tiny basic

Michael E. Day
2590 DeBok Rd.
West Linn, Or 97068

Tom Pittman's TINY BASIC TB651K V.lK may have
a bug!!!

The following program has the ability to lock
you out of your computer:

1 RUN

What happens, is that when you type RUN, TINY
begins execution, and the first statement it sees
is RUN; which causes TINY to begin execution again.
During all of this there is no teat for a BREAK,
which leaves the computer running away happily ig-
noring you.

This is no big deal, unless your computer
happens to be located in a remote location (Like
across town!), them it becomes a pain,

I found this bug late one night when nothing
else was going right, (MY keyboard has not been
the same since) and I typed it in by mistake.

Normally, I wouldn't care about it, but due
to the circumstances it 'bugged' me, so I decided
to do something about it. The following is the
cure, and is located in the execute routine (XQ).

053F A5 2A LDA 2A Get IL pointer (ADL)
0541 85 C& STA C& Save it

0543 A5 2B LDA 2B Get IL pointer (ADH)
0545 85 C5 STA C5 Save it

0547 4C OF 05 JMP 0SO0F GOTO NX routine

054A EA NOP Not used

054B EA NOP Not used

This replaces the previous data, and allows
a break test on execution.

The multiple statements per line modifica-

tions consists of changing the address of the
Branch End routine to the new address, changing
the name of the old NX IL code to NS (address re-
mains the same), and the addition of the new NX
IL code and address. NX retains the old meaning
and description of Next Line. The new NS5 code
searches for the Next Statement by looking for a
colon (:) or carriage return, and passing control
depending on what it has found.

The ML routine for the NS5 code is a modifi-
cation of the old NX routine with a subroutine
located at $0AE8. This routine causes execution
of the next statewent if a colonm is found, it goes
to the next line if a carriage return is found and
in the run mode, otherwise it returns to the com-
wand wmode.

The new ML routine for the BE code tests for
a carriage return or colon to indicate statement
end.

A modification to the IL is needed at $09B&4
in order to use the colon (:) as a terminator, as
this character is used to produce an X-OFF (DC3)
after a print statement. This is modified to pro-
duce the X-OFF on an exclamation point (!) instead

Another modification to the IL must be made
at $09F5. This is required to make TINY begin
execution on the next line rather than next state-
ment following GOSUB RETURN. This is required due
to the fact that TINY only remembers the line num-
ber for the return link, so if the GOSUB was not
the first statement in the line, a hard loop would
be set up. With this modification however, exe-
cution will begin on the next line, and not the
next statement after a GOSUB has been executed.

A modification is made to the IL at $0A26
which causes execution to begin on the next line
after a REM statement instead of beginning with
the next statement. This allows colons to be in
REM statements. It allows for more powerfull IF
THEN statements. I1.E.: IF A=0 THEN REM: LET
A=1: PRINT A,: GOTO 20. In the above example
if A is equal to 0, then execution begins on the
next line, otherwise the rest of the present line
1s executed,

The colon may not be used in a print state-
ment that is the second part of an IF THEN state-
ment, since if the test is not true, then a search
for the next statement is begun, and termination
of the search will be prematurely done upon de-
teciton of the colon in the print statement. The
colon may be in any other print statement however,
even on the same line as the LF THEN statement.

It just can not be used as the second part of an
IF THEN statement,

The GOSUB will always be the last statement
executed in a line. I.E.:
IF A=0 THEN GOSUB 20: LET A=1: PRINT A: GOTO 10
In the above example if A is equal to 0, then the
GOSUB 20 is executed, and execution continues with
the next line following the example upon RETURN
from the GOSUB., If A is not equal to 0O, then the
GOSUB is skipped, and the rest of the line is exe-
cuted.

IL ADDRESS CHANGES

CHANGE TO WAS
022¢ F2 FD
022D O0A 03 Branch End (BE)
025A EO 9F
0258 0A 05 Next Line (NX)

01d IL code NX now becomes NX (Next Statement)
there is no address change however.

IL ROUTINE CHANGES

0984 83 Al ! X=-OFF On (1) exclamation
(3) BC 09BB point instead of (:) colon

09F5 1E NX NX on Return instead of NS

ML ROUTINE ADDITIONS

NEW NX ROUTINE

0AE0 20 14 04 JSR 0414 Search for "CR"

OAE3 DO FB BNE OAE0 Con't until found

0AE5 4C OB 05 JMP 050B Get new line

NEW NS ROUTINE

0AE8 20 14 04 JSR 0414 Search for terminator

0AEB FO 04 BEQ OAF1 Return if "CR"

0AED C9 3A CMP #3A Return if ":"

OAEF DO F7 BNE QAE8 Otherwise try again
0AF1 60 RTS

NEW BE ROUTINE

0AF2 20 25 04 JSR 0425 Read BASIC character

0AFS €S 0D CMP #0D If it is a “CR"
0AF7 FO F8 BEQ OAFl Return

0AF9 C9 3A CHP #3A ar a ":"

OAFB FO Fé&4 BEQ 0AFl Return

OAFD 4C 64 03 JMP 0364 Otherwise go branch

ML ROUTINE CHANGES

NS ROUTINE

0506 20 EB OA JSR OAEB Find terminator
0509 BO 0OC BCS 0517 End line?

050B A5 BE LDA BE

0500 FO 23 BEQ 0532 Run mode?

page 13

RAMBLINGS ABOUT PITTMAN TINY BASIC by

Lew Edwards

Bought Tom Pittman's TINY BASIC, also his
"Experimenter's Kit". Perhaps you might be inter-
ested in the following comments.

Things "not in the book" or at least not too clear.
g

Saving and loading basic programs using KIM
cassette routines---Use the values in $0020 & $0021
for SAL & SAH and use the values in $0024 & $0025
for EAL & EAH when dumping to cassette. When load-
ing the saved programs, transfer the values in
$17ED & $17EE to $0024 & $0025 and enter TINY via

the "warm start", Of course before loading the
tape, you should have previously dome a 'cold start"
to initialize the basic pointers, etc. FExpect your

whole system to crash if you try to make program
changes without setting 24 & 25 to the correct
values. You can append a second program to the one
in memory if the second program has line numbers
higher than the first. I have written a line re-
numbering program if anyone is interested. The
second program is loaded in starting at the address
in $0024 & $0025 minus four. Again, transfer values
from $17ED & EE to $0024 & 25. 1 am using a tape
loading subroutine callable as a USER function,
which directly uses 24 & 25 as a pointer for stor-
ing recovered data so that it is automatically set
up as end pointer for user programs,

HOW TINY STORES PROGRAMS:

User programs start at the address stored in
$0020 & $0021 and lines are stored exactly as en-
tered from the keyboard. The line number is stored
as two hex bytes, all the rest as ASCII, ending with
the carriage return, OD(hex). All lines are stored
gn sequence as numbered, with TINY doing the edit-
ing as each line is entered (or deleted, or replaced)
TINY stores a ZERO line number in the two bytes
follwoing the CR in the last line of the program,
When TINY responds to a CLEAR céimnnd, it puts the
zero line number in the firat two bytes of the user

tiny basic

Oops! In issue #13, I left out the mod that
must be made to the IL at $0A26. Here it is:

0426 1E NX NX on REM instead of NS.

program space and initializes the pointers. If you
should accidently clear, say be using the "cold"
start to re-enter basic, after having entered a
program; you can salvage the program by loading a
value in the first byte of user memory equal (in
hex) to the original line number of the first line.
Of course, if the number is over 255, you'll have
to put the high order value into the second byte.
This will let you list and rum the program, but if
you want to make any changes, you'd better restore
the pointer at 24 & 25. You can search through
memory to find the right address using the follow-
ing rules. First, line numbers are contained in
the two bytes immediately following a carriage re-
turn (ODhex). The last CR is followed by two zero
value bytes. Add 5 to the address of the last CR

and load the result into 24 & 25.

MACHINE LANGUAGE SUBROUTINES:

These can be used by calling a USER functionms.
If you want an ML subroutine to be included with
your TB program, it can be “contained" within REM
statements placed after the last line of your pro-
gram. Make one or more REM statements using enough
characters between the first REM and the last CR to
accomodate your subroutine., The result will be
garbage on a LIST, but that's immaterial, The ML
subroutine can then be called by: X=USR(USR(S+20,
36)+USR(S+20,37)%256-n) where X is the result re-
turned from the subroutine in the A & Y registers,
S is the starting address of TINY BASIC, and n is
the number of bytes reserved for the machine lan-

guage code +6. If the ML subroutine is to be called
more than once, a variable may be set to the value
within the opening and closing parentheses. Sec~—
ond and third arguments may be included to pass
parameters. The line renumber program I wrote in

TB uses this technique to locate the line numbers

I had at first written it using only the TB built

in USER routines for "peek" and "poke", but it ran
too slowly to suit me. No, the renumber program
does not renumber the goto's and the gosub's.

Fhkhkkk kR kKb Rk

In th? next issue, we'll be presenting a very
comprehensive string capability for TB as well as

8 cassette save and load ability, (I ran out of

room in this issue). Must be a good number of Ti-
ny Basic users out there. Have you done anything

neat with TB? Let us know.

tiny basic

TINY BASIC CASSETTE SAVE & LOAD

by William C. Clements, Jr.
Univ., of Alabama
Chem & Metal Eng.
Box 2662
University, Al 35486

I recently bought TINY BASIC and the accom-
panying experimenter's kit, and have enjoyed find-
ing out how the BASIC statements are broken down
and implemented. With a little study one can eas-
ily pick up the pseudolanguage used to program the
inner interpreter, and then all sorts of possibil-
ities exist for custom modifications to suit one's
whim. 1 noticed the comments about transferring
BASIC statements to and from casgsette tape in ls-
sue 13 (Lew Edwards, p. l4), and thought perhaps
your readers might be interested in how I added
the SAVE and LOAD commands to my version of TINY
BASIC for the KIM=-1. With my implementation, TINY
can use the existing KIM monitor routines (or any
others if one wishes) to save and load programs,
and transfer of starting and ending addresses, etc.
is handled by a machine language routine. The
cassette file number is specified in the added
BASIC commands: SAVE X or LOAD X, where X is any
integer 0 _ X _ 255 corresponding to KIM file
I.D. s 00 through FF. My version of TINY is the
one having the cold start at 2000 hex; correspond-
ing address offsets can be added for other versions,

The patch to the Intermediate Interpreter is
made at relative location 00B7, as shown on p.38
of the Experimenter's Manual. This is address 2827
absolute. The patch is as follows:

13

jtest for keyword SAVE
00B7 8B534156C5 TAPE BC LOAD "SAVE"
;push start address of

Q0BC 09 29 LB 29
ysave routine onto stack
Q0BE 09 OE LB OE
jdo it again
00co 0B
;error stop if file id not number
00Cc1 Cco

. ;g0 to save routine at 290Ey
00c2 2E us
;test for keyword LOAD
00C3 BA4C4F41IC4 LOAD BC DFLT "LOAD"
;push start address of

00C8 09 29 LB 29
;load routine onto stack
00CA 09 28 LB 28
. ;Bo to load routine at
0occ 38 co JQ
72928y via above instructioms

Q0CE AQ DFLT BV *

& : ' (continue with
y L ' remaining IL code)

The constants after the LB commands specify
the hex addresses of the machine language routines
which handle the SAVE X and LOAD X functions. The
line labeled DFLT is thus moved from relative lo-
cation QO0B7 to OOCE, resulting in an offset of 17y
or 23p for remaining lines. This must be accommo-
dated in the jump and jump subroutine commands in
the I.L. The changes in destination for those in-
structions which jump beyond the patch are listed.
All error messages originating beyond the patch
will also be increased by 23p.

My version jumps to a pair of machine lan-
guage routines which initialize the file i.d,,
SAL, SAH, and the TINY BASIC registers. BASIC
files are saved using a Hypertape routine stored
in EPROM at locationm C400y; if the user wishes to
use the KIM tape dump routine, he should change
the contents of location 2927y to 18y. Appropriate
routines can of course be relocated anywhere the
user wishes, so long as the correct entry point’s
are provided for in the I.L. patch. After execu-
tion of a SAVE or LOAD, TINY must be manually re-
entered at the warm start (the limits of memory
for the BASIC statements are set for my system
when BASIC is first entered). A jump to warm
start could of course be placed at the end of the
tape dump and load routines if ones stored in RAM
instead of ROM were being used.

These alterations were worth their trouble in
added convenience: SAVE 0l is a lot easier than
exiting TINY, storing 01 in 17F9, and looking up
the memory bourds for the BASIC statements to set
SAL and SAH manually. 1 hope this modification
will be of interest to other users of TINY BASIC.

MACHINE LANGUAGE ROUTINES USED BY THE PATCH

2906 8D F9 17 00 STA 17F9y STEPS COMMON TO
A9 00 LDA $00 BOTH
85 F1 STA OOFly ROUTINES
60 RTS
290E 20 06 29 SAVE JSR 00 FILE SAVE ROUTINE
A5 20 LDA 0020y
8D F5 17 STA 17F5H
A5 21 LDA 0021y
8D F6 17 STA 17F6y INITIALIZATION
A5 24 LDA 0024y
8D F7 17 STA 17FTy
A5 25 LDA 0025y
8D F8 17 STA 17F8y
4C 00 C&4 JMP HYPERTAPE
2928 20 06 29 LOAD JSR QQ set 17F9y, OQ0Fly
4C 73 18 JHP TPLOAD read tape
292E AD ED 17 ENTER LDA EAL set address
85 24 STA 0024y at end
AD EE 17 LDA EAH of BASIC
85 25 STA 0075y program file
4C 03 20 JMP BASIC go to warm start

Restart BASIC at ENTER (loc. 292Ey) after loading.

Restart at warm start (2003y in my version) after
saving,

4

Summary of additional modifications to I.L.
Code (new transfer statement destination caused by
insertion of patch)

Relative Location
(See pp. 36-40 TIRY
BASIC Experimenter's

Manual) New Imstruction
0014 30 D3
001F 30 p3
0029 30 D3
004B 30 D3
0052 30 D3
0054 31 4B
0056 30 D3
0073 30 D3
009E 30 D3
00BE 30 EA
00C4 30 EA
00cC8 30 EA
00CE 30 EA
00D3 30 F9
00D7 30 F9
00F7 31 47
oL14 30 D3
0116 31 41
0oL1l8 31 41
0125 30 p3
012¢C 38 D3

TINY BASIC STRINGS

by Michael E Day
2590 DeBok Rd
West Linn, Or 97068

Here is the string mod I've been using which
1 access thru the USR verb. This requires 512
bytes of memory, and is relocatable &nd will run
out of ROM or protected memory except for the
storage area which operates out of RAM, however
it can be located in any 256 byte block of free
memory .

PEEK $§ USR{(28B16,ADDRESS)
PEEK at string at the string relative address
ADDRESS. Returns decimal value of addressed byte.

POKE $ USR(2822,ADDRESS,DATA)

POKE data byte DATA into the string relative
address ADDRESS. Returns string relative address
plus one.

INPUT SP$ USR(2832,BEGIN,END)

INPUT a string of characters beginning with
string relative address BEGIN, echoing back a
space with each input character, until a carriage
return is encountered, or the ending address END
is reached. Returns the string relative ending
address plus omne.

INPUT $ USR(2839,BEGIN,END)

INPUT a string of characters as in INPUT SP$,
but without the space echo. Returns the string
relative ending address plus one.

PRINT SP$ USR(2905,BEGIN,END)

PRINT the character string beginning with the
string relative address BEGIN, and print a space
after each character, until a carriage return is
encountered, or the ending address END is reached.
Returns the string relative ending address plus
one.

PRINT § USR(2912,BEGIN,END}

PRINT the character string as in PRINT SP§,
but without the space echo. Returns the string
relative ending address plus one.

SEARCH $ USR(2946,BEGIN,DATA}

SEARCHes for the BCD equivalent of decimal
value DATA, beginning at string relative address
BEGIN, until a match is found, or the ending ad-
dress of variable "L" is reached. Returns the
string relative ending address plus one,

I1f a match is not found the return address
will be 0 (zero). Variable "L" is decremented
once per test until match is found, or it 1s 0.

MOVE $ USR(2966 ,FROM,T0) (Length in variable
npo
MOVEs a group of characters of the length in
variable "L" beginning at the relative string

address FROM, and moving them to relative string

address TO, for the length of variable "L", Re-
turns the FROM ending address plus one. Variable
"L"™ is zeroed. (Lower 8 bits only, see notes on

addressing of strings).

SET POINTERS

These are memory formating routines that are
addressed by the other routines, and are listed
with USR statements only for reference. They do
not need to be accessed by TINY.

OPERATIONAL NOTES

Addressing is limited to 0-256 (8 bit ad-
dressing) and the upper bits are ignored (I.E. 512
will appear a8 a 0, and 513 will appear &g a 1).

The string array table is perminently fixed
to 256 bytes in length, and dedicated for this
purpose. This table may be located anyplace in
RAM so long as intrusion from other sources is
not allowed. Relocation is dome by changing the
page location address at OBAA (OBAA A0 0C LDY
#0C). The routines that access the table are
clean. (They are relocatable, and will operate
out of ROM or protected memory.)

All data passed through the USR
both to and from is in decimal. The
the routines however, remain in BCD.

In the PRINT and INPUT routines, if the BEGIN
address is less than the END address, an error
exit will occur which causes the exit address to
be 0, and the funciton asked for is not performed.

If only one address is given, the second ad-
dress will be assumed to be equal to the first ad-
dress given (I.E. USR(2912 0) will print out a
single character at location 0 and return an ad-
dress value of 1 to TINY.

As with any USR gtatement in TINY, the ad-
dress and data information passed through the USR
statement can be calculated from any expression.

(Such as USR(2912,B,E-2) can be used to print
a8 string starting at the address in variable "B",
and using the E-2 to suppress the ending carriage
return, and another variable can be used to pick-
up the returning ending address.)

statements
data inside

The routines given have been located at the
end of TINY, as this allows for easy isolation
from TINY by revising the user memory starting ad-
dress located at 028B.
028B A9 0B LDA #0B 01d starting address
0283 A9 0D LDA #0D New atarting address

This is the only place that TINY references
this, 60 it is the only thing that needs to be
changed. NOTE: A cold start MUST be done after
this change to set the pointers, or elae they will
have to be set by hand.

The entire string mod requires less than 512
bytes of memory (256 bytes for the array, and 187
bytes for the routines.)

A possible mod would be to place the array
page address in zero page memory, and modify it
with TINY before going into the routines. This
would allow for greater than 256 bytes, but pro-
gram management must be closely followed, or
strange things might happen!!!

The cancel code used in TINY will terminate
an INPUT § without putting the character into the
array, therefore this code can not be used direct-
ly. All previous characters will have been in-
serted however,

PEEK § USR(2816,ADDRESS)

0OBOO 20 A8 OB JSR OBASB Set pointers A

0BO3 B1 18 LDA (18),Y Pick up data

0B05 60 RTS Return to TINY

POKE § USR(2822,ADDRESS ,DATA)

0B06 20 A8 0B JSR OBASB Set pointers A

0BO9 91 18 STA (18),Y Store data

0BOB E6 18 INC 18 Increment pointer

0BOD A5 18 LDA 18 Return address to TINY
0BOF 60 RTS Return to TINY

USR(2832,BEGIN,END)

0BB5
1B
0B1A

Set pointers B
Clear 1B
Goto Input routine

USR(2839,BEGIN,END)

0BB5
#3F
0209
#20
0209
0206
0210
0B54
020F
0B&42
1A
18
0B1F
18
1B
0B24

020F
0B21
(18),Y

Set pointers B

Print a "?"

Print a "Sp"

Get a character

1s it "ESC"?

If so return to TINY
1s it "Bs"?

1f so back up

1s it begin of array?

If so restart

Decrement pointer

Input SP§ 7

If not get next
character

Get "BS"

Print it

Store data

USR(2839,BEGIN,END) Con't.

18
0BS4&
18
#0D
0B56
1B
0B24
0B1F
18
18

Is it end of array?

If so return to TINY

Increment pointer

Is it a "CR"

If so return to TINY

Print a “SP"?

If not get next byte

Print a "SP"

Increment pointer

Return exit address
to TINY

Return to TINY

USR(2905,BEGIN,END)

OBBS5
1B
0B63

Set pointers B
Clear 1B
Goto print routine

USR(2912,BEGIN,END)

0B5B
(18),Y
0209
18
0B7D
18
#0D
OB7F
1B
0B63
#20
0209
0B63
18
18

Set pointers B

Pick up data

Print character

Is it end of array?
If end return to TINY
Increment pointer

Is it a "“CR"?

If so return to TINY
Print a "SP"?

If not get next byte

Print a "sP"

Go get next byte
Increment pointer
Get exit address
Return to TINY

USR(2946,BEGIN,DATA) (Length in var=-

USR(2966 ,FROM,TO)

INPUT SP$

0Bl0 20 B5 OB JSR
0B13 B84 1B STY
0Bl5 BO 03 BCS
INPUT §

0B1? 20 B5 0B JSR
OBlA A9 3F LDA
0B1C 20 09 02 JSR
0BLlF A9 20 LDA
0B21 20 09 02 JSR
0B24 20 06 02 JSR
0B27 CD 10 02 CMP
0B2A FO 28 BEQ
0B2C CD OF 02 CMP
0B2F DO 11 BNE
0B31 A5 1A LDA
0B33 C5 18 CMP
0B35 FO EB BEQ
0B37 C6 18 DEC
0B39 A5 1B LDA
0B3B DO E7 BNE
0B3D AD OF 02 LDA
0B4O 90 DF BCC
0B&2 91 18 STA
INPUT $§

0B44 E&4 18 CPX
0B46 FO OC BEQ
0B48 E6 18 INC
0B4A C9 0D CMP
0B4C FO 08 BEQ
OB4E A5 1B LDA
0B50 DO D2 BNE
0B52 FO CB BEQ
0B54 E6 18 INC
0B56 A5 18 LDA
0B58 60 RTS
PRINT SP$

0B59 20 B5 OB JSR
0B5C 84 1B STY
OBSE BO 03 BCS
PRINT §

0B60 20 B5 0B JSR
0B63 Bl 18 LDA
0B65 20 09 02 JSR
0B68 E4 18 CPX
0B6A FO 11 BEQ
0B6C E6 18 INC
OBGE C9 OD CMP
0B70 FO OD BEQ
0B72 A5 1B LDA
0B74 DO ED BNE
0B76 A9 20 LDA
0B78 20 09 02 JSR
0B78 DO E6 BNE
0B7D E6 18 INC
OB7F A5 18 LDA
0B8I 60 RTS
SEARCH $

0B82 02 AB OB JSR
0B85 Bl 18 LDA
OB87 E6 18 INC
0B89 C5 1A CMP
0B8B FO 06 BEQ
OB8D C6 98 DEC
0BBF DO F& BNE
0B91 B84 18 STY
0B93 A5 18 LDA
0B95 60 RTS
MOVE

0B96 20 A8 0B JSR
0B99 Bl 18 LDA
0B9B 91 1A STA
0B9D E6 18 INC
0B9F E6 1A INC
0BAl1 C6 98 DEC

0BAB
(18),Y
18

0BAS8
(18),Y
(1A),Y
18

1A

98

iable "L")
Set pointers A
Pick up test byte
Increment pointer
Found match?
If so return to TINY
Decrement variable'L’
If not get next byte
Clear 18 (pointer)
Return exit address

to TINY

Return to TINY

(Length in variable
'y

Set pointers A

Pick up byte

Store it

Increment pointers
Decrement variable'L’

15

0BA3 DO F& BNE 0B99 1f end return to TINY

OBAS A5 18 LDA 18 Return exit address
to TINY

0BA7 60 RTS Return to TIRY

SET POINTERS A USR(2984,Y,A)
18

OBA8 84 18 STY Save begin

OBAA A0 OC LDY #0C Set array page
OBAC 84 19 STY 19 Store array page
OBAE 84 1B STY 1B Store array page
0BBO A0 00 LDY #00 Clear Y

0BB2 B85 1A STA 1A Save A

0BB4 60 RTS Exit

tiny basic

TINY BASIC Editors note

Several of you were apparently confused as to
how to add the Tiny Basic mods from #15 to your
systems. 1 wholeheartedly recommend you pick up
the Tiny Basic Experimenters Kit mentioned in ome
of the articles. (It's available for $15 from
6502 Program Exchange, 2920 Moana Ln, Renc NV

859C9.

MICHAEL DAY
TINY BASIC PAGE O MEMORY MAP
for TOM PITTMAN's TINY BASIC TB651K V.1K

0000 - OO0OF UNUSED

0010 - OO01F USED IN PROTO VERSIONS ONLY
0020 - 0021 USER SPACE LOW ADDRESS

0022 - 0023 USER SPACE HIGH ADDRESS
0024 - 0025 PROGRAM END + STACK RESERVE
0026 - 0027 TOP OF GOSUB STACK

0028 - 0029 CURRENT BASIC LINE #

002A - 002B IL PROGRAM COUNTER

TVT=-6/TINY BASIC INTERFACE

by Michael Allen
6025 Kimbark
Chicago IL 60637

I had a lot of trouble getting Tom Pittman's
Tiny Basic to work with the KIM-1/TVT-6 combina-
tion. Now, looking back, the input and output
routines included below seem fairly simple and
straight-forward. So I thought I should share
these with you to help those who may be making the
same mistakes I was.

The T. B. version I have resides in memory
locations 0200 to 0AC6. You must change six bytes
within T.B. as follows;

1. Set 0207 to C7 and 0208 to OA. This is a jump
to a subroutine to input a character. The imput
routine saves the return address to T.B. then jumps
to the SCAN program and stays there until inter-
rupted by a strobe signal from a key being pressed
on the keyboard, If the IRQ vector has been pro-
perly set to 0AD3, a character is sent to the cur-
sor subroutine, Then a return is made to T.B.

Note that a CLI (clear interrupt status) instruc-
tion was inserted in SCAN (underlined in the hex
dump).

2. Set 020A to F3 and 020B to OA. This is a jump
to the output subroutine where the miscellaneous
characters T.B. sends for the benefit of a tele-
type are trapped before falling through to the
cursor subroutine,

SET POINTERS B USR(2997,Y,A)

OBB5 20 A8 0B JSR OBAS Set pointers A

OBBS8 AA TAX Save end

OBB9 A5 18 LDA 18 Recapture begin

OBBB B85 1A STA 1A Save it

OBBD E4 18 CPX 18 Bad address?

OBBF BO 03 BCS OBC4 If 80 go error

0BCl 68 PLA

0BC2 68 PLA Discard string link
0BC3 98 TYA Clear A .
0BC4 60 RTS Exit

READ KEY USR(3064)

OBF8 AD 00 CO LDA 0CO0 Pick up data

OBFB 29 7F AND #7F Clear bit 8 (Strobe)
OBFD A0 00 LDY #00 Clear Y
OBFF 60 RTS Return to TINY

002¢ - o020 BASIC POINTER

002E - 002F SAVED POINTER

0030 - 007F INPUT BUFFER AND COMPUTATION STACK
0080 - 0081 RANDOM NUMBER SEED

0082 - 0083 VARIABLE ‘A’

0084 - 0085 VARIABLE 'B'

00B4 - O0O0BS VARIABLE '2'

00B6 - 00B7 TRANSFER WORK POINTER

00B8 - 00B9 MISC WORK REGISTER

00BA - OOBB MISC WORK REGISTER

00BC - 00BD TEMPORARY STORAGE REGISTER

00BE RUN MODE FLAG

00BF PRINT CONTROL

00co INPUT BUFFER POINTER

00C1 COMPUTATION STACK POINTER

0oc2 2nd ¥ OF STACK POINTER (ALWAYS 00)
00c3 COUNTER (USED IN PN ONLY)

00C4 - 00C5 IL XQ POINTER

00Ccé - 00C7 GOSUB STACK WORK POTNTER
00C8 ~ 00D7 USED IN SPHERE VERSIONS ONLY
00D8 - OOFF URUSED

There are the major use of these registers
only they may be used for other purposes on an
availability basis.

3. Set 020F to 0B. This allows T.B. to recognize
the ASCII backspace.

4. Set 028C to OE. When starting T.B. at 0200
(cold start), this byte determines how T.B, de-
fines the lowest address of program space.

5. Also be sure to set 17FE to D3 and 17FF to 0A.

I relocated SCAN to be able to reload T.B.
from tape in one load. The version of SCAN shown
is from Don Lancaster's Popular Electronics ar-
ticle except for bytes OBA4 and 0BCC which were
changed in order to display pages 0CO0 and 0DOO.

The Cursor program is adapted from Don's but
is much shorter as it only supports backspace and
carriage return controls--all you really need with
T.B. (also INPUT sets lowercase to uppercase &0
you don't have to shift back and forth.)

KIM's Memory map now appears thus:

0020-00B9 Used by tiny BASIC

00E8-00EE Used by I/0 routines

0200-0AC6 Tiny BASIC

0AC7-0B79 INPUT & OUTPUT Subroutines

0B7A-0BDC SCAN

0BDD-0BFF 34 bytes for USR subroutines (I put
Don Box's subscripted variable SBR's
here; see KUN #5.)

0C00-0DFF TVT-6 display area

0EQ0-13FF 1.5K program area

SET 17FFE =

0AC7
0OACB
OACA
OACB
OACD
OACE
OADO

0AD3
OADB
0ADS8
OADA
OADC
OADE
OAEOQ
OAE?2
OAE4
OAE7
OAE9
OAEA
OAEC
NAED
OAEF
OAFO
OAF2

OAF3
OAF5
OAF7
QAF9
OAFB
OAFC
OAFE
0800
0B02
0BO4
0BOG6
0808
OBOA
0OBOC
OBOE
OBOF
0B11
0OB13
0B15
0oB17
OB19
OB1B
0B1D
0B20

68
85
68
85
BA
86
ac

AD
29
c9
90
E9
85
c9
FO
20
A6
9A
AS
48
AS
48
AS
60

ca
30
c9
BO
48
AO
AS
Cc9
FO
c9
DO
Bl
29
91
68
c9
BO
c9
DO
AS
09
85
20
ac

E8

E9

EA

A7

00
7F
61
02
20
EB
oD
03
FB
EA

E9
F8

EBR

OR
FR
TF
F7

Q0
EE
on
04
oc
2F
ED
7F
ED

20
59
oD
oc
ED
1F
ED
61
6F

TVT6/TINY BASIC INTERFACE LISTING

n3,

0B

17

OA

0B
0B

17FF =

INPUT

BREAK

RTN1

RTN2

ouTPUT

CURSOR

CONT

OA

PLA
STA
PLA
STA
TSX
STX
JMP

LDA
AND
CMP
BCC
SBC
STA
CHMP
BEQ
JSR
LDX
TXS
LDA
PHA
1.DA
PHA
LDA
RTS

CHP
BMI
CMP
BCs
PHA
LDY
LDA
CMP
BED
cHP
BNE
LDA
ARND
STA
PLA
cMP
BCS
cHMpP
BNE
LDA
ORA
STA
JSR
JHP

Low
TEMP
HI
TEMP+1

TEMP+2
SCAN

CHAR
#3TF
#3561
SKIP
#320
TEMP+3
#50D
RTN1
CURSOR
TEMP=3

TEMP+1
TEMP

TEMP+3

#30B
RTM2
#37F
RTN2

#0

EE
#30D
CONT
#s$0C
SCROLL
(ED),Y
E37F
(ED),Y

#%20
ENTER
#$0D
SKIP1
ED
#$1F
ED
INCR
END

SAVE ...
RETURN ...
ADDRESS.

AND STACK ...
POINTER.

GET CHARACTER.
REMOVE PARITY.
LLOWER CASE LETTER?
NO; SKIP AlIEAD.
YES; MAKE UPPER CASE.
SAVE CHARAGCTER.
CARRAGE RETURN?
YES; RETURHN.
NO; ENTER CHARACTER.
RESTORE ...
STACK POINTER.
RESTORE ...
RETURN ...
ADDRESS.

GET CHARACTER. .
RETURN TO TINY.

TRAP ...
CONTROL ...
CHARACTERS.

SAVE CHARACTER.

RESET INDEX.

GET CURSOR HI ADDR.

IS CURSOR ON PAGE OD?

YES; CONTINUE,

NO; OR ON PAGE 0C?

NO; INITIALIZE CURSOR.

GET OLD CHARACTER.

REMOVE CURSOR.

REPLACE.

RECALL NEV CHARACTER.

IS IT A CHARACTER?

YES; ENTER IT.

CARRAGE RETURN?

NO; SKTP

YES; MOVE CURSOR ...
TO RIGHT SIDE.

AND REPLACE.

INCREMENT CURSOR.

0B23 c9 08 SKIP1 CMP #$08 BACKSPAGE?

0B25 DO 4¢ BNE RESTORE NO; CONTINUE,

0827 C6 EN DEC ED YES; DECREMENT CURSOR,
0B29 A9 FF LDA #$FF TEST FOR PAGE ...

082B C5 ED CHMP ED UNDERFLOW.
OB2D DO 44 BNE RESTORE 0.K. TO CONTINUE,

OR2F €6/ EF DEC EE DECREMENT PAGE.

0B31 A9 OB LDA #30B TEST FOR SCREEN ...

0B33 €5 E& CH® EE UNDERFLOW.
0B35 DO 3C BNE RESTORE 0.K.

0B37 A9 00 SCROLL LDA #0 NOT 0.K.; HOME CURSOR.
OB39 85 ED STA ED TO 0C00

0B3B A9 OC LDA #$0C (UPPER LEFT OF SCREEN)
0R3D 85 EE STA EBE

023F A0 20 LOOP LDY #%20 ADD OFFSET TO INDEX.
OB41 B1 ED LDA (ED),Y MOVE ...

0B43 A0 00 LDY #0 CHARACTER ...

0B45 20 SF OB JSR STORE ue,
0B48 DO FS RNE LOOP LOOP UNTIL END OF SCREEN,
OB4A 18 cLe CLEAR FLAG.

0B4B A9 EO HOME LDA #$EO HOME CURSOR

0RB4D 85 ED STA ED TO ODED

OB4F A9 OD LDA #30D (LOWER LEFT OF SCREEHN).
0B51 85 EE STA EE

0B53 RO 1E RCS RESTORE FIMNISH IF FLAG SET.

OB55 A9 20 SPACE LDA #$20 ELSE; CLEAR LAST LINE.
OBS7 20 SF 03 JSR STORE ENTER SPACT TO ...

OB5A DO F9 PRIE SPACE END OF LINE.

0B5C 38 SEC SET FLAG.

ORSD B0 EC BCS HOME TRY AGAIN.

OBSF 91 ED STORE STA (ED),Y ENTER CHARACTER.

0BAl E6 ED INGR Iic ED IHCREMENT CURSOR.

0B6A3 DO 05 BHE RTH OVERFLOW?

0B65 E6 EE INC EE YES; INCR CURSOR TO MEXT PAGE.
0B67 A9 OE LDA #$0E TEST FOR SCREEN OVERFLOW.
0BE9 C5 EE CHMP EE

OB6B 60 RTN RTS

OBAC 20 SF OB ENTER JSR STORE ENTER CHARACTER.

OBGF DO 02 END BNE RESTORE END OF SCREEN?

OB71 FO C4 BEQ® SCROLL YES; SCROLL UP,

0B73 Bl ED RESTORE LDA (ED),Y GET CHAFACTER.

0B75 09 08 ORA #380 ADD CURSOR.

0B77 91 EL STA (ED),Y REPLACE.

0B79 60 RTS RETURN TO I/0O ROUTINES.
HEX DUMP OF RELOCATED "SCAN'" PROGRAM:

0B7A
0BBO
0B90
ORAO
OBBO
0BCO
OBDO

tiny basic

Ben Doutre

621 Doyle Rd

Mont St-Hilaire Que
Canada J3H 1M3

EA 8D 84 OB 48 68
DO 00 20 00 BO 69 08 C9 CO 90 FO
80 AA AD 83 OB 69 1F 8D 83 0B BA
‘20 00 80 C9 86 90 D3 AD D9 OB 49
4B A2 66 20 DA OB 20 DA OB 10 05
20 1E 80 58 48 68 A9 00 8D B3 0B
20 00 80 T8 CA 30 A4 10 ED 80 BO

Dear Eric,

let me say that 6502 User Notes is top
getting better with each issue, Keep
work.

First,
quality and
up the good

1 bave been following the Tiny Basic items
with particular interest and feel that Michael Day,
Lew Edwards and William Clements are to be con-
gradulated for their contributions in issues #13-
15. The following comments may be of interest:

In Day's string mods, KIM owners who are

a
1/0 routines GETCH and OUTCE will

using the TTY

20 DA 0B 20 00
DO AA EA 69 CO
80 30 0S5 8D D9
8D D9 4B A2 67
A9 B4 8D 84 0B
00 60

yave problems, since these do not save the Y reg-
ister. Rather than reassemble the code, you can
set up a couple of buffer 1/0 routines as follows:

INPUT JSR GETCH OUTPUT JSR OUTCH
INY INY
RTS RTS

and change your JMP vectors at $0206 and $0209 to
wherever you tuck these routimes in, There is al-
50 a pretty obvious typo at 0B82: 02 should be 20,
These string features are really interesting to
play with., (The BNE instruction at $OB7B in Tiny
B must be changed to BEQ for this mod to work).

b) In Clements tape SAVE and LOAD mod, one
item was omitted from the list of revised branch-
es: at IL relative address 00DD, the "30E2" should
be changed to "30F9". This mod also works great,
although perosnally, I have reservations about ad-
ding IL workload (I seldom use "Let" expressions)
f“' non-run-time extensions and prefer to use an
input trap routine. But that is another story,

1 have developed a small (74 bytes) utility
program which makes it pretty easy and straight-
forward to load machine-code routines. If you feel
that your readers would be interested, the en-
closed listing and example of use will make most
of it clear, together with these additional com-
ments.

My system is a KIM-1 with an additional 8K
bytes of RAM, located at $2000 to $3FFF, My ver-
sion of Tiny Basic is TB651T, V.1T, which loads
at $2000 and extends to $28C6. Day's multiple
statement per line mods are tucked into the re-
maining $2800 space, and the next 1K is allocated
to utilities, like tape 1/0 (1 use Lew Edwards'
ZIPTAPE, the greatest thing to come along since
sliced bread!), Selectric print routines, etc.
User space is allocated starting at $2D00, but
this can vary.

EZLOAD is an interface routine which scams
the ourput stream looking for a unique prefix
character. When it finds it, it then proceeds to
convert each following pair of characters into a
hex byte which is placed at the top (bottom?) of
the Basic stack. Anyway, the bytes are shuffled
along the stack, with the Basic stack pointer and
variable "A" (an arbitrary choice) keeping up with
the head of the code. The loading stops when a
carriage return comes along, but may resume and
stop several times. When the dust finally settles,
the machine code is neatly arranged in execution
order at the top of user space, with not a byte
wasted, and with "A" all set to be used as the
first parameter in a USR function call.

The machine code is written into REM state-
ments, and will print in readable form when list-
ed., It is, in fact, loaded by being LISTed, and
is effectively wiped out by a warm start (the
Basic stack pointer is reset) or by the execution
of an END statement, which ends up doing a warm
start for you. The best way to use a program with
EZLOAD machine code is to do a command-mode END,
list the program, then RUN it.

The code will not load when you are first
typing it in, unless you have an 1/0 setup with
external echo. You may be tempted to use the
selected prefix character in a run-time PRINT
“..." but this will clobber your stack when it is
in use for other things. With some slight changes,
though, this presents some intriguing possibili-
ties. Obviously, the programs may be saved on
tape, and later loaded with their machine-code
still intact and usable. This is a considerable
benefit.

EZLOAD was written with severe space con-
straints, consequently some niceties were left
out, such as checking for stack over flow, In
particular, it will not work ag is unless some
modifications are made to Tiny's memory grab code
in the cold start areas. These are detailed be-
low. Users with more bytes available might want
to check for valid HEX code characters (KIM's
PACKT will return with Zero bit set if valid, re-
set otherwise, assuming you enter with Y equal 0)
and use the validity check to step over spaces
and other readability aids. You could also use
several of Tiny's variables to point to various
code segments, or several different prefixes, etc
etc.

The trouble with the cold start code, insofar
as this program is concerned, is that it runs the
top-of-user-space pointer ($0022-23) to the last
real RAM location plus one. That plus ome I didn'tc
need! And contrary to what the Experimenter's Kit
seems to say (top of page 6), the Basic stack
pointer must be decremented before use, not afrer;
these conditions presented severe problems in in-
itializing EZLOAD, beyond resetting the load flag
which is done by the firat carriage return from a
warm start. So that cute memory grab finally had
to go!

In my version of TB, the cold start vector
jump at $2000 points to $2085. The code from
$2085 thru $20A9 initializes both the start and
end of user space pointers ($0020-21 and $0022-
23, respectively). The following code was sub=-
stituted: (You should, of course, use your own
start and end values):

2085 A9 00 COLDST LDA #5500

2087 85 20 STA $20

2089 A9 2D LDA #$2D

2088 85 21 STA $21 ; user space start
at $2D00

208D A9 FF LDA #SFF

208F 85 22 STA §22

2091 A9 3F LDA #$3F

2093 85 23 STA $23 ; user space end at
$3FFF

2095 A0 00 LDY #$00 ; zero Y register

2097 4C AA 20 JMP $20AA ; for rest of init

20AA DB CLD ; existing code

20AB A5 20 T LDA $20

etc

In the following warm start code, the Basic
stack pointer $0026-27 is made equal to top-of~-
user-space pointer $0022-23. The worse this mod
can do (I hope!) is to prevent the use of byte
$3FFF in the Basic stack.

1 have not yet had any problems in using
EZLOAD, but Murphy syas that someone out there

will, and probably the first time out. I would
be interested in any comments or suggestions.
2CB2 EZLOAD ORG $2CB2

ZERQO PAGE LOCATIONS

2cB2 TOPL L 50022 TOP LIMIT OF
2cB2 TOPH " $0023 USER SPACE
2CB2 SPL L 50026 T-B STACK

2cB2 SPH * $0027 POINTER

2cB2 ALOD . 50082 TINY’S

2cB2 AH1 - $0083 VARIABLE "A"
2cBe2 FLAG * S00F8 LOAD ON/OFF SW
ace2 POINTL * $00FA POINTER FOR
2cB2 POINTH * $00FB LOAD ROUTINE

KIM SUBROUTINES

2ce2 PACKT = S1A00 CONV ASCILI/HEX
2cB2 QUTCH * SIEA0 OQUTPUT CHAR
2cB2 INCPT & $1F63 INCR LOAD PTR

SET T-B OUTPUT JMP VECTOR AT $2009
TO ADDRESS $2CB2

2cB2 48 ENTRY PHA SAVE CHAR

2CB3 20 A0 LE JSR OUTCH THEN PRINT IT
2cB6 C8 INY ZERO Y-REG
2CB7 68 PLA

2CB8 C9 0D CMPIM $0D WAS IT CR?
2CBA FO0 0A BEQ SETFLG EXIT LOAD MODE
2CBC 24 F8 BITZ FLAG LOAD MODE ON?
2CBE 70 09 BYS ALOAD YES =~ IST CHAR
2CCO 30 oC BMI BLOAD YES -~ 2ND CHAR
2CC2 C9 SC CMPIM *\ PREFIX CHAR?
2cc4 Do 02 BNE Out NO - SKIP

2cC6 85 FB SETFLG STAZ FLAG

2cC8 60 out RTS

2CCH 06 FB ALOAD ASL FLAG TOGGLE BIT
2CCB 4C 00 1A JMP PACKT 1ST NYBBLE
2CCE 46 F8 BLOAD LSR FLAG

2CD0 20 00 1A JSR PACKT CODE BYTE IN ACC
2CD3 91 22 STAlY TOPL PARK IT

2CD5 A6 26 LDXZ SPL NOW DEC

2CD7 DO 02 BNE SKIP STACK PTR

2cD9 Cé 27 DECZ SPH

2CDB AS 27 SKIP LDAZ SPH COPY TO

2CDD B5 FB STAZ POINTH LOAD PTR

2CDF 85 83 STAZ AHI & VAR "A"

2CEl CA DEX

2CE2 86 26 STXZ SPL

2CE4 B6 FA STXZ POINTL

2CE6 86 B2 STXZ ALO

2CEB C8 SHUFL INY MOVE ALL

2CE9 Bl FA LDALY POINTL BYTES DOWN
2CEB 88 DEY ONE PLACE
2CEC 91 FA STALY POINTL

2CEE 20 63 IF JSR INCPT

2CF1 AS FA LDAZ POINTL CK IF

2CF3 C5 22 CMPZ TOPL ALL DONE?
2CFS A5 FB LDAZ POINTH

2CF7 ES 23 SBCZ TOPH

2CF9 90 ED BccC SHUFL FMORE

2CFB 60 RTS NEXT CHAR++

SAMPLE ORG sg200

THIS IS A SAMPLE MACHINE-CODE ROUTINL
TO ILLUSTRATE USES OF EZLDAD

SET UP A NUMERICAL ARRAY OF 128
16=-BIT ELEMENTS [N MEMORY SPACE
2A00-2AFF, INDEXED BY 0 TO 127

READ ROUTINE., R=USR(A,I), WHERE R=CONTENTS
OF ARRAY(I), A=ADDHESS, [=SUBSCRIPT

9200 98 READ TYA TRANSFER INDEX
020! 0A ASLA MULTIPLY BY &
0202 AA TAX USE FOR INDEXING
9203 BD 00 2A LDAAX $2A00 INTO ARRAY

0206 E8 INX NOY GET

0207 BC 00 2A LDYAX $2A00 HIGH BYTE

020A 60 RTS

WRITE ROUTINE, Z=USR(B,W.,1), WHERE Z=DUMMY
B=ADDRESS, W=VAL TO BE STORED.s I=SUESCRIPT

0208 86 F9 WVRITE STXZ §F9 PARK X FOR NOW
020D 0A ASLA SUBSCRIPT # 2
020E AA TAX USE FOR INDEXING
020F 98 TYA
0210 9D 00 2A STAAX $2A00 STORE LO BYTE
0213 AS F9 LDAZ $F9 GET H! BYTE
0215 E8 1NX .. AND

REM \980AAABDDO2AESBCO02A60 :g:; :S 00 2A ;Igﬂx $2A00 STORE IT

REM \86F90AAA989D002AASFIEB9DN02A60 -

REM

REM PROGRAM TC DEMO USE OF EZLOAD

REM

REM MACHINE CODE CREATES ARRAY READ AND WRITE FUNCTIONS
REM BASIC PROGPAM LOADS 64 RANDOM NUMBERS AND PRINTS THEM
REM THEN SORTS THE ARRAY AND PRINTS THE RESULTS

REM

10 B=A+11:C=0

20 Z=USR(B-RND(1000),C):C=C+1:IF C<e4 GOTO 20

30 G0SUB 100

40 REM SORT THEN PRINT

S0 R=63

60 F=0:C=0:L=R

70 IF USR(A,C)<=USR(A,C+1)GOTO 90

80 T=USR(A-C)>:Z=USR(B,USR(A,C+1),C):1Z=USR(B,T,C+ 1)

85 F=11R=C

90 C=C+1:IF C<L GOTO 70:1F F=0 GOSUB 100:GOTO &0

95 END

100 C=0:PR

110 PR USR(A,C),:C=C+1:1lF C~C/B%B=0 FiialF C<bu GOTU 110
120 PR:RETURN

VDN MR N -

1RUN

985 633 S48 33 383 166 S1 816
230 248 700 186 65 4 456
126 831 161 173 [-1-2] 268 869
344 417 673 609 EED] 597 a96
2u4 58 25% 541 142 917 365 183
210 263 Sie 33 967 420 560 145
370 774 487 919 4e 638 Jaz 6l4
340 ele 534 315 995 Jae 6ly 695
ue 51 S8 126 142 143 145 161
173 183 186 186 187 210 230 230
244 248 256 2463 268 310 318 326
333 338 340 342 344 365 170 420
456 4717 487 4348 498 510 534 5414
560 597 606 609 6lyu 614 633 666
673 681 695 700 774 816 831 gio

869 917 919 94t 967 981 955 995

