HERBHAHE
#4

#H
HH
B

YH4R444
Hit ##
HE4HAEH
44 ## #
i Rahed HH

HiH#
##
uy
#H

dipH

##
HEHY
#E 44
HHEHRHH
#

#ig 4
risy 44
AY HE H
#H REHR
#Y KA

HeLuH

HH

HebyiyH
#H#
HUf##H

#4 #H
#4 HY
HE#Y
#H
#H
444 HHHYHH
##4 44 #4
#H ##
#E #Y
#yud Huassny

GETTING THE MOST OUT OF TINY BASIC

Copyright (C) 1977 by Tom Pittman

GETTING THE MOST OUT OF TINY BASIC

TINY BASIC in the 6800 and 6502 was designed to be a small but
powerful language for hobbyists., It allows the user to write and
debug quite a variety of programs in a langquage more "natural” than
hexadecimal absolute, and programs written in TINY are reasonably
compact, Because the language is small it is not as convenient for
some applications as perhaps a larger BASIC might be, but the
enterprising programmer will find that there is very: little that
cannot be done from TINY with only occasional recourse to machine
language, This is, in fact, as it should he: the high level
language provides the framework for the whole program, and the
individual esoteric functions done in machine language fill in the
gaps., -

For the remainder of this article we will assume one of the
standard TINY BASIC programs which follow the memory allocations
defined in Appendix D of the User Manual[l]. Specifically, memory
locations 0020-0023 contain the boundaries of the user work space,
and so on, If your system differs from this norm, you may have to
make adjustments to Page 00 address locations referenced here, but
everything else should be applicable, Because there are ailmost as
many different starting addresses for the TINY BASIC code as there
are versions, we will assume that the variable "s" contains the
starting address. In other words, for the "'R” version (Mikbug)

$=256, the "K' and "S" versions S=512, for "T" (KIM-2 4K) §=8192,
etc, g

THE USR FUNCTION

Perhaps the least understood feature of TINY BASIC is the
machine language subroutine call facility. Not only is it useful
for calling your own machine language subroutines, but the two
supplied routines let you get at nearly every hardware feature in
your computer from a TINY BASIC program, including input and output
directly to your peripherals,

First, how do subroutines work? In machine language a
subroutine is called with a JSR instruction, This pushes the return
address onto the stack and jumps to the subroutine whose address is
in the JSR instruction, When the subroutine has finished its
operation it executes the RTS instruction, which retrieves that
return address from the stack, returning control of the computer to
the program that called it, Depending on what function the
subroutine is to perform, data may be passed tc the subroutine by
the calling program in one or more of the CPU registers, or results
may be passed back from the subroutine to the main program in the
same way, If the subroutine requires more data than will fit in the
registers then memory is used, and the registers contain either
addresses or more data, In some cases the subroutine has no need to
pass data back and forth, so the contents of the registers mav be
ignored,

If the main program and the subroutine are both written in

TINY BASIC you simply use the GOSUB and RETURN commands to call and
return from the subroutine, This is no problem, But suppose the
main program is written in TINY and the subroutine is written in
machine lanquage? The GOSUB command in TINY is not implemented
internally with a JSR instruction, so it cannot be used. This is
rather the purpose of the USR function,

The USR function call may be written with up to three
arguments, The first of these is always the address of the
subroutine to be called., If you refer to USR(12345) it is the same
as Lf you had written a machine language instruction JSR 12345; the
computer saves its return address on the stack, and jumps to the
subroutine at (decimal) address 12345, For those of you who worry
about such things, TINY does not acutally make up a JSR with the
specified address in it, but rather simulates the JSR oparation with
a seqguence of instructions designed to have the same effect: the
interpreter is clean { pure code), and does not modify itself,

80 now we can get to the subroutine from a TINY BASIC program,

Getting back is easy. The subroutine still simply executes a RTS
instruction, and TINY BASIC resumes from where it left off,

If you want to pass data to the subroutine in the CPU
registers, TINY allows you to do that also, This is the purpose of
the second and third arguments of the USR function call, If you
write a second argument in the call, this is evaluated and placed in
the index register(s) of the CPU; if you write a third argument it
goes into the accumulator(s). If there are results from the
subroutine’s operation, they may be returned in the accumulator(s)

and TINY will use that as the value of the function, Thus writing
the TINY BASIC statement

LET P = USR (12345,0,13)

is approximately equivalent to writing in machine lanquage

LDX #0O
LDAA #13
JSR 12345
STAA P

Now actually there are some discrepancies, The 6800 and the 6502
are 8-bit CPUs but TINY does evervthing in 16-bit numbers, So in
the 6502 the second argument is actually split between the X and the
Y registers (the 6800 has a 16-bit index, so there is no problem),
and the third argument is split between the A and B registers in the
6500 (the 6502 has no register corresponding to B, so the most
significant B8 bits are discarded); thes returned value is expacted

to be 16 bits, so the most significant 8 bits are assumed to be in
the B or Y register,

It is important to realize that the three arcuments in the USR
function are expressions. That is, any valid combination of
(decimal) numbers, variables, or function calls joined together by
arithmetic operators can be used in any argument, If the variable
C=6300 or C=6502 (depending on which CPU you have}, the following is
a perfectly valid statement in TINY BASIC:

13 P=P+0#*USR(S+24,USR{S+2N,46+C/6800),13)

When this line is executed, the inner USR call occurs first, jumping
to the "PEEK " subroutine address to look at the contents of either
memory lccation O002E or 002F (depending on whether C<6800 or not);
this byte is returned as its value, and is passed immediatelv as the
second argument of the outer call, which stores a carriage return in
the memory location addressed by that byte. We are not interested
in any result data from the store operation, so the result is
multiplied by 0 (giving zero) and added to some variable (in this
case P), which leaves that variable unchanged,

What kinds of things can we use the USR function for? As we
saw in the example above, we can use it with the two built-in
subroutines to peek or poke at any memory location, In
particular this gives us the ability to directly access the input
and output devices in the memory space,

DIRECT INPUT % OUTPUT

Suppose you have a PIA at memory address 8006-8007 (the B side
of the PIA used by Mikbug, but any PIA will do): We want to read a
4-bit BCD digiswitch in through the low four bits, and ocutput to a
7-segment decoded display through the high four bits, For
simplicity we will read in the switch setting, add one, and output
it to the displav, then repeat., This program will do it:

100 REM SET UP PIA DATA DIRECTION

110 B=32768+6

120 X=USR(S+24,B+1,0)+USR(S+24,B,240)+USR(S+24,B+1,4)
130 REM THE FIRST USR SETS THE CONTROL REGISTER
135 REM TO POINT TO DATA DIRECTION REGISTER
.140 REM THE SECOND STORES HEX FO IN IT

150 REM THE THIRD SETS THE CONTROL REGISTER

155 REM . TO POINT TO PERIPHERAL DATA

160 REM X IS GARBAGE

200 REM INPUT A NUMBER

210 D=USR(S+20,B)

220 REM REMOVE TRASH AND ADD ONE

230 D=D-D/16%16+1

240 REM OUTPUT IT

250 X=USR(S+24,B,D*16)

260 GOTO 200

You can also use the USR function for direct access to the character
input and output routines, although for input you need to be careful
that the characters do not come faster than vour TINY BASIC proaram
can take them, The following program inputs characters, converts
lower case letters to capitalsg, then outputs the results:

10 REM READ ONE CHARACTER

20 A=USR{S+6)

30 REMOVE PARITY FOR TESTING

40 A=A-A/128%#]28

50 REM IF L.C,, MAKE CAPS

60 IF A>96 IF A<123 THEN A=A-32
70 REM QUTPUT IT

B0 A=USR{S+9,A A)

90 GO TO 10

Because of the possible timing limitations of direct character
input, it may be preferable to use the buffered line input ’
controlled by the INPUT statement of TINY. Obviously for input of
numbers and expressions there is no gquestion, but for arbitrarv text
input it is also useful, with a little help from the USR function,
The only requirement is that the first non-blank characters bhe a
number or {capital) letter, Then the command,

300 INPUT X

where we do not care about the value in X, will read in a line into
the line buffer, affording the operator (that’s vou) the line
editing facilities (backspace and cancel), and put what TINY thinks
is the first number of the line into the variable X. Now,
remembering that the line buffer is in 0030-0078 (approximately: the
ending address varies with the length of the line), we can use the
USR function and the PEEK routine (S+20) to examine individual
characters at our leisure. To read the next line it is essential to
convince the line scanner in TINY that it has reached the end of
this line, Location 002E-002F normally contains the current poihter
into the input lines if it points to a carriage return the next
INPUT statement will read a new line, so all that is needed is to
store a carriage return (decimal 13) in the buffer memorv location
pointed to by this address (see line 13 above},

STRINGS :
As Wwe have seen, character input is not such a difficult
proposition with a little help from the USR function, (Character

output was always easy in the PRINT statement), What about storing
and manipulating strings of characters? For small strings, we can
use the memory space in 0000-001F and 00CB-00FF, processing them one
character at a time with the USR function, Or, if we are careful,
we can £ill up the beginning of the TINY BASIC program with long REM
Statements, and use them to hold character strings (this allows them
to be initialized when the program is typed in). For example:

REMTHIS IS A& 50-CHARACTER DATA STRING FOR USE IN TINY
REMO 1 2 3 4 5
REM12345678901234567890123456789012345678901234567890
REM.,.IT TAKES 56 BYTES IN MEMORY: 2 FOR THE LINE &,
REM...,..3 FOR THE REM , AND ONE FOR THE TERMINAL CR,

b Wik

If you insert one line in front to GOTO the first program line, then
your program will RUN a little faster, and vou do not need the
letters REM at the beginning of each line (though you still need the
line number and the carriage return), If vyou are careful, you can
remove the carriage returns from all but the last text line, and the
line numbers from all but the first text line (replace them with
data characters), and it will look like a single line to the
interpreter, Under no circumstances should vou use a carriage
return as a dJata character; if you do, none of the GOTOs, COSURs or
RETURNs in your program will work,

Gee, you say, if it weren’t for that last caveat, I could use
the same technique for storing arrays of numbers.

ARRAYS

So the guestion arises, can the USR function help get around
the fact that TINY BASIC does not have arrays? The answer is of
course, yves. Obviously the small amount of space left in Page 00
and elsewhere in your system after TINY has made its memory grab is
not encugh to do anything useful. The possibility that one of the
numbers might take on the value 13 means that you cannot use the
program space, What else is there? Remember the memory bounds in
0020-0023. If you start TINY with the Warm Start (S+3), you can put
any memory limits you wish in here, and TINY will stay out of the
rest of memory,., Now you have room for array data, subroutines, or
anything else. You ¢tan let the variable A hold the startinag address

of an array, and N the number of elements, and a bubble sort would
look like this:

500 LET I=1

510 LET X=0

520 IF USR{S+20,A+1)>=USR(S+20,A+I-1}) GOTO 540
530 K=USR(S+20,A+I)+USR(S+24,A+I ,USR(S5+20,A+I-1))
535 K=USR(S5+24 A+I-1,K)¥*0+1

540 I=I+1

550 IF I<N GOTO 520

560 IF X<>0 GOTO 500

570 END

Of course this not the most efficient sort routine and it will be
veerrry slow, But it is probably faster than writing one in machine

language, even though the machine lanquage version would exescute
faster,

THE STACK

A kind of sneaky place to store data is in the GOSUBR stack,
There are two ways to do this without messing with the Warm Start,
But first let us think about the ratjionale,

When you execute a GOSUB, the line number of the GOSUE is
saved on a stack which grows downward from the end of the user
space, Each GOSUB makes the stack grow by two bvtes, and each
RETURN pops off the most recent saved address, to shrink the stack
by two bytes. Incidentally, because the line number is saved and
not the physical location in memory, you do not need to worry about
‘making changes to your program in case of an error stop within a
subroutine, Just don’t remove the line that contains an unRETURNad
subroutine (unless you are willing to put up with TINY's
complaint),

The average program seldom needs to nest subroutines (i.e,
calling subroutines from within subroutines) more than five or ten
levels deep, and many computer systems are designed with a built-in
limitation on the number of subroutines that may be nested. The
8008 CPU was limited to eight levels, The 6502 is limited to about
120. Many BASIC interpreters specify some maximum, I tend to fe=l
that stack space, like most other resources, obeys Parkinson’s Law:
the requirements will expand to exhaust the available resource.
Accordingly, the TINY BASIC subroutine nest capacity is limited onlv
by the amount of available memorv, This is an important concept,

If my program is small (the proc.am and the stack contend for the
same memory space), I can execute hundreds or even thousands of

GOSUBs before the stack fills up, If there are no corresponding
RETURN statements, all that memoryv just sits there doing nothing,

If you read vour User’s Manual carefully vou will recall that
memory locations 0026-0027 point to the top of the GOSUR stack,
Actually they point to the next byte not yet used, The difference
between that address and the end of memorv (found in 0022-0023) is
exactly the number of bytes in the stack. One greater than the
value of the top-of-stack pointer is the address of the first bvte
in the stack,

If you know how many bytes of data space you need, the first
thing your program can do is execute half that many GOSUEs:

400 REM B IS THE NUMBER OF BYTES NEEDED
410 LET B=B--2

420 IF B> -2 THEN GOSUB 410

430 REM SIMPLE, ISN'T IT?

Ee careful that you do not try to call this as a subroutine, because

the return address will be buried under several hundred 420 s, If
you were to add the line,

440 RETURN

the entire stack space would be emptied before you got back to the
calling GOSUB, Remember also that if you execute an END command the
stack is cleared, but an error stop or a Break will not affect it.
Before you start this program you should be sure the stack is clear
by typing END ; otherwise a few times through the GOSUB loop and
you will run out of memorv,

If you are careful to limit it to the main proaram, you can
grab bytes out of the stack as the need arises. An example of this
is the TBIL Assembler included in this document, Whether you
@llocate the memory with one big grab, or a little at a time, vou
may use the USR peek and poke functions to get at it,

The other way to use the stack for storing data is a little
more prodigal of memory, but it runs faster. It also has the
advantage of avoiding the USR function, in case that still scares
you. It works by effectively encoding the data in the return
address line numbers themselves. The data is accessed in true stack
format: last in, first out, I used this technique successfullv in
implementing a recursive program in TINY BASIC,

This method works best with the computed GOTO technigues
described later, but the following example will illustrate the
principle: Assume that the variable O may take on the values (-1,
0, +1), and it is desired to stack Q for later use, Where this
requirement occurs, use a GOTO {not a GOSUB!) tc jump to the
following subroutine:

3000 REM SAVE Q ON STACK
3010 IF Q<0 THEN GOTO 3100
3020 IF Q>0 THEN GOTO 3150
3050 REM Q=0, SAVE IT.
3060 GOSUB 3200

3070 REM RECOVER Q

3080 LET Q=0

3090 GOTO 3220

3100 REM Q<0, SAVE IT.

3110 GOSUB 3200

3120 REM RECOVER Q

3130 LET Q=-1

3140 GOTO 3220

3150 REM Q=0, SAVE IT,

3160 GOSUB 3200

3170 REM RECOVER Q

3130 LET Q=1

3190 GOTO 3220

3200 REM EXIT TO (SAVE) CALLER
3210 GOTO ...

3220 REM EXIT T0O (RECOVER) CALLER
3230 GOTO ...

When the main program wishes to save Q, it jumps to the entrv (line
3000, which selects cne of three GOSUBs, These all convergs on
line 3200, which simply jumps back to the callino routines the
information in Q has been saved on the stack, To recover the saved
value of Q it is necessary only to execute a RETURN, Depending on
which GOSUB was previocusly selected, execution returns to the next
line, which sets O to the appropriate value, then jumps back to the
calling routine (with a GOTO againt!), O mav be resaved as many
times as you like (and as you have memory for) without recovering
the previous values, When you finally do execute a RETURN you aet
the most recently saved value of Q.

For larger numbers, the GOSUBs may be nested, each saving oun=
bit (or digit) of the number. The following routine saves arbitrarv
numbers, but in the worst case requires 36 bytes of stack for each
number (for numbers less than -16383):

1470 REM SAVE A VALUE FROM V
1480 IF V>=0 THEN GOTO 1490
1482 LET Vz==1-V

1484 GOSUB 1490

1486 LET Vz=]l.V

1488 RETURN :
1490 IF V>V/2%*2 THEN GOTO 1500
1500 GOSUR 1520

1502 LET V=V4V

1504 RETURN

1510 GOSUB 1520

1512 LET V=V+Vsl

1514 RETURN

1520 IF V=0 THEN GOTO 1550
1522 LET v=V/2

1524 GOTO 1490

1550 REM GO ON TO USE V FOR OTHER THINGS

Note that this subroutine is designed to be placed in the path
between the calling routine and some subroutine which re-uses the
variable V, When the subroutine returns, it returns through the
restoral part of this routine, which eventually returns to the main
program with V restored, The subroutine which starts at line 1550
is assumed to be recursive, and it may call on itself through this

save routine, so that any number of instances of V may be saved on
the stack, The only requirement is that te return, it first set V
to 0, so that the restoration routine will function correctlv,

Alternatively, we could change line 1550 to jump to the subroutine
start with a GOSUB:

1550 GOsSUB ...
1552 LET V=0
1554 RETURN

This reguires another two bvtes on the stack, but it removes the
restriction on the exit from the recursive subroutine,

If you expect to put a hundred or more numbers on the stack in
this way you might wish to consider packing them more tightly, If
you use ten GOSUBs and divide by 10 instead of 2, the numbers will
take one third the stack space, Divide by 41 and any number will
fit in three GOSUBs, but the program gets rather long,

BIGGER NUMBERS

Sixteen bits is only good for integers 0-65535 or
(=32768)=(+32767). This is fine for games and control applications,
but sometimes we would like to handle fractional numbers (like
dollars and cents), or very large range numbers as in scientific
notation, Let’s face it: regqular BASIC has spoiled us., Granted,
But if you could balance your checkbook in TINY BASIC, vour wife
might complain less about the hundreds of dollars vou spent on the
computer, One common way to handle dollars and cents is to treat it
as an integer number of cents, That would be OK if your balance
never went over $327.67, but that seems a little unreasonable,
Instead, break it up into two numbers, cne for the dollars, the
other for cents, Now your balance can go up to $32,767.99, which is
good enough for now (if your balance goes over that you probably
don’t balance your own checkbook anyway)., We will keep the dollars
part of the balance in D and the cents in C. The following routine-
could be used to print your balance:

900 REM PRINT DOLLARS & CENTS
910 IF D+C<0 GOTO 960)
920 PRINT "BALANCE IS $";D;".":
930 IF C<10 THEN PRINT O

940 PRINT C

950 RETURN .
960 PRINT "RALANCE IS ~§ ;=D
970 IF -C<10 THEN PRINT Oj
980 PRINT -C

990 RETURN

[]
°
s

°
¢ ?

If line number 930 is omitted, then the balance of $62.03 would
print as "62,37,

_Readince in the dollars and cents is easy if you reguire that
the operator type a comma instead of a period for a decimal point
(the European tradition). If that is unacceptable, you can input
the dollars part, then increment the input line buffer pointer
{memory location 002E-002F) by one to skip over the period, then
input the cents part, Be careful that that was not the carriace
return you incremented over. The USR function and the peek and poke

subroutines will do all these things nicelvy.
Adding and subtracting two-part numbers is not very difficult.
Assume that the check amount has been input to X (dollars) and Y
{(cents), This routine will subtract the d¢heck amount from the
balance:

700 REM SUBTRACT DOLLARS AND CENTS FROM BALANCE
710 C=C-Y

720 IF C»=0 THEN GOTO 750
730 C=C+100

740 D=D-1

750 D=D-X

760 IF D>=0 RETURN

770 IF C=0 RETURN

780 D=D+1

790 C=C-100

800 RETURN

Adding is a little easier because vou cannot go negative (except for

overflow), so it is only necessary to check for C»>99; if it is,

subtract 100 and add 1 to D, If vour dollars and cents are in

proper form (i,e, no cents values over 99), the sum will never

exceed 198, so it is not necessary to retest after adjustment,
Using this same technigue you can of course handle numbers

with as many digits as you like, putting up to four digits in each

piece. A similar technique may be used to do floating point

arithmetic, The exponent part is held in one variable, sav T, and

the fractional part is held in one or more additional variables; in

the following example we will use a four-digit fractional part in ¥,

adding to it a number in F and N:

1000 REM FLOATING POINT ADD FOR TINY BASIC

1010 IF E-4>F THEN RETURN

1020 IF N=0 RETURN

1030 IF E+4<F THEN LET M=0

1040 IF M=0 THEN LET E=F

1050 IF E=F GOTO 1130

1060 IF E=F GOTO 1100

1070 E=EBE+1

1080 M=M/10

1090 GOTO 1040

1100 F=F+1

1110 N=N/10

1120 GOTO 1020

1130 M=M+N

1140 IF M=0 THEN E=0

1150 IF M=0 RETURN

1160 IF M>9999 THEN GOTO 1230

1170 IF M>999 RETURN

1180 IF M<-9999 THEN GOTO 1230

1190 IF M<-999 RETURN

1200 M=M#*10

1210 E=E-1

1220 GOTO 1170

1230 E=E+1

1240 M=M/10

0

1250 RETURN

This subroutine is a decimal floating point routine; by chanaing the
divisors and multipliers appropriately, it can be made into a
binary, hexadecimal, or even terniary floating point machine, Bv
using the multiple precision techniques described in the checkbook

balance example, greater precision can be obtained in the fractional
part.

COMPUTED GOTO

One of the more powerful features of TINY BASIC is the
computed line address for GOTO and GOSUB statements, A recently
published[2] s2t of games to run in TINY had several large blocks of
the program devoted to seguences of IF statements of the form,

110 IF I=1 GOTO 1000
120 IF I=2 GOTC 2000
130 IF I=3 GOTO 3000
140 IF I=4 GOTO 4000
15C GOTO 100

Now there is nothing wrong with this form of program, but I'm too
lazy to type all that, and besides, I could not get the whole

program into my memory. Instead of lines 110-140 above, the single
line

125 IF I»0 IF I<5 GOTO I¥1000

does exactly the same thing in less memory, and probably faster.

Another part of this program simulated a card game, in which
the internal numbers 11-14 were recognized (using the same kind of
sequence of IFs) in three different places, and for each Aifferent
nunber the name of the corresponding face card was printed, The
astonishing thing was that the sequence of IFs, PRINTs, and GOTOs
was repeated three different places in the program, Now I'm glad
that Carl enjoys using TINY BASIC, and that he likes to type in
large programs to £ill his voluminous memory; but as I said, I'm
lazy, and I would rather type in one set of subroutines:

10110 PRINT “"JACK"
10115 RETURN .
10120 PRINT “QUEEN
10125 RETURN .
10130 PRINT "XING
10135 RETURN .,
10140 PRINT "ACE
10145 RETURN

then in each of the three places where this is to be printed, use
the simple formula,

2510 GOSUB 10000+4B¥*10
Along the same line, when nmemory gets tight vou mav be able to

save a few bytes with a similar technigus, Suppose your program has
thirteen GO TO 1234 statements in ity if you have an unused

10

variable (say, U) you can, in the direct execution mode, assion it
the value 1234 (i.e. the lin@ ,pumber that all those GOTOs ao to),
then replace each "GO TO 1234" with a "GoTou' squeezing out the
extra spaces (TINY BASIC ignores them anvway) This will save some
thirty or forty bytes, and it will probably run faster also,

EXECUTION SPEED

TINY BASIC is actually quite slow in running programs, That
is one of the hazards of a two-level interpreter approach to a
language processor. But there are some ways to affect the execution
speed, One of these is to use the keyword "LET" in vour assignment
statements, - TINY BASIC will accept either of the following two
forms of the assignment statement and do the same thing,

R=2+3
LET R=2+3

but the second form will execute much faster because it is
unnecessary for the interpreter to first ascertain that it is not a
REM, RUN, or RETURN statement, In fact, the LET keyword is the
first tested, so that it becomes the faqteetmexecutinq statement,
whereas the other form must be tested against all twelve knywords
before it is assumed to be an assignment statement,

Another way to speed up program execution depends on the fact
that constant numbers are converted to binary each time they are
used, while variables are fetched and used directly with no
convnrsion. If you use the same constant over and over and vou do
not otherwise use all the variables, assigning that number to one of
~the spare variables will make the proqram both shorter and faster.

You can even make the assignment in an unnumbered line; the
variables keep their values until explicitly changed,

Finally it should be noted that GOTOs and GOSUBs always search
the program from the beginning for their respective line numbers,
Put the speed..sensitive part of the program near the front, and the
infrequently used routines (setup, error messages, and the like) at

the end, This way the GOTOs have fewer line numberq to wade throuagh
so they will run faster,

DEBUGGING

Very few programs run perfectly the first time, When vour
program does not seem to run right there are several steps vyou can
take to find the problem,

First of all, try to break it up into its component parts,
Use the GOTO command and the END statement to test each part
separately if you ¢an. Add extra PRINT statements alono the wav to
print out the variables you are using:; sometimes the variables 4o
not have the values in them that we expected, Also the PRINT
statements will give you an idea as to the flow of execution, For
example, in testing the sort program above {(lines 500-5370) I
inserted the following extra PRINT statements:

525 PR "X|;
545 PR ",";
555 PR

This gave me an idea where in the sort algorithm I was, so I could

11

folloew the exchanges (the "X"s), where each line represented one
pass through the main loop. Endless loops become more obvious this
way,

Y If you have not used all the segquential line numbers, you can
insert breakpoints in the program in the form of a line number with
an illegal statement -- I like to use a single period, because it
is easy to type and does not take much space:

10 LET A=B+1234
11 . v
20 GOSUB 100+A

Here when you type RUN, the program will stop with the error
message,

1184 AT 11

Now we can PRINT A, B, etc., to see what might be wrong, or tvpe in
GOTO 20 to resume, with no loss to the original program,

As we have seen, there is not much that TINY BASIC cannot do
{except maybe go fast), Sure, it is somewhat of a nuisance to write
all that extra code to get bigger numbers or strings or arrays, but
you can always code up subroutines which can be used in several
different programs (like the floating point add above (lines
1000-1250), then save them off on paper tape or cassette,

Remember, your computer (with TINY BASIC in it) is limited
only by your imagination,

REFERENCES

[1] TINY BASIC User’s Manual. Available from ITTY RITTY COMPUTZRS,
P,0, Box 23189, San Jose, CA 95153,

[2] Doctor Dobb’s Journal, vl No.7, p.26. Available from PCC, P.O.
Box 310, Menlo Park, CA 94025,

12

