10 bytes from 0900 to 0909,

HALT the program so that first number (0) will appear on the
The program recognises only button ‘4",

if not button ‘4, go to HALT. If button ‘4’ pressed, increment HL to look at 0901.

The byte at 0301 is loaded into the accumulator.
The value at 0901 (2B} creates the figure ‘2’ on the display.
Output 28 to port 02.

Register B is decremented and if it is not zero, the program goes to HALT.

When register B is zero, the program jumps to START (0800).

display.

O WITNEWN=O

Type the program into the TEC and
press RESET, GO. The number ‘0’
will appear on the display.

Press various buttons on the key-
board and notice that only button "4’
advances the count.

Step through the table by pressing
button 4.

1. Experiment with the program by
creating the numbers on another
display. .

2. Create a down-count by inserting
the table at 0900 in the opposite
direction. i.e: AF, EF, 29, E7, A7,

14 TALKING ELECTRONICS No. 13

2E, AD, CD, 28, EB.

3. Create a count-to-six by changing
the value of B (080A) to 06,

4. Create the letters A-F by adding
their appropriate hex values to the
table, select the correct value for B,
change the compare value to enable
button ‘C’ to operate and step
through the table you have produced.

TWO DIGITS

When two or more digits are to be
displayed. the program must contain
a multiplexing or time-sharing
arrangement so that each display can
show a number from 0 to 9 without
interfering with the other. This means
a HALT instruction cannot be used as
only one display will remain alight!

The program must be constantly
looping or ‘running’ so that both
displays are kept on. Each time the
program cycles, it is looking for an
interrupt from the keyboard and if one
comes along, the program operates
on the data it receives and compares

0-99 COUNTER

The CONDITIONAL JUMP instruction
requires explanation.

In the 00-99 counter program above,
there are three places where the Z-80
will jump to another part of the
program when a certain condition is
met. The condition is NZ (NON
ZERO). Let us explain how to
interpret this:

From the program above:
LD A,

CP o
JP NZ 0809

it with the value 04. Depending on the
result, the program will branch to one
of two places.

The program below produces a
count-t0-99 using the ‘4’ button as
the input.

The basic structure of the program is
quite simple and uses register pair HL
to point to the address (at 0900) for
the hex value needed to produce the
numbers 0 to 9.

Register pair DE points to the hex
value (again at 0900) needed to
produce the 10°s value.

These 3 lines state: The | register is
loaded into the accumulator. The
accumulator is compared with 04,
Jump to 0809 is the result is NON
ZERO.

How does the COMPARE statement
work?

The CP operation is carried out like a
subtract operation and the zero flag
(Z flag) will be SET if the result is
ZERO and RESET if the resultis NON
ZERO. This means it will be *1" if the
answer is zero and "0’ if the answer is
not zero.

Each of these register pairs are
incremented and compared with FF
to see if the end of the table has been
reached. The increment of the DE
register takes place when FF is
detected on the 1’s count. When the
10’s count reaches the end of the
table, the whole program is reset.

The computer does not know it is
counting to 10. It merely knows it is
incrementing through a table. You
could put Chinese values on the
display and count to 11, simply by
changing the value of a few locations.

Here is the 0-99 program and an
explanation of each step:

XOR A 800 AF Set the accumulator to ZERQ. at 0900:
LD LA 801 ED 47 Load the interrupt register with ZERO.
LD BE,0900 803 1100 09 Load DE pair with address 0900, EB =
-—-LD HL,“’N‘ 806 21 00 09 Load HL pair with address 0908, END OF START-UP. 28 =
~—] 809 AF Beginning of MAIN PROGRAM. Clear Accumulator. CD =2
OUT (2{ 80A D3 01 Turn OFF 1's display. AD=3
LD A’(L) 80C 1E Load accumulator with byte pointed to by HL pair. 2E =
ouT (2)9 8oD D3 o2 Output to port 2. A7l =5
LD 8oF 3E o1 Load accumulator with 1. E’ =
ouT tO‘)’ 811 D3 o1 Output accumulator to port 1. Display is illuminated. 29 =7
LD B,10 813 06 10 Register B is a COUNT REGISTER. Load it with 10 to create 16 EF =8
DJNi FE 815 10FE loops to turn on 1's cisplay. AF =9
317 AF Clear Accumulator. FF
OUT (3 818 D3 o1 Output O to port 1 to turn OFF display.
LD A’(E) 81A 1A Load accumualtor with byte at 0900 etc as pointed to by DE pair.
OUT (02), BIB n; 02 Output the value thus obtained to port 2.
LD A,02 81D 3E o2 Load the accumulator with 2
ouT (ol)’ 81F D3 o1 Output to port 1 to turn on 10’s display.
D B,10 821 0b 10 Load count register with 10 (decimal 16) and create 16 loops to
DJNi FE 823 10 FE turn on 10s display.
/“” LD Ayl 325 ED 57 Load the interrupt register into the accumulator.
C 827 FE o4 Compare with 4. i.e. subtract 4 fram I. If the result is ZERQ,
JP NZ 0809 —— 82 €2 09 08 advance to 082C If the answer is NOT ZERO., go to 0809,
XOR A 82 F Clear Accumulator.
LD LA 82D ED 47 Load the Interrupt register with ZERO.
INC hl- 82F zi Increment register HL to point to address 0901 etc
LD A (“L) 830 Load the value at 0901 into the accumulator.
¥ 831 FEFF compare the value obtained (eg 28) with FF. If aqual, advance to
JP NZ 0809 833 €209 08 0836, if NOT equal, go to 0809,
INC DE 36 13 Increment DE.
LD A (DE) 837 1A Load the value pointed to by register DE into the accumulator.
CP FF 38 FE FF Compare with FF to see if end of table has been reached.
—JP NZ 0806 83A C2 0b 08 11 FFisreached, result will be zero. Advance to 083D, I§ not, go
JP 0800 83D C3 00 08 JUMPTOSTART to 0806,

This is quite confusing because you
have to deal with the negative of a
negative. To simplify things we can
use the word Mﬂpfor ZERO. Thus we

get: /‘ NOT 04
JP NZ 0809

1=04
Jump to 0809 if | is not 04 or go to the
next line of the program if | = 04.

TALKING ELECTRONICS No. 13 15§

Now we come to the THREE DIGIT
COUNTER. It has an UP/DOWN
facility as well as CLEAR. Push +for
increment, — for decrement and push
ADdress to zero the display. The
counter can also be preset by loading
0B03 and OBO4 with values as
shown in the listing on the right:

PUSH AF
CALL 0AoD
POP AF
RRA

RRA

RRA
CALL 0AoD
RET

THREE DIGIT COUNTER

START LD BC 0B00 «—— 800

LD DE oBo3 803
LD A(DE) 806
CALL 0Ao00 807
INC DE 80A
D A(DE) 8oB
CALL 0A0D 80C
LD HL 0Bo2 80F
CALL SCAN 812
LD AJ 81§
LD HL oBo3 817
INC CP 10 81A
JRNZ DEC — | 81C
LD AAHL) 81E
INC 81F
DAA 820
L. élﬂ# 821
JRNC START— 822
LDCA?}‘lL) :24
25
INC A 826
AA 82
LD gll. A 82
-JR CLEAR 829
DECCP 11— 82B
JRNZ RESET—7 82D
LD A(HL) 82F
DEC 830
D 831
HL)A 832
~a————— JRNC CLEAR 833
L 835
LD AXHL) 83b
DEC 837
838
LD H?A 839
RESET CP 13 83C
~s———— JRNZ CLEAR 83E
XOR A 840
{..D (HL)A :41
42
LD l'll. A 843
= CLEAR L]) &, ; :zz
R $TART 848
SCAN
LD B,M 900 06 04
LD }\ 902 ZIE
oll)J'lA 02) 9:3 ”3 0z
5
ouT (ot)A 906 D3 o1
LD B 50 908 06 50
DJNZ 90A 10 FE
DEC HL 90C 2B
LD B,A 90D 47
OR A 90E AF
ouT gn)A 9oF D3 o1
RRC 911 CB 08
JRNC 913 30 ED
RET 915 C9

16 TALKING ELECTRONICS No. 13

01 00 OB
11 03 0B
1A
CD 00 0A
13
1A
CD oD oA
21 02 0B
CD 00 09
ED 57
21 03 OB
FE 10
an oD
7
3C
27
77
30 20
i
3C
27
71
18 19
FE 11
20 oD
7E
3D
7
30 OF
23
7E
3D
;7
1k o8
FE 13
20 04
AF
77
7
3E FF
ED 47
18 Bb

at 0Coo:

EB

28

(v 1]

AD

2E

A7

E7

29

EF

AF

Aoo AND OF AOD Eb oF
Ao1 CD oD oA LD HL AOF 21 00 oC
A04 F1 DA,c Au 85

Aos 1IF

Aob IF LD Aélllx Au 7E
A07 1I1F LD(A15 02

A08 IF INC BC A16 03
Aoz CD oD oA RET A17 C9

AoC Co

To make this program easy tounderstand, we havelisted ONE COMPLETE
CYCLE. Exactly as it is run by the computer. CALL ROUTINES have been
included each time they are called and this makes the listing fairly long.
When the program is run for the first time, the display will show the values
contained at0B03 and 0B04. For the purpose of showing how the program
works, we will place 21 at 0B03 and 43 at 0B04. This will cause the display .
ta show 123 (the value 4 will not appear in this 3 digit counter).
Follow through each of the steps and you will see how the program picks
up data from the ‘BUFFER ZONE’ and converts it valves which can be
identified as numbers on the display. This program is being executed at
more than 100 times per second!

START l.n nc 0800
I.D A(D!

PUSH Al
AND oF

XOR A

OUT (01),A

)ulc B
A(HL)

ou’r (u),A

LD A,B

OUT (e1),A

LD A(HBL)

OUT (01),A
LD B,50

A
ouTt (u),A
Rl\

A,,

LD HL eBo3
inc CP1e
DJNZ
LD A(HL)
INC A
DAA
LD (HL),A
JRNC start
INC HL
LD A(HL)
INCA
LD (HL)A
JR CLEAR
LD A,FF
LD LA
JR START

CLEAR

Location 0B0@ stores the value of the units display

0 is loaded with OB and E is toaded with 3.

Load two nibbles (21 in our example) into the accumulator.
Save the accumulator

This instruction zero's the high nibbla teaving 01

H is toaded with OC and L with 00

Add 00 to the accumulator to get 01 (01 is from above)

Load the accumulator (it has 01 in it) into the L registar.

Load the value at 8C01 (28) into the accum. (HL is now 0C01)
Load the value from the accumulator (28) into the BC register pair.
1).

Fetch the accumulator (valus 21) from the st‘ack)v

Shift the value 21 four places to the right

50 that the high bits will be transposed

with the low bits. The result will be 12

Increment the BC register (it will become 0]

Remove the 4 HIGH bits to get 02.

H will be loaded with OC and L with 00

Add 00 to the accumulator to get 02

Load 02 into the L register.

toad the value at 0CO2 (CD) into the accumulator.
Load the accumulaotr (it has 02 in it) into the address pointed to by BC.
Increment the BC register (to 0802)

DE is incremented to OBO4.

The value at 0BO4 (43) is loaded into the accumulator.
The HIGH nibble is cleared to gat 03.

H is loaded with OC and L with 00.

00 Is loadad into the accumulator to get 03.

03 is loaded into L.

The vlaue at OCO3 *AD) is loaded into the accumulator.
Load AD into location 8Bo2.

The BC register pair is incremented to 0BO3

Load H with OB and L with 02

Load B with 04.

Load the accumulator with the value at 0B02. (AD).
Output AD to port 02.

Load the accumulator with 04.

Output 04 to port 07. This will turn on a.b.c,d,g to get ‘3.
B is loaded with §0hex (five-oh or 80 in decimal)
Perform a jump command for 80 loops.

HL now points to 0BO1.

The accumulator (it contains 04) is loaded into B.
Clear the accumulator.

Turn OFF the display

Shift register B right to get 02 {half its previous valus)
Load the value at 0BO1 (CD) into the accumulator.
Output the value CD to port 2.

Load B (02) into the accumulator.

Qutput 02 to port 1. This turns on the second display and a,b,d,e.g: ‘2"
Load B with 50 fin hex)

Perform §0 loops. This is 80 Ioops.

HL now points to 0BOO.

. Load 02 into B.

Zero the accumulator.

Turn OFF the display.

Rotate register B to the right to get 01

Load the value at OBOO (28) into the accumulator.

Output 28 to port 2.

Load 01 into the accumulator.

Output 01 to port 1.

Load B with 50.

This instruction creates 80 loops of delay-time.

HL is decremented but the 4th loaction is not used as you will see.
Load 01 into B.

Zero the accumulator.

Turn oft the display.

Register B is shifted and the carry bit is SET.

The accumulator is Ioaded with a value from the keyboard.
H is toaded with 0B and L with 03

The value 10 is compared with the accumulator.

If the two are the SAME, the program incraments. If not it jumps to DEC.
Load A with 21

Increase the value 21 1o 22.

Decimal adjust the accumulator if needed (not in this case).
Load 22 into the location 0BO3.

Jump to start is no carry from DAA operation. If a carry is produced. i.e.
when 99 advances to 100, increment HL to 0811

Load the value at 0B11 ‘nto the accumulator.

Increment A.

Decimal adjust the accumulator it necessary.

Load the accumulator into 0804,

Jump to CLEAR

Load FF into the accumulator.

Load the accumulator into the interrupt vector register.
Jump ta START.

TEG-1A:1B

TALKING
ELECTRONICS
COMPUTER

TEC 1A’s can he converted to TEC
18's by ading a push button, a 47k
resistor and a diode. When you
update to MON 2, the SHIFT function
allows INSERT and DELETE and a
number of other commands.

This is the fifth article on the TEC and
quite frankly we have only just scratched
the surface up to now.

The more ideas you try, the more you
realise the potential of programming.

We have received a number of pro-
grammes for the 7-segment displays as
well as the 8x8. These have been
included in this article and also a few
more hints on programming in general.

But before we get onto the programmes,
there are a number of loose ends we have
to tidy up, to bring the documentation up
to date.

So far there have been 4 different models
of the TEC and although the changes
have been slight, they have not been put
down on paper.

As far as the software is concerned, all
models are compatible as the only
modifications have been in the hardware.

The output latches have been changed
from 8212's to 74LS273's, the 2200uF
filter electrolytic changed to 1000uF and
the 7805 mounted under the board so
that its leads cannot be bent or broken.

The rest of the design remains
substantially the same with the only
addition being a shift button near the
keyboard.

This button allows the keys to have a
second function and we have already
described these in issue 13.

TEC 1B with SHIFT KEY FITTED.

Kits are now supplied with both the 1B
ROM and also MON 2 ROM. Itis possible
to fit both programs into a single 2732
and to select either one program or the
other requires a slide switch to take pin
21 HIGH or LOW. With this you can get
the best of both monitors.

The computer can be switched between
one MONitor and the other by pressing
the reset button and while it is pressed,
the slide switch is changed. When the
reset button is released, the other MON
will come into operation.

The following is a reprint of an
information sheet supplied with the latest
kits:

THE 2732 MONITOR

Both MON 1B and MON 2 are in the same
chip and is called MON 1B/2. The MON
1B program has been placed in the upper
half of memory so that when itis placedin
the TEC, the MON 18 section will run and
the computer will disptay 0800. You can
now access all the games, tunes and
running letter routines as covered in
issues 10, 11, 12 and 13.

The MON 2 routine is more advanced and
does not contain any of the games.
Instead it has a SHIFT routine that
enables you to insert bytes into a program
by shifting all the higher bytes, and the
byte at the present address, up one
location. And a delete function, as well as
a number of other routines that have been
covered in issue 13.

Kit of parts: $90.60
PC Board: $24.30
Complete:

114.90

PART V_

Features in this article:
% Crystal Oscillator
* Input/Output Module

cut—
LINK I

When you want to accesss the MON 2
program, a switch must be fitted to the
board so that pin 21 can be taken to
ground. This will enable the lower half of
the 2732 to be brought into the system
and thus run the MON 2 listing.

The diagram above shows how to fit the
mini slide switch to the two halves of the
link that has been cut as shown.

You can switch from one monitor. to the
other at any time by pressing reset and
altering the switch.

If you are writing a program using the
MON 1B, it is best to start at 0900, so
that when (if) you want to use the INSERT
or DELETE functions, you can change to
MON 2, use the function and then change
back to MON 1B.

Gradually you will realise it is best to use
MON 2 for most of your programs.

There are two major differences between
MON 18 and MON 2. MON 1B uses a
simple routine that places the value of a
key directly into the accumulator,
without firstly saving the value of the
accumulator. Thus its original value is
destroyed. MON 2 loads the key value
into location 08E0 and thus your program
must include an instruction that looks at
this location for the value of the key.

Unless you load directly into the A
register.

Simple programs designed for MON 1B
will not run on MON 2 if they include a
key press; unless they are altered
accordingly.

TALKING ELECTRONICS No. 14 9

The second difference is the start address
for programming. MON 1B starts at
0800. while MON 2 starts at 0900.
Programs written at 0800 cannot be
successfully modified via the insert and
delete functions as they will run into part
of the scratchpad area for the MON 2
system.

The following diagram shows how to add
the diode and resistor for the shift
function. The diagram inissue 13 was not
clear and this is an improvement:

ADDING SHIFT T0 +5v

We had an interesting fault in an 8x8 last
week. It is interesting because the
knowledge we gained applies to other
projects where LEDs are driven in
parallel.

A constructor built the 8x8 and was not
happy with the output of about 3 of the
LEDs.

He went to his local electronics shop and
bought a few replacements.

After fitting them, he was quite surprised
that they did not work at all! So he rang
us. At this particular point in time we
were not familiar with the fault and did

number to indicate the number repeats.
(This is called a recurring number or
recurring fraction).

The letter W is displayed.as a small "u’
with a bar over the top, for the same
reason. The letter ‘U’ is displayed as a
capital letter while V is a small ‘u’.

The letter ‘X’ is displayed as part of a
cross and Z is shown as two angles in
opposite corners of the display, and looks
quite readable.

The only letters which require inter-
pretation are ‘K’ and ‘Q’".

After the keys have been added and
everything is operating satisfactorily, the
letters and numbers can be applied to the
tops.

Firstly clean the buttons with
methylated spirits and apply the rub-
down letters. Cover them with clear nail
varnish to protect them. If you want to
add another layer, wait for the first to dry,
otherwise the letters will smudge!

NOTES ON THE 8x8 DISPLAY

The 8x8 has been modified to include
sinking and sourcing transistors as
described on P 27 of issue 12 and all kits
now include 16 transistors and the
necessary current limiting resistors.

This results in the LEDs being driven
harder and increases the brightness of
the display noticeably.

The reason why the LEDs failed to
illuminate was due to the higher voltage
needed to turn them on. Even if this is
100mV or so, the result will be the LED
will not turn on at all. (See the experiment
in Stage-1, P 9)

It is important that LEDs are matched
according to this characteristic voltage,
for situations where they are placed in
parallel. The 8x8 is one example as the
LEDs are effectively in parallel when the
whole screen is being illuminated in a
non-multiplexed situation.

DISPLAYING LETTERS AND NUMBERS
The 7-segment display is quite a unique
unit. It will display all the numbers from 0
to 9 as well as many of the letters of the
alphabet.

There are only about seven letters that

This is important when plexing as
each LED will be turned on for only about
one-eighth of the time and if sufficient
current is supplied during this i , the
LED will appear to be on for the total
period of time with an acceptable
brightness.

be readily displayed and for these
we will have to make a compromise.

The letter M is displayed as a small 'n’,
with a bar over the top. This corresponds
to a feature in mathematics where a dotis
placed over the first and last digits in a

10 TALKING ELECTRONICS No 14.

TEC 1 AND 1A. not know how to advise him. So we Ten other characters have also been
suggested he call around with the included such as a question mark and
project. ‘equals’ as well as a reverse bracket to

assist in displaying mathematical
SHIFT Some time later that day he arrived and problems.
we noticed the first difference was the
S colour of the LEDs he had used. They A = 6F
[« S——) () were less opaque than the rest and the -
PIN 9 crystal inside the LED could be readily g: g‘ 4D
PIN 14 seen. This did not disturb us as the light D - E?C 84
74C923 1N914 Z-80 output of the LEDs was our prime E = 1 04
concern. - 38
F=47 10
When we tested it sure enough; the 3 ﬁ — E% 0A
TEC 1A/1B CONSTRUCTION HINTS: LEDs did not light up. 1=18 g:
The output latches for the latest TEC's On measurin ; J=E8
" - g across the new LEDs with — 85
are 74"3.2?3 s and the dotted link below a multimeter set to low ohms, the voltage 'lf__ g oF
each chip is fitted. drop across the crystal was slightly M= 5
" higher than the rest. (When we are taking g
The 7805 bvegudlator ;"Its ;{I;(Iectl‘y:h:nde: ameasurement like this, the swing of the g = g
the PC J o::\ b:: Iiid tlo aessist L’::t needle is being taken as a voltage drop. P - 4F
compound ¢ PP We are using the 3v suppy in the multi- - 3F 1= 28
transfer. meter to provide the LED with voltage and a it 1 12 8
. . the needle tells us the characteristic - -
Ton gLk o LTSI L e v =X
cut later if expansion is required. We then got three LEDs from our stock g = %: z = %77
X and measured the characteristic voltage) -y
About 58 emptyholeswl‘l beon th%boafrd drop. It was exactly the same as the }V: %1 Z = i’F
after construction. Some provi de or majority in the display and when we fitted Y = h - AF
expansion while others are unused. them, the whole screen lit up perfectly. % = & z = o

TESTING A BLANK 2716 FOR FF's
After erasing an EPROM, such as a2716,
it is wise to make sure it is entirely blank
before reprogramming it. The program
that follows does just that. It does not
inform you of the location or locations
that do not contain FF, but rather the
screen goes blank and stays blank if a
location has not been fully erased.

If all locations contain FF, the TEC resets
via the MONitor program to the start-up
address (either 0800 or 0900). This
program can be placed anywhere in RAM
;nd will work with either MON 1 or MON

- by James Doran. 3218

11 00 08
21 00 10
1E

As promised, a larger photo of the robot arm. If
you have built anything like this, why not take a
photo and send it in.

Your ideas. combined with others, will help us
to present an article.

MON 2 HEX LISTING:

For those with the TEC 1B and an
EPROM BURNER, here is the hex listing
for the MON 2.

With this you can make your own MON 2,
and save the cost of conversion.

Insert the data 0800 on the TEC, and
continue through to 0Db4.

Go through the program at least once,
checking each of the values to make sure
a mistake has not been made. A single
mistake can mean the difference
between perfection and failure.

MON 2 HEX LISTING FOR TEC 1B:

evoo C3 00 oz FF 0114 1A 96 1C BE FF FF 033C 01 0b 20 10 o450 C3 7D o3 FF
o004 FF FF FF FF 0118 1E 86 20 7F FF FF 0340 FE AF D3 o1 0454 FF 57 21 DF
0008 2A 8 E9 o11C 22 77 24 71 FF FF 0344 €1 D1 E1 F1 0458 o8 CB 9E CB
FF FF FF FF 0120 26 bA 28 64 FF FF 0348 Co9 FF FF FF 045C 66 20 08 o1

0010 2A C2 o8 E¢ 0124 2A SF 2D 59 FF FF 034C FF FF FF FF 0460 oo oo CD g0
oo14 FF FF FF FF o128 2F 54 3% 50 FF FF 0450 21 80 00 1A o464 o4 CB Et CD
0018 2A C4 o8 Eg 012C 35 4B 38 47 o8 AF 0354 85 oF 7E 13 0468 89 02 78 07
001C FF FF FF FF 0130 3C 43 3F 3F D3 o2 0358 21 DF o8 C9 046C 07 07 07 Eb
0020 2A Cb o8 E¢ o134 43 3C 47 00 11 035C FF FF FF FF o47¢ Fo SF 79 07
0024 FF FF FF FF o138 4B 35 50 32 D8 o8 o1 05 0360 F5 E5 21 Eo 0474 07 07 07 Eb
0028 1A C8 o8 E9 013C 54 2F 59 2D o0 ED Bo CD 0364 o8 3E FF BE 0478 oF 83 47 79
002C FF FF FF 0140 SF 2A 64 28 70 02 3E 08 0368 28 oE 7E Eb 047C 07 07 07 07
0030 2A CAos Eg 0144 6A 26 71 24 CD 70 01 3E 036C 1F CB 6E 20 048c Eb Fo 82 4F
0034 F o148 77 22 7F 20 oF CD 70 o1 0370 02 Cb 14 C3 0484 CD 9o o4 CD
0038 2A CC o8 Ey 014C 86 1E SE 1C 3E o1 32 DF 0374 o3 FF FF 0488 70 02 C3 7D
003C F 0150 96 1A 94 19 08 CD Ao o2 0378 E1 F1 C9 FF 048C o3 FF FF FF
0040 FF FF FF FF 0154 A9 18 B3 16 CD 60 03 18 037C FF Et F1 C9 0490 F5 Es 21 D8
0044 FF FF FF 0158 BE 15 Co 14 FF 0380 F FF FF FF 0494 08 78 Eb6 Fo
0048 F FF FF 015C Ds 13 E1 12 Es C5 CD 0384 CD89 oz Cs 0498 07 07 07 07
004C FF FF FF FF 0160 EF 11 FD 1o Eb Fo 0388 DD E1 DD 13 049C 77 23 78 Eb
voso FF FF FF FF o164 FF FF FF FF oF OF OF 038C DD Es; E1 7C 04A0 oF 77 23 79
0054 FF FF FF 0168 FF FF FF FF DC o8 oA 0390 FE 40 28 08 04A4 Eb Fo o7 o7
0058 F FF FF 016C FF FF FF FF 32 DD 0394 DD7JE o0 DD 04A8 07 07 77 23
005C FF FF FF FF 0170 Cs Ds Es Fs E1 F1 0398 77 FF 18 EE 04AC 79 Eb OF 77
0060 F FF FF 0174 A7 20 03 SF DS o8 039C 3E 00 32 FF o4Bo EI F1 C9 FF
0064 FF FF Fs DB 0178 18 o2 1E 80 o7 07 03A0 3F CD 70 02 04B4 FF FF FF FF
0088 00 32 EO 08 017C 21 00 o1 87 86 47 03A4 C3 78 03 FF 04B8 FF FF FF FF
00sC F1 ED 45 FF 0180 85 oF 4 123 o7 o7 03 Ce o1 CD 70 o4BC FF FF FF FF
0070 FF FF FF FF 0184 46 7B D3 o1 23 86 03AC 01 C3 21 04 04Co 21 DF o8 CB
FF FF FF FF 0188 10 FE 46 AF 0A C9 FF 0380 CD8g 02 0B 04C4 9E CB A6 F

0078 FF FF FF FF 018C D3 o1 10 FE Es Ds Cs 03B4 DD 21 FE 3F C8 10 CA Eo oo
097C FF FF FF o190 oD 20 F1 F1 o8 AF 03B DD7E gc DD 04CC FE 11 CA Et
ooso EB 28 CD AD 0194 E1 D1 C1 Co o1 CD 50 03BC 77 01 DD2B 04Do oc FE 12 CA
0084 2E A7 E7 29 0198 FF FF FF FF CB 4E 28 03Co DDEs E1 79 04D4 oC o3 FE 13
0088 EF 2F oF Eb6 019C FF FF FF FF Cb E7 D3 03C4 BD 20 7 04D8 CA Co o1 FE
008C C3 EC C7 47 o1Ao F5 E5 2A Db 3E 20 D3 03C8 BC 20 ED DD o4DC 14 CA 50 05
0090 E3 bb 18 EB 01A4 08 7E FE FF 06 20 10 03CC 36 o1 oo CD o4Eo FE 15 CA FF
4 4E C2 2D B 01A8 20 03 E1 F1 AF D3 ot 03Do 70 oz C3 78 04E4 FF FE 16 CA
0098 4F 2F 4 01AC C9 FE FE 18 3 CB 03D4 03 FF FF FF o4E8 FF FF FE 17
A7 46 EAE0 o1Bo Fr 23 CD 70 02 CB 03D8 s DD Es O4EC CAF2 of FE

00A0 AC A4 AE C9 01B4 o1 18 EE FF 0z 3E 03DC Cs AF 32 DF 94Fo 18 CA 70 05
00A4 10 08 18 04 01B8 FF FF o1 06 03E0 08 06 0b 21 04F4 FE 19 CA FF
O0AS8 2C 0o FF FF o1BC FF FF FF FF FE AF 03E4 DS 08 3E 29 F FE 1A CA
O0AC FF FF FF FF o1Co 21 DF 08 CB o1 CD so 03E8 77 13 10 FC 04FC FF FF FE 1B
00Bo 006 08 U0 00 01C4 46 20 07 CB CB 4E 28 03EC 2A Do 08 7E 0500 CAFF FF FE
ooB4 FF FF FF FF 01C8 Co CB SE C3 CB E7 D3 o3Fo FE FF 20 06 0504 1C CA 60 0b
0BS FF FI 01CC 78 03 CB 86 3E 08 D3 03F4 C1 DDE1 F1 0508 FE 1D CA FF
00BC FF FF FF FF oiDo CB CE C3 718 o6 20 10 03F8 EI E F 050C FF FE 1E CA
00Co 1B 18 I1E 1D oiDg o3 FF FF FF AF D3 o1 03FC 28 EE DD 21 0510 FF FF FE 1F
00C4 12 17 OE 29 o1D8 Cs o6 80 CD 03 CB o400 D8 o8 ob o5 0514 CAFF FF FE

00C8 oB 22 29 17 o1DC Ao o2 10 FB ot CB 0404 DD7E o1 DD 0518 20 CA FF

00CC 12 oC 24 29 o1E0 Ci C9 FF FF 0z 3E 0408 77 o0 DD 123 031C FE 21 CA FF
00D0 29 29 29 29 01E4 ED 4B D2 o8 o1 06 040C 10 Fo 7E 32 o520 FF FE 12 CA
ooD4 FE 1€ 1D 18 O1E8 CD o o4 CD FE AF 0410 Do 23 o6 o524 FF FF FE 23
00D8 17 OE FF FF 01EC 70 02 C3 78 00 C3 0414 40 CD Ao o2 0528 CA FF FF FE
ooDC FF FF FF FF o1Fo 03 FF ED 4B FF FF 0418 10 FB 18 D3 052C 24 CA Bo 03
o0E0 CD 89 oz 03 o1F4 D4 08 CD 90 FF FF 041C FF FF FF FF o530 FE 25 CA 84
00E4 18 04 CD 8¢ oIF8 o4 CD 70 02 [o420 FF D6 o1 3% 0534 03 FE 26 CA
o0z oB CD 90 ofFC C3 78 03 FF Co o8 0424 FF CB b7 C2 0§38 FF FF FE 27

O0EC €D 70 02 0200 ED 73 ES 08 FF FF 0428 Co 04 CB oF 953C CAE4 01 C3
O0Fo 21 DF 08 CB o204 31 00 09 F 03 CB 042C €2 Co 04 21 054c 78 o3 FF FF
O00F4 Cé CB SE C3 0208 Cs Ds Es DD oz CB 0430 DF o8 CB 46 ©544 FF FF FF FF
o FF 020C Es FD E5 08 0z 3E 0434 CA 55 04 §7 0548 FF F FF

OOFC FF FF FF FF 0210 D¢ F5 C5 D5 D3 o1 0438 CD 89 o2 21 054C FF FF FF FF
o100 FD 10 10 FD o214 Es ED 7 Fs 20 10 FE AF 043C DF o8 CB SE 9550 CD 89 02 60
o104 11 EF 12 E1 0218 AF 32 CC o8 D3 o1 CD 50 0440 20 03 AFCB 0554 69 3A E1 o8
o108 13 D5 14 €9 o021C 32 CD 08 3E 03 CB 4b 28 0444 DE o7 07 07 0558 123 BE 20 FC
010C 15 BE 16 B3 0220 FF 32 Eo 08 CB E7 D3 0448 o7 Eb Fo 82 055C 44 4D CD 90
o110 18 Ay 19 OF o224 C3 40 02 FF 0338 02 3E o1 D3 044C o2 CD 7o o2 0560 04 C3 53 o2

9se4 FF FF FF FF
TALKING ELECTRONICS No. 14 11

HOW THE CIRCUIT WORKS
(and a general discussion.)

The circuit diagram is TALKING
ELECTRONICS COMPUTER 1B
(TEC 1B). It is a 9-chip, single-board
computer capable of executing Machine
Code commands and displaying the
result on either the inbuilt display (a set of
7-segment displays) or on other displays
via the expansion socket.

The expansion socket is configured
identical to the RAM socket and is
accessed via line Y2 of the ROM/RAM
decoder 74LS138, at the top right-hand
corner of the diagram.

The computer starts-up via a MONitor
program contained in the 2732 and two
monitor programs are in this chip.

The MON 1 select switch takes address
line A11 LOW for the low half and HIGH
for the upper half.

The other major change between TEC 1
and TEC 1B is the output latches. They
were originally 8212's but now
74LS273's have been used. These are a
modern chip and are more readily
available.

STARTING UP

When the power is applied to the
computer, the reset line on the Z-80 is
taken low for an instant via the 100n
capacitor and this resets the internal
workings of the Z-80.

Its first operation is to look for the first
byte of data at address zero, in the
monitor. Depending on this being a one-

contains 11 lines while the data bus
contains 8 lines. The data bus is always 8
bits wide for a Z-80 processor and this
gives it the name '8-bit system’.

The address bus is a ONE-WAY bus in
which the Z-80 activates the lines and
turns them on and off using binary
notation to generate an address value.

When all lines are LOW, address zero is
represented. When line AQ is HIGH,
address 1 is represented. The Z-80 has 16
address lines and address 1 is:

0000 0000 0000 0001. When line A1 is
HIGH, address 2 is:0000 0000 0000 0010

The address lines connect to a number of
chips but only one will respond due to a
‘turn-on’ line called a command line being
required to be activated.

+5V
ouT, "“'“ eyt
Bl
9 8
e DeYs2 13
C DA 5 7
D balis 2 xyq
b 6 o 2173
9 LY, J< 4 2
Wi —oifs R 150617 15" 14
° a2 DOJig 18 20 13k 15 I
FND500 FND500 10 11 D
cP o 1000 r
BC547 BC547 = 74C923
+5v KEYBOARD 74 e
Py, — ENCODER B
VR GND
ouT, IN 1.8 10
Bt QZ121 20‘3 D7 14_ 2 9
2o st GE EEEEE =
Oslis o alost
L & T
'm'oz 5 92 43
10 & 3 ek LI
pust i 17]
Doj, 3
L AD|3|7|B]|F
+5V
dﬂ GO|2{6|A|E
o
- 5154 >4 + _
L 1]s5]9|p
5 +{0|4]|8]|C
48
2 =

When the ROM select switch is HIGH,
MON-1 program is accessed and the
computer displays 0800. When the
switch is LOW, the computer displays
0900 and the MON 2 program operates.

This has been done so that the TEC 1B is
compatible with the original TEC 1 and
it can be upgraded by adding a monitor
switch and a programmed 2732 EPROM.

The original TEC 1 had a 2716 EPROM
but these chips are no longer
manufactured and thus a 2732 is now
used. When a 2732 is placed in a 2716
socket the upper half of the chip is
accessed and thus MON 1 program has
been placed in the upper half.

TEC 1B COMPUTER CIRCUIT

byte, two-byte or three-byte instruction,
the Z-80 will execute it or request one or
two more bytes.

The flow of information from the Z-80 to
the other chips is via two buses. They are
the ADDRESS BUS and DATA BUS. In
addition, there is a set of control lines
{sometimes referred to as the control bus)
that activate (generally) one chip at a
time.

All signals within the computer are at a
level equal to rail voitage (called HIGH) or
ground (called LOW). For this reason they
are called digital circuits.

The shaded paths of the diagram
represent buses and the address bus

12 TALKING ELECTRONICS No 14.

These command lines are called chip
select, chip enable or output enable and
this allows only one chip to be activated
at a time.

The chip select lines are the outputs of a
decoder chip and this chip is "turned on’
by the Z-80 and only one of its outputs
goes low at a time.

It is a 3-line to 8-line decoder and this
means it has 3 input lines and depending
on the HIGH-LOW values on these lines,
one of the outputs will go low.

This is a form of expander so that a single
line from the Z-80 (e.g. from pin 19 or 20)
can control 8 devices.

TO 2ND RAM ¢———

ADDRESS _BUS

L

MON SELECT

EF

TO 2ND
RAM/PORT

DATA BUS] D5
SHIFT
To Pin14 JML
—0
. 74C92
The top right-hand decoder is called the G238 N8 intained
ROM/RAM decoder and the lower left- maintained as
hand. the IN/OUT decoder.
The Z-80 immediately ceases all

The data from the monitor flows to the
Central Processing Unit (the Z-80) along
the data bus as 8 parallel bits of
information AT THE SAME TIME

This is called a BYTE of information and
can have 256 different possibilities. The
Z-80 knows if the byte is data or
instruction by the fact that it starts at
address zero looking for an instruction
byte. From there the program must follow
correctly and this is the responsibility of
the programmer.

The data enters the Z-80 via a holding
register (an instruction register) that is
not available to the programmer and to
keep the discussion simple, we consider
the byte flows directly into the A register
{called the accumulator). This is the only
register capable of accepting information
from the data bus. All other registers
must be fed from the accumulator.

Data can also flow out of the Z-80 along
the data bus and this bus is BI-
DIRECTIONAL. The arrows on the bus
show the direction of flow of information.

The keyboard is scanned by the 74C923
and this is called hardware scanning as
the chip has inbuilt scanning circuits fora
matrix of 20 keys.

When a key is pressed. a signal is
generated at the Data Available pin and
the Z-80 is notified via the Non-Maskable
interrupt line.

processing and jumps to address 66 in
the MONitor. Here it executes a short
program and activates the input/output
decoder to turn on the keyboard encoder.
The encoder puts a 5-bit number on the
data bus and this is stored for later use or
operated upon, as required.

When the shift button is pressed, and
kept pressed while one.of the keys is
pressed, an extra bit is added to create a
6-bit number and thus an additional set of
20 commands can be created.

The output latches are also controlled by
the in/out decoder and the control line on
each latch is called CP (clock pulse).

When these lines are taken LOW, then
HIGH again, the data appearing on the
inputlines is latched into the chip and will
appear on the outputlines and will remain
there.

This allows devices such as 7-segment
displays, relays or globes etc. to be
activated.

The 6116 RAM is RANDOM ACCESS
MEMORY and as the name suggests,
bytes of information can be placed
anywhere in its matrix of cells. These
bytes are generally data however
programs can be stored and run in RAM
and these are usually developmental
programs.

Information stored in RAM will only be
long as the power is
applied as the flip flops staring the data
will not hold their state when power is
removed.

‘ADD-ONs’

This computer is only a baby in the
computer world however it does have the
facility for expansion and already a
number of ‘add-ons” have been produced.

Possibly the mostimportant add-onis the
NON-Volatile RAM. This consists of a
battery backed-up 6116, into which
programs can be placed.

Other devices can be connected to the
system via the expansion port and this
includes an IN/OUT module, an OUTPUT
module, a display module and a controller
module {to come).

The clock oscillator is adjustable via a
speed control pat and allows programs to
be run at different speeds for assessment.
If a real-time situation is required, a
crystal oscillator can be fitted and this
will allow time to be programmed
accurately.

The main intention of this computer is to
provide the starting point for an under-
standing into computer operations. For
this reason, machine code programming
has been employed. This means you will
be able to create your own systems for
such applications as controllers and
timers for industry and home and be able
to produce the project from the ground
up, without requiring any external
operating system.

TALKING ELECTRONICS No. 14 13

PROGRAMS FOR THE
TEC DISPLAYS and a sound

Program:

Here are three programs for the TEC and
TEC displays. The effects that can be
produced on a set of 7-segment displays
is quite amazing. | thought we had run
out of ideas and yet they still keep
coming.

The first program is a 'Space dnvaders
sound effect using button 4 as the firing
button. The other two programs use the
displays.
SPACE INVADERS ‘SHOOTING’
Phitiip Barns, 2118
Computer sounds and effects are always
impressive, especially when we have
control over them.

This program does just that.

it is a Space Invaders sound effect and
you can control it via button 4.

The point to note with this program is the
way the delay is increased by inserting a
varying value into a delay loop. In the
latter half of the program the OFF time is
gradually increased by placing another
varying value into a delay loop.

The resulting ON-OFF values outputted
to the speaker produce the changing
tone.

The program only accepts the press of
button ‘4’ (determined by CP 04) and by
pressing this button repeatedly, a firing
sound will be produced.

LD A,12 800 3E 12
LD LA 8oz ED 47
LD H,FF 804 26 FF
LD B,o1 806 06 o1
cB 808 04
LD A,80 809 3E 80
OUT (01),A 80B D301
CALL o828 80D CD 28 08
XOR A 810
OUT (01),A 811 0z
CALLos28 813 CD 2808
LD Al 816 ED 57
CP o4 818 FE 04
JP Z 0800 81A CA 0008
DECH 81D
JPNZosos S1E Cz0808
CP oy 821 04
JR NZ o821 823 20 FC
JP 0800 825 C3 o008
LD C,B 828 48
DECC 829 oD
JRNZ o829 82A 20FD
RETURN 82C Co
THE BOX G.L Dunt 3219.

This program is an extension of the
techniques we have been discussing in
issue 12, P 18, covering the control of
two or more pixels at the same time.

It produces an interesting piece of
animation in which a box with lid is
displayed and moved across the screenin
a ‘chase scene’.

Again we won’t say much about the
effect, except to say that you can get
quite involved with it and find it very easy
to improve upon.

The program consists of 25 ‘frames’ and
each frame requires 4 bytes of the table to
produce the necessary effects. Each time
you increase the table {by 4 bytes) you
must also increase the counter register by
one (for each frame).

By using 4 bytes we gain the ability to
control two pixels at the same time. If
only one display is required, the two pairs
of bytes will be identical.

LD IX 0840 0800 DD 11 40 08
LD D,io 0804 1619
LD C,40 06 oF 40
LD A(IX + 00) 0808 DD 7E o0
ouT o;‘), o080B D3 o1
LD A(IX + 01) 080D DD 7E ox
OUT (02),A 0810 D3 o2
DJNZ 0812 10 FE
OR A 0814 AF
OUT (02),A 0815 D3 02
LD A(1X + o2) 0817 DD 7E 02
OUT (o1 081A D3 o1
LD A(IX + 03) 081C DD 7E 03
OU? (02),A o81F D3 o2
N. 21 10 FE
DECC 0823 oD
JR NZ 0808 0824 20 Ez
NC IX 0826 DD 23
INC IX 0828 DD 23
INCIX 082A DD 23
INC 1X 082C DD 23
DEC D 082E 15
JR NZ 0806 082F 20 D5
JP 0800 0831 C3 00 08
at 0840:
o1 o1 o1 20
E4 E4 8o E4
o1 o1 10 20
E4 E4 C4 E4
o1 o1 13 4 10
E8 E1 8o E4
o1 o1 20 10
ES E1 Eo E4
ot o1 [08
o1 80 E4
o1 02 20
E4 Eo Eo E4
o1 [} 04 04
E2 04 8o EO
o1 0z 20 o8
E2 Eo Eo 04
01 o1 08 0z
E4 80 80 Eo0
o1 02 20 (1]
Eo Eo 04
ot o1 10 o1
Moo o4 o
o1 o 2
544 Eo 04
o1 o1 20 ot
E2 80 E1 Eo
o1 08 20 02
E2 [Z} E1 04

Halilovic’s Piano:

This program has been designed by BOB
Halilovic and gives a piano effect when
one of the 20 keys is pressed. The notes
have a pre-determined length, and this
distinguishes it from the organ programs
we have previously presented.

14 TALKING ELECTRONICS No 14.

Data 0800 00

Data 0801 09

LD A,1F 0802 3E 1F

LD (0901),A 0804 32 01 09

CALL o1 0807 €D Bo o1

HALT 080A 76

CP 10 080B FE 10

JR NC 080D 3007

ADD A,05 080F Cé o5

LD (0900),A 0811 32 00 09

JR 0807 08014 18 F1

SUB A,0F 0816 Db oF

JR 0811 0818 18 F7

G. Sheehan &

BOOMERANG O. Svendsen. 3175

Boomerang is a program for the TEC
displays. The effect you get is so clever
that we are not going to spoil it by telling
you what happens.

The only point we will mention is the
composition of the byte table.

Each pass of the program uses two bytes
from the table and the end of the program
is detected by looking for address 0844.
Register L will be 44 at the end of the
table.

By using the table two bytes at a time, we
can specify the display we wish to access
and the segment to be lit.

Also, using a byte table like this requires
less program and fewer registers. It is
one of the tricks of compact
programming.

The delay at 0900 produces the speed of
execution.

Try altering and modifying the program
and you will learn a lot about what each
instruction does. You can also lengthen it

by adding more frames. It'll be like
creating your own cartoon.
LD HL,0820 0800 21 20 08
LD A(HL) o803 7E
OUT (01),A 0804 D3 o1
INCHL oo 23
LD A,(HL) 0807 7E
ouT ‘soz),A 0808 D3 o2
INC HL 080A 23
CALL o900 osoB CD oo 09
LD AL 030E 7D
CP 44 osoF FE 44
JP NZ 0803 o811 Cz2 03 08
JP 0800 o814 Clooo08
at 0820;
o1 20 20
‘ 09 Co oF
02 10 10
03 Ao
04 o8 08
0b 24 A7
o4 04
oC 44 A7
10 02 (2]
Co 28
20 o1 o1
03 Ao
Delay at 0900:
900 11 FFoOA
903 1
94 7B
95 B2
906 Cz 0309
909 9

PROGRAMS FOR THE
8x8 DISPLAY:

The 8x8 has remained a popular ‘add-on’
and we still get requests for more
programs for it. Here are some recent
submissions:

If you have written a program equal to

these, send itin for inclusion in the next
issue:

FAN OUT MKk HlI

CJean Svendsen 3175,

FAN OUT MKk Il produces symmetry on
the displays and can be seen by the same
byte being outputted to both ports 3 and
4. The end of the table is detected by
looking at the value of L and starting
again when it equals the address of the
end of the table.

LD HL o815 21 15 08
LD A(HL) E

OUT (03),A D3 03
OUT (04),A D3 04
INC HL 23
CALL o900 CD 00 09
LD A,L D

CP 20 FE 20
JP NZ 0803 C2 03 08
JP o800 C3 00 08
at 0815:

18 81

3C C3

7E E7

FF FF

E7 7E

C3 3C

903 1B
%4 7B
905 B2
906 C2 03 09
909 Co

BOUNCING BALL AND
ROLLING BALL.

G.L. Dunt, 3219

This program is an extension and
improvement over the Bouncing Ball
program in issue 12, P. 26.

If you look at P.26, you will notice the
program is fairly long.

This is because it is necessary to specify
the start address of the ball, each time it
changes direction.

Much of the program is a repetition of
similar or nearly similar codes and to
reduce its length we need to look at any
part(s) that repeat.

At first they may not be obvious but one
can be found that starts at the base of a
column, up the column, across to the next
and down to the base again. The
sequence ends with the LED jumping to
the start of the next column.

If we repeat this 4 times, the whole of the
board will be covered. This will reproduce

the effect as described on P. 26 of issue
12. Using the same technique, we can
travel across the display and back again,
to produce a weaving effect as the LED
advances up the display. To complete the
travel we need to move the LED from the
top right hand corner to the lower left
hand corner, ready for the start of the next
sequence

By using efficient programming as
covered in this program, we can produce
twice the effect with about half the
program

Most of the reduction is done by defining
the co-ordinates of the ball only once.
This is done at the beginning of the
program and from there the ball position
is kept in the C and D registers. They act
as the x and y values in co-ordinate
geometry.

To move the LED across or up and down
the screen, the C and D registers are
rotated left or right. Each register
contains only one bit and when this
moves out the end of the register, it either
“sits in the carry box* or passes it and
enters the other end of the register. In
either case the carry flag is affected and
we look for this to let us know the end of
the display has been reached.

As you can see, the LED is either "off the
end of the board”” or at the other side of
the display. when the carry is detected
and we must shift it back one location,
ready for the next run. This way the LED
appears to be darting back and forth from
one side to the other, and we are not
aware of the 'corrections’ that take place.

LD Cy1 0800 OE o1
LD o1 0802 16 o1

LD A,C 0804 79

OUT (03),A 0805 D3 03
LD A,D 0807 7A

OUT (04),A 0808 D304
CALL 0900 080A CD 00 09
RLC D 080D CB 02
JR NC 0807 o080F 30 F6
RR D 0811 _CB1IA
RLC C 0813 CB o1
LD A,C 0815 19

OUT (03),A 0816 D3 03
LD A,D 0818 7A

OUT (04),A 0819 D3 04
CALL 0900 o081B CD 00 09
RR D 081E CB 1A
JR NC,0818 0820 30 Fé
RL D 0822 CB 12
RLCC 0824 CB o1
JR NC,0804 0826 30 DC
RRC C 0828 CB 09
LD A,D 082A TA

OUT (04),A 082B D3 o4
LD A,C 082D 79

OUT (03),A 082E D303
CALL 0900 0830 CD 00 09
RRCC 0833 CB 09
JR NC,082D 0835 30 Fb
RLC 0837 CB 11
RLC D 0839 CB 02
LD AD 083B 7A

OUT (04»A 083C D304
LD A,C 083E 79

OUT (03),A 083F D303
CALL 0900 0841 CD 00 09
RLCC 0844 CB 01
JR NC,083E 0846 30 Fb

RRCC 0848 CB 09
RLC D 084A CBO2
JR NC,082A 084C 30 DC
RRC D 4E CB 0A
RRC D 0850 CB 0A
LD AD 0852 7A
OUT (04),A 0853 D3 04
CALL 0900 0855 CD 00 09
RR D 0858 CB 1A
JR NC,0852 085A 30 Fb
RRC C 085C CB 09
LD A,C 08SE 19
OUT (03),A ©85F D303
CALL 0900 0861 CD 00 09
RRCC 0864 CB 09
JR NC,085E 0866 30 Fb
JP 0800 0868 C3 00 08
At 0900:
LD HL,06FF 21 FF 06
DEC HL 2B
LD A,L 7D
ORH B
JP NZ 0903 C2 03 09
Return
RAIN DROPS:

Jim Robertson.

This program produces a very effective
pattern, similar to falling rain. The
random number generator is the
interesting part as it is very difficult to
produce random numbers in a program
that loops.

CALL Random Nos. CD 00 0A
AND 07 Eb 07
LD H,0B 0805 26 OB
LD LA 0807 &F
RLC(HL) 0808 CBOE
LD DE,0006 080A 11 06 00
CALL SCAN o8oD CD 00 09
DEC DE o810 1B
LD A,D 0811 7A
ORE o812 B3
JRNZ 0813 20 F8
JR START 0815 18 E9
at 0900:
SCAN
LD HL 0B0oo 0900 21 00 0B
LD B,o1 0903 06 01
LD A(HL) 0905 7E
OUT (i3),A 0% D3os
LD A, 0908
OUT (04),A 0909 D3 o4
B,20 0908 0b 20

DJNZ 090D 10 FE
INC HL 09oF 23
LD B,A 0910 47

OR A 0911 AF
OUT (0,4 0012 D3od

C 0914 CBoo

JR NC 0916 30 ED
RETURN o918 Co
at 0A00:
RANDOM NUMBERS:
LD A,R 0A00 ED sF
LD B,A 0A0z 47
LD AR 0A3 EDSF

LA 0A05 17
LD R,A 0Aoé ED 4F
DINZ 0A08 10 FB
RETURN 0AOA C9

TALKING ELECTRONICS No. 14 15

PHONE DIALLER

TURNING THE TEC INTO A PHONE DIALLER

The following three or four pages
examine the development of an idea. Itis
a Telephone Dialler capable of storing up
to 30 or 40 names and phone numbers
with a dialling facility and auto re-dial.

It is only a program of ideas as the output
appears ona speaker in the form of tones.

Since this is a fiarly ambitious concept, it
has been divided into 3 sections. Each
section describes a program that is
complete in itself and increases in
complexity with complete design in
section 3.

The first program is fairly simple. It
shows how to get figures from the
keyboard and display them on the screen.
The second contains two function
buttons, G and E. The ‘C’ key clears the
screen and ‘E’ indicates the end of a
phone number.

The third program is much more compiex.
it has more features and is keeping track
of more things.

Each program has been created:from
scratch as it is almost impossible to ‘add
onto’ an existing program.

Type each of these programs into the TEC
and study them. This way you will learn
how they operate.

PHONE DIALLER PROGRAM 1.

This program is limited to displaying 6
digits on the TEC screen as no scrolling
feature is present. As the keys are
pressed, the numbers fill the screen from
left to right. When the screen is full, the
capability of the program is reached.

The screen buffer is located at 0900 and
the scanrate is determined by the value of
B (at 082E and 082F). We can increase or
reduce the scan rate by altering the value
of B and by adjusting the TEC clock
speed.

No other features are available in this
program. The TEC must be resetand ‘GO’
pushed to clear the screen so that a new
number can be keyed in.

This simple program shows how to get
numbers from the keyboard and onto the
screen.

The only instruction that will be
unfamiliar is JRNC., It effectively divides
the keyboard in two, allowing keys 0-9 to
be accepted and A-F to be disregarded.

JRNC means Jump Relative if the Carry
flag is NOT SET. When the previous
instruction is a 'COMPARE’, it is best to
substitute the word 'BORROW' for carry,
and the instruction will be much easier to
understand. This is because the compare
instruction subtracts the data byte from
the accumulator and if a borrow is
required, the carry flag is SET.

PHONE DIALLER - Part1

LD LA 0825 ED 47
LD C,20 0827 OE 20
LD HL,0900 | o829 21 00 09
e gk i
00 2. 00
LD A’Em.) o830 7E
s |2 B
gut 'S)l),A w4 Dy
3 09
DINZ 0838 10 FE
R A o83A AF
GU":I' 19;,0"‘ ::33 D3 01
3 23
DEC D o83E 15
JRNZ o83F 20 ED
JR —————— 0841 C3 0B o8

tn our program, CP A causes the Z-80 to
substact 0A from the accumulator (it will
hold the value of the key). When any key
below A is pressed, the subtraction
operation creates a borrow and this sets
the carry flag. If we push key 6, the
operation will be 6 - A and the answer will
require a borrow. Thus the carry flag will
be SET. If we go to the program, we can
see the Z-80 will continue down the
program and NOT JUMP as the
instruction says: JUMP RELATIVE NO
BORROW.

To fully understand these instructions
you have to comprehend the double
negative. For instance: | am NOT, NOT
going to jump means | AM going to jump.

Type the program at 0800 and the display
conversion table at 0880,

Push RESET, GO and the displays will
blank. Press any combination of keys and
notice that only number keys respond.

Modify the value of B in the scan section
to increase the scan rate.

Some ideas for experimenting include:
scanning from the opposite direction,
scanning only 5 displays, allowing letters
to appear on the screen, and changing the
output to a CODE, so that you can turn it
into a CODE-BREAKING game.

16 TALKING ELECTRONICS No 14.

LD D, o8 o800 16 08 The first 8 memory locations are cleared so that the program
XOR A 0802 AF will come on with a blank screen. We need only 6 Jocations.
LD HL,0900 ofo3 21 00 09 The 7th location is explained in the text
LD (HL),A 0806 Register A is zeroed and this value is inserted into 0906 - 0907
INC HL 0807 23 via the HL register being the pointer register.
DEC D oSo8 15
JR NZ 0809 20 FB
LD A,] 4¢——— 080B ED §7 The Index register contains the value of the key.
CPo o8oD FE0A Compare the accumulator with 0A.
080F 30 12 Jump relative if the key is A or higher.
LD DE o880 0811 11 80 08 Load DE with the start of the DISPLAY TABLE.
ADD AE 0814 83 Add 80 to the key value
D EA 0815 Load the result back into E. DE will point to a table-byte.

LD HL,0900 0816 21 00 09 Load HL with the start of memory.

J(HL) o819 Look for the first blank memory location by loading the value

pointed to by HL into the accumulator and comparing with
zero until a blank location is found.

When found, load A with the byte pointed to by DE.
Load the table value into the blank memory location
Change the value of the index register by loading it with FF so
that we can detect the same or another button.

start the scan at the left hand end of the display.

Load HL with start of memory

Load D with 06 for 6 loops of the program

Load B with delay value for turning ON each digit.

Load the data at the first memory location into A.
Output to the segment port.

Load C into A.

Output to the cathode port.

Rotate register C right, to access the 2nd display.
Create a short delay to display the digit

Zero A

Output to the cathode port to turn display OFF.
Increment to the next location.

Decrement the loop register.

Jump to start of loap if D not zero.

Jump to start of program if D zero and look for new kay.

at 0880:

PHONE DIALLER - Part 2

The second part of the Phone Dialler
program uses-a different approach. As
we have said, each must start afresh as it
is more difficult to adapt an existing
program.

This program accepts a string of digits of
any length and will remember them for
recall after key E (for END) has been
pressed.

The C button clears the display and can be
pressed at any time. When the desired
number has been entered, button E is
pressed. The display is blanked and the
numbers emerge from the right hand end
of the display and shift across to the left.
Three empty spaces are created before
the numbers start again.

This program introduces the concept of
control keys and also the need for sub-
routines for any sequence that is required
more than once.

Programs increase in length as more and
more housekeeping is called for.
Housekeeping is looking for button
presses or detecting the end of a
sequence etc.

The prime requirement of the program is
to keep the displays illuminated. This
means we must be calling SCAN for most
of the time and as you will see, the SCAN
routine is a favourite place to put house-
keeping. .

If you want a key to be immediately
responsive, itmust be checked during the
SCAN loop. To be more precise, it must
be checked during the inner-most loop as
this is the loop which is being run for most
of the time.

Key the program into the TEC and run it.
Try changing some of the locations and
see the result. This is the best way to
following what is happening, especially
at specific locations.

HOW THE PROGRAM WORKS

The program generates 2 memory areas.
One is made up of 6 locations, from 0900
t0 0905 and is called the DISPLAY BUFFER.
The other is from 0907 onwards and is

called MEMORY AREA.

The SCAN ROUTINE (at 0877) looks at
the Display Buffer locations and outputs
their value onto the displays.

The remainder of memory, starting at
0907 holds any number of digital as
required and is open-ended.

One location, 0906, is left blank and its
purpose will be explained later.

As each number is keyed in, it is stored in
memory, from 0907 onwards, and the HL
register pair keeps track of the -next
available location.

The number is also outputted onto the
display but firstly a SHIFT ROUTINE is
called. The function of this routine is to
take the value corresponding to the left-
hand digit and drop it out of the buffer
zone. The second location is then
transferred to the first, the third to the
second etc until all the digits have been
shifted one place to the left. This leaves
an empty hole at the right-hand end of the
display.

The way in which this empty space is
generated is quite clever. The ‘00’ in 0906
is shifted into the 6th buffer
location.

The program then loads the present key
value in the buffer zone, position six, and
reverts to a scan situation in which it is
looking for an ‘end of number’ via button

When this is detected, memory is
incremented one location and E is
inserted.

The displays are cleared and the program
picks up the first digit at 0907and places
it in the 6th position of the buffer area.

The shift routine is called then the next
memory value is placed in the 6th buffer
location.

Before each new value is loaded into the
buffer area, it is compared with OE to
detect the ‘end of message.’

When E is detected, three blank locations
are produced and the message starts
again.

The CLEAR function is included in the
SCAN routine. This has been done so that
CLEAR can be detected instantly, as the
display scan must be running at all times
to keep the displays illuminated.

DIALLER Part 2 listing:
Main Program:

LD D,20 0800 16 20
CALL CLEAR 080z CD 5B 08
LD HL, 0907 0805 21 07 09
LD AT 0808 ED 57
CP oA 080A FE 0A
JR NC,0820 080C 30 12
INC HL 080E 123
LD DE,08A5 080F 11 Ag 08
AE 0812 83
LD E,A 0813 SF
CALL SHIFT 0814 CD 6508
S!)Eg 0817 1A
I-D (HL), 0818 77
xms),A 0819 32 05 09
LD A,FF 081C 3E FF
LD LA 081E ED 47
CP oE 0820 FE OE
LR Z,002A 0822 28 05
CALL SCAN 0824 CD 7708
JR 0808 0827 18 DF
e HL 0829 23
gu.), 082A 77
082B 16 06
CALL CLEAR 082D CD 5B 08
LD HL,0907 0830 210709
LD A,(HL) 0833 7E
LD D,20 0834 16 20
INC HL 0836 23
CP OE 0837 FE OE
JR Z,0849 0839 28 OE
LD (0905) 083B 32 05 09
CALL SCAN 083E CD 77 08
DECD 0841 15
JR NZ,083E 0842 20 FA
CALL SHIFT 0844 CD 65 08
JR 0833 0847 18 EA
LD E,o2 0849 1E 02
LD D20 084B 16 20
CALL SCAN 084D CD 77 08
DECD 0850 15
JR NZ,084D 0851 20 FA
CALL SHIFT 0853 CD 65 08
DECE 0856 1D
JR NZ,084B 0857 20 F2
JR 0830 0859 18 D5
Clear:
XOR A o858 AF
LD HL,0900 085C 210009
1D (ni. 085F 71
INCH o860 23
DEC n osor 15
JR NZ, 085F o862 120 FB
RETURN 0864 €9

Shift:

LD B,07 0865 06 07
LD IX,08FF 0867 DD 21 FF 08
LD A,(IX + 01) 086B DD 7E o1
LD (l + 00),A 086E DD 77 00
0871 DD 23
DEC n 0873 05
JR NZ,086B 0874 20 F5
TURN 0876 C9
Scan:
PUSH HL 0877 Es
PUSH DE 0878 D5
420 0879 OE 20
LD HL,0900 7B 21 00 09
LD D,06 087E 16 06
LD B,80 0880 06 80
LD A,(HL) 0882 7E
OUT (02), 0883 D302
D A, 0885 79
ouT gu),A o886 D301
RRC 0888 CB 09
DJNZ 088A 088A 10 FE
XOR A 088C AF
ouT IS“)’A 088D D3 o1
IN 088F 13
LD Al 0890 ED 57
CP oé 0892 FEoOC
JR Z,089C 0894 28 0b
D 0896 15
JR NZ,0880 0897 20 E7
OP DE 0899 1
POP HL 089A E1
RETURN 089B C9
POP DE 089C D1
POP HL 089D E1
LD A,FF 089E 3E FF
LD LA 08A0 ED 47
JP 0800 08Az C3 0008
at 08AS:
0 = EB
1 =128
2 = CD
3 = AD
4 = 2E
§ = A7
750
8 = EF
9 = AF
0 =

PHONE DIALLER - Part 3}

The third and final part of the Phone
Dialler program is the longest and most
impressive. It looks complicated
because itis looking after a lot of things.

The program accesses memory and when
using the 2k onboard RAM, it is capable
of holding up to 36 names and numbers,
each fitting into a block of memory 20H
bytes long. The program allows up to 27
characters for the name and number and
this should be sufficient for any situation.

The program uses a lot of sub-routines
and they perform most of the work.

As the processor goes through the MAIN
program, it CALLS the sub-routines and
they do all the displaying. shifting, display
converting etc.

TALKING ELECTRONICS No. 14 17

Any operation that is required more than
once is putinto the form of a sub-routine.
This reduces the length of the program
and allows the sub-routines to be called
as many times as required.

USING THE PROGRAM

Basically the program is self explanatory
as the instructions for its use are
displayed on the screen after the GO
button is pressed.

The firstinstructionis to select an INDEX
NUMBER from 00 to 36 (decimal) into
which the telephone number is placed.

Push button E and the screen will blank
so that the index number can be inserted.

The index number will remain on the
screen for about one second and then the
second set of instructions will appear.
After reading the instructions, push E.
This will cause the screen to blank so that
you can type the name corresponding to
the phone number.

After the end of the name, insert a space
by typing F and the program will convert
to displaying a digit for each key pressed.

At the end of the phone number type E
and the program will scroll the contents
of memory.

To dial the phone number push D. The
program will pause for 5 seconds then
dial the number.

At the completion of dialling, the screen
will scroll the name and number again.

You can redial the same number at any
time by pressing D.

To re-load the memory BLOCK, push C.
This will re-start the program and allow a
new name and number to be inserted.

Once a name and number has been
inserted into memory at a particular index
value, it can be dialled very quickly. You
can push either button C or RESET. If the
Reset button is pushed, the GO button
must be pushed for the first set of
instructions to appear.

Push E and insert the index number; then
push D. The computer will dial the
number. A constant beeping will indicate
thelocationis not filled and you should try
another index.

At the end of dialling, the name and
number will scroll and you can confirm it
to be correct.

A SUMMARY OF THE PROGRAM

The program creates a display buffer area
at 0A80 to 0ABS and the values placed at
these 6 locations are directly transferred
to the TEC display via the SCAN routine.

The CLEAR routine zeros each of these
locations and also the next location. This
is one of the ciever tricks of the program,
and it is cleared for the following reason:

The SHIFT routine starts at a location
that is one lower than , {namely
OA7F) and places the data at OA80 into

PHONE DIALLER PROGRAM:

CALL CLEAR
LD HL,0A0C
CALL SCROLL
CP 10

JR Z,0803

CP oA

JR C,0800
CALL CLEAR
LD A,FF

LD

LD HL,0000

LD A,01
LD (99FE) A
CALL KEY VALUE

LD (09F5§A
CALL KEY VALUE

LD B,03
= INC HL

1D (HL),A
R

18 TALKING ELECTRONICS No 14.

CD 20 09
21 0C 0A
€D Co 09
FE 10

The first 7 lines of the program displays “Enter Index

. etc and looks for the value 10 at'the end of the
table to repeat the sequence. The program also looks
for an input value above 9 to jump out of the loop.

The screenis cleared and the index register is loaded
with FF so that we can detect when a button has been
pushed,

Memory is set to zero by loading HL with 88 00,
Location 09FE stores the value 01 so that key valueis
called once. The requirement of the next 12 lines is to
get a double decimal number into location 0¢FC.
C will contain the key value and this is loaded into
memory location 09FC (first figure).

Repeat the sequence and call KEY VALUE ance more.

Load the first figure into A and rotate the accumulator
4 places to the left to shift the number into the upper
half of the register.

Add the second figure to the accumulator and store
the result into 09FC as a two figure decimal number.
Create a delay with register D and call SCAN for 20H
loops. {32 loops).

Clear the display and load the pointer register with the
start address of the second table. Display “Enter
nameetc” Look for the end of the table (£0) and
loop. unless a key 0-9 has been pressed

Call CLEAR to clear the display.

Read MEMORY ADDRESS notes.

Register D counts up to 28 characters {max allowed).
Register E counts to 2. Two key presses for a char.
Fill the | register via the accumulator so that we can
detect when a key is pressed.

Scan the display laoking for a key press O-F.

Increment the E register.

Load E into A,

Compare the accumulator with 02 and jump if the two
are the same. If not, go to the next instruction.
Look to see if a space is required as this will indicate
the end of names and the beginning of numbers.
Jump relative if F has been pressed.

Store the value of A at 89F A and loop for second press
of button.

Call SHIFT to get display ready for next number.
Load the first number into the accumulator and shift it
4 places to the left to occupy the upper half of the
register.

Save the result in B

Put second number into the accumulator.

Combine the two to create a 2-digit number.

Load this value into the location looked at by HL.
Also load it into the first display location.
Increment HL.

Decrement D and

Jump if 1€ locations not filled.

Jump to start if overflow occurs.

Zero A and load it

into the location looked at by HL to create a space.
Shift the display digits one place to the left .

Load the remaining lacations into A and store at 04 FE
for use by the CALL KEY routine.

Call KEY VALUE. This will put Nos onto the display.
Create 3 blank locations after te numbers have been
inserted, to produce a space between the end of the
message and the start so thatitcan bescrolled across
the display.

Increment HL and load last location with 10 so that
program will loop name and telephone number.

this lower location. As can be seen from
the program, this lower location is not
displayed on the TEC and thus the data
shifts off the screen. The data for the
second location is shifted to the location
for the first display and this repeats for
the 6 locations. The result is the data in
the blank location at 0A86 is shifted into
the last display location and thus an
empty space is produced on the display.

1t is important for 0A86 to be empty for
this to work.

The MEMORY ADDRESS routine creates
areas that are 20H bytes long and starts
at 0B0O.

The program stores the Index number at
location 09FC and as each memory area
is created, it decrements the Index
number and the program exits when the
count register is zero.

The HL register will contain the start of
this address. It is not used for any other
purpose and thus it will not be destroyed
during the running of the program and will
hold the current value for re-dial, if
required.

The SCROLL routine picks up the first
byte from the table and places it at 0A8§
and then calls SCAN for 20H loops (32
passes of the display).

The SHIFT routine is then called and all
the bytes (including the blank locations}
are transferred one position to the left.

The scroll program then loops and
repeats the sequence until the end of the
table is reached. It detects this by looking
for 10H (we could have chosen any value)
and the message re-starts.

When the ‘Dial key’ ‘D’ is pressed, a BEEP
routine and PAUSE routine are called.
These produce a suitable ON-OFF tone to
the speaker and the program converts the
values in memory to a string of beeps.

The program ignores the name at the
beginning of memory and looks for the
first location containing zero.

The end of the phone number is detected
by also looking for a location containing
zero.

The program then jumps back to calling
the start of memory and scrolls the
message across the screen.

SUGGESTIONS

The program can be keyed into the TEC
and fills about 3 pages, from 0800 to
0AEE.

After this is done, it is wise to save a copy
of the program in non-volatile RAM so
that it is not lost.

To save the program, type the following
dump routine at 0F80:

C.
[CALL MEM ADDR

ALL CLEAR ~=+——
CALL SCROLL
CP 10

cP
JR Z,08AE — | —
JR o8EC —!

PUSH AF
PUSH BC

KEY VALUE
LD D%OAW
LD A,

s J

ED 47
3A FE 09
3D

32 FE 09
cs

AF

FE ¢E

cs
CD 80 09
18 D6

Clear the scraen.

Get start of BLOCK via 99FC (36 blocks avaitable).
Scroll name and number across screen.

Look for end of message. If another key is pressed,
jump out of loop.

Create a pause before dialling by loading B with 20
and calling pause 32 times. This creates approx 2
second delay.

Clear the screen of any junk etc.

Get start of block (00-36).

Look for space betwasn name and phone number by
comparing the contents of each location with 00 and
incrementing until 00 is found.

The next & lines create the dialling putses by loading
X with the start of the number table and calling BEEP
routine. (The beep calls a pause). The program then
compares the byte in the table with the byte in the
block and loops until a comparison is found. Note: we
go into the routine 'blind’ and besp before a CP!!
Create a short pause at the end of each digit so that
the phone system detects the end of a digit.
Increment to next digit, look to see if end of phone
number has been reached and return to above routine
for next set of pulses.

If no buttons have been pressed during dialling, | witl
still contain 0D {from above) and program will scroll
name and number. lf any other key has been pressed,
program will toop with blank screen until O prassed.

This is the end of the MAIN PROGRAM. The sub-
routines below are called by the main program.

Registers A, B and C are used in this sub-routine and
thus they must be pused onto the stack and saved.
Reg B holds the number of cycles for the baep routine
Register A turns on the speaker bit.

Reg C holds the tum-on cycles for the spkr.

The spkr is turned on via OUT (81),A

and a delay created via register C for

32 loops.

The same OFF delay period is created via register C
for an even ‘mark-space’ ratio for the speaker.

The count register {register B) is decremented and the
program loops until B is zero.

The program calls pause to produce silence.
Registers A, B and C are popped off the stack and will
contain the original values and before the routine.
Return to the main program.

This routine clears the 6 display locations 0AB0 to
OASS and also 0ABS by zeroing A and

loading HL with start addrass of buffer zone

and loading zero into the location pointed to by HL.
INC HL

DEC O

and jump for 7 loops.

Return to main program.

Load DE to point to beginning of number table.
toad key value into accumulator.

Compare with 0A and jump if the key value is A-F or
not pressed or go to next instruction if 0-9.

INC HL (used when creating phone number)

Save Ain C.

ADD the start of table to A {table may start at 0A03!).
Make DE ready to point at value in table.

SHIFT display contents one place to left.

Load byte from number table into accumulator.
Load number byte into loaction in BLOCK.

and also into right hand display.

Load A with FF and then into | to detect when another
key has been pressed.

®9FE caontains 01 via beginning of of main program
and KEY VALUE is called once. Or ®FE contains 1C
to keap track on the number of locations being filled in
the BLOCK.

Zero A.

Compare accumulator with E and RETURN if E keyis
pushed. Otherwise call SCAN and display the
contents of the 6 memory locations. Jump to stat of
KEY VALUE sub-routine and loop until 0-9 pressed.

TALKING ELECTRONICS No. 14 19

Decrement to 0F80 and push GO. Make
sure the non-volatile RAM switch is on
RAM (read/write) so that the data will be
accepted. Check that the program has
been dumped by addressing 1080 and
compare the data with the listing.

If you have inserted names and numbers
into index locations and want to save
them, address 0F80 and push GO. Make
sure the RAM card is in read/write mode
and everything will be saved.

Switch to ROM mode and everything will
be preserved.

You can now turn the TEC off.
To transfer the program back to 0800,

address1780 and change 2 of the bytes to
the following:

11 00 08 —= these two bytes
21 00 10 = are changed
01 90 07

ED Bo

C7

Decrement to 1780 and push GO. The
RAM card should be in ROM MODE for
this operation.

Push GO again and the program will run.
All names and numbers will be available.

AUTO REDIAL

An automatic re-dial facility can also be
included so that the number auto-
matically re-dials after say 5 or 10
minutes; if the number was originally
engaged. This is very handy for those
occassions when you particularly want to
contact a person and their number is
busy. By the time you get around to
calling again, they have gone!

A simple addition to the program can be
fitted in at O8BE and this will create a
delay by counting the number of times the
name and phone number scroll past the
display. This is only a suggestion and we
have not actually produced the program
for re-dial.

Register E is the ‘count register” and the
remainder of the program remains the
same. The only bytes you will have to
change are jump relative values as well as
the jump value at 09B4. You may also
need a subroutine and a flag to pick up
redial mode. .

Here is a suggested AUTO RE-DIAL
program for insertion at 08B4:

LD E,40

DEC

JRZ

CALL CLEAR

CALL MERI:RY ADDR

JR

MEMORY ADDRESS

LD HL,0Bo0 0960 21 00 OB
LD A,(09FC) 0963 3A FCog
LD D,20 0966 16 20
CcP 0968 FE 00
RET Z 096A cs
INC HL 0968 23
E DECD 096C 15
JR NZ,096B 096D 20 FC
DEC A 096F 3D
JR 0966 0970 18 F4
PAUSE
XOR A 0972 AF
OUT (01),A 0973 D3 o1
LD DE,02FF 0975 11 FF 02
DEC DE 0978
LD AE 0979 7B
OR D 097A 2
JR NZ,0978 097B 20 FB
RETURN 097D Cy
SCAN 1
PUSH HL 0980 Es
PUSH DE 0981 Ds
LD C,20 0982 OE 20
LD HL,0A80 0984 21 80 0A
LD D,06 0987 16 06
> LD B,20 0989 06 20
LD A,(HL) 098B 7E
OUT (02),A 098C D3 02
LD A,C SE 79
ouTt on),A 098F D3 o1
RRC 0991 CB o9
DJNZ 0993 0993 10 FE
T S
01 D3o
i’fﬂ'{? " o
0999 ED §7
cp ol 099B FE oC
JR Z,09A9 099D 28 0A
CP ob 099F FE 0D
JR Z,09B2 — 09A1 28 OF
DR R || 243 &
—) 09 20E
POP DE 09A6 1 3
POP HL 09A7 E1
RETURN 09A8 Co
POP DE 09A9 D1
POP HL 09AA E1
A,FF 09AB 3E FF
LA 09AD ED 47
JP 0800 09AF C3 00 08
POP DE ~= 0982 D1
POP HL 09B3 E1
JP 08BB 9B4 C3 BB 08
SCAN2
PUSH HL 0ADo ES
PUSH DE 0AD1 Ds
LD C,20 0AD2 oE 20
LD HL,0A80 0AD4 21 80 0A
LD D,06 0AD7? 16 06
LD B,20 0AD9 06 20
LD A,(HL) 0ADB 7E
OUT (02),A 0ADC D3 02
CADE 79
OUT (01),A 0ADF D3 01
RR! OAEI1 CB 09
DJNZ 0AE3 OAE3 10 FE
XOR A 0AES AF
OouT 401),A 0AE6 D3 o1
INC HL O0AES 23
DECD O0AE9 1
JR NZ,0AD9 OAEA 20 ED
POP DE 0AEC 1
POP HL 0AED E1
RETURN OAEE Co

Memory Address sub-routine locates the beginning
of the name and phone number block. Each block is
20H bytes long (32 bytes) and memory starts at
0B00.The BLOCK No is stored at 09FC and the
pragram increments 20H loops for each black by
decrementing register D to zero, then decrementing
register A by ONE. This is repeated until A is zera. The
sub-routine then exits. HL pair is constantly
incremented during this program and will point to the
start of the block we want,

Pause produces a silence from the speaker by
outputting zero to port O1. Register DE is
decremented and ‘wastes computer time’ for about
1/10th second. This sub-routine then returns to
where it has been called.

The SCAN routine uses H, L and D registers and thus
they must be pushed onto the stack and saved.
Load HL with start of display buffer.

The routine displays 6 locations.

The left-hand display is accessed via line ‘20"
Load B with a short delay value.

Load the byte at the first location into A.

Output to port 02.

Load C into A, and

output to port 01. This will turn on left-hand display.
Rotate register C to the right for the next display.
Short delay via register B.

Zero A, and

output to port 01.

Look at next memory location.

Load the keyboard value into A.

Look to see if CLEAR has been pressed.

Jump if it has.

DEC D ready for outputting to the next display.
Jump relative if D is not zero.

Pop DE and HL register pairs off the stack.

and RETURN ta the main program.

If CLEAR has been pressed, pop DE and HL and load
the | register with FF so that the program will detect
when another key has been pressed

Jump to 0800,
POP DE and HL and jump to 08BB if D (DIALS) has
been pressed

SCAN 2 is identical ta SCAN 1 in the scanning
section. The only difference is the ‘checking’
instructions, to see if a particular key is pressed.
SCAN 1 above checks to see if a function key is
pressed, whereas SCAN 2 performs the scan without
any checks.

By careful programming both routines could be
incorporated intc one. This would require a ‘check bit’
and if ‘set’. the sub-routine would check the function
keys

Cont. P.51:

Please note we now have a reader in New
Zealand interested in suppling back issues of
the magazine, and maybe boards and kits.
Please write to him at the following address:

20 TALKING ELECTRONICS No 14.

Trevor Cooper,
33 York St.,
Timaru,

New Zealand.
Phone: 83787

X COOYN bo—Ppp—
N\ >

Al
d -, de(

1

-

> U
- 001

