###gz### 44 g BE #4 #é

: i Ri4E 4 By us

#H# 44 #e HE RE Al

A # HE - REAE #H#

HAHH CE I
HREREHY ## HEUB LY A#HH HHBYHH
#it L - HiHE #E #H 4 44
YRRy 8 B 44 Hedi4H ## ##
A B HUHAHBHH #4 Ui ## #y
#EpdHHY ## H4 RABEHE #y4d Hudsny

EXPERIMENTER" S KIrT

Copyright (C) 1977 by Tom Pittman

GETTING THE MOST OUT OF TINY BASIC

TINY BASIC in the 6800 and 6502 was designed to be a small but
powerful language for hobbyists., It allows the user to write and
debug guite a variety of programs in a language more natural than
hexadecimal absolute, and programs written in TINY are reasonably
compact, Because the language is small it is not as convenient for
some applications as perhaps a larger BASIC might be, but the
enterprising programmer will find that there is very: little that
cannot be done from TINY with only occasicnal recourse to machine
language. This is, in fact, as it should be: the high level
language provides the framework for the whole program, and the
individual esoteric functions done in machine language f£ill in the
gaps, :

For the remainder of this article we will assume one of the
standard TINY BASIC programs which follow the memory allocations
defined in Appendix D of the User Manual[l], Specifically, memorv
locations 0020-0023 contain the boundaries of the user work space,
and so on, If your system differs from this norm, you may have to
make adjustments to Page 00 address locations referenced here, but
everything else should be applicable, Because there are almost as
many different starting addresses for the TINY BASIC code as there
are versions, we will assume that the variable "S" contains the
starting addregss. In other words, for the R _ version (Mikbug)

S=256, the "K' and "s" versions S=512, for "T " (KIM-2 4K) S=8192,
etc,

THE USR FUNCTION

Perhaps the least understood feature of TINY BASIC is the
machine language subroutine call facility. Not only is it useful
for calling your own machine language subroutines, but the two
supplied routines let you get at nearly every hardware feature in
your computer from a TINY BASIC program, including input and output
directly to your peripherals.

First, how do subroutines work? In machine lanquage a
subroutine is called with a JSR instruction. This pushes the return
address onto the stack and jumps to the subroutine whose address is
in the JSR instruction. When the subroutine has finished its
operation it executes the RTS instruction, which retrieves that
return address from the stack, returning control of the computer to
the program that called it., Depending on what function the
subroutine is to perform, data may be passed to the subroutine by
the calling program in one or more of the CPU registers, or results
may be passed back from the subroutine to the main program in the
same way. If the subroutine requires more data than will fit in the
registers then memory is used, and the registers contain either
addresses or more data, In some cases the subroutine has no need to
pass data back and forth, so the contents of the registers mav be
ignored,

If the main program and the subroutine are both written in

TINY BASIC you simply uss the GOSUB and RETURN commands to call and
return from the subroutine. This is no problem, But suppose the
main program is written in TINY and the subroutine is written in
machine language? The GOSUB command in TINY is not implemented
internally with a JSR instruction, sc it cannot be used, This is
rather the purpose of the USR function,

The USR function call may be written with up to three
arguments, The first of these is always the address of the
subroutine to be called, If vou refer to USR(12345) it is the same
as if you had written a machine language instruction JSR 123453 the
computer saves its return address on the stack, and jumps to the
subroutine at (decimal) address 12345, For those of you who worry
about such things, TINY does not acutally make up a JSR with the
specified address in it, but rather simulates the JSR operation with
a sequence of 1nstructions designed to have the same effect the
interpreter is clean (pure code"), and does not modify itself

S5¢ now we can get to the subroutine from a TINY BASIC program,

Getting back is easy. The subroutine still simply executes a RTS
instruction, and TINY PASIC resumes from where it left off,

If you want to pass data to the subroutine in the CPU
‘registers, TIVY allows you to do that also, This is the purpose of
the second and third arguments of the USR function call, If vyou
write a second argument in the call, this is evaluated and placed in
- the index register(s) of the CPU; if you write a third argument it
goes into the accumulator(s). If there are results from the
subroutine’s operation, they may be returned in the accumulator(s)

and TINY will use that as the value of the function, Thus writing
the TINY BASIC statement

LET P = USR (12345,0,13)

is approximately equivalent to writing in machine landquage

LDX #0
LDAA #13
JSR 12345
STAA P

Now actually there ars some discrepancies, The 6300 and the 6502
are 8-bit CPUg but TINY does evervthing in 16-bit numbers, S0 in
the 6502 the second argument is actually split between the X and the
Y registers (the 6800 has a 16-bit index, so there is no problem),
and the third argument is split between the A and B registers in thp
6800 (the 6502 has no register corresponding to B, s0 the most
significant 8 bits are discarded); the returned value is expacted

to be 16 bits, so the most significant 8 bits are assumed to be in
the Bor Y register.

It is important to realize that the three arguments in the USR
function are expressions,., That is, any valid combination of
(decimal) numbers, variables, or function calls joined together by
arithmetic operators can be used in any argument, If the variable
C=6300 or C=6502 (depending on which CPU you have), the following is
a perfectly valid statement in TINY BASIC:

13 P=P+0*USR(S+24,USR(S+27,46+C/6800),13)

When thls line is executed, the inner USR call occurs first, jumping
to the "PEEX" subroutine address to look at the contents of either
memory location 002E or O02F (depending on whether C<6800 or not):
this byte is returned as its value, and is passed immediatelv as the
second argument of the outer call, which stores a carriage return in
the memory location addressed by that byte, We are not interested
in any result data from the store operation, so the result is
multiplied by O (giving zero) and added to some variable (in this
case P), which leaves that wvariable unchanged,

What kinds of things can we use the USR function for? As we
gaw in the examEle above Jwe can use it with the two built-in
subroutines to peek’ or "poke"” at any memory location, In
particular this gives us the ability to directly access the input
and output devices in the memorvy space,

DIRECT INPUT % OQUTPUT

Suppose you have a PIA at memory address 8006-8007 (the B side
of the PIA used by Mikbug, but any PIA will do}: We want to read a
4-bit BCD digiswitch in through the low four bits, and cutput to a
7-segment decoded display through the high four bits, For
simplicity we will read in the switch setting, add one, and output
it to the display, then repeat, This program will do it:

100 REM SET UP PIA DATA DIRECTION

110 B=327684+6

120 X=USR(S+24,B+1,0)+USR(S+24,B,240)+USR(S+24,B+1,4)
130 REM THE FIRST USR SETS THE CONTROL REGISTER
135 REM TO POINT TO DATA DIRECTION REGISTER
140 REM THE SECOND STORES HEX FO IN IT

150 REM THE THIRD SETS THE CONTROL REGISTER

155 REM ~ TO POINT TO PERIPHERAL DATA

160 REM X IS GARBAGE

200 REM INPUT A NUMBER

210 D=USR(S+20,B)

220 REM REMOVE TRASH AND ADD ONE

230 D=D-D/16%*16+1

240 REM OUTPUT IT

250 X=USR(S+24,B,D#*16)

260 GOTO 200

You can also use the USR function for direct access to the character
input and output routines, although for input you need to be careful
that the characters do not come faster than your TINY BASIC proaram
can take them, The following program inputs characters, converts
lower case letters to capitals, then outputs the results:

10 REM READ ONE CHARACTER

20 A=USR(S+6)

30 REMOVE PARITY FOR TESTING

40 A=A-A/128%)28

50 REM IF L.C,, MAKE CAPS

60 IF A>96 IF A<123 THEN A=A-32
70 REM OUTPUT IT

80 A=USR(S+9,A,A)

90 GO TO 10

Because of the possible timing limitations of direct character
input, it may be preferable to use the buffered line input
controlled by the INPUT statement of TINY, Obviously for input of
numbers and expressions there is no question, but for arbitrarv text
input it is also useful, with a little help from the USR function,
The only requirement is that the first non-blank characters bhe a
number or (capital) letter, Then the command,

300 INPUT X

where we do not care about the value in X, will read in a line into
the line buffer, affording the operator {that’s you) the line
editing facilities (backspace and cancel), and put what TINY thinks
is the first number of the line into the variable X. Now,
remembering that the line buffer is in 0030-0078 (approximately; the
ending address varies with the length of the line), we can use the
USR function and the PEEK routine (S+20) to examine individual
characters at our leisure, To read the next line it is essential to
convince the line scanner in TINY that it has reached the end of
this line, Location 002E-Q02F normally contains the current pointer
into the input linei if it points to a carriage return the next
INPUT statement will read a new line, so all that is needed is to
store a carriage return (decimal 13) in the buffer memorv location
pointed to by this address (see line 13 above),

STRINGS ;

As we have seen, character input is not such a difficult
proposition with a little help from the USR function, (Character
output was always easy in the PRINT statement}, What about storing
and manipulating strings of characters? For small strings, we can
use the memory space in 0000-001F and 00CB-00FF, Drocessinq them one
character at a time with the USR function., Or, if we are careful,
we can f£ill up the beginning of the TINY BASIC program with long REM
statements, and use them to hold character strings (this allows them
to be initialized when the program is typed in)., For example:

REMTHIS Is A 50-CHARACTER DATA STRING FOR USE IN TINY
REMO 2 3 4 5
REMI23456789012345678901234567890123456789012345678q0
REM,,,IT TAKES 56 BYTES IN MEMORY: 2 FOR THE LINE 4,
REM....s3 FOR THE REM , AND ONE FOR THE TERMINAL CR.

O U s W N

If you insert one line in front to GOTO the first prooram line, then
your program will RUN a little faster, and you do not need the
letters REM at the beginning of each line (though you still need the
line number and the carriage return), If you are careful, you can
remove the carriage returns from all but the last text line, and the
line numbers from all but the first text line [(replace them with
data characters), and it will look like a single line to the
interpreter, Under no circumstances should you use a carriage
return as a Jata character; if you do, none of the GOTOs, CGOSURBs or
RETURNs in your program will work,

Gee, you say, if it weren’t for that last caveat, I could use
the same technique for storing arrays of numbers,

ARRAYS

So the question arises, can the USR function help get around
the fact that TINY BASIC does not have arrays? The answer is of
course, yves, Obviously the small amount of space left in Page N0
and elsewhere in your system after TINY has made its memory grab is
not enough to do anything useful, The possibility that one of the
numbers might take on the value 13 means that you cannot use the
program space, What else is there? Remember the memory bounds in
0020-0023, If you start TINY with the Warm Start (S+3), you can put
any memory limits you wish in here, and TINY will stay out of the
rest of memory., Now you have room for array data, subroutines, or
anything else, You ¢an let the variable A hold the starting address

of an array, and N the number of elements, and a bubble sort would
look like this:

500 LET I=1

510 LET K=0

520 IF USR(S+20,A+I)>=USR(S+20,A+I-1) GOTO 540
530 K=USR(S+20,A+I)+USR(S+24,A+1 ,USR{S+20,A+I-1))
535 K=USR(S+24,A+I-1,K)¥*0+1

540 I=I+1

550 IF I<N GOTO 520

560 IF K<>0Q GOTO 500

570 END

Of course this not the most efficient sort routine and it will be
veerrry slow, But it is probably faster than writing one in machine

language, even though the machine language version would execute
faster,

THE STACK

A kind of sneaky place to store data is in the GOSUB stack,
There are two ways to do this without messing with the Warm Start,
But first let us think about the rationale.

When you execute a GOSUB, the line number of the GOSUR is
saved on a stack which grows downward from the end of the user
space, Each GOSUB makes the stack grow by two bvtes, and each
RETURN pops off the most recent saved address, to shrink the stack
by two bytes, Incidentally, because the line number is saved and

not the physical location in memory, you do not need %o worry about
" making changes to your program in case of an error stop within a
subroutine, Just don’‘t remove the line that contains an unRETURNed
subroutine (unless vou are willing to put up with TINY's
complaint), '

The average program seldom needs to nest subroutines (i.e.
calling subroutines from within subroutines) more than five or ten
levels deep, and many computer systems are designed with a2 built-in
limitation on the number of subroutines that may be n=sted, The
8008 CPU was limited to eight levels, The 6502 is limited to about
120, Many BASIC interpreters specify some maximum, I tend to fe=al
that stack space, like most other resources, obeys Parkinson’s Law:
the reguirements will expand to exhaust the available resource,
Accordingly, the TINY BASIC subroutine nest capacity is limited onlvy
by the amount of available memorv. This is an important concept,

If my program is small (the proc-am and the stack contend for the
same memory space), I can execute hundreds or even thousands of

GOSUBs before the stack fills up, If there are no corresponding
RETURN statements, all that memorv just sits there doing nothina,

If you read vour User’s Manual carefully vou will recall that
memory locations 0026-0027 point to the top of the GOSUR stack, ,
Actually they point to the next byte not yet used, The difference
between that address and the end of memoryv (found in 0022-0023) is
exactly the number of bytes in the stack, One greater than the
value of the top-of-stack pointer is the address of the first byte
in the stack,

If you know how many bytes of data space you neesd, the first
thing your program can do is execute half that many GOSUEs:

400 REM B IS THE NUMBER OF BYTES NEEDED
410 LET B=B-2

420 IF B> -2 THEN GOSUB 410

430 REM SIMPLE, ISN'T IT?

Ee careful that you do not try to call this as a subroutino ,because
the return address will be buried under several hundred 420 s, If
you were to add the line,

440 RETURN

the entire stack space would be emptied before you got back to the
calling GOSUB, Remember also that if you execute an END command the
stack is cleared, but an error stop or a Break will not affect it.
Before you, start this program you should be sure the stack is clear
by typing "END"; otherwise a few times through the GOSUB loop and
vou will run out of memorv.

If you are careful to limit it to the main Program, you can
grab bytes out of the stack as the need arises, An examplo of this
is the TBIL Assembler included in this document, Whether you
allocate the memory with one big grab, or a littie at a time, vou
may use the USR peek and poke functions to get at it,

The other way to use the stack for storing data is a littls
more prodigal of memory, but it runs faster, It also has the
advantage of avoiding the USR function, in case that still scares
you, It works by effectively encoding the data in the return ,
address line numbers themselves. The data is accessed in true stack
format: last in, first out., I used this technique successfullv in
implementing a recursive program in TINY BASIC,

This method works best with the computed GOTC techniques
described later, but the following example will illustrate the
principle: Assume that the variable Q may take on the values (-1,
0, +1), and it is desired to stack Q0 for later use, Where this
requirement occurs, use a GOTO (not a GOSUB!') to jump to the
following subroutines

2

3000 REM SAVE Q ON STACK

3010 IF Q<O THEN GOTO 3100

3020 IF Q>0 THEN GOTO 3150

3050 REM Q=0, SAVE IT,

3060 GOSUB 3200

3070 REM RECOVER Q

3080 LET Q=0 -

3090 GOTO 3220

3100 REM Q<0, SAVE IT,

3110 GOSUB 3200

3120 REM RECOVER Q

3130 LET Q=-1

3140 GOTO 3220

3150 REM Q>0, SAVE IT,

3160 GOSUB 3200

3170 REM RECOVER Q

3180 LET Q=1

3190 GOTO 3220

3200 REM EXIT TO (SAVE) CALLER
3210 GOTO ...

3220 REM EXIT TO (RECOVER) CALLER
3230 GOTO ...

When the main program wishes to save Q, it jumps o the entrv (line
3000), which selects one of three GOSUBs. These all converge on
line 3200, which simply jumps back to the calling routine; the
information in Q has been saved on the stack, To recover the saved
value of Q it is necessary only to execute a RETURN, Depending on
which GOSUB was previously selected, execution returns to the next
line, which sets Q to the appropriate value, then jumps back to the
calling routine (with a GOTO again!), Q mavy be resaved as many
times as you lixe (and as you have memory for) without recovering
the previous values, When you £inally do execute a RETURN vou aet
the most recently saved value of 0,

For larger numbers, the GOSUBs may be nested, each saving ons
bit (or digit} of the number., The following routine saves arbitrarv
numbers, but in the worst case requires 36 bytes of stack for each
number (for numbers less than -16383):

1470 REM SAVE A VALUE FROM V
1480 IF ¥=>=0 THEN GOTO 1490
1482 LET V==1-V

1484 GOSUB 1490

1486 LET V=z==1-V

1488 RETURN '
1480 IF V=V/2%2 THEN GOTO 1500
1500 GOSUB 1520

1502 LET V=V+V

1504 RETURN

1510 GOSUR 1520

1512 LET V=V+V41l

1514 RETURN

1520 IF v=0 THEN GOTO 1550
1522 LET V=V/2

1524 GOTO 1490

1550 REM GO ON TC USE V FOR OTHER THINGS

Note that this subroutine i1s desianed to be placed in the path
between the calling routine and some subroutine which re-uses the
variable V., When the subroutine returns, it returns through the
restoral part of this routine, which eventually returns to the main
program with V restored., The subroutine which starts at line 1550
is assumed to be recursive, and it may call on itself through this -~

save routine, so that any number of instances of V may be saved on
the stack, The only requirement is that to return, it first set V
to 0, so that the restoration routine will function correctlv,
Alternatively 6 we could change line 1550 to jump to the subroutine
atart with a GOSUB:

1550 GOSUB ...
1552 LET V=0
1554 RETURN

This requires another two bytes on the stack, but it removes the
restriction on the exit from the recursive subrOufine.

If you expect to put a hundred or more numbers on the stack in
this way you might wish to consider packing them more tightlvy, If
you use ten GOSUBs and divide by 10 instead of 2, the numbers will
take one third the stack gpace, Divide by 41 and any number will
fit in three GOSUBs, but the program gets rather long,

BIGGER NUMBERS

Sixteen bits is only good for integers 0-65535 or
{-32768)-(+32767). This is fine for games and control applications,
but sometimes we would like to handle fractional numbers (like
dollars and cents), or very large range numberg as in scientific
notation., Let’s face it: regular BASIC has spoiled us, Granted,
But if you could balance your checkbock in TINY BASIC, your wife
might complain less about the hundreds of dollars you spent on the
computer, One common way to handle dollars and cents is to treat it
as an integer number of cents, That would be OK if your balance
never went over $327.67, but that seems a little unreasonable.
Instead, break it up into two numbers, cne for the dollars, the
other for cents, Now your balance can go up to $£32,767.99, which is
good enough for now (if your balance goes over that vou probably
don‘t balance your own checkbook anyway). We will keep the dollars
part of the balance in D and the cents in C, The following routine
could be used to print your balance:

900 REM PRINT DOLLARS & CENTS
910 IF D+C<0O GOTO 960

920 PRINT "~BALANCE IS §$;D3 . ;
930 IF C<10 THEN PRINT O

940 PRINT C

950 RETURN) o
960 PRINT “"BALANCE IS -$:-Dj . 3
970 IF -C<10 THEN PRINT O;

980 PRINT -C

990 RETURN

If line number 930 is omitted, then the balance of $62.03 would
print as 62, 3" 3

Readina inh the dollars and cents is easy if you reguire that
the operator type a comma instead of a period for a decimal point
{the European tradition), If that is unacceptable, you can input
the dollars part, then increment the input line buffer pointer
{memory location 002E-002F) by oune to skip over the period, then
input the cents part. Be careful that that was not the carriaoce
return you incremented over, The USR function and the peek and poke

subroutines will do all these things nicelvy,
Adding and subtracting two-part numbers is not very difficnlt,
Assume that the check amount has been input to X (dollars) and Y
{(cents), This routine will subtract the c¢heck amount from the
balance:

700
710
720
730
740
750
760

REM SUBTRACT DOLLARS AND CENTS FROM BALANCE
C=C-Y

IF C»>=0 THEN GOTO 750

C=C+100

D=D-1

D=D~X

IF D>=0 RETURN

770
780
790
800

IF C=0 RETURN
D=D+1

C=C-100
RETURN

Adding is & little easier because vou cannot go negative (except for
overflow), so it is only necessary to check for €>99; if it is,
subtract 100 and add 1 to D, If vour dollars and cents are in
proper form (i.e, no cents values over 99), the sum will never
exceed 198, so it is not necessary to retest after adjustment,

Using this same technique you can of course handle numbers
with as many digits as you like, putting up to four digits in each
piece, A similar technique may be used to do floating point
arithmetic, The exponent part is held in one variable, savy %, and
the fractional part is held in one or more additional variables:; in
the following example we will use a four-digit fractional part in ¥,
adding to it a number in F and N:

1000
1010
10620
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240

REM FLOATING
IF
IF
4503
IF

POINT ADD FOR TINY BASIC
E~4>F THEN RETURN

N=0 RETURN

E+4<F THEN LET M=0
M=0 THEN LET E=F

IF E=F GOTO 1130

IF E>F GOTO 1100

E=E+1

M=M/10

GOTO 1040

F=F+1

N=N/10

GOTO 1020

M=M+N

IF M=0 THEN E=0

IF M=0 RETURN

IF M>9999 THEN GOTO 1230
IF M>999 RETURN

IF M<-2999 THEN GOTO 1230
IF M<-999 RETURN

M=M#¥10

E=E-1

GOTO 1170

E=E+1l

M=M/10

e

1250 RETURN

This subroutine is a decimal floating point routine: by chanaing the
divisors and multipliers appropriately, it can be made into a
binary, hexadecimal, or even terniary floating point machine, Bv
using the multiple precision techniques described in the checkbook

balance example, qgreater precision can be obtained in the fracticnal
part,

COMPUTED GOTO

One of the more powerful features of TINY BASIC is the
computed line address for GOTO and GOSUE statements, A recently
published[2] set of games to run in TINY had several large blocks of
the program devoted to sequences of IF statements of the form,

110 IF I=1 GOTO 1000
120 IF I=2 GOTO 2000
130 IF I=3 GOTO 3000
140 IF I=4 GOTO 4000
150 GOTO 100

Now there is nothing wrong with this form of program, but I'm too
lazy to type all that, and besides, I could not get the whols

program intc my memory. Instead of lines 110-140 above, the sinale
line

125 IF I>0 IF I<5 GOTC I#1000

does exactly the same thing in less memory, and probably faster,

Another part of this program simulated a card game, in which
the internal numbers 11-14 were recognized (using the same kind of
sequence of IFs) in three different places, and for each different
nunmber tnhe name of the corresponding face card was printed, The
astonishing thing was that the sequence of IFs, PRINTs, and GOTOs
was repeated three different places in the program, Now I'm olad
that Carl enjoys using TINY BASIC, and that he likes to type in
large programs to fill his voluminous memorvs but as I said, I'm
lazy, and I would rather type in one set of subroutines:

10110 PRINT “JACK"
10115 RETURN

10120 PRINT “QUEEN"
10125 RETURN

10130 PRINT "KING"
10135 RETURN

10140 PRINT “Ace”
10145 RETURN

then in each of the three places where this is to be printed, use
the simple formula,

2510 GOSUB 10000+B¥*10
Along the same line, when memory gets tight you may be able to

save a few bytes with a similar technique, Suppose your program has
thirteen GO TO 1234 statements in it: if yvou have an unused

10

variable (say, U) vou can, in the direct execution mode, assion it
the value 1234 (i.e. the line number that all those GOTOs go to),
then replace each "GO TO 1234" with a "GOTOU , squeezing out the
extra spaces (TINY BASIC ignores them anyway). This will save some
thirty or forty bytes, and it will probably run faster also,

EXECUTION SPEED

TINY BASIC is actually quite slow in running programs., That
is one of the hazards of a two-~level interpreter approach to a
language processor, But there are some ways to‘affect the execution
speed, One of these is to use the keyword 'LET in your assignment
statements, TINY BASIC will accept either of the following two
forms of the assignment statement and do the same thing,

R=2+3
LET R=2+3

but the second form will execute much faster because it is
unnecessary for the interpreter to first ascertain that it is not a
REM, RUN, or RETURN statement., In fact, the LET keyword is the
first tested, so that it becomes the fastest-executing statement,
whereas the other form must be tested against all twelve keywords
before it is assumed to be an assignment statement,

Another way to speed up program execution depends on the fact
that constant numbers are converted to binary each time they are
used, while variables are fetched and used directly with no
convargion, If you use the same constant over and over and you do
not otherwise use all the variables, assigning that number to cne of
the spare variables will make the program both shorter and faster,
You can even make the assignment in an unnumbered line; the
variables keep their values until explicitly changed,

Finally it should be noted that GOTOs and GOSURs always search
the program from the beginning for their respective line numbers,
Put the speed-sensitive part of the proagram ne=ar the front, and the
infrequently used routines (setup, error messages, and the like) at

the end, This wav the GOTOs have fewer line numberq to wade throuah
so they will run faster,

DEBUGGING

Very few programs run perfectly the first time, When vour
program does not seem to run right there are several steps vou can
take to find the problem,

First of all, try to break it up into its component parts,
Use the GOTO command and the END statement to test each part
separately if you c¢an, Add extra PRINT statements alono the wav to
print out the variables vyou are using: sometimes the variables do
not have the values in them that we expected, Also the PRINT
statements will give you an idea as to the flow of execution, For
example, in testing the sort program above (lines 500-570) I
inserted the following extra PRINT statements:

525 BR 3§
545 PR ", "3
555 PR

This gave me an idea where in the sort algorithm I was, so I could |

11

follow the exchanges (the "X"s), where each line represented one
pass through the main loop. Endless loops become more obvious this
wavy .,

If you have not used all the sequential line numbers, vyou can
insert breakpoints in the program in the form of a line number with
an illegal statement —— I like to use a single period, because it
is easy to type and does not take much space:

10 LET A=B+1234
11, .
20 GOSUB 100+A

Here when vou type RUN, the program will stop with the error
message,

1184 AT 11

Now we can PRINT A, B, etc¢,, to see what might be wrong, or tvpe in
GOTO 20 to resume, with no loss to the original proaram,

As we have seen, there is not much that TINY BASIC cannot do
(except maybe go fast), Sure, it is somewhat of a nuisance to write
all that extra code to get bigger numbers or strings or arrays, but
you can always code up subroutines which can be used in several
different programs (like the floating point add above (lines
1000-1250), then save them off on paper tape or cassette,

Remember, your computer (with TIVY BASIC in it) is limited
only by your imagination,

" REFERENCES

{1] TINY BASIC User’s Manual. Available from ITTY RITTY COMPUTERS,
P,O, Box 23189, San Jose, CA 95153,

[2] Doctor Dobb’s Journal, vl No.7, p.26. Available from PCC, P.O,
Box 310, Menlo Park, CA 94025,

12

TBIL —- The TINY BASIC Interpreter Languadge

The TINY BASIC interpreter is, in the words of Dennis Allison
who conceived it, something like an onion, There is an inner
machine language program (ML) which interprets a second program
written in an intermediate language (IL), which in turn interprets
the BASIC program, and so on. This document describes that
intermediate language and the virtual machine which executes it,

The IL interpreter is a pure interpreter in the sense that the
entire BASIC interpreter is implemented within the bounds of the
language, There are no deus ex machina escapes to machine languacge
other than the well-defined machine-language subroutine call, The
language is substantially the same as that defined by Dennis Allison
in Dr, Dobb’s Journal and PCC,

Most of the instructions in the IL occupy one bvte of code, A
few instructions mav be followed by one or more bytes of immediate
data, and there are two jump instructions which are actuallv two
bytes in lenath,

The interpreter itself uses no variable storage, Computations
are performed on an expression stack, so that all procedures are
capable of recursion. The interpreter does have access to memorv
Page 00 for data storage, but little use is made of this
capability,

The IL code is self-relative, That is, all jumps are relative
to the beginning of the IL interpreter, Thus the code can be moved
to another part of memory without re-~assembling it, The conditional
branches are PC-relative and branch only forward to a maximum
displacement of 31 bytes. An unconditional branch has a rance of 31}
bytes forward or backwards, Since the interpreter is generally
guite small this is not a seriocus limitation, There are only two or
three places where a longer conditional branch would be needed;
these are accomodated by branching to a jump. The jumps have an
address space of 11 bits, or 2K bytes from the beginning of the IL
code,

Two of the instructions include a literal text string as part
of the code, This string follows the opcode and is of arbitrarv
length, The end of the string is signalled bv the eichth bit on the
last byte being set to one, Since the text is generallyv assumed to
be ASCIT, a 7-bit code, this is a reasonable way to save space,

There are two stacks in the virtual machine, The computational
or Expression Stack has already been mentioned, The other staeck is a
control stack, used to hold subroutine return addresses. The same
control stack is used for subrouvtine returns in three languages:
BASIC, IL and ML, Thus a certain amount of care is necessarv in the
maintenance of this stack., The ML interpreter will take care of its -

13

reguirements by placing them on the stack top, and a special
parameter (SPARE)} in the main program defines the maximum amount
of space to be left on the stack for this purpecse, Overflow of this
part of the stack is not detectable, so it is essential that the
reserved space be sufficiently large, Because the ML interpreter is
not recursive this is reasonabklyv safe, provided that the stack
requirements of the I/O are known and limited., Beneath the ML stack
is the IL stack, Subroutine calls in the IL have their return
address pushed onto this stack, The ML interpreter does check for
stack overflow by measuring the distance between the top of the TL
stack and the end of the BASIC program; if this ever becomes less
than the SPARE parameter, the stack is considered to have
overflowed,

Beneath the IL stack is the BASIC stack, This holds the line
numbers for GOSUB lines as they are executed, There are two
instructions in the IL for accessing the top element of this stack
(i.e. a Push and a Pop)., For these instructions to work properly it
is essential that the IL stack be empty. No check is made in the ML
for this condition, and it is the responsibility of the TL program
to insure this form of stack integrity. In other words, BASIC

language GOSUBs and RETURNs cannot be processed within an IL
subroutine,

The interpretation of the BASIC program is tied to a pointer
(invisible to the IL) which points to the current character in the
current line, The IL has no direct control over this pointer, but
several of the TL instructions cause it to be advanced or otherwise
modified, In particular it may be changed to point to the beginnina
of another BASIC line to implement the BASIC sequence control
operations (GOTO, GOSUB, RETURN), It may alsc be exchanced with its
logical dual, a pointer to the current character in the input line
buffer, This permits the same interpreter to operate on the RASTC

program stored in memory or on a direct execution statement in the
line buffer,

There are a number of IL operations which may result in an
error condition, All errors abort the IL execution and print out on
the console the IL program counter at which the error occured, If
the program execution flag was set, the most recently accessed BASIC
iine number is also typed out in the message, The relative address
(relative to the beginning of the IL) becomes the error number in
the error message, Since only one error is possible in most
operations, this gives a unique identification of the difficulty,
The IL address is printed in decimal and represents the address of
the next byte which would have been axecuted but for the error.
There is one oOperation which has two possible failure modes; for one
of these the IL address is decremented before printing to
distinguish it from the other. Error stops may be explicitlv
requested in the IL program by the execution of a branch with a
zero offset,

After typing cut the error addresses, the ML interpreter
clears the ML and IL stacks (but not the BASIC stackl) and restarts
the IL interpreter at relative address 0, Nothing else is chanoed,
except that the execution flag is cleared, putinc the 1nterpra+or
into the command mode, When the Break condiflon is recognized in
advancing to the next BASIC statement this is treated bv the ML as

14

an error condition, after forcing the IL proqgram counter to relative
zero,

' The ML interpreter maintains a flag to distinguish prooram RUN
mode from direct statement execution (command mode). Advancing to
the next statement (an IL instruction) examines this flaa, and if
in the command mode, the IL program is restarted at the beginning,
If the flag is set in the RUN mode, execution resumes at the IL
address saved by the Execute instruction, It is important that the
execute instruction be given in the IL before any Next BASIC
statement advance, but once it has been done there is no restriction
(i.e. the saved address is never lost).,

The Break condition is tested only during the execution of the
statement advance (Next), so that resumption of an interrupted
program leaves no computational gaps. The Break condition is also
tested during a LIST opsration, but onlv to abort the listing; if
the LIST occurred within program execution (i,e, with the RUN mode

flag set), a second Break condition is reguired to terminate the
program,

The following is a detailed description of the operation of
each of the IL opcodes. With each description is also given the
hexadecimal opcode and the mnemonic recognized by the assembler.

Not all of the opcodes are defined. Some have been incorporated into

unused functionss; others are reserved for possible future expansion
and execute as NOPs,

15

INTERPRETIVE LANGUAGE OPERATION CODES

SX n 00--07 Stack Exchange,

Exchange the top byte of computational stack with
that "n" bytes into the stack, The top byte of the stack is
considered to be byte 0, so SX 0 does nothing, The sequence of
instructions

SX

SX

SX

SX
may be used to exchange the top two numbers (two bytes each) on the
stack. Only the top eight bvtes on the stack are accessible to this
instruction, If the stack is empty an error stop may or mav not
occur, depending on which ML interpreter is implemented,

B P (g b

NO 08 No Operation.

This may be used as a space filler (such as to
ignore a skip). :)

LB n 09nn Push Literal Byte onto stack,

This adds one byte to the computational stack,
which is the second byte of the instruction. An error stop will
occur if the stack overflows. '

LN n OAnnnn Push Literal Number,

This adds the following two bytes to the
computaticnal stack, as a 16-bit number, Stack overflow results in
an error stop,

DS 0B Duplicate top number (two bytes) on Stack,
An error stop will occur if there are less than two
bytes on the expression stack or if the stack overflows,

SP oc Stack Pop.

The top two bytes are removed from the computational
stack and discarded., Underflow results in an error stop.

SB 10 Save BASIC pointer,
If the BASIC pointer is pointing into the input line

buffer, is is copied to the Saved Pointer; otherwise the two
polnters are exchanged,

RB 11 Restore BASIC pointer,

If the Saved Pointer is pointing into the input line
buffer it is replaced by the value in the BASIC pointer; ctherwise
the two pointers are exchanged,

Normally the Saved Pointer will point to the next item in the
input line buffer while the BASIC pointer points to the proagram
being executed, When an INPUT instruction in RASIC is interpreted
the two pointers are exchanged by the SB opcode so that the
expression handling capabilities of the interpreter mav be applied
to the input data, then the pointers are restored (exchanaged acain)
by the RB. In direct execution (command mode) the BASIC pointer is

16

already in the input line buffer, and the contents of the Saved
Pointer are meaningless:; in this case the SB instruction does not
alter the BASIC pointer, and the RB opcode should leave both
pointers pointing to the next item in the input string,

Fv 12 Fetch Variable,

The top byte of the computational stack is used to
index into Page 00, It is replaced by the two bytes fetched, Error
stops occur with stack overflow or underflow,

SV 13 Store Variable,

' The top two bytes of the computational stack are
stored into memory at the Page 00 address specified by the third
byte on the stack. All three bytes are deleted from the stack.
Underflow results in an error stop.

GS 14 GOSUB Save,

The line number on the current BASIC line is pushed
onto the BASIC region of the control stack, It is essential that the
I, stack be empty for this to work properly but no check is made for
that condition. An error stop occurs on stack overflow,

RS 15 RESTORE SAVED LINE,

Poo the top two bytes off the BASIC region of the
control stack, making them the current line number, Set the BASTIC
pointer at the beginning of that line, Note that this is the line
containing the GOSUB which caused the line number to be saved, As’
with the GS opcode, it is essential that the IL region of the
control stack be empty. If the line number popped off the stack does
not corraspond te a line in the BASIC program an error stop occurs,
An error stop also results from stack underflow,

GO 18 GOTO,

Make current the BASIC line whose line number is
equal to the value of the top two bytes in the expression stack,
That is, the top two bytes are popped off the computational stack,
and the BASIC program is searched until a matching line number is
found. The BASIC pointer is then positioned at the beginning of that
line and the RUN mode flag is turned on. Stack underflow and
non-existent BASIC line result in error stops,

NE 17 - Negate (two’s complement), i
The number in the top two bytes of the expression
stack is replaced with its negative,

AD 18 Add,

Add the two numbers reprasented by the top four
bytes of the expression stack, and replace them with the two-byte
sum, Stack underflow results in an error stop,

su 19 Subtract,
Subtract the two-byte number on the top of the
exXpression stack from the next two bytes and replace the four bytes

with the two-byte difference, This is exactly equivalent to the
two-instruction sequence,

NE .

17

AD
and has the same error stop on underflow,

MP 1A Multiply. -

Multiply the two numbers represented by the top four
bytes of the computaticnal stack, and replace them with the least
significant 16 bits of the product, Stack underflow is possible,

DV 1B Divide,

Divide the number represented by the top two bwvtes
of the computational stack into that represented by the next two,
Replace the four bytes with the quotient and discard the remainder,
This is a signed (two’s complement) integer divide, resulting in a

signed integer quotient, Stack underflow or attempted division by
zero result in an error stop.

CP i¢ Compare,

The number in the top two bytes of the expression
stack is compared to (subtracted from) the number in the fourth and
fifth bytes of the stack, and the result is determined to be
Greater, Equal, or Less, The low three bits of the third bvte mask a
conditional skip-in the IL program to test these conditions: if the
result corresponds to a one bit the next byte of the IL code is
sKipped and not executed, The three bits correspond to the
conditions as follows:

bit 0 Result is Less

bit 1 Result is Equal

bit 2 Result is Greater
Whether the skip is taken or not, all five bytes are deleted from
the stack, This is a signed (two's complement) comparison, so that
any positive number is greater than any negative number, Multiple
conditions, such as greater—than-or-equal or unequal (i.e, greater
than or less than), may be tested by forming the condition mask bvte
of the sum of the respective bits, In particular, a mask bvte of 7
will force an unconditional skip and a mask byte of 0 will force no
skip, The other five bits of the control byte are ignored, Stack
underflow results in an error stop,

NX 1D Next BASIC statement,

Advance to the next line in the BASIC program, if in
the RUN mode, or restart the IL program if in the command mode, The
remainder of the current line is ignored. In the Run mode if there
is another line it becomes current with the pointer positioned at
its beginning, At this time, if the Break condition returns true,
execution is aborted and the IL program is restarted after printine
an error message, Otherwise IL execution proceeds from the saved IL
address (see the XQ instruction), If there are no more BASIC
statements in the program an error stop occurs,

LS 1F List the program,

The expression stack is assumed to have two 2-bvte
numbers: the teop number is the line number of the last line to bhe
listed, and the next is the line number of the first line to be
listed, If the specified line numbers do not exist in the proaram,
the next available line (i.e. with the next higher line number) is
assumed instead in each case, If the last line to bhe listed comag

18

before the first, no lines are listed, If the Break condition comes
true during a List operation, the remainder of the listing is
aborted, Zero is not a valid line number, and an error stop occurs
if either line number specification is zero. The line number
specifications are deleted from the stack,

PN 20 Print Number,

The number represented by the top two bvtes of the
expression stack is printed in decimal with leading zero
suppression, If it is negative, it is preceded by a minus sien
(hyphen) and the magnitude is printed, Stack underflow is possible,

PO 21 Print BASIC string,

The ASCII characters beginning with the current
position of the BASIC pointer are printed on the conscle, The strin«a
to be printed is terminated by the quotation mark (") and the RASIC
pointer is left at the character following the termlnal gquote, An
error stop occurs if a carriage return is imbedded in the string,

PT 22 Print Tab,

Print one or more spaces on the console, endina at

the next multiple of eight character positions (from the left
margin),

NL 23 New Line,

Qutput a carriage-return-linefeed seguence to the
console,

PC "xxxx" 24xxxxxx¥x Print literal string,

The ASCII string follows the opcode and its
last byte has the most significant bit set to one, The character
string is output to the console unmodified; that is, all eight bits

of each byte is output, so that the last byte and only that bvte is

output with the parity bit set to one, This of course may he altered
by the output routine,

GL 27 Get input Line.,

ASCII characters are accepted from the console input
to Fill the line buffer, If the line length exceeds the available
space the excess characters are ignored and bell characters are
output, The line is terminated by a carriage return, NUL and DEL
codes (hex 00 and FF) are iqnored linefeed and DC3 respectivelw
turn the "tape mode” on and off, Any characters which match the
Backspace parameter result in the deletion of the previous character
in the line buffer, if any; if the line buffer is emptv the effact
is that of a cancel, Any character which matchas the Cancel
parameter stores a c¢arriage return in the first position of the line
buffer and terminates the input. On completing one line of input
the BASIC pointer is set to point to the first character in the

input line buffer, and a carriage-return-linefeed sequence is
output.,

IL 2A Insert BASIC Line,

Beginning with the current position of the BASIZ
pointer and continuing to the carriage return, the line is ingerted
into the BASIC program space; for a line number, the top two bytes

19

of the expression stack are used, If this number matchas a line.
already in the program it is deleted and the new one replaces it, I
the new line consists of only a carriage return, it is not inserted
though any previous line with the same numwber will have been
deleted, The lines are maintained in the program space sorted bv
line number. If the new line to be inserted is a different size than
the ©ld line being replaced, the remainder of the program is shifted
over to make room for it or to close up the gap as necessary, If
there is insufficient memory to fit the new line the program space
is unchanged, and an error stop occurs (with the IL address
decremented), A normal error stop occurs on expression stack
underflow or if the number is zerc, which is not a valid lin=

number, After completing the insertion, the IL program is restarted
in the command mode,

£

MT 2B Mark the BASIC program space Emptvy,

Also clear the BASIC region of the control stack and
restart the IL program in the command mode, The memory bounds and
stack pointers are reset by this instruction to siagnifv an emptv
program space, and the line number of the first line is set to zero,
which is the indication of the end of the program, The remainder of
the program is not altered, though it is now vulnerable to intrusicn
by the contrcol stack, The program may be recovered if accidentally
CLEARed by storing a non-zero line number in the first two bytes of
the BASIC program space, then requesting a LIST, If this is made on
a machine-readable medium, it may be reloaded, Any execution of the
IL instruction after a MT instruction will destroy the contents of
memory not enclosed by the program bounds in locations 0020-0025,

XQ 2C Execute,

Turn on RUN mode, This instruction also saves the
current value of the IL proagram counter for use of the NX
instruction, and sets the BASIC pointer to the beqginning of the
BASIC program space, An error stop occurs if there is no BASIC

program, This instruction must be executed at least once before the
first execution of a NX instruction.

WS 2D Stop.

Stop execution and restart the IL program in the
command mode. The entire control stack (including the BASIC reagion)
is also vacated by this instruction, This instruction effectively
jumps to the Warm Start entry of the ML interpreter,

Us 2E Machine Language Subroutine call,

The top six bytes of the expression stack contain
three numbers with the following interpretations: the top number is
loaded into the A {or A and B) register; the next number is loaded
into 16 bits of Index register: the third number is interpreted as
the address of a machine lanquage subroutine to be called usina the
normal subroutine call sequence (which is simulated for this purpose
by the ML interpreter), These six bytes on the expression stack are
replaced with the 16-bit result returned by the subroutine, Stack
underflow results in an error stop.

RT 2F IL subroutine return,
The IL control stack is popped to give the address

20

of the next IL instruction. An error stop occurs if the entire
control stack (IL and BASIC) is emptv.

Js a 3000-37FF IL subroutine call,

The least significant eleven bits of this
2-byte instruction are added to the base address of the IL program
to become the address of the next instruction, The previous contents
of the IL program counter are pushed onto the IL reaion of the
control stack, Stack overflow results in an error stop,

J a 3860-3FFF Jump,
The low eleven bits of this 2-byte
instruction are added to the IL program base address to determine

the address of the next IL instruction, The previous contents of the
IL program counter is lost,

BR a 40-7F Relative Branch.

The low s8ix bits of this instruction opcode are
added algebraicly to the current value of the IL program counter to
give the address of the next IL instruction, Bit 5 of the opcode is
the sign, with + signified by 1, - by 0. The range of this branch is
31 bytes from address of the byte following the opcode, in either
direction, An offset of zero (i.e., opcode 60) results in an error
stop, The branch operation is unconditional,

BC a "xxx BOxxxxXx-3FxxxxX® String Match Branch.,

The ASCII character string in the IL
following this opcode is compared to the string beginning with the
current position of the BASIC pointer, ignoring blanks in the BASIC
program, The comparison continues until either a mismatch is found,
or an IL byte is reached with the most significant bit set to one,
This is the last byte of the string in the IL, and it is comparad as
a 7-bit character; if equal, the BASIC pointer is positioned after
the last matching character in the BASIC program and the IL proaram
continues with the next instruction in sequence, Otherwise the BASIC
pointer is not altered and the low five bits of the Branch opcnde
are added to the IL program counter toc form the address of the next

IL instruction, If the strings do not match and the branch offs=t is
zero an error stop occurs,

BV a AQ-BF Branch if not Variable,

If the next nonblank character pointed to bv the
BASIC pointer is a capital letter, its ASCII code is doubled and
pushed onto the expression stack and the IL program advances to the
next instruction in seguence, leaving the BASIC pointer positioned
after the letter; if not a letter the branch is taken and the FASIC
pointer is left pointing to that character, An error stop occurs if
the next character is not a letter and the offset of the bhranch is
zero, or on stack overflow,

BN a CO-DF Branch if not a Number,

If the next nonblank character pointed to by the
BASIC pointer is not a decimal digit, the low five bits of the
opcode are added to the IL program counter, or if zero an error stop
occurs, If the next character is a digit, then it and all decimal
digits following it (ignoring blanks) are converted to a 16-bit

21

binary number which is pushed onto the expression stack., In either
case the BASIC pointer is positioned at the next character which is
neither blank nor digit, Stack overflow will result in an error
stop.,

BE a EQ-FF Branch if not Endline,

' If the next nonblank character pointed to bv the
BASIC pointer is a carriage return the IL program advances to the
next instruction in sequence; otherwise the low five bits of the
opcode (if not zero) are added to the IL program counter to form the
address of the next IL instruction, In either case the BASIC pointer
is left pointing to the first nonblank character encountered:; this
instruction will not pass over the carriage return, which must
remain for testing by the NX instruction., As with the other
conditional branches, the branch may only advance the IL proogram

counter from 1 to 31 bytes; an offset of zero results in an error
stop.

22

TBIL ASSEMBLER

To aid in developing and modifying the IL program an assembler
has been written in TINY BASIC. This assembler accepts the mnemonics
for the IL assembly language and outputs a hexadecimal object code
suitable for leoading into memory., It is a two-pass assembler,
building the symbol table on the first pass and generatina the full
hex object code on the second pass, _

Since TINY BASIC does not allow strings or arrays, the source
file and the symbol table are manipulated using the USR function to
call on the standard machine language subroutines to load and store
bytes in memory. This is unfortunately wvery slow, so a third
subroutine, which loads two bytes, is also used in an effort to
speed things up a little. Comments in the source listing of the
assembler indicate how such a routine mav be coded., The assembler is
still compute-bound, and can be expected to take several hours on
each pass, This is considered acceptable only because of the
infrequent need to assemble the IL code,

The assembler accepts free-form input with two kinds of source
lines: comment lines and program instruction lines. Each line of
either kind must begin with a line number, This is actuallv a
kludge to convince TINY BASIC to read the source line with an INPUT
command, and the number has no significance to the assembler other
than that it is zerc on the last line of the prooram,

Comment lines are indicated to the assembler by a period
following the line number, Thev are not processed further,

Instruction lines may begin with a label or not, A label is
signified by a leading colon {which is not part of the label)
followed by a letter and up to three more letters and/or digits, »and
terminated by a blank,

The next field after the label, or the first field of & line
without a label, is the instruction mnemonic, This is one of the
two-letter codes (or cne letter in the case of J) defined earlier,

The instructions which require operands should be followed bv
at least oneé blank, then the operand in the correct format., Jumps
and branches accept a label reference:; the branches also accept the
single symbol "#" to signify an error stop branch, The SX
instruction requires a single octal digit (1-7).

The LB and LN instructions should be followed by a decimal
number, This number is processed by the BASIC INPUT command which
accepts expressions and ignores blanks, so care must be taken in
what is allowed to follow the number, In particular it mav not be
followed by more decimal digits or the characters + - ¥ or /. The
number must start with a digit.

The BC and PC instructions are followed by a string (after the
label in the case of BC). The string is enclosed in a pair of
delimiters which may be any nonblank character except the ASCIT
circumflex (hex 5E, which sometimes prints as an up-arrow), Anv .
character within the string which is followed by a circumflex has a
hex 40 subtracted from its code, making it possible to genasrate
strings with control characters ‘n them, The last character of the
string has the most significant bit set to one in the ohject code,

Everything on the source line after the operands, if any, is ~

¢

23

treated by the assembler as comments,

The operation of the assembler is shaped by the restrictions
imposed by TINY BASIC. The source lines must not be larger than 60
or so characters to leave room in the expression stack, Each source
line must end in a DC3 control (X-OFF) unless other reader control
is used, since several tens of seconds are reguired to process each
line,

The program is loaded and started with a RUN, It will ask for
the addresses of the byte load and store routines, which should bhe
typed in in decimal, Tt will also ask for the umory address that
the program is to load into. This address is onlvy used in the
generation of the location counter output and has no effect on the
code generation, _

One of the first things done in the assembler is to search for
the mnemonic table, which is imbedded in pseudo-comment lines near
the beginning of the assembler, These are identified bv the leading
asterisk on the line, although the search is keyed to line number
3. The symbol table is also initialized at empty,

Bach line of the assembled program will have the hexadecimal
memory address, the hexadecimal object code to be loaded into that
address, a semlcolon marking the end of the machine cocde, then the
next source line, Notice that the source line is echoed as it is
read (this is done by the I/0 routines), so the assembled code for
that line is at the beginning of the nexu line, If the source file
contains a linefeed character after each carriage return, then tha
Object code will appear on the same line in the listing, "wut in fact
the object code follows it in the output file., In the case of the
LW, PC, and RC opcodes, which generate more than two bvtas of code
a second line will e used for the excess object code, The listin~
produced for Pass 1 will look very much like that for Pass 2, except
that some of the object code will be incomplete,

Assembly errors which do not crash the prooram will be
identified by a two letter indication enclosed in a pair of
asterisks, The following is a summary of the errors recognized and
flagged by this assembler:

#DL# Duplicate label (Pass 1 onlv)

*IEH Unidentifiable mnemonic,

#QPpP# Incorrectly formed Operand,

*USH Undefined symbol in jump or branch,
*L T Premature line end,

Some source program errors will be trapped by the TINY BASTC
interpreter and halt the assembler, These are catastrophic in the
sense that not only is the assembly aborted, but the remainder of
the source file is loaded by TINY into memory over the assembler as
if it were a BASIC program, thus destroying the integrity of the
assembler, Errors which are catastrophic are:

Lines without a line number

Excessively long lines

Invalid expression as th~ operand of LN or LB
Symbol table overflow

24

This version of the assembler mav be expected to run in
something under 8K bytes of memory, depending on how many of the
comment lines and excess blanks are removed,

Operationally, the program is fairly direct with few tricky
kludges,

The symbol table is built by the assembler by stealing space
" out of the GOSUB stack. For each label to be added to the table,
three unRETURNed GOSUBs are executed, making six bytes available,
Symbols with less than 4 characters are filled out with spaces. The
same symbol table search routine is used for both definiton (to
check for duplicates) and reference. The table is searched with the
memory fetch USR commands,

The opcode table is searched in a similar wav., The hex codes
are never actually converted to binary, but a special subroutine
sa2lects the appropriate digit printing statement based on the ASCII
value of the codes, In the few cases where the operand is imbeddad
into the opcecde, the extra bhits are added in before output.

The type of instruction (i.2, the kind of operands accepted
for the particular instruction) is determined bv its position in the
table: The first position is SX; the naxt two are jumps; the next
five are branches, followed by the string opcodes (note the
overlap)., Ths literal byte and number opcodes are finally followed
by all the generics (no operand), The assembler knows how many
opcodes there are, and stops looking whan this count is reached,
rather than looking for some end-of-table flag, The table is broken
up into several lines of TINY BASIC; the line boundaries are
alligned with the mnemonic positions in the table, so theyv represent
opcodes which never match (the mnemonic would be CR-NUL),

The operation of the remainder of the assembler is fairlwv
self-evident and needs no further discussion.

25

REM TINY BASIC IL ASSEMRLER VERSION 0O 1 JAN 1977
GOTO 100

*5X00Js30J 38BR40BVAOBNCOBREEORC80PC24LEOOLNOANOOS
*DSOBSPOCSBlORBllFVl2SVl3GSldRSlSGOlGNEl7AD188U19MP1ADV1B
*CPlCNXlDLSlFPN2OPQ21PT22NL23GL27IL2AMT2BXQ2CWS2DUS2ERT2F

e s+ s COPYRIGHT (C) 1977 BY TOM PITTMAN,...
REMARKS :

LINES 3-5 ARFE OPCODE TARLE
LABEL TABLE USES GOSUB STACK
THIS PROGRAM USES A 2-BYTE PEEX VSR FUNCTION
PUT ITS ADDRESS IN VARIABLE D.
IN 6800:
LDA A,l,X A IS LSB
LDA B,0,X
RTS
IN 6502:
STX $C3 ($C2=00)
LDA ($c2),Y GET MSB
PHA SAVE IT
INY
LDA ($C2),Y CET LSB
TAX
PLA :
TAY Y=MSB
XA
RTS

NOTE THAT THIS PROGRAM CORRECTS FOR 2-BYTHE DATA
IN 6502 FORMAT (LSB,MSB) WHEN INITIALIZING,

THE FOLLOWING VARIABLES ARE DEFINED
STARTING ADDRESS

LINE BUFFER POINTER ADDRESS

LINE POINTER WORK

2-BYTE PEEK USR FUNCTION ADDRESS
END OF OPCODE TARLE

PASS #

PEEK USR FUNCTION ADDRESS

HEX WORK

TEMP WORK

TEMP WORK

TEMP WORK (HEX)

(RELATIVE) LOCATION COUNTER

®
H

LINE NUMBER
OP TABLE START
POKE USR FUNCTION ADDRESS

SYMBOL TABLE START
TEMP (TABLE POINTER)

<LTHNAIWOWOZRRH AGHIDI"WEI N TP

SYMBOL WORK
SYMBOL WORK

=~
=

58 X ERROR COUNT
59 ¥

60 Z

61"

62 SOURCE FILE IS IN THE FORM

63 (LINE NUMBER) :LABEL OP OPND COMMENTS

64 THE LINE NUMBER MUST BE >0,

65 THE LABEL IS IDENTIFIED BY THE LEADING COLON,

66 AND MAY BE 1-4 CHARACTERS LONG (FIRST IS LETTER):
67 IT Is TERMINATED BY BLANK, AND MAY BE OMITTED,

69 OP IS THE 2-LETTER OPCODE,

70 OPND IS THE OPERAND:

71 FOR SX IT MUST BE A DIGIT 1-7

72 FOR LB OR LN, A DECIMAL NUMBER 0-255 OR 0-65535
73 FOR PC, A STRING OF THE FORM ‘STRING’

74 FOR JUMPS & BRANCHES IT MUST BE A SYMBOL

75 BRANCHES MAY REFER TO SYMBOL #"

76 TO INVOXE ERROR STOP FORM.

77 BC REQUIRES BOTH A SYMBOL AND A STRING,

78 SEPARATED BY ONE OR MORE SPACES.

79 COMMENTS SHOULD BE PRECEDED BY A SPACE,

80 A4D SHOULD NOT BEGIN WITH A DIGIT OR (+,-,%,/)
81 COMMENT LINES HAVE A PERIOD

82 FOLLOWING THE LINE NUMBER.

83 THE END OF FILE IS A LINE NUMBER O,

85 SOURCE IS LISTZD ON BOTH PASSES, E
86 OUTPUT Is: HEX ADDRESS, HEX CODS, SEMICOLON,
87 ON SAME LINE AS FOLLOWING SOURCE,

88 .

90 RRROR FLAGS:

91 #DL* DUPLICATE LABEL (PASS 1)
92 ¥OP%* OPERAND FORMAT ERROR

93 *IE%* UNDEFINED OP CODE

94 *LE¥ INCOMPLETE LINE

95 *Us* UNDEFINED SYMBOL (PASS 2)

100 REM

101 REM LINES 101-19¢ ONLY NEED TO EXECUTE ONCE,

102 REM THEY SHOULD BE DELETED AT STOP,

103 REM INPUT ADDRESS CONSTANTS .
104 PRINT "PLEASE TYPE IN TSR ADDRESS FOR PEEK (IN DECIMAL) ;
105 INPUT G .

106 PRIAT "ADDRESS FOR POKE

107 INPUT P

108 PRINT "ADDRESS FOR 2-BYTE PEEK ;
109 INPUT D

110 B=47

111 0=USR(D, 32)

112 E=USR(D,34)

113 IF USR(G,B)>0 GOTO 118

114 B=46

115 0=USR(G, 32)+USR(G, 33) #2506

116 E=USR(G,34)+USR{G,35)#%256

27

118 E=E+1

119 REM FIND OPCODE TABLE (LINE 3)
120 0=0+1

121 IF USR(G,0)<>3 GOTOQ 120

122 0=04+2

130 Y=1

131 N=0

132 PRINT "DO YOU NEED INSTRUCTIONS (Y OR N)"
133 INPUT I

134 IF I=Y LIST 61,99

190 PRINT | REMOVE LINES 10-99, 101-199"

191 PRINT "OR IF YOU HAVE PLENTY OF MEMORY,
192 PRINT "RETYPE LINE: 100 GOTO 200’

193 PRINT "THEd TYPE RUN,

198 END

199 REM 2-PASS ASSEMBLER, START FIRST PASS,
200 X=0 -
201 S=F

202 F=0

203 PRINT "(DECIMAL) STARTING ADDRESS":
204 INPUT A

205 F=F+l

206 IF F=3 GOTO 760

207 L=0

208 PRINT

209 PRINT "TBIL ASSEMBLER, PASS ";F

210 PRIAT

211 GOSUB 460
212 PRINT

213 REM GET NEXT INPUT LINE

214 I=USR(P,USR(G,B),13)

215 INPUT N

216 REM LINE NUMBER 0 IS EOF

217 IF N=0 GOTO 205

218 GOSURB 460

219 REM CHECX FOR COMMENT

220 I=USR(G,USR{G,B))

221 IF I<58 GOTO 212

222 REM PROCESS LABEL, IF ANY

223 IF 1I-64 GOTO 300

224 GOSUB 405

225 GOSUB 500

231 REM CHECK FOR DUPLICATES ON PASS 1
232 IF F>1 GOTO 300

234 IF T=0 GOSUB 237

235 GOTO 901

237 GOSUB 238

238 GOSUB 239

239 S=5-6

240 REM INSERT THIS ONE

241 I=USR(P,5,V/256)+USR(P,S+1,V)

242 I=USR(P,S+2,W/256)+USR(P,S5+3,wW)
243 I=USR(P,S+4,L/256)+USR(P,8+5,L)
290 REM LOOK AT OPCODE

300 GOSUB 410

301 IF 1I<65 GOTO 911

28

305 I=USR(D,USR(G,B))

306 GOSUB 404

307 REM SEARCH OPCODE TABLE
308 T=0

309 IF USR(D,T)=I GOTO 313
310 T=T+4

311 IF T<0+167 GOTO 309

312 GOTO 911

313 V=USR(G,T+2)

314 W=USR(G,T+3)

315 L=L+1

316 IF T=0 GOTO 330

317 IF T<0+10 GOTO 340

318 IF T<0+30 GOTO 360

319 IF T=04+32 GOTO 380

320 IF T=0+36 GOTO 350

321 IF T=0+40 GOTO 550

322 REM THESE OPCODES HAVE NO OPERAND
323 H=V

324 GOSUB 434

325 H=W

326 GOSUB 434

327 PRINT :

328 GOTO 214

329 REM STACK EXCHANGE OPERATOR
330 GOSUB 410

331 w=USR(G,USR(G,B))

332 IF I»48 IF I<56 GOTO 323
333 REM OPERAND FORMAT ERROR
334 GOTO 921

336 IF F=] GOTO 212

337 GOTO 931

339 REM JUMP & CALL

340 L=L+1

341 GOSUR 410

342 IF I<65 GOTO 334

344 K=W-W/16%16

345 GOSUB 500

346 IF T=0 GOTO 336

347 X=I+(X+48)%256

348 GOTO 356

349 REM PUSH LITERAL BYTE ON STACK
350 L=L+1

351 GOSUB 410

352 IF I<48 GOTO 334

353 IF I>57 GOTO 334

354 INPUT K

355 K=K+2304

356 GOSUB 440

w oo

357 PRINT ";";

358 GOTO 214

359 REM RELATIVE BRANCHES
360 X=T

362 GOSUB 410

jed 1f 182 848 353

29

365
366
367
368
369
370
371
372
373
374
375
376
377
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
418
419
420
421
422
423
424
425

GOSUB 500

IF T=0 IF K<O4+28%F GOTO 336
IF I>L+31 GOTO 334

IF K=0+12 THEN I=I+32

IF I<L GOTO 334

TS~

T=K

H=USR(G,%X+2)+I/16
K=I-I/16*16

GOSUB 434

GOSUB 455

IF T<0+28 GOTO 327
GOTO 381

REM STRING OPERATORS

PRINT “24";

GOSUB 410

Je=1,

Tl

GOSUB 405
K=USR(G,USR(G,B))
GOSUB 405

I=USR (G,USR(G,B))
IF I<>94 GOTO 391
K=K-64

GOTO 386

L=L4+1

IF I=13 GOTO 334
IF T=I GOTO 397

GOSUR 450

K=1

GOTO 386

X=K+128

GOSUB 450

PRINT 3"

IF L=J+1 GOTO 214

GOTO 210 ,
REM — SUBROUTINES

REM ADVANCE INPUT LINE POINTER
GOSUR 405
C=TISR(P,B,USR(G,B)+1)

RETURN

REM

REM SKIP BLANKS IN INPUT LINE
GOSUB 405

I=USR(G,USR(G,B))

IF I=32 GOTO 409

IF I>32 RETURN

GOTO 941

REM

REM PRINT HEX DIGITS

PRINT "A";

RETURN

PRINT "B":

RETURN

PRINT "C";
RETURN

30

426 PRINT "D";
427 RETURN
428 PRINT E
429 RETURN
430 PRINT "F
431 RETURN
434 IF H>64 GOTO H+H+290
435 H=H-48

436 IF_H>9 GOTO 400+H+H
437 PRINT H;

438 RETURN

439 REM PRINT NUMBER AS HEX
440 H=K/4096

441 IF K<0Q THEN H=H-1
442 X=K-H*4096

443 IF H<0O THEN H= H+16
444 GOSUB 436

445 H=X/256

446 K=K-H¥256

447 GOSUB 436

450 H=X/16

45)1 X=K-H#*16

452 GOSUB 436

455 H=K

456 GOTO 436

458 REM

459 REM PRINT LOCATION COUNTER
460 K=A+L

461 GOSUB 440

462 PRINT

463 RETURN

.
]

.o

498 REM :

499 REM LOOK UP SYMBOL IN TABLT
500 V=0

501 w=8224

502 C=USR(G,B)

503 I=USR(G,C)

504 IF I<48 GOTO 525

505 I=USR{G,C+1)

506 IF I<32 THEN I=(USR(P,C+1,32)+USR(P,C+2,13))#%0+32
503 W=USR(D,C)

509 GOSUB 404

510 IF V>0 GOTO 513

511 V=W

512 GOTO 501

513 T=8

514 GOTO 518

515 I=USR(D,T+4)

516 IF V=USR(D,T) IF W=USR(D,T+2) RETURN
517 T=T+6

518 IF T<E GOTO 515

519 T=0

520 I=L

521 RETTRN

524 REM ASTERISK OPERAND?
525 IF I<»42 GOTO 510

31

526 T=1

527 I=L

528 GOTO 405

548 REM

549 REM PUSH 2-BYTE LITERAL ONTO STACK
550 PRINT "0A;"

552 GOSUB 460

553 L=L+2

554 GOSUB 410

555 IF I<43 GOTO 334

556 IF 1>57 GOTO 334

557 INPUT X

558 GOTO 356

700 REM PROGRAM END

760 PRINT

770 PRINT X;" ERRORS"

790 END

900 REM ERROR MESSAGES

901 PRINT "#pL* ",
902 X=X+1

903 GOTO 300
911 PRINT "#Ig+*
912 X=X+1

914 L=L+2

915 GOTO 214
921 PRINT “#0p#*
922 X=X+1

923 GOTO 214
931 PRINT ' #US*
932 X=X+1

933 GOTO 214
941 PRINT "#*LE®#
942 X=X+1

944 RETURN

999 END

ws

-e

-

32

IMPLEMENTATION NOTES

The TINY BASIC interpreter was designed by Dennis Allison as a
Recursive Descent parser, Somz of the elegant simplicityv of this
design was lost in the addition of syntactical sugar to the
language but the basic form remains, The IL is especially suited to
Recursive Descent parsing of TINY BASIC because of the general
recursive nature of its procadures and the simplicitv of the TINY
BASIC tokens, The IL language is effectively optimized for the
interpretation of TINY., Experience has shown that the difficultv of
adding new features to the lanquage is all out of proportion with
the nature of the features, Usually it is necessarv to add
additional machine language subroutines to support the new features,
Often the difficulty outweiaghs the advantages,

Consider for example, floating point arithmetic. This is A

fregquently reguested addition. However, to implement floatine point
the following problems must be overcome :

1, Variable size, While 16 bits does not allow verv larae
numbers, it is adeguate for small integers of the kind needed for
games and industrial control applications, the two environments for
which TINY is most suited. But meaningful floating point numbers
cannot be realisticly fit in less than 20 bits, and 32 bits is a
much more reasonable lower limit, 26 variables of four bytes each is
104 bytes, not too large to take advantage of Page 00 addresindg,
Without redoan the entire ML interpreter it would be necessary to
put two bytes where the variables are now and the other two in the
Space beatween 00C8 and OOFB. The expression stack may prove to be
too small for very complex expressions of double-length floating
peint variables, This would tend to limit the allowable size of the
input lines, which share the same workspace with ths expression
stack, .

2. Number-handling routines, Not only would the arithmetic
routines driving the AD, SU, MP and DV opcodes need rewriting, but
also all the other Opcodes which work with numbers on the stack
would need modification, Otherwise the program may find it difficult
to execute a GOSUB to line number 1,23E2, Perhaps a simpler
alternative would be to leave the existing opcodes and add the
floating point routines into the gaps in the IL instruction set,
including one to fix a floatina point number as well as variablp
load and store and the print and constant conversions, There mav not
be enough unused opcodes to do this without sacrificino existing
functions,

3., The expression evaluation code in the IL interpreter would
need revision to distinguish integer and floatina point
requirements, and to select the appropriate opcodes,

All in all, adding fleoatinag point operations to TINY is
probably feasable, though far from easy.

On the other hand, string or arrav operations are probably not
practical within the bounds of the present svstem, While all
variables in TINY are predefined, arrays and variable~length
strings would require memory allocation and de-allocation routines,
address pointers, and dimension tables. It is concesivable that thlq

33

space could be taken from the unused user program memory space,
either at the end of the program (by modifying the pointer in
0024-0025) or underneath the GOSUB stack (by modifving the pointer
in 0022-0023). In the latter case the memory allocator would need to
move the stack around and also modify the stack pointer and the

contents of 0026-0027. Making the system invulnerable to proarammine
errors would be extremely difficult,

Enhancements which may be considerably simpler and which
snould perhaps be considered first are a Logical AND function (as an
intrinsic) or data indirection of the type usad in NIBL,

: Adding an intrinsic function consists primarily in recoonizing
the function name within the FACTor parsing procedure, calling EXPR
to evaluate each argument, then performing the evaluation, In the
case of a Logical AND function a machine language routine would be
necessary for the evaluation, This may be implemented in. either of
two ways: the existing opcode US may be incorporated into the
evaluation in which the IL interpreter knows where the subroutine
is; or a new opcoe may be defined. The following sequence

illustrates the former technique (assume the machine lan~uame AND
code at location 0003):

$F20 BC F30 "AND(" RECOGNIZE FUNCTION NAME
: LN 3 LOAD ADDRESS FOR USR

JS EXPR GET FIRST ARGUMENT

JS ARG GET SECOND ARGUMENT

BC #* ")" MUST BE RIGHT P‘REN

Us GO DO IT

RT RETURN TO TERM,
$¥30 v v (REST OF FACT)

The indirection operator "@" could be similarlv handlad:

:3TMI BC TLET "LET@" TEST FOR INDIRECT STORE

LN 280 YES, SET POXE ADDRESS
JS EXPR, GET ADDRESS
BC % "=" NEXT MUST BE EQUAL
JS EXPR GET VALUE
BE ¥ THAT SHOULD RE LINE END
Us STORE THE LOW BYTE
SP CLEAR STACK
NY . } END OF STATEMENT
¢:TLET BC GOTO "LET . e +ETC,

Indirection in the fetch is also simple:

:F40 BC F5 "@" IS IT INDIRECT?
LN 276 YES, GET PEEK ADDRESS
JS EXPR GET BYTE ADDRESS
Ds {DUMMY)
us G0 GET IT
RT .
:F5 BC # " (" saw KRR

34

When adding ML subroutines it may be helpful to know where to
find some of the internal pointers used by TINY, The IL proaram is
generally placed at the end of the ML code, Its address is stored in
the two bytes which precede the Cold Start code, In other words, to
find the IL base address (or to change it), follow the JMP in
0100-01063, and look two bytes before its destination, This i3 thes
only copy of the address, and changes here affect the whole
interpreter,

The first few instructions of the Cold Start routine define
the lower bounds of the user space, so if it is necessary to add
code this could be modified to leave room,

The opcode address table is placed near
ML interpreter (right after the PEEK and POKE
six addresses select the branch instructions,
opcodes jump to the same address., Each opcode
coded as a subroutine,

the beginning of the
routines), The first
Most of the unused
service routine is

Some of the Page 00 memory locations which could be'of
interest are defined here:

0020-0021 sStart of user program space
0022-0023 End of user program space :
0024-0025 End of BASIC proqgram, SPARE adde
0026-0027 Top of BASIC stack

0028-0029 Current BASIC line number
002A-002B 1IL Program Counter

002C-002D RASIC Pointer

O002E~002F Saved Pointer

0030-007F Input line & Expression stack
0080-0081 Random Number seed

0082-00B5 Variables

OOBF Output Column counter & Tape Mode

Other important parameters such as the RUN mode flaa, the

expression stack pointer, and the end of input line pointer are
placed in different locations depending on the versions.

The following is an assemblv listing of the currently

distributed version of TINY BASIC.

35

0000
0000
0000
0000
Q000
0000
0003
0003
0004
0005
0006
0007
0008
0009
000A
000B
oaoc
000D
000D
000D
000D
0011
col1
0012
0014
0016
0017
0018
0019
0019
0o1cC
oo1cC
001F
001F
0021
0022
0023
0024
0025
00625
0023
0029
0028
0o02c¢C
002D
002E
002E
0031
0031
0035
0035
0036
0037
0039
003a

H 1
H 2
H 3
s 4
s 5
243A91;

3 s
273 7
10 3
Elg 9
59; 10
CH: 11
2A; 12
563 13
103 14
11 15
2C;y 16
5 17
H 18
; 15
8B4C45D4
3 20
AQ; 21
80BD; 22
30BC; 23
EO; 24
13; 25
810D 26
; 27
9447CF;

3 28
8854CF;

3 29
30BCsy; 30
EG; 31
10; 32
11 33
163 34
H 35
805355C2;
: 36
30BC; 37
EO; 38
14, 39
16 40
5 41
9050D2;

H 42
83494ED4;
H 43
E5: 44
71: 45
38BB; 46
El; 47
1Dy 48

ORIGINAL TINY

. EXECUTIVE
¢STRT PC ":Q™"
e
SB

BE LO

BR STRT
:LO BN STMT

L

BR STRT
¢XEC SB

RB

XQ

:LET

BC
BC

JsS

" BE

tGOSB

:PRNT

s PO

sEL
P2

:P3

SB
RB
GO

BC

JSs
BE
GS
GO

RC
BC

BE
BR
BC
BE
NX
BC

coTo "LET

PRNT "Go"
cose "To"

EXPR
#*

% [1] S[JB 1]

EXPR

sk1p "pr”

[1] ”

PO INT
P3

P6

P4 3
P3

p7

STATEMENT EXECUTOR

"

36

BASIC INTERMEDIATE INTERPRETER

INITIALIZATION

COLON, X-ON

BRANCH TIF NOT EMPTY

TRY AGAIN IF NULL LINE
TEST FOR LINE NUMBER

IF SO, INSERT INTO PROGRAM
GO GET NEXT

SAVE POINTERS FOR RUN WITH
CONCATENATED INPUT

MUST BE A VARIABLE NAME

GO GET EXPRESSION
IF STATEMENT END,
STORE RESULT

GET LINE NUMRER

(DO THIS FOR STARTING)

GO THERE

vE w

NO OTHER GO...

WORD BEGINS

(13

OPTIONALLY OMIT "INT
IF DONE, GO TO END

NO CRLF JIF ENDED BY : OR

3 L

0038
003D
Q03E
003F
0040
0042
0043
0044
0046
0048
0049
004A
004B
004D
0048
004F
004F
0052
0052
0054
0056
0058
005D
005D
0058
O05F
0061
0061
0067
0067
0068
0069
0064
006E
006E
QCe¥r
0070
0071
0073
0075
0076
0077
007¢%
007A
0078
0Q7cC
BOTC
00383
0083
0034
0co8s
0386
0086
003Aa
008aAa
0038

8FA2;: 49

211 50

58; 51 :SKIP
6F; 52 :P4
83AC; 53

22; 54

553 55 :P5
83BA; 56
2493; 57 P&
EO: 58

23 59

1Dy 60 :P7
30BC; bl

203 62

43; 63 .

s 64 :IF
9149C6;

3 65
30BC; 66
3134 67
30BC; 68
84544845CE;

g 69 Il
1Cy 70

1D 71
380D 72 ,

3 73 :INPT
9A494E5055D4 3
. 74 :12
AQ: 75

10; 76

B 77 13
243F2091;

s 78

27 79

Els 80

59 81 :I4
81AC; 82 :I5
30BC; 83

133 84

11 35
82AC; 85

4D 87 :1I6
EQ; 88

1D: 89 .

: 90 :RETN
895245545552CE ¢
. o1

EO: 92

153 93

1D Q4 ,

g 95 :END
85454EC4

H 96

EO; 97

2D; 98

PQ
BR

BR

BC
PT
BR

BC P

PC
BE
NL
NX
Js
PN
BR

BC

Js
Js
Js
BC

cp
NX

"w_ o~

EXPR
Pl
INPT IF

EXPR
RELO
EXPR

11 "THEN"

J STMT

BC

BV
SE
BE
PC

GL
BE
BR
BC
JSs
SV
RB
BC
3R
BE
NX

BC
BT
RS
NX
BC

BE
WS

RETN "1NPUT"

END "RETURN"

#*

LIST “RiD

#*

37

QUOTE MARKS STRING
GO CHECK DELIMITER
(ON THE WAY THRU)

COMMA SPACING

OUTPUT X-OFF
THEN CRLF

TRY FOR AN EXPRESSION

OPTIONAT, NOISEWORD

COMPARE SXIPS NEXT IF TRUE
FALSE, '
TRUE, GO PROCESS STATEMENT

GET VARIABLE
SWAP POINTERS

LINE IS EMPTY; TYPE PROMDT

READ INPUT LINE
DID ANYTHING COME?
NO, TRY AGAIN
OPTIONAL COMMA

READ A NUMBER
STORE INTO VARIAPLE
SWAP BACK

ANOTHER?

YES IF COMMA
OTHERWISE QUIT

RECOVER SAVED LINE

008c
008C
0091
0091
0092
0099
0099
009A
009C
Q09D
O09%E
00AO
00Al

00A2

00A4
00A5
00AS
00A9
00A%
0CAB
00AB
00B1
00B1
00B2
00B2
00B®
00BS
00B7
00B7
OORS
00BA
00BC
00BC
00BC
00BC
OORE
ooco
00Cl
0ooQcz2
ooc4
0ocCe
QocCs
0oca
00CB
oocc
00CE
00DO
00Dl
ooD2
Q0D3
00D3
00D5
00oD7
00D9
00DA

00DB

s 99 :LIST
984C4953D4;

: 100

EC: 101 :L1
24000000000A80
H 102

1F; 103

2493; 104

233 105

1D; 106 :L2
30BC; 107

£l 108

50 109 :L3
80AC; 110

59 111 .

s 112 :RUN
855255CE}

H 113

380A3 114 .,

H 115 :CLER
86434C4541D2;

. 116

2B; LETL 5 3

H 118 :REM
-845245CD;

3 k19

1D; 120 .,

5 121 :DFLT
ADgs 122

80BD: 123

3814 124 .,

: 125 .

5 126

s 127 :EXPR
85ADj; 128

30D3s 129

17; 130

64 131 :EO
81AB; 132 :E4
30D3; 133 :El
85AB; 134

30D3; 135

183 136

SA; 137 :E2
85AD; 138

30035 139

19; 140

54 14y :E3
2F; 142

: 143 :TERM
30E2¢ 144 :TO
85AA; 145

30E2; 146

1A 147

S5A; 148 :T1
85AF; 149

BC RUN "LIisT"

BE L2

[T I T
PC

2 @2@J
Ls
PC
NL
NX
Js
BE
BR
BC
BR

BC

W~

EXPR
L3 -
L
b L]
L2

™

CLER "RUN"
J %EE

BC REM "CLEAR"
MT

BC DFLT "REM”
NX

BV #

BC #*
J LET

SURROITINES

" L1

BC
Js
NE
BR
BC
Js
BC
Js
AD
BR
BC
Js
SU
BR
R

EO
TERM

El
E4
TERM
E2 °
TERM

v

L]

+

E 1 " "
B3 -
TERM

El

Js
BC
Js
MP
BR
BC
Js

38

-~

? PUNCH LEADER
LIST
PUNCH X-OFF

GET A LINE NUMRBER

SEPARATED RY COMMAS

NO XEYWORD, .,
TRY FOR LET
IT’S A GOOD RET,.

TRY FOR UNARY MINUS

AHA

IGNORE UNARY PLUS

TERMS SEPARATED RY PLUS

TERMS SEPARATED RY MINTS

FACTORS SEPARATED 7Y TIMES

FACTORS SEPARATED BY DIVIDE

00DD 30E2; 150 DV
OODF 1B; 151 BR TO
ODEOQO 543 152 T2 RT
ODEl 2F;: 153

00E2 154 :FACT BC FO "RND" #RND FUNCTION*

00E2 97524EC4;

00E6 ; 155 LN 257#128 STACK POINTER FOR STORE
OOE6 OAj;

O0E7 80303 156 FV THEN GET RNDM

O0E9 123 157 LN 2345 R:=R#2345+6789

OOEA OAj

OOEB 09293 158 MP

O0ED 1A% 159 LN 6789

OOEE OA;

OOEF 1A85; 160 AD

00F1 183 161 SV

OOF2 133 162 LR 128 GET IT AGAIN

OOF3 09803 163 FV

00F5 123 164 DS

O0F6 OB; 165 Js FUNC GET ARGUMENT

OOF7 3130; 166 BR Fl -

00F9 61; 167 :FO BR F2 (SXIPPING)

O0FA 73; 163 :F1 DS

DOFB OBj 169 SX 2 PUSH TOP INTO STACK
00FC 02 170 SX 4

OOFD 043 171 SX 2

OOFE 02; 172 SX 3

O0FF 03; 173 SX 5

0100 05; 174 - 8X 3

0101 03; 175 DV PERFORM MOD FUNCTION
0102 1Bg 176 MP

0103 1A; 177 sU

0104 19; 178 DS PERFORM ARS FUNCTION
0105 OB; 179 LR 6

0106 09063 180 LN O

0108 0A;

0109 0000; 181 cP (SKIP IF + OR 0)
010B 1C; 132 NE

010C 17; 183 RT) '

010D 2F; 184 :F2 BC F3 "USR" ¥USR FUNCTION®

010E 8F5553D2;

BLYZ: % 185 rCc * " (" 3 ARGUMENTS POSSIRLE
0112 80a8;3 186 JS EXPR ONE REQUIRED

0114 30BC; 187 JS ARG

0116 312A3 188 JS ARG _

0118 312A; 189 BC * ")

011A 80A9: 150 Us GO DO IT

011C 2E; 191 RT

011D 2F; 192 :F3 BV F4 VARIABLE?

Ol1lE A2 193 FV YES, GET IT

O11F 12; 194 RT :

0120 2Fs 195 :F4 BN FS NUMBER ?

01 21 - €8s 196 RT GOT TT,

0122 2F; 197 :F5 BC * "(" OTHERWISE MUST BE (EXPR)
0123 80A8; 198 :#6 JS EXPR

0125 308C; 199 BC * ")"

39

0127
0129
012A
012A
012C
012E
012F
0130
0130
0132
0133
0134
0134
0136
0138
0139
013B
013D
013F
0140
0142
0144
0145
0147
0148
014A
0l4C
014E
014F
0151
0153
0154
0156
0157
G000

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
0000

sARG

:AO

T FUNC

sRELO

RT

BC

DS
RT

BC #

AQ
EXPR

40

COMMA?
YES, GET EXPRESSION
NO, DUPLICATE STACK TOP

COWVERT RELATION OPERATORS
TO CODE BYTE ON STACK

