000000000000000000000000000000000000

8x8 MATRIX

©a matrix of 8 LEDs by 8 LEDs. globes on which moving letters and
Actually it has almost the same characters are displayed, you will be

- BC 547 transistol
number of LEDs as the display on the interested to know the same effect ransistors

NN ®

°TEC but in this design the LEDs are can be produced with this project. - 74LS273 or
arranged in ROWS to create a very - 7418374 or
interesting display. Modules of the 8x8 display can be . 7418377

° placed side-by-side to create a long
The whole concept of the 8 x 8 matrix display. The PC board is designed to 64 - 5mm red LEDs
is to produce the equivalent of a be cut so that the pattern runs as a
WINDOW ON A VIDEO SCREEN. continuous display. 2 - matrix pins

. . L . . 2 - matrix connectors
° Each LED represents one pixel and At this stage it is not out intention to

this will enable us to produce promote the extended display as it 30 cm hook-up wire, 12 colours.
characters, letters and movement requires a slightly different driving 30cm tinned copper wire
° equal to 8 pixels by 8 pixels. circuit. To achieve a readable .

. brightness with more than 8 columns 15em - Heat-shrink tubin
o This may be only a small fraction of of LEDs, it is necessary to introduce 9
° the area of video screen but it is the blocks of columns which are .
best place to start. If you can produce latched or even latching for each 1 - 24 pin DIP HEADER

@
&
@
@
@ . ©
e H o [=
© = BC 547 = 0
o = = ®
& = = o
e s e ©O
o = = = 0
0 = H
B 0
0 = a0
&
]
© = = 0
© 1 64 x5mm= O
© ™ LEDs ™ [.]
° = 1kx8 p— ™ °
o 3 a 12 -]
© = I_ 20 7418273 ;__ 20 7418213 1|57 % @
o = or 7418374 1 or 7418374 =
m 1 or 7418377 or 7418377 10 s ©
© i 18 3 4 1714 7 18 3 4 1714 7 413 = 9
™ - —y - J =
© = 0 * = ©
@ = 1 - =
E 1L = 0
(&) B H
H 3 5 0
o I = 0
u 4 B
© I I
© = 5 : ©
© = - =
e - . -
° IIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIIIIIIII. °
©_ . 4 o PARTS LIST @
This is our first “add-on” for the TEC- If you have seen the advertising signs °
6] 1.Itis anarray of 64 LEDs arrangedin composed of thousands of LEDs or - 1k Yawatt
©
©
©
o]
O
©
G
-]
©
o
@
]
effects and movement on a small column. This will enable each °
scale, a full-size VDU screen is only LED to be turned on to full brightness 1 - 8x8 DISPLAY PC BOARD
@ an enlargement of our ‘window’. and produce a bright display. °
@

©00000000000000000000000000000000000
22 TALKING ELECTRONICS No. 11

000000000000000000000

i

In our design, the LEDs are multi-
plexed and this means they are being
turned on for one-eighth of the time
during one cycle. The result is a dull
display but one which can be read
under normal lighting conditions.

We are presenting this project
slightly ahead of time so that it will be
ready when needed.

There are a number of MACHINE
CODE instructions which can only be
investigated on a display format and
this project is a necessary part to
understanding the 280. .

The greatest visual impact for this
type of display revolves around pro-
grammed lighting and effects such as
COCA-COLA signs and some of the
background effects at discos and TV
shows. |

Most of the dazzling effects behind
singers and dancers on TV have some
form of micro-processor controlled

lighting. The effects that can be
produced are limitless.

We have chosen LEDs in our design
for cheapness and simplicity but they
could quite easily be replaced with
miniature 6v or 12v globes. The only
extra components would be the
addition of one extra transistor in
each line as an emitter follower. This
will enable the extra current to be
supplied to the globes.

Our 8x8 display is most effective
when flashing blocks of LEDs (or
globes) and having them jump from
one position to another. In addition,
bands of LEDs can be made to pass
across or up the screen . These
effects are very effective and very
simple to produce.

But first you must understand the
Machine Code instructions involved
and how to include them in a
program. This will be our endevour in
the latter part of the course in this
issue and the time is right to prepare
the display project so that it can be
o plugged into the TEC-1 when the
time comes.

000000000000 0000000000000000000000000

© Believe me, you will be most
impressed with the results.

© CONSTRUCTION

(-] Before starting any of the con-
° struction, it is absolutely essential

that you know which lead of the light
emitting diode is the cathode. There
o is only one guaranteed way of

determining this. You need a 3v to 6v
© battery and a 100 ohm or 220ohm

.

e oo

W W m

A full-size view of the display showing the neatness of the rows of
LEDs. This is necessary if you want the best effect when the

display is operating.

resistor. Place the LED and resistor in
a series circuit connected to the
battery and check the degee of
illumination. The cathode lead will be
the one nearest the negative terminal
of the battery. There are no other
sure-fire methods of determining this
as some LEDs have their long lead cut
differently to the accepted practice.

We have seen some LEDs with the
outline (inside the LED) around the
opposite way to the general rule. So,
it can be quite confusing. You must
test each LED or at least a sample
from the batch.

Next you must be certain which way
they are to be inserted in the PC
board. A mistake will take a very long
time to rectify. The cathode lead is

0000000000000066

PR R g o

nearest to the row of transistors.
When soldering the LEDs to the
board, you must take special care °
to keep them all the same height and o
perpendicular to the board. The
neatness of the dispay will depend
entirely on how well you position the
LEDs. o

0000000000000 @000000000 0000000000000

©
At first you may think one lead of the o
LEDs is not connected to the circuit.
But this is where we have had to §
improvise. Multiplexing requires one
line of conductors to travel north- e
south and the matching line to travel
east-west. This would normally
require a double-sided PC board, but
since they are very expensive and ©
difficult to solder, we have opted for
the cheaper approach.

©000000000000000000000000000000000000

TALKING ELECTRONICS No. 11

23

OC00000000OOO0OO0OOOOOOOOOOOO OOOOOOOOOOOOO0O000O0

DIP HEADER | 8x8 MATRIX

MATRIX
PIN

DIP HEADER
A DIP HEADER is a plug which has
thin pins similar to the pins on an IC,
on the underside. On the top are cup-
shape (or ‘Y’ shape) terminals to
which you can make a solder
connection.

Leads can be soldered to the
terminals to create a low-cost
adaptor.

It is suggested that heat-shrink
tubing be placed over each lead
before soldering to the Dip Plug.
| When all the leads are attached, the
sleeving is slid over each terminal so
that the conductor is strengthened.

This will prevent fine wiskers of wire
shorting from one pin to the other and
creating havoc.

MATRIX PINS & SOCKETS
These are the cheapest and best way

of connecting a single line to a printed
circuit board.

[eeXeXeXooXoXoXoXoXoJeXeXeoYe o oo e oloXoRoRoNeRoNoXoNoRo oo RoNoXoNoNoNoReNoXoRoNoNoRoRoNoRoRoNoXoXoRoRoXo)

(O)oRooNoNoXoRoNoNo o oXoXoRoRoRoNoNoNoRoXoRoNoRoRieReRe e oN oo Yo N o oNoRoRoRo XoRoXe)

display can be detached.

Solder the 64 LEDs into position as
well as the 8 transistors and their 1k
base resistors.

The east-west conductors are
created with tinned copper wire
running along the ends of the LED
leads and this connects to the
collector of the driver transitor via the
PC circuit. The only lead which has to

N[[m

S S EE

EVER RS = R

Diagram showing how the ‘COMMON’
line is created on the underside of the
board. Both leads of each LED are
soldered to the PC hoard. But only the
ANODE lead is cut short. The CATHODE
leads are either joined with a length of
tinned copper wire which runs helow
the board, or each lead is bent over and
soldered to the next lead to produce a
rigid conductor which runs at right-
:ngl:s to the copper tracks on the
oard.

be cut short is the anode lead, to
prevent it touching the tinned copper
wire.

24 TALKING ELECTRONICS No. 11

Connecting the 8x8 DISPLAY to the DIP HEADER & select lines. Use
Matrix pins and sockets for these two select lines so that the

The lower part of the board contains a
BUS from which the 8 lines for each
chip are taken. The code letter P on
this BUS stands for positive and the
N stands for negative. The other lines
are numbered O to 7 and this co-
incides with the data lines on the
latches.

The two output latches can be:
74LS347, or 74LS377 or 74LS273 or
a combination of any two. The
information on the overlay shows
which jumper link must be included
for the type of latch you choose.

Eighteen jumper links connect
between the data bus and the latches
to complete the assembly. The only
wiring left is the connecting wires
between the DIP HEADER plug and
the PC board. This plug is designed
to fit into the expansion port socket
on the TEC-1.

The 10 lines from the bus on the
display board connect to the DIP plug
and the two spare lines connect to
the chip select outputs near the
74LS138 (near the keyboard
encoder). These lines are for ports 3
and 4. Solder two matrix pins to these
output holes and use a matrix-pir
connector soldered to the hook-up
wire to connect to these pins.

iehejeloioNoipeicloyeiojoNoleloNoNeNeRoNoReXoRoNeNeNoNoNoNoRoXoleNeRoRoRoXoRoNeXoRo o Ro RoRoRo XoXo RoXoRe RoXo Ro RoXe

0000000000000 OOOCOOOOOO0OOOOOOOOOOOOOOOOOOO

]

O The 8x8 display is now ready for
testing and we will give 3 simpie
programs to test the operation of the

O LEDs. This will check their

0O illumination, their OFF response and

~ the correct wiring of the data lines

O and chip select lines.

To check the brightness of the LEDs,
insert this program at 800:

3E FF
D3 03
3E FF
n: 04

7
Reset
GO

Replace any dull LEDs.

To make sure all the LEDs are
extinguished when they are notbeing
accessed, change the program above
to:

3E 00
D3 03
3E 00
D3 04
76

To check the data and chip select
lines, insert this program:

CO0O0O0C0O00
00000000
00000000
00000000
00000000
00000000
CO@®@000C00
0000 C0O00

00000000000

The LED which will illuminate is O
shown in the diagram. If any other o

-

H?ll?? 19989

LED illuminates. check the select
3E 04 lines.
D3 03 i]
3E 02 Now go back to experimenting with
D3 o4 the display on the TEC-1. When you
76 getto p.30, you will be able to use the
Reset 64 LED display to create some O
0 startling effects. o)
O
@)
O
TEC -1 o
64 x 5mm LEDS O
O
-) | °
——-——U o
z —em—" o
@ O
o
x ——— g O
o —m— 0
x
< O
—a,— ® le)
—- < °
<
e ks O
STROBE Y STROBE X o)
1) s TN o
\ LATCH] o |+ LATCH I
1 @ >| o o (@]
Lmmm e - T —— 43 O
[N 1)
= 2 || (| . 9
--—an
B - 8 8 O
- N o~ N O
-l O (o] (2] (e}
- & < <
g n] O
- ~ S 2 O
-e T [N a 0
s © :
| 0

° TEC-1 °=

000000 OE)OOOOOOOOOOOOOOOOOOOOOOO O000000000O0OO0O0OOOO00OO0

tor each of the latch chips and this must

The PC layout and overlay for the 8x8 Matrix. All LEDs face one direction and must be soldered
as explained in the text. Apart from thejumgers connecting the BUS line, ONE link is required
e placed according to the type of chip you use.

0000000000000000000000C00OO0O000OD0OOO0OOO0O000
TALKING ELECTRONICS No. 11

| 8x8 DISPLAY

+

(©]
O
o
O
0]
(@]

25

....from P. 21,

ILLUMINATING
TWO OR MORE DIGITS

More than one display can be
illuminated at the same time and this
is achieved by changing the value at
801 in the program above.

Example: To fill the six displays with
the letter A we program the following:

3E 3F
D3 o1
3E 6F
D3 02
76

Prohlems:

4. Fill the six displays with the

following:

(a) 1's

(b} 5's

{c) b’s

{d) E's

5. Place a ‘C’ at each end of the
display.

6. Fill the first and last two displays
with the value ‘8.

7. Fill only the address displays with
4's.

8. llluminate only segments a and d
on the six displays.

TEC-1 AS A PROGRAMMABLE
LOGIC DEVICE
- by John Hardy

The truly unique thing about com-
puters is not that they can preform
arithmetic in a twinkling of an eye but
it is the way they can be used to
simulate any digital {and almost any
analog) circuit under the sun.

The microprocessor (Z80) can be
likened to a bag of AND and OR
gates, a thousand flip flops and tens
of thousands of inverters.

You have an 8-bit data bus which
means that you can simulate an 8
input NAND (with the aid of a
program) and you can output 8 bits of
data on this bus.

You are not simply restricted to 8 of
this and 8 of that. You can output 16,
32, 64, or even 1024 bits, as long as
you break it up into 8-bit groups.

By systematically dealing with ‘bits’,
you can perform a multitude of digital
functions.

The TEC-1 is first and foremost a
binary computer. While superficially
itappears that the computer operates
on hexadecimal numbers (9B, 3E, 2C
etc.) deep in the heart of the com-
puter binary numbers are the norm.

The problem with binary numbers is
their unfamiliarity to humans.
Imagine if you wrote a program in
binary and made a mistake. It would
be very difficult to spot. Take the
following example. Can you see the
difference between the two?

01011010 01011010
10110101 10110101
11001111 11001111
10110101 10110111
11101011 11101011

It is possible to check for binary
errors but they don’t show up easily.
Hexadecimal is a short-hand way of
representing binary. It is based on
breaking up an 8-bit binary number
into two 4-bit numbers and con-
verting these into two hexadecimal
digits.

Comparing the two sets of numbers
above, the difference is quickly
spotted when they are converted to
hex values as shown below:

5A 5A
B5 B5
CF CF
B5 B7
EB EB

Hex was therefore chosen for use in
the TEC-1 but we must never forget
that ALL DIGITAL COMPUTERS
WORK IN BINARY.

When dealing with computer
problems, we should always visualize
the inner registers as holding ‘bits’
and that the computer performs
BINARY operations. We then convert
to Hex after this. While this might
seem awkward, the conversion
between Hex and binary can be done
quite quickly after a little practice.

- John.

CREATING MOVEMENT!

All the programs up to now have been
static.

We will now create some life and
movement!

This will introduce a SHIFT or
ROTATE function into the program.
The rotate function we have selected
is located at 80C in the program
which follows. This is a two-byte
instruction and tells the Z80 to
rotate a HIGH bitleft circular through
the B register. You will understand
what we mean by this statement in a
few minutes.

This shift operation will take 8
DELAY PERIODS to complete one
cycle and will include toggling or
clicking the speaker.

26 TALKING ELECTRONICS No. 11

RUNNING SEGMENT ‘2’ ACROSS THE SCREEN

CB 00 runs segment <=

The Program: CB 08 runs segment —pp»

at 0800:
LD A,01 800 3E o1
OUT (2),A 802 D302
LD B,01 804 06 01
LD A,B 806 78
ouT (13 A 807 D3 o1
CALL DELAY 809 €D 00 0A
RLCB 80C CB 00
JP LOOP S8OE C3 06 08
at 0A00;
0A00 11 FF FF

1B

1B

B2

C2 03 0A

Cy

This is what the program is saying
and instructing the Z80 to do:

The first instruction is to load register
A with the value 1.

This is then passed to the SEGMENT
PORT latch and this value remains
fixed for the whole program.

The remainder of the program
concerns port 1, the CATHODE
PORT and as the different cathode
are accessed, the effect is to run a
pattern across the screen.

The next instruction is to load
register B with the value 1. This value
is then loaded into register A via the
instruction 78. The reason for this
will be explained in a moment.

The contents of A are now outputted
to port 1 with the result that segment
‘a’ on the lowest priority display will
be lit.

We now call a DELAY ROUTINE so
that this display will be illuminated
for about half a second.

The HIGH bit in register B is then
shifted RIGHT. This is performed
within register B by the Z80. The
program is then incremented to the
next instruction and this tells the Z80
to jump to address 806.

The output of the DELAY ROUTINE
appears in register A and when this
value is zero, the delay routine
returns to address 80C.

This means we must use another
register to provide our shift routine
and in this case we have chosen
register B.

Quite a number of variations can be
produced with this program by
changing the data at some of the
locations. These can be carried out
after the main program has been
entered.

The main program starts at 800 and
the delay routine is located at 0A00.

Now try these variations:

1. To run the segment left-to-right,
change location 80d from 00 to 08.

2. To increase the SPEED of the
display: Change A02 from FF to OF
or 06.

3. To run segments ‘a’ and ‘d’ across
the screen: Change location 801
from 01 to 81.

4. To run the number 7 across the
screen, change location 801 to 29.

5. To run the letter A across the
screen, change location 801 to 6F.

The program we have investigated
introduced the ROTATE REGISTER B
LEFT instruction CB 00 and ROTATE
REGISTER B RIGHT instruction CB

RRCB =CB 08

RLC B = ROTATE LEFT CIRCULAR
REGISTER B.

This Is the
C| “camnr g,

f This is REGISTER B. f
Bit7 Bit®

The diagram shows register B as 8
boxes. These can be considered as
flip flops. The lowest value flip flop is
at the right hand end of the row and is
labelled Bit zero (Bit 0). This is the
Least Significant Bit (LSB).

The Most Significant Bit (MSB) is
called Bit 7.

The instruction RLC B has a Machine
Code instruction CB 00 and this
causes the most significant bit to
emerge from the register and enter it
again to become the least significant
bit. In this process it does not pass
through the CARRY bit but does set
the C flag to the original status of the
register's most significant bit.

In other words, if the bitin question is
a HIGH, the C flag becomes HIGH, if
the bit is LOW, the C flag goes LOW.

RLC B = CB 00

RRC B = ROTATE RIGHT CIRCULAR
REGISTER B.

This instruction is a reversal of the
path shown above. The C flag, how-
ever, is altered as above. The ONLY

difference between the two
instructions is the direction of
rotation.

The point to remember in these
Machine Code operations is RLC and
RRC canbe performed onregisters A,
B.C, D, E, Hand/or L and are 8-stage
shift operations.

In the next program, on P.28, the
instruction which will produce a shift
operation across the screen is the
instruction RRA or RLA.

After each shift is performed, the
contents of the ‘A’ register must be
‘hidden’ or SAVED to prevent it being
destroyed.

To do this we must load the contents
of register A into another register
before calling the DELAY ROUTINE.
We couldloaditintoB,C, DorevenE
register and load it back again when
required.

However this will tie up one more of
our valuable registers and a better
solution is to call upon 2 interesting
instructions which load the contents
of A into an area of RAM in the 6116
chip.

The code word for saving the
contents of a register is called PUSH
and recalling it is POP.

The PUSH instruction will take the
contents of register A to an area
called the STACK.

This area is located in the 6116 RAM
at address OFFO. (This is only 16
bytes from the end of this chip’'s
memory and is usually considered to
be the unused end of the RAM.)

The highest 16 bytes are used as a
scratch-pad area.

The PUSH and POP instructions are
similar to stacking plates or traysina
pile. Trays are “"pushed” or piled onto
the top of the stack and are “popped”’
or removed from the top.

In the computer the area called the
STACK is filled DOWNWARDS. This
is an ideal way of using the top part of
the RAM and it can be increased in
size until it meets the program.

Thus we start with address OFFO and
work downwards thus: OFEF, OFEE,
OFED etc. To keep track of the last
address, the Z80 has aregister called
SP. This is the STACK POINTER
register and always points to the byte
with the lowest address.

OFFF
OFFO

0800

The STACK starts at OFF0 and heads
DOWNWARDS in the 6116 RAM. The
data in the EPROM decides this and
is OFE0 when using MON-1B
EPROMS.

The Z80 has two instructions for
operating on the stack. These are
PUSH and POP {or Pull). Both
instructions require a register PAIR
(such as HL, AF, BC, DE) to be
specified as the SOURCE for PUSH
and the DESTINATION for POP.

We PUSH new bytes onto the stack
and POP bytes off the top.

The Z80 processes this operation
TWO BYTES AT A TIME and results
in a new byte on the top of the stack
with either operation.

The top byte has the lowest address
and the memory is filled downwards.
The STACK POINT register decreases
with a instruction and
increases with a POP instruction.

Bytes are entered onto the stack,
HIGH byte first, then LOW byte. The
bytes are removed LOW byte first,
then HIGH byte.

In the

next program we will

investigate the PUSH and POP
instructions.

TALKING ELECTRONICS No. 11 27

. AND tMeMORY exPANSION., ..

To run the ‘g’ segment from
Left-to-Right:

at 800:
LD A4 800 1E 04
ouT (z),A 802 D3o2
LD A,0 804 3E o1
ouT (l),A 806 D301
RRA 808 1F
Push AF 09
CALL DELAY 80A CD 00 09
POP AF oD
JP 806 80E C3 0608
at 0900;
11 FF 0b
THIS IS THE -
DELAY ROUTINE }u
c; 03 09

Using the program above, change the
address location 808 to 17. This is
the machine code instruction for
rotating the accumuiator left. (RLA),
through the carry.

Machine codes covered:

RRA = 1F
RLA =17

RRA & RLA have nothing to do with
moving left or right on the display.
They refer to shifting the information
through the accumulator via the
carry. This means it is a nine-stage
shift in which no output is activated
when the bit is shifted into the ‘carry’.
This effect can be seen on the
displays when a long delay routine is
employed. The illumination travels
across the 6 displays, the next output
is not used and then the speaker/LED
combination is activated. A delay is
then noticed before the illumination
re-appears on the screen.

The main difference between the two
programs is the number of SHIFT
STAGES. The first program produced
an 8-stage shift while the second
produced a 9-stage shift due to the
carry bit becoming loaded with each
bit from the register as it circulated as
shown in the diagram.

e

N—

1l
|l

4 TwisisReaisTERA 4
Bit7 Bit@

To create a FLASHING
SEGMENT

Routine at 800:

LD A,01 800 3E o1
OUT (2),A 8oz D3 o0z
s, &
soo D3
cu. lhzmv 808 CD 0009
80B 3E 00
out hl; gop D3 o1
CALL hLAY 80F CD 0009
812 C3 0408

Delay Routine at 0900:
900 11 FF 07
1B

903

994 7B

905 B2

906 C2 03 09
909 ©C9

The exact operation of the delay
routine is not important at this stage.
Itis enough to know that it creates a
delay of length determined by the
number ioaded into register-pair DE.
If this number is 01 00, the delay will
be only afew microseconds. The first
byte refers to register E and this is the
lower register while the second byte
is the higher register and has the
greater effect on the delay.

Try putting different values into
location 902 to vary the iength of the
delay. A value such as 02 will
increase the flash-rate while FF will
create the slowest flashing.

The format of the main routine is very
simple. It is an ENDLESS LOOP
which means it executes part of the
program over and over again.

The ‘BIT’ patterns for the segments
to be lit are loaded into the segment
register (port 2). Cathode 1 is then
turned on and the delay routine is
called.

The cathode register is then cleared
and the delay routine is called again.

This creates the OFF cycle.

The program then jumps back to
address 804 where it is instructed to
turn on cathode 1. This causes
segment ‘a’ to come on once again.

You can flash segment ‘g’ by loading
04 into the program at 802 thus:

3E 04
D3 oz
ete...

Create flashing numbers and letters
in the display by inserting the
appropriate hex numbers as
discovered in questions 1 & 2 on
P 21.

28 TALKING ELECTRONICS No. 11

You can also use this program to
alternate from one number or letter to
another. This is achieved by the
second letter taking the place of the
blanking routine in the program
above.

insert the value 28 at location 80C
and run the program. What happens?

The segment "a’ aiternates between
one display and two other displays.
Turn the speed of the computer down
to observe this. But this is not what
we wanted. We want different
segments of the same display to be
turned on. We have forgotten to
change location 80E from 01 to 02.

Run the program and note segment
‘a’ changes once to a figure ‘1" and
appears to be stuck on this figure.

There is a second fault in the
program. Only the second part of it is
being cycled.

Change location 813 to 00. The
program will now alternate between
the ‘a’ segment and the figure ‘1"

This is the introduction to simple
cartooning on the screen. Try
changing locations 801 and 80C to
get some interesting effects.

RUNNING AROUND THE
DISPLAY

To run a single illuminated segment
around the display takes a con-
siderable amount of programming.
There are a number of ways of doing
this and we will use a program which
uses some of the features we have
covered so far.

Basically what we are doing is
defining our start co-ordinates,
shifting a ‘bit’ six places to the left
and haliting.

The next part of the program loads
the co-ordinates of the side segment
(at the top of the display) and then the
lower end segment is lit.

We then define the co-ordinate on the
bottom row and run the illuminated
LED acrossthe bottom of the display.

Finally we define the bottom side
segment and the top side segment to
arrive back at the starting point.

This will create an endless run around
the display.

We will produce this program in 4
stages and check its operation at
each stage.

“AROUND THE DISPLAY”
LD A,01 800 3E 01
OUT (2),A soz D302
1D €, 804 OE 06
MAF MyWV3 vew I Ve
ouUT (1),A 808 D3 o1
WA 80A g
CALL DELAY 80B €D 00 09
LD A.B SOE 78
RLC A 80F CB o7
DEC C 811 oD
JP NZ,LOOP 1 812 C2 08 08
HALT 815

Push RESET, GO.

If the LED runs across the top of the
display and HALTS, everything is
working.

Press RESET,ADdress 815 +
Now insert the following program so

that the HALT instruction is written
over and is removed from the

program.
LD A,02 815 3E 02
OUT (02),A 817 D3 o2
CALL DELAY 819 CD 0009

LD A,40 81C 3E 40

QUT (oA = SIE D3o2

CALL DELAY 820 CD 00 09
LT 823 76

Check the program at this stage by
running it. If the LED travels across
the top and down one side, it is
working. Over-type 3E at address
823 and continue with the 3rd stage:

LD A,80 823 3E 80
OUT (02),A 825 D302
LD C,06 827 OE o0b
LD A,20 829 3E 20
OUT (01),A 92B D3 01
LD B, 82D 47
CALL DELAY 82E CD 00 09
LD A,B 831 z:s

CA 832 CB oF
DECC 834 0D
JP NZ,LOOP 2: 835 C2 2B 08
HALT 838 76

If all is ok, type the last part of the
program:

LD A,20 838 3E 20
ouT ("L’f 3A D3 02
CALL DELAY 83C CDooo9
,08 3F 3E 08
OUT (02),A 841 D3 02
CALL DELAY 843 CD 0009
JP START 846 C3 00 08

Delay Routine at 0900:

\ 11 FF 06
i 1B

Don’t forget B

to add the
DELAY ROUTINE.

2
C2 03 09
Co

The overall speed of the sequence
can be varied by adjusting the SPEED
control on the TEC-1.

More programs for the TEC-1 using its own
display will he presented in the next issue.

NOORENNK
MON-1A

Some of the latest kits of the TEC-1
have included a monitor EPROM
marked Mon 1A. This EPROM will
work in both the TEC-1 and TEC 1A
as both are software compatible with
each other.

The difference between Mon 1 and
Mon 1A is a small additional routine
at 05B0. This program was originally
designed for use with music
synthesisers but can also be used for
a number of other applications.

The routine is a simple sequencer. It
reads the data stored in RAM and
deposits it at a fixed rate into the
output latches.

The overall speed of the sequence
can be varied by adjusting the SPEED
control on the TEC.

There are two sequencing functions
being performed in this program, one
depositing information to its relavent
latch (04) at TWICE the speed of the

' other (03).

The two sequences are synchronised
and one output falls mid-way
between the other. However the
sequence-iength is independent.

The end of the sequence is marked by
placing an FF after the last piece of
data. The sequence will then reset
itself to the beginning. The other
sequence will continue unaffected
until it also hits an FF.

Because FF has been used toindicate
the end of the sequence, you cannot
use FF as a piece of data. In our
application, this presents no
problem, but when used with the
relay board, it means all 8 relays
cannot be activated at the one time.

We can go as high as FE without
upsetting the program and this will
turn on 7 relays, but not the lowest
priority relay.

The slower sequence outputs to latch
03 and reads its data from address
0800 until it encounters FF and then
resets.

The faster sequence outputs to latch
04 and reads its data from address

... AND DigITAL TC ANALBG INTERFACE

0BOO until it encounters FF and then
it resets.

It should be noted that high memory
is used by the Z80 to store its stack
and thus memory above OF00 should
not be used.

A disassembly and Hex listing for this
routine is given below:

0sB0 21 LD HL,0800
05B3 11 LD DE,0B0o
05B6 7E LD A,(HL)
osB7 FE CPFF

05B9 Cz JPNZ,05Cz
0sBC 21 LD HL,0800
0sBF C3 JP 05Bb
05C2 D3 OUT (03),A
0sC4 1A LD A,DE)
05Cs FE FF

05C7 €z JPNZ,05Do
05CA 11 LD DE,0Boo
05CD C3 JP 0sC4
0sD0 D3 OUT (o4
o5D2 CD CALL osE1
osDs 13 INC DE
05D 1A LD A,(DE)
05D7 D3 OUT (04),A
0sD9 CD CALL o05E1
osDC 13 INCD
osDD 23 INC HL
oSDE C3 JP 05Bb
o5Et 01 LD BC,03FF
0SE4 oB DECBC
05ES 78 LDA,B
0GEb B1 ORC

O0SE7 C2 JPNZ, o5E4
0SEA C9 RET

Hex Listing:

osBo 21 00 08 11
0sB4 00 OB 7E FE
0sB8 FF C2 C2 05
osBC 21 00 08 C
05Co B6 05 D3 03
05C4 1A FE FF

05C8 Do 05 11 00
05CC 0B C3 C4 05
osDo D3 o4 CD E1
osD4 05 13 1A D3
osD8 o4 CD E1 o5
osDC 13 23 C3 Bb
osE0 05 o1 FF 03
o5E4 0B 78 B1 C2
0ES E4 05 C9

TALKING ELECTRONICS No. 11 29

The possibilities and effects on
a MATRIX layout are infinite.
We will allocate the next few
pages to showing some
interesting visual effects.

Eiratle varo wasill b koo (I,
rirstiy We Wil Shiow how each O

LEDs is accessed.

As with any matrixing system, each
location has a set of co-ordinates. If
we compare our display with the x
and y axes in geometry, we find the x-
axis has the lower output port
number and the y-axis the higher
number.

The output ports allocated to this
display are 3 and 4 and this is
determined by the chip access lines
on the main board. Each line from the
7415138 has a particular number and
we have selected lines 3 and 4.

IF THE 8x8 MATRIX DOESN'T WORK

On P.28 of this issue we described
the construction of the 8x8 matrix
and presented 3 short programs to
test the LEDs in the display.

Hopefully you will have put the
project together by now and will be
ready to explore its capabilities.

The main difference between this
project and the display on the TEC-1
is not so much the number of LEDs,
but the way in which they are
arranged.

We have created aregular matrix of 8
LEDs by 8 LEDs and this produces a
screen very similar to a window on a
video display.

The most common fault will be one or
two of the LEDs failing to illuminate
when the whole screen is accessed.

If this is the case, orif one is dull, the
fault will be a damaged LED. LEDs
are temperature sensitive. and
excess heat when soldering will
damage them. On the other hand, it
may be a poor quality LED in the
batch.

If any of the LEDs are particularly
dull, they should be replaced at this
stage to produce a good display.

Here are some of the possible faults
and their remedies:

If a row or column fails to light, the
fault will be in one of the output lines
of a latch or one of the driver
transistors. Make sure it is not a dry

On the display board, each of the
LEDs has a particular co-ordinate
value which must be in the form of a
Hex number. Each successive row or
column has a hex number which is
DOUBLE the previous number. The
following diagram shows this:

The lowest priority LED has the value
01, 01 and the highest LED 80, 80.
The value of each LED between these
limits is also given, as well as the
value for 4 individual LEDs, as a
guide.

Placing these hex values into a
simple program will illuminate any
particular LED on the screen.

Here is the general program:

3E Hex value: <—p
D3 03

3E Hex value: 1

D3 04

76

joint or a missing link and then check
the orientation of the transistors and
the LEDs.

If a row and column is failing to
illuminate, the fault will lie in a
shorted LED at the intersection.

Remove the LED and turn on the
remainder of the screen. If the
remainder of the LEDs come on, the
fault is a short.

The only other fault we have seen is
one row glowing brighter than the
rest. This can be due to one of the
transistors shorting between
collector and emitter. A short to base
may cause the row to be
extinguished.

If all these suggestions fail to locate
the fault, turn the TEC-1 off and re-
program the set of instructions.
Check to see that you have loaded FF
into both port 3 and port 4.

Check both ends of the connecting
leads and make sure they are
connected correctly to the pins on the
dip plug.

Since the expansion port socket is
effectively in parallel with the other
memory chips, it is very unlikely the
the PC tracks will have shorts
between them.

This means you should look mainly
on the display board itself.

00000000000 0000000000000000000 0000000000000 0000000000000000 00000000

30 TALKING ELECTRONICS No. 11

» 43O

01 02 04 0810 20 40 80

PORT 3
Diag 1: The ports and their Hex
values.

If we take a particular case and load
the co-ordinates 04, 02 into the
program:

As you type the program, this is what
you should be saying: Load the
accumulator with 4, output it to port
3. Load the accumulator with 2 and
output it to port 4. Halt.

Prohlems:

llluminate 3 of the other LEDs by
inserting the following data into the
program.
1: 04,40
2: 20,08
3: 80.,80.

TWO OR MORE LEDs

More than one LED can be
illuminated in any row or column by
adding the Hex value of each LED.
We will start with the simplest case
but absolutely any LEDs in any row or
column can be illuminated.

0

DIAG 2.

——————————

In diagram 2, two LEDs are shown
illuminated. These have co-ordinates
01,01 and 01,02, To turn on both of
these LEDs we add the bottom Hex
numbers. The resultis 03. Place this
value into the program at address
801

01 02 04 08 10

Diag 3.
Diagram 3 shows five LEDs
illuminated. Add the Hex numbers
together and insert it into the
program and see if you are correct.

Did you get 1F?

80

Diag 4.
The fourth diagram shows ALL the
LEDs on the bottom row illuminated.
What value must be placed in the
program at 801 to access these
LEDs?

The answer if FF. This is obtained by

adding 01,02, 04,08 10, 20, 40, 80.

this gives: OF + FO
= FF

Probiem:

Load the program with a hex value
which will illuminate the four LEDs in
the centre of the bottom row:

Diag 5.
Firstly look up which values are
allocated to each LED then add these
values.

Place this into the program and
observe the result. You will be
correct with the value 3C.

The program for accessing the LEDs
in the 8X8 Marix is identical to that
for the display onthe TEC-1. The only
difference is in appearance. A regular
array makes the effect more dramatic
and the overall possibilities are much
greater,

To turn on the four centre LEDs we
mustinsert the value 08 + 10 into the
program for both outputs.

Prohlem:

What value must be inserted into the
program to illuminate the four corner

Diag 7.

It is now your turn to illuminate a
LED. Select a LED on the matrix and
mark it with a pen. Determine its co-
ordinates and put them into the
program. Execute the program and
see it the marked LED comes on. Try
two more of these routines and
confirm the program by illuminating
the LED.

Now illuminate two or three LEDs in
any row or column by adding the
relevant Hex values together and
observe the LEDs on the display.

With this simple program it is not
possible to illuminate any
combination of LEDs on the whole
screen because we are using the
outputs in the static mode. To
illustrate this, try to illuminate one
column and one row at the same
time. You know the Hex value for a
complete row is FF. Place this into
the program and see what happens.
The result is a completely-filled
screen. The closest effect to

producing an intersecting row and
column is a non-illuminated row and
column produced by inserting a value
such as EF into the program.

TALKING ELECTRONICS No. 11 31

PROBLEMS:

Demonstrate your understanding of
addressing the matrix display by
solving the following:

1. Illuminate the whole screen.

2. llluminate the whole screen except
for the outer row and column of LEDs.
3. Mluminate the four centre LEDs as
well as the next row and column on
each side.

4. Illuminate any quarter of the
display.

5. Leave the two centre rows and
columns non-illuminated.

6. Place FF in port 3 and 00 in port 4.
What appears on the screen? Why?

MAKING A FLASHING LED

We know the general formula for
turning on a LED on the matrix:

Single
E (od;lta)‘ Byte.
3E (data)
D3 04
76

“FLASHING LED"

To FLASH the LOWEST priority LED
we insert data into the program as
follows:

A,01 goo 3E 01
OUT (3),A soz D303
GUF DA ses D304

0
CALL Ay 808 CD 00 0A
D Atoo 80B 3E 00
OUT (3),A 80D D3 03
out i? A o D3
CALL By 813 CD 00 0A
JP 0800 81 C3 00 08

DELAY ROUTINE AT 0Aoo0:
11 FF 06
s
7
B2
C2 03 0A
Co

Press RESET, GO and the lowest
LED will blink ON and OFF. The
program is basically loading data into
ports 3 and 4 then calling the delay so
that the information will be displayed
on the screen for a short period of
time. The output latches are then
loaded with 00 data which will
produce a non-illuminated display
and the delay routine is called. This
produces the °‘OFF" period. The
program is cycled in an endless loop
to produce the flashing.

With this program it is easy to flash
any number of LEDs or even the
whole screen.

TO BLINK THE
WHOLE SCREEN

To blink the whole screen, change
the data at addresses 801 and 805 to
FF. This has the effect of filling the
screen for one delay period and then
non-illuminating the screen for one
delay period.

To alternately blink the left-hand side
of the screen and then the right-hand
side:

Insert the following data:

at address:
801 insert FF
805 insert OF
80C insert FF
810 insert Fo

You can make the flash move in the
up/down motion by programming:

801 insert OF
805 insert FF
80C insert Fo

You will notice the two centre rows
remain ON for the whole period of
time as shown b% this table:

0 .

40
TOP 20
10

8
g BOTTOM
1

An interlocking effect can be created
by programming the following:

801 insert AA
805 insert FF
80C insert 55
810 insert FF

To make a block of 4 LEDs jump
diagonally and back again, the
following information is inserted into
the program:

change 801 to OF
change 805 to OF
change 80C to Fo
change 810 to Fo

You can experiment with the
length of the delay to produce
a faster or slower flash rate.

Foraslowflashinsert: 11 FF0A
Medium flash: 11 FF 08
fast flash: 11 FF 06

TO RUN A SINGLE LED
ACROSS THE DISPLAY

This program will run a single LED
across the bottom of the display,
from left to right and HALT.

810 insert FF LD A,01 800 3E 01
ouT (AJ,A 802 D3 o4
An overlap can be created by LD C,0 804 OE o8
inserting the following data: LD A,01 :": 3E 01
[
801 insert 1F EUT N 09 ?73 o
805 insert FF CALL DELAY 80A CD 00 oC
80C insert F8 LD A.B 8oD 78
810 insert FF CA 80E CB 07
DEC C 810 OD
JP NZ LOOP 812 Cz 08 08
HALT 15 76
4
& o)

“RUNNING LED ON AN &X & MATAIX"

32 TALKING ELECTRONICS No. 11

To regulate the speed at which the
LED crosses the display, we need a
delay routine. (Exactly the same as
the previous delay routine.)

Delay routine

at 0800: ILFF 06
7B
B2
C2 03 oC
o

For a full column to move across the
screen, change the data at 801 to FF.

To create a REPEAT, change the Halt
at 815 to C3 00 08,

To make a single LED run around the
perimeter of the display, we must
create a program for each of the four
sides. The program above is suitable
for the first side and three more

programs are needed. At location 81§
we remove the HALT function (or
the return function) and add the
following:
Press RESET,ADdress 0815, +. Now
continue:

LD A,80 815 3E 8o
OUT (4),A 817 D3 04
LD C,07 19 OE 07
LD A,02 81B 3E 02
gUT (3),A 8:? D3 03
CALL DELAY 820 CD 00 oC
LD A,B 823 78

RLC A 824 CB o7
DECC 26 OD
JPNZLOOP 827 C21D o8
HALT 82A

Press RESET, GO. The LED will travel
along 2 sides of the display and Halt.

Program the third side as follows:
Press RESET, ADdress, 082A, +
Add the following:

LD A,80 824 3E80
OUT (3),A 82C D303
LD C,07 82E OE 07
LD A,40 830 3E 40
ouT (4).A 832 n73 04
CALL DELAY 835 CD 00 0C
LAD A, 838 78

RRC A 839 CBOF
DEC € 3B OD
JPNZLOOP 83C Cz23208
HALT 83F 176

Press RESET,GO and watch the LED
travel the 3 sides of the display. If
everything is correct, program the
last side as follows:

LD A,o1 83F 3E o1
OUT (4),A 84i D304
LD c,(é-y’ ! 843 OE 07
LD A,40 845 3E 40
oUT (3),A 847 n_’s 03
CALL DELAY 84A & o0 0c
LAD A,B 4D 78
RRC A 84E CB oF
P NT 831 Cz4708
N
gl’ os%ol'oo’ 854 C3 0008

Two adjustments must be made to
the first section of the program to
eliminate the double exposure on the
lowest priority LED. Change location
805 to 07 and 807 to 02. The led will
now travel evenly around the display.

To view the effect, press RESET, GO.

The previous program is long
because each direction of travel must
include the commencement location.

The next program is just as
interesting but much shorter because
it generates its own new set of values
at the end of each cycle via the INC
H operation.

It moves a LED across the screen and
increases its value on each pass.

LD A,01 soo 3EO01
LD H,01 80z 2601
LD A,H go4 7C
OuUT (33,A sos D303
LD C,o so7 OE 08
LD A,01 sog 3Eo01
OUT (4),A soB D304
LD B soD 47
CALL DELAY goE CD 00 0C
LD AI\B 811 78
RLC g1z CB 07
DEC C 14 OD
JP NZLOOP 315 C2 OB 08
INCH 818 24
JP 804 819 C3 0408
At 0Coo:
11 FF 06
1B
7B

B2
C2 03 oC
C9

At the beginning of the previous
routine, the first instruction fl) A,01
is not needed as the second and third
instruction performs this task. Your
requirement is to re-write the whole
listing. beginning at 0800, with this
instruction removed. This requires
the instruction at 819 to be changed
to C3 02 08 as all the instructions
have been shifted two locations.

TALKING ELECTRONICS No. 11

Run the new listing and make sure it
works.

Increase the speed of the program by
decreasing location 0€02 to 03.

How can we make it run slower?

Ans: Insert FF into location 0C02 and reduce
the CLOCK speed on the computer

MAKING THE LEDS RUN
FROM RIGHT-TO-LEFT

We can add an instruction to this
program to make the LEDs run from
right-to-left.

The two locations to change are:

change 809 to 3E 80
change 812 to CB OF

Try these variations:

change 802 to 26 FF
change 818 to 2§
To make the LEDs run from left to
right and back again or from top to
bottom and down again, requires the
combining of a SHIFT-LEFT program
with a SHIFT-RIGHT program.

Key in the following listing and push
RESET, GO. Watch the effect.

Don’t forget the delay routine at OCOO.

LD H,01 800 2601

D A, goz 7C
OUT (3),A go3 D303

D C,0! go5 OEo8
LD A,01 7 3Eo1
OUT (4),A 809 D304
LD B,A 80B g
CALL DELAY s8oC D 00 OC
LD A,B 8OF 78
RLC A sio CBo7
DEC C 812 OD
JP NZ LOOP 813 C20908
LD C,08 816 OE 08
LD A,80 818 3E 80
OUT(4),A 81A D304

81C 47

CALL DELAY g1p CD 00 OC
LD A,B 820 78
RRC A 821 CB OF
DECC 23 OD
JPNZLOOP 834 C21A08
INCH 82 24
JP 0802 828 C3 0208

co AND CLOk TIMER BOARD-...

33

“TAKE-OFF!”
This program produces a single LED

which runs diagonally across the
display. The angle at which the LED

;
%

moves is the result of increasing the
value of both outputs AT THE SAME
TIME. This can lead to some
interesting effects.

At 800:
LD A,01 800 3Eo1
OUT (3),A 802 D303
OUT (4),A 804 D304
RRA 806 17
PUSH AF 807 F§
CALL DELAY 808 CD 0009
POP AF 8oB F1
JP 802 8oC C3 0208
At g00: 11 OF 00
1B
7A

B3
C2 03 09
Co

At address 806 the instruction 17 will
cause the LED to travel up the screen.
If we insert the instruction IF the
LED will travel down the screen.

At location 801 insert the value 90.
Try both directions of travel and
watch the different effects.

Both ROTATE instructions 17 & 1F
cause the 'bits’ in the accumulator to
rotate through the ‘carry’ and this
creates a ‘hole’ or zero in the output.
This forms the non-illuminated band
which passes across the screen.

At location 801, the value 01 can be
replaced by 02, 4, 8, 10, 20, 40 or 80.
These will not alter the effect on the
screen as they will merely define the
starting point for the program and it
will run through its cycle in the
normal manner.

“FAN - OUT”

This program is almest identical to
the previous. But by adding one new
instruction, we can change the effect

e ———————

on the display to produce a
completely different effect.

A,01 3E 01
OUT (3),A D3 03
OUT (4),A D3 04
RLA 07
PUSH AF F§
CALL DELAY CD 0009
POPAF F1
INCA 3C
JP 802 C3 02 08

Delay at 900:
11 FF 06
1B
7A

B2
C2 03 09
Co

The new instruction is INC A. It
makes the least significant bit HIGH.
The result is to produce an increasing
row of LEDs. This is how it happens:

Initially a HIGH is programmed as the
Least Significant Bit. The operation
RLA transfers this HIGH to the
second location. When INC A is
executed, a HIGH is placed in the
lowest position. This gives two
HIGHs in the register. These two
HIGHs shift up the register when

A is executed. INCA produces
another HIGH in the lowest position
and thus the whole register is
gradually filled.

The program is producing its own
NEW set of data each time the listing
is cycled.

The final result is most impressive.
The display fans out from the lower
left-hand corner to fill the entire
screen.

AL TR

34 TALKING ELECTRONICS No. 11

OUR MYSTERY EFFECT

| call this our mystery effect as | have
forgotten how it appears on the
screen. All | remember is producing

it. It took about an hour or so to get
the program together and | will leave
it for you to type into the TEC-1 and
see what appears.

Here is the listing:

LD C,40 800 OE 40
LD A,01 802 3E o1
OUT(3,A 804 D303
LD A,0i 6 3Eoi
OUT (4),A 808 D3 o4
CA 80A o-i)
CALL 900 80B CD 0009
EC C S80E OD
JPNZ 88 80F Cz 0808
C,2 812 OE 20
1 814 3E 01
OUT (4),A 816 D3 o4
A,01 818 3E o1
OUT (3),A 81A D3o3
CA 81C o
Call 900 81D c.i) 00 09
EC 820 OD
JP NZ 824 821 C21A 08
D C,40 824 OE 40
D A,01 826 3E o1
ouT ? WA 828 D303
OUT (4),A 82A D304
RLCA 82C o},
CALL 900 82D CD 0009
D 3
32 31 C2 28 08
JP 0800 834 C3 0008
At 0900:
90 Fs
901 CD 00 oC
904 F1
90§ C
906 CB 47
908 CA 0C o9
90B C
90C CD 00 oC
9OF CD 00 oC
912 C3 00 09
Delay at 0Coo:
11 FF 0b
1B
7A
B2
Cz2030C
[+]]

USING THE KEYBOARD

The next area of learning is to include
a keyboard input for the 8x8 matrix.

Whenever the HALT function is
placed in a program. the Z80 stops
the program and waits for aninput via
the interrupt line.

In our case, this comes from the
keyboard and the non-maskable
interrupt line is activated to allow the
Z80 to accept the data from the
keyboard encoder via the data bus.

This data is loaded into the
accumulator and compared with a
value in the program. If the two
values are the same, the output is
zero and the program advances.

This is the basis of the next set of
programs. The correct key must be
pressed for the program to be
executed. Otherwise the program
will return to the HALT instruction
and the outputs will not change.

MOVING A LED VIA KEY ‘4.

This program moves a LED across the
bottom row. It advances one position
each time the ‘4’ key is pressed.

No delay routine is employed and the
LED will shift at a speed determined
by pressing the key.

When the LED reaches one side of the
display it re-appears at the opposite
side. This can be a distinct advantage
when playing some of the games we
have devised. At the moment the shift
in this program is only left-to-right.

LD A,01 so0 3Eo1
OUT (4),A 802 D3 04
LD B,A 804 47

LD AB 5 ;,s

ouT ‘lts),A 806 303
HAL 808 y

LD A,l 809 D §7
cP oql 80B E 04
JPNZ808 8D Cz20808
RLC B 810 CBoo
JP 805 812 C3o0508

Accumulator A is loaded with 01 and
passed to segment port 4 where it is
latched. The contents of A are loaded
into register B so that jt can be
operated upon by the ROTATE
TEFT CIKCULAR function and
also be in a’'safe’ register, so itis not
written over.

The program is HALTED at 808 and
the Z80 waits for a keyboard
instruction. When a key is pressed,
the NMI line is activated and the data
is sent to the Z80 and initializes the
INTERRUPTVECTOR REGISTERI'.
The keyboard data is placed in the
accumulator register and compared
with the value 04. If the answer is
ZERO, the program is incremented to
address 810, which instructs the Z80
to ROTATE REGISTER B LEFT. This
causes the HIGH bit to shift from bitO
position to bit 1 position and this will
make the LED shift one place to the
right on the display when operations
at 81C, 81D, 81E, 805, 806, 807 and
808 have been performed.

The new data-value in register B is
loaded into register A at 805 and is
passed to the display latch port 3 at
806 and 807.

The important feature of this program
is the use of the interrupt vector
register | to detect the input from the
keyboard and to enable a compare
function to be performed.

SHIFTING A LED ¢—>

This program expands on the
previous and adds a shift in the
opposite direction. We now have a
forward and reverse shift.

00000

Key ‘4’ shifts left and ‘C’ shifts the
LED to the right.

The direction of shift is governed by
RLC B and RRC B and these can be
swapped to give the opposite effect.

If you require the LED to travel up and
down the screen, the output ports 3
and 4 must be reversed in the
program.

TALKING ELECTRONICS No. 11

LD A,01 800 3E 01
OUT (4,A 802 D3 04
LD B,A 804 47

LD A,B 805 Z)s

ouT _‘3),.& 806 3 03
HAL 808 76

LD AX 800 ED §7
CP 04 80B FE 04
JP NZ 815 80D C2 15 08
RLC B 810 CB 00
JP 805 812 C3 05 08
CP OC 815 FE 0C
JP NZ 808 817 C2 08 08
RRCB 81A CBos
JP 805 81C C3 05 08

This, and many other features can be
altered to suit your own requirements.
It is a matter of experimenting and
determining which instruction should
be altered. If you discover these
changes vourself, you will have a
much greater understanding of how
the program is put together.

The values at 80C and 816 determine
which buttons are operative. These
can be changed to any pair you
choose, simply by inserting the
correct data into the program.

The data corresponds to the value
which appears on the key, forOto F.
Keys + — GO and AD have the
values 10, 11, 12, and 13.

ADDING AUTO REPEAT

A simple addition to the previous
program will enable the LED to run
across the display in an auto repeat
mode. when the correct key is
pressed.

000C®OO0

This repeat operation is not capable
of detecting when the key has been
released as the keyboard encoder
contains a latch which retains the
last value outputted from the key pad.

The NMI line operates a flip flop
inside the 2Z80 which is edge
triggered and this means that when it

cont. over . . .

g

. AND

BUFFER BEARD. ..
cont. next issue!!

35

is reset, after dealing with the value
from the keyboard encoder, it cannot
be set again without physically
pressing the key AGAIN.

Thus a key pressed for a long time
can only be recorded ONCE.

The following program will detect
key 4 and run the LED across the
screen via a loop in the program and
continue to do so until another key is
pressed. This is the only way of
halting the run.

LD A,0 800 3Eo1
out h),A so2 D3og4
804 3Eo01
OUT 3), 806 D3 03
808 06 oOf
L'i‘ 80A 76
LD Al s8oB ED 57
cp o& 8D FEO
JP NZ HALT 80F C2 0A 08
RLC B 812 CB oo
LD A 814 78
33 816 D3 03
Qi Beiay 817 CD 00 0C
JP soB 81A C3 0B 08
At 0Co0:
11 FF 0A
1B
7B
B2
C2 03 oC

Press RESET, GO.
Press Key 4 to shift LED.
Press any other key to HALT LED.

AUTO RETURN AND STOP

The following program detects 3
keys. The + key shifts the LED left,
the ‘O’ key stops the LED and key ‘4’
shifts it right.

The speed of travel across the display
is controlled by the length of time of
the DELAY ROUTINE.

LD A,01 800 3EoO1
OUT (4)A 8oz D304
LD A? 1 804 3EO01
OUT (3),A sob D303
LD B,o1 808 06 01
HALT soA 76
LD A soB ED 57
P o& soD FE 04
JP NZ 81A 8oF C2 1A 08
CB 812 CBoo
LD Atlsl A 14 ;/)s
81 3 03
CALL B¥LAY 817 CD 00 0C
81A 10
JP NZ HALT 81C C2 0A 08
CB iF CBos
JP 80B 821 C3 OB 08

At 0Co0:

4-DIRECTION SHIFT

This program is an extension to the
previous listing to obtain a 4-direction
shift.

-

The four buttons we have chosen for
controlling the LED are: —, 5, 2 and 0.
There is no auto repeat feature in this
listing and the LED can be moved
around the entire display by using the
keys mentioned.

LD A,01 800 3EoO1
ouT b),A gsoz D3o3
LD 804 4%
LD A o1 gos 3Eo1
OUT (4),A 807 D304
LD C,A 809 4F

ALT S80A 76

A, 80B 57
11 80D E 11

JPNZ8IA 80F Ci21A08

RC B 812 B 08
oL ss Dros

3

P so(» 817 C3 OA o8

P 0§ 81A lc"E g; 08
JPNZs27 s8iC C2
RLC B 8iF CB oo
iAn, B D

2

JP 80 » 824 C3 OA o8
P e o Cassos

4 [34 82 CB 01
16?114 ’E) A 3) 04
9B 8o 831 C3 OA 08
CP 00 834 FEoo
JPNZSoA 83 C20A08
RLC C 839 CBo9
Ut ’?) A 8€ s 04
B S0 83E C30A08

This program is the basis of a game
we will be presenting in_the next
issue. Basically it is a HUNT THE

game in which a secret co-
ordinate is selected and the object of
the game is to locate the fox in the

36 TALKING ELECTRONICS No. 11

MINIMUM NUMBER OF MOVES.
The LED is the pack of hounds and
when they coincide with the fox, the
screen will flash a victory or produce
a hunting tune.

The completion of the game is up to
you. Try your hand at writing a game
along these lines and send it in for
publishing in the next issue.

In the little space left | would like to
include a program from one of our
readers.

Inspired by the content of issue 9, a
TEC-1 and a Z80 Machine Code
book. he has written a sound effects
program which will really amaze you.
It is a complex sound generator
which is fully programmable and it is
only when you start to change some
of the data bytes, that you will see
now it goes together.

ALIENS ATTACK RUN
by M J Allison, 3095
Ln m.,oqos 800 210309
803 3E o1
D ni.,A 805 77
LD C,3 806 0b 30
CALi om 808 CD OE 09
i x 80B 34
DJN C LL 80C 10FA
JP 08 80E C3 0008
PUSH AF 900 F§
PUSH DE 901 Ds
LD DEhM" 902 11 20 00
C D’ 905 1
LD A,D 906 7JA
Fils W &
9 2 05 0
OP DE B D1 ’
POP AF 90C F1
RETURN 90D C9
PUSH AF E F5
PUSH BC 9oF C5
LD BC,00AA 0910 01 AA 00
LD A,80 13 3E 80
OUT (I)A 915 3 01
At 917 3E 00
OUT 1),A 919 D3 o1
CALL 0900 91B CD 00 09
C BC 91E OB
LD A,B 91F ;s
TRt B o
2 13 0
POP Bé 9’24 C1 30
POP AF 92§ F1
TU 926 C9

I have run out of raom for this issue and still
have lots more programs and ideas. Next
issue will contain anaother 20 pages of
programming and include 2 more programs
from Mr Allison,

Turn to P.50 for 6 pages on the RELAY DRIVER
BOARD project and type in the program for
operating the relays.

The projects for next issue| I'll keep
them a secret, but you'll be very pleased; |
assure you.

PC ARTWORK 7% _*

—
00 -

|

J

1o

0!

74
!

2!

)

?
|
s

l»
]

L
?

e s

!

—

._Jl!l eage

advod
d3AlHA / AV'IHH

MORE PROGRAMS FOR i 135

THE 8x8 DISPLAY:

The 8x8 matrix was a very popular
‘add-on’, with nearly every TEC
owner building up a display.

Here are some more programs for the
matrix, commencing with a simple
routine similar to the FAN OUT on
P.34 of issue 11.

FAN OUT MK I
LD A,01 800 3Eo01
OUT (3)A 80z D303
OUT (4),A 804 D304
RLA 806 07
PUSH AF 80 F§
CALL DELAY 8o CD 00 09
P AF 80B 1
C A 8oC 3C
JP NZ 8oz soD C20208
A,FE 810 3EFE
OUT (3),A 812 D303
T (4 814 D304
A 816 07
H AF 81 F§
CALL DELAY 81 CD 00 09
AF 81B F1
DECA 81C 13D
JP NZ 812 81D C2 1208
JP 802 820 C3o0208
Delay at 0900:
v at 09 11 FF 06
iB 7B B2
C2 03 09
Co
BOUNCING BALL

by 6 L Dunt, 3219.

Bouncing Ball is an extension of
‘ARDUND THE DISPLAY (issue 11, P.289).

The diagram below shows the effect
produced by this program and by
varying the delay, it will appear as if
two or more LEDs are circulating the
display.

804 OE o8
o e
80A 4

B oooc
8oF LB 07
oD
812 C2 o8 08
DELAY AT oCoo:
11 FF 06
1B
7B
B2
C2 03 oC
Cy
Type_the first section into the TEC
and RUN. This will check the code-
values and prevent a major mistake.
Type the second stage and

Continue this way until the whole
program has been inserted.

815 3E 02
817 D303
819 OE 08
81B 3E 80
:lg D3 o4

1
::o &) 00 0C

3

824 LB oF
826 oD
827 Cz21Do8
82A 3E 04
82C D3o3
82E OE 08
830 3Eo1
:;: D3 o4
835 &) 00 0C
838 78
H R
83C Cz23208
83F 3Eo08
841 D303
843 OE 08
845 3E 80
:27 D3 04
u& 8) 00 oC
84D 18
I
851 C2 47 08
854 3E10
856 D3 o3
GA SEor
e o

g ésn 00 0C
w fae
866 C25C o8

26 TALKING ELECTRONICS No. 12

86! E 20
86 3 03
8D OE
86F E 80
A
:;4 !:3) 00 0C
87 EB oF
87A oD
87B C2 7108
87E 3E 40

0o D303
882 OEo08
884 3Eo01
g: D3 o4
g &b 00 0C
s oo
890 C2 86 08
893 3E 80
l:s D3 03
897 OE 08
899 3E 80
:’5 D3 o4
O:E ﬂ) 00 0C
8AI1
:ﬁ B OF
8A5 C29B o8
8A8 3Eo01
SAA D3o4
BAC OEo0b
SAE 3E 40
:g: D3 03
8B3 .i} 00 oC
8B6
$By o
8B, C2 Bo o8
8BD C3 0008

JUMPING LEDs.

- by 6 L Dunt, 3219.

This program demonstrates multi-
plexing in an easily understood
manner.

=)

By adjusting the SPEED CONTROL,
the flickering effect of each LED will
be speeded-up to give.a steady
pattern.

LD A,01 800 3E o1
OUT (3),A 80z D303
UT (A 804 D3o
CALL DELAY 806 CD 00 0C
A,02 809 3Eo02
OUT (3),A 8B D303
OUT LA SOF Do
LL l;kl.. 811 CD oo oC
LD A4 814 3E04
OUT(3),A 816 D3o3
818 D3 o4
CALL DELAY 81A CD 00 oC
LD A,08 81D 3E 08
OUT (3),A 81F D3 o3
GUT A 833 Ds o4
4 3 0
CALL Biav 825 CD 00 oC
LD A,10 828 3E 10
OUT (3),A 82A D303
OUT (4);)A 82C D304
CALL DELAY 82E CD 00 oC
LD A,20 831 3E 20
OUT (3),A 833 D303
ad, B
AL BKiAY 837 CBoboc
A,40 83 E 40
i B BB
CALL BELAY 842 cD 00 oc
LD 845 3E 80
OUT{A 847 D303
LD A,0 49 3E 08
ouT (ﬂ A 848 D304
CALL DELAY 84D CD 00 oC
JP 0800 850 C3 0008
DELAY at 0C00:
11 OF OoF
1B
B
2
C2 03 0C
Co

Change delay to these values to
create the full multiplexing effect.

at 0Coo: 11 oD o1

11 6F 00

N

PRODUCING A LETTER

This extension to JUMPING LEDs
program produces a letter of the
alphabet. It will show the flexibility of
multiplexing. Any figure or shape can
be created on the screen.

The letter we will produce is the letter
‘A’. This will be somewhat dimmer
than when displaying one or two
LEDs due to the current limitation of
the latch at port 3. It cannot supply
sufficient current to turnon 8 LEDs at
the same time. A set of emitter-
follower transistors would cure the
problem.

To reduce the flicker even more,

LD B,08 800 o0b 08 change the value of B for FF to §0(or
LD Aj01 802 3E o1 similar value). If the display is too
LD “L1°B°° 804 21 00 OB dim, try our next modification:
°UTI}SR A 807 D303
¥ 809 F INCREASING THE
3{)} 'I'A{%k) z:n 7E BRIGHTNESS OF THE 8x8
° R
CAILBRLAY Sob CB%hon [bugnness of te 5:8 con be
POP AF ::2 :.3‘ the display with a set of transistors.
C A 812 :
DECE B s e e
2 07 O transistors. Don't forget to cut the PC
JP 800 818 C3 0008 tracks to each of the columns of LEDS
before starting assembly.
Delay at 0A00: S5v
}%;OF o1 -—yr—
h fo
C2 03 0A =N
Co SONN N N NS
at 0Boo:
?Y‘I;EJABALE
or letter A:
00 }\ }
1F ©
3F |d20 7418273
64 or 7418374
64 n or 7418377
g 18 3 4 17 14 7
o I TTTT

PODUCING A SHORT DELAY

When running the letter program
above, you will find a disturbing
flickering produced by the scan
routine. This is basically due to the
number of operations which must be
carried out by the 280 for each
complete cycle of the program.

This takes a lot of clock cycles and
the scan speed cannot be increased
without increasing the clock
frequency.

The solution is to provide a delay
routine which requires less clock
cycles for each loop.

This can be done by using the B
register and an auto decrement
function DJNZ.

becomes zero.

At 0A00 the following delay routine
is inserted:

PUSH BC Cs
LD B,FF 06 FF
DJNZ 10 FE
POP BC c1
Return Co

Note: The B register must be pushed
onto the stack before it can be used
as a decrementing register as it is
alreay used in the main program to
count the number of DATA BYTES.

‘.

; This will auto- ,
matically decrement register B until it *

This will enable you to start experi-
menting with different letters and
shapes on the display and allow you
to see them in a brightly lit room.

We will continue next issue with
running these letters across the
display in a similar manner to the
running signs in shop windows etc.

AND NEXT MOWTH... . .

TALKING ELECTRONICS No. 12 27

MAGIC SQUARE =

This is a fun game for the 8x8 that will
have you amused and frustrated for
hours.

The object is to light up the outside
square of the 8x8. The game is made up
of three 2x2 boxes of LEDs with a space
between each. This full use of the
8x8 to display a playing field that is ac-
tually 3x3.

Nine keys are used to play the game and
each key corresponds to a group of
LEDs on the display.

TO SET UP

This game, like JMON, requires EITHER
a 4k7 resistor between the NM1 (pin 17
of the Z-80) and D6 (Pin 10 of the Z-80)
OR the LCD expansion board with the
input chip fitted on port 3.

The 8x8 is fitted to ports 5 and 6 with the
port select strobe of the left-hand latch
going to port 6.

This is very important! (once you master
the game, try swapping them over, this
willinvert the playing field and gives you
a mirror image to work with).

The 8x8 is placed with the LEDs above
the latch chips.

Itis important to fit the 8x8 before typing
in the code or at least hold down the
reset if you have already entered the
code, by using your third hand.

MAGIC SQUARE has been written to
run with the TEC crystal oscillator how-
ever it will work with the 4049 oscillator
but the tones will be lower pitched.

TO PLAY

Type in the code and save it if you have
a tape system. Now address 0C00 and
press GO. The code is placed at 0C00
to allow Simon and Magic Square to be
saved, loaded and played together
(however they do not require each
other). (Unfortunately Simon has been
held over to issue 16 because of the
shortage of space in this issue).

After starting the game, a random pat-
tern appears. By pressing the game
keys, the playing field will change. Each
key has a particular effect that remains
constant throughout the game. The ef-
fects of each key is for you to work out!
The keys used for the game are: 4, 5, 6,
8,9,A,C,DandE.

As you can see, these make up a 3x3
box pattern on the keyboard.

Gotoit! The object ofthe game isto light
up the outside border with the centre
OFF.

A fair point to add is that it is always
possible to do this regardless of the
starting pattern - believe it or not!

by Jim Robertson

When (if!) you finally succeed, your effort
will be greeted enthusiastically on the
8x8. The game may be re-started by
hitting the GO key.

HOW THE SOFTWARE
WORKS

Three random numbers are generated
from the time it takes to release the GO
key and also from the refresh register.
The three lowest bits of these three
bytes are used to form a 3x3 matrix. The
top 5 bits are ignored.

All processing, pattern changing and
testing is done on this 3x3 matrix. After
processing, this matrixis converted to its
equivalent 8x8 display and then
scanned. A loop is used to scan the 8x8
and read the keyboard until a key is
detected.

When any key is detected for the first
time, a flag byte remembers this and the
program will ignore any subsequent
pushes.

This allows each key to be processed
just once. When no key is pressed, the
flagis cleared to allow the next key to be
processed.

When a key is pressed and allowed as
a"FIRST KEY" press, it is checked for a
corresponding table entry. If no cor-
responding value is found, the key is
ignored. This is how the unwanted keys
are masked.

After a key has been validated a table
entry 9 bytes higher is accessed. This
entry is a byte that will be exclusive-
ORed with the first byte of the 3x3 matrix.
A second byte 9 bytes higher again con-
tains the low order byte of the address
of the 3x3 matrix entry. The first byte is
now EX-ORed with the matrix byte and
the result stored as the new updated
matrix byte. This is how the patterns are
changed.

The above process is repeated for the
second and third matrix bytes. The exact
same process described above is used.
The entry for the second byte is 9 bytes
higher than the first and the address 9
higher again.

The same convention is used for the
third entry. This convention allows aloop
to be used for all three matrix bytes. This
loop is located at 0C49.

After the above process, the 3x3 is
checked for the required box pattern. If
correct, the pattern is converted to its
8x8format and flashed with accompany-
ing tones.

If the pattern is not complete, the pro-
gram loops back to the main playing
loop.

56 TALKING ELECTRONICS No. 15

A routine at 0CAB converts the 3x3 to
8x8 display format. This routine is called
after all the required processing has
been performed on the 3x3 matrix. This
routine is a loop that gets each 3x3
matrix byte, calls another routine to con-
vert each matrix bit to two 8x8 bits and
spacing, then stores the result twice and
adds a blank line.

The last blank line is ignored by the scan
routine and the result is an 8x8 format.
At 0CC4 a loop converts one bit to two
and adds spacing. This is done by shift-
ing the matrix bit into the carry and if the
carry is clear, the two 8x8 bits are left
clear and shifted twice for the 2x2 box
bits and once for the space between.
Ifthe carry is set, the 2x2 box bits are set
by rotating the SET CARRY into the 8x8
byte and also setting bit 7 before rotat-
ing. This will then set the carry after the
first rotation, ready for the second rota-
tion. The third rotation clears the space
bit. After this is done three times, the 8x8
byte is rotated back to remove the last
unwanted space before retuming.

THE TONE ROUTINE

The tone routine is located at 0CD8. The
duration of the tone period is in D while
the cycle count is in E. The "KEY
PRESS" beep uses this value loaded
into DE while other tones such as the
restart tone load DE before calling the
tone routine.

SCAN ROUTINE

The scan OCE7 is a straight-forward
multiplex routine except that it scans
backwards. This allows the 8x8 to be
right-way-around while keeping the rest
of the program straight forward (other-
wise the 8x8 buffer would need to be
loaded backwards).

"Magic Square” contains a number
of very valuable "building blocks”
that -can be used in your own
programs. It can stand studying for
many hours to see how the various
operations have been achieved.
The fully documented program is
presented on the next two pages
and you should add your own notes
alongside Jim's to help you under-
stand what is happening at each
step.

Colin Mitchell.

MAGIC SQUARE PROGRAM

0C15
0C18
0C17
MAIN 0C1A
PLAYING 0C1D
LOOP 0C20
0C22
KEY 0C24
PRESSED 0C26
0c27
0C2A
0c2C
0C2F
0C30
0C32
0C34
0C37
0C3A
0C3D
0C3F
0C41
0C43
KEY 0C45
VALID 0C48
0C49
0C4C
0C4E
0C4F
0C50
0C51
0C52
0C53
0C54
0C55
0C56
0C58
0CsB
0C5C
0C5E
0C60
0C62
0Ce3
0Ce4

PATTERN 0C72
DONEI 0C75
0C78
0C7B
0C7D
0C7E
0C80
0C83
0C84
0C86
0C87
0cs9
0C8C
OC8F

11 00 00
1

LD DE,0000
INC DE
INA,(03)

RLCA

LD (0D42)A
CALL 0CAB
CALL 0CE7

LD (0D43),A

JROC1D

LD A,(0D43)
RA

o
JRNZ,0C1D
LD AFF

LD (0D43),A
LD HL,0D00

LD BC,0009
IN A{00)
AND 1F

CPIR
JRNZ,0C1D
CALL 0CD8
DEC HL

LD DE,0009
LD B,(03)
ADD HL,DE

DJNZ,0C4E
LD HL,0D40
LD A (HL)
AND 07

cPoO7
JRNZ,0C1A
INC HL

LD A(HL)
AND 07
CPO5
JRNZ,0C1A
INC HL

JR NZ,0C1A
CALL 0CAB
LD DE,0030
CALL 0CDB

DE
JRNZ,0C80
XOR A
OUT (06) A
CALL 0CD8
LD BC,1500
DEC BC

Random number generated
by the duration it takes the player to release the key at the start of the
program.

The value of the refresh register is loaded into the accumulator.

D register is added to the accumulator and stored as the first value.
E register is added (with carry) and stored as the second value.
Registers are added to the accumulator and shifted to produce the
third random number. This is also stored.

Call 3x3 to 8x8 conversion routine.

Call scan.

Test for key press.

If bit 6 on port 7 HIGH then no key is pressed.

Jump if key pressed otherwise clear "key pressed" flag and loop until
key pressed. Otherwise clear.

"key pressed” flag.

Loop until key pressed.

Test "first key press” flag.

Jump if key already pressed, otherwise set key pressed flag

HL = base of valid key table.

BC = number of valid key entries

Get input value from encoder chip

mask unwanted bits

block compare with increment.

NZ means no right entry. After all values tested, ignore key.
Key valid. Call key pressed beep.

Decrement HL as CPIR increments it before testing the zero flag.
DE = table index.

Set B for 3 loops. One for each matrix byte.

Get value to EX-OR with matrix.

Savein A.

Calculate address of low byte of matrix byte and put in HL.
Save for later.

Set HL to matrix byte address.

Toggle bits and store

as updated matrix byte

Recover HL

Loop for 3 bytes.

Check for box pattern. (HL) = first matrix byte.

Remove unwanted bits

andtestfor7 (111)

Jump to main playing loop if not 7, otherwise
Test second matrix byte.

Testfor 5,(101)

Jump if not, otherwise

do third matrix

byte which should

be equal

to 7 (111)

Jump if not box pattern.
Pattern right so call 3x3 to
8x8. L DE with win tone
and call tone routine.

Set Bfor 3 flashes.

and save count

D = scan counter

Call scan.

Loop untii D=0

Clear display.

Call beep.
Load BC with off time

and delay. TALKING ELECTRONICS No. 15 57

0C90 78 LDAB

0C91 Bt ORC

0C92 20FB JR NZ,0C8F

0C94 Ct POP BC Recover flash loop counter
0C95 10E6 DJNZOC7D and loop for 3 flashes.
0C97 CDE70C CALLOCE7 Call scan.

0C9A DBO00O IN A,(00) and loop continuously
0C9C E61F AND 1F looking for the GO key
0CO9E FE 12 CP 12 1o be pressed.

0CA0 20F5 JRNZ,0C97 Jump if GO not pushed.

0CA2 118000 LDDE080 Load DE with restart tone
0CA5 CDDBOC CALLOCD8 Calltone.
0CA8 C3000C JPOCO0 Restart game.

3x3 O0CAB 0603 LD B,03 B = loop counter set for 3 conversions.
to OCAD 21400D LDHL,0D40 HL = address of 3x3 matrix.
8x8 0CBO 11500D LDDEOD50 DE =8x8 buffer.
MATRIX 0CB3 C5 PUSHBC Save loop counter.
TO 0CB4 7E LD A,(HL) Get matrix byte.
DISPLAY 0CB5 CDC40C CALLOCC4 Call1 to 3 bit conversion.
FORMAT 0CBS 12 LD (DE),A Save first display
ocCB9 13 INC Di
0CBA 12 LD (DE).A byte twice
0CBB 13 INC D| and then
O0CBC AF XOR A add
0CBD 12 LD(DE),A ablankline
0CBE 13 INC DE increment to next display buffer.
OCBF 23 INC HL Increment HL to next matrix byte.
0cCo Ct POP BC Recover loop counter.
0CC1 10F0 DJNZ OCB3 Repeat for 3 bytes.
0CC3 C9 RET) done.
1TO3BIT 0CC4 010003 LDBC,0300 B =23loops.Ciscleared ready to receiver display byte.
CONVER- 0CC7 OF RRCA Rotate matrix byte to set or clear carry.
SION 0CC8 3002 JRNC,0CCC Jump NC to shift C 3 places
. OCCA CBF9 SET7,C else set bits 1 and 2 of C with SET CARRY and
0CCC CB11 RLC bit 7
OCCE CB11t RLC rotate C left
0oCcD0 CB 11 RLC Last rotation inserts space
ocD2 10F3 DJNZOCC7 do for 3 loops
0CD4 CB19 RRC remove last space
ocDs 79 LDAC place resultin A.
ocD7 C9 RET done.
BEEP ocD8 115050 LD DE,5050 D= period E =loop counter
0CDB AF XOR A Clear A.
TONE 0CDC D301 OUT (01),A Sound out to speaker.
OCDE 42 LDB, Delay for tone
OCDF 10FE DJNZ OCDF period.
OCE1 EE80 XOR 80 Toggle bit 7,A (speaker bit)
0CE3 1D DECE Decrement loop counter.
OCE4 20F6 JR NZ,0CDC Loop until zero.
0CE6 C9 RET Done.
SCAN OCE7 21570D LDHL,0D57 HL =end of 8x8 buffer.
OCEA 0680 LD B,80 B = scan bit output byte.
0CEC 7E LD A(HL) Output first display
OCED D305 ouT gs),A byte to port &
OCEF 78 LDA, then output scan bit
OCFO D306 OUT (06),A toport6.
0OCF2 0640 LD B,40 short multiplex
OCF4 10FE DJNZ OCF4 display del ‘)‘l'
OCF6 2B DEC HL Decrement HL to next display byte
0CF7 47 LDBA replace scan bitin B.
0CF8 AF XOR A clear accumulator and
OCF9 D306 ouT (gs),A output to port 6.
0CFB CBO08 RRC Shift scan bit loop until scan bit
OCFD 30ED JR NC,0CEC falls into carry
OCFF C9 RET then return.

TABLES:

0D00: 04 05 06 08 09 OA OC 0D OE 06 04 0007 02 00 03
0D10: 01 00 40 40 40 40 40 40 40 40 4040 06 04 02 07
0D20: 02 01 03 01 41 41 41 41 41 41 41 41 41 00 04 06
0D30: 00 02 07 00 01 03 42 42 42 42 42 42 42 42 42

58 TALKING ELECTRONICS No. 15

64 x 5mm LEDS

o e
wu €12 =

Cwﬂlzo_mf 5924
x BEEO8

. 8x8 DISPLAY

STROBE Y

i

£L8STivL

