
RS232 (TIA/EIA-232-F)
Historical (1962, revision C dates from 1969, revision F 1997) universal serial peripheral interface

The maximum recommended speed was 20 kbit/s, PC implementation had 115 200 b/s, some specific implementations have more

The maximum range was 15 m (revision C), often had been reported 25 m; according to the revision F the range is limited to a
maximum cable capacitance of 2500 pF, with a low capacitance cable it can reach up to several times larger distance, but at lower
speed (900 m at a speed of 2.4 kBaud)
If we want to reach greater distances, we can use the 20 mA current loop converter (up to 6 km), or use the RS-422 or RS-485 bus

Asynchronous data transfer; each side has its own clock generator, which must be synchronized before transmission of each byte

In the past, this interface was commonly used to connect the computer (DTE) with a modem (DCE), but more than 10 years ago
began to be replaced by USB. So far it is used mainly for special measuring devices (e.g. electrical inspection devices), at point of
sale (POS) systems (e.g. IBM SurePOS 500) including peripherals (touch screens, customer displays, card readers, thermal printers,
... – although even here USB begins to dominate) and industry. Many microcontrollers supports this interface.

In the PC based on UART chips, i8250 / 16450 / 16550 compatible, COM ports
(Communications port, COM1 – COM4)

Replacement of missing RS232 port by
USB/RS232 converter based on

FT232XX chip

Former PC bracket has 2 RS232 connectors – original
DB25M and later DE9M

(also known incorrectly as DB9P)

More recent version with DB25F and DE9M
DB25F is not serial, but parallel bus LPT

D subminiature connectors: Canon, 1952; Marking: DB25M

D – indicating the type of connector
 (D subminiature)

B – connector size; the same as number of contacts
 A … 15
 B … 25
 C … 37
 D … 50
 E … 9

25 – the actual number of contacts

M – connector design / gender
 M (male) / P (plug)
 F (female) / S (socket) in 2 rows

DTE / DCE devices

The RS232 interface was originally designed to connect between the terminal and modem to communicate through
some other technology (such as public telephone networks)

DTE – Data Terminal Equipment ~ PC; male gender of connector

DCE – Data Communication Equipment ~ modem; female gender of connector

RS232 (TIA/EIA-232-F)

There is no galvanic isolation, grounded circuits in the PC are connected directly to grounded circuits of connected peripherals
Hot plug / unplug was not recommended, at least…
At various outlets (in the case of different of distribution points) the ground voltages may differ by many (dozens) volts
– the risk of interface destruction!

Electrical Characteristics
TIA/EIA-232-F standard allows maximum driver voltage (open circuit) 25 V, loaded 5 … 15 V

At receiver side the minimum input level is 3 V (undefined “dead zone”; the voltage drop between transmitter and
receiver is on the cable resistance)

The typical driver voltage (loaded) was 15 V (but PC uses, due to the supply voltage, 12 V, present drivers are often
supplied from 0/5 V source, the output voltage is generated by a regulated charge pumps on voltage level converter chips;
the voltage is then 10 V or less)

 -15 V … -5 V: logic 1
 +5 V … +15 V: logic 0
 -3 V … +3 V: undefined (transition region)

 The maximum allowable potential difference of the earths: 2 V
 (hence ±3V and ±5V the limits on receiver and transmitter)
 Recommended transmitter voltage levels: -15 V … -5 V / +5 V … +15 V

Input impedance on receiver side 3 – 7 kΩ

Output current (short circuit tolerance!)
standard allows output current to 500 mA, IO have typically 10 … 30 mA

Max. cable + input capacitance 2500 pF – limits the maximum cable length

Timing requirements:
Maximum slew rate 30 V/µs
Rise time through the transition region 1 ms (below 40 b/s),
4% of Unit Interval — 30 bit/s to 20 kbit/s (depends also on a version)
Signal should not change its direction in the transition region

The relationship between transition
time and data rate on RS232

RS232 (TIA/EIA-232-F)

Good and wrong voltage waveform in a transition region

Although you can occasionally find in literature a picture similar to that on the left, which illustrates the meaning of
threshold voltage levels, with a commentary the receiver accepts it as a sequence of a logical 0 1 0, this shape does
not satisfy the requirements both by its slope and swinging in logic 1. Present circuits differs in their voltage levels,
especially the integrated one, so they may understand the signal in a different ways.

RS232 (TIA/EIA-232-F)

DCD – Data Carrier Detected

RD – Receive Data

TD – Transmit Data

DTR – Data Terminal Ready

SG – Signal Ground

RTS – Request To Send

DSR – Data Set Ready

CTS – Clear To Send

RI – Ring Indicator

Signal pins of DE9 connector (front view)

Signal Meaning
DCD Carrier detected: DCE is now connected to the phone line (local modem detect carrier of a remote modem)
RD (RxD) Receive data: transmission of series data from modem into DTE (e.g. PC)
TD (TxD) Transmit data: transmission of series data from DTE into DCE (modem)
DTR Data terminal ready: DTE informs DCE, it is ready for data transmission (e.g. the PC wants to use modem)
SG (GND) ground: signal ground
DSR Data set ready: DCE (modem) informs, it (finish negotiation with remote modem and) is ready to transmit data
RTS Request to send: DTE informs modem, it is ready to transmit data (and wait for confirmation by CTS signal)
CTS Clear to send: modem give permission to DTE to send data (when it returns back to logic 0 it informs, it isn’t possible to continue in

data transmission /e.g. modem buffer is full/)
RI Ring indicator: informs, that modem receive an incoming tone signal
PG Protected Ground: is connected to the connector’s body and shielding

RS232 (TIA/EIA-232-F)

Basic cable types

Standard DB9 pinout

Direct connection of DTE to DCE device
Female (on DTE), male (DCE) connector

View from cable side

DB9 null-modem

Direct connection of two DTE devices (PC) without modems (female / female), with and without handshaking

Full Minimum

DTE DCE

DB9F / RJ45

EIA-232-D
DB9F, male RJ45 connector (but also DB9M is used)

View from cable side / upper view

RS232 (TIA/EIA-232-F)

The basic control signals, and their sequences

1. DTE device asserts DTR signal (logic ‘0’, positive voltage) when it wishes to open a communications channel
2. DCE device (modem) confirms by setting DSR signal to logic ‘0’ that:

a) The modem is connected to an active telephone line
b) The modem is in data mode, not voice or dialing mode
c) The modem has completed dialing or call setup functions and is generating an answer tone

3. DTE asserts RTS signal, when it is ready to send data to modem; DCE may spend some time by preparation for transmission
4. DCE asserts CTS signal, when it is ready receive data from computer
5. DCE device is not able to receive any other data from DTE at this moment (e.g. when its buffer is full), so it asserts logic ‘1’ (low

voltage) and DTE device must stop data transmission
6. At this moment DCE is again able to receive new data from DCE, so it asserts logic ‘0’ again on CTS signal
7. At this moment DTE is not able to receive data from modem, so it signals this to DCE device asserting RTS signal to logic ‘1’

(DCE mustn’t send any data into DTE)
8. DCE acknowledge the message from the step 7 asserting CTS signal low (logic ‘1’)
9. DTE is able to receive data again, so it asserts RTS signal to logic ‘0’
10. DCE acknowledges it is also able communicate
11. DTE is again stopping communication
12. DCE acknowledges
13. DTE is finishing communication (requests modem hang-up)
14. DCE acknowledges the communication is finished (modem is hang-up)

RS232 (TIA/EIA-232-F)

Asynchronous transmission on RS-232

The basic condition is that the receiver and transmitter is configured with the same data transfer rate

IDLE: logic 1 („marking state“)

Start bit: initiates the transmission of one byte; line goes into a logical 0 („space state“)
At this moment the internal clock generator of receiver is synchronized; its counter is reset, and it will be used to generate internal
sampling pulses, which controls sampling of distinct bits values (in ideal case) in the middle of their periods

Data bits: usually 5 – 8, LSB is transmitted first

Parity bit: not mandatory, both transmitter and receiver must use same type of parity
The ODD parity was used (the number of mark bits + parity bit = odd number, EVEN parity, SPACE parity – always logic
0, and MARK parity – always logic 1)

Stop bit: logic 1 (mark state) (the same as idle state); serves to bring the receiving device to rest in preparation
for the reception of the next symbol (receiving device may have slower clock generator, so then it may miss next
start bit), some receiving devices need distinct time for processing of just received symbol.

RS232 (TIA/EIA-232-F)

Voltage level converters (RS232 interfacing circuits)
Although many µCs have UART logic interface, it use µC voltage levels, not compatible
with RS232 standard

These circuits converts TTL (CMOS) voltage levels on RS232 voltage levels and
oppositely

The best known include Maxim’s MAX232 (and its variants), the National
Semiconductor's DS14C232, their clones are produced by a number of other companies

Usually the circuit is supplied by the source +5 V / 0 V, required positive and negative
voltage is generated internally by a voltage doubler / inverter on the principle of a
charge pump (capacitors C1, C2)

Voltages +10 V / -10 V (open circuit) are available for supplying of a low-drain devices
on pins 2 and 6 (but with increasing loaded power the voltage, of course, drops!)

Example of connection of a MAX 232 to µC (ATMEGA168-20PU)

Internal: typical operating circuit of MAX 232

RS232 (TIA/EIA-232-F)

RS232 (TIA/EIA-232-F)

Current loop
• To extend the range of the RS232 bus the current loop 0/20 mA may be used. But, don’t confuse it with an analog 4/20 mA

current loop.

o Analog current loop is used mainly to transmit control signals to valves, pumps, ..., or, conversely, to receive measured
values from sensors, etc.

o Through analog current loop may pass arbitrary current in an interval 〈4, 20〉 mA, which is equivalent to 〈0, 100〉%
(deviation, value measured by a sensor, …).
Zero current indicates a malfunction.

o Digital current loop has only two states – in the current loop flows the current of 20 mA (logic 1 / mark state of RS232) /
or no current flows in the current loop (logic 0 – space state of RS232)
There is no special value which may indicate a malfunction.
Digital current loop is often supplied from common voltage source with such internal resistor, which resistivity adjust the
current in current loop at 20 mA (supposing zero resistivity of cabling, but counting the voltage drop across LED diode) –
e.g. 12 V voltage source of internal resistivity of 470 Ω, in controlling circuits usually 24 V); with resistivity of cabling
passing current drops.

• Maximum range is limited by a cable capacitance and resistivity, usually the maximum is 200 Ω, practically the range may be from
few hundreds meters up to 6 km

• The advantage of a current loop is noise immunity. Galvanic isolation is common.

• Converters are passive (the transmitter and receiver is optically isolated, but there is no source) or active (the voltage / current
source is included); it is necessary connect one active to one passive converter,
or two passive connect to external voltage source

• Typical current loop transmits only TxD, RxD signals, no control signals
- another current loop must be used if controlling signals are needed.

SPI BUS

Serial peripheral bus (Microwire)

Developed by Motorola, it has no official specification; used by many companies; 4 different communication modes (SPI 0 … SPI 3)

SPI dedicated to fast communication among IC chips, so that it is used just only on printed circuit boards, or for communication
with nearby peripherals (e.g. control objectives of digital cameras)

Designed for synchronous serial communication between the microcontroller and peripheral circuits
 Microcontrollers:
 Motorola: MC68HC11A8, …
 Atmel: used as programming interface on AVR microcontrollers (In-System Programming)
 Microchip: PICmicro MCU (PIC16F876, …)

 A/D converters (programming, not data transmission - Intersil KAD5512, …), slower D/A converters (Maxim)
 Potentiometers (Intersil ISL22424, …)
 MMC and SD cards, EEPROMs
 FLASH memories (BIOS on PC mainboards, connected via ICH)
 EF objectives Canon

If the processor has no hardware support for SPI interface, it can be implemented in software using four pins of one of its ports

Data are latched on an edge of the clock signal SCK (master) and updated on opposite edge of SCK (slave)

MISO
MOSI
SCK

CS
SDO
SDI
SCK

Master Slave
3+1 signal:

SCK: Serial Clock, generated by Master
MOSI/SDI: Master Output Slave Input/Serial Data In
MISO/SDO: Master Input Slave Output/Serial Data Out
CS: Chip Select – selects the device, substitute an addressing
 on master sometimes called SS (Slave Select)

Data transfer rate typically up to 10 Mbit/s

1 master / 1 or more slave devices, multimaster possible but complicated

Principles of operation of a SPI bus

Before the transfer begins,
single byte is copied from

SSPBUF data buffer into shift
register SSPSR

Before the transfer begins,
single byte is copied from

SSPBUF data buffer into shift
register SSPSR

When data are transferred, the
SSPSR register is shifted bit by bit,

MOSI and MISO transfers bits
simultaneously from and into

master, starting from MSB

After the transmission is finished,
data from shift SSPSR register

must be copied into SSPBUF data
buffer asap;

It must be done before next
transmission – but master controls

communication

After the transmission is finished,
data from shift SSPSR register

must be copied into SSPBUF data
buffer immediately;

It must be done before next
transmission, or data in SSPSR are

lost – slave doesn’t know, when
new transmission begins

The transmission is always initiated by
Master – it pulls CS low; this is usually

controlled by a µC program

Only Master controls clock signal, its
frequency is not (technically) important

Slave waits for CS is asserted low, which activates it;
when not selected (CS is high), the Slave is IDLE (tri-

state data pins are in a high-impedance state)

Since slave doesn’t know, when new transmission begins,
SSPSR register must be loaded by new value to transmit

immediately

SPI BUS

Mode 0

4 different SPI modes
According to clock polarity and phase SPI has 4 transmission modes:
 CPOL means idle value of a clock signal
 CPHA determines the phase (edge) of a clock signal, which latches the data
 CPHA = 0: rising edge, if CPOL = 0, but falling when CPOL = 1
 CPHA = 1: opposite case

Mode 1

Mode 2 Mode 3

CPOL = 0

CPOL = 1

CPHA = 1
CS may remain low, if next byte will be transmitted,

because SCK transition controls data pins state

CPHA = 0
CS must be asserted high after each transmitted byte,
since its high-low transition controls data pins state

SPI BUS

Master Slaves
Parallel

Master Slaves
Daisy chain

SPI bus configuration

• Is possible to connect different
devices

• Each device require one CS signal
⇒ number of connected devices is
limited particularly by a number of
pins, dedicated on master to CS

• All slaves have chained shift registers – so isn't possible (or just
with big problems) to combine different types of devices within
single chain

• Daisy-chained slaves require the master to provide only one slave-
select signal

• It is possible to combine both parallel and daisy chain structures
on single µC

SPI BUS

Simple hardware interfacing, no special requirements for cabling and its impedance matching (to prevent
reflections), no external circuitry required (like pull-up resistors, nevyžaduje žádné externí obvody (pull-up
rezistory, external bus driver transistors, signal edge controllers, ...)

Simple protocol to implement, even in software

Full duplex communication

Slaves use the master's clock, and don't need precision oscillators

± Addressing not needed, replaced by a CS signal – higher data rates, simple implementation, at the expense of
versatility, possibility of a hot-plugging, and identification of connected devices

± In theory not limited to 8-bit words (in practice limited by shift registers bit length, usually 8 bit)

The more devices you have the more µC pins and connections necessary (CS signaling)

No slave acknowledgment (master may even “talk” to nothing and not know it)

Relatively short distances a few dozens cm (at higher speeds) – limited mostly on PCB communication

Does not support multi-master architecture

SPI System Errors

Some (but not all) µC may detect some bus errors

If the CS pin on a master device go low, it means another device on a same bus try to acts like master device ⇒
„mode fault error“; if a device detecting this error has hardware SPI support, bus drivers are disconnected and
interrupt is generated

Write collision error – if any data is written in SSPBUF (but e.g. in MC68HC11D3 this register is described as
SPDR) when transmission is running, data is lost and error is generated

SPI BUS

// assign bits of port 0 to SPI bus signals

sbit MOSI = P0^0; // Master Out / Slave In (output)

sbit MISO = P0^1; // Master In / Slave Out (input)

sbit SCK = P0^2; // Serial Clock

sbit CS = P0^3; // Chip (Slave) Select

char SPI_Transfer (char SPI_byte) {

 unsigned char SPI_count;

 CS = 0x00;

 for (SPI_count = 8; SPI_count > 0; SPI_count--) {

 MOSI = SPI_byte & 0x80;

 SPI_byte = SPI_byte << 1;

 SCK = 0x01;

 SPI_byte |= MISO;

 SCK = 0x00;

 }

 CS = 0x01;

 return (SPI_byte);

}

SPI BUS

Example of a software implementation of SPI bus using four pins of port 0 on 8051 processor in C language:

The function receives 8 bit character as a data to send, activates slave via CS signal and transmit (and receives at the same time) character and deactivates slave

// assign bits of port 0 to SPI bus signals

MOSI BIT P0.0 ; Master Out / Slave In (output)
MISO BIT P0.1 ; Master In / Slave Out (input)
SCK BIT P0.2 ; Serial Clock
CS BIT P0.3 ; Chip (Slave) Select

SPI_Transfer:
 CLR CS
 MOV A, R7
 MOV R7, #08H
 RLC A
SPI_Loop:
 MOV MOSI, C
 SETB SCK
 MOV C, MISO
 RLC A
 CLR SCK
 DJNZ R7, SPI_Loop
 SETB CS
 MOV R7, A
 RET

SPI BUS

Example of SPI bus implementation using four bits of port 0 on 8051 processor in assembler:

void SPI_ISR(void) interrupt 4 {

 SPI_DATA = SPDR; // save received byte in variable

}

…

IE = 0x90; /* Interrupt control register 10010000; Global interrupt + ES (SPI) interrupt enable */

SPCR = 0xD3; /* 11010011 enable SPI interrupt (together with ES = 1 in IE register), it activates SPI bus,
 MSB first, the device is master, CPOL = CPHA = 0 -> mode 0, frequency fclk/128 */

…

if (SPSR != 0x80) /* status register; … if no transmission active; SPIF bit is set before interrupt is set
 -> is not necessary to check it again in interrupt service routine */

 SPDR = SPI_DATA; // writing in data register starts new transmission on SPI bus

…

SPI BUS

Example of a piece of code for hardware implementation SPI bus using interrupt on AT89S8252:

MICROWIRE BUS

Initially developed and used by National Semiconductor, older than SPI

Very similar to SPI, sometimes is (although not quite correctly) described as its subset with parameters
CPOL = 0, CPHA = 0

Application: similar to SPI bus (some microcontrollers have hardware implementation, which can be configured both in
SPI and Microwire mode)

A/D converters
Serial memories EEPROM (e.g. 93XXXXX; different producers, e.g.. Microchip 93LCS56/66, Atmel AT93C66, ...)
Display drivers (e.g. COP472 National Semiconductor)
Microcontrollers COP8, National Semiconductor
Also exists hardware interfaces, which allows Microwire communication even to general processors including Intel
and Motorola –e.g. TP3465 MICROWIRETM Interface Device (MID) from National Semiconductor

The number of bits can be different in distinct communication blocks;
e.g. serial EEPROM AN993 (Microchip) may have 11 bits (command which allows EWEN / or prohibits write into
memory EWDS), or 27 bits (write/ read data; however 11 bits of command + address must be of constant length, and
command bits (if command has no address) must be completed to 11 bits; when reading / writing, 11 command and
address bits are followed by 16 data bits)

SI
SO
SK

CS
SO
SI
SK

Master Slave
3+1 pin:

SK: Serial Clock, generated by Master
SI (DI): Serial Input (Data In)
SO (DO): Serial Output (Data Out)
CS: Chip Select – selects the device, substitute an addressing
 can be active at logic 0 (National Semiconductor), or
 logic 1 (Microchip, Atmel, ...)

MICROWIRE BUS

Example of a connection among COP8 microcontroller, periferials and slave microcontroller:
 (source: National Semiconductor, COP8CBR9/COP8CCR9/COP8CDR9 datasheet)

Bus timing

Symbol Parameter Min / Max Description
TCSS Chip Select Setup Time 50 ns Minimum time between CS activation and rising edge of first clock pulse
TCKH Clock High Time 250 ns Minimum width of clock pulse at logic 1
TCKL Clock Low Time 250 ns Minimum width of clock pulse at logic 0
TCSH Chip Select Hold Time 0 Minimum time, for which the CS signal must be held after falling edge of last clock pulse
TDIS Data Input Setup time 100 ns Minimum time for which the data must be ready before the rising edge of clock pulse (to

latch data)
TDIH Data Input Hold time 100 ns Minimum time for which valid data must held after rising edge of clock signal
TPD Data output delay time 400 ns Maximum time when valid output data must be ready after rising edge of clock signal
TCZ Data output disable time 100 ns Maximum time after which the output must go in the high impedance state (after falling

edge of CS signal)
TSV Status valid time 500 ns Maximum time between CS go high and DO transition from high impedance state

These values are valid for EEPROM Microchip 93LCS56/66; maximum clock frequency of this chip is1 MHz,or 2 MHz according to supplying voltage

MICROWIRE BUS

EEPROM Microchip AN993 – from application note 00993a

An example of a variable number of bits in a single transaction on the bus:
In the figure on the left WRITE Enable command is send into EEPROM AN993 – start bit, another 4 bits of a command and 6
dummy bits, which completes transmission to total required 11 bits , in the figure on the right is the read operation – start bit, 2 bits
of the command, address (11 bits in total), followed by16 data bits

MICROWIRE BUS

EEPROM Microchip AN993 – from application note 00993a

READY / BUSY polling: write operation into memory is finished approx. 3.2 ms after command is send; logic low of DO signal
indicates, the write operation still proceeds, transition of DO signal in logic high value indicates the write operation is finished

MICROWIRE INTERFACE

I2C

Inter IC Bus – synchronous bidirectional 2-wire serial bus, developed for efficient inter-IC control and communication
TV chips: microcontroller PCB83C528, PLL syntetizer TSA5512, EEPROM PCF8582E, PAL/NTSC/SECAM decoder/sync processor
TDA9160A, TDA4685 video processor, TDA9840 TV and VTR stereo/dual sound processor, …

Telephones and modems: PCD3311 DTMF/modem/musical-tone generators, PCA1070 Multistandard programmable analog CMOS
transmission IC (telephones), …

Port expanders: PCF8574, MCP 23016, …

…

Developed by Philips

2 + 1 wires: clock (SCL – Serial Clock), data (SDA – Serial Data) + ground; bus drivers with open collector → pull up
resistors required

Data rates: it is the slowest bus from the SPI / Microwire / I2C family
 Standard Mode (S): 0 – 100 kb/s
 Fast Mode (F): 0 – 400 kb/s
 High Speed (Hs): 0 – 3.4 Mb/s (specification 2.0, 1998; 2.1, 2000)

 need not to be constant, low speed slave device can slow down communication holding clock signal at logic 0 as long as necessary

In contrast to SPI / Microwire bus I2C is true multi-master bus including collision detection and arbitration to prevent data
corruption if two or more masters simultaneously initiate data transfers; any device may act like master device any time;
software implementation is more complicated and machine time consuming than that of SPI / Microwire

The devices have 7(+1) or 10 bits address; in the case of 7 bits the first 4 bits from MSB are fixed, its allocation is coordinated
by the I2C- bus committee, and represents the kind of device (e.g. 1010 means EEPROM), next 3 bits represents device
number on the bus – each device has 3 pins, which are set to logic 1 / 0; 8th LSB is R/W bit

Signal levels: 5 V, 3.3 V, at Hs 2 V or lower, depending on configuration; maximum capacitance of the bus is 400 pF

 Devices of any IC fabrication process (CMOS, BiCMOS, NMOS, bipolar or other) may be connected to the same bus,
or even devices with different supply voltage

 Pull-up voltage must be in such case 5 V ± 10 %

I2C

The resistivity of pull-up resistors is not explicitly specified; their value is based on device current 3 mA – Rp is the
function of supply voltage, bus capacitance and of a number of connected devices; typically ranges from 1.8 kΩ to
more than 10 kΩ

Between bus wire and device protective resistor of resistivity roughly hundreds of ohms is sometimes connected; the
graphs for both resistors you can find at I2C specification available on
http://www.i2c-bus.org/fileadmin/ftp/i2c_bus_specification_1995.pdf

In IDLE both signals are in logic 1 (asserted by pull-up resistors)

Logic value on SDA may be changed only if SCL is in logic 0; the only exception is initiation of communication
(START condition), and termination of communication (STOP condition); transmission is always initiated by master

http://www.i2c-bus.org/fileadmin/ftp/i2c_bus_specification_1995.pdf�

Transfer protocol

Initiation of transmission: Start condition (S), asserted by master device, if the bus is IDLE

Termination of transmission: Stop condition (P), asserted by master device

Bus arbitration – collision on bus:
 Two or more devices detects the bus is IDLE, and try to initiate communication
 Each device must scan the actual logic value on the bus; if the device transmits logic 1 and at the same moment

detects logic 0 on SDA signal wire (the bus drivers have open-collectors), then such device lose the arbitration and must
stop transmission

 If the device which lose the transmission lose arbitration can act as slave, it must switch in the slave mode
(it may be addressed)

Repeated start (Sr): next transaction on the bus is initiated without preceding Stop condition

Transmission of each byte is acknowledged by receiving device (Ack)
 ACK = 0 is successful transmission = acknowledgement
 ACK = 1 means, the target devices is not present or is busy ⇒ the Stop condition must be asserted
 When Master receives data, after each byte ACK = 0 must be asserted, with exception of the last one, when

ACK = 1; the Stop condition is asserted always by Master

The clock signal has not constant period, but is hold down in logic 0 by the slowest device as long as necessary

I2C

Addressing
First byte after S, Sr conditions is an address of a slave device (in 7 bit addressing)

Bits[7:1] Bit 0 (RW) Description

0000 000 0

General call address; 2nd byte: LSB = „B“
B = 0: 00000110 RESET (RESET and take in the programmable part of device address)
 00000100 no RESET (take in the programmable part of device address without RESET)
B = 1: hardware general call (The seven bits remaining in the second byte contain the address of
the master, data bytes follows /to every listening slave/)

0000 000 1

Start byte: attended to devices which implements I2C protocol by software (it is much slower than
hardware implementation so such microcontroller for performance reasons scans the bus in IDLE
state on a low sampling rate, so it needs long time to detect transmission and switch to a higher
sampling rate of bus levels

0000 001 X CBUS compatibility (I2C device must not respond)

0000 010 X Address reserved for different bus format (I2C device must not respond)

0000 011 X Reserved for future use

0000 1XX X 8-bit Hs master code (initiates high-speed communication on bus with Hs devices only – mixed
configuration possible, but only at L/F speed, or with bus segments bridge)

1111 1XX X Reserved for future use

1111 0XX X 10 bits addressing (XX are two MSB of the address, second 8 bits of address follows)

Reserved addresses on I2C

Start byte

I2C

In 7 bit addressing can be 8 devices of the same type on the same bus (we have just 3 bits of a device number available)

112 devices is maximum theoretical number of devices which may be on the same bus (16 groups identified by first 4 bits
allocated by the I2C- bus committee of 8 devices each: 16 * 8 = 128 – 16 reserved addresses)

10 bits addressing

1024 addresses available

Transmission master → slave:
 1st byte: 1111 0XX0 XX are 2 MSB of the address, RW bit = 0
 2nd byte: remaining 8 bits of the address
 Data bytes

Transmission slave → master (address asserted by master):
 1st byte: 1111 0XX0 XX are 2 MSB of the address, RW bit = 0 (!!! – or slave can not receive 2nd byte of the address)
 2nd byte: remaining 8 bits of the address
 Sr condition
 1111 0XX1 – XX are 2 MSB of the address, RW bit = 1 (!!!), no second byte of a slave’s address
 Slave transmits the data

Hs mode
F/S devices must be separated from Hs devices by a bridge (or filter), which doesn’t pass Hs communitation

Doesn’t support F/S arbitration

Is not synchronized bit by bit → serial clock signal has a fixed HIGH to LOW ratio of 1 to 2

Each Hs device operates normally as full speed, control byte 0000 1XXX switch to Hs mode, after P condition the
devices are switched back to full speed mode

I2C

1-WIRE

Just 2 wires (combined data / supply) and ground

Trademark of Maxim company (formerly Dallas Semiconductor Corp., bought in 2001)

(Slow) serial bus, intended for connection of special HW devices to a microcontroller or computer

Time-coded communication – no clock signal, correct timing of logic levels at the bus is essential

Connected (slave) devices can be supplied directly from data wire

Each chip has its unique 64-bit identification number (Serial Code), which may be used for identification purposes

Applications:

Digital thermometers, temperature monitoring (e.g. Dallas DS18B20)

Identification and authentication systems
• Identification and calibration of a medical sensors (e.g. test strips in glucometers)
• Medical Reagent Bottle ID
• Printer cartridge identification and usage monitoring
• AC-Adapter ID and Authentication
• Customer payment systems (smart tickets in metro etc)
• Personal identification (PC authentication, access control)

Electronic potentiometer (DS2890)

iButton (special packaging of 1-wire devices)

Basic connection

PIO

µC

R

TXD

RXD

Parasitic supply
Pull-up resistor

• Microcontroller is the only and single master of the serial bus

• Hundreds of devices operating in slave mode can be connected to the bus

• 1 wire bus is actually implemented by 2 wires – by data / supply wire and a ground wire, at greater distances by
UTP 5 cable

• Bus drivers of master and slave devices are with open collector, the bus has single pull-up resistor near the master
device; its resistivity is usually 4.7 kΩ, may be 2.2 kΩ

• Slave devices can be supplied from independent sources if their power consumption is too high, or directly from
data wire; in such case pull up resistor acts as power supply, when the bus is in logical 0, the energy is drawn from
capacitor (800 pF), integrated in each slave device

+5 V

1-WIRE

Pull-up resistor and its alternatives

Specification requires voltage 2.8 – 6 V; if the voltage is 5 V, the current drain of all slave
devices connected to the bus must not exceed 1 mA; but e.g. peek current drain of digital
thermometer DS18B20 is 1.5 mA ⇒ resistor 2K2 is possible use only if the number of
devices is small, and the distance is less than 3 m

This solution (according to the datasheet of DS18B20) guarantee sufficient power delivery
during temperature conversion, but software must guarantee the transistor will not be open
for more than 10 µs, only after the temperature conversion or copy command is send ⇒ this
solution is specific for given application

3K3

1K

220

5V

This solution sets the slew rate, can be used up to 200 m, but does not deal with higher
current drain of slave devices; also the bus, as well as in the solutions above, is not
impedance matched

Bus drivers:
• DS2482-101 – I2C / 1Wire bridge, solves a higher capacitance load

(longer wires, higher number of slave devices) – Active Pullup (APU)
mode, connection of devices with higher current demand is possible
(digital thermometer e.g.) – Strong Pullup (SPU) mode, impedance
matching

• DS2480B – RS232 / 1Wire bridge
• DS9490 – USB / 1Wire bridge

SDA
SCL

SLPZ
AD0

PCTLZ

IO

MAXIM
DS2482-101

1K7 1K7
180

+5 V

1 wire

optional

1-WIRE

1-Wire Network Topologies

Slave 1 Master Slave 2 Slave n

Master Slave n

Slave 1 Slave 2

Linear

Stubbed

Star

} ≥ 3m

Master

Slave 1
Slave 2

Slave n

Radius: the wire run distance from the master end to the furthest slave device
 - establishes the timing of the slowest signal reflections
 - no 1-Wire network may ever have a radius greater than 750m.
 At this distance, the protocol will fail due to the time delay of the cable
Weight: the total amount of connected wire in the network, plus an equivalent weight of connected slave devices
 (0.5m general devices, 1m iButtons)
 - limits the rise time on the cable – transient (charging of a capacitance – typically 24 pF/m)

It is not recommended unless individual branches switched – reflections especially on large
distances (and impedance unmatched connections of distinct branches) are causing the greatest problems

1-WIRE

Logic values, timing, read and write data time slots
Logic values

 VIL MAX slave's maximum-input low voltage
 VIH MIN minimum slave-input high voltage
 VPULLUP MIN minimum permissible pullup voltage, which is required for the parasite power supply to function properly
 is given by a minimum slave’s operating voltage plus voltage drop across diode
 VPULLUP 1-Wire pullup voltage

RESET and presence detect

 tRSTL 480 µs min. – Reset Low Time, 960 µs max
 tRSTH 480 µs min. – Reset High Time
 tPDH 30 µs typically, 15 – 60 µs min / max
 tPDL 120 µs typically, 60 – 240 µs min / max

1-WIRE

Write time slot (master → slave)
Logic 1

1 µs ≤ tRSTL ≤ 15 µs
60 µs ≤ tSLOT ≤ 120 µs (¼ of the RESET pulse), typically 60 µs
 time slot – standard communication unit (1 bit) – RESET pulse is 8 + 8 time slots
tREC ≥ 1 µs recovery time (legacy – extra time to one bit time slot, new style – included in 1 bit time slot)

Reading of the bus: allowed time window is 15 – 60 µs, 30 µs is recommended

Logic 0

1-WIRE

Read time slot (slave → master)

1 µs ≤ tLOWR ≤ 15 µs
60 µs ≤ tSLOT ≤ 120 µs (¼ of the RESET pulse), typically 60 µs
tREC ≥ 1 µs recovery time
tRDV = 15 µs

Read 1: read time slot is initiated by the master device pulling the 1-Wire bus low for a tLOWR, and then releasing the bus,
 slave transmits a 1 by leaving the bus high
Read 0: read time slot is initiated by the master device pulling the 1-Wire bus low for a tLOWR, and then releasing the bus,

 slave pulls the bus low for a tRDV

It is recommended, the tLOWR should be as short as possible and master sample time during read time slots should be

towards the end of the 15μs period (bus capacitance!!!)

1-WIRE

RESET

Presence pulse

ROM Command

Slave receives or
transmits data

Function Command

Slave receives or
transmits data

General communication sequence

Necessary only when more slave devices are present
on the same bus (addressing, discovering of
registration numbers, …)

Initiates each communication on the bus

1-WIRE

Data rate

• Maximum theoretical:

(necessary RESET, nor the device address /optional in the case of a single slave device/ is not considered)

• Actual speed:
More slave devices on the same bus:
• RESET + Presence pulse: 16 time slots 960 µs
• ROM address: 8 + 64 time slots 72 * 61 µs = 4.392 ms
• Command: 8 time slots 488 µs
• Data (plus CRC) 8 * 61 = 488 µs / byte
 6.328 ms ~ 1.26 kb s-1 (1 byte transmission)
Single slave device on the bus:
• RESET + Presence pulse: 16 time slots 960 µs
• Skip ROM: 8 time slots 8 * 61 µs = 488 µs
• Command: 8 time slots 488 µs
• Data (plus CRC) 8 * 61 = 488 µs / byte
 2.424 ms ~ 3.3 kb s-1 (1 byte transmission)

1-WIRE

CAN BUS

Controller Area Network is a data bus, used mainly for communication between functional units in the car (including
diagnostics)

Can bus was developed in 1983 by Robert Bosch GmbH; the first car equipped with CAN BUS system was in 1986 the BMW
850 coupe (it reportedly saved about 2 km of cables); this bus soon penetrated into the automation technology;
in 1992 was founded an association of users and manufacturers “CAN in Automation” (CiA); today is used in industry for
connecting a variety of intelligent sensors and actuators, there are a number of expansion cards for connecting of control PC

A number of microcontrollers presently have integrated hardware CAN-Controller, both that produced by manufacturers
targeted on industry and automotive applications (Infineon, 8, 16, and 32 bits microcontrollers), and that produced by
manufacturers of general-purpose microcontrollers, e.g. Stellaris (core ARM Cortex-M3) from the company Luminary Micro
(Texas Instruments), and even including 80C51 architecture (Atmel T89C51CC01UA).

In automotive technology, however, CAN bus is not the only bus. There is also used a simple and inexpensive LIN bus,
multimedia MOST bus, and in some luxury cars (Audi A8, BMW 5 and 7, ...), the speed of CAN bus is no longer sufficient,
and therefore is replaced by a new FlexRay bus.

CAN bus is a multimaster bus, or the nodes of the system are equivalent - Peer to peer

frames (or messages) are transmitted and received by all nodes as needed

There are no addresses of transmitting or receiving node – the frame always includes an identifier which must uniquely define
its content; each device performs filtration based on this identifier, and according to the result of filtration the message is
further processed or discarded. Each of the receivers so accepts only those data frames that are important for it.

if the frame is successfully received by at least one node, then the receipt is confirmed

if an error is detected during reception (by any node including the transmitting one), the error sequence is sent and
transmission must be repeated

The maximum data rate on the bus is 1Mbit/sec.

CAN BUS

Original Bosch specification does not contain any requirements for the transmission medium, or voltage levels

Defined are only formal logical values – recessive (r) and dominant (d). If several devices are connected to the bus and at least one of
them sends d value while others transmit r value, then the bus is in the d value. Only if all devices transmits r value, the r value is on
the bus.

Electrical parameters (but not connectors and cables) are specified just by the standard ISO-11898:

Physical layer

To transfer data in accordance with this standard symmetrical lines with characteristic impedance of
the cable 120 Ω is used. To avoid reflections termination resistors 120 Ω are connected at both ends
to the lines. Besides the standard termination by one resistor, sometimes due to lower EMC emissions
the split terminating is used, which can also be supplemented by voltage divider, which maintains a
constant recessive level.

„Soft“ sources in bus drivers in distinct nodes maintains recessive value at 2.5 V (the difference must
be less than 0.5 V on the receiver’s side and 1.5 V on the transmitter’s side), any node by the „strong“
source in the bus driver set up dominant voltage level between 2.75 – 4.5 V to CAN_H, or 0.5 – 2.25
V to CAN_L (minimum difference is 0.9 V).

CAN BUS

While the CAN controller is usually part of the microcontroller and provides functions
of data link layer (error detection, data frames coding, the detection of identifiers and
message filtering) and partly functions of the physical layer ("bit stuffing" - inserting of
synchronization bits), bus drivers are implemented as a separate circuit, e.g .
SN65HVD1050 (Texas Instruments), TLE6250 (Infineon), PCA82C250 (Philips),
L9615 (SGS-Thomson) ...

Maximum data rate is affected by the length of a line:

Length
[m]

Line resistivity
per 1 m [µΩ]

Data rate
[kbit/s]

< 40 70 1000
< 300 60 500
< 600 40 100

< 1000 26 50

Length
[m]

Line resistivity
per 1 m [µΩ]

Data rate
[kbit/s]

< 25 70 1000
< 50 60 800
< 100 60 500
< 250 60 250
< 500 40 125

< 1000 26 50
< 2500 20
< 5000 10

ISO-11898

CIA DS-102

CAN BUS

Connectors

J1962 On-Board Diagnostic II (OBD II)
Diagnostic Link Connector (DLC) – female

CAN bus CiA DS-102 connector – male

Pin Signal Description
1 - Reserved

2 CAN_L CAN_L bus line dominant low
3 CAN_GND CAN Ground
4 - Reserved
5 (CAN_SHLD) Optional: CAN shield
6 GND Optional: ground
7 CAN_H CAN_L bus line dominant high
8 - Reserved
9 (CAN_V+) Optional: CAN external supply

Pin Signal Description
1 GM: J2411 GMLAN/SWC/Single-Wire CAN

2 J1850 Bus+ SAE J1850 PWM / SAE J1850 VPW protocol
3 DCL+ / CCD+ Ford / Chrysler
4 CGND Chassis ground
5 SGND Signal ground
6 CAN High ISO 15765-4 a SAE-J2284
7 K-LINE ISO 9141-2. LIN like protocol
8 -
9 -

10 J1850 Bus-
11 DCL- / CCD- Ford / Chrysler
12 LS CAN Bus Renault: low speed CAN bus, (multimedia CAN bus)
13 LS CAN Bus Renault: low speed CAN bus, (multimedia CAN bus)
14 CAN Low
15 L-LINE (ISO 9141-2 and ISO/DIS 14230-4)
16 +12v Battery power

CAN BUS

The CAN protocol uses a modified version of the Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA), called
CSMA/CR (Carrier Sense Multiple Access with Collision Resolution):

• any node can transmit if it has determined the bus to be free

• The following arbitration is used: when node starts transmitting, it must simultaneously scan the actual logic value on the bus;
when that node transmit bit in recessive logical value, and the actual state is dominant, it means, another node decide to
transmit in the same instant; the node in recessive value lose the arbitration and must stop transmission and release the bus

Bit stuffing: each node generates the internal clock signal that is synchronized with the transmitting node by data signal. Therefore, if
the data contains 5 consecutive bits of the same logical value, one additional bit of the opposite logical value is inserted (just like the
USB bus)

15 bit CRC and Acknowledge field as well as EOF delimiter terminates the transmission. When error is detected, error frame is send
(6 same bits with violates bit stuffing rule).

Medium Access Control, Frame coding, Error detection

	Snímek číslo 1
	Snímek číslo 2
	Snímek číslo 3
	Snímek číslo 4
	Snímek číslo 5
	Snímek číslo 6
	Snímek číslo 7
	Snímek číslo 8
	Snímek číslo 9
	Snímek číslo 10
	Snímek číslo 11
	Snímek číslo 12
	Snímek číslo 13
	Snímek číslo 14
	Snímek číslo 15
	Snímek číslo 16
	Snímek číslo 17
	Snímek číslo 18
	Snímek číslo 19
	Snímek číslo 20
	Snímek číslo 21
	Snímek číslo 22
	Snímek číslo 23
	Snímek číslo 24
	Snímek číslo 25
	Snímek číslo 26
	Snímek číslo 27
	Snímek číslo 28
	Snímek číslo 29
	Snímek číslo 30
	Snímek číslo 31
	Snímek číslo 32
	Snímek číslo 33
	Snímek číslo 34
	Snímek číslo 35
	Snímek číslo 36
	Snímek číslo 37
	Snímek číslo 38
	Snímek číslo 39
	Snímek číslo 40
	Snímek číslo 41
	Snímek číslo 42

