
musical
applications
of micro:

DFOCESSOFS
Hal Chamberlin

Musical Applications

of Microprocessors

HAL CHAMBERLIN

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Library of Congress Cataloging in Publication Data

Chamberlin, Hal.

Musical applications of microprocessors.

Bibliography: p.

Includes index.

1. Computer sound processing. 2, Computer

composition. 3. Microprocessors. |. Title.

MT41.C5 789.9'9 80-18496
ISBN 0-8104-5753-9

Copyright © 1980 by HAYDEN BOOK COMPANY, INC. All rights reserved.

No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or

hereafter invented, including photocopying and recording, or in any infor-

mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

2 23 4 5 6 F 8 9 PRINTING

80 81 82 83 84 85 86 87 8B YEAR

Pretace

The period encompassing the mid-1970s has seen an explosive growth in the
application of digital logic, especially programmed logic and micro-
computers. The key to this growth is the fantastic reduction in the cost of
logic and memory and the development of the microprocessor. In particular,
microprocessors and microcomputer systems built around them make it pos-
sible, practical, and even advisable to perform many functions using com-
puter techniques that would have been done with conventional logic or

analog circuits a very few years ago.
Although many computer music techniques were developed over a

decade earlier, their widespread use in the broader area of electronic music

has not yet materialized. Now, however, the increasing power of mi-
croprocessors and their fantastic low cost make such widespread use inevita-
ble.

Many of these existing techniques cannot or should not be used di-
rectly, however. Although a microprocessor bears considerable resemblance
to the large-scale machines on which these techniques were developed, there
are important differences. Additionally, there are numerous new techniques
that lend themselves well to microprocessor implementation but that are

completely impractical using a large-scale mainframe or even minicomputer.
In the pages to follow, the application of all important electronic and

computer musi¢ performance techniques to microprocessors will be covered.

In addition, some new, heretofore unpublished, cechniques that are only

practical with microprocessors will be discussed. Finally, some of the ex-
tremely powerful big computer signal-processing techniques will be pre-

sented in nonmathematical language and applied to the more powerful
16-bit microprocessors that are just now emerging.

The text is divided into three major sections. Chapters 1 to 5 cover
important background material, the understanding of which is necessary for
full appreciation of the sections to follow. Chapters on analog music synthesis
principles, digital music synthesis principles, and microprocessors should

serve to acquaint the general reader with these areas as well as fill in the

background of the specialized reader.
Chapters 6 to 11 cover the application of microprocessors to controlling

conventional analog sound-synthesizing equipment. The first two chapters
cover typical analog modules and interfacing techniques to microprocessors.
The remaining four chapters are devored to the control function itself, par-
ticularly the manner in which the human user interacts with the

microprocessor—synthesizer combination.
Chapters 12 to 18 concentrate on purely digital synthesis techniques.

These techniques have the greatest inherent generality and accuracy, but

widespread use has so far been inhibited by high cost and operation outside of
real time. Chapter 12 discusses the conversion of high-fidelity audio signals
to and from the digital domain. Chapters 13 to 15 discuss digital signal
generation and processing. The last three chapters describe the use and
implementation of these digital techniques into practical equipment and
systems.

Throughout the discussions, the use of mathematics is minimized, and

where present, is limited to elementary algebra and trigonometry. Instead,
numerous charts, graphs, and sometimes computer programs in BASIC are

used to illustrate important concepts. This does not mean that the more
difficult concepts are skipped. For example, the fast Fourier transform and its
workings are described and supported with a tested program listing in
BASIC. Digital filters are also covered extensively.

The reader is not expected to merely study and marvel at the techniques
described. Rather, he is urged to go out and try them, apply them, and enjoy
the results. For this purpose, many actual programs and circuit diagrams are
included. While not every topic is reduced to practice, enough information is
supplied or pointed out in reference material to enable the industrious reader
to experiment with and refine the technique.

Hal CHAMBERLIN

Contents

SECTION I. Background 1

1. Music Synthesis Principles 3

Goals of Music Synthesis 4

The Fundamental Parameters of Sound 8

History of Electronic Sound Synthesis 34

2. Sound Modification Mcthods 43

Sound onTape 43

Electronte Sound Modification 48

Analysis-Syuthesis Methods 70

3. Voltage-Control Methods 75

Typical Module Characteristics 76

Signal Levels in the Synthesizer 81

Some Typical Modules 84

Other Modules 92

ATypical Patch 94

4. Direct Computer Synthesis Methods 101

Linutations of Voltage Control 101

Sound in Digital Form 106

AT ypical Direct Con: puter Synthesis Installation 112

Computation of Sound Waveforms 115

Music Programming Systems and Languages 120

5. Microprocessors 125

Microprocessor Terminology 126

Brief History of Microprocessors 127

Microcomputer Peripheral Devices 133

Microcomputer Software 139

Example Microprocessor Descriptions 142

SECTION II. Computer-Controlled Analog Synthesis

6. Basic Analog Modules

Analog System Standards 169
Voltage-Controlled Oscillator 173

Voltage-Controlled Amplifier 189

Voliage-Controlled Filter 201

7. Digital-to-Analog and Analog-to-Digital Converters

Data Conversion Terminology 213

DAC Techniques 217

Analog Switches for DACs 224

Some Commercial DACs 233

Multiplexing DACs 237

Analog-to-Digital Converters 244

8. Signal Routing

Manually Patched Com puter-Controlled System 257

Automatically Patched Com puter-Controlled System 261

Fixed-Patched Com puter-Controlled System 268

9. Organ Keyboard Interface

Adapting a Standard Synthesizer Keyboard for

Computer Input 276

Polyphonic Keyboards 279
A Microprocessor-Based Keyboard Interface 282

10. Other Input Methods

Manual Input Devices 299

Algorithmic Input 303

11. Control Sequence Display and Editing

Types of Display Devices 318
Applications of Graphic Displaysin Music 331

167

169

213

255

273

299

317

SECTION III: Digital Synthesis and

12.

13.

14.

16.

Sound Modification

Digital-to-Analog and Analog-to-Digital Conversion
of Audio

Increasing Dynamic Range 344

Reducing Distortion 353

Lou-Pass Filter 358

A Complete Audio DAC 377

Audio Digitizing 379

Digital Tone Generation Techniques

Direct Waveforne Computation 384

Table Lookup Method 390
Fourier Transformation 401

Digital Filtering

Digital Equivalents of Analog Filters 434

Filters with an Arbitrary Response 452

Reverberation Simulation 460

Chorus Effect 464

Interpolation 467

Percussive Sound Generation

Types of Percussive Sounds 479

Dam ped Sine Wave Generation 480

Digital Noise Generation 483

Noulinear Vibrator Simulation 489

Source-Signal Analysis

Spectruin Analysis 496

Filtering Methods of Spectral Analysis 503

Spectrun: Analysis Using the FFT 510

Spectral Processing 517

Pitch Measurement 530

341

343

383

433

479

495

17. Digital Hardware

Analog Module Replacement 542

Multiplexed Digital Oscillator 556

Fourier Series Tone Generator 562

Modular Digital Synthesizer 571

Digital Voice-per-Board System 576

18. Music Synthesis Software

Organization of Music Software Systems 594
Low-Level Programming Techniques 599

NOTRAN Music Systent 621

Appendix

Bibliography

Index

541

593

649

651

655

SECTION I

Background

Music is unique among the arts. Virtually everyone enjoys and appreciates it

to some extent. It is certainly the richest of the fine arts, with the typical
middle-class household spending hundreds of dollars annually on music
hardware such as radios, phonographs, and hi-fi sound systems and software
like records, tapes, and concert tickets. It is also unique in that it encom-

passes a very broad range of disciplines ranging from mathematics to physics
to computer programming.

In the area of music synthesis by computer, it is necessary that the
practitioner be somewhat familiar with these and other fields in order to

master the medium. While detailed treatment of all necessary background
material is impossible in five short chapters, that which is covered should

serve to enlighten che reader in those areas outside of his or her primary

interest.

7 ie

Muasie Synthesis Principles

Creating and listening to music is one of man’s oldest and most popular
pastimes. Although natural sounds from both inanimate and animate sources

may have some of the essential characteristics of music, only man can create

and control sounds that simultaneously possess all of the characteristics of
music.

Early peoples used many naturally occurring objects to create music.

Sticks beaten together, stones pounded together, and logs being struck were
certainly used for early rhythmic sounds. Later discovery of conch shell and
ram’s horn trumpets added pitched sounds to the available repertoire.

However, as the quest for new and different sounds continued, natural
objects were modified specifically for the purpose of producing a wider range

of sounds. Logs were hollowed and slotted for differently pitched sounds.
Natural horns were modified in Jength or pierced with holes for the same
purpose. At this point and for all of history to follow, music became com-
pletely artificial and was played on wholly artificial instruments.

Over the years, a great multitude of different instruments was invented
and refined. Stringed instruments culminating in the piano and violin

evolved from the earliest one-string harps. Wind instruments such as the

trumpet and pipe organ developed from simple horns or reed pipes. Percus-

sion instruments such as the timpant or vibraphone evolved from log drums.
Historically, musical instrament makers have been quick to adopt

newly available technology. Perhaps since music is of such universal interest

and is usually regarded as a pastime, it would be natural that technologists
would want to utilize their expertise in an enjoyable manner. The experimen-

tal approach to utilizing new technology in music is quite reasonable, since

the consequences of failure are nothing more than a heightened desire to
succeed the next time. In addition, failure is not that well defined. Although

the results may not have been expected, if they are different there are always
some who would praise them. This would not be true in many other applica-
tions of technology such as bridge building or vehicle design.

It is not surprising, then, that musical instrument manufacturers have

rapidly adopted this century’s electronic and more recent computer technol-

4 MUSICAL APPLICATIONS OF MICROPROCESSORS

ogy. Modern electronic technology allows the design of compact instruments
with a wider range of sounds and more precise player control of the sounds

than had been previously available. Also of significance is the face that these
new instruments are often much easier to play. Perhaps the ultimate in
playing ease is a programmable instrument such as a digital computer. Since
time need no longer be a factor, very intricate, fast-moving music may be
played as easily as it can be written down.

Often traditionalists, who may have spent many years perfecting the
skills necessary to play traditional instruments, ate loudly opposed to the
utilization of this new technology because to them music so produced is
artificial and mechanical. Nevertheless, there is no essential difference be-

tween the use of piston valve technology in trumpet design and computer
programming technology in organ design. It is still the responsibility of the
composer and performer to produce desirable musical results.

At this point it would be wise to develop a working definition of
music. Most physics texts define a musical sound as one that possesses a
degree of regularity, while noise as a sound does not possess such regularity.
Clearly, this alone is not sufficient, since a snare drum beat would be clas-
sified as noise and fluorescent light buzz as music by this definition.

The arrangement, in time, of component sounds is as important as the
sounds themselves. Furthermore, this arrangement must be orderly to be
musical. However, excessive orderliness leads to boredom.

So far nothing has been said about the emotional aspect of music
composition and performance. True, some of the world’s best music has a
strong emotional appeal but that alone is not sufficient. A mortal cry of
anguish appeals emotionally to all who hear it but is certainly not music. A
well-executed display of sound can be just as interesting to the ear as a
fireworks display is to the eye.

In summary, then, good music must be composed of sounds that have
regular vibrations but with enough variation to be continuously interesting.
Likewise, the arrangement of sounds must be orderly bue with enough
variety to maintain interest. Music may either express an emotional point or

merely be a spectacular display of sound. Above all, good music must hold
the attention of the listener.

Goals of Music Synthesis

Certainly, all who study electronic music techniques in general and
particularly the readers of this book must have some goal in mind. The vast
majority of young music students today are still educated solely on the
traditional musical instruments such as piano, organ, or any of a multitude of
band and orchestra instruments. Most often this involvement is not com-
pletely spontaneous but rather is encouraged by parents and teachers, often as
the result of a musical aptitude test. Children who get into music on their

Music SYNTHESIS PRINCIPLES 5

own are more apt to choose the guitar, drums, or vocal music perhaps

because of the publicity that is continuously heaped upon players of those
instruments or because of the ready market for combo dance music.

Electronic and computer music has an attraction to both beginning and
thoroughly seasoned musicians. Its newness and unique capabilities are

strong attractive qualities, Young musicians are attracted because the poten-
tial exists for creating sounds and music never before contemplated, let alone
heard. Experienced musicians see the opportunity to express themselves in

new ways unfettered by the constraints of conventional instruments or the
classical rules of composition for them.

Wider Variety of Sounds

Probably the most obvious and commonly sought goal of electronic
music practitioners is broadening the repertoire of sounds available for music
composition. Any given traditional instrument is definitely limited in the
pitch, loudness, and timbre range of sounds that it can produce. Orchestral
composers have often been quite clever in combining the sounds of ordinary
instruments to produce a composite sound that does not resemble the com-
ponents at all. Indeed, it may be theoretically possible to produce any desired
sound in this manner. However, the proper combination is not at all obvious
and experimentation to discover it is not always practical due to rhe cost and

time constraints of an orchestra.

Undoubtedly the first purely electronic sound available was the simple
sine wave. Acoustically, a sine wave can be likened to pure refined sugar;

good in small amounts but sickeningly sweet if overdone. The oscillators that
produced the sine waves were usually continuously variable over a large

frequency range making wide interval glissando (a continuous change in
pitch from one note to the next) a reality.

Modern electronic music techniques are capable of an infinite variety of
musical timbres. Whereas in the past a differently shaped or proportioned
instrument was required to explore different timbres, the same can now be
accomplished by knob twiddling or keying numbers on a computer terminal
keyboard. Furthermore, timbre need not be unchanging. Ic is entirely possi-
ble for a nore ro begin sounding like a saxophone and end sounding like a

flute with a smooth transition in between.
Because of the human hearing mechanism, a short, rapid sequence of

sounds may have an entirely different effect than the same sequence presented

more slowly. Electronic and computer techniques allow such sequences to be

accurately specified, played, and easily modified. Changing the component
sounds, the sequence, and the rate of presentation opens up a new infinity of
sounds available for the composition of music.

Sheer dynamic range is a significant new musical tool. A single tone
may start from the depths of inaudibility and creep upwards in pitch to the

6 MusICAL APPLICATIONS OF MICROPROCESSORS

heights of inaudibility. Any sound may be made as loud or as soft as desired.
Thunderous, gut-shaking bass chords are available as is the most subtle solo
melody.

Certainly a musician working with electronics is not limited by the

sounds available for composition.

Performance by the Composer

Another goal sought by many electronic musicians is, to be blunt,
omnipotence. It is now possible for a single person to compose, perform, and
criticize a piece of music of any degree of complexity desired. No longer is it
necessary to write the music down part by part and find an orchestra to play
it, and then correctly only after considerable practice. Instead, the composer
can play the piece sequentially by part and have the parts combined in a
recording studio. Or, with the aid of a computer, proper notation of the

music is itself sufficient to precisely direct the performance.

Interpretation of conventional scores has always been a problem. Many
important variables are left unspecified. Filling in these gaps is left to the
conductor (who may indeed be the composer himself) and the individual
players. In cases in which some aspect of the music is unconventional, the
fact that the performers are musicians too with their own ideas may make
execution according to the composer's wishes very difficult. With the use of
electronics, the composer himself can be in complete control of the perfor-
mance. Passages can be repeated and experimented with in search of perfec-
tion subject only to the patience of the composer. Nobody other than the
composer himself needs to hear or judge the work until it is in final form.

Because of the vast repertoire of new sounds available, it is less likely
that the desired sounds and their combinations can be chosen using only
prior knowledge and imagination. Just as the classical composer worked with
a piano to experiment with melodies and rhythms, the contemporary com-
poser needs to experiment. Electronics allows such experimentation with
immediate, or nearly so, feedback of results. Additionally, the costs are such
that experimentation is usually practical as well as possible.

The majority of money spent on musical instruments in this country is
by individuals who are not in any sense professional musicians. To these
people, playing an instrument is a very enjoyable, creative pastime. The
increasing popularity of organs over pianos and other instruments in the
home is probably due to the greater versatility of the organ. Electronic organ
manufacturers have been very quick to adopt new technology that increases
the capabilities of their instruments and makes them easier to learn and use.
In the not too distant future, programmable electronic instruments will
allow anyone with clear ideas and time to try their hand at composing and
performing truly serious music strictly for fun.

Certainly, a musician working with electronics is not limited by anyone
else in what can be achieved.

Music SYNTHESIS PRINCIPLES. 7

Increased Precision

Another often desired goal that can only be fulfilled through the use of
electronics is increased precision in the control of sounds. Additionally,
aspects of sound that in the past have been left to chance or were predefined

can now be precisely controlled. In fact, when a computer is involved, all of
the parameters of sound must be specified somehow, even if the actual desire
is to ignore some of them.

In many ways the human ear is very sensitive to and critical of imper-
fections in musical sounds. Small amounts of certain types of distortion can
be very unpleasant, Relatively small shifts in pitch can break up an otherwise
beautiful chord into a not so beautiful one. Many hours ate spent in practice
sessions getting the relative volume balance between instruments correct and
repeatable,

Timing is another variable that must be controlled, since the ear is
extremely sensitive to relative timing among musical events. Its capacity for

following and analyzing rapid sound sequences exceeds the capabilities of

conventionally played instruments. However, electronic instruments, par-
ticularly those involving computers, have control over time to any degree of

accuracy desired.

In one technique of electronic tone production, for example, the user

has complete control over the fundamental building blocks of timbre, the
harmonic partials. Any timbre (within a broad class of timbres) may be
created by combining the harmonics in different proportions. Timbres may
be experimented with, saved for exact recall, and later utilized or refined

further. The ability to document and accurately recreate timbres and sounds
is as important as the ability to create them.

Extreme precision in all aspects of music performance is novel but not

necessarily good. Many will argue that such precision leads to mechanical
sounding music. Indeed, certain kinds of uncertainty or subtle variation are
necessary to maintain listener interest. However, if one starts with a precise

product, then the needed imperfections may be added in the precise quantity
desired.

Certainly, a musician working with electronics is not limited by inac-

curacies in the control of sounds.

Increased Complexity

Complexity is one of the hallmarks of contemporary music, It is used to
increase the impact of the piece, display virtuosity both of the performer and
the composer, and to create a rich “sound landscape” upon which the primary

theme stands.
Complexity in this case means the quantity of musical events per unit

of time. Thus, it may actually be either greater speed or more parts playing
simultaneously or both. A modern recording studio can make a small ensem-

8 MUSICAL APPLICATIONS OF MICROPROCESSORS

ble sound like a vast collection of musicians through the use of overdubbing

and reverberation techniques. ‘Ihe same studio can facilitate the rapid play-

ing of music either by actually speeding up the tape or by relieving concern

over the errors made during rapid playing.
The use of computers allows great but well-controlled complexity to be

built up because the music can be programmed, The programming process is

nothing more than notation of the music according to a rigid set of rules. In

many computer-based music systems using purely digital synthesis tech-
niques, there is no practical limit to the speed of playing or to the number of
instruments or sounds that may be simultaneously present. The only penalty

for adding additional parts is a longer waiting period during one phase of the
music production.

Complexity in sound may also be quite subtle. Many natural sounds are
really quite complex when described in terms of the fundamental parameters

of sound. One interest area of many researchers is precise analysis of natural
sounds, some of which are not normally easily repeatable. With information
gleaned from the analysis, new sounds may be synthesized that resemble the
original in controlled ways or emphasize one or more of its characteristics.

Certainly, a musician working with electronics is not limited by the
degree of sound complexity possible.

Increased Spontaneity

Finally, a minority of people are looking for more randomness or spon-
taneity in the performance of music through the use of electronics. The wider
range and greater case of control of electronic instruments makes manual
improvisation easier and more interesting.

Computers may generate and use random sequences to control some or
all of the parameters of a sound. Certain mathematical processes, when used
to control sound, lead to interesting, unpredictable results. Natural

phenomena may also be captured electronically and used to control sound.
One example is the use of brain waves as a control source for one or more

oscillators. An entire record album has been created using fluctuations in the
earth’s magnetic field as a control source.

Certainly, a musician working with electronics is limited only by his
own imagination.

The Fundamental Parameters of Sound

All music, whether it is conventional or electronic in origin, is an

ordered collection of sounds. Accordingly, a working knowledge of the
physics of sound is necessary to understand and intelligently experiment with
the degree of control of sound offered by the use of computers in electronic
music,

Music SYNTHESIS PRINCIPLES 9

nee
W) source

FOCUSING
LENS

MOVING
PHOTOGRAPHIC
FILM OR
PAPER

JEWELED
BEARING

DIAPHRAGM

INCIDENT
‘SOUND

Fig. 1-1. Mechanical sound-waveform-tracing apparatus

Steady, unchanging sounds fall into two classes, pitched and un-

pitched. The two classes are not completely disjointed, however, since there
are some sounds that possess characteristics of both groups. As will be shown
later, all steady sounds can be described by a number of parameters that are
also steady. In all cases, these parameters are scalar quantities, that is, a

simple number with corresponding physical units. Changing sounds (all
sounds change to some degree—otherwise they would have no beginning or
end) are similar to steady sounds except that the parameters that describe

them change with time.
One way to visualize a sound is to show its waveform or the manner in

which air pressure changes with time. Before the discovery of electronics,
mechanical instruments similar to the one shown schematically in Fig. 1-1
were used. Movement of the air caused by sound vibrations would be picked
up by a diaphragm and cause a tiny mirror to rotate in synchronism with the

vibration. A light beam reflected from the mirror onto moving photographic
film would make a visibile waveform trace. The distance from the mirror to
the film acted as a long but massless lever arm to effectively amplify the
vibrations.

Of course, sound waveforms may now be photographed on the display
screen of an oscilloscope. In order to do this, the sound is first directed into a

10 MUSICAL APPLICATIONS OF MICROPROCESSORS

‘
[+ — 1 perioo ———+

r

AMPLITUDE

w a
Zo + + t + + —— te
z i 2 34 5 6 7 8 9 1 Il 12
= =

TIME, (Msec)

(A)

+

I Af My Z

i | PERIOD en
TIME

(B)

AMPLITUDE

°

Fig. 1-2. Some typical waveforms of steady sounds

microphone that converts the air vibrations into equivalent electrical voltage
vibrations. Electronic sounds, of course, already exist in electrical form. In

either case, the electrical voltage variations control the vertical position of the
oscilloscope beam while it is also sweeping from left to right at a constant
rate. Thus, the plot on the screen shows equivalent air pressure on the
vertical or Y axis and the passage of time on the horizontal or X axis. In the
case of silence, a horizontal daseline is all that would be seen. This does not

Music SYNTHESIS PRINCIPLES 11

fepresent zero air pressure but instead represents zero variation from current
atmospheric pressure. Since only relatively rapid variations in pressure can be

heard, the baseline is usually taken as a zero reference and the positive and
negative variation around zero is the quantity of interest.

Even using an oscilloscope presents some problems. One of these is that

the screen is not very wide so only very short segments of the waveform may

be conveniently displayed. The best way to visualize a waveform is to have a
computer record it and display it on a graphic display or plot it on paper.
From now on when the term “sound” or ‘‘vibration”’ is used, it is assumed to
exist as an electrical signal. Listening to the sound is simply a matter of
feeding the signal to a high-fidelity amplifier and quality speaker system.

Typical Sound Waveforms

Figure 1-2 shows some typical waveforms of steady sounds. The hori-
zontal axis represents the passage of time and is marked off in milliseconds.
The vertical axis represents air pressure but is marked off in volts due to the
fact that the picture is actually of an electrical signal. The progression from
left to right is from the simplest possible pitched sound (sine wave) through
more complex pitched sounds to semipitched sounds and finally to the most
fundamental unpitched sound (white noise).

The waveforms in Figs. 1-2A and B are from unquestionably pitched
sounds. Their distinguishing feature is that the waveform repeats itself

AMPLITUDE

°

TIME

(Cc)

Fig. 1-2. Some typical waveforms of steady sounds (cont.)

12 MUSICAL APPLICATIONS OF MICROPROCESSORS

a hit
Fig. 1-2. Some typical waveforms of steady sounds (cont.)

exactly as time passes. Such waveforms when heard are clear, unwavering

musical notes and are often called tones.
The waveform in Fig. 1-2C does not seem to repeat, at least during the

segment shown. It is composed, however, of a small number of individually
repeating waveforms. The sound is similar to that of a chime or belli, Such
sounds possess definite pitch when compared to similar sounds, but when

they are presented in isolation it is often impossible to say what the pitch
really is in musical terms.

Music SyNTHESIS PRINCIPLES 3

The waveforms in Figs. 1-2D and E do not repeat either, but each is
composed of a very large (essentially infinite) number of repeating compo-
nents. Waveform E, however, is composed of an equal mix of these compo-
nents, whereas D contains a greatet proportion of some components than
others. The sound of waveform E is that of rushing air, whereas D is similar
to whistling wind. Accordingly, E is purely unpitched and D is semipitched.

All of these waveforms can be described by means of parameters. Given
these parameters and a synthesizer or computer, one could reproduce the
essential characteristics of each of these waveforms and an infinity of others
between the extremes. This does not mean that the same exact shape would

be reproduced in all cases (although that too is possible if enough parameters
are defined), but it does mean that those characteristics chat are audible
would be reproduced. Not all parameters are of equal importance in accu-
rately describing the sound, as will be shown later.

The sine wave can be completely described with only two parameters.
One of these is related to the time required for a single repetition of the
waveshape and the other is related to the height of the waveform.

The Frequency Parameter

In Fig. 1-2A, the sine waveform repeats every 4 msec (thousandths of a

second); thus, its period is 4 msec. Usually the reciprocal of the period is
used and is called the frequency, which is measured in cycles per second
according to the number of times the waveshape repeats in 1 sec. Recently,
the composite unit cycles per second has been replaced by hertz as the unit of
frequency. Thus, hertz or its abbreviation, Hz, will be used hereafter. Large
values of frequency, usually called Azgh frequencies, are measured in kilohertz
(kHz) and megahertz (MHz), which are thousands and millions of hertz,
respectively.

For the pure sine wave shown, the human ear is generally regarded as
being capable of hearing frequencies between 20 Hz and 20 kHz. The
20-kHz upper frequency limit is usually a bit optimistic, however, with 15
kHz to 18 kHz betng more common for young people. Advancing age pushes

the upper limit lower yet. The lower limit of 20 Hz is somewhat arbitrary,
since such low frequencies, if they are loud enough, make their presence
known by rustling clothing, shaking floors, and rattling windows.

The frequency parameter of the sine wave is strongly related to the
perceived pitch of the tone when heard. Whereas frequency is a physical
parameter of the sound waveform, pitch is a subjective parameter that exists
only in the mind of the listener. Without question, when frequency is
increased, the perceived pitch also increases provided that the frequencies
involved are in the audible range. The relationship between pitch and fre-
quency is not linear, however. For example, an increase of 100 Hz from 100
Hz to 200 Hz results in a large pitch change upward, but a similar 100 Hz
increase from 5 kHz to 5.1 kHz is a nearly imperceptible increase.

14 MUSICAL APPLICATIONS OF MICROPROCESSORS

Listening tests have shown that the relation between frequency and

pitch is an approximately exponential one. Thus, the increase from 100 Hz to

200 Hz represents a doubling in frequency so an equivalent pitch increase

starting from 5 kHz would require doubling again to 10 kHz.

Musical Pitch

Musical pitch has its own system of measurement. Unlike frequency,

the units are relative rather than absolute. The most fundamental unit is the

octave. If tone B is one octave higher rhan tone A, then its frequency is exactly

twice as high and the sensation of pitch would be twice as high. (In tests with

musically inexperienced laymen, tone B would typically be judged to be less

than twice as high in pitch as tone A, but such a tendency is usually
eliminated by musical training.) Other units are the hadf-step, which is 1/12
of an octave or a frequency ratio of 1.05946, and the cent, which is 1/100 of a
half-step or a ratio of about 1.00059, which is roughly 0.069. A half-step is
also the difference in pitch between two directly adjacent keys on a conven-

tionally tuned piano. For moderately loud sounds around 1 kHz, the smallest
change in frequency that can be perceived is around 5 cents.

Since these pitch units are purely relative, a basis point is needed if an
absolute pitch scale is to be defined. One such basis point is the international
pitch standard, which defines the note, A above middle-C, as being 440.0
Hz. The corresponding frequencies of all other musical notes can be obtained
by applying the proper ratios to the 440-Hz standard.

Table 1-1 gives the frequencies of some musical notes. Note that two
systems of tuning are represented, although there are others. The most
popular tuning system is equal temperment, which is based solely on the
frequency ratio of the half-step being the twelfth root of 2.0 of approximately
1.05946. The term equal temperment means that all half-steps are exactly
the same size. The other system represented is the jast system of tuning,

which is based on rational fraction ratios with small numbers for numerator
and denominator. The table shows these ratios in both fractional form and
decimal form for comparison with the equally tempered scale frequencies.
Note that the octave ratio is exact in both scales, but there are small dif-
ferences in all of the other ratios.

Of the two scales, the just-tuned one is more musically accurate

and pleasing to the ear particularly when chords are played. Musical accuracy
here means accuracy of the important musical intervals such as the fifth,
which is ideally a ratio of 3:2, and the third, which should be 5:4. Its
disadvantage is that not all half-steps are the same size; thus, transposition
from one key to another is not easily achieved. For example, the just scale
shown is for the key of A major, meaning that the basis frequency chosen for
application of the rational fraction ratios was 440 Hz. If another just scale

Music SYNTHESIS PRINCIPLES 15

was constructed using a C as a basis, most of the note frequencies would be

slightly alrered. As a result, the note D, for example, would have slightly
different frequencies depending on the key of the music, which often changes
in the course of a composition. This is a clearly impractical situation for all
fixed-tuned instruments such as organs, pianos, guitars, etc. With equally
tempered tuning, there is no problem in going from one key to another. For
most musical applications, this advantage outweighs the sacrifice made in
musical accuracy.

The equal-temperment system is also used almost exclusively in elec-
tronic music because it simplifies the electronic circuitry considerably. With
a computer or microprocessor involved, however, it becomes feasible, al-
though not necessarily simple, to handle just tuning and thus gain an extra

measure of precision.

Table 1-1. Two Musical Tuning Systems

Equal temperment A Major just

Note Ratio Frequency Note Ratio Frequency

AQ 0.0625 27.500 AO 1/16 0.0625 27.500
Al 0,1250 55,000 Al 1/8 0.1250 55.000
A2 0.2500 110.000 A2 Wa 0.2500 110.000

Ag 0.5000 220.000 A3 1/2 0.5000 220.000
A#3 0.5297 233.068
B3 0.5612 246.928 B3 9/16 0.5625 247.500

C4 0.5946 261.624
C#4 0.6300 277.200 C#4 5/8 0.6250 275.000
D4 0.6674 293.656 D4 4/6 0.6667 293.333
D#4 0.7071 311.124
E4 0.7492 329.648 E4 3/4 0.7500 330.000
Fa 0.7937 349.228
F#4 0.8410 370.040 F#4 5/6 0.8333 366.667
G4 0.8910 392.040
G#H4 0.9439 415.316 G#4 15/16 0.9375 412.500
A4 1.0000 440.000 Aa 1 1.0000 440.000
A#4 1.0594 466.136
B4 1.1224 493.856 B4 9/8 1.1250 495.000

C5 1.1892 523.248
C#5 1.2600 554.400 C#5 5/4 1.2500 550.000
DS 1.3348 587.312 05 4/3 1.3333 586.667
D#¥5 1.4142 622.248

—5 1.4984 659.296 —5 3/2 1.5000 660.000
F5 1.5874 698.456
Fes 1.6820 740.080 F#S 5/3 1.6667 733.333

G5 1.7820 784.080
G#5 1.8878 830.632 G#5 15/8 1,8750 825.000
AS 2.0000 880.000 AS 2 2.0000 880.000
AG 4.0000 1760.00 AG 4 4.0000 1760.00
A7 8.0000 3520.00 AT 8 8.0000 3250.00

16 MUSICAL APPLICATIONS OF MICROPROCESSORS

The Amplitude Parameter

The other parameter that describes a sine wave is the amplitude. The
amplitude parameter is related to the height of the wave in a plot such as in
Fig. 1-2A. In the air, amplitude would actually relate to the degree of
change in air pressure, whereas in an electronic circuit it would relate to the
voltage or current in the circuit.

The most obvious way to specify the amplitude of a sine wave is to find
the minimum voltage and the maximum voltage in the course of one cycle
and express the amplitude as the difference between the extremes. This is
termed the peak-to-peak amplitude. Another method is to specify the average
amplitude, which is the long time average difference between the instantane-
ous waveform voltage and the baseline. A typical voltmeter would respond to
this average rather than the actual peaks of the waveform. A third method
relates the amount of heat produced in a resistor connected to the source of
the sine wave voltage to the amount of heat produced when the same resistor
is connected to a source of constant dc voltage. The dc voltage required to
produce the same amount of heat is called the effective voltage of the sine wave
or its root-mean-square value which is abbreviated rms. Of the amplitude
specification methods, the rms technique most accurately correlates with
what the ear hears, whereas the peak-to-peak method most accurately pre-
dicts the possibility of unwanted distortion in electronic recording and syn-
thesis equipment.

The most common unit for amplitude specification when a waveform is
being examined is simply the volt. In rare cases, a current waveform may be
of interest so the amplitude would be specified in milliamperes or amperes.
When a signal is being delivered to a speaker, however, the amplitude is

usually expressed as power in watts. The power in a signal can be calculated
in several ways. The simplest is to multiply the instantaneous voltage by the

instantaneous current and average the product over one repetition of the
waveform. Another method is to square the rms voltage of the waveform and
divide the result by the speaker impedance, which is accurate only if the
speaker impedance is purely resistive.

The human ear is capable of responding to a very wide range of sound
amplitudes. The amount of sound power at 2,000 Hz that can be listened to
without undue discomfort is about a trillion (10!) times greater than the
power in a barely audible sound. For convenience in working with such a
wide range of power, the bel scale (named after Alexander Graham Bell) of
sound intensity was developed. Like musical pitch units the bel scale is
relative. The bel unit refers to a ratio of 10 between the power of two sounds.
Thus, sound B contains 1.0 bel more power than sound A if it is 10 times as
powerful. Conversely, sound A would be 1 bel less powerful or —1.0 bel
with respect to sound B. Expressed using the bel scale, the range of hearing
would be 12 bels.

Music SYNTHESIS PRINCIPLES 7

In actual audio work, the unit decibel, which is a tenth of a bel, is more

commonly used. It is abbreviated dB and represents a power ratio of about
1.259 to 1. Three decibels (which is 1.2597) represents almost exactly a ratio
of 2.0 and 6 dB is a ratio of 4:1, Note that these are power ratios. Since power
increases as the square of voltage (assuming constant load resistance), a 10:1
ratio of voltage is equivalent to 100:1 ratio of power or 20 dB. Consequently,
6 dB represents only a doubling of volrage amplitude. Expressed as a voltage
ratio, the 120-dB range of human hearing represents a million-to-one voltage
range.

Since the decibel scale is relative, a basis point is needed if an absolute

decibel scale is to be defined. For sound in air, the 0-dB reference is taken as

10°'6 W/cm?, a very small amount of power indeed. For electrical signals,
the reference point is 0.001 W into a 600-ohm impedance or about 0.775 V.
For the maximum amplitude of 120 dB, the figures would be 0.1 m W/cm?
in air and a million kilowatts of electrical power, more than most generating

plants put out. Clearly, the standardized electrical basis point has nothing to
do with sound amplitude.

It should be apparent by now that there is a strong relationship between

the amplitude of a sine wave and the loudness of the sound it represents.
Also, as expected from the trillion-to-one audible amplitude range, the
relationship is highly nonlinear. However, when amplitude is expressed in
decibels, the relation is reasonably linear. The amplitude of a sound must be
increased an average of 8.3 dB to be perceived as a doubling of loudness. For

moderately loud sounds, 1 dB is about the smallest change in amplitude that

is noticeable. The basis point of 10716 W/cm? for sound in air is about the
softest sine wave at 2 kHz that can be heard by a person with good hearing.
The basis for the electrical O-dB point is purely arbitrary.

Frequency and Amplitude Interaction

The frequency and amplitude parameters of a sine wave are completely
independent. Thus, one may be varied over a wide range without affecting
the value of the other whatsoever. This may not always be strictly true in a
practical circuit for generating sine waves, but the amount of interaction in

good-quality equipment is very small.
When this sound is heard by the human ear, however, there is signifi-

cant interaction between loudness and pitch. The most dramatic interaction
is the effect on the apparent loudness of a constant amplitude sine wave tone

caused by changing its frequency.
Figure 1-3 shows the extent of this interaction. The curves show the

amplitude change necessary to preserve constant loudness as frequency is

varied. Note that there is relatively little interaction at large amplitudes,
but, as the amplitude decreases, the lower-frequency sounds decrease in
loudness much faster than higher-frequency sounds. For example, at an

18 MUSICAL APPLICATIONS OF MICROPROCESSORS

a 4 | a | |

NAAAK
SANNA ANAK

INTENSITY LEVEL, (dB)

a °

HCC LLUY ANN AS s-AAN F (
500 1,000 §,01

FREQUENCY, (Hz)

all PHON, A UNIT OF LOUDNESS, IS NUMERICALLY EQUAL TO THE SOUND
PRESSURE LEVEL iN DECIBELS (dB) BASED ON A t-kHr REFERENCE.

8

Fig. 1-3. Loudness as a function of amplitude and frequency

amplitude level of 60 dB (relative to 10"'© W/cm? in air) frequencies below
35 Hz would be too soft to be noticed. As frequency increases, loudness
increases also up to about 800 Hz where it levels off to the comfortably loud
level of normal conversation. As frequency approaches the upper limit of
hearing, the apparent loudness again decreases.

The effect on pitch caused by an amplitude change is much smaller.
Again the effect is greatest at the extremes of the frequency range. In particu-
lar, the pitch of a low-frequency (100 Hz) sine wave tone decreases as the
amplitude increases. The pitch shift effect is small enough to be ignored,
however, with more complex waveshapes.

The Mathematical Sine Shape

Before moving on to more complex waveshapes and other parameters,
we need to look more closely at the sine shape itself. Why is it the simplest
possible waveform and why is it so important? The name sine wave comes
from the sine trigonometric function. For right triangles, the sine of one of
the other angles is the ratio of the length of the side opposite the angle to the
length of the hypotenuse.

Figure 14A shows how this trigonometric ratio can be converted into
a sine wave shape. Assume that the crank, which represents the hypotenuse,
is one unit in length and that it is being turned counterclockwise at a

Music SYNTHESIS PRINCIPLES 19

pirection or SN LAT
ROTATION.

+ + + A
225° «270° = 35° 360°

(a)

cog (A)

+ +
270" 315° = 360°

(B)

Fig. 1-4, Mathematical sine wave generator

constant speed. The angle, A, between the crank arm and the centerline of
the crank axis is the angle of interest. As the crank turns and time passes, the
angle gets progressively larger. The distance from the center of the handle to
the horizontal centerline of the crank axis, which represents the side opposite

the angle, is the sine of this progressively increasing angle.

Also shown is a graph of the sine as a function of the angle. If the crank
is being turned one revolution per second, then the frequency of the sine
wave on the graph is 1.0 Hz, and the horizontal axis units may be changed
from degrees to time. If the speed of turning is increased, then the frequency
of the sine wave would also be increased. Sometimes the term “instantaneous
angular velocity” is used when the frequency varies. If rapid variations are
encountered, simply counting the number of complete sine wave cycles in

1 second may not be precise enough. In such cases, angular velocity refers,
conceptually, to the speed of crank turning, which can be measured very
quickly.

20 MUSICAL APPLICATIONS OF MICROPROCESSORS

One other factor is of importance on the graph, although it does not
directly affect the sound of a single sine wave. This factor is called the phase of
the wave and is related to the position of the crank when curning was started.
In Fig. 1-4A, the initial crank position was straight out right. At time 0,

the turning was started and the wave started rising initially. If instead the
initial position was at the top of the arc, then the wave of Fig. 1-4B would
result. The only difference is that the 0 time point has been shifted ahead
with respect to the waveform by 0.25 sec, which is equivalent to 90° if the
degree scale is used. Thus, waveform B is said to have a 90° degree leading
phase with respect to waveform A and waveform A has a 90° dagging phase

with respect to waveform B.
Since phase is also a relative quantity, a reference point is needed for an

absolute scale. By mathematical convention, waveform B has a O phase angle.

Asa result, waveform A has a —90° phase angle. Waveform B is also called a
cosine wave. In trigonometry, the cosine is the ratio of the length of the side
adjacent the angle to the length of the hypotenuse. On the crank diagram, the
adjacent side is represented by the distance from the center of the handle to
the vertical centerline of the crank axis. The plot of a cosine wave will be
exactly the same shape and amplitude as the sine wave done earlier; the only
difference is in the phase angle. In the future, when the term sine wave is
used, the reference will be to the actual sine shape and not to any particular
phase angle.

The Mechanical Sine Shape

Although the foregoing describes a mathematical method of plotting a
sine wave as accurately as desired, it does not explain why it is such an
important waveshape. For the answer to that question consider the mechanical
setup shown in Fig. 1-5. Here we have a weight hanging from a spring

firmly attached to the ceiling. If the weight is pulled down somewhat and
released, it will bounce up and down with a smooth motion that gradually
diminishes. If the spring is of highly tempered steel and the experiment is
performed in a vacuum, the vibration amplitude of the weight will decrease

so slowly that for short observation times the amplitude will appear constant.
The point is that the motion of the weight, if plotted as a function of time, is
an essentially perfect sine wave. Any imperfections in the sine shape are due
to defects in the spring and the fact that gravity is less at the top of the
weight motion than at the bottom. The mathematical reason that two such
different devices should have identical motion characteristics is beyond the
scope of this discussion, however.

The frequency of vibration of the spring-mass system may be altered by
either changing the amount of weight or the stiffness of the spring or both.
With a stiff spring and light weight (or even the weight of the spring itself),
the frequency can become high enough to be heard. Note that, as the

Music SYNTHESIS PRINCIPLES 21

yO)

™, POSITION
o + '

| PEN

PULL T on IME
AND
RELEASE

Fig. 1-5. Mechanical sine wave generator

amplitude of the vibrations gradually diminishes, the frequency remains the
same. The rate of amplitude decay is dependent mainly on the amount of

friction present. If the spring is held by a person rather than the ceiling, the
vibrational energy lost to friction may be replenished by careful, syn-
chronized movement of the spring.

The importance of the sine wave is obvious if one realizes that all
natural sounds come from mechanical vibration. The vibrating members in
all cases are actually tiny spring-mass systems. Pieces of metal, logs, and
even the air itself have a degree of springiness and mass. Striking these

objects or exciting them by other means creates the characteristic sine wave

vibration of either the entire object or portions of it. In most cases, more than
one spring-mass equivalent is vibrating simultaneously, so the resulting
sound is actually a combination of sine waves of different frequencies and
rates of decay.

Complex Waveforms

At this point, we are now prepared to discuss the most interesting
parameter of all in repeating waveforms, namely the shape of the wave itself.
The shape of a waveform influences its timbre or tone quality. Obviously,
there is an infinite number of possible waveshapes (and only a few less
timbres). The only restriction is that a waveshape must be a single-valued
function, which essentially means that the horizontal progression from left to
right can never reverse.

22 MUSICAL APPLICATIONS OF MICROPROCESSORS

As mentioned earlier, any natural sound waveform is really a combina-

tion of sine waves originating from vibrating spring-mass systems. However,
in the 17th century, a French mathematician by the name of Joseph Fourier
proved mathematically that any waveform, regardless of origin, is actually a
mixture of sine waves of different frequencies, amplitudes, and phases. Fur-
thermore, he showed that if the waveform repeats steadily, then the frequen-

cies of the component sine waves are restricted to being integer multiples of the
repetition frequency of the waveform. Thus, if the frequency of repetition is
100 Hz, then the component sine waves must have frequencies of 100 Hz,

200 Hz, 300 Hz, etc., up to infinity, although any components above 20

kHz will not contribute to the sound, since they are inaudible. Of course,

some of them may have zero amplitude, but in general it can be assumed that
all of them exist in the audible frequency range.

These component sine waves are called overtones or harmonics, with the
latter term preferred. The component having the same frequency as the
overall waveshape is termed the fundamental frequency, which is also the first
harmonic. The component having a frequency twice the fundamental is
termed the first overtone or second harmonic. The third harmonic has a
frequency three times the fundamental and so forth. Since the frequencies of
the component waves are fixed, each one can be characterized by giving its
amplitude and its phase angle either as an absolute quantity or with respect

to the fundamental.
Figure 1-6 shows how harmonic sine waves can be combined together

to produce a waveshape that is about as far as one can get from a curvy wave.
Combining two waveforms really means adding them point by point as
shown to get the combined result. A squared-off waveform such as this
actually has an infinite number of harmonics with nonzero amplitudes. A
practical synthesis of the waveform from harmonic components has to stop
somewhere, of course, and leave all of the higher-frequency harmonics with a
zero amplitude.

As can be seen, each additional harmonic gives a closer approximation
to the desired rectangular-shaped wave. With the first 32 harmonics repre-
sented, the approximation is getting quite close with steeply rising sides and
reasonably flat top; however, there is still a significant amount of overshoot

and ringing. These imperfections are mainly due to using the set of harmonic
amplitudes designed for an infinite series and stopping the series abruptly at
the 32nd harmonic. A modification of the amplitudes taking into account
the fact that no harmonics above 32 are allowed produces a visibly superior
rendition of the desired shape.

The significance of Fourier’s theorem can be realized by noting that all
of the acoustically important aspects of the shape of a waveform can be
specified with a comparatively small number of parameters. For example, a
1,000-Hz waveshape, no matter how complicated, can be specified by 20
amplitudes and 20 phase angles corresponding to the 20 audible harmonics.

Music SYNTHESIS PRINCIPLES 23

4

+}

of-—F =

}

ee —___

{A)

4

FUNDAMENTAL

SECOND
+ HARMONIC

f

° a
Le

Fig. 1-6. Synthesis of a rectangle wave from sine waves, (A) Desired rectan-
gular wave. (B) Fundamental and second harmonics separately.

24 Musical APPLICATIONS OF MICROPROCESSORS

FROM I-6B

FUNDAMENTAL
AND SECOND
COMBINED

ee

THIRD
HARMONIC

(Cc)

{D)

Fig. 1-6. Synthesis of a rectangle wave from sine waves (cont.). (C) Funda-
mental and second harmonics combined and separate third har-
monic. (D) Fundamental, second, and third harmonics combined.

Music SYNTHESIS PRINCIPLES

{E)

nl
(Fh

Fig. 1-6. Synthesis of a rectangle wave from sine waves (cont). (E) Funda-
mental through sixth harmonics combined. (F) Fundamental through
10th harmonics combined.

26 MUSICAL APPLICATIONS OF MICROPROCESSORS

bow [pon |e

$

oe —++— >

a Wana ins

(g)

+

0 -

(H)

Fig. 1-6. Synthesis of a rectangle wave from sine waves (cont.). (G) Funda-
mental through 32nd harmonics combined. (H) Fundamental through
32nd harmonics combined with adjustment for a finite number of
harmonics.

Music SYNTHESIS PRINCIPLES 27

Human Ear Interpretation of Waveshape

Up to this point, the emphasis has been on the actual shape of a wave.

However, the human ear does not work by tracing the waveform and report-
ing the various twists, turns, and undulations to the brain. Instead, the

sound vibrations are crudely analyzed into sine wave components and the
amplitudes of the components are sent to the brain for recognition. The
phases of the harmonics with respect to the fundamental are of little impor-
tance in tones of moderate frequency and amplitude. As a result, phase can
usually be ignored when synthesizing sound waveforms. For example, the
tones of Fig. 1-7 would all sound alike provided the frequency was above a
couple of hundred hertz and the amplitude was not excessively large. The
amplitudes of the harmonics in Fig. 1-7A, B, and C are all the same, but in

B the fundamental has been shifted 180° with respect to the other harmonics,
and in C the phases of all of the components have been randomly redistrib-
uted.

Obviously, the waveshape is not really a very good indicator of the
timbre of the resulting sound. Since the harmonic amplitudes are a good
indicator of timbre, a different kind of graph called a spectrum plot is useful.
Such a graph is shown in Fig. 1-8, which is the spectrum of the rectangular
wave used earlier. The horizontal axis is now frequency and the vertical axis is
amplitude, usually either the peak (half of peak-to-peak) value or the rms
value. Each harmonic is represented by a vertical line whose height depends
on its amplitude.

When evaluating timbre, particularly lower-frequency tones with a lot
of harmonics, the human ear is not usually supersensitive about the exact
amplitude of a particular harmonic. In most cases, the trend in amplitudes of

(ah

Fig. 1-7. (A) Normal square wave.

28 MUSICAL APPLICATIONS OF MICROPROCESSORS

(B}

° '

(c)

Fig. 1-7. (Cont.). (B) Square wave with fundamental shifted 180°. (C) Square
wave with random shift of all harmonics.

groups of harmonics is more important. A single harmonic, even the funda-

mental, can often be eliminated without great effect on the timbre. Accord-

ingly, it is often useful to note the spectral envelope of the harmonics, which is
indicated by a dotted line.

It is interesting to note that even if the fundamental component

amplicude is forced to zero the ear is still able to determine the pitch of the
tone. There are a number of theories that attempt to explain how this is
accomplished. One maintains that the ear is somehow capable of picking out
the repetition rate of the waveform, which is not destroyed by removing the

Music SYNTHESIS PRINCIPLES 29

fundamental. Another suggests that all of the remaining component frequen-
cies are ascertained, and the missing fundamental frequency is “computed”
from them.

Nonrepeating Waveforms

With the basics of definitely pitched sounds with repeating waveforms
in hand, let's examine more closely the last three waveforms in Fig. 1-2. As
mentioned earlier, waveform C does not repeat but does have a pitch sense in
relation to other similar sounds. Its spectrum is shown in Fig. |-8B, Note

that the sine wave component frequencies are not integral multiples of some

fundamental frequency. This is the main reason that the waveform does not
repeat and that it does not have an absolute pitch. However, since a small
number of component frequencies relatively far from each other are involved,

the sound is pleasing to hear, and the waveform trace is not unduly com-
plex.

Actually, the stacement about the waveform never repeating needs to

be qualified a bit. If all of the frequencies are rational numbers it wé// repeat
eventually. If one of the frequencies is irrational, such as 7 kHz, however,

the waveshape will indeed never repeat. At the moment, the presence or

AMPLITUDE

0.07 0.08
= i

O 2 a3 6 8 io 2 14 16 18 20 22 4

FREQUENCY {Hz x 100)

(a)

08 O73

0.31
AMPLITUDE

f : mn
1 rr re

FREQUENCY (Hz x 100)

(B)

Fig. 1-8. Spectrum plot. (A) Rectangle wave of Fig. 1-7. (B) Waveform of Fig.
1-2C.

30 MUSICAL APPLICATIONS OF MICROPROCESSORS

absence of a repeating wave pattern is rather academic, but it will be impor-
tant later.

Unpitched sounds and most semipitched sounds are like the waveforms
of Fig. 1-2D and E—real messes that look more like an infant’s scribbling.
Time waveforms of such sounds give almost no clues about how they will
sound. A spectrum plot, however, will reveal quite a bit. The first obvious
feature is that there is a very large number of lines representing component

sine waves. With such a large number, the spectral envelope takes on added
significance. In fact, most sounds of this type literally have an infinite
number of component frequencies so the envelope is all that can be really
plotted.

The spectrum in Fig. 1-8D is special. It is nothing more than a
straight line! Such a sound is called white noise because it has an even mixture
of all audible frequencies. This is analogous to white light, which is an even

mixture of all visible light frequencies. Any departure from a straight spec-
tral plot can be called coloring the sound, analogous to coloring light by
making one group of frequencies stronger than others.

Pure white noise sounds like rushing air or distant surf. If the lower

AMPLITUOE

FREQUENCY (Hz x100)
(c)

AMPLITUDE

2 2 8 eg - e = b £6

°
° n a 4 5 6 ¥ 8 9 10

FREQUENCY (Hz x100)

(D)

Fig. 1-8. peed plot (cont.). (C) Waveform of Fig. 1-2D. (D) Waveform of
ig. 1~2E.

Music SYNTHESIS PRINCIPLES 31

frequencies are emphasized (or the higher ones eliminated) the sound be-
comes a roar, or in an extreme case, a rumble. If the high frequencies

predominate, a hiss is produced.
The middle frequencies can also be emphasized as in Fig. 1-8C. If a

wide range of middle frequencies is emphasized, the sound is only altered
slightly. However, if a sufficiently narrow range is strengthened, a vague
sense of pitch is produced. The apparent frequency of such a sound is nor-
mally near the center of the group of emphasized frequencies. The narrower

the range of frequencies that are emphasized, the more definite the pitch
sensation. If the range ts very narrow, such as a few hertz, a clearly pitched
but wavering tone is heard. If the waveform of such a tone is examined over
only a few cycles, it may even appear to be a pure, repeating, sine wave!

Multiple groups of emphasized frequencies are also possible with a clearly
different audible effect. In fact, any spectrum envelope shape is possible.

Parameter Variation

In review, then, all steady sounds can be described by three fundamen-

tal parameters: frequency if the waveform repeats, overall amplitude, and
relative harmonic amplitudes or spectrum shape. The audible equivalents of
these parameters are pitch, loudness, and timbre, respectively, with perhaps

a limited degree of interaction among them.
What about unsteady sounds? All real sounds are unsteady to some

extent with many useful musical sounds being particularly so. Basically a

changing sound is a steady sound whose parameters change with time. Such
action is frequently referred to as dynamic variation of sound parameters.
Thus, changing sounds can be described by noting how the parameters vary
with time.

Some terms that are often used in discussing parameter variation be-
havior are steady state and transition. If a parameter is changing only part of
the time, then those times when it is not changing are called steady states.
Usually a steady state is not an absolute cessation of change but instead a
period of relatively little change. The transitions are those periods when
movement from one steady state to another takes place. An infinite variety of

transition shapes are possible from a direct, linear change from one steady
state to another to a variety of different curves. Often it is the speed and form
of the transitions that have the greatest influence on the overall audible
impact of a sound.

Frequency Variation

Dynamic variation of frequency is perhaps the most fundamental. A

simple one-voice melody is really a series of relatively long steady states with
essentially instantaneous transitions between them. If the frequency transi-
tions become fairly long, the audible effect is that of a glide from note to

note.

32 MusIcAL APPLICATIONS OF MICROPROCESSORS

Often wich conventional instruments, a small but deliberate wavering
of frequency is added to the extended steady states. This wavering is called
vibrato. If the frequency parameter is plotted as a function of time on a graph,
then the vibrato shows up as a small amplitude waveform with the baseline
being the current steady state. This situation is termed frequency modulation
because one waveform, the vibrato, is modulating the frequency of another
waveform, the sound. We now have a whole new infinity of possible vibrato
frequencies, amplitudes, and shapes. Vibrato waveforms for conventional
instruments are usually around 6 Hz with an amplitude of 1% or so and a
roughly sine waveshape.

Gross alterations in the typical vibrato waveform can also have a gross
effect on the resulting sound. If the modulating wave amplitude is greatly
increased to several percent or even tens of percent, the result can be a very
boingy or spacey sound. If the modulating frequency is increased to tens or
hundreds of hertz, the sound being modulated can be completely altered.
Clangorous sounds resembling long steel pipes being struck or breaking glass
are easily synthesized simply by having one waveform frequency modulate
another. This phenomenon will be studied in greater depth later.

Amplitude Variation

Changes in amplitude are also fundamental. Again taking a one-voice
melody as an example, it is the amplitude changes that separate one note
from another, particularly when two consecutive notes are of the same fre-
quency. Such an amplitude change delineating a note or other sound is
frequently called an amplitude envelope or just envelope. The shape and

duration of the amplitude envelope of a note has a profound effect on the
overall perceived timbre of the note, often as important as the spectrum
itself.

Figure 1-9 shows a generalized amplitude envelope. Since they are so
important, the various transitions and steady states have been given names.
The initial steady state is, of course, zero or silence. The intermediate steady
state is called the sustain, which forms the body of many notes. The transition

w 10 SUSTAIN

208
az 06
Z 04

02
° ~

TIME

Fig. 1-9. Typical amplitude envelope shape.

Music SYNTHESIS PRINCIPLES 33

from zero to the sustain is called the attack. The duration of the attack is of
primary importance, although its shape may also be important, particularly
if che attack is long. The transition from the sustain back to zero is the decay.
Again, time is the major variable. Some notes, such as a piano note, have no
real sustain and start to decay immediately after the attack. They may,
however, have two different rates of decay, a slow initial one, which could be
considered the sustain, even though it is decaying, and a faster final one.
Other envelope shapes are, of course, possible and quite useful in electronic
music.

As with frequency variation, an amplitude envelope may have a small
wavering superimposed on the otherwise steady-state portions. Such
amplitude wavering is called tremolo and, if small in amplitude, sounds much
like vibrato to the untrained ear. Actually, the physical manipulation re-
quired to waver the tone of conventional instruments seldom results in pure
vibrato or tremolo; usually both are present to some degree. Large-amplitude
tremolo gives rise to an unmistakable throbbing sound. Generalized
amplitude modulation of one waveform by another is also possible, and in
many cases the effects are similar to frequency modulation. This will also be
examined more closely later.

Spectrum Variation

Finally, dynamic changes in the spectrum of a tone are the most in-

teresting and the most difficult to synthesize in general. The primary dif-
ference between spectrum variation and frequency or amplitude variation is

that a spectrum shape is multidimensional and the other two parameters are

single-dimensional. Because of this multidimensional nature, standard clec-
tronic synthesis techniques for dynamic spectrum changes generally utilize

schemes that attempt to cover a wide range of timbres by varying only one or
two parameters of a simplified spectrum shape.

One obvious way to control and vary the spectrum is to individually

control the amplitudes of the individual harmonics making up the tone. This
is a completely general technique applicable to any definitely pitched tone.
The problem with actually accomplishing this is twofold. The first is the

myriad of parameters to control—dozens of harmonic amplitudes for moader-
ately pitched tones. Involving a computer or microprocessor is the only

reasonable approach to such a control task. The other problem is deciding
how the harmonic amplitudes shoald vary to obtain the desired effect, if
indeed even that is known. There are methods such as analyzing natural
sounds, evaluating mathematical formulas, or choosing amplitude contours

at random and subjectively evaluating the results that work well in many
instances. In any case, a computer would probably be involved in generating

the data also.
As mentioned previously, common synthesis techniques aim at reduc-

ing the dimensionality of the spectral variation problem. Consider for a

34 MUSICAL APPLICATIONS OF MICROPROCESSORS

moment a spectral envelope like the one that was shown in Fig. 1-8C,
Disregarding the exact shape of the bell-shaped curve, it should be obvious
that three parameters can adequately describe the spectrum. First, there is
the width and height of the peak on the curve, and finally the frequency at
which the peak is highest. In a typical application, the width and height of
the curve are related. Also, since only the relative height of one portion of the
curve with respect to another is important, the absolute height parameter is
usually eliminated. This leaves just the width and center frequency as vari-
ables. Note that for definitely pitched, periodic sound waveforms the spec-
trum curve being considered is really the envelope of the individual harmonic
amplitudes.

It turns out that manipulation of these two variables is sufficient to
create very interesting dynamic spectrum changes. In fact, if the width
variable is set to a reasonable constant value such as 1/3 octave at the 6-dB
down (with respect to the peak) points, then varying just the center fre-
quency is almost as interesting. This in fact is the principle behind the
“wah-wah” sound effect for guitars that became popular several years ago.

Other methods for changing or distorting the spectrum under the
influence of a small number of parameters exist and will be covered in more
detail later.

Simultaneous Sounds

The preceding should serve as a brief introduction to the fundamental
parameters of a single, isolated sound. Most interesting music, however,
contains numerous simultaneous sounds. One common use for simultaneous
sounds is chords and harmony. Another application is rhythm accompani-
ment. Sometimes quantities of sound are used simply as a kind of acoustical
background for a simpler but more prominent foreground. The physics and
fundamental parameters of each component sound remain unaltered, how-
ever. The real frontier in synthesis, after adequate control of the basic
parameters of sound is accomplished, is applying this degree of control to
numerous sounds, all simultaneously, and all under the direction of a single
composet/performer. Extensive use of microprocessors in synthesis will be the
final stride toward reaching this goal.

History of Electronic Sound Synthesis
Sound and music synthesis by electronic means has a long and interest-

ing history. Although only the most significant milestones can be briefly
described here, the effort is certainly worthwhile, since the ongoing evolu-
tion of synthesis techniques and equipment is far from complete. Without
exception, significant developments in sound synthesis closely followed sig-
nificant developments in electronic and computer technology. Often, how-

Music SYNTHESIS PRINCIPLES 35

ever, there have been gaps of many years, even decades, between when it
became possible to apply a technique and when it became practical to do so.

The Teleharmonium

One of the earliest serious musical instruments that produced sound by
purely electrical means was conceived and built by Thaddius Cahill in 1903.
The device was called the Teleharmonium, and the name fairly accurately
described the principles involved. As with many synthesis developments, the
profit motive was the major driving force. Cahill’s basic concept was to

generate music signals electrically and transmit them to subscriber’s homes

over telephone lines for a fee. The signals would be reproduced by loudspeak-
ers for ‘the continuous entertainment of all present.” The “harmonium” part
of the name derives from the use of harmonically related sine waves for the
synthesis of various timbres.

At the performer’s end, the device resembled a conventional pipe organ
console with two piano-like keyboards and numerous stops for controlling
the timbre. Tone signals, however, were generated at kilowatt levels by
specially constructed multipole, multiarmature electric generators located in
the basement. Each generator had eight outputs representing a particular

note pitch at octave intervals for the 8-octave range. Such generators were

reasonably straightforward to build but were large, heavy, and expensive.
Although 12 were planned to cover all of the notes in an octave, only 8 were

actually built. The high power levels produced were needed to serve the large
number of subscribers expected and overcome transmission losses.

In addition to the generators, special multiwinding “mixing transfor-
mers” were used to combine several tones together. A limited amount of
harmonic mixing was utilized to vary the timbre. This was possible without
additional windings on the generators, since the first six harmonics of any
note on the equally tempered musical scale are also on the scale with very
little error. The amplitude levels of the tones were controlled by means of
inductors with movable cores to vary the inductance. In addition to the
tonnage of iron, miles of wire were used to connect keyboard contacts to the
other equipment. Overall, the machinery that was built weighed over 200
tons and required 30 railroad flatcars to move.

Generally, the device worked well and was adequately accurate and

stable. One problem that was eventually overcome was key click. Since the
tones were being continuously generated and merely switched on and off
with contacts, the attack of a note was instantaneous. If a key contact closed
at a time when the signal being switched was near a peak, a sharp rising

transient would be generated in the output line. The solution to the problem
was additional filter transformers to suppress the transients.

The other problems were mostly economic. Since the planned 12
generators were not available, some of the notes were missing, resulting in a

36 MusICAL APPLICATIONS OF MICROPROCESSORS

restricted set of key signatures that could be played. Another difficulty was

that the pressure of delivering continuous music to the subscribers already

signed up severely limited the amount of machine time available for practice

and further refinement.

Listeners’ reactions to Teleharmonium music were interesting, The

initial reaction was quite favorable and understandably so. No one had ever

heard pure, perfectly tuned sine waves before and the sparkling clear unwav-

ering quality of the sound was quite a novelty, Over long periods of time,

however, the novelty was replaced by subtle irritation as the overly sweet

nature of pure sinc waves became apparent. The limited harmonic mixing

technique that was later developed did little to remedy the situation, since
six harmonics are too few for the lower-pitched tones and even fewer were
provided for the higher-pitched ones due to generator limitations. A related
problem was the extremely poor loudspeakers available at the time. Bass
response was totally absent and the many sharp resonances of the metal horns
would frequently emphasize particular notes or harmonics many times over

their nominal amplitude.

For Cahill, the project was a financial disaster, its fate eventually sealed
by radio broadcasting. The basic concepts live on, however, in the Ham-

mond electronic organs. The “‘tone wheels” used in these instruments are
electric generators that perform exactly as Cahill’s except that the power

output is only a few mécrowatts rather than many &élowatts. The needed
amplification is supplied by electronic amplifiers. Mixing, click suppression,
and harmonic amplitude control are performed by resistive networks requir-
ing only additional amplifier gain to overcome their losses. The eighth
harmonic, which is also on the equal-tempered scale, was added, skipping
the seventh altogether. Still, the Hammond organ has a distinctive sound not
found in any other type of electronic organ. Even if the reader has never heard
one live, he has probably heard a record of one—over a background music
system!

Soundtrack Art

Somewhat later, around 1930 after sound was added to motion pic-

tures, some work was done with drawing sound waveforms directly onto
film. Theoretically, this technique is infinitely powerful, since any conceiva-

ble sound within the frequency range of the film equipment could be drawn.
The difficulty was in figuring out exactly what to draw and how to draw it
accurately enough to get the desired result.

The magnitude of the problem can be appreciated by considering how a
single, clear tone might be drawn. The clearness of a tone depends to a great
degree on how accurately the waveform cycles repeat. Gradual variations
from cycle to cycle are desirable, but imperfections in a single cycle add
roughness to the tone. For even the simplest of tones, the waveform would

Music SYNTHESIS PRINCIPLES 37

have co be carefully drafted. More complex or simultaneous tones would. be
even more difficult. In spite of these problems, at least one interesting but
short and simple piece was created in this way.

Like the Teleharmonium, the concept of drawing waveforms directly is
now fairly common. Computers and sophisticated programs, however, do the
tedious waveform calculation and combination tasks.

The Tape Recorder

Without question, the most significant development in electronics for

music synthesis as well as music recording was the tape recorder. The Ger-
mans first developed the wire recorder during World War Il, and it was
subsequently refined to utilize iron-oxide-coated paper tape. Plastic film

bases were later developed, and now magnetic tape is the highest fidelity
sound recording technique in common use.

When on tape, sound becomes a physical object that can be cut,
stretched, rearranged, molded, and easily re-recorded. A new breed of

abstract composers did just that and the result, called “musique concrete,”
sounded like nothing that had ever been heard before. In fact, before the

popularization of synthesizer music, the public's conception of electronic
music was of this form, which they usually characterized as a seemingly
random collection of outrageous sounds.

The name musique concrete stems from the fact that most, if nor all, of

the sounds used were natural in origin, i.e., concrete. Popular source mate-

rial included water drips, sneezes, and squeaky door hinges. Typical manipu-
lations included gross speeding or slowing of the recorded sound, dicing the
tape and rearranging parts of the sound often with segments in reverse,
overdubbing to create simultaneous copies of the sound, and other tricks.
Occasionally, a small amount of electronic equipment was used to filter and

modify the sound in various ways. Regardless of the actual source material,
the distortions were so severe that the final result was completely unrecogniz-
able.

Although usage of this sound material need not result in abstract
compositions, it usually did. The primary difficulty was in achieving accu-
rate enough control of the distortion processes to produce more conventional

pitch and rhythmic scqucnces. Unfortunately, musique concrete did very

little to popularize electronic music techniques, although it undoubtedly
gratified a small circle of composers and listeners.

RCA Mark LI Synthesizer

Over the years, many special-purpose electronic musical instruments

were developed and used. One example is the theremin (1920), which was an

electronic tone source whose frequency and amplitude could be indepen-
dently controlled by hand-waving near two metal plates. Others include a

38 MUSICAL APPLICATIONS OF MICROPROCESSORS

host of keyboard instruments such as the Novachord (1938) and the

Melochord (1949). In the early 1950s, however, work began on a general

purpose instrument, the first electronic sound synthesizer.
The RCA Mark II Electronic Music Synthesizer could produce two

tones at once in which all of the important parameters could be controlled.
The control mechanism was a roll of punched paper tape, much like a
player-piano roll. Thus, it was a programmed machine and as such allowed
composers ample opportunity to carefully consider variations of sound

parameters. The program tape itself consisted of 36 channels, which were

divided into groups. Each group used a binary code to control the associated
parameter. A typewriter-like keyboard was used to punch and edit the tapes.

Complex music could be built up from the basic two tones by use of a
disk cutting lathe and disk player, which were mechanically synchronized to
the program tape drive. Previously recorded material could be played from
one disk, combined with new material from the synthesizer, and re-recorded

onto another disk.
The RCA synthesizer filled a room, primarily because all of the elec-

tronic circuitry used vacuum tubes. Financing of the project was justified
because of the potential for low-cost musical accompaniment of radio and
television programming and the possibility of producing hit records. Exten-
sive use of the machine emphasized the concept that programmed control was
going to be necessary to adequately manipulate all of the variables that
electronic technology had given the means to control.

Direct Computer Synthesis

The ultimate in programmed control was first developed in the middle
1960s and has undergone constant refinement ever since. Large digital com-

puters not only controlled the generation and arrangement of sounds, they

generated the sounds themselves! This was called direct computer synthesis of
sound because there is essentially no intermediate device necessary to synthe-
size the sound. The only specialized electronic equipment beyond standard
computer gear was a digital-to-analog converter (DAC), a comparatively
simple device. Simply put, a DAC can accept a string of numbers from a
computer and plot waveforms from them as an audio signal suitable for
driving loudspeakers or recording.

Such a system is ultimately flexible. Absolutely any sound within a
restricted frequency range (and that range can easily be greater than the range

of hearing) can be synthesized and controlled to the Nth degree. Any source
of sound, be it natural, electronic, or imaginary, can be described by a
mathematical model and a suitable computer program can be used to exercise
the model and produce strings of numbers representing the resulting
waveform, Sounds may be as simple or as complex as desired, and natural
sounds may be imitated with accuracy limited only by the completeness of
the corresponding mathematical model.

Music SYNTHESIS PRINCIPLES 39

No limit exists as to the number of simultaneous sounds that may be
generated either. Often in such a system, a discrete sound source may be just
a set of numbers describing the parameters of the sound. Usually this would
take only a few words of computer storage out of the tens or hundreds of
thousands typically available.

Obviously, such an all-powerful technique must have some limitation

or else it would have completely superseded all other techniques. That lim-
itation is time. Although large computers perform calculations at tremen-

dous rates of speed, so many must be performed that several minutes of
computer time are necessary to compute only a few seconds of music
waveforms. The more complex the sound, the longer the calculations. The

net resule was that considerable time elapsed between the specification of
sound and its actual production. Considerable usually meant at least half a
day due to typical management practices in large computer centers.

Obviously, then, composing for the direct computer synthesis medium
demanded considerable knowledge of the relation between mathematical
models, sound parameters, and the ultimate sensation of the listener. It also
required that the composer have a clear idea of what was to be accomplished.
Without such foreknowledge and careful planning, the delays incurred by
excessive experimentation would be unacceptable and the cost of computer
time prohibitive. Nevertheless, many of the greatest electronic musical
works were realized using this technique.

Voltage-Controlled Synthesizers

Perhaps the complete antithesis of direct computer synthesis started to

emerge in the middle 1960s largely as the result of development of silicon
transistors and other semiconductor devices. The concept was modular music
synthesizing systems utilizing voltage-control concepts as a common organi-

zational thread throughout the system. Each module in the system had a

distinct function and usually these functions corresponded one for one with
the fundamental parameters of sound. The modules could be easily connected
together in an infinite variety of configurations that could be changed in
seconds by rerouting patch cords of pins on patch boards. The whole as-
semblage could be played by a keyboard or a number of other manual-input
devices.

In general, a voleage-controlled synthesizer module consists of a black
box with inputs and outputs that are electrical signals. Signals are conceptu-

ally divided into audio signals that represent sound and control voltages that
represent parameters. An amplifier module, for example, would have an
audio signal input, a control input, and an audio signal output. Varying the
dc voltage at the control input would change the gain of the amplifier. Thus,
it could be considered that the amplifier module altered the amplitude
parameter of the sound passing through in accordance to the voltage at the
control input. A filter module likewise altered the timbre of a sound passing

40 MUSICAL APPLICATIONS OF MICROPROCESSORS

through according to a combination of one or two control inputs. Although

oscillator modules had no signal inputs, control inputs altered the frequency

of the output waveform and sometimes the waveform itself.
The real power of the voltage-control concept lies in the realization that

the only difference between a signal voltage and a control voltage is in the

typical rates of change. Properly designed modules could process control

voltages as easily as signals and could also be cascaded for multiple operations

on the same or different parameters.
Unlike direct computer synthesis, experimentation was encouraged due

to the personal interaction and ease of use of the synthesizer. In addition,

familiarity with the audible effect of different modules could be obtained in
only a few hours of experimentation. Improvisation was also practical and

widely practiced.
One limitation of voltage-controlled synthesizers until recently, how-

ever, was that they were essentially monophonic, i.e., one note at a time.
The problem lies not in the voltage control technique but in the human
interface devices such as keyboards and ultimately in the ability of the
performer to handle all of the variables. This limitation has classically been
overcome by the use of overdubbing to combine one musical line at a time
with a multitrack tape recorder.

Perhaps the most significant event in the popular history of electronic
music occurred when a recording created with voltage-controlled equipment
by Walter Carlos called “Switched On Bach” was released in 1969. For the
first time, the general public was exposed to electronic music that was ‘‘real

music” with melody, rhythm, and harmony. This shattered the old myth
that electronic music was always abstract and disorienting and created quite a
bit of interest among performers, listeners, and advertising agencies.

Microprocessors

Today the microprocessor is the hottest technical development of the
decade. The basic power of a computer that once cost thousands of dollars is
now available for only tens of dollars. Electronic music technology has and

certainly will continue to benefit from microprocessors. Ultimately, tech-
niques with the generality of direct computer synthesis and the ease of
interaction of voltage-controlled synthesis will become commonplace.

Microprocessors are ideally suited to automating and rendering pro-
gtammable the standard voltage-controlled music synthesizer. The synthe-
sizer’s strong points such as ease of use and experimentation can be retained

in the development stages of a composition, but the advantages of pro-
grammed operation can be realized when the final result is generated. A
microprocessor can easily remember, catalog, and reproduce the numerous
interconnection patterns and control sequences typically used. It can also
generate its own control sequences based on mathematical models, inputs
from other sources, or random chance. This entire application area of mi-

Music SYNTHESIS PRINCIPLES 41

croprocessors is of great interest currently and is, of course, the subject of

Section I of this book.
The faster and more sophisticated microprocessors just starting to

emerge are becoming powerful enough for direct synthesis techniques to be
applied with performance approaching that of large machines of only a few
years ago and price tags in the reach of the serious experimenter. Further-

more, costs of the faster but simpler microprocessors are such that a multi-

processor system, with a microprocessor for each sound to be synthesized
simultaneously, is in the realm of practicality. What was once an oscillator
circuit with separate waveforming circuits may become instead a mi-

croprocesser with suitably simplified direct synthesis programming. These
are the application areas that are the subject of Section III.

2

pund Modification Methods

All the different methods for generating the sound material necessary for
electronic music can be roughly categorized into two groups: those that
generate entirely new sounds via some kind of synthesis process and those
that merely modify existing sounds. This dichotomy is not very rigid, how-
ever, since many synthesis methods depend heavily on modification of
otherwise simple synthetic sounds for their results, and many modification

methods so severely distort the original sound that the result could easily be
considered to be synthetic. Nevertheless, the fundamental component tech-
niques making up a methodology can be easily segregated into synthesis and

modification processes.
Modification techniques are usually considered to be the older of the

two. Before the appearance of musique concrete, pure synthesis was more

common, but the fundamental goal of most of these early efforts was to build
a solo instrument that would fit into an orchestra. The goal of musique
concrete, on the other hand, was to replace the orchestra and produce works
of the magnitude of a symphony entirely by electronic means.

Modification methods attack sound from every conceivable direction.
Any of the simple sound parameters such as frequency, amplitude, or spec-
trum may be directly altered. Time sequencing of the envelopes of these
parameters may be altered in numerous ways. Parameter envelopes charac-
teristic of one sound may be extracted and applied to another. Even simple
judicions selection of short portions of sounds can give a completely different

effect.

Sound on Tape

As mentioned previously, sound on magnetic tape is a physical object
that may be freely manipulated. The only tools required are a tape recorder
(two recorders are desirable), a good pair of nonmagnetic scissors, a splicing

block with splicing tape, and imagination. A grease pencil is also necessary

for marking the exact location of sound events on the tape.

43

44 MUSICAL APPLICATIONS OF MICROPROCESSORS

A so-called “full-track” tape recorder is very helpful when extensively

editing tape. Such machines record on the full width of the tape; thus, it may

not be turned over for additional recording time. Although such machines

are hard to come by in the consumer new equipment market, they are fairly

common as professional equipment. Stereophonic effects are typically added

as a separate step later after che basic composition has been completed. Also
the higher tape speeds available are typically used. Besides better recording

fidelity, the many pieces of tape to be manipulated will be larger and easier

to handle.

Rearrangement

The most fundamental splicing modification is rearrangement of a
previously recorded sequence of sounds. Since a fair amount of experimenta-
tion is usually required, the sequence is typically copied several times before
cutting commences. One interesting introductory experiment is to record a
scale from a musical instrument and rearrange it to form a melody. Timing is

fairly easy to control since time = distance along the tape. Even 50 msec is

3/4 of an inch at 15 inches/sec.
More interesting results are obtained if parts of the envelopes of notes

are removed or attacks and decays are interchanged. In particular, using just
the attack portion of many musical instrument notes can create some very
interesting results that usually will nor resemble the source instrument at all.

A related procedure that works well with full-track recorders is to make
an extended diagonal splice rather than the typical short diagonal or straight
splice. The result will be that one sound will seem to dissolve into another, If
a piece of tape is spliced in slightly crooked, the high frequencies will be lost
on playback and the result is as if a curtain had been pulled over the sound
source. The angle of the crooked piece determines the extent of high-
frequency loss with greater angles producing greater losses.

With full-track equipment, a piece of tape may also be spliced in
backward. At first that might not seem like a very powerful technique, but it
is. For example, ordinary English speech becomes a very strange, gutteral
sounding foreign language nearly impossible to repeat accurately. A very
interesting experiment is to record a sentence and learn to repeat tts back-
ward sound. Then the sentence is spoken backward, recorded, and played
backward again. The resulting accent is unbelievable!

A piano recording played backward sounds like an organ with the ends
of notes “snuffed out” by a breath of air. This is one demonstration of the
importance of the amplitude envelope in determining the overall timbre of a

sound. A simple piano piece performed backward and then played backward
so the music is forward is another interesting experiment.

Even ignoring envelopes, which is the case with relatively steady
sounds, the character of many sounds is completely changed by playing them

backward. If a recording of a contralto or bass singer is played backward, the

SOUND MODIFICATION METHODS 45

cutting quality of the voice disappears and the result sounds more like a
well-tuned belch. Although the exact explanation for this will be detailed
later, it is one. case in which the phase relationship among harmonics in a
tone makes a big difference in timbre.

All kinds of percussive sounds are completely altered by backward
playing. In most cases, if the percussive sound is pitched at all, the sense of
pitch is heightened by being played backward. This is probably due to the
fact that for a short period following a sharp attack transient the ear is
recovering and is less able to perceive pitch.

Another possibility is splicing the same sound back to back to elimi-

nate the sudden cutoff that occurs when percussive sounds are played back-
ward. Using the attack portion for both the attack and decay, using the decay
portion tor both, or even using the attack from one sound and dissolving into
the decay portion of another are all possibilities.

Speed Transposition

Another trick that nearly everyone who owns a reel-to-reel tape recorder

has tried at least once is playing the tape at a different speed than it was
recorded. A speed doubling changes speech into familiar monkey chatter,
while a speed halving produces drawn out groans. More useful effects are
created if, when producing the source material, the undesirable speedup or
slowdown effects of the processing are compensated for. Such an example is
the production of the once popular “chipmunk” records in which the original
vocals were sung much more slowly than usual in order to have a reasonable
tempo after the speed doubling.

More severe speed changes usually distort a sound beyond recognition.
Male speech when slowed by a factor of 16 or more comes out sounding like
rhythmic beating on a constantly changing drum. Other common, complex

sounds rake on a new dimension when slowed substantially. The fine struc-
ture that usually emerges is reminiscent of examining a pond water droplet
through a microscope.

Although standard tape speeds are usually powers of two times the base

speed of 15 inches/sec, many professional recorders can be easily run at inter-

mediate speeds. These machines usually have synchronous motors whose

speed is precisely determined by the power line frequency rather than voleage.
If the motor circuit is separated trom the rest of the electronics and connected

to a power amplifier driven by a variable-frequency oscillator, the tape speed
may be continuously varied over a fairly broad range. The newest professional
recorders use a de servo motor system whose speed is proportional to a

reference voltage, which is normally tightly regulated. Disconnecting the

reference and connecting a variable voltage source can give a very wide speed
range.

With precisely variable speed, it is possible to record a single sound or
note and convert it into all of the notes of the scale. A Christmas song “sung”

46 MUSICAL APPLICATIONS OF MICROPROCESSORS

with a single dog bark is one recent application of this technique. Great

thunderous concluding chords from a symphony may be captured and

likewise processed or even smoothly slid from one pitch to another. If the
rotating mass in the recorder is relatively small, it may even be able to follow
relatively complex frequency envelopes and play different pitches on com-

mand.
Many musical instruments have different regésters or pitch ranges and

produce substantially different timbres in the various registers. A particu-
larly prominent example is the clarinet, which possesses a characteristic

hollow woody sound in the lower register and a somewhat squawky sound in

the upper register. With tape speed transposition, the connection between

pitch register and actual pitch may be broken, resulting in a wider range of
timbres than those produced by ordinary instruments.

Special equipment has been constructed that allows speech to be played
faster or slower than it was recorded without any pitch change. The initial
units used rotating tape heads that would essentially break the sound into
short segments approximately 30 msec long. When in the speedup mode, a
portion of each segment would be thrown away and the remainder stretched
out to fill the space. The amount thrown away and the resulting degree of
stretch was just enough to cancel the upward pitch tendency. Slowdown was
accomplished in a similar manner except that a fraction of the segment would
be repeated after the entire segment was played. Although useful for altering
speech rates for talking books or stenographers, undesirable beating effects
with music waveforms limited the use of such equipment, Improved designs
using digital logic and memories instead of rotating tape heads allow variable
segment size and much better results with musical tones.

Tape Reverberation

Reverberation may also be added to sound entirely through the use of
tape equipment. Actually, echo would be a better term because the effect is
really a series of distinct echos. Most of the better quality recorders have
separate record and playback heads mounted side-by-side from 0.75 to 2
inches apart. Typically, the tape first passes the recording head and then
passes the playback head, resulting in a delay between the original sound and
the signal developed by the playback head. The magnitude of the delay

depends on the exact tape speed and head spacing but is typically between
100 and 500 msec, well within the range of distinct echo perception.

A single echo is produced if the delayed playback signal is mixed with
the original signal and recorded on another machine. Multiple echos, how-
ever, can be produced using feedback techniques and only one recorder. The
trick is to mix the original signal and the delayed signal but feed the result
back to the record head of the same machine. In operation, there is initially no

Sounp MopiricaTion METHODS 47

playback signal so the original source merely passes through the mixer and is

recorded. A split second later, this signal is picked up by the playback head,
mixed with the continuation of the original, and recorded again. Two splic
seconds later, it is passed around the loop again and so on, If each re-
recording of the echo is weaker than the previous one, the echos eventually
die out like normal echos. However, if the re-recording is at the same or
greater amplitude, the echos continue unabated or build up until distortion

is produced.
Of course, the signal is degraded a little every time it is played and

re-recorded. If the feedback factor is just a little beyond unity (re-recorded
just a tritle louder than the original), the middle frequencies will continue to

build up while the low and high extremes will slowly die out. If the original
signal is an isolated sound shorter than the delay time, the result is an

interesting change in timbre each time the sound repeats. If the process is
allowed to continue long enough, the sound will eventually degrade into a
howl with a periodic amplitude envelope. The user may also change the echo

re-record volume in response to what he hears and improvise. Many sounds in
the category of “the saucer lands” are produced in exactly this way.

Tape echo in conjunction with other tape-editing tricks can also lead to
interesting results. For example, if a recorded sound is played backward, is
re-recorded with echo added, and the new recording is again played back-
ward, the echos wind up preceding the sounds, a very strange effect. ““Preverb”
would be an apt name for such a process. Different effective echo times with

fixed head spacing may be accomplished by a speed transposition prior to the
addition of reverberation followed by an inverse transposition.

Tape-echo techniques are so powerful that specialized machines have
been built exclusively for that purpose. Multiple playback heads with irregu-
lar spacing was one attempt to provide enough multiple, random echos so
that the result resembled concert hall reverberation rather than Grand Can-
yon reverberation. Another refinement was easily movable playback heads to
vaty the echo rate. A particularly interesting effect is produced if the head is

moved while the recording is made. The echos would then be of a different
pitch than the original sound!

Multitrack Recorders

Finally, tape equipment can be, and usually is, used to combine sounds
together for the final result. Unfortunately, direct recording of one sound on

top of another on the same tape track cannot be done very well. The high-
frequency bias signal necessary for high-fidelity tape recording tends to erase
previously recorded sounds. Two recorders or a single multitrack recorder,
however, can be used to combine sounds onto one track.

In a typical multitrack setup, the separate sounds to be combined are
each recorded on a separate track of the same tape. When played, the signal

48 Musical APPLICATIONS OF MICROPROCESSORS

from each track has its own separate gain control so that the relative

contribution of each track to the resulting whole can be controlled. A final
mixdown run is done in which the multiple sounds are combined and recorded
onto the two- or four-track (for stereo or quad) master tape, which represents

the final result. Commercial multitrack machines typically have 8, 16, or
even 24 separate tracks. Most modern recording studios depend heavily on
multitrack tape for most of their serious work.

Obviously, such a setup would allow a single performer to play all the
parts of a piece one at a time and then combine them. Synchronization with
previously recorded material is accomplished by temporarily using the sec-
tion of the recording head that is scanning a previously recorded track for
playback (at reduced fidelity) to the performer. Most complex music per-
formed on voltage-controlled synthesizers is played in separate parts and
combined with a multitrack tape machine.

By now it should be apparent that tape manipulation methods are very
powerful sound modification techniques. One drawback, however, is that
often a considerable amount of work is necessary, such as careful re-
recording, accurate cutting, and keeping track of scores of little pieces of
tape. Thus, experimentation is hampered somewhat by the possibility of

wasted effort. Application of computer technology, even microcomputers,
has the potential of tremendously streamlining the process and even adding
some new tricks.

Electronic Sound Modification

Over the years, quite a few “black boxes” and techniques have been
developed for directly modifying sound. Generally, these devices consist
entirely of electronic circuits, Rarely, however, a mechanical system does the
bulk of the work and transducers are used for getting audio signals in and
out. Such cases are frequently the subject of intensive research to find cost-
effective electronic substitutes for the mechanical elements.

The uses for sound modifiers are varied but can be divided into two
rough groups. Obviously, such devices are of great utility in the electronic
music studio for adding complexity to basic electronic sounds that by them-
selves may be lifeless. The other application is as instrumental sound mod-
ifiers for tock bands and small combos. The devices for use by this group are
usually named by the apparent effect produced. Thus, we have “fuzz boxes,”
“wah-wah pedals,” and “infinity sustains.” Fortunately, the physical effects
of most of these can be easily explained in terms of the fundamental paramet-
ets of sound.

Nonlinear Amplifiers

Modification of the spectrum of a sound is perhaps the most dramatic.
Spectrum modification devices range from simple distortion boxes to sophis-

SOUND MopiricaTIOn METHODS 49

ticated variable filter banks. In all cases, the basic aim of a spectrum modifi-
cation device is co change the relative amplitudes of the component har-
mionics of the sound. Although the overall amplitude of the waveform might
also be altered by the process, it can easily be corrected later if undesirable.

The simplest spectrum modification device is a nonlinear amplifier
circuit of some sort. Nonlinear in this sense simply means that the instan-

taneous output voltage is not a constant times the input voltage. Such
nonlinearity is best described by means of a transfer function graph such as in
Fig. 2-1. Voltage values corresponding to the input signal waveshape are
plotced along the Y axis and the resulting output signal waveshape is plotted
along the X axis. Assuming that the overall gain of the amplifier is unity, a

perfectly linear response would be represented by a straight line to infinity as
shown.

Any real amplifier, however, has an overload point beyond which the
output voltage cannot deviate even though the input voltage does. Figure
2-2A shows the transfer function of a real amplifier. Assuming for the
moment that a sine wave somewhat greater than the overload point is the

input signal, it is apparent that the peaks of the waveform have been clipped
off. In fact, circuits designed specifically for such waveform distortions are

y TRANSFER
4 FUNCTION

OUTPUT SSS WAVEFORM.

INPUT
WAVEFORM

Fig. 2-1. Linear transfer function

50 MusICAL APPLICATIONS OF MICROPROCESSORS

OUTPUT
= WAVE

+10
Boo
w 10 3
2-20 5
= -30 3

-40
-50 LI

+3 5 7 9 Il 13 15 HARMONIC
NUMBER

INPUT SINE WAVE SPECTRUM
(Al

ouTPuT
WAVE

10
a °
= -lo
r=
2-20
a = -30
= 40 |
co icc a

395 7 9 ll 13 1 W IS 2 Harmonic
NUMBER

INPUT SINE WAVE SPECTRUM

Fig. 2-2. Nonlinear waveshaping. (A) Slight clipping. (B) More severe clipping.

SOUND MopiIFICATION METHODS 51

outPUT
WAVE

10

i
g = 10
8 | 8-20
& -30
z= —40 |
50 ia in

12 4 6 8 10 12 14 HARMONIC
NUMBER

INPUT SINE WAVE SPECTRUM
(c)

Fig. 2-2. Nonlinear waveshaping (cont.). (C) Half-wave rectification.

called clippers. The accompanying spectral plot shows that the distorted
waveform now has some harmonics added that were not originally present

although their amplitude is low. Increasing the input amplitude further
results in more severe clipping and a greater proportion of high-frequency
harmonics as shown in Fig. 2-2B. Thus, by varying the amplitude of the
input, one may vary the spectrum of the output by using a clipper. In practice,

however, clipping circuits usually allow adjustment of the clipping point of
the transfer function, which produces the same effect. Thus, the clipping
point becomes a parameter of the clipper that, when varied, changes the
spectrum parameters of the output signal.

The preceding is called a symmetrical clipper because the positive and
negative portions of the waveform are affected similarly. Thus, the harmonics
added are of odd order only. A nonsymmetrical clipper of one type is shown
in Fig. 2-2C. There is no output for negative input voltages, and for positive
inputs, the output follows the input. The output spectrum now has both

even and odd order harmonics that were not originally present. Changing the
clipping point of this circuit, which is shown in Fig. 2—2D, increases the
proportion of high-frequency harmonics, although the overall output
amplitude has decreased.

The action of the circuit in Fig. 2-2E is somewhat interesting. None of
the original input frequency component appears at the output and only even
order harmonics are generated. The ear hears this result as a pitch doubling,
since the resulting harmonic series is really an even and odd series for a

52 Musicat APPLICATIONS OF MiCROPROCESSORS.

OUTPUT
WAVE

10

So
w -10

2 5-20

i |
-40

50 | | | fe cae *
5678910 [21314 161718 HARMONIC

NUMBER

INPUT SINE WAVE SPECTRUM

(0)

Fig. 2-2. Nonlinear waveshaping (cont.). (D) Half-wave rectification with
offset.

fundamental at twice the frequency. Figure 2-27 shows the result of varying
two possible parameters of the transfer curve; a center clipping threshold and
the slope (gain) for positive input signals.

Actually, pure sine waves are seldom used as the source signal such as
when a musical instrument’s sound is being modified. Depending on the
exact waveform, a given nonlinearity may increase some harmonics, reduce
others, and leave some generally unchanged. Instrumental waveforms are not
constant either. Frequently, slight changes in input waveform (from slight
harmonic phase changes, for example) may result in large changes in output
spectrum. One interesting waveform that is not affected by any kind of
nonlinear device is the square wave. Although the amplitude may be
changed, the square waveshape is never altered.

Of course, there are literally thousands of possible nonlinear curves,

each with a set of parameters that may be changed to vary the output signal
spectrum. There are important drawbacks to their use, however. One draw-
back is that the relationship between a parameter or parameters describing a
certain class of transfer curves and the actual spectrum in terms of harmonics
is not always simple. For example, increasing a clipper parameter may at
first give increased high harmonic content, but further increases of the same
parameter might actually reduce the high harmonics or shift the em-
phasis to middle harmonics. The situation gets much more complicated if a
complex waveform is used for the input.

Another important drawback is that nonlinear devices generally give
desirable results only with single tone inpucs. If two simultaneous tones of

SouND MopiricaTion MeTHops 53

he

oureuT
WAVE

10
a?
~ —10 w 3
2-20

% -30

ae | _50 Siarens -
2 4 6 8 10 i214 16 18 20 HaRMONIC

NUMBER
INPUT SINE WAVE SPECTRUM (e)

\ oa
OUTPUT
WAVE

tof

Be oa
a -10 | |

E-20)) 5
5 ima

NN B30] | |
= \i|
pa iAn ao LLL Ui fl ‘e

12345678
910Nl2 1415 18 HARMONIC

NUMBER
INPUT SINE WAVE SPECTRUM

(FI

Fig. 2-2. Nonlinear waveshaping (cont.). (E) Full-wave rectification. (F) Non-
symmetrical rectification with offset.

54 MUSICAL APPLICATIONS OF MICROPROCESSORS

different frequency are fed in, the output spectrum contains not only har-
monic frequencies of each tone, but every possible combination of sum and
difference frequencies between the tones and their harmonics. For musical
instrument use, the resulting sound is close to garbage unless the input

frequencies are simply related such as a 3:2 ratio. For more abstract goals,
however, anything is potentially useful even if it is not predictable.

Filters

While nonlinear circuits are relatively simple spectrum modifiers, their
action is indirect. A different class of device called fi/ters acts directly on the
spectrum changing the amplitude and phase of each sine wave component of
the input signal by a predictable amount. Furthermore, their action on the
spectrum is unaffected by the actual spectrum of the input signal.

Filters can be completely specified by giving a plot of their amplitude
response and phase response as a function of frequency. Nearly always, the
amplitude response is termed, incorrectly, the frequency response but the
former term will be used exclusively in this book. The test setup shown in
Fig. 2—3 can be used to make such plots. Here we have a variable-frequency
sine wave signal generator, a calibrated oscilloscope with dual-trace capabil-
ity, and the filter under test. The gaén of the filter at a particular frequency
may be determined by measuring the amplitude of the signal at the filter

FILTER
SINE WAVE
GENERATOR

DUAL - TRACE
OSCILLOSCOPE

OSCILLOSCOPE PRESENTATION

Fig. 2-3. Experimental setup for characterizing a filter

Sounp MopiricaTion METHODS 55

output and dividing it by the input amplitude, which usually remains con-
stant. The phase shift at a particular frequency may be determined by compar-
ing the two waveforms on the oscilloscope face. Note that phase shifts greater
than 180° leading or lagging cannot be uniquely determined at an arbitrary
frequency with this setup. However, a point of zero phase shift can usually be
found and the trend away from zero followed.

The amplitude response then is plotted simply by varying the input
frequency over the audible range and plotting the gain factor. Customarily,
the frequency axis is logarithmic in order to accurately represent a wide range
of frequencies, and the amplitude axis is scaled in decibels, which effectively

makes it a log scale also. The phase response may be plotted similarly,

4

=
Bap I si Hl CUTOFF
ge ! SLOPE
3 _i5 '
20 \
=25 + ~ CUTOFF FREQUENCY

FREQUENCY
(a)

ti ' ;
'
4 ‘
' ‘
1

FREQUENCY
(8)

4 BANDWIDTH lane
r i

S-S5¢ {
2-10 H Fi i ce |

—20} f
—25' + >

CENTER FREQUENCY
FREQUENCY

{c)

NOTCH
_ 20 fh wIOTH 4

3-35
z -10 4
@ 15

—20
—25! >

FREQUENCY

(0)

Fig. 2-4. Basic filter amplitude response curve shapes. (A) Low-pass. (B)
High-pass. (C) Bandpass. (D) Band-reject.

56 MUSICAL. APPLICATIONS OF MICROPROCESSORS

although the phase axis is usually linear. Actually, for simple filter circuitry,
the shape of the phase response is rigidly tied to the shape of the amplitude
response. For use as a sound modifier, the phase response of a filter is usually

ignored.
Theoretically, the shape of an amplitude response curve may be any-

thing desired. However, like the principle that any waveshape may be built
from sine shapes, amplitude response curves may be built from a small class
of basic shapes. Figure 24 shows some of these..

Shape A is called a /ow-pass response because the lower frequencies are
passed without aztenuation (reduction in amplitude), while the higher fre-
quencies are reduced considerably. Although several parameters may be
necessary to fully specify such a shape, two are of primary importance in
sound modification applications. One is the cutoff frequency or the frequency
above which the attenuation really begins to increase. By convention, the

cutoff frequency is the frequency at which the amplitude response is 3 dB less
(one-half the power output or 0.7071 times as much voltage) than it is at
very low frequencies. The other parameter is the cutoff slope. In a practical
filter of minimal or moderate complexity, the slope of amplitude decrease
beyond the cutoff frequency approaches an asymptote, which is a straight

line. Cutoff slope is usually stated in decibels per octave, particularly for
musical purposes. Actually, most simple filter circuits have cutoff slopes that
are multiples of 6 dB/octave. Thus, a simple low-pass filter might have a
slope of 6G, 12, 18, etc., dB/octave.

Shape B is called a Aigh-pass response for the same reason A was termed
low-pass. The parameters of the high-pass response are also similar.

Shape C is called a bandpass response. This is because in the general case
a small band of frequencies are passed and the others, both higher and lower,
are rejected. Two parameters are generally used to characterize bandpass

responses, although four ate required for completeness. The frequency corre-
sponding to the cop of the peak is variously termed the center frequency,
natural frequency, resonant frequency, or pole frequency. The natural and
resonant frequencies are actually very slightly different from the true center
frequency, but for musical purposes they are all identical.

The width of the curve can also be specified in different ways. One
common method calls for measuring the frequencies of the two 3-dB down
points, subtracting chem, and calling the result the bandwidth in hertz. In
music, it is more useful to specify bandwidth in octaves, thus the term “1/3
octave bandpass filter” is frequently encountered. A formula for the octave
bandwidth in terms of the lower cutoff, FL, upper cutoff, FU, and center
frequency, FC is BW = loge [1 + (FU—FLYFC]. A final method, which only
applies to a certain but very common class of bandpass filters, is the quality
factor or Q. Q is defined by the relation: @ = FC(FU — FL). The signifi-
cance of Q will be studied in greater detail later.

SounD MopiricaTION METHODS 57

ww w 3 8
2 z =
=) Fs 2
< Lad =

2 z
>

FREQUENCY FREQUENCY FREQUENCY

INPUT SPECTRUM FILTER RESPONSE OUTPUT SPECTRUM

Fig. 2-5. Effect of filtering on the spectrum

The other two parameters are the two ultimate slopes of the sides of the

bell-shaped curve. As before, they are usually multiples of 6 dB per octave.
The slope just beyond the 3-dB points is usually steeper than the ultimate
slope far from the center frequency and becomes more so for higher Qs
(narrower bandwidths).

The final basic filter shape is called a band-reyect (or notch) response and
is shown in Fig. 24D. The center frequency is, of course, the frequency of
Qreatest attenuation. Specification of the width parameter is not really stan-
dardized because the exact shape of the notch varies considerably with the
filter circuit. However, one common specification is, again, the difference

between the 3-dB down points. Often, a rough attempt at specifying the
shape is made by specifying both the 3-dB and the 60-dB notch widths.

The effect of a filter on the spectrum of a sound can be easily deter-
mined graphically as in Fig. 2-5. As a simple case, consider a sound with all

AMPLITUDE (dB)

t

-30 |

35
-40

f 3 a 7 9 W (2 13 IF 19 2) 23 25 ‘27 29° BN

HARMONIC NUMBER

(A)

Fig. 2-6. Eftect of filters on a square wave. (A) Original square wave.

58 MUSICAL APPLICATIONS OF MICROPROCESSORS

harmonics of equal strength passed through a bandpass filter. The envelope
of the output spectrum will be the same shape as the filter’s amplitude
response. For more common signals with a nonflat harmonic spectrum, the

amplitude of each individual harmonic is modified directly according to the
filter's gain or attenuation at that frequency. Thus, if a particular harmonic
had an amplitude of —8 dB and the filter had a gain of —12 dB at that
harmonic’s frequency, then the same harmonic would have an amplitude of

=

(B)

4

0

5

-10

-15

B -20

BS 25
a

a -30 s Fa
35

-40

~45

-80

=| |
~60 Pe

1 3 (i 7 3 tl 3 1 7 19° a 23: 25) 2 2931
HARMONIC NUMBER

{B)

Fig. 2-6. Effect of filters on a square wave (cont.). (B) Low-pass filter.

Sounb MopIFICATION METHODS 59

—20 dB at the filter's output. For nonrepeating waveforms, the amplitude of
each frequency component is similarly altered.

Although nonlinear circuits cannot alter the shape of a square wave, a
filter can. Figure 2~6 shows both the waveshape and spectral effect of filter
circuits on a 200-Hz square wave. Note that in the case of the bandpass
filter, a rapidly decaying sine wave is generated on each edge of the square
wave. The frequency of this sine wave is che actual natural frequency, which
for practical purposes is the same as the filter’s center frequency. The rate of

(c)

-20

~25

AMPLITUDE (4B)

No I. 19 et 28 25 a7. 29
HARMONIC NUMBER

(¢)

ws ry

Fig. 2-6. Effect of filters on a square wave (cont.). (C) Bandpass filter.

60 Musical APPLICATIONS OF MICROPROCESSORS

decay is related to the filter's bandwidth or Q with narrower bandwidths
(higher Q) resulting in a slower decay.

As mentioned previously, more complex filter amplitude response
shapes may be obtained by combining basic shapes. The most predictable
method for combining two shapes is to cascade two filter sections by feeding
the fileered output from one filter into the input of another. The resulting
response shape is just the point-by-point sum of the individual response
shapes, provided that they were plotted in decibels. Values from a linear gain
scale would have to be multiplied together for the result.

This technique is frequently used to get sharper cutoff filter shapes than

(D)

AMPLITUDE (48)

3 5 7 9 iT 13 15 7 19 2h 23 25 27 29 4
HARMONIC SPECTRUM

(p)

Fig. 2-6. Effect of filters on a square wave (cont.). (D) High-pass filter,

SOUND MopiricaTion MeTHODs 61

simple circuits provide. Figure 2-7, for example, shows how two rather
sloppy low-pass shapes that can be obtained from simple circuits combine

together to give a much improved low-pass shape.
Fixed filters (those with constant parameter values) are commonly used

as equalizers in music systems. An equalizer is a filter that is intended to
compensate for nonuniform amplitude response elsewhere in a high-fidelity
sound system. For sound modification use, however, a fixed filter can be used

to change the overall tonal quality of the sound. A low-pass filter, for
example, gives a muffled effect, while a high-pass filter tends to give a thin
or tinny effect. Bandpass filters, depending on the center frequency, may have

-30

AMPLITUDE (dB)

ee i) 3 5 7 9 i RB 16 9 2 2 2 2 2 Hw 7

HARMONIC NUMBER

(EB)

Fig. 2-6. Effect of filters on a square wave (cont.), (E) Band-reject filter.

62 MUSICAL APPLICATIONS OF MICROPROCESSORS

4 FILTER]

COMPOSITE

FILTER 2

FREQUENCY LOG SCALE

Fig. 2-7. Combining two filters to get a better response curve

a “conch shell” effect on the sound. Often the essential character of the tone

of certain musical instruments may be simulated with a simple fixed fileer
and simple electronically generated waveforms. A double-humped bandpass

response with humps at 1,200 Hz and 2,700 Hz, for example, resembles

the resonance characteristics of an English horn. Sawtooth waveforms played
through such a filter setup resemble the sound of an English horn. Such
resonant peaks are called formants.

Variable Filters

Inexpensive filters with easily variable parameters that cover a wide
range are actually a relatively recent development. The parameter most easily
varied is the cutoff frequency or center frequency. For bandpass filters, the
bandwidth is also easily varied. The cutoff slope, on the other hand, is a
function of filter circuit topology rather than component values so as a result
is difficult to control. Variable-slope filter circuits, however, are under inves-

tigation.

Dynamic variation of the cutoff frequency of low- or high-pass filters
provides a definite audible effect. The upper harmonics of many percussion
instruments, for example, decay faster than the lower harmonics do. The
same effect may be simulated with a constant sound spectrum and a low-pass
filter whose cutoff frequency is lowered during the course of the note. The
opposite effect may be created by using a high-pass filter to increase high
harmonic content as a note progresses.

SouND MopiricaTion METHODS 63

The most dramatic variable filer effect, however, is produced by
sweeping che center frequency of a bandpass filter. For moderate bandwidths
(around 1/4 to 1/2 octave), the effect is similar to that of an opening and
closing hat mute used with a trumpet or trombone. Such variable bandpass
filters are popularly called “wah-wah” boxes due to their distinctive sound.

If the bandwidth is made smaller yet, only one harmonic will be
emphasized by the narrow peak, and the others will be greatly attenuated.
Varying the center frequency in this case gives the effect of a distinct scale of
sine wave notes as each harmonic is approached and passed by. White noise
passed through a variable narrow-band filter is given a definite although airy

pitch that is easily controlled.

Several tunable bandpass filters may also be used to provide a number of
independently movable formants. In fact, the voiced portions of human
speech (vowels and dipthongs) may be simulated with a harmonically rich

tone and two to four variable bandpass filters depending on the degree of
naturalness desired. Each possible steady vowel corresponds to a particular
steady-state combination of formant frequencies, while each dipthong corre-
sponds to a particular pattern of formant frequency transitions. Of course, a
good speech synthesizer requires more than this, although the formant

generator and control means for producing accurate formant frequency varia-
tion constitute the majority of the circuitry.

Variable notch filters produce a somewhat more subtle effect. Using
white notse as an input, a frequency sweeping notch filter will create a sound

°

' xe il 8 as

AMPLITUDE (dB)

$

60
20 30 50 70 100 150 200 300 500700 IK L5K2K 3K SK 7K 10K 15K 20K

FREQUENCY (He)

Fig. 2-8. Comb filter response shape

64 MusICAL APPLICATIONS OF MICROPROCESSORS

similar to a passing jet plane. A device for reproducing such an effect exactly

is called a comb filter because its amplitude response curve, shown in Fig.

2-8, resembles a comb. Note that the comb filter response is like a bunch of

notch filters with the notch frequencies regularly spaced a given number of

hertz apart. Tuning of a notch filter amounts to increasing or decreasing the

spacing between the notches, thus forcing the higher-frequency notches to

move out faster than the lower-frequency ones.
As might be expected, an actual implementation of a comb filter is

considerably simpler than a multitude of gang-tunable notch filters. The
physical effect observed at an airport may be explained by noting that a

passing jet is essentially a point source of white noise and that airports have
smooth concrete runway surfaces. Thus, one ray of sound travels directly co
the ear and another ray (there can only be one) bounces from the pavement
before reaching the ear. These two paths differ slightly in length and the
difference changes as the angle of the plane changes. Due to this difference in
path lengths, some sound frequencies are reinforced when the two rays meet
at the ear and others are cancelled. The same effect may be created by
splitting an audio signal into two paths, inserting a short variable delay into
one of the paths, and then recombining the two signals.

The initial implementation of this effect for processing arbitrary sound
signals involved two identical tape recorders playing identical recordings of
the sound to be processed. If the tapes were far out of synchronization, a
distinct echo was heard. Closer synchronization produced the comb filter

effect. Adjusements in the effective delay between the two signals were
accomplished with light finger pressure on the tape reel flanges to slightly
slow one of the recorders; the effect chat was produced became known as
“flanging” a sound.

Until recently, it was very difficult and expensive to construct a high-
fidelity variable delay. However, now it is a fairly simple and inexpensive
procedure with digital logic or analog delay line ICs.

Spectrum Shifters

While filters directly affect the amplitudes of the various frequency
components of sounds, the actual frequency of these components remains
unaltered. A different class of device changes the frequency of the compo-
nents but, ideally, leaves the relative amplitudes alone. Of course, one
technique already mentioned has the capability of shifting frequencies pro-
portionally, chat is, multiplying every frequency by the same value, and that
technique is tape speed transposition.

A true spectrum shifter, however, maintains the same relative difference
between component frequencies. For example, if a tone is composed of a
fundamental of 200 Hz with harmonics at 400 Hz, 600 Hz, etc., then a
spectrum shift of 31.4 Hz would result in frequency components of 231.4
Hz, 431.4 Hz, 631.4 Hz, and so forth. Note that these frequencies are no

SOUND Mopirication METHODS 65

longer harmonically related. Sounds that normally have harmonic spectra
undergo a complete change in some aspects of their timbre when shifted a
few tens of hertz, while other aspects are relatively unaffected. In particular,
they tend to cake on a sort of “watery” texture. Quality spectrum shifters that
have good low-frequency response and work properly even with small
amounts of shift are still relatively complex and expensive.

A related but much simpler device is the balanced modulator, which is
also known as a ring modulator. The device has two signal inputs that are
identical and an output. In operation, an instantaneous output voltage equal
to the product of the two input voltages with all algebraic sign conventions
observed is generated. Figure 2-9 shows the output waveform with two
different frequency sine waves as inputs. Note that the output spectrum
contains neither of the input frequencies but does contain a sum frequency of
1,200 Hz and a difference frequency of 800 Hz.

In order to more fully understand the physical effect, consider an
experiment in which one of the inputs is connected to a complex waveform
with a lot of frequency components and the other input is connected to a
variable-frequency sine wave oscillator. With the oscillator set to zero fre-

quency, the output is the same as the other input. As the oscillator frequency
increases, a spectral plot of the output, as in Fig. 2-10, would show each

frequency component splitting into two components, which then move away

from each other. Thus, one copy of the input spectrum shifts down in

AMPLITUDE

200
FREQUENCY (Hz)

(a)

Fig. 2-9. Action of the balanced modulator. (A) Input to A.

66 MUSICAL APPLICATIONS OF MICROPROCESSORS

i w 3
= “i a = 2

7000
+ FREQUENCY (Hz)

0 ~

(B)

8
=a 1
a}! H
S| I !
sy 1 1

800 1,200
FREQUENCY (Hz)

Be

i)

Fig. 2-9. Action of the balanced modulator (cont.). (B) Input to B. (C) Output.

Sounp MopiricaTION METHODS 67

Fig. 2-10. Operation of a spectrum inverter. (A) Input spectrum. (B) Low fre-
quency to balanced modulator. (C) Higher frequency to balanced
modulator. (D) 10 kHz to balanced modulator. (E) Final inverted
spectrum.

frequency, while the other copy shifts up. The envelope of the copies indi-
vidually remains unaltered. Actually, a true spectrum shifter manages to
suppress one of the copies.

If the oscillator frequency is made high enough, frequency components
in the downward moving copy will eventually cross zero. As they do, they are
reflected back upward with reversed phase, since a physically negative fre-
quency is impossible. With a continuing increase in oscillator frequency, a

point will eventually be reached in which the entire downward moving copy
has been reflected and the upward moving copy ceases to overlap it. If a
low-pass filter is now inserted in the output, only the reflected copy remains.

The interesting point about the spectrum now is that it has been averted with
originally low-frequency components becoming high and vice versa.

Generally, balanced modulators and spectrum inverters severely distort
sounds into an unrecognizable and usually unpleasant grating. In fact, spec-
trum inverters were once popular as speech scramblers, since a reinversion

68 MusICAL APPLICATIONS OF MICROPROCESSORS

would restore the original signal unaltered. Under certain conditions, how-

ever, the effects of these devices are interesting and useful.

Envelope Modifiers

Although spectrum modification of sounds can have a profound effect
on their timbre, altering the overall amplitude envelope can also have a

significant effect. Perhaps the simplest envelope modification is flattening of
the decay in order to give a steady sound amplitude that eventually cuts off
suddenly. Thus, a plucked string instrument such as a guitar comes out

sounding more like an organ.
The oldest and simplest method of doing this is to use a clipping circuit

with a low clipping threshold. As long as the input amplitude was signifi-
cantly above the clipping point, the output amplitude remained relatively
constant. Of course, such a device also severely distorts the spectrum.

Later, envelope follower circuits that generated a voltage proportional
to the amplitude of an input signal were developed. This voltage could then
be used to control the gain of a separate amplifier in any desired manner.
Thus, the guitar sustain device would process the evelope follower signal
such that the amplifier gain would increase enough to cancel the decrease in
input signal amplitude and give a constant output. By suitable processing of
the envelope signal, the attack, sustain, and decay times of the output can be
adjusted relatively independently of the envelope characteristics of the input.

Electronic Reverberation

Even utilizing all of the modification techniques mentioned so far,
many purely electronic sounds have a “‘lifeless” quality that is often undesir-
able. Live sounds from an orchestra, on the other hand, have a depth and

richness that cannot be easily explained in terms of frequency, amplitude,
and spectrum.

The concert hall itself adds considerably to the texture of orchestra
music. In fact, an otherwise “dry” recording of electronic sounds is consid-
erably enhanced by playing through loudspeakers scattered around the stage of
a good concert hall. The difference, of course, is the presence of reverberation

in the hall in which 4 combination of direct and reflected sound reaches the

listener. The reflected sound can come from any direction and with different
time delays with respect to the direct sound. Reflection can also occur several
times, each with diminishing amplitude.

Because of the multitude of delay times, concert hall reverberation and
tape reverberation are considerably different. The latter consists of distinct
echoes, while the former has no perceivable echo at all. A multitude of
techniques and devices has been developed to electronically simulate concert
hall reverberation in tape recording.

SOUND MopDIFICATION METHODS 69

The earliest attempt was an extension of the tape reverberation method.

Rather than having just one playback head, several were used, all spaced at
irregular intervals from the single recording head. This was fairly effective in
suppressing distinct echoes, since so many echoes were produced. However,

sharp transients such as a hand clap still resulted in an initial chain of echoes.

Most other reverberation schemes are really electromechanical in na-

ture. Objects such as special springs, metal plates, stretched gold foils, and
even empty chambers with hard walls were fitted with transducers for signal

input and output. The reverberation effect is created when sound waves from
the input transducer reflect from the ends or other boundaries of the object.
The “reverberation chamber” approach yields good results but must be quite
large in order to achieve natural results. The other devices are considerably
smaller due to slower propagation of sound in them as compared to air.
Spring units typically utilize two or three different springs and are most
popular for lower-quality work. The metal plate and gold foil units produce a
more spacious effect with less evidence of echo due to two-dimensional

propagation of the sound waves.
One problem with such electromechanical devices is coloration of the

reverberated sound, meaning a fairly gross modification of the spectrum of
the reverberated sound. Typically, frequencies below 500 Hz and above 5
kHz are attenuated, and response to middle frequencies is irregular. Springs

are worst in this respect and gold foils are best.
Recently, the plummeting costs of digital logic and memory have made

all-electronic reverberation devices practical. Digital techniques make possi-
ble a very high-quality audio delay line that when combined with feedback
and mixing networks gives excellent reverberation results. Analog delay lines

capable of handling audio signals directly may also be used in reverberation
networks, although background noise can be a problem in exacting applica-
tions. Although echo density and coloration can still be problems, they are a
function of the quantity and arrangement of the component parts and not the
physical characteristics of some specialized material. Design details of digital
reverberation simulators will be covered more thoroughly in Section HI.

Chorus Synthesizers

The other “life-giving” element typically missing in electronic sounds

is multiplicity of sound sources. A single trumpet playing a nice little solo
has one effect, while a hundred trumpets playing the same passage in four-
part harmony has quite a profoundly different effect. Who has not thrilled to
the sound of thousands of voices singing the National Anthem prior to a
football game?

The effect of a number of players performing the same passage is called
a chorus effect. What has been desired for a long time is a device or process
that would accept a sound signal as an input and generate an output chat

70 MUSICAL APPLICATIONS OF MICROPROCESSORS

resembles a large number of copies of the input signal. An obvious control

parameter for such a device is the multiplicity factor.

Looking more closely at the physical chorus effect, it is seen that the

difference between two separate players and one player playing twice as loud
is that’ the two sounds being combined are not exactly alike. For example, the
fundamental sound frequencies will be slightly different, resulting in a slight
beating effect. Unlike beating sine waves, the resultant amplitude of two
beating complex waves remains relatively constant, but individual harmonics
may momentarily cancel. Also vibrato, which is not synchronized between
the players, may cause even greater momentary frequency differences. The
end result is a slight, random, spectrum modulation of the resulting sound.
As more players are added, changes in the amplitude and phase of the
component harmonics become more pronounced and random. A spectral plot
of 100 trumpets playing the same note would show broad peaks at each of the
harmonic frequencies rather than narrow lines. Note that the overall spectral
envelope is unchanged, which allows one to distinguish 100 trumpets from
100 violins.

Research into construction of the chorus box mentioned earlier has been
in two different directions. One attempts to directly simulate multiple sound
sources with a number of audio delay lines, whose delay is constantly chang-
ing over a narrow range. The theory is that a second sound is exactly like the
first except that the vibrations are occurring at different points in time. The
variation in delay times prevents a constant echo effect. Multiplicity can be
controlled fairly well with such a setup by changing the number of delay
lines. Digital signal processing techniques are well suited for implementa-
tion of this scheme.

The other approach works on the basic parameters of the input sound
attempting to simulate the effect rather than the actual chorus itself. Accord-
ingly, it uses filters to separate che input spectrum into bands and amplitude

and phase modulators plus spectrum shifters to randomly manipulate the
individual bands. Finally, the sound is put back together and sent out. Al-

though not particularly good for simulating a small group of players, the
technique is apparently very effective for simulating a large number. A taped
demonstration witnessed at the Spring 1977 Audio Engineering Society
convention made a cheap portable synthesizer sound like a whole auditorium
full of synthesizers.

Analysis-Synthesis Methods

It should now be well established that the synthesis of sound can be
controlled to the tiniest of details by appropriate manipulation of the fun-
damental parameters. The basic problem, then, is in determining exactly
how these parameters should be varied to get the desired effect. One possibil-
ity, of course, is experimentation so that the relation between parameter
change and audible effect becomes familiar. If this is adequately accom-

SOUND MopiFicaTion METHEDS 71

plished, then the composer can readily specify what is required for the
desired effect. There are many practical difficulties, however. One is that
such extensive experimentation is quite time consuming even with entirely

real-time equipment. A related problem is documenting the results of such
experimentation. Cataloging of desirable or unusual effects discovered during
such experimentation for later recall is possible with a computer-based sys-
tem, however.

One approach to the problem begins with realizing the frequency of
requests such as, “I want something that sounds like (some natural sound)

except for . . .” Thus, if one could determine the exact parameter variation

of the prototype sound, then the desired parameter manipulation for the

desired resulx might be more easily determined. Such a procedure is called
analysis-synthesis because a prototype sound is analyzed into its component

parameters, which may then control a synthesizer to reproduce a similar
sound.

Envelope Tracking

The first step in the process is an accurate determination of the
parameters of interest in the prototype sound. Overall amplitude is perhaps
the easiest to extract. A device for doing this is usually called an envelope

follower. Although rms amplitude is probably the most desirable measure, it

is much easier to determine average amplitude. Another tradeoff that must

be considered in the design of an envelope follower is speed of response versus
the ability to accurately determine the amplitude of low-frequency signals.
The reason is that the device will start to follow the slow waveform of a
low-frequency sound itself rather than the overall average amplitude.

Pitch Tracking

Determining the fundamental frequency or pitch tracking is consid-
erably more difficult. Relatively constant-frequency simple (not a lot of
harmonics) sounds isolated from all other sounds and background noise can
be readily processed. However, rapidly varying, complex, or insufficiently
isolated sounds are much more difficult to follow. Semipitched sounds such
as the chime mentioned in Chapter 1 are better handled with formant track-

ing, which will be discussed. The most common error made by pitch track-
ing equipment is a momentary false output that is a multiple or submultiple
of the correct value. Multiples of the correct value are the result of mistaking

one of the harmonics for the fundamental that might actually be very weak or
absent. Submultiples can result when the waveform undergoes substantial
change of parameters other than fundamental frequency. Thus, any successful
pitch cracker for a variety sounds generally looks at periodicity of waveform
peaks, or in the case of sophisticated computer processing, looks at every
frequency component and determines the highest common divisor.

#2, MUSICAL APPLICATIONS OF MICROPROCESSORS

Spectrum Tracking

Generalized spectrum tracking can be done in several ways. For defi-
nitely pitched sounds, the amplitude envelope of each individual harmonic
can be determined with computer-processing techniques. A somewhat sim-

pler technique involves a bank of 10 to 30 bandpass filters and an amplitude
envelope follower connected to the output of each filter. Any sound can be
passed through such a filterbank analyzer, and its rough spectrum shape as a
function of time can be determined.

Another method that also involves a computer is formant tracking. The
spectrum of many interesting sounds such as speech can be fairly well de-
scribed by the frequency, height, and width of peaks in their spectrum
shape. Frequently, even the height and width parameters are ignored. The
resulting small number of parameters describing the time varying spectrum
shape is quite attractive for analysis—synthesis purposes. For example, track-

ing of just the frequency of the two lowest formants of voiced speech sounds
is adequate for intelligible speech reconstruction.

Unfortunately, accurate formant following is as difficult as accurate
pitch tracking. For example, there need not necessarily be a constant number
of formants in the sound being analyzed. As a result, the analyzer must
recognize when two formants merge into one or when one just decreases in
amplitude and disappears. If the overall spectrum shape contains a long
downward slope, the ear will aften recognize a local flattening in thar trend

as a subdued formant, even though no real peak occurs.

Use of Analysis Results

It should be obvious from the foregoing that really accurate analysis of
sound into the simple parameters that have been discussed is not always

possible. However, the accuracy that is attainable is generally quite accept-
able for analysis—synthesis experiments. Occasionally, some hand editing of
the data obtained is necessary to correct gross errors or fill in missing data
caused by nearly inaudible “defects” in the prototype sound.

Generally, the data obtained from the analysis can be represented as a
number of curves showing how the parameters vary with time. Such a set is
shown in Fig. 2-11. On a computer-based system, these curves would
actually be available to the user to study and modify as desired. In a real-time
system, these parameters would really be just varying voltages generated by
the analysis equipment. In either case, some, if not all, of the parameters
would be processed and then they would pass to synthesis equipment, which
generates the modified sound.

The analysis—synthesis technique can be applied in a number of ways.
One intriguing possibility is transferral of certain characteristics from one
type of sound to another. For example, let’s assume that a short trumpet solo

SounND MODIFICATION METHODS 73

s 4 s

x 0
AMPLITUDE Eig |.

5
= -20F z

{a}

PITCH

FREQUENCY (H2}

9 3

(8)

E
FIRST
FORMANT
FREQUENCY

FREQUENCY (Hz)

2 8 +

(c)

SECOND
FORMANT
FREQUENCY

FREQUENCY (Hz)

2 8

(0)

THIRD
FORMANT
FREQUENCY

FREQUENCY (Hz)

@ 8 Tr

(Ee)

Fig. 2-11. Parameter variation of a typical natural sound. (A) Amplitude. (B)
Pitch. (C) First formant frequency. (D) Second formant frequency.
(E) Third formant frequency.

passage has been analyzed into amplitude, frequency, and rough spectrum
shape parameters. Let’s further assume that the passage is a lively one indica-

tive of the performer's playing style. With resynthesis, these particular

parameters could control a tone that more resembled that of a clarinet. Since
the spectral analysis was very rough, the exact timbre of the trumpet would
not have been captured, but the general trend that reflects changes in the
overall tone would have been. The result would be that many of the charac-
teristics of the trumpet playing style would have been transferred to the

clarinet sound. Note that in a real situation it may not even be possible to
actually play a. clarinet in such a manner.

Besides simple transferral of parameters, modification of the curves is
also possible. Since a parameter when converted to a varying voltage is just
another signal, many of the processing techniques that applied to sound

74 MUSICAL APPLICATIONS OF MICROPROCESSORS

pressure waveforms could also be applied to the parameter waveform or
envelope. One type of processing that would have an interesting effect is
filtering of the parameter envelopes. A high-pass filter, for example, empha-
sizes high frequencies relative to lower frequencies. The direct effect on the
waveform is to emphasize rapid variations and ignore slower variations and
trends. High-pass filtering of the trumpet solo data, for example, might
produce a caricature of the original playing style. Low-pass filtering of a
parameter has an opposite effect in which short and rapid variations are
smoothed out and slow variations or trends are emphasized. The result might
very well sound as if the performer had become drunk!

Hand manipulation of the parameters, of course, is also possible. One
way to determine how a particular parameter contributes to an overall effect
is to resynthesize the sound with that parameter held constant or set equal to
some other parameter. Statistical analysis of the curves might make it possi-
ble to completely separate two parameters that normally influence each
other. For example, overall loudness and spectrum distribution are related in
trumpet sounds. Loud but mellow notes are not generally possible as are soft
but blaring notes. Conversely, two parameters that normally vary indepen-
dently may be made interdependent.

Of course, with a computer-based system, the results of sound analysis
may be stored for later recall or for combining with other analysis data.

Voltage Control Methods

As briefly mentioned in Chapter 1, the development and use of voltage-

controlled sound synthesizers was an important milestone in the history of
electronic music synthesis. More than any other single development, it

served to popularize synthesis methods not only with the listening public but
also with composers and performers.

Voltage control is really a fundamental concept. For the first time there
has been established a one-to-one correspondence between an easily manipu-
lated physical variable, a voltage level, and each of the important parameters
of sound. Thus, manipulation of a voltage would actually be manipulation of
a frequency, amplitude, formant position, waveform distortion parameter,
etc. Frequently, volrage-controlled techniques are characterized as continuous
or analog techniques because one physical variable (the signal or control

voltage) represents another physical variable (amplitude, frequency, etc.).
Also of importance is the modularity of voltage-controlled synthesizers.

The synthesizer itself is nothing more than a package for holding a number of
independent modules that may be interconnected in literally an infinite variety
of ways. The number of simultaneous sounds and their complexity is depen-

dent mainly on the type and number of modules available and the means
available for controlling them. Only a very few modules are required to
produce single simple electronic sounds. More are required for implementa-
tion of subtle variations and multipart harmony. If a given complement of
modules is insufficient for a particular application, more are easily added at
moderate cost.

Compatibility is another key characteristic of voltage-controlled synthe-
sizers. All inputs are compatible with all outputs, meaning that any physi-
cally possible permutation of interconnections is also electrically safe and
potentially useful. Furthermore, in some instances outputs are compatible
with each other. In such cases, two outputs plugged into the same input

(with a “Y” connector, for example) actually results in mixing of the two
signals involved in equal proportions. Compatibility often extends to the

point that different manufacturers’ modules may be easily interconnected.

76 MUSICAL APPLICATIONS OF MICROPROCESSORS

Finally, the modules of a madern voltage-controlled synthesizer offer

good accuracy in the relationship between a control voltage and the value of

the sound parameter being controlled. Thus, two modules with the same
control input can be expected to produce nearly identical results. Although it
is relatively simple to design and produce devices that respond to control
voltages, designing one that accurately and consistently responds to them is
considerably more difficult. Even so, accuracy is one characteristic that could
benefit from improvement.

i

MECHANICAL |

ae MECHANICAL
OUTPUTS

MODULE
CONTROL
OUTPUTS

‘SIGNAL
INPUTS

SIGNAL,
OUTPUTS

CONTROL,
INPUTS

Neti. Nea

Fig. 3-1. General voltage-contralled module

Typical Module Characteristics

In examining these points more closely, let’s look first at the general
characteristics of a typical module such as diagrammed in Fig. 3~1. This
module has three classes of inputs and three classes of outputs. It is rare that a
single module would actually have all six classes of input/output (I/O), but it

is possible.
A mechanical input is a parameter that is physically supplied by the user.

Examples are the positions of knobs, levers, the amount of prsssure on a
plate, the state of switches, or other nonelectronic inputs to the system.

There may be none, one, or several such inputs on a single module. In the
case of knobs or levers, two are often used to precisely control one variable: a

coarse adjustment and a fine adjustment. Switches usually set particular
operating modes and may have several positions each. With the exception of

transducer modules such as keyboards, the mechanical inputs are usually set
up ahead of time and then changed only infrequently during the actual
production of sound. Thus, except for transducers, mechanical controls in-

fluence operating parameters that stay relatively constant.
Mechanical outputs are less common and consist of lights, meters,

speaker cones, and similar indications to the user. Except for speakers,
mechanical outputs are just user aids and do not directly participate in the
synthesis process.

VOLTAGE-CONTROL METHODS 77

A signal input normally expects to see an ordinary audio signal in the
20-Hz to 20-kHz frequency range. However, the signal inputs of any prop-

erly designed module are perfectly capable of responding to dc voltage levels
and ultrasonic frequencies up to 50 kHz and higher. This broad range allows
signal inputs to also handle slowly varying control voltages, which is a very
important capability.

A signal output normally supplies an ordinary audio signal to other
modules. Like the signal input, it is usually capable of supplying dc and
very-low-frequency signals as well for control purposes.

The function of a comtrol input is to accept a control voltage whose
Instantaneous value controls some parameter of the signa] output. The pres-

ence of control inputs is the factor that distinguishes voltage-controlled
modules from ordinary laboratory equipment, which usually has only
mechanical inputs. Control inputs are used for those parameters that change

rapidly, usually within the course of a single sound or note.
A control output is similar to a signal output except that it normally

supplies control voltages to other modules. However, if the voltage at a
control output varies rapidly enough, it may also be used directly as an audio
signal.

From the foregoing it should be apparent that the distinction between
audio signal voltages and control voltages is in their use and not necessarily

in their physical properties. Although control voltages typically vary slowly
compared to audio signals, there are applications for rapidly varying control

voltages and slowly varying audio signals. It is this lack of physical distinc-
tion between parameters and signals that is responsible for much of the power
of voltage-control methods.

There is, however, one more class of signals used in the voltage-

controlled synthesizer. These are digital on-off control signals and timing
pulses. Only a few specialized modules, which will be discussed later, use
them. Although it is safe to mix these digital signals with the others, the
effects are seldom useful. Any useful effect can also be obtained through more
“correct” interconnection procedures.

General Module Types

Modules can be grouped according to their primary functions. There is,
of course, some overlap among groups, but for the most part the distinctions

are clear.

_ Transducers function primarily as sources of control voltages but are
directly dependent on some form of input for determining what the control
voltage output should be. Perhaps the best example is an organ-type

keyboard specially designed to produce a control voltage that is a function of
the particular key being pressed. Besides the control voltage output, the

keyboard also produces two digital timing signals whenever a key is pressed.
The first is called a trigger, which is a pulse that is generated on the initial

78 Musica APPLICATIONS OF MICROPROCESSORS

depression of a key. Its primary function is to mark the deginning of a note.
The other signal is called a gate and is used to mark the duration of the note.
The gate signal is present as long as a key is pressed. Thus, these ewo timing
signals qualify the control voltage output from the keyboard.

Generators are similar co transducers but generally produce a predefined
type of output signal that can be influenced with mechanical and control
inputs but not completely determined in detail as with a transducer. A good
example of an audio signal generator is a voltage-controlled oscillator. Typi-
cally, several outputs are provided, cach one supplying a different but fixed
waveform at a fixed amplitude. The voltage level at the control input directly
affects the frequency of the multiple waveform outputs, but the waveshape and

amplitude, which are fixed by design, remain constant. A good example of a
control voltage generator is the envelope generator. This device supplies a
predetermined voltage contour in response to the trigger and gate signals
mentioned earlier. Mechanical controls generally specify details about the
contour generated, although rarely a control voltage might be able to specify
some of these.

Modifiers typically accept signal inputs and control inputs and produce
a signal output. Modification of one or more parameters of the input signal is
performed in accordance with the voltage levels at the control inputs. A
voltage-controlled amplifier is a good example of a modifier. Typically, the
signal input is of constant amplitude, but the amplitude of the output is
determined by the control input.

Interconnections

In order to perform a useful function, the synthesizer modules must be
interconnected. A true general-purpose synthesizer provides only mechanical

mounting and operating power to the modules; otherwise they are com-
pletely independent. Probably the most popular connection method involves
the use of patch cords similar to those found in old telephone switchboards
but with both ends free. The cords and standard 1/4-inch phone plugs are
quite flexible and rugged and allow fully shielded connections that minimize
noise pickup. A particular arrangement of patch cords is called a patch. A
complex patch may involve so many cords that a rat’s-nest appearance results
that may even obscure the front panel of the synthesizer. In such a situation,
it may become difficult to follow a particular cord through the maze without
pulling on one end of it. Even so, most users love the patch cord concept and
on occasion can be seen to point proudly at the “jungle” that represents the
creation of a new sound.

Another popular interconnection technique uses a pinboard matrix.
The matrix is divided into rows representing module outputs and columns
representing module inputs. Each row and column is clearly labeled with
module number, type, and signal name. A connection from an output to an
input is made by inserting a pin at their point of intersection. An output may

VOLTAGE-CONTROL METHODS 79

drive multiple inputs by having pins at multiple column positions along the
row corresponding to the output. Multiple outputs may also be connected
together for equal mixing without the use of Y adaptors simply by inserting
pins at multiple row positions along a single column. A complex pinboard
matrix patch is, of course, much neater than the equivalent using patch
cords. Furthermore, documentation of the patch is much easier. However,

pinboard synthesizers tend to be less easily expanded due to the subpanel
wiring between the modules and the pinboard. Also, if the row or column
capacity of the pinboard should be exceeded, either another matrix will have
to be added (and provisions for patching from one matrix to the other) or the
entire matrix will have to be replaced with a larger one. Thus, pinboards are
usually only found in “standard” models of prepackaged synthesizers.

AUDIO SIGNALS -

VOLTAGE- Le VOLTAGE | vourace- |
CONTROLLED CONTROLLED CONTROLLED
OSCILLATOR FILTER | AMPLIFIER

CUTOFF FREQUENCY GAIN CONTROL AMPLIFIER
CONTROL INPUT

FREQUENCY CONTROL
INPUT INPUT SPEAKER

CONTROL VOLTAGE
OUTPUT

CONTROL VOLTAGE CONTROL VOLTAGE
OUTPUT OUTPUT

ENVELOPE
GENERATOR

ENVELOPE
GENERATOR

Fig. 3-2. A simple voltage-controlled module patch

A Simple Patch

Regardless of the method of patching, the important point is that the
user thinks in terms of the basic parameters of sound when a patch is heing

designed. Figure 3~2 shows a very simple patch for producing individual
notes under the control of an organ-type keyboard. One of the keyboard
outputs is a voltage level proportional to the key ast struck. This voltage
determines the frequency of the voltage-controlled oscillator. The trigger and
gate outputs from the keyboard then enter the first envelope generator,
which produces a voltage contour in response to these timing signals. This

voltage enters the control input of the voltage-controlled amplifier, where it
impresses the contour shape onto the amplitude of the output signal from the
oscillator, thus giving it an envelope. Finally, the second envelope generator

80 Musica APPLICATIONS OF MICROPROCESSORS

AUDIO SIGNAL
TO FURTHER
PROCESSING

VIBRATO FREQUENCY

VOLTAGE -
CONTROLLED
OSCILLATOR

Fig. 3-3. Added modules for vibrato

impresses a different contour onto the spectrum of the sound through the
voltage-controlled filter.

As a result, these three fundamental parameters are directly, and most
important, visibly controlled by the three control voltages. More complex
patches generally add modules in the control voltage paths, although a few
more might also be added to the signal path. As an example, let us take this
basic patch and add vibrato. Since vibrato is a small wavering of frequency
during extended steady states, the control voltage connection between the
keyboard and the oscillator will be broken and additional modules inserted as
in Fig. 3-3. First, another oscillator is added, which is the source of the
low-frequency vibrato waveform, For this example, .no control voltage is
supplied to the oscillator; its mechanical controls are used to set the vibrato
frequency. The vibrato voltage is combined with the keyboard output with
the mixer module shown. Mechanical controls on the mixer determine the
proportion of each input signal that appears at the output. For natural-

sounding vibrato, the controls are set for only a small contribution from the
vibrato oscillator. The resulting control voltage is then sent to the original
oscillator and the remainder of the system as before.

It is easy to imagine further growth of the patch, since the vibrato
produced by the example patch is rather crude. Typically, one might want
short notes and the beginnings of long ones to be free of vibrato. After a delay
period on long notes, vibrato should commence gradually. Addition of
another voltage-controlled amplifier and envelope generator in the frequency
control voltage path will allow this effect to be produced. Similar additions
may also be made in the amplitude and spectrum control paths. Once a good

VOLTAGE-CONTROL METHODS 81

understanding of the parameters of sound has been developed, most patches
are obvious. Note that more modules may actually be tied up in processing
control voltages than audio signals!

Signal Levels in the Synthesizer

So far the value of voltage control has been established and the de-
sirability of an accurate relationship between control voltage magnitude and
sound parametet magnitude has been mentioned. However, now the exact
form of this relationship needs to be established. Although there is consider-
able agreement in the industry on the control relations to be discussed, there
are a few manufacturers of smaller systems that do things differently.

Frequency-Control Relation

Of all the parameters of sound, frequency is probably the most impor-
tant. The ear is considerably more sensitive to small changes in frequency
than any other parameter. Also, music theory is significantly more concerned

with intervals, chords, and other pitch-related topics than it is with other

areas. Thus, the choice of a relationship between a frequency-control voltage
and the resulting output frequency should be chosen carefully.

The range of human hearing can be considered to be 10 octaves, which
isa 2! or 1,024:1 or 20 Hz ta 20 kHz range. Within chis range, a relative

error of 1% is a minimum goal with considerably less being desirable in the
middle four octaves. A relative error of 1% means that an intended frequency
of 20 Hz cannot actually be less than 20 — 20/100 = 19.8 Hz or greater
than 20.2 Hz. Likewise, any frequency between 19.8 kHz and 20.2 kHz
would be acceptable for an intended value of 20 kHz. Note that the absolute
magnitude of error at the high end is a whopping 200 Hz, while at the low

end it is only 0.2 Hz. Expressed as a full-scale accuracy, a specification
method almost universally used by the measuring-instrument industry, the
requirement would be 0.2 Hz/20 kHz = 0.001%. Laboratory voltage-

measuring instruments with this kind of accuracy are almost nonexistent,

exceedingly expensive, and fragile, yet this and more is being asked of a
voltage-controlled oscillator module for a synthesizer!

The most obvious relationship between control voltage and frequency is

a linear one, that is, a direct relationship between voltage and frequency. For
the sake of argument, let us assume the relationship F=1,000V, where F is

the output frequency in hertz and V is the control voltage in volts. With this
relation, the audio range would be covered with a control voltage range of
20 mV to 20 V. The 19% error alluded to earlier would amount to 200 wV at

the low end of the range and 0.2 V at the upper end.
Actually, 20 V is a little high for convenient use of modern linear ICs.

A maximum of 10 V would be more reasonable. The 100-4V error now

82 MusICAL APPLICATIONS OF MICROPROCESSORS

allowed would be quite difficult to deal with. Typical sources of error in this

range are thermoelectric voltages, voltages induced from stray magnetic
fields, and thermal noise in resistors. What is worse, we expect these voltage

levels to travel freely through patch cords without degradation. Thus, it is

apparent that directly proportional voltage control is impractical for a wide

control range and great relative accuracy.

Exponential Relation

Another relationship that makes more sense from a lot of viewpoints is
an exponential one. Stated first in musical terms, such a relationship could be
something like a 1 V/octave. In mathematical terms, this would be F=2¥Fo,
where F is the output frequency, V is the control voltage in volts, and Fo is

the basis frequency for this relative scale. For a basis frequency of 20 Hz, a
voltage range of 0 to 10 V would cover the audible range. An interesting
property of such a scale is chat the 1% relative accuracy desired corresponds
to about 14.5 mV éndependent of the frequency range. Thus, rather than a
liberal error allowance at high frequencies and a stingy one at low frequen-
cies, the margin for error is a constant, manageable value.

This property alone would be sufficient persuasion for adopting the
exponential relationship, but there are many more desirable characteristics.
In Chapter 1, it was noted that the sensation of pitch was an approximately
exponential function of frequency. Using an exponential voltage-controlled
oscillator, a linear increase in control voltage of, say, 1 V/sec would result in
a reasonably steady rise of pitch. A linear VCO, on the other hand, would
very rapidly sweep through all of the low frequencies and then seem to
require a considerable amount of time to complete the upper end of the
sweep.

Even if the ear’s tesponse did not resemble an exponential curve, the
equally tempered musical scale is precisely exponential. One octave, of
course, corresponds to 1 V and a half-step corresponds to 1/12 V or about
83.3 mV. Likewise, a fifth corresponds to 7/12 V and a major third is 1/3 V.
Thus, if some arbitrary voltage level produces a particular pitch, a voltage
1/12 V higher produces a pitch one half-step higher.

One application of this property is in transposition from one key to
another. Consider a melody played in the key of C ona keyboard that outputs
control voltages. If a constant voltage of 1/6 V is added to the keyboard
output, the melody would actually sound in the key of D. The constant
voltage may be injected with a mixer beeween the keyboard and the oscil-
lator, alchough most VCO modules have a basis frequency knob that does the
same thing.

Injection of vibrato is also considerably simplified with an exponential
VCO. A 1% vibrato, for example, would require a 15 mV peak-to-peak
vibrato voltage independent of what note was played. With a linear VCO,
the vibrato would be excessive on the low notes and nearly inaudible on the

VOLTAGE-CONTROL METHODS 83

high ones. Thus, the vibrato amplitude would have to be made proportional
to frequency through the use of a voltage-controlled amplifier.

Although exponential control of frequency at the rate of 1 V/octave is
an industry-wide standard, che best VCO modules do have a linear control
voltage input available. Its primary use is in using tapid and deep frequency
modulation as a method of altering the spectrum of the oscillatot’s output
waveform without incurring an undesirable average frequency shift due to the
modulation.

Amplitide Relation

Amplitude is the other parameter of primary importance that needs a
control voltage relationship established. Whereas the audible frequency
tange is a 1,000:1 ratio, the audible amplitude range is 1,000 times greater
yet or 10®:1. This 120-dB range might be a nice goal for live listening in a
soundproof room but certainly could not be utilized in a normal environ-
ment. Furthermore, recording equipment is limited to a 60-dB to 70-dB
range at best. Thus, a 10,000:1 or 80-dB range on voltage-controlled

amplifiers would be a reasonable requirement.
The accuracy requirement for amplitude control is not nearly as strin-

gent as frequency control accuracy. A 10% error, which corresponds to about
0.8 dB, would be barely audible. However, if the voltage-controlled
amplifier were being used in a control voltage path processing frequency-
related control voltages, considerably better accuracy would be desirable.
Without going through the linear versus exponential argument again, it is

clear that the control volrage relationship should be exponential.
A common setup would be such that 8 V would specify unity (0 dB)

gain and lesser voltages would decrease gain at the rate of 10 dB/volt.
Typically, as the control voltage approaches zero and the gain is decreasing

toward —80 dB, a squelch circuit comes into play, which actually cuts the
signal completely off. Control voltages greater than +8 V can provide some
positive gain in the circuit. With such a setup, the gain expression would be

AV = 10¥—8), where AV is the voltage gain in decibels and V is the

control voltage in volts. Like the oscillator, an added linear mode control
input is helpful for special applications using amplitude modulation for
timbre modification.

Most parameters used in other modules are related to either frequency
or amplitude and thus usually have an exponential relationship. However,

any time that a variable is required to cover a wide range, the exponential
relationship is useful.

Standard Voltage Levels

Signal levels in a voltage-controlled synthesizer, both audio and con-
trol, are generally kept at a constane amplitude except when amplitude

84 MusIcaAL APPLICATIONS OF MICROPROCESSORS

control is actually being performed. The standardization of signal levels from
transducer and generator modules enhances the compatibility of signals

throughout the system.
It has already been alluded to that control voltages range from 0 V to

10 V in magnitude. The polarity of control voltages is usually positive,

although some module designs will perform as expected with negative con-

trol voltages as well. An oscillator, for example, can be coaxed into produc-
ing subaudible frequencies for vibrato use by giving it negative control
voltages. Although the accuracy usually deteriorates, it is still quite useful.
Audio signals are usually 20 V peak to peak in amplitude and swing equally

negative and positive.
Actually, these voltage levels and amplitudes are fixed by what is

convenient to use with IC operational amplifiers. These circuits are usually
operated from positive and negative 15-V power supplies and start to distort
severely if signal levels exceed 13 V in magnitude. These levels are consid-
erably higher than the 1-V rms (2.8 V peak to peak) typically encountered in
high-fidelity audio systems. One reason is to minimize the effect of noise and
voltage offsets that may be encountered when a signal travels through a dozen
or more IC amplifiers before it even leaves the synthesizer. Occasionally, it is
desirable to cut all signal levels in half to +5 V to allow the use of inexpen-
sive CMOS switching elements, which are limjted to 7-V power supplies.

Sometimes the control voltage sensitivity is doubled to compensate, so a
little more care in minimizing noisc and crror voltages is required. In other

cases, negative control voltages are used instead to get a reasonable control
range.

Some Typical Modules

Let us now take a closer look at the most often used modules in a
voltage-controlled system. The descriptions to be given are not those of any
particular manufacturer's line but are representative of the input, output,
and control complement on many commercial units. Home-brew synthesizer
modules can easily have all of the features to be discussed, since the incre-
mental cost of adding most of them is insignificant compared to the “heart”
circuitry of the module. Detailed design and circuit descriptions wil] be
given in Chapter 6, in which module designs will be optimized for computer
control of many of the operating parameters.

Voltage-Controlled Oscillator

The voltage-controlled oscillator, usually abbreviated VCO, is the most
fundamental module of the system. Usually more VCOs are present than any
other module type. An actual VCO module has a number of control inputs,
signal outputs, and mechanical inputs.

VOLTAGE-CONTROL METHODS 85

Typically one might expect to find three frequency control inputs even
though only one oscillator is to be controlled. In operation, the voltages at
the control inputs are summed together algebraically into an effective control
voltage. Thus, if input A is at 5 V, B is at 3 V, and C is at —4 V, then the

effective control voltage is 5+3—4=4 V. An unused input can be con-
sidered as a zero voltage contribution. Having multiple inputs often elimi-
nates the need for a separate mixer module. The use of separate inputs is also
preferable to output mixing by tying two outputs together because the
inputs are isolated from each other, thus allowing the mixed outputs to be
used elsewhere as well. Occasionally, a fourth input with either a 10-V/
octave or variable sensitivity is provided. When calculating the effective
control voltage, the level at this input must be divided by its sensitivity
before summing with the other control inputs.

Usually, two mechanical inputs, each of which might have coarse and

fine adjustment knobs, are associated with the control inputs. One of these in
effect changes the basis frequency by adding an additional control voltage,
which may range from —10 V to +10 V. Sometimes a range switch is
provided in order to extend the low-frequency range down to fractions of a
hertz. The other control is a volts per octave adjustment with the standard
value of 1 V/octave being the middle of the range. Besides fine tuning the
oscillator, this control can make an ordinary keyboard microtonal with
perhaps 31 notes to the octave. Finally, there may be a sensitivity control for
the fourth control input mentioned earlier.

A VCO typically has several different output waveforms. Usually they
are available simultaneously, all at the same frequency and with a fixed phase
relationship. Sometimes, however, a tapped panel control is used to adjust a
single output waveform as a variable mixture of two or three internal
waveforms. Figure 3-4 shows the four fundamental synthesizer waveforms
and their associated harmonic spectra.

A sawtooth wave is 0 named because of its appearance. It has both odd

and even order harmonics that fall off in amplitude as the reciprocal of the
harmonic number, which is 6 dB/octave. Its timbre is full-bodied and some-

what bright. At low frequencies, it does indeed sound “sawey.”
The triangle wave resembles the sawtooth in appearance but has a quite

different spectram. Only odd order harmonics are present and their
amplitude falls off as the square of the harmonic number or 12 dB/foctave.

The timbre of the triangle wave is subdued and mellow and somewhat
hollow. The mellowness is due to weak upper harmonics, and the hollowness
is due to the exclusively odd harmonic spectrum.

The exact spectral characteristics of the rectangular wave depends on its
duty cycle. The duty cycle is the ratio of the time spent in the high state
divded by the overall period. Spectra are shown for a 50% duty cycle and a
10% duty cycle. Note that in the 50% case, which is called a square wave,
only odd order harmonics are present and they decrease at 6 dB/octave. The

86 MUSICAL APPLICATIONS OF MICROPROCESSORS

V2
"345 6 yr ye

(a)

W925 ag

(a)

(c}

90% (o)
'

(€)

Fig. 3-4. Standard voltage-controlled oscillator waveforms. (A) Sawtooth. (B)
Triangle. (C) Rectangle 50%. (D) Rectangle 10%. (E) Sine.

timbre is bright, very hollow, and sounds much like a kazoo in the middle

frequencies. The 10% wave has a spectrum with considerable energy in the
high-frequency harmonics. The spectral envelope resembles that of a comb

filter somewhat, but after the first couple of peaks, decreases at an average
rate of 6 dB/octave. The timbre is quite buzzy at low frequencies and pierc-
ingly bright at middle and high frequencies. Duty cycles around 25 to 30%
have a timbre that greatly resembles a sawtooth wave, although the indi-
vidual harmonics are quite different. Many VCO modules have a control
voltage input that determines the duty cycle of the rectangular wave. Others

may just have a mechanical control to vary the duty cycle or sometimes a
fixed 50% wave is all that is available.

VOLTAGE-CONTROL METHODS 87

The last waveform is a sine wave whose characteristics need not be
reiterated. Generally, the actual oscillator portion of a VCO genetates one of
these waveforms and the others are derived from it by use of simple nonlinear
circuits. The most popular type of oscillator inherently produces a very
precise sawtooth wave with the ramp portion linear to within a fraction of a
percent and a very short “flyback” period on the order of a microsecond or
less. A triangle wave is obtained by taking the absolute value of the sawtooth
voltage with a full-wave rectifier circuit. Actually, the resulting triangle has
a little notch during the sawtooth flyback period, but it is usually inaudible.
The rectangle wave may be derived either from the sawtooth or the triangle
by use of an infinite clipper circuit. Variations in the duty cycle are accom-
plished by shifting the clipping threshold away from the zero voltage point.
The sine wave is, oddly enough, created by passing the triangle wave
through a “soft clipping” circuit. The circuit rounds the peaks of the triangle
and produces a sine wave with 0.2 to 2% total harmonic content, quite low
enough to get the sugary sweet timbre characteristic of sine waves. The
waveforms are usually sent out at fixed amplitudes such as 10 V positive and
negative, although it is conceivable that output level controls might be
provided.

Voltage-Controlled Amplifier

A voltage-controlled amplifier, abbreviated VCA, in many respects
resembles the VCO in the way that control inputs are handled. However,
since it is a modifier module, it has signal inputs. Usually, several signal
inputs are provided. Depending on the sophistication (and expense) of the

module, the signals may either be added together in equal proportions, have
a mechanical gain control to determine the contribution of each input, or
really be equivalent to several VCAs and have a control voltage determine the

gain of each signal input. The second-mentioned case with front panel gain
controls is probably the most common. Occasionally, one of the signal inputs
may be equipped with a phase inversion switch, which allows harmonic
cancelling when synchronized, but differently shaped waves are fed in or
special effects when processing control voltages. In any case, the VCA also

functions as a mixer, since several signals may be combined into one. Mixing

is the same as algebraic summation so if control voltages are processed with

the VCA, they will add up just like the control voltage input circuitry of the
VCco.

The control input arrangement is similar co that of the VCO. Often
fewer control inputs are summed together, since elaborate multisource mod-
ulation of amplitude is less common. A decibels per volt panel control can be
expected as well as an overall gain control. The latter is often inserted in the
signal path after the signal inputs have been mixed together but before the
actual VCA circuit. This is done to minimize distortion in the VCA circuit if
the input levels are unusually high. The VCA signal output is quite

88 MUSICAL APPLICATIONS OF MICROPROCESSORS

GAIN, (4B)

Ol O15 02 03 04 0506 08 1.0 15 2.0 304.0 50 6.08.0 10.0

FREQUENCY, (kHz)
(A)

GAIN, (dB)
3

40. -
0.1 015 0.202503 040506 08 1.0 15 2.0 2530 4.0 5060 80 10.0

FREQUENCY, (kHz)

(B)

Fig. 3-5. Common voltage-controlled filter response shapes. (A) Low Q factor
(1.5). (B) High Q factor (10).

straightforward with one or two provided. If two are present, they are
independent and the second is often the inverse of the first.

Voltage-Controlled Filter

The voltage-controlled filter (VCF) is the most complex and costly
“common” module in the synthesizer. One is indispensable but more than

VoLTaGE-CONTROL METHODS 89

two is rare in the smaller systems. Voleage-controlled filters of adequate
performance are a recent development, and there is still considerable room for
improvement.

The signal inputs and controls are similar to those of the VCA, al-
though there may be only one or two provided. There are usually several
signal outputs, however, each corresponding to a different filter mode. The
most popular filtering circuit simultaneously generates a low-pass, high-

pass, and bandpass output from a single input. A band-reject output may
also be provided at very little additional cost. Sometimes the multiple out-
puts are applied to a tapped potentiometer, and the user selects a mixture of
these filtering functions to be sent to a single output.

Although there are multiple outputs, there is only one frequency
parameter. Under the proper operating conditions (low Q factor) the low-pass
and high-pass —3-dB frequencies and the center frequencies of the bandpass
and band-reject outputs are all the same. At higher Qs, the low-pass and
high-pass filtering functions undergo a phenomenon called corner peaking,
which is illustrated in Fig. 3-5. At very high Qs, the corner peaking be-
comes excessive, and the audible filtering effect of low-pass, bandpass, and
high-pass outputs becomes similar. The notch output under these conditions
becomes so narrow that its effect on the sound is hardly noticeable.

Since the Q factor has such an important effect, it must be variable. The
most common configuration is a single panel control for Q. It is desirable,
however, to have a voltage-controlled Q probably with an exponential rela-

tionship, since the useful range for Q is from 0.5 to several hundred at least.
One common imperfection in existing filters is that high Q factors lead to
instability and may even cause the filter to break into intermittent oscilla-
tion. If this was not such a problem, Qs up in the thousands would be useful
for generating slowly decaying ringing sounds in response to a short input
pulse.

Normally, the frequency control inputs are straightforward and essen-
tially identical to the frequency control inputs on the VCO. However, there

is an interaction between frequency and Q that must be considered. Taking
the bandpass output as an example, there are two things that may happen

when the center frequency is varied. In a constant Q filter, the Q factor
remains constant as center frequency is changed. This is desirable if one is
filtering white noise to give it a sense of pitch, since the same degree of

“‘pitchedness” will be retained regardless of the center frequency. However, if
the filter is used to create ringing sounds, the ringing time will be much
longer at lower frequencies than it will be at high frequencies. This is because
Q is really related to the rate of ringing decay in terms of number of cycles
rather than seconds. A constant bandwidth filter actually has a Q that is
proportional to center frequency. Thus, if the bandwidth is sec to 100 Hz
and the center frequency to 300 Hz, the effective Q is low, but if the center
frequency is 5 kHz, the 100-Hz bandwidth represents a relatively high Q.
Although there are applications for both types of frequency control, most

90 Musica. APPLICATIONS OF MICROPROCESSORS

VCO modules ate constant Q. The ideal case would have two sets of fre-

quency control inputs, one set with constant Q response, and the other set

with constant bandwidth response.
From the response curves in Fig. 3—5 it is apparent that the cutoff

slopes of the filter responses are essentially constant regardless of Q once the
attenuation reaches 6 dB or so. Steeper slopes are possible by cascading filters
and driving each member of the cascade with the same control voltage.
However, there is a growing interest in variable-slope filters, preferably
voltage-controlled variable slope. The reason is that detailed analysis of
mechanical instruments, particularly the trumpet, reveals that the changes in

spectrum caused by changes in emphasis closely approximate the effect of a
filter with fixed cutoff frequency but variable slope. Actually, implementing
such a filter turns out to be a nontrivial task. In particular, variable mixing of
the intermediate outputs of a cascade of ordinary filters does not work very
well because of phase shifts through the individual filters. Reasonable ap-
proximations are possible, however, if suitable phase correctors are used.

Clippers

Although the VCF is the primary spectrum modification device in the
synthesizer, occasionally clipping and other nonlinear waveshaping functions
are integrated into a module. About the simplest useful setup would be a
sharp clipper with upper and lower thresholds variable by mcans of pancl
controls or control voltages. A somewhat more flexible circuit would allow
independent gain for positive and negative portions of the waveform and
optional inversion of the negative portion. A very general nonlinear

waveshaping module might have a dozen or more panel controls that to-

gether specify an arbitrary transfer function as a multisegment approximation
using straight line segments. The effects available with nonlinear shaping

devices generaily cannot be duplicated with filters, but they are not as
dramatic either. Thus, nonlinear shapers are usually found only on larger
synthesizers.

Envelope Generators

The modules discussed so far can generate just about any steady or
repetitively changing sound that can be desired. However, in order to even
synthesize ordinary musical nores, a source of control voltages shaped like a
common amplitude envelope is needed. The envelope generator module is
specifically designed to perform this function.

A simple envelope generator produces the general shape shown in Fig.
3-6 in response to trigger and gate digital control inputs. Note that the
envelope voltage output is zero under quiescent conditions. When the gate
rises, the envelope rises toward a steady-state value during the attack period.
The slope and thus the duration of the attack are usually determined by a

VOLTAGE-CONTROL METHODS 91

1
RETRIGGER

ADSR-TYPE
GENERATOR
OUTPUT

Fig. 3-6. Typical envelope generator outputs

mechanical control. As long as the gate is held high, the envelope remains in
its steady state. When the gate turns off, the envelope makes a decay transi-
tion back toward zero. Again, the decay period is adjustable with a panel
control. Note that the trigger signal is not really needed, since it has no

influence on the envelope output. Such a simplified envelope generator is

called an attack—release (AR) generator.
A more sophisticated envelope generator is the attack—decay—sustain—

release (ADSR) type. Four parameters define its shape. The slope of the
initial attack and the final decay are adjustable as with the AR type. How-
ever, the initial attack overshoots above the steady-state sustain level. Thus,

the additional parameters are the amount of overshoot and the duration of the

initial decay from the overshoot level to the sustain level. Note that the

trigger pulse can reinitiate the overshoot cycle even if the gate remains high.
The ADSR shape is preferred, since the initial overshoot resembles the action
of many musical instrument types. Also, because of its retriggering capability,
rapidly repeated notes at the same frequency are readily distinguished. If
desired, the controls can be set to simulate the simpler AR shape. Although

the transitions are shown as linear ramps, typical circuit implementations of

envelope generators usually result in a decaying exponential shape.

Music Keyboard

The most common manual input to a synthesizer is through a standard

organ-like keyboard with a three- to five-octave range. Outputs from the
keyboard are a control voltage and trigger and gate digital signals. The
control voltage output always corresponds to the key last pressed. Depending

on the design, the output voltage with two keys pressed is equal to che lowest
key, the highest key, or some intermediate value. The trigger pulse is
generated on the initial depression of a key, and the gate is on as long as a key
is pressed.

Most keyboards have three mechanical controls. One is for adjusting

volts per octave and another is for adjusting the voltage level of the lowest

92 MUSICAL APPLICATIONS OF MICROPROCESSORS

key (basis voltage). Although these are redundant with VCO controls, it is
very convenient to have them right at the keyboard itself particularly if ic
feeds several VCOs. The third control is for portamento. When rotated away

from its zero position, the change in control voltage output from one level to
another when a new key is pressed slows down, resulting in a pitch glide
from the first note to the second.

Recently, a somewhat more sophisticated keyboard was developed that
allows two keys to be pressed simultaneously. Two sets of outputs are pro-
vided, one for the lowest key pressed and the other for the highest key. When
properly scored and played with care, two independent voices with different
characteristics may be played on one keyboard. Another simple and often
employed scheme is to simply use several keyboards such as with theater
organs. Digital scanning techniques have also been applied to synthesizer
keyboard design such that truly polyphonic playing is possible. One decision
that has to be made in the design of such a keyboard is the assignment of keys
to control voltage—trigger—gate output groups. If the voices controlled by the
keyboard are not all the same, the assignment of voices to keys may vary
greatly according to playing technique or even random chance. Digital

keyboards will be studied in greater detail in Chapter 9.

Other Modules

The modules that have been described so far are those that can be
expected to be present in any synthesizer, often in multiples. There are also a
number of specialized module types for special effects, to perform functions
normally requiring a number of interconnected modules, and “utility” ver-
sions of the standard modules already discussed. Utility modules, particulary
VCOs and VCAs, are less flexible, less accurate, and therefore quite a bit less

expensive than their standard counterparts. They aré used freely in complex
patches where their characteristics are adequate for the task.

Sequencer

One specialized module that adds a measure of automation to the
synthesis process is called a sequencer. Interesting repetitive effects can be
created with one or more VCOs set to their very-low-frequency range and
used as sources of control voltages. However, if a specific sequence such as a
short melody is desired, it is not normally obvious how a group of oscillators
might be set up to generate it. A sequencer allows the user to directly
determine and easily modify specific, arbitrary sequences of control voltages.

The sequencer is usually designed to simulate a keyboard; thus, it has
trigger and gate outputs as well as the control voltage output. The simplest
sequencers might have 16 potentiometer knobs and a “speed” control that
determines the frequency of a clock oscillator. Each cycle of the clock causes a

VOLTAGE-CONTROL METHODS 93

seanning circuit co look at the next potentiometer in sequence and generate a
control voltage according to its setting. Also trigger and gate pulses would
be generated. The final result, if the sequencer is connected to a VCO, is that

a sequence of 16 notes of uniform duration would be generated and repeated.
Usually there is some way to short cycle the unit in order to produce shorter

sequences. Frequently, the speed control has sufficient range such that the
voltage sequence output repeats fast enough to become an audio signal.
Thus, the sequencer becomes an arbitrary waveform generator for simple
waveforms.

‘The next step up consists of adding a duration control under each pitch
control so that irregular rhythms can be easily handled. From this point
sequencers can get increasingly sophisticated all the way up to computer

systems and music languages. Digital sequencers can easily have up to 256
and more steps in the sequence. Sequences may be entered and edited with a
small digital keyboard much like those found on calculators. Sometimes a

sequencer may act as a memory unit on a music keyboard allowing the user to
“play” in the sequence and then edit it in memory. Microprocessor applica-
tion as a ““supersequencer” is discussed in Chapter 11.

Sample-and-Hold Module

One fairly simple device that in many ways sounds like a sequencer is a
sample-and-hold module. Like the sequencer, it has an internal clock oscil-

lator and possibly provisions for an external oscillator. It also has a signal
input and an output. Every cycle of the clock causes the circuit to “look” at
the input voltage at that instant and remember it. The remembered voltage
appears at the output as a constant value until the next clock cycle. If the
input waveform were a slow sawtooth, for example, the output would resem-
ble a staircase with the number of steps dependent on the ratio of clock
frequency to input frequency. If the output voltage were connected to a
VCO, the result would be a scale of individual pitches. More complex

waveforms would produce sequences of notes that would either repeat,
evolve, or be seemingly random depending on the exact ratio of sampling

(clock) frequency to input signal frequency.

White Noise Generator

The white noise generator module is perhaps the simplest in the sys-

tem, at least on the front panel. Usually there is a single output jack for che
white noise signal. Occasionally, there might be a “pink” noise jack also.
The difference between the two is that white noise has a constant spectral
power per hertz of bandwidth, while pink noise has constant power per octave.
Thus, pink noise actually sounds whiter (beteer balance between low- and
high-frequency components) because of the exponential pitch response of the
ear.

94 MUSICAL APPLICATIONS OF MICROPROCESSORS

Specialized Modifiers

Other specialized modules are based on the sound modification tech-

niques described in Chapter 2. Reverberation simulators, usually of the

spring type, are quite popular for enlarging the synthesized sound. Generally,
the only control present determines the mixture of straight and reverberated
sound. Ring modulators are also popular because of their low cost and
distinctive effect. Typically, there are just two signal inputs with level
control knobs and a single output. Frequency shifters are found rarely due to
their very high cost and specialized application.

One “module” (it is usually a free-standing unit) that has recently

become available is a digital implementation of the speed-changing tape
machine described earlier. In one of its modes, it has the ability to change the
frequency of sounds passing through it without altering the harmonic struc-
ture or overall speed of the sound. When connected in a feedback mode, a
single note comes out as an ascending or descending series of notes.

A Typical Patch

Although the evolution of a relatively simple patch was described

earlier, let us look at how a more complex patch might be designed, given a

particular set of requirements. Throughout the discussion, the propor-
tionality and symmetry properties of exponential voltage-controlled synthesis
will be emphasized. ‘Vhis will also be used as an opportunity to introduce the

technique of FM timbre synthesis, a simple yet powerful method of produc-
ing quite a wide variety of timbres under the control of only two parameters.

The first step in designing a complex patch, as opposed to fiddling
around and discovering one, is to develop a physical understanding of the
desired effect. In this case, we are trying to develop a timbre (spectrum)
modification technique that can produce as wide a variety of effects as possi-
ble under the control of a minimum number of parameters. In Chapter 1,
while describing frequency modulation for the production of vibrato, it
was mentioned chat if the vibrato frequency became high enough and the
vibrato depth (percent modulation) became great enough, the unmodulated
sound would be completely altered into metallic clangs and breaking glass.
However, there are numerous intermediate conditions that produce useful
musical tones. Since there are only two parameters tnvolved, the modulation
frequency and amplitude, and since the range of effects is so great, the
situation bears further investigation.

Frequency Modulation Terminology

Before continuing, some terms must be defined to avoid confusion.

Two signals are involved, the modulating signal, which was the vibrato
waveform, and the modulated signal, which is the tone being modified. The
following terms are really defined only if the modulating signal waveform

VOLTAGE-CONTROL METHODS 95

and the modulated signal waveform are both sine waves and a /inear VCO (or

linear input to an exponential VCO) is used for the modulation. The modulat-
ing frequency is the frequency of the modulating signal. The deviation is the
magnitude of the difference between the modulated signal’s unmodulated
frequency (center frequency) and the highest or lowest instantaneous fre-
quency it attains when frequency modulation is performed. Thus, the devia-
tion is proportional to the amplitude of the modulating signal. Finally, the

modulation index is the ratio of the deviation to the modulating frequency.
Thus, the modulation index is also proportional to the modulating signal’s

amplitude when the modulating signal's frequency is constant.

HU

MEA
= 2 =

ES

nn nn

00204 06 08 L012 14 16 16 202.22
FREQUENCY (KHz)

{A}

to
ws 0.8
2 os
204 =
= o2t

% 0.20406 0810 12 14 1.6 18 202224

FREQUENCY (kHz)

(8)

Fig. 3-7. Action of wide-deviation frequency modulation. (A) Unmodulated

1-kHz carrier. (B) 100-Hz modulation, 200-Hz deviation.

96

AMPLITUDE

MUSICAL APPLICATIONS OF MICROPROCESSORS

4

(c)

aT tH i

(D}

ry

-

(E)

rr) 10
Oe 2 08

06 2 06
o4 z 04
02 = 02
i) °

0 0204060810 121416 18 202224 0 02 04 0608 1.012 14 16 18 20 22 24
FREQUENCY (kHz) FREQUENCY (kHz)

(Cc) (0)

10)
w 08 8
2 06
= 08 =
= 02

0
0 0.2 0.4.06 0.8 10 12 1.4 16 18 20 22 24

FREQUENCY (kHz)

(e)

Fig. 3-7. Action of wide-deviation frequency modulation (cont.). (C) 100-Hz
modulation, 400-Hz deviation. (D) 200-Hz modulation, 400-Hz devia-
tion. (E) 171-Hz modulation, 513 Hz deviation.

VOLTAGE-CONTROL METHODS 97

Perhaps a concrete example will help to clarify these terms. Figure
3—7A shows an unmodulated signal at 1,000 Hz and its spectrum, which, of
course, consists of a single line, at 1 kHz. In Fig. 3-7B, a modulating signal

of 100 Hz has been imposed, and its amplitude is such that the original
unmedulated signal now swings between 800 Hz and 1,200 Hz for a devia-
tion of 200 Hz. Now, one would probably expect the spectrum to spread out
and fill the area between 800 Hz and 1,200 Hz, but as the spectral plot
shows, such is not the case. Instead, individual sine wave component lines
have been added, some of which are even outside of the 800-Hz to 1,200-Hz

range. These added frequencies are often called sideband frequencies, a term
borrowed from radio transmission jargon. Actually, a close look at the mod-
ulated signal’s waveform reveals that its shape repeats exactly 100 times/sec.

So according to Fourier's theorem, component frequencies of this waveform
can only exist at multiples of 100 Hz as the spectral plot indeed shows. To
the ear, the result is a 100-Hz tone with a rather thin, horn-like timbre.

In the situation just described, the modulating frequency is 100 Hz,
the deviation is 200 Hz, and the modulation index, therefore, is 200 Hz/100

Hz = 2. Figure 3-7C shows the result of increasing the amplitude of the
modulating signal such that the modulation index increases to 4. Additional
spectrum lines are visible, and those that were present with the lower index
have changed somewhat in amplitude. The audible pitch is still 100 Hz due
to the continued harmonic spacing of 100 Hz, but the timbre is thicker, due
to more low-frequency content, and less horn-like due to greater spreading of
the spectrum.

A continued increase in the modulation index causes the formation of
an even wider spectrum to the point that the lower sideband frequencies try
to go negative. What actually happens, though, is that they are reflected
back into the positive frequency domain where they mix with other sideband
frequencies already present. The resulting amplitude of a mixed sideband
frequency (also a harmonic in this case) is dependent on the exact phase
between the modulating frequency and the modulated frequency.

Effect of Deep Frequency Modulation

If the modulating frequency is increased to 200 Hz and its amplitude is
adjusted so that the modulation index is equal to 2, then the waveform and
spectrum of Fig. 3~7D results. Note that the rclative amplitudes of all of the
spectral components are the same as they were in Fig. 3-7B except that they

are spread out to 200 Hz spacing. The ear now interprets this as a 200-Hz

tone. Thus, it seems that the apparent pitch of the trequency-modulated tone

is equal to the modulating frequency. Before jumping to this conclusion,

however, consider what happens if the modulating frequency is zor a submul-

tiple of the modulated frequency, such as 171 Hz. The result in Fig. 3-7E

shows the expected 171-Hz spacing between the sideband components, but

these frequencies are not harmonics of a common fundamental unless 1 Hz is

98 MUSICAL APPLICATIONS OF MICROPROCESSORS

AMPLITUDE (48)

8

i) 10 2.0 3.0 4.0 5.0 6.0 70
MODULATION INDEX

8.0 9.0

Fig. 3-8. Bessel functions plotted in decibels

considered a fundamental. The resulting inharmonic tone is still pleasant to
hear but the timbre is bell-like rather than horn-like. With larger modula-
tion indices, sideband reflection, and nonsubmultiple modulating frequen-
cies, a reflected sideband would typically not fall on the same frequency as a
nonreflected sideband. The result is a proliferation of spectrum lines and the
shattering glass sound mentioned earlier.

It should be apparent from the examples in Fig. 3—7 that the relation
between modulation index and sideband amplitudes is not a simple one. It is
predictable, however, with the aid of Bessel functions, some of which are

plotted in Fig. 3-8. If one wished to determine the amplitudes of the
sidebands of the Fig. 3-7B example, the first step would be to find the
horizontal position corresponding to the modulation index of 2.0. The Jo
curve at that position is the amplitude of the zeroth sideband, which is the
1,000-Hz center frequency, J1 corresponds to the first sideband pair at 900
Hz and 1,100 Hz, and so forth. Note that these amplitudes are with respect
to the unmodulated 1,000-Hz signal, which is given a reference amplitude of
0 dB.

Thus, if the modulating and modulated frequencies remain constant
and the modulation index changes, the spectrum undergoes a complex evolu-
tion. This can be a very useful musical effect and is called dynamic depth FM
timbre synthesis. With a voltage-controlled synthesizer, it is an easy tech-

nigue to apply and produces dramatic effects with relatively few synthesizer
modules.

VOLTAGE-~CONTROL METHODS 99

SINE TO FURTHER
veo | our PROCESSING

€XP| EXP2 LIN

RATIO
CONTROL

MAIN
FREQUENCY
CONTROL
VOLTAGE

TRIGGER
ENVELOPE

GEN
GATE

Fig. 3-9. Patch for dynamic depth FM

Patch for Dynamic Depth FM

Figure 3-9 shows a possible patch for dynamic depth FM. VCO 1 is the
primary VCO, which provides the modulated signal. VCO 2 supplies the
modulating signal. VCO 1 is modulated by VCO 2 through an auxiliary
linear contral input. This is necessary for the preceding analysis to be valid.

Note that the main frequency control voltage is connected to both VCOs.
Since these control inputs are exponential, the “ratio” voltage level deter-

mines the ratio between the modulated signal’s center frequency and the
modulating frequency. If, for example, it was set co 2 V, then VCO 1
(anmodulated) would track VCO 2, but two octaves higher. The modulation

depth is set by a VCA controlled by an envelope generator.
Thus, if chis setup were connected to a keyboard, for example, the

keyboard output voltage would control the frequency of both oscillators, but
VCO 1 would always be four times higher in frequency than VCO 2. The
apparent pitch of the generated tones would be equal to the frequency of
VCO 2. The trigger and gate signals from the keyboard would be connected
to the envelope generator, which, in curn, produces the control voltage that

derermines the modulation index, and thus the spectrum of the tone. For

producing actual notes, the output of VCO 1 would at the very least pass
through another VCA controlled by the same or another envelope generator
in order to apply an amplitude envelope.

Changing the ratio voltage also affects the modulation index and, if not
set for a simple ratio, resules in inharmonic spectra. This voltage could even
be set so that the modulated signal's center frequency is ées than the
modulating frequency. One point should be kept in mind as the parameters
in the system are varied. With the linear input to VCO 1, it is possible to

specify a megative instantaneous frequency. The most popular VCO designs

100 MUSICAL APPLICATIONS OF MICROPROCESSORS

will simply cease oscillating under this condition and thus invalidate the
analysis as well as creating a suddenly harsh sound. Designs are possible,
however, that will oscillate in opposite phase if the instantaneous frequency is
negative. With this type of oscillator, the analysis holds and there need be no
concern about negative frequencies.

4
Direct Computer

Synthesis Methods

Although voltage-controlled synthesis methods are very flexible and very
popular, they are not the last word. Even though much work with direct
computer synthesis predates widespread application of the voltage-control
concept, it will be described here as an alternative to voltage control. As a
matter of fact, the earliest extensive direct computer synthesis program
actually used imaginary “modules” that corresponded closely to the voltage-
controlled modules described in Chapter 3.

Before starting, it should be mentioned that the techniques about to be
described do not include the timed program loop method utilized by numer

ous computer “music” demonstration programs. These are nearly always

monophonic (one note at a time) and utilize rectangular waves exclusively.
Some even rely on the pickup of electrical noise from the computer on an AM
radio or the sound of line printer hammers striking paper to produce “tones.”
Polyphonic timed loop programs, usually for three voices, do exist, but their
output is narrow pulses, which tends to sound like a reed organ played

through an acoustical phonograph! The musical value of these programs, if

any, is limited to teaching pitch and rhythm to young children.

Limitations of Voltage Control

Let us first describe some of the very real limitations of voltage-
controlled equipment and techniques. Accuracy is one problem. Although it
has been shown that extreme accuracy in the final result may be undesirable,
accuracy in the intermediate stages, which may then be degraded in a con-
trolled manner, is very desirable. For example, in the FM patch just de-
scribed, if the spectrum is harmonic and frequency components are reflected,
they mix with unreflected frequency components, and the resulting
amplitude is a function of the phase relationship between modulating and
modulated signals. However, since the oscillators are not exact, they will not
be at exactly the frequency ratio desired. The result is that the phase between
the two is drifting continuously, and thus the spectrum is changing continu-

101

102 MUSICAL APPLICATIONS OF MICROPROCESSORS

ously when it should be standing still. Although this shifting spectrum may

often be desirable, it would be nice if the speed and degree of shift could be
controlled rather than left to chance. Even if the frequency ratio were exact,

there is generally no way to control the actual phase with voltage-controlled
equipment. If nothing else, precise control of impreciseness is useful for
cteating contrast among mechanical, rich, and sloppy effects.

Historically, voltage-controlled oscillators and filters have had the most

serious accuracy problems. The reason is that the exponential converters used

are not ideal devices. They are highly sensitive to temperature, and “‘parasit-
ic” physical defects also reduce their accuracy at the extremes of the audio

range. Tremendous improvements in accuracy and stability have been made
over the years, however, so that today it is possible to make a VCO that is
adequately accurate at a reasonable cost. However, even small improvements
beyond this come at a great increase in cost and complexity. Voltage-
controlled amplifiers had been Jess of a problem in the past, but the complex
patches of today routinely use VCAs to process control voltages in the fre-
quency control paths of patches. The result is that inaccuracy in the VCA
will translate into frequency errors that are easily heard.

One of the characteristics of direct computer synthesis is that extreme
accuracy is inherent. The “standard precision” arithmetic in most computer
systems is good to about seven decimal digits or one part in 10 million. If

improved accuracy is desired, the “cost” of obtaining it is fairly small. Thus,
the question of accuracy in the control of sound parameters generally need
not even be raised.

Simultaneous Sounds

The maximum number of simultaneous sounds available is another
voltage-controlled synthesizer limitation. One aspect of this limitation is
that a fairly large number of modules is needed to generate and control a
single sound. To even simulate a small chamber orchestra all at once with a
synthesizer would be out of the question, The other aspect is the limitation of
the performer in controlling a number of sounds with a number of parameters
each. Thus, almost all synthesizer music is produced with the aid of a
multitrack tape recorder. Only one part or voice of the music is performed
and recorded at a time, and the parts are later combined by mixing the tracks
together.

The multitrack recorder would seem to be a complete solution to the
simultaneous sound problem with the only disadvantage being that the
synthesis process is taken out of real time. However, this is not the case. As a
simple example, consider a rapid run (fast series of notes) on an instrument
with che amplitude envelope characteristics of a piano. Assuming initial
silence, the envelope of the first note struck would rise rapidly and then fall
slowly. Shortly afterward, the second note would be struck, burt, since the
first note has not yet died away, there are now two simultaneous sounds. The

Direct COMPUTER SYNTHESIS METHODS 103

third note would increase the number to three and so forth. At some point,
the first note would be so faint that it could be ignored, but it is not clear

exactly how many simultaneous sounds were built up, although it is certainly
not more than the number of notes in the run.

A similar run on a synthesizer keyboard would create a very different
result even if the timbre and envelope of a single note was identical co the
previous instrument. In this case, the first note struck would start an en-
velope identical to the previous case, but, when the second note was struck,

the pitch of the tone would immediately be updated to the second note’s
frequency and a new envelope segment would be started. Thus, simultaneous
sounds are not created, which should be obvious since only one tone oscillator
was involved.

Theoretically, this could be corrected with the multitrack tape recorder
by recording each note of the run on a separate track, although such a
procedure would not really be practical. The problem could also be partially
solved by using a digital scanning polyphonic keyboard and enough modules
to create up to, say, eight simultaneous independent tones. Even if in the
ideal case there were more than eight simultaneous sounds, the effect of

abruptly terminating the first when seven others are still sounding would
probably go unnoticed. The important point is that such a need for latge
numbers of simultaneous sounds may occur only rarely in a composition.
Either all of the equipment or effort needed for the worst case must be
available or the problem must be ignored.

In direct computer synthesis, a virtually unlimited number of simulta-
neous sounds may be built up when circumstances dictate. The cost of this
capability is borne only when the event occurs. During other times, when the

sound is simpler, the ability to handle large numbers of simultaneous sounds
is free! This applies to other capabilities as well. The effect is like being able
to rent additional synthesizer modules by the minute from a company with

an essentially infinite inventory.

Programmability

The difficulty in controlling a number of simultaneous sounds to a
great degree by a single performer is also overcome in direct computer
synthesis systems. The control problem ts actually one of time: during real-
time performance, there is simply not enough time available for the per-

former to attend to very many variables. In the typical direct computer

system, the control functions are programmed to any degree of detail desired
and without time constraints. An intricate passage of only 10 sec duration
may be fussed over for hours to get all the parameter variations right and then
be immediately followed by a long solo requiring very little effort to specify.
In a nutshell, the limits of complexity are determined by the imagination
and patience of the composer and not the equipment or technique of the

performer.

104 MusicaL APPLICATIONS OF MICROPROCESSORS

Sequencer modules are one attempt to add a programming capability to
the conventional voltage-controlled synthesizer, although they typically have

a small capacity and only control a few variables. However, more sophisti-

cated sequencers based on microprocessors or minicomputers can extend
voltage-controlled system programmability to the point of rivaling direct

computer techniques.
Experimentation in new sound generation and modification techniques is

much easict in a direct computer synthesis system than designing, building,
and troubleshooting precision electronic circuits. A “module” or processing
clement is nothing more than a subprogram in the direct computer systhesis

system. A severe modification may amount to nothing more than typing ina
few dozen words of program code. A disastrous error requiring complete
redesign of the process wastes only the #me spent on the faulty design, not

numerous precision electronic components. Also, many of the modification

techniques now under development are simply not possible with conven-

tional analog techniques.

Direct Computer Synthesis Problems

Lest the preceding seem as if direct computer synthesis is faultless, let
us look at some of its limitations given the present state of the art.

Direct computer synthesis is presently not a real-time technique except
in limited circumstances with fast computers. This means that once the
sound has been specified and programmed, the computer must “crunch” on
it for awhile before the sound is actually heard. The amount of time involved
depends on a great many factors. Obviously, computer speed has a great
influence, since a large campus mainframe may easily be 100 times faster
than a personal microcomputer. Sound complexity is another important
factor with the more complex sounds taking a greater amount of time.
Finally, operational methods of the computer make a big difference. When
using a campus mainframe, the delay berween program submission and
resulting sound can be many times greater than the actual computation time
because other people are using the machine. A personal system, on the other

hand, does not have this problem. The net result is that the time delay can
actually reach 1,000 times the duration of the sound being synthesized,
although common values are 10 to 100 times.

Programmability is simultaneously an advantage and a disadvantage of
direct computer synthesis. Many people see it as a disadvantage because the
“immediacy” of direct experimentation and improvisation is not present.
Instead, programmability requires considerable preplanning and foreknowl-
edge of the audible effects of various specifications and variations. A related
problem is an unwillingness to learn the basic programming concepts re-
quired to effectively use the technology.

Direct COMPUTER SYNTHESIS METHODS 105

Most people, including musicians and many engineers, view the com-

puter as a very complex device that is equally complex to use. In particular, a
complete lab manual for a large voltage-controlled synthesizer is usually not
very thick and covers most aspects of usage from how to turn it on to the

most advanced techniques possible with the equipment. In contrast, a man-
ual for a particular direct synthesis program may not be any thicker but

contains little or no background material and does not attempt to explore the
limits of the program. If the potential user asks for applicable background

material, he may be handed a hundred pounds of books and manuals, or
worse yet, told that nothing suitable exists.

A very practical difficulty with direct computer synthesis is that a
critical mass with respect to expenditures of money for equipment and time
for programming exists before “significant” results can be obtained. Signifi-
cant here means musically useful output as opposed to trite little demon-
strations. With voltage-controlled techniques and some imagination, only a
few hundred dollars worth of equipment and a stereo tape recorder are needed
to get a good start. Reasonable sounding results are obtained almost from the
beginning and improve from there. A computer system capable of equivalent
results with a direct synthesis program may cost from $4,000 on up. At this
time, a considerable amount of programming effort is also necessary to get
the “basic system” running. It should be noted, however, that once the
critical mass is reached, the fu// power of direct computer synthesis is available
with any extra expenditure going toward increased speed and convenience of

use,

Overcoming the Problems

Until now the preceding limitations have severely restricted the use of
direct computer synthesis, particularly following the commercial introduc-
tion of voltage-control equipment. However, many of these are now being
overcome.

The time factor is being improved substantially through the use of very
fast logic dedicated to the specific calculations needed for sound synthesis.
Personal computer systems, used only by the composer himself, eliminate
waiting time at large computer centers. The increased speed in conjunction

with improved man—machine interfaces and personal systems now means that

programmed control of the system can be supplemented with direct, interac-
tive control. Programmed control is still desirable for the final output, but

rapid interactive control can also be used for experimentation. The perceived
complexity of computers in general and programming in particular is being
overcome by easier to use computer systems and early introduction of pro-
gramming concepts. It is not unusual for elementary school students to

become very adept at programming using simplified languages. Hopefully,
books such as this will take some of the mystery out of the theoretical aspects
of direct computer synthesis. Even the critical mass problem is decreasing in

106 MUSICAL APPLICATIONS OF MICROPROCESSORS

severity as the performance/price ratio of digital electronics seems to double
every year.

These improvements in technology coupled with inherent limitless
capability would seem to indicate that direct computer synthesis will eventu-
ally oust all other methods in serious electronic music applications.

Sound in Digital Form

Computers deal with numbers and sound consists of continuously vary-
ing electrical signals. Somehow the two have to be accurately linked together

in order for direct computer sound synthesis to work at all. Fortunately, this
is possible with fewer limitations than might be expected.

The first problem to be solved is how to represent a waveform that can
wiggle and undulate in a seemingly infinite variety of ways with a finite

string of numbers having a finite number of digits. Intuitively, one would
probably suggest dividing the time axis up into a large number of segments,
each segment being a short enough time so that the waveform does not
change very much during the segment. The average amplitude of the
waveform over each segment could then be converted into a number for the
computer of vice versa. It would seem that the accuracy of the approximation
could be made as good as desired by making the segments small enough.

Let us take an example and see how small these segments must be for
high-fidelity sound-to-numbers and numbers-to-sound conversion. Figure

4-1A shows a 1-kHz sine wave that has been chopped into 100 segments per

cycle of the wave. The segment time is thus 10 usec. Assuming that the
desire is to generate the sine wave given the string of 100 numbers repeated
continously, the problem is to determine how good it will be.

Digital-to-Analog Converter

First, however, a device to do the conversion is needed. Such a device is

called a digétal-to-analog converter, which is usually abbreviated DAC. Such a
device accepts numbers one at a time from a computer or other digital source
and generates one voltage pulse per number with a height proportional to the
number. Thus, a DAC that is calibrated in volts would give a voltage pulse

2.758 V in amplitude if it received a numerical input of 2.758. The width of
the pulses is constant but varies with the type of DAC. For now, the pulse
width will be assumed to be very small compared to the spacing between
pulses.

Figure 4-1B shows the output from a DAC fed the 100 numbers
representing a I-kHz sine wave. As expected, it is a string of very narrow
pulses spaced at 10-ysec intervals. Each individual pulse or the number it
represents is called a sample because it gives the waveform amplitude at a
sample point in time. The frequency of the pulses is called the sample rate and
in this case it is 100 kHz. The sample rate is almost always constant,

Direcr COMPUTER SYNTHESIS METHODS 107

TIME (ysec)

(A)

i 10 psec B
10 at

0.8 |

06 |

04

0.2 |

e L
950 1,000

50 100 150 200 250
-0.2

~04

-06

-0.8

-10

TIME (sec)
(B)

s
. °

3-28
5 -50 a z -75 J

eT 99~—«I0! y 139201
FREQUENCY (kHz)

{Cc}

Fig. 4-1. (A) 1-kHz sine wave divided into 100 10sec portions. (B) Sine wave
approximation fram DAC. (C) Spectrum of B.

108 MUSICAL APPLICATIONS OF MICROPROCESSORS

although it is conceivable that changing it to match the current degree of

change in the waveform might be desirable.

As was demonstrated earlier, waveform appearances can be deceiving

when human hearing perception is involved so the spectrum of Fig. 4-1B is

shown in Fig. 4-1C. The interesting point about the spectrum is what is xot

present. One would think that distortion components would be spread

throughout the spectrum at perhaps reduced amplitude compared with the

desired 1-kHz component, but such is not the case for the 100-dB range

shown. The first visible extraneous component is very strong but occurs at 99
kHz, well beyond the range of hearing and audio recording devices. Thus,

the conclusion is that sampling of the 1-kHz sine wave at a 100-kHz rate is
more than adequate for its high-fidelity reproduction.

Proof of Fidelity

Some skepticism is expected at this point, so an attempt at an informal
proof will be made. Consider a string of narrow pulses of constant height as
in Fig. 4-2A. This is an exactly repeating waveform so its spectrum consists
of harmonics of 100 kHz. Note that at least for the harmonics shown they
are all of equal amplitude. Since the pulse widths must be finite, however, a
point is reached at which higher frequency harmonic amplitudes decrease. As
an aside, note also that a train of narrow pulses is the only waveform whose

spectrum is the same shape as the waveform itself.

If this pulse waveform is one input of a balanced modulator and an

accurate, pure I-kHz sine wave is the other input, the output would be
exactly the waveform shown previously in Fig. 4-1B. Recall from Chapter 2
that a balanced modulator is really a multiplier that produces an output that
is the instantaneous product of the two inputs. Examination of the two input
waveforms and the output shows this to be true. It should also be recalled

10
0.66
0.33

°

2 HE
0.66
-10 TIME (usec)

(ay

-20
—40
60

—80
O12 TMHe Ta

FREQUENCY (MHz)

(eB)

Fig. 4-2. Properties of a string of pulses. (A) String of narrow pulses. (B)
Spectrum of A.

Direct ComPurer SYNTHESIS METHODS 109

that if one input to the balanced modulator is a complex signal and the other
input is a sine wave, then each component of the spectrum of the complex
signal is split in half with one-half moving up and the other half moving
down in frequency an amount equal to the sine wave input’s frequency. This
in fact is exactly what happened in Fig. 4—1C to produce pairs of components
at 99 and 101 kHz, 199 and 201 kHz, and so on. The component at 1 kHz is

due to the fact that the pulse train had a de (zero frequency) component that
was also split in half. The upper half moved up to 1 kHz and the lower half
reflected through zero up to 1 kHz.

If desired, the spectrum of the sampled 1-kHz sine wave can be cleaned
up with a low-pass filter. It is not very difficult to construct a filter that has
essentially no effect at 1 kHz but that attenuates 99 kHz and higher frequen-

cies so much that they can be ignored. If the sampled waveform of Fig. 4-1B
were passed through such a filter all that would escape through the output
would be the single 1-kHz frequency component, which would, of course,
appear on an oscilloscope screen as a pure 1-kHz sine wave.

VERY SHARP
LOW-PASS FILTER:

FREQUENCY (kHz)

MUCH LESS SHARP
LOW-PASS FILTER

io 20 3 40 S80 6 7 8 99 100 II0

(B) FREQUENCY (kHz)

Fig. 4-3. Spectrum of sampled audio signals. (A) 50-kHz sample rate. (B)

60-kHz sample rate.

Setting the Sample Rate

Since reproduction of the 1-kHz wave was so satisfactory, how low can

the sampling frequency be made before the results are unsatisfactory? If, for

example, the sample rate was lowered to 50 kHz, then the preceding analysis

would predict a spectrum with a 1-kHz component, 49-kHz component,

51-kHz, 99-kHz, and so forth. Other than the need for a better filter, the

situation is just as satisfactory as before. In fact, if a very good low-pass filter

is available, the sample rate could be as low as a shade above 2 kHz or only a

little more than two samples per cycle of the sine wave. Obviously, the

110 MUSICAL APPLICATIONS OF MICROPROCESSORS

assumption that the wave did not change very much from sample to sample is

not necessary.
Of course, for sound and music a whole spectrum of frequencies must

be reproducible, not just single sine waves. Fortunately, a sampled arbitrary
waveform behaves just the same as a sampled sine wave. The spectrum of the
waveform is reproduced unaltered and then symmetrical pairs of copies
around each harmonic of the sampling frequency are also introduced. Figure
4-3 shows the result of a full 20-Hz to 20-kHz audio spectrum sampled at a
50-kHz rate, Since there is no overlap between the desired spectrum and the
copies, a low-pass filter can once again be used to eliminate the copies.

The preceding argument is equally valid for conversion of sound
waveforms into numbers. The waveform is first sampled with a balanced
modulator or its equivalent and then the sample pulse amplitudes are mea-
sured with an analog-to-digital converter (ADC),which is nothing more than

an ultrafast digital voltmeter, Each sample thus becomes a number that may

then be processed by the computer. No information about the curves and
undulations of the waveform is lost provided that the spectrum of the
waveform has no frequency components above one-half of the sampling rate.
Unfortunately, some natural sounds do have appreciable energy beyond the
audible range so a low-pass filter is needed to prevent these high frequencies
from reaching the sampler and ADC. Since these frequency components are
beyond the audible range anyway, the filter does not audibly affect the
sound. If signal frequencies higher than half the sample rate are allowed to

enter the sampler, their offspring in the copies will overlap the original
spectrum and will cause'distortion. Such a situation is termed aliasing and
the resulting distortion is called alias distortion.

Any Sound Can Be Synthesized

Figure 4-4 shows a block diagram of a complete audio-to-digital and
back to audio again conversion system. If the two low-pass filters are
matched and have infinite attenuation beyond one-half of the sample rate,
the waveforms at points A and B are exactly alike! Since the waveform at

point A is not audibly different from the input, this is truly a high-fidelity
system. The computer could also be programmed to supply its own stream of
numbers to the DAC, and it therefore follows chat the computer can produce
any sound. Note also that the system has no low-trequency limitation, thus
allowing signals down to de to be reproduced.

| COMPUTER

f

POINT A POINT 8

LOW-PASS
FILTER

LOW-PASS
FILTER ANY

AUDIO
SIGNAL,

aoc
INCLUDES
SAMPLER

20 kHz

Fig. 4-4. Digital audio system.

Direct ComPuTER SYNTHESIS METHODS 111

The foregoing has all been an application of Nyquist’s theorem, which
states in mathematical terms that an ADC or a DAC can handle signal
frequencies from zero up to a little less than one-half the sample rate with
absolutely no distortion due to the sampling process whatsoever. The low-
pass filters employed to separate the desired signal from the spectrum copies
determine how close to the theoretical one-half limit one can get. The main

requirement of the filter is that it attenuate spurious signals above one-half
the sample rate enough to be ignored while leaving desired signals below
one-half the sample rate unaltered. For high-fidelity applications, this means
that very little attenuation of frequencies up to 20 kHz is allowed and that 50
dB or more attenuation above 30 kHz is desirable, assuming a 50-kHz
sample rate. A filter that sharp is fairly difficult to construct but is in the
realm of practicality. Thus, a rule of thumb is that the sample rate should be
2.5 or more times the maximum signal frequency of interest with the larger

figures allowing simpler filters to be used. This is shown in Fig. 4-3B, in
which an increase in sample rate from 50 kHz to 60 kHz has reduced the
filter cutoff slope requirement by half!

The sample rate may also be reduced for lower fidelity applications.
Broadcast FM quality may be obtained at 37.5 kHz and ordinary AM radio
quality (which can be surprisingly good through decent equipment) could be
done at 15 kHz to 20 kHz. The advantage of lower sample rates, of course, is
a reduction in the number of samples that must be computed for a given
duration of sound. ‘

Signal-to-Noise Ratio

Of course, frequency response is not the only measure of sound quality.
Background noise is actually a much worse problem with standard audio
equipment. Figure 4-1C clearly indicated that the sampling process itself

did not introduce any background noise. However, when the samples are in
numerical form, only a finite number of digits is available to represent them,
and this limitation does indeed introduce noise. Such roundoff error is
termed quantization error because a sample pulse, which can be any amplitude
whatsoever, has been quantized to the nearest available numerical representa-
tion. Background noise due to quantization error is termed quantization
noise.

An actual ADC or DAC usually has a definite maximum signal
amplicude thar it can handle. A typical value is from — 10 to +10 V. Inputs
to an ADC beyond this range are effectively clipped, and numerical inputs to
a DAC beyond this range are converted into a value that fits. The 20-V range
is then broken up into a large number of gvantization levels, which is usually a
power of two, since DACs and ADCs are typically binary devices. The
number of quantization levels generally ranges from 256 to 65,536, which
corresponds to 2° and 2!© or 8 and 16 bits, respectively.

112 MUSICAL APPLICATIONS OF MICROPROCESSORS

Let us try to estimate the amount of background noise present in a
12-bit (4,096 level) DAC output so that the number of levels necessary for
high-fidelity reproduction can be determined. Twenty volts divided by 4,096
equals 4.88 mV per level. Thus, the 500th level would be 2.44141 V and
would have to be used for all desired valtages between 2.43895 and 2.44384
V. It is reasonable to assume that if the desired voltage level falls in this
range, it is equally likely to be anywhere in the range and the same should be
true for any other quantization level. Thus, the average error (difference
between desired level and the nearest quantization level) is one-quarter of the
difference between quantization levels. This works out to an average error

amplitude of 1.22 mV. The maximum signal amplitude without distortion
is 10 V. Therefore, the maximum signal-to-noise ratio is 10/
0.00122 = 8,192. Expressed in decibels, this is about 78 dB. Actually, due

to an oversimplified analysis, the average noise amplitude is really one-third
of the quantization interval; thus, a more accurate figure is 76 dB.

If the number of quantization levels were doubled (one bit added to

make 13), the denominator of the previous equation would be halved, result-
ing in an increase in the signal-to-noise ratio of 6 dB. Eliminating a bit
would subtract 6 dB from the signal-to-noise ratio. In real DACs and ADCs,

the quantization levels are not perfectly spaced or perfectly equal in size.
Such imperfections add about 4 dB to the noise level. Thus, the signal-to-
noise ratio that can be expected is approximately 6 dB times the number of
bits in the DAC or ADC.

Compared with standard audio equipment, the 72 dB available from a
12-bit DAC is quite good, in fact better than any program source available to
consumers and better even than much professional recording equipment. An
increase to 16 bits is achieved by the newer direct synthesis installations, and
one has dynamic range far exceeding any available recording device!

As a result, direct computer synthesis utilizing a 50-kHz to 60-kHz
sample rate and 16-bit DACs is capable of unsurpassed audio quality. At the
other end of the spectrum, 15 kHz to 20 kHz with 10 to 12 bits gives AM
tadio quality that is quite sufficient for experimentation, Rates as low as 8
kHz to 10 kHz with 8 bits are suitable for demonstrations and telephone
quality but with the bass present.

A Typical Direct Computer
Synthesis Installation

Until recently, very few of the computer installations used for music
synthesis were used exclusively for that purpose. Most of them were just large
campus of corporate computer centers with the added equipment necessary
for digital-to-analog conversion and occasionally analog-to-digital conver-
sion. One property of classic direct synthesis is that only a small portion of
the expense and size of the equipment necessary is specialized for sound

Direcr Computer SyNTHEsIs METHODS 113

generation; the rest is standard computer gear that would be present anyway.
Thus, in such cases in which the computer center already existed, the initial

investment in sound synthesis was small. However, as we shall see later, the

calculations necessary to produce the millions of samples needed for even a
short musical piece can eat up large blocks of computer time, which, on the
large machines, is priced by the second. Thus, as a practical matter, usage of
the installation was budget limited after all.

Today it is possible for a music or electrical engineering department to
have its own minicomputer installation with the hardware necessary for
direct computer synthesis. Furthcrmore, these small, inexpensive computers

have as much if not more power than the large mainframes of a few years ago.

Although these systems are Jess convenient to program for sound synthesis,

they are much more convenient to use because the computer's resources are

not shared with hundreds of other users. Also, the cost of maintaining such a
facility is no longer directly related to the running time of direct synthesis
programs. It is perfectly feasible to allow a program co run all night comput-
ing another iteration of the 2-min finale to a 20-min piece.

Microcomputers and personal computers are also at the point where it is
practical co consider their use in small direct synthesis systems for the pur-
pose of experimentation and increasing flexibility. The power of these ma-
chines is surprisingly good with newer models on the brink of introduction
equaling the power of minicomputers three or four years ago. Mi-
crocomputers are casily interfaced with conventional synthesis equipment for
computer control applications such as automatic patching or sequencer use.

With the proper peripheral equipment, they can do as good a job of direct
synthesis for unique or otherwise impossible effects as more expensive sys-
tems although at a slower speed. The personal computer user, however, has

only himself to please, so program running time is even less of a factor than
with dedicated minicomputer installations.

Minimum System

Figure 4-5 shows the minimum hardware complement necessary for
direct computer synthesis. Note, however, that the only device limiting the
quality and complexity of the sound is the DAC and audio tape recorder for

1BM TYPE
TAPE DRIVE
OR VERY
LARGE DISK oO

PROGRAM —
ENTRY AND COMPUTER
EDITING it —

I eel
AUDIO TAPE
RECORDER

Fig. 4-5. Minimum system for direct computer synthesis.

114 MUusICAL APPLICATIONS OF MICROPROCESSORS

recording the results. Otherwise che fu// power of the technique is available on

this system. More elaborate sctups can materially improve speed and conven-

ience of use but do not directly improve the sound itself.
The program entry and editing facility is probably the most crucial in

providing an easy to use system. Music of significant complexity requires
dozens and even up to hundreds of pages of typed sound specifications, music
notation adapted for computer use, and other instructions. The ability co
easily enter and edit this information is of great importance. Perhaps the least
desirable medium for this task is the old punch-card and printer listing
approach. Use of a CRT terminal is probably the most desirable of all

standard computer input techniques. Dedicated and personal installations
may use any technique that is appropriate or affordable, although the CRT
terminal approach is still the most likely.

The computer itself is not really very important. If one of the “canned”
direct synthesis programs is to be used, the computer must be able to accept
the language it was written in and have sufficient memory to hold the
program. Speed is important, since it directly affects the running time of a
synthesis program. The computer also should have ‘autorhatic multiply and
divide,” a feature that increases the effective speed of most synthesis pro-
grams by a factor of five or more.

Storage of Samples

It is safe to say that any serious direct synthesis program computing
nontrivial music will not run in real time. This means that the 10,000 to

50,000 samples needed for each and every second of sound simply cannot be
computed as fast as they are used. Also, without a great deal of difficulty and
loss of efficiency, the rate that can be computed varies erratically according to
sound complexity and other factors. Thus, the universal approach is to
compute the samples at whatever rate the program runs and save them on a

mass storage device capable of holding at least a couple million samples. An
IBM-type computer tape drive is probably the most economically suitable
device. A single $20 reel of tape can easily hold in excess of 10 million 16-bit
samples, giving an uninterrupted running time of over 3 min at 50 kHz.

Large computer centers can also be expected to have enough disk capacity to
hold a sizable number of samples, which offers several advantages over tape.

After the samples have been computed and stored away, they must be

passed through the DAC ar the final intended sample rate. The obvious way
to do this is to read the samples back from the mass storage device and
transfer them at a constant rate to the DAC. For high fidelity, however, the
sample rate must be rock steady; even a few nanoseconds jitter will increase
the background noise level substantially. Thus, the DAC would typically
have its own crystal clock and at least one sample buffer. The computer
servicing the DAC for playback must be able to provide the next sample

Direct COMPUTER SYNTHESIS METHODS 115

before the current one is finished. What this all means is that the computer
must usually be totally dedicated to the task of reading samples and sending
them to the DAC. Unfortunately, the operating systems of most large com-
puters are unable to insure uninterrupted execution of a single program so
music playback must be done in a stand-alone mode.

Often the expense of monopolizing the resources of a large computer
cannot be borne so the disk or tape containing the samples is played through
a DAC connected to a minicomputer. In the past, it was fairly common
practice to build a specialized hardware device for reading sample tapes. The
design of such a device was complicated by the fact that data on computer
tape is grouped into records of perhaps 3,000 samples each with gaps of
several hundred samples equivalent between. The playback device thus re-
quired a substantial buffer memory to insure the uninterrupted flow of data
to the DAC. Of course, mini- or microcomputer installations for direct

synthesis should not experience any of these problems.
Sometimes the tape drives available on smaller systems may not be fast

enough to provide the desired sample rate. This limitation may be compen-
sated for by running the DAC at half of the desired sample rate and operating
the audio tape recorder at half of the intended tape speed. Then when the
audio tape is played at full speed, the desired sample rate will have been
attained. One difficulty with this approach is that the high-frequency equali-
zation of the audio recorder is switched according to tape speed, which would
be expected to alter the high-frequency response somewhat. A more severe
problem is that during recording bass frequencies down to 10 Hz will be
generated but may not record. When played back at double speed, a distinct
loss of bass is the result. Also, any power line hum in the recording will be
reproduced at a much more audible 120 Hz.

As mentioned earlier, the low-pass filter following the DAC is critical.
One might think that if the sample rate is above 40 kHz a filter is not needed
at all, since all unwanted frequencies are above the audible range anyway.
However, since these frequencies are so strong, they can easily mix with the

bias oscillator in an audio tape recorder and result in audible beat notes.
Thus, a filter of at least moderate effectiveness is required with high sample
rates. The filter becomes more critical at the lower sample rates used for

experimentation because these unwanted frequencies are audible and sound
terrible. Sharp cutoff low-pass filter design will be discussed in detail in

Chapter 12.

Computation of Sound Waveforms

Now that it has been established that computers can generate sound of
the highest quality directly, the next topic of interest is the techniques used
for computing sound waveforms. Although one could theoretically sit down
at a computer console and type in sample values, just about anything that

116 MusicAL APPLICATIONS OF MICROPROCESSORS

could be done without recourse to a pocket calculator would sound like white
noise on playback. The problem is similar to the one experienced when
drawing waveforms directly onto movie film. Of course, this does not even
address the difficulty of providing tens of thousands of samples for every
second of sound output.

In this section, a general overview of practical methods of sound
waveform computation will be presented. A more detailed description of
these techniques and others along with example programs will be given in

Section II.

Sin and Other Built-in Functions

An obvious method of generating a single sine wave with a computer is
to use the sin function found in nearly all high-level programming lan-
guages. The general expression for the Nth sample of a sine wave of fre-
quency F and amplitude A is Sx =Asin(2aFT/Fs), where T is time in
seconds and Fs is the sample rate in hertz. Since time and sample number are

directly proportional and the sample rate is constant, considerable computer
time may be saved by defining a constant K = 277/Fs and using the form
Sn = Asin(KzF). Samples for the sine wave are computed simply by defining
values for the variables A and F and then evaluating the expression for sample
numbers 0, 1, 2, up toM, where M/Fs is the duration in seconds desired for
the wave.

Of course, during the calculations the values of A and F can change.
Often separate expressions that are also evaluated every sample time deter-
mine the value of A and F to be used in the “tone generation” expression
given above. Thus, amplitude envelopes, amplitude modulation, and fre-
quency modulation are all very easily accomplished.

Other waveshapes may be easily computed even though a built-in
function for the desired shape is not provided by the computer's program-
ming language. A sawtooth wave, for example, is defined by the expression

ne Se = ALA MOD 1.0) — 1]

where the mod function gives only the remainder when the expression to its
left is divided by the expression to its right. A triangle wave may be formed
from sawtooth samples by applying

Sn = 2A (i are
TRI TRI SAW 2

One must be careful when directly computing complex waveshapes
with sharp corners and vertical lines because alias distortion can occur. When
these waves are computed, they are computed perfectly with all of their
harmonics up to infinity. However, those harmonics that exceed half the

Direcr Computer SYNTHESIS METHODS 117

sample rate will be reflected back down into the audible spectrum and cause
distortion. The problem, is generally not severe as long as these waveforms are
held co low frequencies, but it does prevent use of these shapes as fundamen-
tal basis waves such as is done in the voltage-controlled synthesizer.

Fourier Series

Probably the most flexible method of generating waveshapes by com-
puter is to use the Fourier series. Individual sine wave harmonic (or specific
nonharmonic) frequencies can be computed at selected phase angles and

amplitudes and summed together to produce a composite waveform. Any
problem with alias distortion due to high harmonics is circumvented by
simply omitting those that exceed half the sample rate from the calculation.
Of course, the amplitudes of individual components may be continuously
varied for a changing spectrum shape. The effect of a filter with any arbitrary
frequency response may be simulated by multiplying each harmonic

amplitude by the filter response curve amplitude at the corresponding fre-
quency.

Simultaneous Sounds

Simultaneous sounds are easily done by computing the string of sam-
ples for each sound and then simply adding the strings of samples together to
get one string for the composite sound. Fortunately, the same effect is
realized if one sample for each sound is computed and then the samples are
added producing a single sample for the composite sound, thus greatly
reducing storage requirements. The loudness of each sound in the combina-
tion can be easily controlled by multiplying its samples by a gain factor for
the sound. It is a typical practice to compute all waveforms at the same

amplitude level and then adjust their relative amplitudes when the sounds
are mixed.

Since the DAC, which will eventually receive these composite samples,

can only handle a limited range of values, it is usually convenient to define

this range as being between ~1.0 and +1.0 and then scale the samples
immediately before being sent to the DAC. This allows the sound generation
programming to be independent of the actual DAC that will be used for
playback. The amplitudes of the individual samples being summed up is
kept considerably below 1.0 so that there is no possibility of overflow and
distortion.

Updating of Parameters

The computation methods described so far are completely flexible and
allow the parameters of sound to be changed at will at any speed and in any
manner. Unfortunately, they are also very expensive in terms of the computa-

118 Musical APPLICATIONS OF MICROPROCESSORS

tion time required. A particulary bad case is the sin function, which is
usually very slow compared with the overall speed of the computer. In order
to improve speed, it is necessary to impose some restrictions so that simplify-
ing assumptions may be made. Of course, if a particular situation demands
full flexibility, it may be invoked for the particular sound or time under
consideration without affecting the computation efficiency of other sounds or
portions of the piece.

One simplifying assumption ts that amplitudes, frequencies, spectra,
and other parameters of the sounds being synthesized do not change rapidly.
Thus, the programming that computes these parameters from other data can

be done at a slower rate than the waveform computation itself. For a 50-kHz
sample rate, it may be convenient to evaluate these slow-moving parameters

every 25 samples rather than every sample. This, of course, reduces the

computational load of these calculations by a factor of 25 but still gives a half
millisecond timing resolution—a factor of 10 to 20 better than hearing

perception. Since it is these slower variations that add most of the interest to
sounds, they may now be made more complex without appreciably extending
the coral computation time for the piece.

Table Lookup

Another assumption is that waveforms change little, if any, from one
cycle to the next. Thus, one cycle of the waveform may be placed in a table
and then table lookup techniques applied to quickly retrieve the samples.
Most computers can perform a table lookup in considerably less time than
even a simple sample computation. Unfortunately, implementation of the
technique is complicated somewhat by the fact that, for most frequencies,
there is a nonintegral number of samples per cycle of the waveform. The
problem is solved by tabulating the waveform at a frequency for which there
z an integral number of cycles per sample. When table lookup is required at
a different frequency, the table lookup routine, for example, might be re-
quested to “find the 8.763rd entry” in the table. Interpolation between the
8th and 9th sample may be performed or, if the table is large enough, the
nearest tabulated entry, which would be the 9th, would be used. There is
thus a tradeoff between table size, lookup time, and sound quality, since
errors result in background noise being added to the waveform. Since the
costs of memory are declining faster than the speed of memory of computers
is increasing, table lookup without interpolation is a frequently used tech-
nique. In fact, completely table-driven synthesis programs are possible. Note
that the table method can also be applied to envelopes and any other curve
that is likely to be used more than once. Table lookup methods will be
studied in detail in Chapter 13.

Drrecr COMPUTER. SYNTHESIS METHODS 119

Hardware Aids

Another way to increase computation speed is to connect some
specialized hardware to the computer that is designed to be especially effi-
cient in the calculations typically needed for music. For the microcomputer

user, a hardware multiplier would be of great benefir if his microprocessor
chip does not have multiply and divide built in. The difference in processing
speed can easily be 10:1 over multiplication in software and might result in

a three- to fivefold increase in overall music program speed. The multiplier
could be expanded into a multiplier-summer, which would speed up sum-

of-products calculations such as a Fourier series. A full array processor nor-
mally performs high-speed operations on matrices and vectors such as mul-
tiplication, addition, and even inversion. In sound synthesis, it could be used

to compute several samples of several sounds at once and thus greatly speed
things up. A device known as a “fast Fourier transform processor” is specifi-
cally optimized for computing Fourier transforms. Although normally used

to rapidly compute the spectrum of a waveform for sound and vibration
analysis, most can also compute a waveform given the spectrum. Although

there are limitations in using a Fourier transform processor for generating
changing waveforms, its availability can be a great asset.

Digital Sound Modification

Nearly all of the sound modification techniques described in Chapter 2

can be easily implemented in a direct computer synthesis system. Spectrum

modification by means of filtering can be accomplished with digital filters.
Actually, a digical filter is nothing more than an equation that specifies the
Nth output sample as a function of several previous input samples and some
filter response parameters. A special case is the recursive digital filter, which

only uses the previous output sample and the current input sample along

with response parameters to produce an output sample. All of the common
filter amplitude response shapes such as low-pass, bandpass, and high-pass

are easily done with recursive digital filters. Arbitrary response shapes can
also be done in a straightforward manner with nonrecursive digital filcers.
Calculation time is longer with these, since several up to several hundred

previous input samples are evaluated to produce the output but the response
shapes produced would be very difficult to duplicate with recursive digital or
analog filters. As with all other direct synthesis techniques, there is no real
limit to the number of digital filters that may be in use simultaneously.
Usually the programming is done with a small group of routines for the

different general cypes of filters and then the characteristics of specific filters
in use at the time are simply numbers stored in a table in memory

120 MUSICAL APPLICATIONS OF MICROPROCESSORS

Reverberation and chorus effects previously described are also easily

done. One of the simplest operations in a direct synthesis system is delay. All

that is required for delay is a memory buffer and a simple program for storing
current samples into and withdrawing delayed samples from the buffer. Very
little computation time is required for a delay function, although the buffer
memory could become substantial for long or multiple delays. Delay times
are easily varied in whole sample increments and interpolation may be used
for even finer increments. Thus, all methods for reverberation and chorus

may be applied directly and even refined considerably. If time is no object,
the characteristics of a particular concert hall may be duplicated using only
the waveform of a spark discharge (or other repeatable sharp sound) recorded
in the actual hall for input.

The tape-splicing methods covered earlier can be done also and with

great efficiency. Generally, the computer system should have a large disk
storage facility for quick access to a library of recorded natural and synthetic
sounds. The largest part of such a sound-editing system is simply the book-
keeping needed to keep track of sound fragments in various stages of comple-
tion. The actual cutting and splicing operations could be done at a graphic
display console showing actual waveforms or spectra with a light pen to
specify the cut or splice points.

One modification technique that does not always work well when done
digitally is nonlinear waveshaping. Since clipping and other waveshape dis-
cortions are likely to generate strong high-frequency hanmonics, alias distor-

tion can become a problem. If necessary, the distortion operation can be done
at a much higher sample rate at which the alias distortion is less of a
problem, then digitally low-pass filtered to less than half of the system
sample rate, and finally resampled. Fortunately, such gross distortion tech-

niques are seldom needed when more refined techniques are available.

Music Programming Systems
and Languages

Although most of the calculations required for direct computer synthe-
sis are fairly simple, it is not very practical to create a piece of music by

programming the equations one by one as needed and then assembling
everything as one large, highly specialized program. Instead, general-

purpose music programming systems are used. Besides reducing redundant
programming effort, a music programming system provides the framework
necessary for the orderly utilization of the infinite flexibility of direct com-
puter synthesis. Also such programming systems make it possible for users

with little computer background to effectively, if not optimally, utilize the
system.

Two fundamental kinds of music programming systems can be readily
identified, A tightly structured system is planned from the start with specific

Direct Computer SYNTHESIS METHODS 121

goals in mind. In it are all of the elements and functions necessary for the
specification and computation of all sounds falling within the system goals.
A distinguishing feature of tightly structured systems is the presence of a
specification ot music language for controlling the system. A loosely struc-
tured system basically consists of a central data base and a collection of
programs for processing information into or out of the data base. The indi-
vidual programs in the collection are essentially independent and new pro-
grams may be written at any time. Systems of this type are usually the
product of evolution. Note that the programs comprising a tightly scruc-
tured system could easily be part of a larger loosely structured system.

Tightly Structured System

The music programming languages found in tightly structured systems

are entirely different from typical computer programming languages. One
type, which will be discussed in detail in Chapter 18, has a simplified
structure and therefore limited goals. NOTRAN, for example, was designed
for playing organ music. Due to this very narrow subset of possibilities
a great many simplifying assumptions could be made. For example, musical
conventions of pitch, duration, rhythm, and in fact conventional music

notation itself could all be utilized to simplify the structure and language of
the system. The calculations involved in computing the waveforms, en-

velopes, and other parameters were narrowed to specific types. The pro-
gramming necessary for these calculations was all done by the system im-

plementor and need not concern the user. In fact, the user need only translate
the written score for a piece into the NOTRAN language and then define a
number of parameters for each organ voice used in the piece. The NOTRAN
processor then interprets the translated score and voice parameters and sends
this interpreted information to the ‘‘prefabricated” sound computation
routines that actually compute the samples.

Statements within the NOTRAN language are placed in strict time
sequence from beginning to end. Program flow and music flow are identical
and linear from one statement to the next. Statements are of two basic types,
control and sound specification. Control statements make no sound and take
no time themselves but do influence events occurring after their appearance
up until another control statement of the same type redefines the control
function. Voice statements (which describe the timbre or “stops” of a

specified voice) and tempo statments (which determine the speed of playing)

are of this type.
Sound specification statements, on the other hand, do cause the genera-

tion of sound and take time in a musical sense. A single note statement, for
example, may consist of many separate note specifications, each correspond-
ing to an individual note in the score and all starting simultaneously. Con-
secutive notes each have their own note statements. Thus, notes in NO-

122 Musical APPLICATIONS OF MICROPROCESSORS

TRAN are specified in two dimensions: horizontally for different pitches at
the same time (harmony) and vertically for sequencing. A note specification
specifies a voice, a pitch, a duration, and an articulation (such as staccato).

Additional parameters describing the timbre of the specified voice are taken
from the last encountered corresponding voice statement. After a piece has
been coded in the NOTRAN language, the job is essentially over. The
complete specification of the sound is contained in the resulting string of
NOTRAN statements, and all thac remains to be done is to run the program

and record the results.
As can be seen, NOTRAN is highly structured and very limited. This

does not mean, however, that enhancements would not be possible. For

example, a couple of years after it was first defined and implemented, percus-
sion sounds were added. A percussive voice definition statement type was
added and percussive note specifications were formulated. This feature was
added, however, in a manner completely consistent with the existing struc-
ture of the system. With such a constraint, there are definite limits to

expansion.

Maximum Flexibility System

A second type of structured music system is similar but has as a goal
maximum usable flexibility. Even with such a goal it is still necessary to
make simplifications although not nearly as severe. The MUSIC V system,
for example, retains the concept of a note that is best described as an event. A

piece consists of a quantity of events, each starting at specified points in time
independent of their durations or other events. Another simplification is that
the system actually simulates an idealized, modular synthesizer similar in
concept to the voltage-controlled equipment described previously. For the
most part, sounds are generated by specifying the inputs and interconnec-
tions of imaginary modules that themselves must be specified. In most cases,
the user can actually think in terms of standard voltage-controlled modules
but with functions, accuracy, range, and quantity impossible to achieve
with real modules.

The actual music language associated with MUSIC V is quite different
from that of NOTRAN. In particular there is no parallel with standard

music notation. Instead, all of the information is in terms of physical sound
parameters such as frequency in hertz, amplitude in volts or decibels, time in
milliseconds, etc. Often tables of values are used to specify how each of these
parameters are to change with time during an event.

The MUSIC V processor is actually configured into three passes or scans

of the input data. During pass one, the services of a macroprocessor program
are available to allow certain repetitive statements to be generated under the
control of higher-level parameters. Also done during pass one is instrument
definition as a combination of predefined modules called wnit generators.
Integration of parameters in graphic form into the score is also possible. One

Direct CompuTEr SYNTHESIS METHODS 123

unique feature of the MUSIC V system is that during pass one the statements
describing instruments and notes do not have to be in time order. This
feature makes the macroprocessor more flexible and easily applied.

Pass two is a sorting program that sequences the output from pass one

into strict time sequence. At this point, some additional processing of
parameters that influence a number of sequential notes can be performed,
since the statements are in time sequence. For example, time scale shifts for
retards or fine frequency ratio control among simultaneous notes would
normally be done during pass two.

Pass three is the actual language interpreter and sound generation

program. It works much like the NOTRAN interpreter just described except
that it is much more sophisticated. One or two streams of samples may be
produced for monophonic and stereophonic sound, respectively.

Extending the MUSIC V system is much less restricted than with
NOTRAN. Most desirable expansions amount to writing additional process-
ing programs for pass one. For example, it would be possible to write a
processor that would convert a NOTRAN score into equivalent MUSIC V
complete with equivalent voices constructed from available unit genetators.
Additional unit generators or even entire instruments that are not conven-

iently described in terms of unit generators could also be added to pass three.

Loosely Structured Systems

Looking again at loosely structured systems, the data base is seen to be
the most important component of the system, in fact, the only Jink that
holds it all together. Several different kinds of data can be kept in the data
base. Using a hypothetical system as an example, it is obvious that sample
data representing a previously computed piece or sampled natural sounds

would be present. Curves of all sorts such as amplitude envelopes, spectrum
shapes, and actual waveforms would also be present. Finally, text represent-
ing perhaps statements in one or more music languages or just lists of

instructions would be there too.
The purpose of a program in the loosely structured system is to either

convert data from the data base into sound; take data out, process it, and put

it back in a different form; or convert external information into a suitable

form and enter it into the data hase. A sound output program is an example
of the first type because it would take sample data from the data base and
convert it to sound through the DAC. A reverberation simulator would take
sample data and perhaps a list of instructions from the data base and return
reverberated samples to the data base. A synthesizer program would take
language statements and curves out and produce samples. A macroprocessor
could cake statements in a very powerful, structure-oriented rather than
note-oriented music language and convert them into statements (probably
much more numerous) in a lower music language. This would circumvent
the immediate necessity of an interpreter for the new language. An input

124 MUSICAL APPLICATIONS OF MICROPROCESSORS

processor program might look at a keyboard interfaced to the system and
convert the key action it sees into music language statements or other suit-
able form. A sound analysis program could take sample data and produce
curves representing the changing patameters of the sound analyzed. Nearly
an infinite variety of possibilities exist for programs in such a system.

Using a loosely structured system is not unlike tape-editing methods for
producing electronic music. Initial sound material or language statements
are taken through a sequence of steps using various programs until the final
result is obtained. At intermediate points, the piece may exist as a number of
fragments at various stages of processing. Contrast this to a highly structured

system in which the entire specification for the piece is self-contained in a
string of language statements.

Because of its very nature, the loosely structured system is easily and
almost infinitely expandable. The only limitation is the structure of the data
base itself. Even that can be expanded by adding more data types, but a
proliferation of conversion programs could develop if many were added.

a

Wicroprocessors

The development of microprocessors and the subsequent refinement of
semiconductor memories to go with them will undoubtedly become the most
tmportanc technological breakthrough of this decade. Even now they are
finding their way into all kinds of products from microwave ovens to music
synthesizers. Eventually, it will become so cheap to apply computer intelli-
gence to products that it will be done almost automatically if even the
slightest need exists. However, such widespread application is still in the

future, alchough nobody really knows if that means 2 years or 10.
Returning to the present, the significance of microprocessors in music

synthesis is that the cost of doing things with computers is now much less
than it was a few years ago. For the most part, computer music techniques,
both direct and synthesizer controlled, were hypothesized and developed
years ago by well-backed institutions. So although no really new techniques
are made possible by microprocessors, the existing ones can now, or soon be,
utilized by individuals at a reasonable cost. Also, the low cost of components
makes practical the implementation of some of the grander schemes that have
only been hypothesized in the past.

Sequencers, for example, have been very expensive (compared to other

modules in a voltage-controlled system) and highly specialized devices. Their
innards consisted of dozens to a couple of hundred digital integrated circuits,
and their front panels had several dozen controls. Even with all of this, it
took only a few minutes of use to discover just how limited those devices
were. Now a microprocessor in conjunction with a few integrated circuits can
perform all of the functions of even the most sophisticated sequencers and
still be grossly underutilized. Panel control action and quantity can be
designed more for the convenience of the user rather than for the simplifica-

tion of logic circuitry. The microprocessor is inherently reprogrammable for
altered or enhanced function, although sequencer manufacturers may not

always encourage this. In fact, microprocessors today are often designed into
a product (not just musically oriented ones) as a cost-saving or performance-
improving measure and are not even mentioned in advertising literature or

125

126 MUSICAL APPLICATIONS OF MICROPROCESSORS

the user's manual. The reason given for such behavior is that users are not yet

sophisticated enough to handle the increased flexibility offered by pro-
grammability.

The forces necessary to change this attitude are already at work, how-
ever, because the increasing number of computers in use also brings on
incteased public awareness of their nature, and most importantly, pro-

grammability. In the 1960s, computers were so expensive that only large

corporation accounting departments and well-financed research organizations
could afford them. Consequently, there were very few people working with
and knowledgable about computers and programming. Now with inexpen-
sive business and school computers and particularly tens of thousands of
hobby computers, many more people are being exposed to programming

concepts. It has been proven many times with elementary school children
that programming itself is an easy skill to acquire, and what's more, is nearly

intoxicating when introduced properly. Thus, a mote aware public will
encourage designers of all microprocessor products, not just synthesis
equipment, to make available full flexibility through programming.

In this chapter, a cursory review of the history of microprocessors will
be given and the important characteristics of three microprocessor chips that
will be exemplified in Sections II and III will be outlined. Unfortunately, a
tutorial overview of microprocessor hardware and software fundamentals
would require an entire book this size to cover. For those unfamiliar with
computers in general, there are indeed several such volumes, at least one of

which should be read in conjunction with the remaining text of this book.

Those only familiar with a high-level computer language such as BASIC or
FORTRAN should also study the sections of those books devoted to machine
code programming. The discussion to follow will therefore assume some

familiarity with fundamental hardware and software concepts so that we may
concentrate on the specifics of music synthesis with microprocessors.

Microprocessor Terminology

The terminology that will be used very frequently in the discussions ta
follow needs to be defined. A microprocessor is the central processing unit
(CPU) of a computer system built with a small number of integrated circuits.
Most microprocessors are single IC chips, although the more powerful ones
may be a ser of up to six highly specialized ICs specifically designed to work
together. Standard logic components have also been put on a single printed
circuit board and marketed as “microprocessors,” but they do not fit the
present definition.

A microcomputer is a microprocessor with program memory, data storage
memory, and input and output means added. It is functionally equivalent to
the contents of conventional minicomputer cabinets. Recently, single-chip
microcomputers have become available. Although they satisfy the definition,

MICROPROCESSORS 127

the size of the memories and I/O system provided and the difficulty or
impossibility of expansion make them special-purpose devices unsuited for
most general-purpose computer applications. However, they do have signifi-
cant potential in music synthesis, which will be shown later.

A microcomputer system is a microcomputer with actual I/O devices
added. The ease of use and ultimate potential of the system is strongly related
to the speed and type of I/O equipment present. Also, the majority of the
cost of the system is due to I/O gear. A general-purpose system is one with a
sufficient software and I/O complement to be easily used for many types of
applications. For most work, this simply means that the system has program
development capability, program assembly or compilation capability, and
program execution capability. For nearly all of the musical applications of
microprocessors that will be discussed, a general-purpose system is a neces-
sity.

Brief History of Microprocessors

Although the history of microprocessors has been short, it has been very
interesting. Reviewing their history here is relevant because it gives an idea
of what to expect for the future. This is important in music synthesis because
today’s large computer techniques will be implemented on tomorrow's per-
sonal microcomputer. The dates given in this synopsis are not the manufac-

turer’s official introduction dates but rather the approximate dates of

availability of the devices to individuals and small businesses. Larger com-
panies undoubtedly had access to information and prototype chips well before
general availability.

The microprocessor started out as just an ordinary calculator chip that
was documented well enough by the manufacturer so that customers could

program it. Its initial use was simply to expedite the development of
specialized hand-held calculators and business machines such as cash regis-
ters. Shortly thereafter, the semiconductor manufacturers realized that,

whenever a microprocessor chip was sold, memory ICs to hold the programs

were also sold. In fact, it was often the case thar more money was spent on

memory than the microprocessor. Thus, the expense of developing ever more
sophisticated microprocessor chips was justificd on the expectation of in-

creased profits from memory device sales!

The First True Microprocessor

The first well publicized trae microprocessor was the 4004 from Intel,
first available in early 1972. “True” here means a device that works primarily

in the binary number system; is at least theoretically infinitely expandable in
program memory size, data memory size, and I/O capability; and can handle
text characters as easily as numbers. Such a device could, if the necessary

128 MUSICAL APPLICATIONS OF MICROPROCESSORS

effort were expended, be programmed to handle any kind of computer task
except at a slower speed. Intel marketed the 4004 strictly as logic replace-
ment where speed was not important but logic decision complexity was high
such as in traffic light controllers or automatic bowling pin setters. The 4-bit
word size, instruction set, and data memory-addressing method utilized by

the 4004, however, seemed quite strange to those already familiar with mini-
and maxicomputers, so they did not show much interest in using the device
for conventional computer applications. Another inhibition to its use by
individuals and small enterprises was the virtual requirement that
specialized, mask-programmed! memory components from Intel be used.

The First Popular Microprocessor

Several months later, Intel made available the 8008 microprocessor.

This 8-bit machine overcame many of the problems of the 4004. It was
designed to be usable with standard memory components from a variety of
manufacturers. Its method of addressing memory was much more conven-
tional with program and data memory being identical. Also, it could directly
address without bank switching 16K bytes, an amount considered ample at
the time. Its instruction set was definitely limited but conventional enough
to be identified with the instruction sets of the smaller minicomputers. The
major limitations of the 8008 were slow speed and a rudimentary interrupt
capability.

This air of conventionality and familiarity, however, was the key to its
success and, in the opinion of some, the cause of sooner-than-expected use of
microprocessors as minicomputer replacements in many applications. What

was actually being offered was not a cheaper way to make traffic light
controllers but a computer, with all of the capabilities and potential of other
much more expensive computers. People knowledgeable about computers
realized this and acted on it. University electrical engineering, chemical
engineering, and computer science departments launched microcomputer
projects so that each student could work with a real computer in lab sessions.
Entrepreneurs dreamed up small microcomputer-based systems and immedi-
ately set out to develop them. Hard-core hobbyists started building their
own computers around the 8008. The semiconductor manufacturers found
customers writing huge, complex programs and adding extra outboard logic
to the microprocessor to overcome the weaknesses that still remained.

The Dawn of Personal Computing

One event of major significance was the publication in one of the major
hobby electronics magazines in March 1974 of an article describing a build-

‘A mask-programmed memory device incurs a tooling charge of $750 to $2,000 and a
minimum order of 25 copies or more. Any change to the program requires a new
mask. Thus, such a technique is only suitable for large-quantity production.

MICROPROCESSORS 129

it-yourself computer based on the 8008. Although a handful of dedicated
hebbyists had been constructing computers from surplus parts as much as 6
years earlier, this was che first public exposure of the concept that computers
can make a fascinating hobby. Immediately, significant interest in the
MARK-8 arose along with three newsletter-type publications devoted to the
computer hobby. Hundreds of machines were eventually buile, which may
seem small until compared to only a couple dozen hobby computers in
existence prior to thar article.

Toward the end of 1974, Intel made available its successor to the 8008:
the 8080. This machine was indeed an enhancement of the 8008 and was

influenced heavily in its design by what people were coaxing the 8008 to do.
Among its improvements were a tenfold increase in speed, quadrupled
memory-addressing capability, unlimited stack length, and a number of
added convenience instructions to perform tasks that were found to be sub-
routines in nearly all 8008 programs. A few months earlier, National

Semiconductor introduced its IMP-16 microprocessor. This device (actually a
set of five ICs) was not just similar to a minicomputer, it was a full 16-bit
minicomputer CPU with multiple addressing modes and optional multiply/
divide (a sixth IC). For some unknown reason, probably related to the
marketing approach, it never caught on like the 8080.

The Altair 8800 Microcomputer '

The next milestone in the popularization of microprocessors has to be

the announcement in January 1975 of the Altair 8800 microcomputer kit by
MITS as a feature article in another major hobby electronics magazine.
Announcement is emphasized because machines were not delivered until

several months later. Nevertheless, tremendous excitement and quite a bit of

confusion was created by the announcement. The excitement was due to the
microprocessor chip used: the yet to be generally available, exceedingly

powerful (compared to the 8008) 8080. Also, the availability of a kit in-
terested many more people who were not skilled enough to acquire parts and

etch printed circuit boards themselves. One confusing factor was the price of
the kit; $60 less than the current price of the microprocessor IC itself, and
the kit contained cabinet, power supply, and several dozen additional ICs
and other parts necessary to support the microprocessor. Most could not

believe that the $360 8080 chip was actually included! This time thousands
of machines were ordered and delivered, and real magazines sprang up to
meet the tide of interest created.

MITS itself was completely overwhelmed with thousands of orders,
which explains the delivery délays that have since become commonplace in
the industry. Had they been able to deliver immediately, the subsequent
evolution of the hobby computer industry may have been entirely different
with one manufacturer in a position of complete dominance. As it was, the

130 MUSICAL APPLICATIONS OF MICROPROCESSORS

market was thrown wide open to dozens of small companies that materialized

to meet the demand.

Since the Altair used a parallel bus structure with sockets for plugging

in extra memory and peripheral equipment interfaces, these same companies

were able to effectively compete in the add-on market even after MITS

started delivering machines. This bus structure, now called the S-100 bus,

has become a defacto standard in 8080 systems because such a variety of

CPU, memory, and peripheral interface boards are available. Keen competi-

tion in the S-100 marketplace keeps prices low and innovation high.

In fact, the entire microcomputer industry, not just the hobby and

personal segment, is currently served by an unprecedented proportion of

small businesses, many operating from a garage but supplying high-quality

products. The cottage industry thus created is unparalleled in recent history.

The microprocessor chip is a great equalizer, allowing the success of products

designed with them to be more a function of the designer's creativity and be

less dependent on capital strength or marketing clout.

Computer Clubs and Stores

A matter of months after the Altair was announced, computer clubs
began to appear in major population centers and large university campuses.
Today there are hundreds of such clubs throughout the country whose dues-
paying membership is approaching that of amateur radio clubs, which have
been around for decades.

Along with clubs comes conventions, and there are currently four major

national events yearly and many more regional and commercial ones. These

conventions are expertly run affairs with scores of exhibitor booths, dozens of
conference sessions, and the inevitable flea market where once exceedingly

expensive computer-related items are now traded as freely as baseball cards.
Soon after clubs became a well-established phenomenon, computer

stores started to appear. Such stores specialized in computer kits and
factory-built models, computer-oriented electronic components, and books
about the subject. Their early success was fantastic due in part to the fact that
mail-order had been the only way to purchase these items. There are now
hundreds of such stores throughout the country with at least one in almost

every city of 100,000 population or more. Many of the stores have found,
however, that the hobby market must be supplemented by systems sales to
businesses in order to survive.

The Great Price Tumble

It is well known that the semiconductor industry is the only major
industry that seems to be trying to go bankrupt continuously. The prices of
their products always drop through periods of inflation and recession alike. A
product is not considered mature until identical copies are available from half

MICROPROCESSORS 131

of the companies in the industry. Competition is furious and price lists are
almost worthless because they are obsolete before being printed and most
prices are determined by negotiation anyway. Even so, prices are usually set

by what customers are willing to pay rather than manufacturing cost, which
itself is quite volatile.

Microprocessor products, however, seemed to amplify this behavior
severalfold. When introduced, the published price for the 8008 was $120 in
quantities up to 99 and a 40% faster version listed for $180. These were
exceedingly high prices for a single IC, yet most interested users gladly paid
it, grumbling only about the device's electrical fragility. The 8080 was
introduced at $360—tair, compared to the 8008, considering the 8080's
many advantages. However, the price was also high enough to be unattrac-
tive to hobbyists. The IMP-16 at $420 was a bargain in comparison.

Through most of 1975, the 8080 gradually became available and the
going price dropped below $200. The 8008 dropped even faster and could be
abtained for $40 to $50. However, in September of 1975, a well-known

calculator manufacturer announced, and simultaneously delivered, the 6502

microprocessor—at a price of $25 in single quantity! The 6502 was no slouch
either. It required less support logic than the 8080, was faster, and leapfrog-

ged the 8080's limited memory-addressing flexibility with 13 different ad-
dressing modes. This event precipitated the fastest and farthest price decline
ever seen, even by the semiconductor industry. In just a few months’ time,
prices on almost all microprocessors were at one-quarter and less of their
previous levels.

Since then the price tumble has continued and today an 8080, 6502,

and most other popular microprocessor chips can be obtained for $5 to $10 in
moderate quantities. Even in single quantity through mail-order dis-
tributors, first-run microprocessor chips can be obtained for less than $20.
Slower, more limited microprocessors for control purposes are down to $3 for
production, The SCMP microprocessor from National Semiconductor is an
interesting hybrid: priced for extensive use in cost-sensitive control applica-
tions but easy enough to program for use in some general-purpose applica-

tions. Speed was the only sacrifice made for low cost.
The reduction in memory prices has been only slightly less dramatic.

As was mentioned previously, the cost of memory can be expected to domi-
nate the cost of a general-purpose microcomputer. When the 8008 was

introduced, the least-expensive memory component available was the 1103
1K bit dynamic RAM at about $7 each. At this rate, an 8K byte memory
system, about the minimum for general-purpose application, would be
$450. Now the same memory capacity would only cost $30 for 4K bic
dynamic RAM components.

The net result of this fantastic price decline, besides total disorientation
of system designers who have lived through it, is that the microcomputer
part of a microcomputer system is now very minor indeed, cosewise. Systems

132 MUSICAL APPLICATIONS OF MICROPROCESSORS

are routinely built with all 64K of addressable memory present, making their
use much easier. Time-sharing software techniques are falling into disuse in
favor of a separate microprocessor for each task to be performed. For music
applications, it becomes practical to think about a microprocessor for every
voice or one buried in every module of a “digital-controlled’ synthesizer.

The Great Performance Spiral

In spite of the price declines, the performance of microprocessors has

steadily improved. In late 1976, Zilog, a spinoff company of Intel, intro-
duced the Z-80, a much improved 8080 that was still compatible with nearly

all 8080 software. The 6502 has been quadrupled in speed for premium
devices making it by far the fastest MOS microprocessor available. In 1976
the first single-chip 16-bit microprocessor appeared. The PACE mi-
croprocessor essentially replaced the earlier five-chip IMP-16. Although it
was somewhat slower, several enhancements eased programming and inter-
rupt restrictions. Digital Equipment Corporation, a minicomputer manufac-

turer, introduced the LSI-11, which was a microcomputer PDP-11 on one
board at a very attractive price. Many programming purists and hardware
designers consider the PDP-11 to be the ultimate perfection of 16-bit com-
puter architecture, and quite a few of these people have purchased the LSI-11
for their hobby systems. Also the LSI-11 is the only microcomputer so far to
offer hardware floating point instructions, normally a $5,000 option on
minicomputers! The most recently available 16-bit microprocessor is the
9900 from Texas Instruments, another one-chip machine. In many ways its

instruction set is similar to that of the PDP-11 but does have significant
departures. It is the only single-chip microprocessor (the LSI-11 uses five
chips for its microprocessor) so far to have hardware multiply and divide built
in. It is important to note that the instruction execution speed of these 16-bit
machines is roughly equivalent to 8-bit units, resulting in greater effective

throughput, particularly for the type of computation required in music
applications, Automatic multiplication and division of 16-bit quantities is a
particularly important feature for many music-oriented calculations such as
direct synthesis.

In the near future, 16-bit chips are expected from Motorola, Intel,
Zilog, and MOS Technology (recently acquired by Commodore). Lf the past
is any indication, these new introductions will be even faster and more
powerful than existing 16-bit units while maintaining considerable software
compatibility with the respective company's current 8-bit products. Prices
will probably be only slightly higher than high-performance 8-bit machines.

Existing and future 16-bit microcomputers will blur the distinction
between microcomputer and minicomputer to the point that there is none. In
fact, three very popular minicomputers have been implemented as mi-
cropracessors already: the LSI-11 previously mentioned, the Micro Nova
from Data General, and the 6100 from Intersil, which emulates the most

MICROPROCESSORS 133

popular minicomputer of all, the PDP-8. This means that software written
over the years for these machines can be run on their microprocessor equiva-
lents with only minor reconfiguration required. For music applications, this
also means that much of the minicomputer music research already done in
several universities can be applied to microcomputers at much lower cost.

Mass-Merchandised Computers

The most recent development in hobby and home computing is the
mass-merchandised, self-contained, home computer. Although just getting
started, it represents a significant turning point in the manufacturing and
distribution of such machines. First, the manufacturers themselves are large,

established companies who have been in the electronics business for some
time. Second, mass merchandising implies millions of units sold through
department stores and general merchandise catalogs.

At this point, two major computers in this class have been announced.
The PET from Commodore utilizes a 6502 microprocessor and contains a
BASIC language interpreter and monitor program in read-only memory. A
9-inch TV display is integral to the unit and displays alphanumerics and
limited graphics. The announced price of $600 undoubtedly made most
other hobby computer manufacturers gasp in mortal fear. Not much later,
Radio Shack announced its TRS-80 unit centered around a Z-80 mi-
croprocessor. Although less ambitious than the PET and lacking a built-in
display (you connect it toa TV receiver), its lower price ($350) will keep it in

the running. Also, Radio Shack has announced several peripheral add-ons for
the system while Commodore has not.

Heathkit has also entered the hobby computer market but with two
more conventional component systems. The H8 is an 8080-based system

with its own system bus design. Although criticized initially for not using
the pseudostandard S-100 bus used by most all other 8080-based hobby
systems, it is conceivable that Heath may outsell all of these other systems

together and thus establish their own de facto standard. The H11 is really a
packaged LSI-11 board. Through an agreement with Digital Equipment
Corporation, Heath will be the primary single quantity dealer for LSI-11
boards and software. Heath should be able to do a much better job of
marketing this powerful computer to individuals than DEC can.

Finally, there are numerous programmable TV game machines built
around microprocessors that cost about $150. However “programmable”

means that relatively inexpensive “game cartridges,” which are really read-
only memory units, can be plugged into the machine to give it a completely
different function. As yet, the consumer is not able to program the machine

himself.

Microcomputer Peripheral Devices

Although any peripheral device that can be used with a large computer
can theoretically be connected to a microcomputer, only a small subset is

134 MusICAL APPLICATIONS OF MICROPROCESSORS

commonly used in general-purpose microcomputer systems, This subset has
been found to give the maximum convenience of system use consistent with
performance and cost requirements. However, as we shall see later, certain

big syste peripherals may be desirable for some musical applications.

Main Memory

In a microcomputer system, main memory is often considered as a
peripheral. Usually additional memory is available from several manufactur-
ers, and it may be freely purchased and plugged into the system when
needed. Main memory comes in two flavors, read-only memory, usually

abbreviated ROM, and read/write memory, usually abbreviated RAM. ROM
is not affected by loss of operating power and cannot be overwritten; thus, it
is generally used for unchanging system ptograms such as a monitor ot
language translator. Pure ROM is completely unalterable, having had its bit
pattern frozen in during manufacture. Although masked ROM is by far the
cheapest type, most of the ROM used in general-purpose microcomputers
today is of the erasable and reprogrammable type. This type can have its bit
pattern erased with a strong ultraviolet lamp and a new pattern entered with

special programming equipment. This capability is a valuable asset because
virtually all programs are subject to some change as the system expands or
program “bugs” are uncovered.

RAM may be freely written into and therefore may hold different
programs at different times. RAM is required for the storage of programs
under development and the data they use. Large computers have always used
RAM exclusively for main memory. However, the core memories used by

earlier computers did not lose their contents when power was shut off so
operating system programs loaded into them could be expected to remain
until specifically overwritten. The RAM used in microcomputers, on the
other hand, is highly volatile and subject to complete data loss within
milliseconds of a power failure. Thus, operating software kept in RAM must
be reloaded whenever the system is turned on for use. Appropriate peripheral
equipment such as a disk can reduce this task to a few seconds duration or
even allow its automation. Although programs frozen into ROM are conven-
ient, there is sometimes a tendency to spend too much money on ROM when
the more flexible RAM would be a better choice, particularly when the
needed peripheral equipment for efficient reloading is available.

The amount of main memory in a microcomputer varies widely. Amaz-
ing things have been done with a 6502-based system having only 1.1K of
user RAM and 2K of system ROM. At the other extreme, “‘fully stuffed”
systems with all 64K of possible memory are seen occasionally, and already
manufacturers are announcing systems with a bank-switching feature allow-
ing a million bytes and more of memory. Within these extremes, an appro-
priate amount of memory for two broad classes of system usage can be loosely

MICROPROCESSORS 135

defined. For general-purpose assembly language program development, a
ROM monitor of 1K to 4K and an 8K RAM are usually adequate.
Additional RAM may be necessary for certain complex applications. For

BASIC language program development, 8K to 16K of ROM containing a
monitor and the BASIC language processor are convenient, although BASIC
may also be loaded into RAM. Eight to 16K of additional program storage
RAM is sufficient for the majority of applications that BASIC is suitable for.
However, more comprehensive high-level languages are coming into use that

may require considerably more memory to accomodate.

Mass Storage

Next to main memory, external mass storage is the most reliable indi-
cator of overall system capability. Further, the type of external storage used

has a great influence on typical system operating procedures. A system with
no external storage at all is extremely limited in general-purpose applica-
tions.

Although becoming rare, paper-tape-based systems are still seen. Usu-

ally this happens when the primary I/O device on the system is an ASR-33
teletype. Generally, paper tape is a very limited external storage medium.
Although programs and small amounts of data may be easily saved and
reloaded later, paper tape cannot be edited. Any change to a program re-
quires thar it be read into the computer, corrected in memory, and a new

copy punched out. Also, on a per byte basis it is not really very effective to
store data on paper tape. One-hundred-thousand bytes requires a rol] of tape
nearly a foot in diameter costing from one to two dollars. Speed is usually in
the 10 byres/sec range, alchough readers up to 300 bytes/sec and punches up
to 50 bytes/sec are sometimes used. Even with these limitations, Heath has

announced an unusually cost-effective paper tape reader/punch to go with
their H8 system, and manual pull-through paper tape readers for under $100
have been introduced to the hobby market. It is thus apparent that paper

tape will be around for several years yet, particularly as a rugged, reliable
program exchange medium.

Tape Cassette

One storage medium peculiar to microcomputers is the audio cassette.
While not necessarily indicative of their inherent music synthesis and
analysis capabilities, it is fairly easy to program a microcomputer to produce

sounds dependent on the data to be saved and then recognize them later on
playback. Very inexpensive cassette recorders are suitable for such use, al-
though high-quality tape with few dropouts is necessary for acceptable data
accuracy. Nearly two dozen different encoding schemes are in use with the
major distinguishing factor being speed, which ranges from 10 to 540
bytes/sec. Functionally, audio cassettes are the same as paper tape with the

136 MusIcaL APPLICATIONS OF MICROPROCESSORS

major difference being less bulk, somewhat higher speed, and reusability of
the medium. Editing of data on the tape ts still not possible without che
“read-in, edit, write-out on another tape” cycle characteristic of paper tape.
Manual intervention to load, start, stop, and switch from record to playback
is also necessary. Besides the multiplicity of encoding techniques, accurate
program exchange via audio cassette suffers from substantial differences in
audio recorder head alignment and amplifier response, which adversely affect
all but the lowest speed-encoding methods.

Digital cassettes are also used to some extent in microcomputer sys-
cems. Digital cassette drives generally run at speeds above 500 bytes/sec and

are one to two orders of magnitude more accurate in the reproduction of data.
Typically, they are controlled by the computer, allowing programmed re-
wind, fast forward search, read, and write. A random search for data on the

tape takes from several seconds to over a minute depending on the device and

the amount of data on the tape. Such automatic operation allows limited
editing on the tape in some cases. A block of data may be read, edited, and
then rewritten in the same spot on the tape. If, however, the editing opera-

tion includes an insertion, the resulting larger record must be written at the
end of the tape or on another tape. Of course, this added flexibility comes at a
cost of $300 or more—five to ten times that of the audio cassette approach.

Floppy Disk

The flexible or “floppy” disk is a fairly new mass storage device that
seers custom made for microcomputer systems. Introduced by IBM in 1970
as a fast method of loading microprograms into their big computers, the
floppy disk is considered by most microcomputer users to be the ultimate
mass storage device when cost is considered. A standard-sized floppy disk
drive measures about 5 X 9 X 15 inches and costs less than $500. The disk
itself, called a diskette, is 8 inches square by about 1/16-inch thick, is

moderately stiff, and sells for about $5. Data on the diskette is divided into
77 tracks with from 16 to 32 individual sectors of data on each track. Each
sector is generally either 128 or 256 bytes. Total storage capacity ranges from
250K to 320K bytes depending on formatting. Any sector may be randomly
located and read or written in less than a second, making it a truly random
access device. This and the fact that individual sectors may be very quickly
(350 msec) updated by reading and rewriting gives the floppy disk complete
editing capability. A data transfer rate of over 30K bytes per second means
that RAM up to 64K in size can be completely loaded or dumped in 2 to 3
sec. Double-data density and double-sided recording techniques being in-
troduced now allow over 1.2 million bytes on a diskette and double-track
density expected in the future could swell this to 2.5 million bytes.

Although floppy disk drives are fairly inexpensive, complete and
ready-to-go systems sell for about $1,000. The extra cost is due to controller
logic that until recently has been very complex. However, ICs designed
specifically for floppy disk control are now being introduced. Also a smaller

MICROPROCESSORS 137

version of the diskette and associated drive has become available and may
have a slight edge in actual use on microcomputer systems. The “mini-
floppy” diskette is only 51/4 inches square and the drive is scarcely larger
than a cigar box. Typical drive pric are $150 less than the full-sized
counterpart. Speed and storage capacity > reduced substantially, however.
Standard formatted capacity is about 8u% bytes, but double-density,
double-sided recording increases this to be essentially equal to a standard
floppy with an attendant increase in drive prices. Transfer rate is reduced to
16K bytes/sec, and head movement speed is about one-third, although the
reduced number of tracks keeps the maximum access time to less than 1.5
sec. Even though the difference in drive prices is not chat much, mini-floppy
systems are substantially cheaper, being as low as $600.

Big System Tape and Disk

While the mass storage peripherals just discussed ate adequate for most
microcomputer applications including music synthesizer control, direct syn-

thesis requires considerably more capacity. Half-inch computer tape is

perhaps the least expensive such medium that can be installed. Moderate cost
tape-drive units in the $3,000 to $4,000 range are capable of 60K bytes/sec
transfer rate and nearly 40 million bytes to a 10-inch, $20 reel of tape. This
performance is at a standard density of 1,600 bytes per inch of tape, although
800 and 6,250 bytes/inch (BPI) are also available. The 6,250-BPI units,

however, are considerably larger and more expensive at this time. While
editing is no easier on these units than on digital cassettes, they are ideal for

use in classic, completely programmed, direct synthesis applications. With
two tape drives (one of them could be lower speed or less density), limited
sound modification and editing could also be accomplished.

Disk-based direct synthesis quickly points out the need for a disk
system with larger capacity than floppies. For example, a minimum-fidelity

direct synthesis sample rate of 10 kHz with 10-bit samples will fill up a
standard floppy in 24 sec, while a full fidelity 50 kHz 12-bit application
would require a double-density unit every 8 sec. Fortunately, large-capacity
rigid disks may also be interfaced to microcomputers. As a matter of fact, one
of the larger hobby computer suppliers has already announced such an inter-
face product. Removable media rigid disk units with capacities of 25, 50,

and 80 million bytes are now well established with drive costs of $4,000 to
$8,000, although controllers up the system price substantially. Large-
capacity fixed media disk drives are also beginning to appear. These units are
exceptionally small, cheap, and reliable because the disks are factory installed
and sealed from the envitonment. When used in conjunction with a fast tape
drive for loading and dumping the disk, the combination is extremely cost
effective in direct synthesis and digital sound modification applications. Ir is
expected that market acceptance of these fixed media disk drives will acceler-
ate the introduction of inexpensive, high-density tape drives.

138 Musica APPLICATIONS OF MICROPROCESSORS

Obviously, the prices listed for these high-performance, big computer
peripherals would completely overshadow the cost of the rest of the mi-
crocomputer system. Even then they may be a trifle optimistic because the
necessary interface to the microcomputer system has not been included.
Industrious individuals, however, could obtain used equipment for consid-

erably less than the new prices listed. Also, an adequate interface may be
considerably simplified over the full function controller normally used, since
the data are in large blocks of thousands of samples each. For example,
sectoring of the tracks on a disk, normally an interface function, may not be
necessary.

User Interface Equipment

Most other peripherals used with microcomputer systems are quite
ordinary but sometimes scaled-down versions of the equivalent minicompu-
ter devices. One major difference is in interfacing technique whereby the
interface might be considerably simplified and therefore reduced in cost by
doing much of the work in software. A side benefit of this approach is
increased flexibility in the operation of the device, although considerable
software experience is often required to implement a software interface.

Microcomputer systems frequently use a standard display terminal for
the primary interface with the user. These typically act like teletypewriters
but with a considerable increase in speed and reliability and reduction in
noise. Alchough programming for teletype-like ‘“‘command—response” in-
teraction is quite simple, most of the interaction potential of the display is
unrealized. The teletype approach to text editing, for example, would either
have the user retype the entire line or give a “computerese” command to
“replace XXXXX with YYYYY,” where XXXXX is the word in error and

YYYYY is its replacement. The computer in response searches some or all of
the file for XXXXX and replaces it with YYYYY.

Another approach is the use of a display interface board and a keyboard
interface board plugged directly into the computer. The display interface

shows the contents of a portion of main memory directly on the screen. The
keyboard interface is completely separate, allowing software to determine the
disposition of input keystrokes. The combination allows a superior man—
machine interface to be implemented, in which, using the editing applica-
tion as an example, a pointer (cursor) may be moved to a desired point and
the correction directly entered. Advanced versions of such directly interfaced
displays have graphic capability allowing waveforms and arbitrary shapes co
be displayed. Thus, direct waveform and control function editing is also
possible. This topic will be covered in greater detail in Chapter 11.

Printing Devices

Even with easily operated computer systems and high-speed displays
there is no escape from the need for printed output. Standard file folders of

Microprocessors 139

printed text and other information are always needed for effective communi-
cation with others. As may have been guessed by now, the ubiquitous
teletype is often used for this task. However, inexpensive impact dot matrix
type printers are rapidly gaining acceptance. These have several advantages,

but print quality is not one of them, since the characters are formed from
dots, usually in a 5 wide by 7 high matrix. However, such a presentation is
similar to that on the display screen, and some of these printers can be coaxed

into printing arbitrary dot matrix graphics also. The ability to give an exact
display screen image is quite valuable. Speed of these units is much higher
than the teletype and is typically in the range of 30 to 200 characters/sec.

So-called “daisy wheel” or “servo” printers are frequently used in which
office typewriter print quality is desired. These machines are also capable of
general dot or limited line graphics too. The key to their flexibility is that
the print element may be freely positioned anywhere on the paper in incre-
ments of 1/120 inch horizontally and 1/48 or 1/96 inch vertically under
program control. Plots may be made by printing the period or other charac-
ters at carefully selected locations. In fact, most of the drawings of
waveforms, response curves, etc., in this book were produced with a printer
of this type and then photographically reduced.

The best device for printed graphic output is a standard X-Y plotter.
Inexpensive units that require the host microcomputer to do all of the
detailed plotter control such as motor speed variation and vector slope calcu-
lation are coming on the market.

Microcomputer Software

Software, of course, is the key to a useful microcomputer system regard-
less of the amount of memory or other peripheral devices available. While
much of the software that will be discussed in succeeding chapters is

specialized for music synthesis, a considerable amount of standard support
sottware 1s used tn all general-purpose microcomputer systems. Although the

term “standard” is used, there is considerable variation tn implementation

and use details according to the individual manufacturer's philosophy. Most
of the discussion will be centered around the support software required for
program development in assembly language, although much of it applies
equally well co compiler languages.

System Monitor

The most fundamental piece of support software is the system monitor.
With few exceptions, microcomputers are unlike minicomputers in that the

traditional “programmer's console” with dozens of toggle switches and lights
is absent. Instead, a system monitor program is used to allow equivalent

console functions to be performed through the primary interactive I/O de-

140 Musical APPLICATIONS OF MICROPROCESSORS

vice, such as a keyboard/display. All system monitors have the capability of

reading memory, modifying memory, examining the microprocessor regis-

ters, and controlling the loading, dumping, and execution of programs.

More comprehensive monitors have debugging functions such as search

memory and breakpoints or program trace. Sometimes these and other de-

bugging functions are part of a separate debugger program.

Systems using a floppy disk term their monitors “disk-operating sys-

tems,” or DOS. In addition to the basic console and debugging functions

outlined above, DOS controls the allocation of disk space, finds and creates

files given a mnemonic name, and does other disk housekeeping chores.

Through DOS, the user may request a disk index listing, delete an unwanted

file, copy files from one disk to another, specify programs to be loaded by

name, and read or write data files a character at time. DOS handles all of the

blocking or unblocking of characters to make full disk sectors. An important

DOS feature is the ability to do all of these tasks on command from a user

program as well as with console commands.

Text Editor

Much of the actual time a user spends with a microcomputer system is
probably spent with the text editor program. Even if he or she is a perfect
typist and never needs to actually edit, the editor is necessary to create text
files for the assembler or compiler or even music interpreter. However, since

people are seldom perfect typists and are never perfect programmers, the
editor is also used to add, delete, change, and move program text. Most

editors, particularly those based on audio or digital cassette storage, are
limited to editing files that are small enough to fit into main memory. Thus,
large programs must be broken into acceptably small segments and edited
separately. Typically, a file would be read into a text buffer in memory,
edited as required, and a new file would be created. The old file can then be
deleted if desired. If large insertions that might cause the file to exceed
available memory are anticipated, a portion of the text buffer contents may
be written as one file, deleted from memory, and the remainder along with
the insertion would be written as another file. The assembler or compiler can
link the segments together into a single program.

Highly sophisticated editors supplied as part of some disk-operating

systems are able to handle any size file by scro/ling the text through memory
forward and backward in response to user commands. Insertions and dele-
tions may be made in any order by scrolling the text on the screen to the
desired point and then keying in the change. The inherent editing capability
of the disk allows long files to be edited directly wichout creating unneces-
sary copies. Less advanced editors may still allow unlimited file size and
insertions but can only scroll forward, thus requiring that editing be done in
sequence to some extent.

MicRoPROCESSORS 141

Assembler

The purpose of an assembler is to convert program source text
statements into binary machine language object code and a printed listing.
Assemblers work in a variety of ways according to the size of system they
were designed for and level of sophistication. Perhaps the least desirable but
most common small system assembler seems to assume that one has great

quantities of main memory and no external storage at all. It assumes that the
entire program source text is in a text buffer in memory and also stores the
object code directly in memory in the locations that it will occupy during
execution. The listing, if the assembler has the capability of producing one,
is printed during the assembly process. Obviously, such an assembler is
limited to very small programs or a highly segmented one.

Good assemblers found in disk-operating systems work in a much more
general way. Before being run, the assembler is given the name of the source
file, which already exists, and the names of two new files that it will create;

one to hold the object code and the other to hold the listing. The assembler
then scans the source file two or three times and produces the object and
listing file. Before printing the listing file, the user can quickly scan it using
the editor to see if any errors were flagged by the assembler. Assuming there
were few or none, the editor can be commanded to print the listing if one is
actually desired. The operating system may either load the object file into
memory itself or a loader program may be used for that purpose. After

loading, the user may specify the data files, if any, and execute the program.
With such a setup, program size is limited only by the capacity of the

diskette and the amount of memory available for the assembler’s symbol
table. Most of the preceding comments also apply to compiler languages such
as FORTRAN or the new structured microcomputer languages such as PL/M

and PASCAL.

High-Level Language

By far the most popular high-level language for microcomputers is

BASIC. Originally developed ae Dartmouth University for student use on a

large time-sharing computer, it has evolved well beyond its design goals into

a general-purpose programming language. Although its strengths and weak-

nesses in music programming will be detailed in Chapter 18, it can be said

here that it is an excellent one-shot problem-solving language but nor espe-

cially suited for large or complex programs. As a matter of fact, most of the

waveforms and plots in this book were done using simple BASIC programs.

BASIC will also be used periodically to illustrate program algorithms. One

unique feature present in nearly all microcomputer BASIC is the PEEK and

POKE functions. These allow a BASIC program to directly address and read

or write any memory location in the microcomputer. If the system utilizes

142 MusICAL APPLICATIONS OF MICROPROCESSORS

memory-mapped I/O?, then BASIC programs may be written to operate any

W/O device on the system!
On microcomputers, BASIC is almost exclusively implemented as an

interpreter. Thus, BASIC programs exist in memory as character strings in

the same form as they appear in print except for perhaps the substitution of

single, normally unprintable, bytes for keywords. Part of the BASIC in-

terpreter is a simple, line-number-oriented text editor. When the “run”

command is given, the interpreter scans each program line, extracts the

meaningful information from the line, acts upon it, and then goes to the next

line. As a result, BASIC programs tend to run very slowly compared to the

inherent capability of the microcomputer. Nevertheless, BASIC is very easy

to learn and use and for any but highly repetitive calculations its speed is

adequate. True compilers for BASIC are just starting to be introduced, which
should increase the speed manyfold while detracting only slightly from its

ease of use.
BASIC interpreters for microcomputers are usually rated by how much

memoty is required with certain features being expected in particular-sized

versions. “4K BASIC” is indeed basic with only the fundamental arith-
metic and transcendental functions being provided. Although such a version
is unsuitable for the majority of published games and other programs, it is

quite adequate for experimental musical calculations. “8K BASIC” is the
most commonly used version. Generally, two-dimensional array and character
string manipulation capability is added. Also additional mathematical

functions and niceties such as octal and hexadecimal integer constants may
be provided.

The standard versions of BASIC just mentioned are completely self-
contained with the ability to load and store program text only from or to an
external storage device. Disk-based versions of BASIC requiring 12K or more
of memory generally can be expected to have the capability of reading and
writing disk data files directly.

Example Microprocessor Descriptions

In the past, there has been considerable variety in the architecture of

mini- and maxicomputers, resulting in some machines being better suited to
certain tasks chan others of equal cost and rated performance. Microprocessor

architecture is even more diverse, and the differences in suitability to a
particular application are accordingly greater, It is haman nature, however,

to become attached to a particular machine and attempt to force it to handle
the full spectrum of applications encountered. Because of the flexibility of

?Memory-mapped I/O is peculiar to the PDP-11 line of minicomputers and most
microprocessors, Essentially all I/O device status, control, and data registers are
addressed like memory locations with all memory reference microprocessor instruc-
tions available for /O register manipulation.

MICROPROCESSORS 143

microprocessors, this is nearly always possible, but the end result is likely to
be more complex and expensive than necessary.

Musical applications of microprocessors cover three quite different
types of functions. Briefly, these are synthesizer control, direct synthesis, and
dedicated logic replacement. For use as examples in this book a different
microprocessor has been selected for each type. Although the exact selection
can certainly be argued, at the time of writing the author felt that these three
are the closest to being optimum on the basis of overall popularity, design
and use effort, performance, availability, and cost. Many other mi-

croprocessors may be only slightly less suited and the difference is usually not

worth fighting over.
In the comparative discussions to follow, two areas of difference among

microprocessors will be concentrated upon. These are its machine language

instruction set, since that directly influences assembly language program-

ming, and its bus structure and timing, which influences system hardware
design, particularly in the logic replacement application. Only the most
important points that distinguish the subject microprocessor from others will

be covered. More detail can be found in the wealth of manufacturet’s litera-
ture and microprocessor design books available.

The 8080 for Synthesizer Control

The 8080 microprocessor, originally introduced by Intel, is at this time
the most popular microprocessor chip in use and rightly so. It was the first

of the second generation of microprocessors to be introduced and is assembly
language compatible with the most popular first-generation microprocessor,
the 8008. Being the first, universities were able to incorporate it into proj-

ects and courses, thus introducing many engineering students to its opera-

tion. Also because it was available first and is straightforward in its applica-
tion, it presently dominates the hobbyist market. It is one of the best
general-purpose 8-bit devices available, since it is not aimed specifically at
high-volume simple or complex high-performance applications. Also, it is

the most available of all microprocessors, having no fewer than six different
sources. Additionally, a software-compatible higher-performance third-
generation chip is available, the Z-80 from Zilog. Finally, Intel has intro-
duced the 8085, a completely software-compatible device with improved bus
timing and structure. Such compatibility is important because there already
exists a large body of software for the 8080 including several high-level

languages. The result is that more people are using the 8080, 8085, and Z-80

than any other or possibly all other microprocessors put together. This does
not mean that more 8080s are in use, however. That title belongs to an

obscure 4-bit unit.

Bus Structure

The bus structure presented by the 8080 is fairly simple compared to

most minicomputers but somewhat more complex than many other mi-

144 Musical APPLICATIONS OF MICROPROCESSORS

croprocessors. Two additional support ICs are available to implement the

latching and intricate gating otherwise necessary to provide usable system

timing strobes. These are the 8224 clock oscillator and driver and the 8228

system controller chips. Since use of these support chips is nearly universal,

their presence will be assumed in the discussion to follow.

The 8080, like most other single-chip 8-bit microprocessors, has a

16-bit address bus and an 8-bit bidirectional data bus. In addition, there are

power supply pins, clock input pins, and other status and control signals to

make up the total of 40 package pins. Power supply voltages required are

+12, +5, and —5 V, although negligible current is drawn from the —5

supply.
The 8080 requires a two-phase clock with an amplitude of 12 V. This

clock waveform has a standard repetition frequency of 2 MHz and requires

careful control of pulse timing and width. The 8224 clock generator neatly

provides proper timing by counting down an 18 MHz crystal oscillator by 9

and decoding the counter states.

Figure 5-1 shows generalized read timing and Fig. 5-2 shows gener-

alized write timing produced by the 8080 in conjunction with an 8228

system controller. Every read or write operation performed is called a ma-

chine cycle and requires either three, four, or five clock cycles to perform. As

can be seen, both read and write cycles begin with the address bus and data .

bus stabilizing in the middle of T1. The data bus at this time contains coded

information about what kind of machine cycle is taking place, which is

latched into the 8228 and decoded. Normally, not much happens during T2,
but ic is possible to hold the processor in this state for additional clock cycles
until the addressed memory or I/O device is ready to respond. T3 completes
the actual data transfer portion of the machine cycle. At this time in a read
cycle, the 8228 will have asserted either “memory read,” “I/O read,” or

i a— MINIMUM MACHINE CYCLE 1,500 n see ————-__———-+»

PHASE |

PHASE 2

SYNC

STATUS STROBE.

WEMORY READ

DATA BUS INPUT

aooress BUS ZAM AA AAA ALLELE
ACCESS TIME 740 nsec———=|90 | 50]=—

DATA BUS LLLL LL LALLA CLL LLL NLL LILLE
READ DATA

Fig. 5-1. 8080 bus read cycle

MICROPROCESSORS 145

STATUS
STROBE

MEWORY
WAITE

DATA BUS

Fig. 5-2. 8080 bus write cycle

“interrupt read” signals according to the type of read cycle being performed.
While the strobe is on, the addressed device is expected to gate its data onto
the data bus. If it is a write cycle instead, the 8228 will assert either
“memory write” or “I/O write,” and the addressed device should grab its
data from the data bus.

At this point, another machine cycle could start immediately, but, if it
is an execution cycle, one or two additional clock periods may elapse with no
bus activity. Thus, 8080 machine cycles are either 1.5, 2.0, or 2.5 pasec in

duration. This variation in cycle time is of no consequence in many applica-

tions, but in others involving two or more processors sharing the same bus, it

can limit design options and performance. Required memory access time is
from when the address bus stabilizes to when the microprocessor requires
valid data on its data bus. At normal speed, this time is 740 nsec, although
500 nsec memory access is usually specified to allow for other delays and
timing margin.

The 8080 is claimed to have a direct memory access (DMA) interfacing
capability, although it is very rudimentary. Essentially, the microprocessor

“disconnects” itself from the address, data, and control buses at the end of a

machine cycle in response to the hold control line. When so suspended, the

DMA device can take control of the buses for direct data transfer to or from
memory but is also responsible for generating all of its own timing and bus

control signals.

Although the preceding describes the 8080 microprocessor bus itself,
any substantial-sized system will require a printed circuit backplane bus with
TTL drivers and receivers added to the 8080. The most popular system
implementation of the 8080 uses a bus arrangement called the Altair or
S-100 bus, since MITS first introduced it with their Altair 8800 mi-

crocomputer. Because of its popularity, there are well over 100 different

kinds of memory, peripheral interface, and even CPU boards (using nearly

146 MUSICAL APPLICATIONS OF MICROPROCESSORS

any popular microprocessor) that plug into the S-100 bus. Start with a

cabinet (there are over a dozen suppliers of these too!) containing power

supply and S-100 bus with board connectors and add CPU, memory, and

interface boards, and one has a very flexible hardware system. Interface
boards cover the range from graphic display generators to speech synthesizer
boards. Prices are low too because of intense competition among the dozens
of small companies making S-100-compatible products.

Even chough most users consider the S- 100 bus to be a true standard, in

reality it is a de facto standard without a formal definition. As a result, not all
legitimate mixes of available boards will work properly together. Neverthe-
less, the level of compatibility that has been achieved among a very wide
variety of boards has not been equalled in the history of computers.

Interrupts and Registers

Interrupts on the 8080 are very flexible, allowing the implementation
of multilevel interrupt driven systems. Vectored interrupt of up to eight
levels is easily done by gating a single byte “restart” instruction onto the data
bus in response to the “interrupt read” signal from the 8228. Nearly unlim-
ited vector levels are possible by “jamming” in three byte “call” instructions
instead, although the control logic is more complex. The 8080 itself provides
only one priority level of interrupt via a single interrupt enable flag.

The 8080 has more on-chip programmer-accessible registers chan many

microprocessors, Besides the 16-bit program counter, there is a 16-bit stack
pointer register. Most microprocessors use a stack to save the return address

from a subroutine call rather than the minicomputer convention of putting it
in a register or storing it at the entry point of the subroutine. This was done
to allow software to reside in ROM if desired without prohibiting use of the
machine's call instruction. Also available are an 8-bit accumulator (A), six

8-bit index registers (B, C, D, E, H, and L), and an 8-bit status register.

Internally, these registers are linked into pairs (A-status, B-C, D-E, H-L) for

some instructions. The H and L. registers are so named because several
instructions assume that they contain the high and low parts of a memory
address, respectively.

Instruction Set

Table 5—1 contains a brief summary of the 8080 machine language
instruction set. Instructions are either one, two, or three bytes long and
require from 1 to 5 machine cycles or 4 to 18 clock cycles to execute. This
gives an average speed using a typical instruction mix of about 250,000
instructions/sec, due in part to the slow (5 fusec) conditional branch. The

first byte is always the operation code. The second byte in a two-byte
instruction is either an immediate data byte or an I/O device address. The
second and third bytes in a three-byte instruction are either a full absolute

MICROPROCESSORS

Table 5-1. 8080 Instruction Set Listing

147

Instruction

MOV 11,12?
MVIr
INR r OCR r
ADD r SUBr
ADC r SBBr
ADI SUI
ACI SBI
ANA ORA XRA r
CMP r
CPI
RLC RRC
RAL RAR
JMP
Jeondition

CALL
Ccondition

RET
Reondition

RST
IN OUT
Xr
PUSH r
POP r
LDA
STA
XCHG
XTHL
SPHL
PCHL
DAD r
STAXr
LDAX r
INX r DCX r
CMA
STC CMC
LHLD SHLD
EI DI
DAA
NOP.

OO OWA nmAoaNMHyaa aD

ao

Baa wen nnn WOosoNa

2.5
3.5
2.5
2.0
2.0
3.5
3.5
2.0
2.0
3.5
2.0
2.0
5.0
5.0

8.5
5.5/8.5

5.5
5.0
5.0
5.5
5.0
6.5
65
2.0
9.0
25
25
5.0
3.5
3.5
25
2.0
2.0
8.0
2.0
2.0
2.0

No. of Execution
bytes time (us) Function

Move from r2 to 1
Move immediate to r
Increment and decrement r
Add r to A, subtract r from A
Include carry with add or subtract
Add and subtract immediate to A
Add and subtract immediate with carry
And, or, exclusive-or r to A
compare r to A
Compare immediate to A
Rotate A left or right without carry
Rotate A left or right with carry
Jump unconditionally
Jump conditionally on true or false

state of any status flag
Call subroutine
Call conditionally on true or false

state of any status flag
Return from subroutine
Return conditionally on true or false

State of any flag
Limited call to one of 8 fixed addresses
Input or output to 1 of 256 devices
Load immediate register pair
Push register pair on stack
Pop stack into register pair
Load A from memory direct
Store A into memory direct
Exchange D,E and H,L register pairs
Exchange H:L and top 2 bytes of stack
Transfer H:L to stack pointer
Transfer H:L to program counter
Double add register pair to H:L
Store A indirect through register pair
Load A indirect through register pair
Double increment/decrement register pair
One's complement A
Set and complement carry flag
Load and store H:L direct
Enable and disable interrupts
Decimal adjust A
No operation

Notes: ' For single registers r = A, B, C, D, E, H, L, (H:L).
For register pairs r = A:SP, B:C, DAE, H:L.

? Z=Zero flag, S=sign flag, P=parity flag, C=carry flag.
3 Status is not saved.
* Flags are part of A:S register pair.

Indi-
cators?

VuUVVVUUVU NNNNANNNN ANNNHANHANH

loxekezekololorore}

Note?
Note?

Note

Note*

ZSPC

memory address or a two-byte immediate value, which is usually an address
also. Note that the halves of double-byte values are flipped so that the least
significant byte is first.

148 MUSICAL APPLICATIONS OF MICROPROCESSORS

An exceptionally versatile set of data movement instructions are pto-
vided. If the accumulator and the six index registers are considered as seven
distinct registers and the memory byte addressed by the contents of the HL
register pair is considered an eighth, then all 64 possible data transfers from
register to register are possible in a one-byte instruction. Additionally, an
immediate load of any register as well as the HL addressed memory byte is
possible. Direct load and store of the A register and double load and store of
the HL register pair is possible with a single three-byte instruction. Besides
using HL as a full index register, instructions are provided for load and store
of A using BC and DE as full index registcrs also. Finally, exchange of
register pairs DE and HL may be accomplished with one of the fastest
instructions in the machine. Note that simple data movement does vor alter
any condition codes.

Besides using the stack for saving return addresses during subroutine
execution, the flexible set of stack-processing instructions available makes
temporary storage of data on the stack an effective programming technique.
Any of the four register pairs may be pushed onto or popped from the stack.
The stack pointer register may be set with either two-byte immediate data or
the HL register pair. Finally, as the slowest instruction in the machine, HL
may be exchanged with the top of the stack, which makes some otherwise
difficult stack operations much easier.

Condition codes are a weak point in the 8080 design. Essentially, four
condition flags are set when arithmetic, logical, and some increment/

decrement instructions are executed. These are “sign,” which is the most

significant bit of the result, “zero,” “carry,” and “parity.” The latter is
unique and replaces a complex parity calculation routine when needed.

Jumps, subroutine calls, and subroutine returns may be made conditional on
either che true or complement state of each flag individually but not combi-
nations of flags. Thus, two conditional jumps are required for testing the
strictly positive condition. Arithmetic overflow testing is even more dif-
ficult.

The 8080 has a good set of increment and decrement instructions that
simplify loop counters and indexing through a table one byte at a time. Any

of the seven individual registers may be incremented or decremented as well
as the memory byte pointed to by HL, and the condition codes, except carry,
will be set. Registcr pairs may also be incremented and decremented as
16-bit quantities for indexing, but condition codes ate not set.

A unique instruction characteristic of the 8080 is the “restart” instruc-
tion. It is a one-byte instruction and its eight variations allow eight different
subroutines in the lower 64 bytes of memory to be called. With proper
choice of these eight routines, the effect is almost as if eight powerful
one-byte instructions had been added to the repertoire. However, the inter-
fupt system may also depend on these instructions so care must be taken in
their use.

MickopRrocessors 149

Arithmetic and logical instructions are fairly complete but must use
register A-as one operand. If memory is to be the other operand, it can only
be addressed through the contents of HL or be an immediate value. Add, add
with carry, subtract, subtrace with borrow, and, or, and exclusive-or from

any register or memory are possible. A similar set of compares is also im-
plemented. In addition, HL may be used as a 16-bit accumulator, and BC,
DE, HL, or the stack pointer is available as a 16-bit operand. However,
only the carry flag is set.

Only rotates by one bit ate available for scaling. The carry indicator can
be either included or not in the rotate, although the standard mnemonic

seems to be backward. Other special instructions are as listed. The decimal
adjust instruction is used for direct arithmetic on two-digit-per-byte decimal
operands and is almost never used in general-purpose programming. A single

I/O instruction with 8-bit address field is provided, which transfers to or
from register A. Memory-mapped I/O may be used if more I/O addresses ot
additional flexibility is required.

Why Synthesizer Control?

Now that the leading hardware and software features of the 8080 have
been summarized, what makes it so suitable for synthesizer control applica-

tions? The answer is, basically, its large following, extensive software li-
brary, and general-purpose instruction set. Although memory addressing is
weak, it is general and makes no assumptions about where things are stored.
The only exception is che eight restart subroutine addresses, and that feature

is really a carryover from the older 8008. Many other microprocessors have a
“base page,” which is quickly and easily accessed but definitely limited in
size (usually to 256 bytes). A base page can make moderate-sized, self-
contained programs quite speedy and efticient. However, modular and struc-

tured programming techniques used to some extent in most large programs

can easily exhaust a base page even if ample memory is available elsewhere.
Thus, the 8080 accomodates large, modular programs without concern over
a base page or where in memory programs and data are stored.

Synthesizer control is an excellent application for a mederate-

performance, general-purpose microprocessor with extensive software sup-
port. Most control operations are relatively slow, being in the time scale of

milliseconds. However, since a number of things may be happening at once,

a good multilevel interrupt system is helpful. Also, since controlling even a
moderate-sized synthesizer and manual input devices will require a lot of
interfaces, it is important to use a system that is easy to interface to. Exten-

sive software support means that high-level languages are available for pro-
gramming the difficult but not overly time-sensitive functions to be per-
formed, such as music language compilation, control function editing, or
maintaining a musical data base. General popularity means that the results

150 MUSICAL APPLICATIONS OF MICROPROCESSORS

obtained by an individual hobbyist or university can be understood and
applied by numerous other 8080 system users.

The 8080 is capable of a limited amount of direct synthesis also, but
since there is no multiply or divide instruction and word size is only 8 bits, it
is likely to be too slow for anything except experimentation. External

hardware can be added for the multiply and divide functions, which would
speed things up severalfold. However, before much time and money is spent
on enhancing an 8080 system, a serious look at a more powerful processor
would be wise.

The LSI-11 for Direct Synthesis

The LSI-11 is a microcomputer produced by Digital Equipment Corpo-
ration that emulates the instruction set of their PDP-11 series of minicom-
puters. Although there are at the moment three other minicomputer
emulator microprocessors available, the LSI-11 was the first 16-bit mi-

crocomputer to emulate an existing, popular minicomputer. The LSI-11 is of
interest here because it has a 16-bit word size and full 16-bit integer multi-
ply and divide as well as 32-bit floating point instructions. These and other
features are invaluable in efficient direct synthesis work. Because it emulates
a still growing line of minicomputers whose top end has raw performance
rivaling that of big mainframes, building a direct synthesis system around
the LSI-11 has considerable expansion capability without rewriting software.

Conversely, several universities are using PDP-11 minicomputers in serious
sound analysis and synthesis projects. Much of that software could be easily
adapted to run on an LSI-11 with sufficient memory but at a slower speed.
Also, the LSI-11 is available fully supported to the hobbyist from Heath as
the H-11. Furthermore, most programmers agree that the PDP-11 instruc-

tion set is the most nearly perfect 16-bit instruction set yet devised for
assembly language programming. Finally, the cost of the standard LSi-11
with the 4K words of onboard memory is significantly less chan $1,000. For
these reasons, the coming age of single-chip 16-bit microprocessors will
probably see this machine and its instruction set as a dominant force.

The LSI-11 microcomputer is a fairly large (8.5 X 10.5 inches) printed
circuit board chat uses either four or five large [Cs for its microprocessor. The
fifth chip is optional and contains the microprogramming for multiply,

divide, and floating point. In addition to the MOS microprocessor, there are

a number of TTL ICs that implement a bus controller and a memory interface
for 4K words of memory. which is included on the board. A unique system
monitor is actually part of the mécroprogram, so the user can actually consider
this to be built into the hardware and thus never worry about his program
interfering with the monitor. A newer, half-size version of the board has just
been announced and contains everything mentioned except the memory.
Also, a five-times-as-fast “LS]-11-3" 1s rumored to be under development.

MICROPROCESSORS 51

System Bus

The system bus and timing presented by the LSI-11 is that of a typical
minicomputer, although it is not quite the same as chat normally used with
PDP-11 minicomputers. As a result, the bus is well documented and very

flexible but not as easy to interface as most other microprocessors. Interrupt
priority and direct memory access priority for an essentially unlimited num-
ber of devices is provided by daisy-chained bus grant signals. When DMA is
performed, the basic timing relationships are controlled by the DMA device
but according to a rigid sct of rules. Also the LSI-11 has a built-in refresh

circuit that will refresh dynamic memory (much denser, cheaper, and cooler
than static memory) throughout the system, thus decreasing potential mem-

ory costs significantly.
The bus itself consists of 16 multiplexed address and bidirectional data

tines, 17 control lines, and numerous ground and power lines for +5 V and

+12 V. Devices connected to the bus may be masters or slaves or both but at
different times. Bus masters are those devices that can generate addresses
such as the processor or DMA devices. Slaves simply respond to addresses and
read or write commands from the masters and are typically memories and
programmed I/O interfaces. Bus arbitration logic on the LSI-11 looks at
requests for bus mastership and insures that only one device is granted
mastership for every bus cycle.

Cycle Timing

LSI-11 bus cycles are basically asynchronous, meaning that no clock is
involved and that cycle length varies according to the speed of devices
addressed without quantization. The overall system speed is determined by
logic delays that vary somewhat from board to board and with temperature.
However, the approximate maximum bus speed is 600 nsec for read, 725

nsec for write, and 900 nsec for read-modify—write assuming a zero response
time peripheral. Added to these times would be bus and logic delays in the
peripheral plus any excess memory access time beyond 200 nsec. Every data

7 STROBE la STROBE
ADDRESS 28 nsee —| oaTa

SYNC

CIN

REPLY

PN SSSSSLLL, ADORESS

800 nsec MINIMUM CYCLE psig eet

*YARIES WITH MEMORY ACCESS TIME

Fig. 5-3. LSI-11 bus read cycle (practical minimum timings)

152 MusiIcaL APPLICATIONS OF MICROPROCESSORS

transfer on the bus requires a response from the addressed device. If no
response is received within 10 msec, a bus error is signaled, which usually
indicates that the addressed device does not exist. The result is an extremely
reliable bus structure with positive verification of all data transfers, a feature

not normally seen in microcomputer systems.
Figure 5-3 shows a simplified diagram of a bus read cycle. The cycle

starts with the master placing an address on the 16 data lines and indicating
that a read cycle will follow. After a stabilization period, the master asserts
“sync,” which causes all slave devices on the bus to latch the address before it
goes away. Next the master asserts “din,” which signals that dara read by the
addressed device should be placed on the data bus. When this is donc, the
slave also asserts “reply,” which signals the master that data is available.

After the master grabs the data from the bus, it releases ‘‘din,” causing the
slave to release “reply,” and later releases “sync,” which ends the cycle.

The address portion of the write cycle shown in Fig. 5-4 is identical to
that of a read cycle except that a following write cycle is indicated. After the
address sequence, the master places the data to be written on the bus and,
after it has settled, asserts “dout,” which signals the addressed device that

data is available on the bus. After the slave stores the data, it asserts “reply,”

and the cycle continues to termination as before. A read—modify—write
(RMW) cycle is also possible, although it is not shown. The RMW cycle

starts like a read cycle but is later followed by the data transfer portion of a
write sequence without readdressing the device. No input or output bus

cycles are needed because the LSI-11 uses memory-mapped I/O exclusively.

Although the LSI-11 uses a 16-bit bus, all addresses are actually byte
addresses. When reading a single byte, the processor selects the proper byte
from the 16-bit word read. However, when a single byte is written, a control
signal is asserted, which prevents memories from modifying the other unad-
dressed byte in the word.

STOBE | STROBE
ADDRESS 25nsec—) le Bara

SYNC

oouT

REPLY
[100 —! 50

bus ADDRESS ZEEE ADDRESS

675 nsec MINIMUM CYCLE,

* VARIES WITH MEMORY ACCESS TIME

Fig. 5-4. LSI-11 bus write cycle (practical minimum timings)

MICROPROCESSORS 153

Interrupts and Registers
An indefinite number of vectored priority interrupts are provided by

having interrupting devices supply a vector address to the bus in response to
an interrupt acknowledge bus. cycle. This cycle is also fully interlocked and
the processor responds by saving its current status and fetching the address of
a service routine from memory at the address supplied by the interrupting
device.

The LSI-11 CPU contains eight general-purpose registers of 16 bits
each and a status word. Two of the general registers double as the program
counter (R7) and stack pointer (R6). The others are absolutely equivalent and
free in their use, although some programming conventions may dedicate the

use of one or more additional registers. AJ] addresses are byte addresses; thus,

word addresses are even and the 16-bit address size is capable of addressing
32K words. The upper 4K words are normally reserved for I/O device ad-
dresses and portions of the lower 1K are reserved for trap and interrupt vector
addresses.

Addressing Modes

One of the great strengths of the LSI-11 instruction set is its many and

varied addressing modes. With the right combination of a 3-bit mode code
in the instruction and register specification (remember that R7 is the pro-
gram counter), the following distinct addressing modes are available:

. Register, specified register contains the operand.

. Immediate, operand follows the instruction.

. Absolute, address of operand follows the instruction.
4, Relative, word following the instruction when added to the program

counter is the address of the operand.
5. Indexed, word following the instruction when added to a designated

register is the address of the operand.
G. Register indirect, register contains address of operand.
7. Autoincrement, register contains address of operand. After use, the

register is incremented to point to the next datum in sequence.
8. Aurodecrement, register contains address of operand but before use it is

decremented to point to the previous datum.
9. Relative indirect, same as relative except operand is the address of the

actual operand.
10. Indexed indirect, indirect form of indexed.

11. Autoincrement indirect, indirect form of autoincrement. Increment is

always by two to point to next word
12. Autodecrement indirect, indirect form of autodecrement. Decrement is

always by two to point to previous word.

Wen

This covers every known addressing mode except absolute indirect,
which can always be accomplished with relative indirect. In particular, the

154 MUSICAL APPLICATIONS OF MICROPROCESSORS

autoincrement and autodecrement modes make table-scanning operations of

both bytes and words fast and efficient. Although the LSI-11 CPU defines

R6 as a stack pointer, the autoincrement and autodecrement modes will

allow any register to be used as a stack pointer with equal efficiency. Thus, a

program may have multiple stacks existing and ready for use simultaneously.

Note that the displacement used in immediate, indexed, and relative ad-

dressing is a full 16-bit quantity allowing ali of memory to be reached.

Relative addresses for conditional branch instructions use an 8-bit displace-

ment, however.

Instruction Set

Most LSI-11 instructions are operand oriented. An operand is defined by
a G-bit field in the instruction word with three of these bits specifying a
register number and the other three bits specifying a basic addressing mode.
If the specified addressing mode requires an additional word for a constant
(such as immediate or absolute), the word follows the operation code word.
On double operand instructions, it is possible for two.words to follow the
instructions; thus, instructions may be one, two, or three words in length.

The result of full availability of all addressing modes with all operands, even
double operands, allows unprecedented flexibility. For example, one memory
location may be added to another without having to load either into a register

first!
Nearly all operand-oriented instructions can be either in word mode or

byte mode as determined by a bit in the operation code. Word addresses
must always be even. When autoincrement or autodecrement addressing is
specified, the increment is by one for byte mode and by two for word mode.
Asa result, the LSI-11 has the byte-handling power of an 8-bit machine with
the arithmetic power and speed of a 16-bit machine.

Table 5-2 shows an abridged list of LSI-11 instructions. Because of the
operand-addressing structure, there are far fewer individual mnemonics than
with other machines of similar power. Many common operations may not
even have their own mnemonics. For example, a push onto the system stack

is accomplished by specifying autodecrement addressing on register 6 as the
destination operand. The mnemonics shown are for word mode; byte mode,
when available, is specified by appending a “‘B.”

The most powerful instructions belong to the double-operand group.
The first operand is termed the sowrce and the second operand is termed the
destination. Although there are only seven, they cover all of the double-
operand operations commonly used. The “move” instruction, for example,
replaces the typical load, store, push, pop, and register to register transfer
instructions normally found. A special case occurs when the destination is a
register and a byte mode instruction is used; the sign bit of the byte is

MICROPROCESSORS. 155

Table. 5-2. LSI-11 Instruction Set Listing

Operand Byte Operation Basic Time
Instruction type mode. DM=R__DM=M

MOV Double Yes Move from source to destination 3.5 2.45
ADD SUB Double No Add/subtract source to destination 3.5 42
BIS BIC Double Yes: Logical or/and source to destination 3.5 42
CMP. Double Yes Compare source with destination 3.5 3.15
BIT Double Yes Bit test; logical and and set conditions 3.5 3.15
XOR Double’ No Logical exclusive—or source to destination 3.5 42
CLR Single Yes’ Set destination to zero 3.85 42
COMNEG Single Yes Complementinegate- destination 42 4.55
INC DEC Single Yes Increment/decrement destination 4.2 49
TST Single Yes Test destination and set flags 4.2 3.85
ROLASL Single Yes. Shift/rotate destination left 1 bit 3.85 4.55
ROR Single Yes. Rotate destination right 1 bit 5.25 5.95
ASR Single Yes Arithmetic shift destination right 1 bit 5.6 63
SWAB Single — Rotate destination 8 bits w/o carry 4.2 3.85
ADC SBC _ Single Yes Add/subtract carry flag to destination 4.2 4.9
SXT Single — Extend sign of low byte of destination 5.95 6.65
MFPS MTPSSingle — Move from/to status register Approx. 7.0
BR 8 Relative— Unconditional relative branch 3.5
Bxx 8 Relative— Conditional relative branch 3.5
JMP Single — Unconditional jump, full address 3.5
JSR Single — Jump to subroutine 5.25
RTS Register — Return from subroutine §.25
SOB Register — Subtract one and branch if not zero 49
MARK Implied = — Specialized system stack operation 11.55
Traps Implied — Subroutine jumps to specific addresses = Approx. 17
SEx Clix implied — Set/clear condition flags A
MUL Double' No 16 x 16 multiply, 32-bit product 64 maximum
DIV Double’ No 32 + 16 divide, 16-bit quotient 78 maximum
ASH Double’ No 16-bit shift (destination) positions 10 + %shft
ASCH Double’ No 32-bit shift (destination) positions 10 + 3/shft
FADD FSUB Stack? — 32-bit floating add/subtract 46 average
FMUL Stack? — 32-bit floating muttiply 75 average
FDIV Stack? — 32-bit floating divide 151 Average

Notes: * The destination operand can only be a general register.
2 Any register may point to an operand “stack” containing the operands. The result re-

places the first operand.
3 Byte mode on instructions that allow it may be slightly slower or faster.

extended into the upper byte of the 16-bit register. The bit test instruction is
a form of compare except that the operands are logically anded together and
the result, which ts discarded, sets the condition codes. The arithmetic

instructions, “add,” “‘subtract,” and “exclusive-or,” do not have a byte

mode.
: All of the single-operand instructions have full address mode selection
for their single destination; thus, memory may be operated on as easily as
registers. One unusual operation that is frequently needed is “clear,” which

sets the destination to zero, Test is equivalent to compare with zero. One

weak spot is the shifts and rotates. Since they are single-operand instructions,
only single shifts may be performed, although a “swap bytes’ instruction is

156 MusicaL APPLICATIONS OF MICROPROCESSORS

provided, which is similar to rotate 8-bit positions. Logical shift right is not
provided. Double-precision arithmetic capability is provided by the “add
carry,” “subtract carry,” and “sign extend” single-operand instructions. Tri-
ple and higher precision is more difficult than on most other microprocessors;
however, the 16-bit word size makes such a requirement rare.

The condition codes and conditional jump instructions are two of the
LSI-11’s unique features. Unique because they, along with the addressing
modes, are patented. The processor status word contains four condition flags:
“zero,” “negative,” “carry,” and “overflow.” Standard conditional jump in-
structions for each condition and its complement as well as an unconditional
jump are provided. However, additional separate sets of signed and unsigned
conditional jump instructions are also provided. After comparison of un-
signed quantities such as addresses, the unsigned set of conditionals is used,
whereas the signed set is used after comparisons of signed numbers. These
conditional jump instructions are unique because they look at the carry and
overflow flags as well as the zero and sign flags to make the jump—no jump
decision. Thus, common problems such as overflow in the comparison ot
large numbers of opposite sign are never encountered with the LSI-11. This
is in contrast to the common practice (and only in big machines at that) of
using separate signed and unsigned compare instructions and a common set
of conditionals. A flexible set of direct condition code modification instruc-
tions is also provided.

The set of jump instructions is rather ordinary except for the ‘subtract

one and branch” instruction, which saves memory and time in common-loop
operations. It and the “jump to subroutine” instruction are unique in that
two operands are involved but one of them is restricted to the register-
addressing mode. The jump to subroutine may either specify a linkage
register to receive the return address (the register’s previous contents are

saved on the stack) or if R7 is specified, have the return address placed

directly onto the stack. This flexibility along wich the addressing modes
makes all common forms of argument passing feasible. The jump instruction
is provided because the unconditional branch is restricted to a+ 128-word
range, the only such restriction in the instruction set.

Additional standard instructions not shown in the list are a number of
“traps”’ that are actually software interrupts and miscellaneous machine con-
trol instructions.

Extended Arithmetic Instructions

The extended arithmetic instructions that make the LSI-11 so valuable
for music synthesis are optional. When present, they are double-operand
instructions, but the destination operand is always a register. Multiply and
divide are full 16 X 16-bit signed operations. If the destination register of a
multiply is odd, only the lower half of the 32-bit product is stored. Single-

MICROPROCESSORS 157

and double-precision N-bit shifts in both directions are also provided. The
shift count is a signed value, plus for left and minus for right, and is obtained
through normal addressing procedures. Only arithmetic shifts are provided.

Floating point instructions use a 32-bit word format containing a sign
bit, 8-bit exponent, and 24-bit mantissa (most significant bit is hidden).

The radix two exponent allows a range of 10738 to 1037 and consistent
accuracy. Addressing of floating point operands is unique. A single register
is specified, which is treated as a stack pointer. The two-operand floating
point operation effectively pops four words from this pseudostack, performs
the operation, and pushes the double-word result back. Although a radical

departure from normal addressing, it is quite compatible with typical
compiler-generated code.

Speed

Thus far nothing has been said about the speed of the LSI-11. Actually,
it is difficult to make valid comparisons from normal instruction timing
figures because the more sophisticated instructions available will likely have
no counterpart in the machine it is being compared to. Manipulations with

complex data structures can easily require twice as many instructions to be
executed on a less powerful machine.

Instruction timing is the sum of an instruction time, a destination time
(if used) and a source time (if used). Also, in some cases, extra time is needed

if R6 or R7 is specified along with certain addressing modes. As a resulc,
timing calculation involves several complicated formulas. An abbreviated
summary of source and destination mode times along with the total times
required by selected instructions is given in Table 5—3. Although this is very
sketchy timing information, the coup de grace is that all times can vary
* 20% due to the asynchronous nature of the processor, and memory refresh
operations steal another 6%. Obviously, any form of timed-loop program-

ming is not possible on the LSI-11. Since multiply, divide, and floating
point are microprogrammed, they are somewhat slower than encountered on
minicomputers with dedicated hardware for these functions. However, they

Table 5-3. Operand Fetch Times

Addressing mode Source Destination Byte source Byte destination

Register 0) 0) i?) Q
Register indirect 14 2.10 1,05 1.75
Autoincrement reg. indirect 1.4 2.10 1.05 1.75
Autoincrement mem. indirect 3.5 4.2 3.15 4.2
Autodecrement reg. indirect 24 28 1.75 2.45
Autodecrement mem. indirect 42 49 3.85 49
Indexed 4.2 4.9 3.85 4.55
Indexed memory indirect 6.3 6.65 5.95 7.0

Above times are accurate for most single- and double-operand instructions but may vary slightly for others.

158 MUSICAL APPLICATIONS OF MICROPROCESSORS

are 10 to 20 times faster than equivalent software routines would be. Overall,

the LSI-11 is a speedy machine by microprocessor standards.

Software

Just as important as the instruction set is the availability of sophisti-
cated operating and program develoment systems for the LSI-11. Since these
have been in development since 1970, they are more extensive and refined

than similar software for other microprocessors, both 8-bit and 16-bit. These
systems and the numerous high-level languages as well as macroassemblers
and relocating linking loaders greatly simplify implementation of all types of

music software systems described in the previous chapter and in Chapter 18.
In particular, they would simplify the software needed to maintain the data
base in a loosely structured music system.

Of course, usage of the LSI-11 need not be limited to direct computer

synthesis either. Its interrupt structure and programming ease make it excel-
lent for synthesizer control applications as well. The indefinite instruction
timing makes the use of an interval timer or other timing device mandatory,
however. Also, since bus interfaces are more complex and expensive, an I/O
bus adapter that presents a simpler, more restricted I/O bus to the large
quantity of synthesizer interfaces needed would be desirable. Hybrid systems
in which the synthesizer control method is used for experimentation and
direct synthesis is used for final output would be particularly well served by
the LSI-11.

The 6502 for Logic Replacement

The original notion behind development of microprocessors was to

provide a standard LSI chip that, when combined with standard memories,

could perform the functions of a custom LSI chip. The reasoning was that,
since semiconductor cost is nearly inversely proportional to production vol-

ume, the lower cost of standard parts would outweigh any cost advantages of
an optimized custom chip. Although things did not quite work out like that,
quite a lot of microprocessors are used for logic replacement instead of
building microcomputers.

Of all of the microprocessors now on the market, the 6502 comes
closest to filling all logic replacement needs. Its price, although not the
absolute lowest on the market, is low enough to replace even relatively small
logic systems. Its raw speed, which is the highest of all MOS mi-
croprocessors, is high enough to replace all but the most speed-sensitive logic
systems. Its instruction set, although not a programmer's dream, is powerful
and straightforward, unlike the obscure and convoluted sets of many other
Jogic replacement microprocessors. [ts bus structure, which is a model of
simplicity, is very easily interfaced while at the same time allowing some
very sophisticated direct memory access and multiprocessor schemes to be
implemented with a minimum of effort. Although not nearly as popular as

MICROPROCESSORS 159

the 8080, there is a sizable core of users who swear by it for general-purpose
computer applications also.

Jn music, there are numerous jobs that might normally be done with
conventional logic that can also be done by a 6502 cheaper, simpler, faster,
smaller, or just plain better. For example, a digitally scanned music
keyboard with velocity sensing on both press and release is one possibility.
Another is a universal multichannel envelope generator with the envelope
shapes programmable by the user. A supersequencer is another obvious ap-
plication. The 6502 is fast enough to even generate tones with program-
mable waveforms using simplified direct synthesis techniques. Many of these
applications will be detailed in later chapters.

The 6502 requires a single +5-V power supply, making it directly
compatible with TTL logic systems. A 16-bit address bus, 8-bit bidirec-
tional data bus, and numerous control signals are provided. Incredibly, there
are three unused pins on the package! The on-chip clock oscillator/driver
requires only a TTL inverter, a crystal (or R-C network), and a few passive

components to generate a two-phase nonoverlapping clock. Although the
standard frequency is only 1.0 MHz, a complete machine cycle is executed in
just one clock cycle.

According to the manufacturer's literature, there are no fewer than nine

different package and pin configurations of the basic 6502. Two of these are
the typical 40-lead dual-in-line package with all features available and the
other seven are smaller and cheaper 28-lead packages with different mixes of
omitted functions and intended for small configurations. The primary dif-
ference between the two 40-lead versions is that the 6502 has a built-in clock
oscillator and driver, whereas the 6512 requires an external two-phase clock
oscillator and driver. The advantage of an external clock is that timing and
waveshapes can be precisely controlled, although the oscillator pins of 6502
can also be externally driven. Thus, the 6502 will be the model for further

discussion.

Bus Structure and Timing

Figure 5-5 shows a 6502 read cycle that is about as simple as one can
get. The l-yzsec machine cycle is divided into Phase 1, which is the first 500

nsec, and Phase 2, which is the last 500 nsec. Actually, when using the

on-chip oscillator, the cycle may not be split exactly 50-50, but the signal

relationships are still valid. During Phase 1, the address bus and read/write

line settle to valid indications, and near the end of Phase 2 the mi-

croprocessor reads the data bus. Static read-only devices can actually be

connected to the address and data buses without any other control signals ac

all; if they see their address, they drive their data. Approximately 600 nsec is

allowed for memory access, although typically greater than 850 nsec can be

tolerated before malfunction.

160 MUSICAL APPLICATIONS OF MICROPROCESSORS

roe CLOCK CYCLE = | psec ——————+|

CLOCK PHASE | PHASE 2

ADDRESS BUS

READ/WRITE PALZZZLLLLLLA
__—§ 600 100

DATA IN EEL EE) ZZ

Fig. 5-5. 6502 read cycle timing

The write cycle in Fig. 5-6 is quite similar. The address and write

indication settle during Phase 1, and the data to be written is put onto the

data bus by the processor at the beginning of Phase 2 and held until the start
of the next Phase 1. Devices written into will, therefore, have to look at

Phase 2 and read/write to decode a valid write operation. These are the only
cycle types; all input and output is memory mapped.

Being so simple, there must be limitations and indeed there are a
couple. A ready line is available for slow memories to request additional time
for access. If the 6502 sees a low level on this line at the beginning of Phase
2, it will delay reading the data bus until the next cycle. The catch is that
write cycles cannot be extended with this signal. Actually, at the present
state of the art, there is little if any cost advantage in using such slow
memory. In fact, if only a couple hundred extra nanoseconds are needed, it
would be better to reduce the clock frequency anyway. The other catch is that
if “transparent latches” (level clocked) are used for output registers and the
clock is Phase 2, then glitches at the outputs are likely when written into.
The problem can be solved by either using edge-triggered registers (trigger
at end of Phase 2) or by generating a delayed Phase 2 that does not become
active until the data bus is stable.

One unusual property of the 6502 is that the address bus cannot be
disabled for direct memory access operations. This and the fact that there is
no hold pin like on the 8080 and write cycles cannot be stopped would seem
to make DMA difficult, if not impossible. Actually, a little study of the bus
timing reveals that if three-state buffers are added to the address lines and
400-nsec memory (or a slight clock slowdown) is used, then éransparent DMA

[t+ ssn = CLOCK CYCLE = | usec

clock PHASE 2

ADORESS BUS Cat

READ/IWRITE 277 PLN EZZZZZL.
To

Oats OUT MLL LLLE ELLEN L EL)

Fig. 5-6. 6502 write cycle timing

MICROPROCESSORS 161

becomes possible. Transparent means that the processor is unaware that
DMA is taking place and continues to run at normal speed. This would be
accomplished by using Phase 1 for DMA operation and allowing the proces-
sor to use Phase 2 normally for data transfer. Since the processor never drives
the data bus during Phase 1, only the processor's address bus would have to
be disabled (via added three-state buffers) for DMA during Phase 1. The
result is that a guaranteed continuous DMA rate of 1 million bytes/sec is
available for dynamic memory refresh, DMA displays, and other uses with-

out any effect on the microprocessor at all. Most other microprocessors would
be stopped cold using conventional DMA techniques at this speed. Even
another 6502 may be connected to the same bus with oppositely phased
clocking {external clock operation would be required) for a dual-processor
system. Clearly, then, the 6502 bus is actually one of the most flexible
available.

Interrupts

Interrupts on the 6502 at first seem somewhat limited but on closer
examination are seen to be extremely flexible. Two priority levels of interrupt
are built in, the standard maskable (can be disabled by program instructions)
interrupt and a nonmaskable interrupt, which has a higher priority. The
maskable interrupt request line into the 6502 is level sensitive and will
continue to interrupt the CPU as long as it is enabled and active. Unwanted
multiple interrupts are prevented, however, because the CPU disables them
after the interrupt sequence until the program enables them again. The
nonmaskable interrupt is edge sensitive. Whenever the logic level at this
input goes from high to low, the nonmaskable interrupt sequence is uncondi-
tionally executed. These two different interrupt actions are very useful in
logic replacement applications and in fact avoid a serious problem? the 8080

has in general-purpose applications.
The interrupt sequence itself consists of executing a “jump to sub-

routine indirect” through dedicated addresses in high memory. These ad-
dresses are called vectors and are FFFC-FFFD (hexadecimal notation) for mask-

able and FFFE and FFFF for nonmaskable interrupts. Any number of vec-
tored interrupt levels may be implemented for each interrupt type by having
the interrupting device respond to read cycles at those addresses with the
address of the service routine.

Registers

The 6502 has possibly fewer bits of on-chip registers than any other
microprocessor. Besides the program counter, there is an 8-bit accumulator

31f an 8080 program gets caught in a loop with the interrupt disabled, it is impossible
to interrupt the program and return to the monitor. Reset is the only way out, which

destroys the program counter and other registers, making straightforward isolation of

the loop impossible.

162 Musica APPLICATIONS OF MICROPROCESSORS

and two 8-bit index registers. The stack pointer is also 8 bits and the stack is

thus limited to 256 bytes and is always in Page 1. The status register has the

usual negative, carry, and zero flags but also has overflow, interrupt disable,

and decimal mode flags. When the decimal mode flag is on, the arithmetic

instructions assume two-digit BCD data. As we will see later, what is

lacking in register count is made up double in memory-addressing flexibil-

ity.
6502 instructions may be either one, two, or three bytes in length. The

first byte is always the op code and the second and third bytes, if present, are
either immediate operands or addresses. The first 256 bytes of memory
(0000-00FF) are termed the dase page and can be addressed by many instruc-
tions with a single address byte. However, the base page is indispensable for
most programming and is not merely a convenient way to save on memory.

The 6502 CPU is unusually efficient in executing instructions. Many
require only as many machine cycles as memory cycles and nearly all of the
remainder require only one extra cycle. Average execution speed may often
exceed 350,000 instructions/sec due in part to extremely fast conditional

jumps (2.5 ysec average) and immediate mode instructions (2 psec). For
even higher speed, selected CPUs with clock frequencies as high as 4.0 MHz
are available, which can approach speeds of 1.5 million instructions/sec
(MIPS) when combined with bipolar memory.

Addressing Modes

Like the LSI-11, the strength of the 6502 is its memory-addressing
modes. Easy access to memory and a number of in-memory operations reduce
the need for registers. Although the manufacturer boasts 13 addressing
modes, only 10 are sufficiently differentiated to be listed here:

1. Register, the operand is the designated register.
2. Immediate, the operand is the byte following the instruction.
3. Relative, the operand address is formed by adding the following byte to

the location counter (signed add). Used only by conditional branch
instructions.

4. Zero page, the address of the operand is contained in the single follow-
ing byte.

5. Absolute, the address of the operand is cuutained in the two following
bytes.

6. Zero page indexed, the address of the operand is formed by adding the
following byte to the specified index register discarding the carry if
any.

7. Absolute indexed, the address of the operand is formed by adding the
following two bytes to the specified index register (unsigned add).

8. Indirect, the address of a byte pair containing the address of the
operand is in the following two bytes. Used only by the unconditional
branch instruction.

MICROPROCESSORS 163

9. Indexed indirect, the zero page indexed sequence is used to locate a
byte pair on the base page containing the address of the operand,

10. Indirect indexed, the second byte of the instruction points to a byte
pair on the base page, which is added to the Y index register (unsigned
add) to form the address of the operand.

A close examination of a detailed instruction set listing immediately
reveals that no instruction is legal in all of these modes and that most can use
half or fewer of chem. In particular, instructions using one index register for
an operand cannot use the same register in forming the address of the other

operand. Also, the unqualified indirect mode would be very useful generally,
but the same effect can be achieved with either of the other indirect forms if
the index register contains zero. Other than these, the selection seems to be

well thought ouc, since the need for an unavailable combination is not
frequent. Note that the base page mast be used to perform variable addressing
of any possible memory location; the indexed modes only have a range of 256
bytes due to the 8-bit size of the index registers.

A full instruction set listing is shown in Table 5-4 along with the
allowable addressing modes and execution time. One unique feature is that
shift and rotate instructions can work directly in memory and with indexed
addressing to boot! Note that the condition codes are set even when some-
thing is merely loaded. Both the LSI-11 style bit test and compare any
register instructions are also inchided, although the immediate form of bit

test is mysteriously absent.
There are some weak points too. For example, the arithmetic instruc-

tions always include the carry in the calculation. For the more common

single-byte add or subtract, it is necessary to first clear or set the carry flag,
respectively (if its current state is unknown). Conditional branches are lim-
ited to true and complement testing of individual condition flags, although
the inclusion of an overflow indicator makes it easy to simulate all of the
LSI-11 forms also. One perennial headache is that index registers must pass
through the accumulator on the way to or from the stack.

Interfacing Tricks

Although not obvious from the foregoing description, the 6502 lends
itself well to individual bit control functions. For individual testing of
external conditions such as key closures, a standard digital multiplexor can

be connected to respond to a range of addresses and gate the addressed input

onto the most significant bit of the data bus. A shift or rotate memory left

instruction can then copy the addressed condition into the carry flag for

testing without disturbing any of the registers. Inexpensive addressable

latches can be used for individual control of output bits, again without

disturbing any registers. If the addressable latches are wired to respond to a

group of addresses and take their data from the least significant bit of the

“WORIS
GY]

LOI)
SMES

SPEO|
d
d

‘SHE

Z PUE
N S185

W
d

9

“epow

*s6ey
eu)

Ses0jse.
ydnweqU]

W
o
y

WUN|JeY

¢
[eWIOEp

‘e\qeua
jdnuJayU!

‘MOILJEAO
‘Aled

ere
Ajosuip

paresis
Jo

Jes
aq

A
e
w

yeu)
sbel4

“Buisseippe
p
a
y
d
u

s
e
c
o

osje
s
p
o
w

Buisseuppe

soye;nuunsoy

rao

“weKUy

exes
S80

jdnuelu!
ue

“JaAaMOY
‘sGE)) Ol) BARS

JOU SeOp
auUNOIGNs

Oo} dunt »
“OOD

ZHIN-L
& UNM

Sew
LO!NIeXe

exe
ULUN}OD

SIU] Ul sIeqUINN

ise]ON

uo
ne

se
do

oN

z

d
O
N

Z
N

X

0}

Ja
yu
io
d

yo
R}

S
z
@

X
S
L

da
yu
io
d

yo
R}

s
0}

X

z
S
X
L

Z
N

xX
@p
ul

0}

y

Je
js

ue
l)

z

A
V
L

X
V
L

Z
N

¥
0}

xa
pu

l
Ja
ys
ue
l,

z
W
X
L

V
X
L

9
®
}
0
N

sm
ey
s

in
d

‘y

{i
nd

v

d
i
d

W
i
d

sn
ye

ys

ys
nd

‘y

ys
nd

€

d
H
d

VW
Hd

s@

10
N

eu
NN

ol
gn

s
w
o
y

W
N
e
y

9
L
y

S
L
Y

pO
lO

N
eu
nn
oi
gn
s

0}

d
u
n
e

9
us

r
Ay
ye
uo
yt
pu
co
un

d
u
n
e

S
$

€
d
a
r

eS
]O

N
Be
y

Au
e

se
9j

9
10

Je

g
Z
z

x3
S

X1
9

Be
y

Au
e

uo

Aj
je

uo
ni

pu
ed

y
o
u
e
g

Zz

Ox
g

S
X

Oo
Z
N

yy6u
40

yo]
aye10y

é
9

2
$
s

9
Y
O
U

1
0
H

2
Z
N

q
u

Jo

ye
)

YI
US

rd

9
z

Ss

9
ys

T
1S

v
Z
N

A
pu
e

x
J
u
s
W
e
0
a
g

z
A
a
a

x
3
d

Z
N

A
pu
e

x
JU
SW
aJ
OU
;

z
AN
I

XN
I

Z
N

jU
eW
aJ
Ie
p

‘J
Ua
WS
ID
U]

z
9

S
9

0
3
d

ON
I

A
Wi
m

au
ed
ui
o5
,

€
v

@
A
d
o

X
U
M

a
u
e
d
w
o
g

€
v

@
X
d

D
Z
N

y

U
M

a
l
e
d
w
o
9

s
9

v
¢

v
€

v
4

dW
Oo

Z
N

¥

O}

JO

BA
IS
N|
OX
"

S
s

9

v
v

v
€

y
4

H
O
3

Z
N

¥

0}

Jo

[2
01

60
9

S
i
)

v
v

v
€

v
é

Vv
uO

Z
N

v

0}

puy
s

9
v

v
v

€
v

é
a
n
v

D
A
Z
N

Au
re

oj
m

y
Wo

dy

JO
RI

IQ
NS

s

9
v

v
v

€
v

td

og
s

Q
A
Z
N

Aueo
ym

¥ 01 ppy
>

oO
*F

¢
a

a
dav

A
X@

pu
l

81
01
S,

v
€

¢
A
L
S

X

X@
PU

!
B1
01
S,

¢
€

v
X
L
S

Z
N

A

xe
pu

l
pe
o7

v
v

€
v

@
Ag

qI

Z
N

X

xX
ep

ul

pe
oT

v

v
€

v
@

x
a

¥

81
01
S,

9
9

S
$

S
v

€
v

v
i
s

Z
N

Vv

pe
o?

S

9
v

v
v

e
v

z
v
a
l

|
W
a
y

2
0
v

AL

XT

A
V

X
W

A
Z

X'
Z

Od
zZ

S
a
v

W
A
I

s6
e\

4
uo
yo
un
y

is
ep
oy

Bu
ls

sa
ip

py

uo
yo
na
su
y

Bu
ys
r]

3
S

Yo
RO
NS
U)

Z0
S9

“P
-S

B
T
A
V
L

164

MICROPROCESSORS 165

data bus, then a shift memory left will clear the addressed bit and a shift
right will set it. Since indexed addressing is available with the shifts, very
efficient bit testing and control loops are possible.

Besides logic replacement, the 6502 can be used quite successfully for
general-purpose applications. The main factor inhibiting this besides the
course of history is its reliance on a base page and its limited indexed
addressing range. The base page complicates a relocating linking loader
considerably because both base page and regular memory relocation are re-
quired. Although the 6502 is a model of efficiency when processing tables
less than 256 byes in length, bigger lists cannot be handled using
straightforward indexed addressing. Instead, pointers must be formed on the
base page and address calculation done with normal arithmetic instructions.

Direct synthesis can be done significantly faster with the 6502 than
with other 8-bit processors. The addressing modes are quite efficient in
handling the waveform and other tables involved provided they do not exceed
256 bytes in length. Properly programmed, translation of a byte via table
lookup may add as little as 4 usec to execution time. An 8 X 8 unsigned
multiply can be performed by software in as little as 92 clock cycles average
for a full 16-bit product. These figures make the idea of using a 6502
microprocessor for each voice in a direct synthesis system at least worth

considering.

SECTION IT

Computer Controlled
Analog Synthesis

As was often pointed out in Section I, computers can be involved in elec-
tronic music synthesis in one of two distinctly different ways. A computer
may be interfaced to either standard or specialized sound-synthesizing
equipment and thus perform as a controller of this equipment. Or, with
suitable programming, the computer may merely simulate such equipment
and thus generate sound directly. Of these two means of involvement, the
application of microprocessors to control functions seems more straightfor-
ward. In addition, the weight of current interest seems to be toward

computer-controlled synthesizers. Accordingly, Chapters 6 to 11 will be

devoted to describing more fully the types of circuits and equipment that
must be controlled, the interfacing techniques that may be used to allow
such control, and the programming and human interface techniques needed
to actually effect the control. In these chapters, the emphasis will be on the
control of analog synthesizing equipment using digital techniques. Analog in
this context refers specifically to the entire gamut of voltage-controlled
equipment whose general function and usage was described in Chapter 3.
Digital refers to the use of microprocessors both as general-purpose control
computers and as special-purpose logic replacements in interface equipment.

Ge

Basie Analog Modules

Probably the most important idea in the history of analog music synthesis is
that of a modular synthesizer. Prior to the conception and implementation of
this idea by Robert Moog, numerous special-purpose synthesizers and, ac-
cording to their designers, “general-purpose” synthesizers were built and

used. Music synthesis, however, is such a large and complex problem that
even the most ambitious general-purpose machines had serious
shortcomings. The major shortcomings were in the séructure of the machines,

not the capability of the various oscillators, amplifiers, and filters that did
the work.

In a modular system, rhe structure is largely unspecified. The user

defines the structure appropriate to the requirements at the time and inter-
connects the available modules to realize that structure. When that require-
ment has passed, the modules are readily reconfigured to meet the next
requirement. The idea is roughly akin to the concept of movable type in
printing.

Analog System Standards

There must be some consistency among the modules, however, in order

to insure compatibility when they are connected. Before continuing, a few
system-wide ‘‘standards” that typically apply to a broad range of commercial

analog modules will be outlined. Standard power supply voltages are + 15 V,
+5 -V, and — 15 V with respect to system ground. The 5-V supply is used by
digital logic elements in the system and the +15 V is used by analog
circuits, stich as operational amplifiers. All supplies are tightly regulated,
usually to better than 1%, although some high-frequency noise can be
expected on +5. The standard power supply voltages are generated and regu-
lated at a central location and distributed to all of the modules in the system.
Other voltages used by some digital and analog ICs such as +12 V, —5 V,
and —12 V are conveniently derived from the standard voltages with IC
voltage regulators (some of which are less than 50 cents each) or zener diodes

or even resistive voltage dividers.

169

170 Musica APPLICATIONS OF MICROPROCESSORS

Although the +15-V and —15-V supplies may be regulated well

enough for use as reference voltages, it can be difficult to keep them noise

free in large systems with many modules drawing varying load currents.

Thus, it may be advantageous to distribute a very carefully regulated refer-

ence voltage also. Any board that uses the reference can then buffer it with a

simple op-amp voltage follower for load currents up to 20 mA. For

maximum ease of use, the reference should be set equal to the standard signal
amplitude.

Signal and Control Voltages

Signal and control voltage levels are customarily standardized to either
+5 V or +10 V. Either level is comfortably below the clipping level of
around 13 V exhibited by linear ICs operated on +15 V. With the almost
universally accepted VCO control sensitivity of 1 octave/V, a 5-V system will
have to use both positive and negative control voltages to cover an acceptably
wide frequency range. Ten-volt systems, on the other hand, have adequate
range with only positive control voltages, although negative values are often
desirable for further increasing the low end of the frequency range.

When used in a strictly computer-controlled system, it is attractive to
consider “binary scaling” of signal levels and control sensitivities. One very
nice set of numbers would be a signal amplitude of 8.192 V and a control
sensitivity of 0.9766 octaves/V (1.024 V/octave). If potentials are expressed
in millivolts, then these are very “round” binary numbers. Positive control
voltages would therefore span eight octaves, which is quite adequate musi-

cally 2 Hz to 8 kHz) but could also be extended by the use of negative
control voltages. Furthermore, the 8-V levels would be more easily handled
(translation: less costly) by analog-switching elements than full 10-V levels
while still having substantially better noise immunity than 5-V levels. Using

these round binary values in a computer-controlled analog system will con-
siderably ease the transition to purely digital modules or direct synthesis at
some later date. In any case, virtually any voltage-controlled module,
whether scratch built or purchased, is readily converted (or simply read-
justed) to any of these standards. The VCO to be described later, which is

designed to a 10-V standard, can be converted to 8 V simply by reducing
the system reference voltage to 8.192 V and touching up a few trim pots.

Digital control signals such as an envelope generator trigger can be any
amplitude but for compatibility with digital logic should swing between
ground and +5 V. The switching threshold level of digital inputs should be
around 1.5 V, again for compatibility with digital logic.

Signal and control inputs of modules usually have a fixed impedance of
100K resistive. Although output impedances are sometimes set at 1,000
ohms to allow mixing of parallel-connected outputs, the author prefers a zero
output impedance level. This actually provides the most flexibility, particu-
larly in a precalibrated computer-controlled system, because the output vol-

Bastc ANALOG MODULES 171

tage remains constant regardless of load. Mixing of outputs is much better
accomplished with a multiple-input voltage-controlled amplifier or mixer
module anyway. Internal current limiting in nearly all IC op-amps prevents
damage if two outputs should be accidently paralleled or an output is shorted
to ground. If resistive output protection is required, the 1K output resistor
can be placed inside the feedback loop of the output amplifier to eliminate
loading errors.

Mechanical Considerations

Standard synthesizer modules are usually designed to mount into a rack
with an attractive front panel exposed. The height of the panel is usually
fixed at around 6 inches and the width varies upward from 114 inches
according to the number of I/O jacks and panel controls included. The actual
circuitry is usually contained on a small printed circuit board mounted to the
panel and connected to the jacks and controls with hookup wire.

Interfacing a standard modular system to a computer would probably
involve the construction of a “computer interface box,” which would be a
patch panel with a few up toa hundred or more jacks instalJed. The interface
box would then be patched into the synthesizer just like any other module.
Pinboard-patched systems would be handled in the same way conceptually
but, of course, would be much neater in appearance. The advantages of such
an interfacing approach are that the synthesizer can still be used in the
conventional manner and that hybrid systems (conventional manual control
combined with computer control) are possible (and even probable).

However, a totally computer-controlled synthesizer need not require
any direct manual access to the analog modules. Instead, all patching and
operating parameters should be under the control of the computer. Further-

more, the operating programs and procedures in an ideal system should make

it considerably easier for the user to set up patches and operating parameters
through the computer. In such a system, panel-mounted modules and scores
of knobs would be superfluous. Internal calibration adjustments would still
be necessary, however, to compensate for gradual drift of important parame-
ters as the circuitry ages.

A preferable packaging arrangement then would be printed circuit
boards thar plug into a backplane; essentially the same method used for logic
modules in microcomputer systems. These boards may either be small, each

being a one-for-one equivalent of the typical panel-mounted module, ot they
may be large multichannel or multifunction boards.

The latter approach is quite feasible, since the number of parts needed
for a single module function is typically small. Also, large boards can be
more cost effective because some circuit elements, particularly computer
interface elements, may be shared among the channels. Examples of such
boards might be an eight-channel VCO or a completely general quad-

raphonic “pan pot” consisting of a four-by-four array of VCAs.

172 MUSICAL APPLICATIONS OF MICROPROCESSORS

Another method of partitioning functions is the “voice per board”
concept. The modules that would typically be patched together for a musical
voice are all present on the same board, already interconnected. Although not
nearly as flexible as a standard functionally modular system, the voice modu-
lar approach can be thought of as and controlled like an orchestra with a
limited, fixed complement of instruments. Also, much of the cost and
complexity of computer-controlled patching is eliminated because patching

itself is minimized.
Regardless of board construction and organization philosophy, the

backplane and card file housing the boards should be separate from the
computer packaging to eliminate possible pickup of digital noise. Also, it
may be necessary to shield the boards from each other with perhaps a steel
cover plate to minimize crosstalk. Backplane wiring of audio signals may also
need to incorporate twisted pairs or shielded cable.

The active analog circuits on such boards either could be built up from
scratch using the circuits about to be described as a foundation or may be
purchased as “epoxy modules” from several sources. The scratch method is

becoming much easier as linear ICs designed specifically for voltage-
controlled modules are becoming available. Either way, the per module cost
of the computer-controlled system should be substantially less than that of
panel-mounted commercial modules. The disadvantage of the total
computer-oriented system is, of course, that the computer must be used to
“get into” the system at all.

Analog Components

Since a significant portion of the expense of an overall computer-
controlled analog synthesizer is in the analog modules, it is appropriate to
become familiar with the circuitry in such modules even if the reader intends
to use an existing commercial synthesizer. In the following material, actual
circuitry! of the three most used analog modules will be described. These are
tested, practical circuits using a minimum of specialized components. Their
performance is excellent and well suited for use in computer-controlled
analog-synthesizing systems. The circuit discussions to follow will assume a
basic familiarity with linear transistor circuits and IC operational amplifiers.
If the reader is unfamiliar with these topics, several excellent references are
listed in the bibliography.

The most common active element in these circuits is the ubiquitous
operational amplifier. These devices have improved greatly within the last
year with the introduction of truly low-cost field-effect transistor (FET) input
stages. The semiconductor technology used to accomplish this goes by names
such as “BIFET” and “BIMOS” because junction FETs and MOSFETs, re-
spectively, are integrated with bipolar transistors on the same chip.

'The original source of these circuits is Blectronotes Newsletter.

Basic ANALOG. MODULES 173

Op-amps made with these technologies possess an almost ideal combi-
nation of desirable properties such as low cost, wide bandwidth, fast slew
tate, and vanishingly small bias currents. It is now quite reasonable to choose
one of these amplifiers as a personal “standard” to be used in all applications
and forget about specialized “high-speed,” “low-bias,” or “economy” de-
vices. Even duals and quads are available at very attractive prices in one
manutacturer’s line. The only real shortcoming of this breed of amplifiers is
generally poorer initial offset voltage and drift with respect to equally priced
bipolar input types. The appendix gives a listing of the more popular FET
input op-amps as well as several conventional bipolar types for comparison.

In spite of the convincing arguments just given, a variety of op-amps
will often find their way into circuit diagrams given in this book. The author
is reluctant to specify such premium performance devices when a common
garden variety 741 or LM301 will suffice. Also many circuits are not original
with the author, and, therefore, the originally specified components are
shown. The reader can freely substitute the newer types (designated as “gen-
eral replacement” in the appendix) wherever these are used with no detrimen-
tal effect on circuit operation. Occasionally, really high performance in one
specification may be neeeded, which would require the use of a specialized
device. Most likely this would be an ultra-high-speed or really low offset
voltage or drift requirement.

Voltage-Controlled Oscillator

The VCO is simultaneously the most important and mose critical mod-
ule in the system. The circuit topology chosen must, as much as possible, be
“inherently accurate” with any practical shortcomings being due to less than
ideal components rather than the circuit configuration. The waveform from
the basic oscillator should be readily shaped with frequency-independent
networks into several additional shapes with distinctly different harmonic

spectra containing both even and odd order harmonics. Finally, of course, the

circuit should meet rhe usual goals of low cost, minimum use of specialized

components, and operation from standard voltages.

Fundamental Types

Two fundamentally similar oscillator types are popular. One type nor-

mally produces triangle and square waveforms, while the other generates 4

sawtooth and a narrow pulse. Either pait of waveforms can be readily shaped

into sawtooth, triangle, rectangle, and sine waveshapes with simple,

frequency-independent (containing no inductors or capacitors in the signal

path) networks.

A block diagram for either type of oscillator is shown in Fig. 6-1. Note

that the oscillator itself is actually a current-controlled oscillator. The contro}

voltages are combined by the input-processing block into a single, properly

scaled control voltage but still in exponential (actually logarichmic) form.

174 Musica APPLICATIONS OF MICROPROCESSORS

5
Pal

CONTROL INPUT exponentiar | _|CURRENT-CONTROLLED|, | oureuT AN
VOLTAGE —m] IT sain PE|CONVERTER | F] OSCILLATOR PROCESSING nn
INPUTS

EXPONENTIAL LINEAR AUDIO
VOLTAGE CURRENT FREQUENCY

WAVEFORM

Fig. 6-1. Elements of a VCO module

The exponential converter block simultaneously takes the exponential of the

scaled control voltage and converts it into a current, thus exponentially

converted voltages never occur. The reasons for this are the same as those that
forced us to go to an exponential control relationship in the first place; small
voltages ate extremely susceptible to noise, thermoelectric voltages, and
other errors. Small currents, on the other hand, are less readily polluced.

Furthermore, practical, accurate exponential conversion elements are inher-
ently voltage-to-current converters.

The oscillator block uses the control current to charge a capacitor. The
greater the control current, the faster the capacitor charges (or discharges for
a negative current) from one voltage level to another. The triangle-square
type of oscillator, for example, uses the positive control current from the
exponential converter to charge the capacitor from lower voltage “A” to
higher voltage “B” as shown in Fig. 6-2A. When the capacitor voltage
reaches B, a level sensor operates a current reverser, which negates the control
current, causing the capacitor to discharge toward A again at the same rate.
When A is reached, the level sensor reverses the current again and the cycle
repeats. Thus, it can be seen that the capacitor voltage assumes a triangular
shape. The square wave available is actually the control signal for the
current-reversing switch.

The sawtooth-pulse oscillator is similar in that the capacitor is charged

from A to B by the control current. The discharge cycle, however, is made as
rapid as possible by shorting out the capacitor with a switch when B is
reached. The capacitor voltage, then, is a sawtooth shape as in Fig. 6—2B.
The advantage is that no current-reversing device is needed, but a very fast
shorting switch is necessary for good high-frequency performance. Note that,
if the current and voltage levels are the same, the sawtooth circuit will
oscillate at twice the frequency of the triangle circuit. In either case, the
greater the control current the faster the cycle repeats and the higher the
frequency. This relation is theoretically linear for either type of oscillator,

assuming that the reversing switch is perfect or the discharge switch has zero
resistance and zero on time.

The output-processing block converts the naturally occurring

waveforms in either circuit into those waveforms that are customarily used in
voltage-controlled synthesizers. Besides shaping, it scales the amplitude and
average dc level of the waveforms to match standard signal levels in the
system.

Basic ANALOG MODULES VS

SHARGE-orscHaRGE
contro, __! | Reversing |
CURRENT SWITCH aT 4

REVER: LS capaciton aevense | =) aie

LEVEL
SENSOR

s Ey 6 ~Sp~qc- + spec - Se
25
SS ajet—-—— Ne set

9 =
TIME

+1
«
2s
eu 0
EE =5 So

=f

TIME
(A)

contro _ |
CURRENT.

CAPACITOR
TT / voitace

SHORTING LEVEL
SWITCH SENSOR

«
EQA Prd
ao
és

0

SWITCH CLOSES
TIME

(8)

Fig. 6-2. Current-controlled oscillators. (A) Triangle-square oscillator. (B)
Sawtooth-pulse oscillator.

For purposes of illustration, the sawtooth type of oscillator will be
described more fully. The author feels that the difficulties in rapidly dis-
charging the capacitor are significantly less severe than those encountered in
finding a “‘perfect” reversing switch. Also, a digital equivalent of the saw-
tooth oscillator, to be described in a later chapter, is substantially simpler to
implement than the triangle oscillator equivalent. We will start in the
middle with the exponential converter, which is the singular most critical
part of the circuit, and work out in both directions.

176 MUSICAL APPLICATIONS OF MICROPROCESSORS

Mt REAL DIODE
, WITH 0.05.0

SERIES
is RESISTANCE
09 <

ae IDEAL
EXPONENTIAL

0.7 AND IDEAL
DIODE

MEASURED
IN4001

DIODE VOLTAGE (V}

2 a

oa

0.3

oe IDEAL
DIODE ol IDEAL

4 EXPONENTIAL

0 -

10-2 or 1o- 0-9 too"? to toto" aooi| 001, 0.1 0.3 1.0

DIODE CURRENT (AD : "

Fig. 6-3. Silicon junction diode characteristics

Exponential Converter

Before the widespread use of semiconductor technology, accurate non-
linear transfer functions were very difficult to obtain. Those that could be
obtained were only approximations that were imperfect even with perfect
components. Silicon semiconductor junctions, however, are predicted by
theory to possess a current-voltage relationship that is exponential in nature.

The classical semiconductor diode equation relates current through the diode
with the voltage across it as J = Al,e8T (eCVT —1), where A, B, and C are

constants (combinations of fundamental physical constants), Is is another
constant related to the construction of the diode, T is the absolute tempera-
ture in degrees Kelvin, and V is the applied voltage. Thus, it can be seen that
the current is an exponential function of voltage if eCV/l is much greater than
unity.

Fortunately, available real diodes are of sufficient quality to very closely
conform to theory. The graph in Fig. 6—3 shows the current-voltage rela-
tionship of a 1N4001 diode, a very common 10-cent item. The graph is on
semilog coordinates to make exponential behavior readily apparent. Also
shown is a plot of an absolutely ideal exponential response, a theoretically

perfect diode, and a perfect diode with a fixed series resistance of 0.05 ohms,

a typical value for the 1N4001. Note the extremely close correspondence
between the actual diode and the ideal diode with series resistor model over a
current range of better than 10° to 1. In fact, the range of close conformity

Basic ANALOG MODULES 177

with an ideal. exponential response exceeds 10® to 1. Obviously, this diode or
something similar is worth considering for the exponential converter.

DIODE VOLTAGE (V)

75°C

wo'2 wo" jo o-oo? oF 0S t0-* =O «Oot |
DIODE CURRENT (A)

Fig. 6-4. Temperature dependence of diode characteristics

All is not rosy, however, as the graph in Fig. 6-4 shows. The diode
characteristic is adversely affected by temperature! Not only does the curve
shift to the right with increasing temperature, its slope changes somewhat.

This behavior, of course, was predicted by the diode equation, since both
exponential terms are dependent on temperature. Variation of the first term

is responsible for the right shift, and the magnitude of B is such that the diode
current doubles for every 10°C increase in temperature, assuming every-
thing else remains constant. Variation of the second term with temperature is
much less, since T is alone in the denominator and is responsible for the
change in slope.

A voltage-controlled oscillator based on this diode would have drifted
over five octaves upward in frequency and would respond at the rate of 1.16

octaves/V relative to initial tuning and 1 octave/V at 25°C (equivalent to
room temperature of 77°F). Drifts with smaller temperature changes would
be proportionally less but still a 1°C change in temperature would cause
nearly a half-step pitch drift. This temperature dependence is clearly unac-
ceptable unless the diode is kept in a very precise temperature-controlled

chamber!

178 MusIcAL APPLICATIONS OF MICROPROCESSORS

APPLIED
VOLTAGE

EXPONENTIAL
CURRENT FLOW

REFERENCE REFERENCE CONVERSION
CURRENT DIODE. DIODE

Fig. 6-5. Temperature compensation with a second diode

Compensating Temperature Drift

Part of the solution to this problem lies in the use of an additional diode
with characteristics identical to the first one and the circuit configuration of
Fig. 6-5. A constant reference current is applied to this added diode with a
magnitude about midway in the range of usable output currents from the
converter. The voltage to be converted is now applied between the two
diodes (in practice from an operational amplifier so that the reference current
is not upset), and the current flowing in the converter diode is the exponen-
tially converted current. Note that the input voltage must swing positive and
negative to get the full range of currents above and below the reference
current. This circuit completely compensates for the right shift of the diode
characteristic with increasing temperature because a similar shift occurs for
the voltage across the added compensation diode. The change in slope is not
corrected, but ic is a much smaller effect than the horizontal shifting.

In a practical application, matched transistors are used for exponential

conversion partly because matched diodes are rare but mostly because the
three terminals on a transistor allow the circuit paths for voltage application
and current output to be separated. For good-quality transistors (constant,
high current gain), the collector current is proportional to the exponential of
the base to emitter voltage according to the equation,
I, = Aad,eBT (e11627Ve/T —1), where I, is the collector current, a@ and J,, ate

transistor-construction-dependent constants (common base current gain and
emitter saturation current, respectively), and Vj, is the base-emitter voltage.

This equation is essentially identical to the diode equation given earlier:
Figure 6-6 shows a practical configuration with the input voltage

referenced to ground and an op-amp-regulated reference current source. The
op-amp maintains a constant reference current independent of changes in the

exponential output current by adjusting its own output voltage to carry away

the sum of the reference and output currents. The only real constraint on
reference current magnitude is that it not be so large as to cause internal

transistor resistances to come into play or be so small that leakages become
significant. Therefore, the reference current is ideally set to 1 A, about

midway in the range of useful currents (1 nA to | mA) but, due to finite

Basic ANALOG MODULES 179

EXPONENTIAL CONTROL
VOLTAGE iNPUT

Veet

LINEAR Tout EXPONENTIAL
CONTROL --—* —0 CURRENT
VOLTAGE 1 OUTPUT
FOR 1
CONSTANT. {
MODULATION {
HNDEX Tret + lout 1

i

H
LINEAR (A) 1
CONTROL i
WEUIAGE j

| LINEAR CONSTANT ve CURRENT DEVIATION OUTPUT

{B)

Fig. 6-6. Practical exponential converter. (A) Exponential voltage to current

converter. (B) Linear voltage to current converter.

op-amp bias currents, is typically set to aroand 10 wA. When connected to
the oscillator to be described later, a current range from about 0.25 “A to
0.25 mA will cover the audible range. The resistor in series with the

amplifier output serves to limit the maximum output current to a safe value.
Like the two-diode circuit, the matched transistors cancel the major tempera-
ture dependence of the exponential converter. The output current flows into
this exponential converter and the voltage-compliance range is from roughly

ground to the positive collector breakdown voltage. Note that negative-going
input voltages result in increasing magnitudes of output current. The polar-

ity may be reversed simply by swapping connections to the bases of the two
transistors. This circuit performs well but still has two remaining imperfec-
tions, which will be remedied later.

Linear Control Input

A linear control input for the dynamic depth frequency modulation
described in Chapter 3 can easily be added to this exponential converter. One
possibility is to simply modulate the reference current summing the linear
control voltage with the reference voltage in the reference current regulator.
The effect can be understood by noting the overall I/O relation for the
exponential converter: Loe = Infe?¥i", Thus, the linear control voltage

input multiplies the oscillator frequency by factors greater than unity for
positive inputs or less than unity for negative inputs. Linear frequency mod-

ulation implemented through this input will be such that the modulation
index (ratio of frequency deviation to center frequency) will be constant as the

180 MUSICAL APPLICATIONS OF MICROPROCESSORS

center frequency is varied. For musical purposes, this is generally more
desirable than constant deviation. If the linear control input becomes suffi-
ciently negative, the reference current may be completely shut off, giving

zero output current and thus zero frequency.
Another possibility for a linear input is a separate /inear voltage-to-

current converter whose output current is summed with the exponential
current via a direct connection. This gives constant deviation FM, which also

has some uses. For maximum usefulness, the linear current converter should

be able to sink current for a positive input and source current for a negative
inpuc. A circuit configuration having these characteristics is shown in Fig.
6-6B. The type 3080 operational transconductance amplifier gives an output
current that is proportional to the difference in voltage at the plus and minus
inputs. This current is positive if the plus input is more positive and negative
if it is more negative. The sensitivity and range of the circuit are adjusted by
changing the 3080's bias current. Although the actual control current can
become positive (sourcing) with this circuit, the following current-controlled
oscillator would probably stall if that were to happen.

DO Aen =9
t

100 K t 2K
CONTROL ®
VOLTAGE
INPUTS

A OCTAVE S/ VOLT
TUNE

100K 5003———© EXPONENTIAL
CONVERTER SENSITIVITY.

+15 V O—n—0 - 18 V
BASIS.
FREQUENCY
TUNE

Fig. 6-7. Input voltage processor

Input Processor

The exponential converter transistors are driven by the input-processor
block. Typically, several control voltages are summed together to form a
composite control voltage with two or three of the control inputs coming
directly from the front panel of the module. The sensitivity of one or more of
these front-panel inputs is usually adjusted by front-panel controls. Another
one or two voltages come from additional panel controls used to adjust the
tuning of the module.

The ideal circuit configuration for combining these together with com-
plete isolation is the inverting op-amp summer as shown in Fig. 6—7. In this
example, inputs A and B would have a fixed sensitivity, usually of 1 octave/V

Bastc ANALOG MODULES 181

(or 0.9766 for a binary-calibrated system) and C could be varied from zero up
to pethaps 3 octaves/V. The “tune” control determines the basis frequency
(frequency with all inputs at zero) by feeding a variable dc voltage directly
into the summer. A fine-tuning control and more inputs can be added to this
structure essentially without limit. Note that algebraic summation of the
input voltages is inherent, thus, a negative voltage at one of the inputs will
counteract a positive voltage at another input.

The output voltage from the input processor is scaled by adjusting the
value of R relative to the input resistors. Since this circuit will drive the base
of an exponential converter transistor directly, the transistor equation must

be solved to determine the range of output voltages needed. It turns out that
a 0.018-V increase in base voltage will double the collector current at room
temperature. Ir is common practice to set R to 2,000 ohms when 1LOOK
input resistors are used which would scale a 1-V input down to 0.020 V. An
internal trimming potentiometer between the op-amp output and the ex-

ponential converter base is then used to adjust to the exact value needed
around 18 mV. Note that the polarity inversion (positive-going input vol-
tages produce negative-going outputs) precisely matches the requirements of

the exponential converter.
Assuming that the tuning control is set to midrange (no net effect on

the control voltage sum) and all control inputs are zero, the output of this
circuit would also be zero. The exponential converter would then produce a
current equal to the reference current, which is typically set to 10 MA.
Positive control voltage sums (more negative input to exponential converter)
give higher currents from the exponential converter, while negative sums

give lower currents. For normal operation, the tuning control would be set
negative so that O V from the other inputs would produce the lowest normal
audio frequency. Then positive control voltages from 0 V to 10 V would
cover the audio range. Negative control inputs in addition to the negative
contribution of the cuning control could produce even lower frequencies,
useful as control voltages themselves.

Sawtooth Oscillator

The current from the exponential converter could be used to charge
(actually discharge since it is a negative current) a capacitor directly. Greater
accutacy is obtained, however, if the exponential converter collector remains

at a constant voltage near ground, since then the collector-base voltage is

near zero and leakages are minimized. This desire is satisfied by feeding the

current directly into the summing node of an integrator as shown in Fig.

6-8. The negative current is integrated and inverted by the op-amp and

appears as a posicive-going ramp at its output. The op-amp used for the

integrator must have low bias current yet high speed for optimum low- and

high-frequency performance, respectively, which usually means a FET op-

amp.

182 MUSICAL APPLICATIONS OF MICROPROCESSORS

EXPONENTIAL
CURRENT Jt

atl NARROW
© PULSE

OUTPUT
LOW-BIAS
HIGH-SPEED A CP ane COMPARATOR

Fig. 6-8. Sawtooth oscillator

The comparator compares the integrator output with a positive refer-

ence voltage, Vr. As long as the integrator output is less than Vey, the

comparator output is negative, which keeps the FET switch across the inte-
grating capacitor off, allowing it to charge. As soon as the integrator voltage
reaches Vref, the comparator output starts to go positive. As it does, the
positive comparator input is forced even more positive through C2 giving
positive feedback and causing the comparator to snap on. The comparator
output is constrained to rise no further than ground, but this is enough to
fully turn on the high-threshold-voltage FET switch, which discharges Cl
and brings the integrator output back to ground potential in preparation for
another cycle. The comparator is prevented from responding instantly to the
drop in integrator voltage by the charge accumulated on C2 when the com-
parator switched high. In effect, a one-shot is formed with a time constant of
RC2, which is arranged to be long enough for the FET to completely
discharge C1. Even though every reasonable effort is made to speed the
discharge, the control current still loses control for a finite time each cycle.

This will cause the higher oscillator frequencies to be flat, that is, lower than
expected from the control current magnitude. This error can be compensated
for as will be shown later.

The value of Cl is chosen to provide the required range of output
frequencies given the 0.25 @A to 0.25 mA range of current input. The
expression for frequency is F=l/CVrf and the expression for capacitance

is C=I/FVrf where Vref is the reference voltage in volts, F is frequency

in hertz, C is capacitance in farads, and / is the exponential current in
amperes. The easiest way to calculate C is to first determine the highest
frequency of interest and then solve the second equation for J = 0.25 mA.
The lowest frequency for really accurate response (and zero control voltage if
the highest frequency corresponds to a +10-V control voltage) is 1,024

times lower. Much lower frequencies are possible with good components and
moisture-proofed circuit boards, as much as 1,000 times lower yet for a total

range of over a million to one. For a nominal audio range of 20 Hz co 20 kHz
and Vrf of +5 V, Cl would be about 2,500 pF. For optimum performance
over a 32-Hz to 8-kHz range in an 8-V system with Vref of 4.096 V, C1

Basic ANALOG MODULES 183

4R

Veet RAW R
SAWTOOTH

Q INPUT STANDARD
3R SAWTOOTH

v OUTPUT het

R -10V

(al

DUTY-CYCLE

CONTROL
VOLTAGE RECTANGLE

OUTPUT

STANOARD R +13V
SAWTOOTH -sv— LIL
INPUT 1,000R

(8)

4

° INPUT
SAWTOOTH

+

) > FULL-WAVE
RECTIFIED

(Cc)

+9.3V

~07v 70

STANDARD 4 Pr £
‘SAWTOOTH

+50¥

-l0v NIN

DIODE BIAS
CURRENT

=2R
WAVEFORM
CENTERING

(0)

Fig. 6-9. Waveshapers. (A) Sawtooth standardizer. (B) Rectangle shaper. (C)
A sawtooth into a triangle. (D) Practical sawtooth-to-triangle conver-
ter.

184 Musical APPLICATIONS OF MICROPROCESSORS

should be increased to about 5,000 pF. C1 should be a high-quality poly-
styrene capacitor for best accuracy and temperature stability.

Waveshapers

The integrator output is a low-impedance sawtooth that oscillates be-
tween ground and Vf with very little error. The pulse output from the
comparator is generally not useful as an audio signal because its width is only
a few hundred nanoseconds, although it could be used to trigger digital
circuits. Figure 6-9 shows the waveshaping circuits needed to derive the
standard synthesizer waveforms at standard levels from the basic sawrvoth
provided by the oscillator.

The sawtooth is readily standardized with a simple op-amp circuit. If

Vr is 5 V, the 5-V peak-to-peak sawtooth amplitude must be increased to
20 V (a gain of 4) and the 2.5-V average dc level must be removed. Trimmer
pots or precision (0.19) resistors are generally needed to do this job well.
Although this amount of precision is not really necessary for straight audio
use of the output, it may be desirable if the oscillator is used to generate
control voltages.

A rectangular waveform is easily obtained from the standardized saw-

SINE -SHAPED
TRANSFER FUNCTION

(Ee)

TRIANGLE
INPUT

+7V
MAAN

AMPLITUDE
IS CRITICAL

150

Fig. 6-9. Waveshapers (cont.). (E) Triangle-to-sine conversion. (F) Triangle-
to-sine converter,

Basic ANALOG MODULES 185

tooth with an op-amp connected as a comparator. The sawtooth is fed into
one side of the comparator and a de width control voltage is fed into the other
side. The comparator output will be high whenever the instantaneous saw-
tooth voltage is higher than the dc comparison voltage and low otherwise.
Thus, the duty cycle of the output varies between 100% and 0% as the dc
comparison voltage varies between — 10 V and +10 V. A small amount of
positive feedback gives a Schmidt trigger action to the comparator, which
maintains fast rise and fall times even though the sawtooth frequency may
only be a fraction of a hertz. The amplitude of the rectangular wave is set by
the saturation voltage of the op-amp’s output in the circuit shown, alchough
precise standard voltage levels may be easily obtained if desired.

Deriving a triangle waveform from a sawtooth is interesting but rela-
tively simple. The basic idea is to full-wave rectify the sawtooth, which gives
the required shape, and then remove the dc component and rescale it back to

standard levels. The first step is to obtain a standardized sawtooth opposite in
phase co the one already generated with a simple unity gain inverter. The two
out-of-phase sawtooths are then fed into a classic two-diode full-wave
center-tap rectifier. A resistor to the negative power supply keeps some
current flowing through one of the diodes at all times. This simple, open-
loop rectifier is far superior to the usual closed-loop rectifier found in op-amp
application notes at the higher audio frequencies. Finally, the triangle output
amplifier removes the dc (a portion of which is the rectifier diode’s forward
voltage) and scales the triangle to standard levels. Although the shaping is

essentially perfect, there is a small glitch in the triangle when the sawtooth is
resetting. This may be minimized by injecting a pulse of opposing polarity at
this time or by using a low-pass filter to smooth over the glitch.

A good sine wave may be obtained from the triangle wave by distorting
it with a nonlinear circuit. Figure 6-9E shows how a sine-shaped transfer
function can round the pointed peaks of a triangle wave into an approximate
sine shape. Although several types of nonlinear circuits can be used, the
FET-based circuit in Fig. 6~9F works well and is inexpensive. Note that the
amplitude of the triangle input must be very carefully matched to the non-
linear transfer function for minimum sine wave distortion. This would nor-
mally be accomplished with two trim adjustments, one for amplitude, and
the other to compensate for asymmetry. Total harmonic distortion can usu-
ally be trimmed co less than 1% with this circuit. Lower distortion is

possible by following the sine shaper with a tracking low-pass filter.

Practical Schematic

A complete, practical schematic of the VCO is given in Figs. 6-10 and
6-11. All input structures are resistive (100K) to an op-amp summing

junction and can be expanded to fit individual needs. Trimming adjustments
are provided so that input sensitivities and output amplitudes can be ad-

186 MusSICAL APPLICATIONS OF MICROPROCESSORS

justed to precisely match the system standards for use in a precalibrated
computer-controlled system. The existence of +10 and — 10 system refer-
ence voltages is assumed. Also, several refinements beyond the basic circuit

blocks just described have been incorporated.
The input circuit for exponential control voltages has been refined by

EXPONENTIAL
FREQUENCY
CONTROL, ob} ON a eee =
INPUTS :

ow
ALL 100 k

'%

ZERO INPUT
FREQUENCY

LINEAR
FREQUENCY
CONTROL ©
INPUT
10%/WOLT

*—0,33%/°C TEMPERATURE COMPENSATING
Q81 FROM TEL LABS OR EQUIVALENT

+15 V

470.0,
Ol wr

= 3lv

|
2700 pF

POLYSTRENE

RAW
© SAWTOOTH
OUTPUT

O
-l5V

* HIGH PINCHOFF
LOW-ON~RESISTANCE JFET

Fig. 6-10. Practical VCO input processor and oscillator

Basic ANALOG MODULES 187

+10 Viet

22k0 9 2.2M0

ag RECTANGLE
‘ UTPU' MoaUL ATION O- AB *

RAW
SAWTOOTH
FROM
FIG. 6-10

SAWTOOTH
ouTPUT

mee Le
TRIANGLE

TRIANGLE } | TTHIANG| Bay eer

10 Veel -15V m0 Vv
. fin aceit
ADJUST FOR MINIMUM ‘GLITCH 15 pF

SINE
SHAPE
TRIM

100 kN

ike

2 ima
, Q

4.74kO

SINE fia’ oureut

oom = = ‘ont adh ND
SINE ,

SYMMETRY SINE
os = AMPLITUDE

TRIM
TRIM

Fig. 6-11. Practical VCO output waveshapers

using a thermistor in the feedback network to cancel out the remaining
exponential converter temperature coefficient. At room temperature, this
coefficient is about —3,300 parts per million (ppm) per °C; thus, a resistor
with a +3,300 ppm temperature coefficient is required. Note that the
compensation is exact only at 27°C because the exponential converter tem-

perature dependence goes as 1/T rather than as KT, which the resistor pro-
vides. Nevertheless, temperature drift due to the exponential converter is

188 MusICAL APPLICATIONS OF MICROPROCESSORS

reduced to the same order of magnitude as other circuit drifts in the typical
studio environment.

Two other minor errors are corrected by modifying the reference cur-
rent regulator for the exponential converter. One of these is due to the finite
“bulk” resistance in the converter transistors. The other is due to finite
discharge time in the sawtooth oscillator. Both effects cause high frequencies
to be lower than they should be. The magnitude of both errors is directly
pfoportional to the magnitude of the control current from the converter. The
addition of D1 and R5 couples a voltage that is directly proportional to the
contral current back into the control input summer. This voltage is de-

veloped across the 10K protective resistor in series with the reference current
regulator. The diode cancels a 0.6-V offset that exists at low values of control
current. In use, R5 is adjusted for optimum high-frequency tracking.

The sawtooth oscillator proper uses a high-speed, very-low-input-
current op-amp as the integrator. The odd power supply hookup for A3 is
necessary because it cannot stand total supply voltages beyond 15 V. Note
that the type 311 comparator has an open-collector output so that when its
pullup resistor is tied to ground its output voltage swings between —15 V
and 0 V, the range needed by Q4.

Figure 6-11 shows the waveform standardizers and shapers with all
adjustments and parts values. The sawtooth output is taken from the second
inverter rather than the first shown earlier so that a positive going ramp is
produced. The negative ramp at the output of A4 could also be brought our

if desired. The glitch in the triangle wave mentioned earlier is largely cancel-
led by injecting an opposite polarity pulse derived from the rapid retrace of
the negative ramp. The rectangular-wave amplitude is standardized by the
saturating complementary emitter follower, Q5 and Q6. Using this circuit,
voltage levels of the rectangle will equal the + 10-V system reference voltages
to within a couple of millivolts. .

Adjustment

Adjustment of the circuit is straightforward and need not require a lot
of test equipment, although a frequency counter, accurate digital volemeter,
and oscilloscope are helpful. For use in a precalibrated computer-controlled
system, the adjustments should be made to the values listed in Table 6-1.
These values offer the most logical control relationship and widest possible
fange in a precalibrated system. Ideally, they should be set as accurately as
possible and then rechecked every few months of operation. This will allow
Programming of the system to proceed with minimal concern over analog
etrors in the system. Also shown in the calibration table are performance
parameters obtained from a breadboard of the circuit. As can be seen, the
performance is excellent in nearly all respects and certainly much better than
could be obtained just a few years ago at 10 times the cost.

Basic ANALOG MODULES 189

Table 6-1. Adjustment of Voltage-Controlled Oscillator

Oscillator adjustment
1. Set “zero input frequency” pot for 60 Hz (use power line sync on oscil-

loscope) with no control voltages applied
2. Apply 1.000 V to an exponential control input and adjust “oct/v adjust

pot” for +20 Hz output
3. Remove the control valtage and adjust the “zero input frequency” pot for

16.3525 Hz

4. Apply +10 V to a control input and adjust “high-frequency track” pot for
16745 Hz

Waveshaper adjustment

1. Using a moderate frequency (1 kHz) adjust “triangle balance” pot for
best triangle waveshape

. Adjust “triangle offset” pot for equal positive and negative peaks

. Vary the capacitance across D2 for minimum “glitch” on the positive
peak of the triangle

. Alternately adjust “sine shape trim” and “sine symmetry trim” for lowest
harmonic distortion

. Adjust sine amplitude for 20 V p-p output. Sine symmetry may have to be
touched up for equal positive and negative peaks

- wn

a

Performance of breadboarded unit

Control voltage Frequency (Hz) Error (%)

0.000 16.35 0
1.000 32.71 1)
2.000 65.44 +0.05
3.000 131.1 +021

4.000 261.9 +0.10
§.000 §24.3 +0.19
6.000 1048.0 +0.14
7.000 2096.0 +013
8.000 4190.0 +0.09
9.000 8379.0 +0.08
10.000 16745.0 0

Average temperature coefficient at 1 kHz from +25°C to +35°C is 0.11%/ °C.

Voltage-Controlled Amplifier

The VCA is the second of the ‘“‘basic three” modules. For many applica-
tions, its performance is not nearly as critical as the VCO just described. This
1s because VCAs are normally utilized to control the amplitude of an audio
signal, and the human ear is much less sensitive to inaccuracies in amplitude
control than it is to imperfect frequency control. The typical VCA module
used in a “manual” synthesis system, therefore, is seldom very precise or
carefully calibrated. For a critical application, the user is expected to cali-
brace the VCA using the several panel controls that are normally available.

In the precalibrated computer-controlled system, however, the use of
VCAs to process control signals, which may eventually control a VCO, is
more likely. For example, the control inputs to a precalibrated VCO will

190 MusIcat. APPLICATIONS OF MICROPROCESSORS

have a fixed but precisely known octave/volt control sensitivity. If one wishes

a variable (by the computer) control sensitivity, then a VCA with the control

input driven by the computer is inserted in the control path to the VCO.

Depending on the design, a VCA may be used as a multichannel mixer with

the gain of each channel set by an individual control voltage. When used to

mix control voltages, its accuracy again becomes important. Thus, it is

apparent that for maximum usefulness attention should be given to accuracy

and temperature drift in the design of the VCA.

Controlled Gain Block

The heart of the VCA is che controlled gain block. Actually, a multi-
plication of one signal (the signal voltage) by another (the control voltage or a
function thereof) is being performed. Full four-quadrant multiplication
where the output is the true algebraic product of the instantaneous voltages,
either positive or negative, at the control and signal inputs is certainly
acceptable if not desirable. Note that if this were true, there would be no
distinction between control and signal inputs to the block. Actually four-
quadrant circuits are fairly difficult and less accurate than two-quadrant
circuits. The two-quadrant circuit restricts the control voltage to positive
values, while both positive and negative signal voltages are acceptable.

In the past, virtually any scheme that would electrically vary the gain of
a circuit was a candidate for the controlled-gain block. Really ancient
methods include the use of a photoresistive cell (cadmium sulfide type)
illuminated by a neon lamp and remote cutoff pentode vacuum cubes that
were designed for variable-gain applications. Even servo motor-driven poten-

tiometers were used when cost was no object. More modern methods include
the use of a junction FET as a voltage-variable resistor or recognition of the
fact that the dynamic resistance of a diode decreases with increasing forward
current. Variation in the gain of a-transistor amplifier with bias-current
variation was another popular method.

The two standards of comparison that have been used in the past for
gain-control techniques are control-to-signal isolation and signal distortion.
Control feedthrough into the signal generally results in high-amplitude,
low-frequency thumping noises whenever the gain is rapidly changed. Even a
moderate amount of such feedthrough is completely unacceptable in modern
voltage-controlled equipment usage. Signal distortion, if present, is usually
worst at low-gain settings where it is least likely to be noticed. Besides these,
speed and accuracy of response are now of great importance also.

Using the first two performance standards, the lamp-photocell ap-
proach is essentially perfect. The FET voltage-variable resistor has no control
feedthrough but does distort the signal some unless its amplitude is quite
small. All other methods (except servo pots) suffer from both maladies to
some extent. Unfortunately, a lamp-photocell variable-gain block is imprac-
tical for an electronic music VCA because it is very slow, having time

Basic: ANALOG MODULES 191

constants in the tens of milliseconds range, and is very unpredictably non-
linear in its control relationship. Response of the FET is instantaneous, but it

too possesses a nonlinear control response, although somewhat more predict-
able. Varying the bias in a transistor amplifier, which is the worst method

from an inherent control isolation standpoint, is the one that is normally
used now to build a VCA. Such a controlled-gain block is called a transcon-
ductance two-quadrant mulcipler.

DIFFERENTIAL OUTPUT
CURRENT = 12 —I1

&
SIGNAL
INPUT
VOLTAGE

£2

Tc = CONTROL CURRENT

Fig. 6-12. Basic transconductance gain block

Transconductance Gain Block

The basic transconductance gain block is the differential transistor
amplifier stage shown in Fig. 6-12. For normal two-quadrant operation, the
signal voltage is applied differentially between the two transistor bases, and a
control current applied to the emitters determines the gain. The output signal
is the difference in collector current of the transistors, which may be converted
into a differential voltage by use of equal-value collector load resistors.

Normally, the two transistors are assumed to be carefully matched. Impor-
tant parameters that must be matched are current gain, which should be high

(over 100), and the base-emitter voltage versus collector current relationship.

Basic operation is easily understood if a few observations are made.
First, the sum of the two collector currents is always equal to the control

current. Regardless of the individual base voltages (within reason), the com-
mon emitter voltage will adjust itself to make this fact true. Since the

transistors are matched, if the differential input voltage is zero, meaning that
the base-emitter voltages are equal, then the two collector currents are equal

and the differential output current is zero.
Now, recalling the transistor equation given earlier, it was learned that

at room temperature a transistor’s collector current will double for every
18-mV increase in base-emitter voltage. Therefore, if the differential input

voltage became 18 mV, that is El = E2 + 0.018, then I] would be twice as

great as 12. Since the sum of the currents must equal the control current, it

192 MusIcaL APPLICATIONS OF MICROPROCESSORS

can be concluded that IL = 2/3Ic and 12 = 1/31c. Increasing the input to 36
mV would shift the ratios co 4/5 and 1/5. Further increases in the input
voltage will cause essentially all of the control current to flow through Q1.
Reversing the polarity of the input would favor 12.

Figure 6-13A is a plot of the collector currents as a function of dif-
ferential input voltage for two different control currents. For the reasonably
linear portions of the curves in the + 10 mV range, it is apparent that the
slope of the 1-mA curve is Aa/f that of the 2-mA curve, which means that the
gain is also half as much. In fact, the gain is directly proportional co the
control current over a range as wide as the exponential relation between base

current and base-emitter voltage is valid.
Figure 6—-13B shows the differential output current under the same

conditions. Note that although the individual collector currents show severe
control feedthrough (the whole curve moves downward when the control

current decreases), their difference does not show such a shift meaning that

the feedthrough has been cancelled out. Since the input is a voltage and the
output is a current, gain is properly called transconductance.

Although the basic transconductance gain cell is very simple, driving it
properly is not. Generating the differential input voltage is not difficult, but

sensing the differential output would require one or more op-amps and
excellent common-mode rejection in order to obtain decent control isolation.
A variable-current sink, which is required for the control input, requires
additional circuitry also.

Operational Transconductance Amplifier

Fortunately, variable-transconductance gain-controlled blocks are
available in IC form at prices under a dollar. The 3080 type of operational
transconductance amplifier (OTA), for example, has the diff-amp gain cell, an
output differential amplifier, and a current-controlled current source for the
control all-in-one package. Figure 6—14 shows the symbol for an OTA and a
highly simplified internal schematic. The device operates on standard
+15-V supplies and has a fairly high-impedance differential-voltage input.
Since the common-mode voltage range is quite large (nearly equal to the
supply voltages), in practice one of the inputs can be grounded and the signal
applied to the other input. The control current is fed into the 1 terminal
and is absorbed at a constant voltage of about — 14.4 when using 15-V
supplies. The output is single-ended and is a current. Although this takes
some getting used to, it usually proves to be an advantage. At room tempera-

ture, the output current is equal to 19.2 X Em X Ic, where Em is the

differential input voltage in volts, Ic is the control current in milliamperes,

and the output is in milliamperes. Note that this relation is accurate only for
input voltages less chan 10-mV peak and that the output current can never be
greacer than Ic. The allowable range of Ic for accurate operation is from

Basic ANALOG MODULES 193

COLLECTOR CURRENT, {mA}

CONTROL CURRENT = 2.0
u
ae

CONTROL CURRENT = 1.0

100 -90 ~80 -70-60 50-40 -30-20-10 0 10 20 30 40 50 60 70 80 90 100 i

DIFFERENT INPUT VOLTAGE (mV)

(a)

175 Pan

ust CONTROL CURRENT = 2.0
1.25

10

0.75
0.5

0.25

CONTROL CURRENT = 1.0

DIFFERENTIAL CURRENT, (mA}

100 -90 -B0 -70 -60 -50 -40 -30 -20 -10, 10 20 30 40 50 60 70 80 90 100

—0.25 oIFFERENTIAL INPUT VOLTAGE, (mv)
~05
-0.75

-1.0

1.25

-15

SES

1-20
(B)

Fig. 6-13. (A) Individual transistor currents for two control currents. (B) Dif-
ferential output current for two control currents.

0.0005 mA to 0.5 mA with range extension to even lower currents allowable
at moderate temperatures.

Internally the 3080 is composed entirely of transistors and current mir-
rors (shown as citcles labeled “CM” in Fig. 6-14), which in turn ate com-

194 MUSICAL APPLICATIONS OF MICROPROCESSORS

OIFFERENTIAL # * 5 oureut

Ee CURRENT

To oye

SYMBOL

Jout = 1-12
ual OUTPUT

SIMPLIFIED SCHEMATIC

Fig. 6-14. Operational transconductance amplifier

posed entirely of transistors. A current mirror is essentially a common-
emitter transistor stage with a current gain of unity to close tolerances. A
cutrent mirror is a very commonly used device in linear ICs but to the
author’s knowledge has never been packaged and sold as a discrete device.
Like transistors, current mirrors may be either npn (arrows entering) or pnp
(arrows leaving). Since the current gain is unity, the collector current is
exactly equal to the base current.

The controlled-gain cell of the 3080 is a two-transistor differential
amplifier. Tracing the simplified 3080 schematic will reveal that the dif-
ferential gain cell emitter current is equal to Ic by virtue of CMI. Ql’s
collector current, I1, gives a positive contribution to the output current via
CM3, while Q2’s collector current 12, is inverted by CM4 and gives a
negative output contribution. The net output current is therefore [1-I2,

which means that the current mirrors have performed a differential to single-
ended current conversion. Since the output is connected only to transistor

Basic ANALOG MODULES 195

—10TO +10V

Fig. 6-15, Linear VCA using 3080

collectors, the output impedance is very high and is typically several
megohms for the 3080.

Application of the 3080 OTA

Figure 6-15 shows an application of the 3080 as a simple yet accurate
linear VCA. The gain of the circuit is given by A = Ein/10, which means
that unity gain is obtained for a +10-V control and zero gain for zero

control. Signal input voltages may range between — 10 V and + 10 V, while
the control input is operable over a range of 0 V to + 10 V. Negative control
inputs completely shut off the signal.

Note that the signal input is attenuated by a factor of 1,000 by R4 and
R5 before it is applied to the 3080. This is necessary in order that the
+ 10-mV linear range of the 3080 input not be exceeded and cause excessive
distortion. The control current for the 3080 is generated by Al in conjunc-

tion with Q1. If the current gain of Q1 is high, then /é is nearly equal to Ic.
The precise value of /z is monitored by R3 to create VE and is fed back to
Al’s input via R2. In operation, Al will adjust its output voltage to make
Ve= — Vin, which is perfectly normal inverting amplifier operation. Ac-
tually, the effective current-sensing resistance is R3 in parallel with R2 (Al’s

inverting input is ae vireual ground) so the output current with a +10

control voltage will be approximately 0.5 mA.
The output current from the 3080 is converted into an output voltage

by A2, which functions as a current-to-voltage converter. With the control
current set at 0.5 mA and a 10-V input signal, evaluation of the transcon-
ductance equation for the 3080 reveals that the output current amplitude
will be approximately 0.1 mA. R6 therefore should be approximately 100K

for unity gain through the entire circuit when the control voltage is + 10 V.

The value of R3 may be trimmed to adjust the control sensitivity. For use in

196 Musica APPLICATIONS OF MICROPROCESSORS

100 kf 2ko ADB21 MATCHED PAIR

EXPONENTIAL: 100 kO
CONTROL
INPUTS

ZERO INPUT
GAIN TRIM

8 ¢B/V
ov= 18040 5040

+10V=0dB

SIGNAL
INPUTS 100 ka

OOUTPUT

Fig. 6-16. Voltage-controlled amplifier with exponential gain control

a 5-V system one could either select a —5 to +5 control range or a0 to +5
control range. In the former case, the input to Al would have to be offset by

connecting an additional 100K resistor to the + 5 system reference voltage.
In the latter case, the control sensitivity would have to be doubled by
reducing R3 to about 12K.

For maximum accuracy, the offset voltages of both op-amps should be
oulled. Offset voltage in the 3080 should also be nulled for minimum
control feedthrough. This may be accomplished by using an attenuator on
the noninverting input similar to that on the inverting input and feeding it
with a variable de voltage. The offset null will have to be a compromise
value, however, since it changes somewhat with control current.

Exponential Gain Control

As outlined in Chapter 3, an exponential relation between amplifier
gain and control voltage is quite desirable. Since the 3080 is a current-

controlled device, it would seem that the exponential converter used in the
voltage-controlled oscillator could be used directly. Unfortunately, a close
look reveals that the 3080 requires a positive control current (current enters

the 3080) and the exponential converter used earlier supplies a negative cur-
rent.

The most straightforward solution to the problem is to use a pnp
matched transistor pair in the exponential converter, which reverses the

output current polarity—and everything else. Input polarity reversal, there-

Basic ANALOG MODULES 197

fore, must be cancelled with another op-amp inverter in the control-current
input processor. A complete circuit for an exponential response VCA is
shown in Fig. 6-16.

Improving Linearity

There are still several problems that limit the overall accuracy of a
transconductance gain-control element. Probably the most serious is the
remaining nonlinearity of the device. A related problem is the marginal
signal-to-noise ratio created by the necessity of very small signal amplitudes
at the gain element's input. Proper shielding can reduce coupled noise, but
the signals are so small that semiconductor device noise is significant. With
the 10-mV peak levels used by the preceding circuits, nonlinearity will cause
about 1.3% harmonic distortion and give a signal-to-noise ratio of about 66
dB. Used as a control voltage processor, nonlinearity is nearly 5% of full
scale and rms noise is 0.05% of full scale. Tradeoffs are possible, that is, less

distortion but more noise or vice versa, but neither parameter changes
dramatically with input signal level. Clearly, much improvement is neces-

sary if che VCA is to be useful in the control path to a VCO! A final problem
is that the gain drifts with temperature according to the semiconductor
junction equation. The magnitude of this drift is the same as the control
voltage sensitivity drift in a VCO, about 0.33% PC. .

Concentrating on linearity first, it is seen that the linearity error is
independent of the control current. This means that a 10-mV input will
produce the same percentage of distortion at a low-gain setting as it will at a
high-gain setting. Furthermore, the effect of the nonlinearity is always a
reduction in the actual instantaneous output below what it ideally should be.
It should therefore be possible to predistort the input signal with an opposite
nonlinearity to compensate for the gain cell nonlinearity and therefore im-

prove things considerably.
Figure 6-17 shows a simple predistorter that can be added directly to

the 3080-based circuits given earlier. Analysis of the circuit is rather in-

ALL DIODES IN A CA30I9
+ MATCHED DIODE ARRAY

Fig. 6-17. Diode bridge predistortion circuit

198 Musica APPLICATIONS OF MICROPROCESSORS

volved but a few observations can be made with little effort. D5 and D6 are
protective diodes that normally do not conduct; thus, they can be ignored.
Resistors R2 and R3 in conjunction with the supply voltages act like current
sources and bias the diode bridge. Since the diodes are all matched, equal
currents flow in each one and in turn give equal dynamic impedances of
about 100 ohms each. The dynamic impedance of the bridge acts with R1 to
form a voltage divider for the signal voltage. With zero signal input, the
impedance of the overall bridge is also 100 ohms so the attenuation is about
330, one-third that used in uncompensated circuits.

For positive input voltages, the current through D1 decreases and

increases through D2. Because of the constant bias current, the current

through D4 must therefore decrease, while that through D3 increases. Since
the dynamic impedance of the diodes is inversely proportional to their cur-
rents, the bridge impedance will change also. For small signals, the impe-
dance decreases are closely matched by the increases and the bridge impe-
dance remains constant. As the signal voltage rises, the diodes with increased
impedance dominate (since they are in series with a decreased impedance
diode) and the bridge impedance rises. The input voltage to the 3080 is

therefore boosted to counteract its tendency to flatten the waveform peaks.
The ciecuit runs away when the signal current exceeds the bridge bias current
so D5 and D6, which are in the diode array IC anyway, prevent any possible
damage to the 3080.

The improvement offered by this circuit is impressive. With a 50-mV

peak voltage into the 3080, the harmonic distortion is only 0.25%. The
increased signal amplitude also improves the signal-to-noise ratio by nearly
14 dB toa total of 80 dB. Resistors R2 and R3 should be carefully matched
as well as the 15-V power supplies to prevent even order harmonic distortion.

Fig. 6-18. Gilbert multiplier

Basic ANALOG MODULES 199

For peak performance, it may be necessary to trim the resistors to better

match the diode array characteristic to the 3080 input characteristic.

Gilbert Multiplier

Another predistortion circuit is shown in Fig. 6-18. This circuit is

termed a Gilbert multiplier after its inventor. Diodes D1 and D2 actually do
the predistortion and receive the input signal as currents, 11 and 12. For
gteater convenience of use, transistors Q3 and Q4 convert a conventional
differential input voltage to the differential current required by the rest of the
circuit. The two resistors set the input voltage range, which can be made as

large as standard 5-V signal levels. The output is a differential current as
before. Performance is even better than the diode bridge predistorter, offer-
ing an additional 6-dB improvement in noise level and distortion reduction
to 0.1%. Last but not least, the circuit automatically temperature compen-
sates the gain cell, making it essentially ideal.

Unfortunately, all of the components must be carefully matched to
obtain such good performance, normally a difficult task with discrete cir-
cuitry. Recently, however, a linear IC having two of these circuits along with

3080-style differential-to-single-ended converters has been introduced by a
company appropriately named Solid State Music. Unlike the 3080, this IC
was designed specifically for audio VCA applications. Figure 6-19 shows a
simplified schematic of the IC, which at the time of writing is known by the
type number SSM 2020. The inputs can accept signals up to 5-V peak
directly, while the output is a current up to 1-mA peak. Note the inclusion
of two pairs of exponential converter transistors and even a temperature-

compensating resistor for them.

VCA Using the 2020

Rather than describe the IC itself in detail, let’s look instead at a

complete VCA circuit using it in Fig. 6-20. The 10-V signal input is first
attenuated to 5 V by RI and R2. Ina 5-V system, R1 may be omitted and
R2 increased to LOOK. The input impedance of the 2020 itself is tens of
megohms with a bias current requirement of about 500 nA. The current

output, which at 5 V signal input will have a peak value roughly one-third of
the control current, is converted into a 10-V peak output by Al, which is
connected as a current to voltage converter. R3 should be adjusted for unity
gain through the circuit with 1 mA of control current. The offset crim circuit
at the 2020 noninverting signal input is necessary to cancel the device’s offset
voltage and minimize control feedthrough.

The control circuitry shown provides simultaneous linear and exponen-
tial gain control. Study of the configuration of A2 and the transistor pair in

the 2020 should reveal that it is exactly the same exponential conversion
structure as used in the VCO circuit. In normal operation, one control input

200 MUSICAL APPLICATIONS OF MICROPROCESSORS

BIAS
SOURCE

SIGNAL
IN +

EXP CONV
COLLECTOR

EXP CONV
BASE + 450

TEMP
COMP.

EXP CONV
BASE — ve

HALF OF DUAL UNIT SHOWN

EXP CONV
EMITTERS

Fig. 6-19. Simplified schematic of SSM 2020 VCA IC

would be at zero, while the other is exercised over the full control range.

With both inputs at zero, a reference current of 0.1 A flows into the 2020.
This gives a gain of 0.0001 (—80 dB) relative to the 1-mA value which,

although not precisely zero, is sufficient to audibly silence the unit. Raising
the linear control input to +10 V while maintaining the exponential input at
zero will increase the control current to 1 mA and provide unity gain. The
expression for gain, therefore, is G = 0.1E1, where G is the gain and El is

the voltage applied to the linear input.
With the values shown, the exponential input has a sensitivity of 8

dB/V. Thus, +10 at this input would raise the gain 80 dB above the zero
input value and give unity gain. RE can be adjusted to provide exactly 8

dB/V, which incidently is quite close to the increase in amplitude necessary
for a doubling of perceived loudness. The nonstandard impedances of the
control inputs may be easily corrected with additional op-amp buffers. Note
that a TL-82 dual FET amplifier was used for Al and A2. The high slew rate
is necessary at high audio frequencies and the low bias current is needed for
predictable operation with the extremely low reference current used in the
exponential converter transistors.

220F 201

INPUT
—10TO +i0¥

OUTPUT
+15V 6 —l0TO

172 S$M2020 +10V

100 kA
OFFSET
TRIM

-15V

+10 V ref exe EXP, EXP.
fe) CONV. EXP.CONY. CONV. CONV.

COLL. EMITTERS BASE— BASE +]

Re
EXPONENTIAL 18 kO
CONTROL ©
INPUT

Linear = 0, Exponential = 0, Ig = 0.1 MA,

Gain = -80 dB
Linear = +10, Exponential = 0, Ig = 1.0 mA,

Gain = 0 dB

Linear = 0, Exponential = +10, Ig = 1.0 mA,

Gain = 0 dB 8 dB/V

Fig. 6-20. Practical VCA using the SSM 2020

Voltage-Controlled Filter

Of the basic three modules, filters have historically been the most

difficult to voltage control. Traditional L-C filters were tuned by changing
reactive components, either the capacitor or the inductor. Later, with che

widespread use of operational amplifiers and R-C active filters, the resistor
was varied for fine tuning purposes and the capacitor was changed for dif-
ferent ranges. With careful design, however, the tuning range available
through variable resistance alone can be made wide enough for electronic
music applications. Thus, the requirement for a wide-range voltage-variable
resistance similar to that needed for a VCA is seen. As a result the FETs,

photocells, and biased diodes that were used in early VCAs were also used in
VCFs along with all of their attendant drawbacks.

Unfortunately, the final solution of the VCA problem, the transcon-

ductance variable-gain stage, does not directly involve a variable resistance.
Therefore, application to tuning a VCF is not at all obvious. Before giving up
and resuming the search for a wide-range accurate voltage-variable resistor,
let’s see if a variable-gain function can be used to tune a filter.

202 Musical APPLICATIONS OF MICROPROCESSORS

R fat
NEO —e —p= OOU at

c “10

I is = -30
GAIN (48)

2 eles
Fo = zare

LOG FREQUENCY

eee
Fem parat

Re PASSBAND GAIN = BE
INPUT ©

© OUTPUT

(0)

Fig. 6-21. Steps toward a voltage-controlled low-pass filter. (A) Single-pole
R-C low-pass filter. (B) Active version of A. (C) Tunable version of B
using a VCA. (D) Improved version of C with constant gain.

Variable Gain Tunes a Filter

The single-pole passive R-C low-pass filter shown in Fig. 6-21A will

be used as an example. With a high-impedance load, the circuit has unity
gain at very low frequencies and a 6 dB/octave attenuation slope at high
frequencies. The cutoff frequency (frequency for a gain of 0.707) is
1/6.283RC. If the circuit is driven from a low-impedance source, the cutoff

frequency can be tuned over a wide range by varying R alone without

affecting the passband gain or attenuation slope.
The active circuit shown in Fig. 6-21B has exactly the same charac-

teristic if R1 = R2 except that its output is capable of driving a finite

Basic ANALOG MODULES 203

impedance. For other cases, Fc = 1/6.283R2C and Ao = R2/R1, where Fc

is the cutoff frequency and Ao is the dc or passband gain. As before, tuning
can. be accomplished by varying R2 alone. Although this also affects Ao, we
will ignore that for a moment.

The point of this discussion is that the effect of changing R2 can be
exactly simulated with a variable-gain amplifier and a fixed R2 as in Fig.
6—21C. Since the inverting input of the op-amp is at virtual ground, only the
feedback current through R2 is important. Thus, the effect of doubling R2 in
circuit B can be obtained by setting the VCA gain to one-half and leaving R2
alone in circuit C. Generalizing, Ref = Reu/G, where Ref is the effective

value of the feedback resistor, Raq is its actual value, and G is the VCA gain.

Substiruting into the cutoff frequency equation, Fc = G/6.283R2C, it is
seen that the cutoff frequency is directly proportional to the VCA gain.

The last step is to eliminate variation of passband gain with cutoff
frequency. With the present setup, Ao = R2e7/R1 = R2/R1G and therefore

as the cutoff frequency goes up, Ao decreases. Actually, the output of the
VCA in Fig. 6-21C has a constant passband gain because the previous
expression is multiplied by G, which then cancels the G in the denominator,
leaving Ao = R2/R1. It would seem that the problem is solved, but closer
analysis reveals that at low cutoff frequencies the input signal level to the
VCA may become extremely large to offset its corresponding low gain and
therefore be subject to severe distortion.

In Fig. 6—21D, the same elements have been rearranged to overcome

the signal level problem. Essentially, both the input signal and the feedback

signal go through the VCA. The tendency for the op-amp output amplitude
to rise at low cutoff frequencies is therefore eliminated by a proportionate
decrease in signal amplitude reaching the op-amp. It is interesting to note

that the circuit has degenerated into an integrator and a two-signal input
VCA; an observation that will be very useful later. A similar configuration

can be derived for a voltage-controlled high-pass R-C filter although not as
easily.

Voltage-Tunable Bandpass Filter

The most dramatic uses of filters in electronic music require a high Q
(hopefully voltage-controlled as well) bandpass function. Cascading low-pass
and high-pass sections together and having them crack a common control
voltage is not a practical solution mainly because quite a few would be
required for any degree of sharpness. There exists, however, a very versatile
filter structure that not only simulates exactly an R-L-C filter in the resonant
(bandpass) mode but simudtaneously simulates the other three possible filtering

functions that could be built with one resistor, one inductor, and one

capacitor as shown in Fig. 6-22. The family of amplitude response curves
represents low, medium, and high Q cases corresponding to high, medium,
and low values of Rg.

204 MUSICAL APPLICATIONS OF MICROPROCESSORS

jus
INPUT 0-7 | QUTPUT

GAIN (dB)

! a

—
Ol 015 0.202503 04 0506 08 1.0 15 2.0 25 3.0 40 5060 B.0 10.0

FREQUENCY (kHz)

(a)

ry Q=l6

Rg L

20 tNPUT Te Ieee

i

GAIN (dB)

04 O15 020.2503 04 0.506 0.8 1.0 15 202530 405060 80 10.0

FREQUENCY (kHz)
(B)

Fig. 6-22. Four fundamental R-L-C filters. (A) Bandpass. (B) Low-pass.

The circuit configuration in Fig. 6-23, which requires two integrators
and a summing amplifier, is well known to analog computer users but only
fairly recently has gained popularity as a cost-effective active filter circuit. This
is called a “two-pole filter” because two energy storage elements (capacitors)

are present in the signal path. The basic circuit is called a “state-variable” or

“integrator-loop” filter and provides simultaneous high-pass, bandpass, and

GAIN (48)

Cl 0.15 0.2 02503 04 0506 08 1.0 15 2.0 2530 40 50960 80 100"
FREQUENCY (kHz)

(c)
4

R
20 INPUT: A OUTPUT

15
L

10
ae
a

s
z
= &

0.1 05 0202503 04 0506 08 1.0 15 2.0 2530 40 5060 B80 100"

FREQUENCY (kHz)

{01

Fig. 6-22. Four fundamental R-L-C filters (cont.). (C) High-pass, (D) Band-
reject.

low-pass filtering functions of the same input. A band-reject output is ob-
tained by summing (they are 180° out of phase at resonance) the high-pass
and low-pass outputs with an additional op-amp. Figure 6-24 shows the
amplitude responses of each of the outputs for both low Q (1.5) and moder-
ately high Q (15). Note that the low-pass and high-pass functions have
cutoffs that are twice as sharp as the single-pole filters discussed earlier and
that they develop a prominent peak just before the cutoff point for high Q

settings.

206 MUSICAL APPLICATIONS OF MICROPROCESSORS

BANDPASS HIGH-PASS
OUTPUT OUTPUT c

INEUT:O Low-pass
OUTPUT

BAND-REJECT
OUTPUT

Fig. 6-23. Two-pole tunable active filter

Besides simultaneous filtering functions, the circuit has the advantage

that frequency and Q factor (or bandwidth in hertz with a different configura-
tion) are independently variable. In other words, RQ only affects the Q factor

and RF only affects the center or cutoff frequency. Note that two resistors
affect frequency. Actually, the frequency is inversely proportional to the
square root of their product. If they are equal and varied together, however,
the square root drops out and the frequency—resistance relationship is linear.
Although the relation beeween RQ and Q is nonlinear in the circuit shown,

the addition of another op-amp can make it perfectly linear.
Tuning the filter with voltage-controlled amplifiers should now be

almost self-evident but for convenience is shown in Fig. 6-25. Essentially
each variable resistor in the circuit has been replaced with a fixed resistor
driven by a VCA. The feedback path from the bandpass output that controls
Q has also been simplified and the relation between VCA gain and 1/Q has
been made linear.

Note that a “voltage-controlled integrator” is used in two places. If the
variable-gain element is a 3080 or other current output transconductance
device, the voltage-controlled integrator can be simplified as in Fig. 6-26.
The extremely high output impedance of the 3080 makes it possible to
perform integration directly with a capacitor co ground. The unity gain
buffer can often be a simple FET source follower, since its de offser is

cancelled when the voltage-controlled integrator is used in a closed-loop
configuration. Note that positive as well as negative voltage-controlled inte-
grators are easily constructed by interchanging inputs to the 3080.

Practical State Variable Filter

Figure 6-27 shows a simplified but practical voltage-controlled filter
based on the state-variable principle. The ciccuitry to generate the frequency

Basic ANALOG MODULES 207

GAIN (48)

Ot O15 0.2 03 04 0506 08 10 5 2.0 3040 60 6080 10.0

FREQUENCY (kHz)

{A)

GAIN (4B)

0. 0.15 020.2503 0490506 O08 1.0 15 202530 40 5060 60100
FREQUENCY (kHz)

(B)

Fig. 6-24. Amplitude response of circuit in Fig. 6-23. (A) Q = 1.5. (B) Q = 15.

control currents to the 3080s is not shown but may be the same as that used
earlier in VCA circuits. Note that the two integrators should ideally receive
the same magnitude of control current at all times. Use of the simple
resistive current sharer is generally adequate and even preferable to two
independent pairs of exponential converter transistors. The actual value of
these resistors is not critical as long as they are matched (1% is fine) and not

208 MUSICAL APPLICATIONS OF MICROPROCESSORS

HIGH-PASS BANDPASS
OUTPUT OUTPUT

GAIN=6 3B

o)
Q FREQUENCY

CONTROL CONTROL

Fig. 6-25. Voltage-controlled version of Fig. 6-23.

HIGH-IMPEDANCE
INPUT O Ps BUFFER

‘|| 3080 oureur
INPUT 5 L

ATTENUATOR L. =
4

Fig. 6-26. Voltage-controlled integrator using 3080

so large that che compliance range of the control current source is exceeded.
The 3080s may, however, have to be matched somewhat by hand and held in

good thermal contact for optimum results. Another alternative is the use of a

matched trio of transistors for exponential conversion. The third transistor is
connected in parallel with the usual exponential output transistor except for
the collector, which becomes a second output terminal. The harmonic distor-

tion introduced by the 3080 gain elements is much less than in the WCA
application, since the filter is a closed-loop, negative-feedback network.

Controlling Q

Proper control of Q is an interesting problem. First, it is desirable that
Q be an exponential function of control voltage, since it has a useful range
from 0.5 to over 500. This 1,000-to-1 range is best handled by having a 1-V
change in Q control voltage correspond to doubling or halving of Q. Also, it
is probably desirable that high Q correspond to a high control voltage. Since
high Q corresponds to low control currents in this circuit, the polarity of the
Q control voltage will have to be inverted somewhere in the exponential
converter circuit. Finally, there may be occasions when constant bandwidth is

desired as the filter is tuned rather than constant Q. If the Q control is
exponential at “1 V per double” and two Q control inputs are provided,

constant bandwidth operation is achieved by feeding the frequency control
voltage into one of the Q control inputs as well as a frequency input. This
causes the Q to increase in direct proportion to center frequency and thereby
provide constant bandwidth.

Basic. ANALOG MODULES 209

joo «a

[00 kA
BANO-REJECT
OUTPUT

Q-CONTROL FREQUENCY
CURRENT CONTR
OSma=0.5 CURRENT
9.5 wa = 500 TO ma= 10 HE

(0p =10 Hz

Fig. 6-27. Practical state-variable filter

Figure 6~28 shows a suitable Q control circuit. Note that it is similar
to the VCO frequency control circuit except that a pnp matched pair is
needed to satisfy the control current needs of the 3080. The reversal in
transistor polarity also reverses the control sense as required for Q control.

Quad Voltage-Controlled Integrator IC

Besides use in the state-variable filter, voltage-controlled integrators
can actually be used in any kind of active filter circuit, even the simple
one-pole low-pass discussed earlier. Since any filter function that can be done
with resistors, capacitors, and inductors can also be done with combinations

of one- and two-pole RC active filters, it follows that voltage-controlled
integrators can be used to make any of those filters volrage controlled. As a

100 ko. 24a

VOLTS PER

Q CONTROL
CURRENT

INITIAL,
a

-10 ret O

Fig. 6-28. Q control for VCF in Fig. 6-27

210 MUSICAL APPLICATIONS OF MICROPROCESSORS

5 MATCHED TRANSISTORS

TRANSCONDUCTANCE
GAIN CELL

Nt cap] OUT! IN2 caP2 OUT 2 NS. CAPS oUT3) ING CAP 4 = OUT 4

Fig. 6-29. Block diagram of SSM 2040 quad voltage-controlled integrator IC

result, a quad voltage-controlled integrator IC has been developed, also by
Solid State Music, for use in voltage-controlled filters.

Figure 6-29 shows a block diagram of the type 2040 voltage-controlled
fileer IC. Basically, four transconductance gain cells driving four high-
impedance buffers are provided. The gain cells have a predistortion circuit
and therefore can accept input signals as large as 80 mV and still generate less
than 1% distortion. The four gain cells are fed equal control currents from a
built-in multioutput exponential converter. The integrating capacitors are
supplied by the user, however, and should be 1,000 pF or larger. One
limitation to keep in mind is that the buffer amplifiers are only capable of a
1-V peak output swing and can only supply 500 @A of load current.

Figure 6-30 shows a voltage-controlled filter circuit using the 2040.
This is properly termed a “four-pole low-pass filter with corner peaking” and
is quite popular, although not as much so as the state-variable type described

Fig. 6-30. Voltage-controlled four-pole low-pass filter with corner peaking

Basic ANALOG. MODULES 211

earlier. The main difference is that the low-pass cutoff of 24 dB/octave is
much sharper than the state-variable cutoff of 12 dB/octave. A bandpass
function is obtained by feeding a portion of the filter’s output back to its
input to create a resonance. Enough of this feedback will cause a pure sine
wave oscillation at the center frequency. Note that a crue bandpass response
is not produced by the feedback because there is appreciable very-low-
frequency gain. This resonance technique is often called corner peaking to
distinguish it from true bandpass filtering, which has zero response at both
frequency extremes. At moderate to high Q settings, however, the audible
difference can be quite subtle.

The filter is really four identical single-pole low-pass sections in cascade
all tracking the same control voltage. Each low-pass section is functionally
equivalent to the VCF in Fig. 6-21D discussed earlier. When cascaded as
shown, each section contributes a cutoff slope of 6 dB/octave; thus, simulta-

neous outputs of 6, 12, 18, and 24 dB/octave are available. When the
feedback panel control is advanced far enough for oscillation, one will find
that each stage contributes 45° of phase shift to the resulting sine wave and
thac the shift is independent of center frequency. Although voltage control of
the corner-peaking feedback is possible, its effect is very nonlinear and
essentially unsuitable for a precalibrated computer-controlled system.

The circuit itself is very straightforward, requiring relatively few com-
ponents. Active circuits are limited to input, control, and output amplifiers
and the 2040 itself. Temperature-compensating resistors for the exponential

converter and the voltage-controlled integrators themselves are required for
good frequency stability. The output of each low-pass stage must be at-
tenuated by the 10K to 200 ohm combination to avoid overloading the
transconductance amplifier of the next stage.

San

Digital-to-Analog and
nalog-to-Digital Converters

The primary interface element between the digital logic found in a mi-
crocomputer system and the analog modules of a volrage-controlled system are

digital-to-analog converters (DACs) and analog-to-digital converters
(ADCs). For synthesizer control, only DACs are needed to convert numbers
from che computer into control voltages. However, ADCs are used in some of
the human interface techniques to be described later. Fortunately, the two
devices are very closely relaced, and, in fact, most ADC circuits utilize a

DAC as a key element.
The purpose of these ‘‘data-conversion” devices is to translate between

the electrical quantities of current or voltage and digital quantities. For
analog synthesizer control with a microprocessor, voltage is the preferred
analog representation and twos-complement fixed-point binary is the pre-
ferred numerical representation. We can further specify that analog voltages
in the range of —10 V to +10 V, and logic voltages compatible with TTL
should be acceptable ro the converter.

A number of terms are used to describe and specify data-conversion
devices. Most all of them are equally applicable to DACs and ADCs so the
discussion will focus on DACs. Although converters that work with binary-
coded decimal numbers are available, their variety is extremely limiced.
Also, since BCD arithmetic is inconsistent with maximum utilization of

microprocessor speed, the discussion will be restricted to binary converters.

Data Conversion Terminology

Resolution

The most important and most quoted converter specification is its
resolution measured in terms of 4ts. Resolution is essentially a measure of the
number of different voltage levels that a DAC can produce. A 3-bit DAC, tor
example, accepes 3-bic binary numbers as input and can produce no more

213

214 MusIcAaL APPLICATIONS OF MICROPROCESSORS

than eight difference voltage levels as irs output. With an ideal DAC, these

eight levels would be equally spaced across the range of output voltages. If

the output is to span the range of ~ 10 V to + 10 V, for example, these eight

levels might be assigned as:

Binary Analog Binary Analog

000 —10.00 100 + 1.42
001 — 7.14 101 + 429
010 — 4.29 110 + 744
011 -— 142 111 +10.00

Actually, since twos-complement binary inputs are usually desirable, the
eight levels should probably be assigned instead as:

500 + 0.00 100 —10.00
001 + 2.50 101 - 7.50
010 + 5.00 110 — §.00
011 + 7.50 W1 — 2.50

Unfortunately, neither assignment is ideal. The first has no code for
a zero output and puts out rather odd voltages anyway. The second has a zero
point and nice round levels but falls short of the full + 10-V range desired.
Actually, practical DACs have considerably more resolution than this exam-
ple so that last missing level on the positive side is generally of no conse-

quence. Using the twos-complement assignment, the resolution of this 3-bit

DAC would be a very coarse 2.5 V. The maximum error in converting an
arbitrary number (with rounding) to a voltage would be only half of this or
1.25 V.

Moving up to an 8-bit DAC improves things considerably. The
resolution now would be 20/(28— 1) or 0.078 V. The largest negative output
would still be —10 V, but the positive limit would be one step short of
+ 10.0 or +9.922 V. Even with 8 bits, the step size of 0.078 V controlling a
voltage-controlled oscillator with a sensitivity of one octave per volt would

yield a pitch step size of about one semitone. A 12-bit DAC would have a
step size of 0.00488 V, which would give a nearly inaudible 1/17 semitone

increment. Even higher resolutions are available, but the expense would
limic extensive use.

Usually it is convenient to consider the binary input to a DAC as being
a signed binary fraction between —1.000 . . . and +0.9999 The
output voltage of the DAC then is the binary fraction (rounded or truncated
to the DAC’s resolution) times 10 V. This representation has the advantage
that calculations leading up to the value to be converted are not affected by
the actual resolution of the DAC used. For example, if a 16-bit computer is
being used, ic would be convenient to perform all calculations using 16-bit
fractional arithmetic. (Fractional arithmetic is really the same as integer

DitiiTAL-TO-ANALOG AND ANALOG-TO-DiGiTAL CONVERTERS 215

INTEGRAL
LINEARITY
ERROR

QUTPUT VOLTAGE

DIFFERENTIAL
LINEARITY ERRORS

INPUT CODE

Fig. 7-1. DAC linearity errors

arithmetic and is just as fast on microcomputers. This topic will be discussed
in Chapter 18.) When a number is sent to the DAC to be converted, all 16

bits are sent our. The DAC in turn is interfaced so that it sees the most

significant N bits of the word, N being the DAC’s resolution. An ADC
likewise would connect to the most significant bits of the word and supply
zeroes for the unused low order bits. The ultimate resolution implied by 16
bics is an astounding 305 wV. An 8-bit microcomputer would probably
handle things in a similar manner unless converter resolutions of 8 bits or less
are being used.

Linearity

Another term used in specifying DACs is /imearity. Linearity is relaced
to accuracy but is definitely not the same thing. Although the voltage levels
of an ideal DAC are perfectly equally spaced, real DACs have severe difficulty
even approaching the ideal for reasonably high resolutions. The most com-
mon linearity error is called differential linearity error. Although the physical
reason for this will become clear later, Fig. 7—1 illustrates this error. The
stepped plot shown represents the output that would occur if the DAC were
driven by a binary counter. Differential linearity refers to the actual dif-
ference in step position between any two adjacent steps compared to the ideal
difference. When a differential linearity error occurs, it is because one step is
either higher or lower than it should be. The diagram shows a differential
linearity error of one-half of the ideal step size, which is equivalent to
one-half of the least significant bit (LSB) of the digital input. If the error

216 MUSICAL APPLICATIONS OF MICROPROCESSORS

exceeds a full step in size, the staircase can actually reverse resulting in a

nonmonotonic (not constantly rising) DAC output, a very undesirable error.

Another, less severe linearity error is ‘ztegral nonlinearity. Unlike the

previous error, it is usually caused by the converter’s output amplifier rather

than the conversion circuit itself. In the diagram, it is represented by a

gradual bending of the staircase away from the ideal straight line connecting

the first and last steps. Usually this error is negligible compared to the

differential error.
Often both errors are lumped together and simply called nonlinearity.

This is defined as the maximum deviation of a step from its ideal position.

For Jinearity measurement, the ideal positions are calculated by dividing the
analog range between the actval minimum and maximum analog outputs
into N—1 equal intervals, where N is the total number of steps. Non-
linearities less than one-half of the least significant bit will guarantee
monotonic performance.

Accuracy

Accuracy is very similar to lumped linearity but uses the ideal end-
points instead of the actual endpoints of the convertet’s range. Thus, for a
—10V to +10 V 12-bit converter, the ideal endpoints would be — 10 V and
+9.99512 V (+10 less one LSB). Accuracy may be specified as either
percent of full scale or in terms of the least significant bit. A converter with
accuracy better than one-half LSB would not only be monotonic but also as
accurate as the resolution and linearity characteristics allow.

Assuming perfect linearity, inaccuracy can be due to gain and offset
errors as illustrated in Fig. 7-2. A 5% pure gain error would cause the
converter output to range between, for example, —9.5 V and +9.495 V
rather than the intended —10-V to +9.995-V endpoints. A 0.5-V pure
offset error might result in an output between —10.5 V and +9.495 V.
Fortunately, both of these errors ate easily trimmed out, leaving ultimate
accuracy a function of the linearity. Some applications of converters, such as
direct audio signal conversion, are little affected by inaccuracy as long as the
linearity is adequate. When purchasing a converter, one can usually expect
the accuracy, after trimming, as well as the linearity to be better than

one-half LSB unless it is an unusually high resolution (16 bits) unit or it is
clearly marked as being a gradeout from a more expensive line.

Settling Time

_ When the digital input to a DAC changes, the analog output does not
instantly move to the new value but instead wanders toward it and oscillates
around it for awhile. The time required from when the digital input changes
until the output has stabilized within a specified tolerance of the new value is
called the settling time. The specified tolerance is usually one-half LSB, which is

Dieita.-T0-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS 217

IDEAL » ‘
4 7 END POINT

OUTPUT VOLTAGE

OIGITIAL CODE
OFFSET

Fig. 7-2. Offset and gain errors

the only tolerance that really makes sense. The settling time is nearly always
much longer for a big change in output voltage than for a small one. Typical
values are 30 psec for a full scale (— 10 V to +10 V) change and 2 to 5 psec
for a 0.1 V or less change, which is quite adequate for any synthesizer control
application. Five to ten times greater speed is available without a great price
increase for direct conversion of audio.

Unfortunately, the DAC output does not always make the transition

smoothly from one level to another. Even when counting up one level at a

time, the output can be seen to glitch by a large fraction of a volt between
certain adjacent levels. Besides extending the settling time between these
particular levels, the momentary incorrect output may create an improper

response or excessive noise in the controlled circuit. Although some
specialized DACs may be designed for minimum glitch energy (voltage spike
height squared times its duration), in most cases the user must suppress the
glitches if they cause problems. This is generally accomplished with a low-

pass filter when speed is unimportant or with a sample-and-hold circuit.

DAC Techniques

Over the years, dozens of methods of digital-to-analog conversion have
been conceived and utilized. What we are interested in for synthesizer con-
trol are methods suitable for 8 to 16 bits of resolution having good inherent
accuracy and stability and a speed in the low millisecond range. Actually,
higher speed can be a great benefit because it allows mu/tiplexing of one
converter among several tasks.

218 MUSICAL APPLICATIONS OF MICROPROCESSORS

Duty-Cycle Modulation

Probably the simplest and inherently most accurate conversion method
is based on pulse-width or duty-cycle modulation. The fundamental concept
is to generate a rectangular waveform with very precisely controlled voltage
levels and transition points. This waveform is then sent through a low-pass
filter, which effectively takes the long-term average voltage level of the wave
and outputs it as a de voltage level. Actually, the beauty of the technique is
that the voltage levels are fixed so the on-off times are the only variable.
Thus, the scheme is really one of digital-to-time conversion followed by
time-to-analog conversion.

Figure 7-3 illustrates the operation of a duty-cycle DAC. At integral
multiples of T, the analog switch is flipped upward, which connects the

low-pass filter to the reference voltage source. A variable time (less than T)
later, the switch is flipped back down, which sends zero to the filter. In the
example, the filter sees Vref for 25% of the time and zero for the remaining

75%. The time average then is 0.25Vzef, which is output by the filter and
load isolating unity gain buffer. This method (and most of the others that
will be studied) gives a multiplying DAC because the output voltage is pro-
portional to the product of a reference voltage and the digital input expressed
as a binary fraction.

A simple digital counter can be used to control the analog switch in
response to a digital input. At the beginning of a T interval, the counter
would be preset to the digital value to be converted. A stable, high-
frequency clock causes the counter to count down toward zero. As long as the
counter is nonzero, the switch would be up, but as soon as it reaches zero, the
switch would be thrown down until the next cycle.

For high conversion speed, the frequency of the clock should be as high
as possible but not so high that analog switching time becomes a major
portion of a clock cycle. A realistic figure might be 10 MHz. The frequency

Veet LPF 1.0 Veg
BOTS Veep
= 0.5 Viet

0.25 Vrog
0. vo: Qo VT °

VOLTAGE TO FILTER 0 0.25T T 1.257 aT 2.25T 3T

TIME
TIME

BUFFER VOLTAGE
GENERATOR

ANALOG
SWITCH

c
Cow-Pass
FILTER

Fig. 7-3. Digital-to-analog conversion via pulse-width modulation

Digivat-TO-ANALOG AND ANALOG-TO- DIGITAL CONVERTERS 219

of the rectangular wave into the filter is the clock frequency divided by the
number of counter states, which is equivalent to the resolution of the DAC.

Thus, a 4096 level (12-bit) resolution would give a frequency of 10 MHz/
4096 or 2,441 Hz, which is a period of about 410 psec.

The output of che low-pass fileer will have some ripple superimposed on

top of the average dc level, since its cutoff is not infinitely sharp. It would be
reasonable to desire a ripple amplitude of less than one-half the least signifi-
cant bit, With the simple RC filter shown, the cutoff frequency would have
to be roughly 1/8000 of the rectangular wave input frequency to have an
acceptable ripple. The curoff frequency in this example then would have to

be around 0.3 Hz, which is equivalent to an RC time constant of over 0.5
sec. Even though this sounds slow, the worst-case settling time of the filter
to one-half LSB would be roughly nine times the time constant or nearly 5
sec! Adding a bit of resolution to this DAC would multiply the settling time
by slightly greater than four. Although more complex filters and switching
sequences may reduce the response time to tens of milliseconds, this clearly is
not a high-speed technique. Differential linearity, however, is essentially
independent of resolution, and integral linearity is limited only by the
regulation of the reference voltage under a varying load. Accuracy can also be
excellent, limited primarily by the reference and the difference between
switch turn-on and turn-off times.

Resistive Divider

The most common technique and the one on which nearly all commer-
cial DACs are based is the resistive divider technique. Figure 7-4 shows a
simple 2-bit resistive divider type of DAC. Each switch is controlled by a bit
of the digital input. If a bit is a one, the switch is up connecting its resistor
to the reference voltage; for zero bits it is down and the resistor is grounded.
It is instructive to calculate the output voltage for each of the four possible
combinations of 2 bits. Clearly, 00 would give zero output and 11 would
give Vref. The case of 10 gives an R-2R voltage divider, which results in
2/3 Ve output, while OL gives a 2R-R divider and 1/3Vr. Once again the
circuit is a multiplying DAC with an output proportional to the product of a
reference voltage and a binary fraction input.

The scheme is readily expanded to more bits by adding one switch and
resistor for each new bir. The chird bit, for example, would use a resiscor

value of 4R and the new voltage levels would be from 0/7 Vref to 7/7 Vref in

steps of 1/7Vre. Each new bit would use a resistor twice as large as the
previous bit. Note that the output range stays the same (0 to Ve) buc that

each added bit halves the size of the steps.
This network is often called a weighted resistor voltage output network

because the value of each resistor is weighted in inverse proportion to the
significance of the bit controlling it, and the output is inherently a voltage
level. The performance of the circuit is, in general, good. Differential linear-

220 MusIcaL APPLICATIONS OF MICROPROCESSORS

|

t R MSB.-LSB-—s« OUTPUT
8 i a t) ty) 0

¥ 0 1 1/3 Veet
ret (ouTPUT

t 2R 1 ie) 2/3 Viet

i LSB 1 1 Viet

Fig. 7-4. Weighted resistor DAC

ity is determined largely by the accuracy of the resistors used. If the resistors
are not in the proper ratio and the resolution is high, grossly unequal step
sizes or even nonmonotonic behavior is possible. As an example, assume an

8-bit converter with perfect IR, 2R, . . . 128R resistors but the 1R resistor

is 1% too large, that is, 1.01R. The table below shows the voltage output of
the network for some possible digital inputs:

Digital Analog x Vref

00000000 0.000000
00000001 0.003941
00000010 0.007882

01111110 30.496586
01111111 © 30.500527
10000000 30.499473

10000001 0.503414

11111110 —30.996059
41111111 -31.000000

As can be seen, an increase in the digital input from 01111111 to

10000000 results in a slight decrease in analog output, a classic manifestation
of nonmonotonicity. Except for this step, the rest are 0.00394 1V ref high.
Some additional calculation will reveal that the maximum allowable value of
IR for monotonic performance is (1+ 1/128)R, at which point the voltage

levels for 01111111 and 10000000 are the same. If 1R were too small by the
same amount, this step would be twice the size of the others, which still

gives a ILSB differential linearity error but preserves monotonicity. It can
also be easily determined that the allowable percentage error for less signifi-
cant resistors doubles for each bit toward the least significant end. In general,
though, all of the resistors will have some error, so individual resistors will

have to be more precise to guarantee differential linearity better than 1LSB.
A rule of thumb that will always work is that the resistor corresponding to
bit N should have a tolerance better than 1/2N+!. Thus, the most significant
resistor of a 12-bit DAC should have a tolerance of 0.024% or better.

Dicrra.-To- ANALOG AND ANALOG-T10-DiGITAL CONVERTERS 221

Even if the resistors were perfect, the analog switches used have a finite
on resistance, which adds to the effective resistance of each bit. If all switches
have the same internal resistance, proper ratios are destroyed and linearity
suffers again. The effect of switch resistance can be minimized by making the
weighted resistors very large but then speed suffers. Also, stable, tight
tolerance resistors in the megohm range are difficult to find. Sometimes the
switches are scaled in size, and therefore resistance in proportion to the bit
significance to maintain proper ratios in spite of high switch resistance.
Generally, this is practical only for the most significant few bits because of
the wide range in resistor values. In any case, it is usually necessary to trim

the most significant few bits with a potentiometer or high-value parallel
“trimming” resistors.

Note that a finite output load has no effect on the linearity of the
circuit. If a load of value R was connected from the output to ground in the
example in Fig. 7-4, the four voltage levels would be altered to 0, 0.2Vr/,

O.4Veef, and 0.6Vrf. Even a short circuit load would provide output currents

of 0, O.5VreffR, 1.0VrefR, and 1.5Vg/R. Thus, the equivalent circuit of the

converter can be represented as a variable-voltage generator in series with a
resistor equal to the parallel combination of all of the weighted resistors. For
reasonably high-resolution converters, this equivalent resistance is essentially
Ri2.

Speed

Unlike the previous scheme, the speed of this circuit is quite good. The
only Jimitation on speed is the switching time of the switches and the load
capacitance at the output node where all of the resistors are tied together.
Even with a slow switching time of 1 jtsec, a node capacitance of 10 pF, and
an R value of 50K, the settling time for 12 bits of resolution would be 1
psec + 9(25K X 10 pF) = 3.25 psec. With this kind of speed, the limit-
ing factor is often the buffer amplifier usually connected to the output. For
even higher speeds, the current output configuration (output “shorted” to
the input of a current-to-voltage converter op-amp circuit) can be used to
eliminate the 2.25-jtsec contribution of output capacitance.

MSB LSB OUTPUT

QO i)

OUTPUT 1 4 Veet
0 2 Weep

1 1 3/4 Viet

Fig. 7-5. Resistor ladder DAC

222 MUSICAL APPLICATIONS OF MICROPROCESSORS

MSB LSB en
Q 0 0 0
0 0 1 1/8 Vigilt

Yo 0 1 Cy) 1/4 Vegyit
0 1 1 3/8 Veit
1 0 i) 1/2 Vigilt
1 0 1 5/8 Veet
1 1) 3/4 Viet
1 1 1 7/8 Veg?

Fig. 7-6. Inverted current ladder DAC

Although the speed is high, this circuit (in fact all resistive divider

networks) is subject to glitches when moving from one level to another. The
root cause of large glitches is nonsymmetrical switching time of the analog
switches. Assume for the moment that a 3-bit DAC is moving up one step
from 011 to 100 and that the switches go from 1 to 0 faster than from 0 to 1.
The resistor network will actually see a switch state of 000 during the time
between 1-0 switching and 0-1 switching. This momentary zero state creates
a large negative glitch until the most significant switch turns on. Even if

switching times are identical, the less significant bits may be slower than the
more significant ones because they handle much lower signal currents. Un-
equal switching may be largely overcome in some circuit configurations, but
small glitches can still be generated during finite switching times when a
fraction of the reference voltage is still passing through a partially off switch.
Thus, although some DAC glitching is a fact of life, a simple low-pass filter
that may even be above the audio range is usually sufficient to eliminate the
effect of glitches in synthesizer control applications.

R-2R Ladder

Figure 7—5 shows a different resistance divider network that is the basis
for most modern DACs. Although somewhat more difficult to analyze than
the weighted resistor network, the output voltages are 0.0, 0.25, 0.5, and

0.75 times Vref corresponding to codes of 00, 01, 10, and 11. Bits are added

by inserting a switch, series 2R resistor, and 1R resistor to the next lower bit

between the MSB and LSB. Note that the resistor to ground from the LSB is
2R rather than IR. This is called a terminating resistor because it simulates
the equivalent impedance of an infinite string of less significant bits all in the
zero state.

The advantages of this configuration are numerous. One is that only

two different values of precision resistors are needed. Although about twice

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS 223

°
t
cs —o 2 Yous

0,75 iy 0.5R 0.293R: O.IS9R:
t

Veet

0.258 0.5R 0.707R 0.8418

GAIN= 1.0, 2-2 GAIN = 1.0, 27! GAIN=10, 2-2 GAIN=1,0, 27/4

AGO BITS ADD BITS
——— FOR SREATER FOR GREATER ———»

RANGE RESOLUTION

Fig. 7-7. Exponential DAC

as many resistors are used, the ease of matching their characteristics (re-

member only the ratio accuracy is important) leads to better DAC perfor-
mance with varying temperature. In fact, all resistors could be of the same
value if 2R is actually two 1R resistors in series. Another advantage is that

the load impedance of all of the switches is about the same. This eliminates
the need for scaling switch size; instead the switch resistance can simply be
subtracted from the 2R series resistor (or a large resistor placed in parallel
with 2R). Speed can be better because the node capacitances are spread out
rather than concentrated into one node as with the weighted resistor circuit.
Analysis of the effect of an error in a single resistor is considerably more

complicated, although the same resistor accuracy rule for guaranteed
monotonic performance still holds. Also, the linearity of this circuit is not
affected by load resistance or a direct short either. The equivalent output
impedance is essentially R.

Other variations of the resistance ladder are also used. The most popu-
lar is the current-switching structure shown in Fig. 7—6. Essentially the

circuit has been turned upside down with Vee driving the ladder at what was
the output point and an op-amp current to voltage converter connected to
what was Vf. Speedwise, this circuit is probably the best. The reason is that
voltage levels on the resistor network nodes do not change, since the ladder
current is simply switched between true ground and “virtual ground” at the
op-amp summing junction. Likewise, voltage levels at the switches do not
change. When voltage levels arc constant, stray capacitances are not charged

so there is no RC time constant slowdown. The result is inherently high
overall speed nearly equivalent to the individual switch speed. Settling times
of less than 0.5 usec (neglecting the effect of the output amplifier) are
routine, and 20 nsec is possible in low-resolution designs.

Exponential DAC Circuits

The preceding DAC circuits were all linear, that is, the output voltage

was a linear function of the input digital word. Nonlinear DACs are also

224 Musica APPLICATIONS OF MICROPROCESSORS

possible using only resistors, switches, and op-amps. In sound synthesis, an
exponential DAC would be of particular interest. Using such a device, an
exponential response to a digital word could be obtained from a linear analog
circuit without a separate analog exponential converter. Figure 7—7 shows a
conceptual circuit for an exponential DAC. Essentially the circuit is a chain
of switchable attenuators that may have a gain of either 1.0 (switch on,
bit = 0) or a specific gain of less than 1.0, The output voltage is equal to the
product of the individual stage gains rather than the sum as with linear
converters. The buffer amplifiers prevent switching of succeeding stages from
affecting the attenuation ratios. For the values shown, the output is
VrefX2-NA, where N is the input expressed as a binary integer. Thus, the

V/O table would be as follows:

Binary N Output x Vos

000 0 1.000
001 1 0.841
010 2 0.707
011 3 0.594
100 4 0.500
101 § 0.421
410 6 0.353
aw 7 0.296

Bits may be added ac the left end of the circuit for increased range
(toward zero) or at the right end for increased resolution. The accuracy of
exponential conversion is limited only by resistor accuracy and the charac-
teristics of the op-amps. Other circuit configurations are possible using an
amplifier per 2 bits or even fewer at the expense of more switches. Since the
network is a multiplying DAC, one obvious application is an audio at-
tenuator with response directly in decibels, where the audio signal replaces
the reference voltage source. Or with some rescaling of resistor values, the
transfer function, Vow = Vrf X 2-N/I2, can be realized, which would give

the 12-tone equally tempered musical scale directly with a linear VCO.

Analog Switches for DACs

Several different kinds of semiconductor switches are typically used in
DACs as well as general analog signal switching. The latter application will
be of great interest later when computer-controlled patching of synthesizer
modules is considered. The ideal switch, of course, would act like a relay
with nearly zero contact resistance, complete isolation between control and
signal circuits, and high-signal-voltage capability but with submicrosecond
switching times and essentially unlimited life. Practical semiconductor
switches fall rather short on the first three points but are still quite usable if
the limitations are understood.

DIGITAL-TO-ANALOG AND ANALOG-TO-DiGITAL CONVERTERS 225

Switch “‘on” resistance, for example, is certainly more than ideal. De-
pending on the switch type, it may range from just a few ohms to well over a
thousand ohms with typical values in the 50-ohm to 500-ohm range. Some

switch types have an on resistance that varies with the signal amplitude,
which can create signal distortion. Off resistance or leakage current, how-
ever, is usually small enough to be completely ignored. This combination of
characteristics makes current switching a commonly used circuit technique for
reducing or eliminating the effects of finite on resistance.

Inherent isolation of the control signal from the switched signal is not
passible in a fast, precision analog switch. Bipolar transistor switches, for

example, generally require the analog signal source to absorb a control cur-
rent. Field-effect-transistor switches use a control voltage that must be of the

correct polarity and magnitude with respect to the signal voltage. Although
lictle or no control current mixes with the signal, the control is affected by

the signal. Internal capacitances often cause significant spikes to be coupled
from the control circuit into the signal circuit. Feedthrough capacitance also
reduces the off isolation of high-frequency signals or lets input spikes that are
intended to be gated off by the switch through to the output anyway. Limits
on signal amplitude that can be switched are imposed by breakdown voltages
of the switch itself and, in the case of FET switches, the power supply
voltages available for switch control. These limitations are such that + 10-V
analog signals are not always easily handled.

Bipolar Transistor Switch

The bipolar transistor is one of the oldest analog switches in use.
Presently it is used in discrete form whenever low-voltage, moderately accu-
rate, very inexpensive switching is to be performed. Bipolar transistors are
also used extensively in monolithic DACs, where their errors are easily
cancelled through the use of matched transistors.

The basic bipolar transistor switch is shown in Fig. 7-8. Note that the
role of the collector and the emitter have been reversed. This reduces greatly
the inherent offset voltage of the transistor switch. For small signal currents
(less than 1 mA), the inverced connection provides saturation voltages in the
low-millivolt range as opposed to 60 mV or more for the normal common-
emitter connection. The required control current is the same order of mag-

LOAD
CURRENT

SIGNAL
VOLTAGE

CONTROL
CURRENT

Fig. 7-8. Basic bipolar transistor ana‘og switch

226 MUSICAL APPLICATIONS OF MICROPROCESSORS

Veet

Dac
RESISTOR

CONTROL
UPPER TRANSISTOR
ISON IF MORE
POSITIVE THAN Vref

LOWER TRANSISTOR iS ON
\F CONTROL VOLTAGE
1S NEGATIVE

ABOVE +1 =ON
BELOW — 1 =OFF

Fig. 7-9. Bipolar transistor switches for DACs. (A) Voltage switch. (B) Current
switch.

nitude as the signal current due to the very low current gain of the inverted

connection.
Note that the control current flows through the signal source. This

need not cause much of a problem if the source has a low impedance such as
an op-amp output. Note also that, although the switch can actually pass
small amounts of negative current when on, it cannot block a signal voltage
more negative than half a volt when off. Positive signal voltage blocking is
limited to about 5 V because of the 6-V base-co-emitter breakdown of nearly
all silicon transistors. Greater breakdowns up to 25 V are available in transis-
tors designed for analog switching, however.

One advantage of this switch is low control glitch feedthrough to the
output. All analog switches have capacitance between the control element
and the signal elements. Charging and discharging of these capacitances
during switching can create sizable glitches at the load. Since a bipolar
transistor switch is current activated, the voltage swing at the base is very
small and therefore the glitch is small.

Figure 7—9 shows two possible configurations of transistor switches in
DACs. The first circuit is a double-throw voltage switch that switches its
output between Vref and ground with very little error. With the simple
tesistive-voltage-to-control-current converter shown, the control logic swing
for this switch must be from a negative voltage to a positive voltage greater
than Vr. An inherently bipolar (+ and — output voltages) DAC may be
made if the bottom transistor is connected to — Vr instead of ground and the

DiGiITaL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS 227

control swing is increased. Note that the Vrs can change over a wide range

as long as the drive is sufficiently greater than either and that they do not
cross (Vaf Gn npn more negative than Vey on pnp). Total voltages (Vas+
— Veref-) up to the collector breakdown can be accommodated with this circuit.

The second circuit is often used in monolithic DACs. Weighted resis-
tors are used to establish binary-weighted currents, The current either flows
through the common-base-connected switching transistor into the output
line or through the steering diode into the switch driver. If the current gain
of the transistors is high, very little signal current is lost through the base.
Note that this is strictly a current output DAC and that che current must be

sunk at ground or negative potentials. The temperature dependence of out-
put current caused by changing emitter-base drop in the switching transis-
tors may be cancelled by a matched transistor in the Vref source.

Junction FET Switch

The field effect transistor is the most commonly used analog switch for
general-purpose applications. FETs have the desirable characteristic that lit-
tle or no control current flows in the signal circuit. They are also blessed with
a zero offset voltage (for zero load current), which contributes greatly to

accuracy with low-level signals. The on resistance is higher than bipolar
transistors, but proper circuit design can generally overcome that difficulty.

Junction field-effect transistors (JFET) are well suited for general
switching in music synthesis systems because their on resistance is constant
regardless of signal level. An N-channel FET, for example, behaves essen-

tially as a pure resistance between source and drain when the gate-to-source

voltage is zero. The switch is off when the gate is more negative with respect
to the source than the pinchoff voltage. Most JFETs are symmetrical (source
and drain interchangable), so if there is a voltage drop across the switch when
it is off, the gate must be more negative than the most negative source/drain
terminal. The gate must never be allowed to become positive with respect to
the source or drain because the gate-channel diode will become forward
biased and control current will flow into the signal path. P-channel JFETs

work similarly, but all voltage polarities are reversed.
Figure 7-10 shows a basic JFET analog switching circuit. A large

resistor (100K to 1M in practice) between the gate and source keeps the JFET
normally on. The control voltage is applied to the gate through a blocking
diode. When the control is more positive than the positive peaks of the
signal, this diode is reverse biased (preventing positive gate-channel poten-
tial) and the conducting JFET is essentially isolated from the control. To
turn the JFET off, the control voltage must be made Vpiecu/f more negative
than the negative peaks of the signal. The signal voltage range thus is
determined by the control voltage swing and the pinchoff voltage. With
+ 15-V power supplies and + 10-V signals, the pinchoff cannot exceed 5 V.
Note that a small current flows through the now forward-biased blocking

228 MUSICAL APPLICATIONS OF MICROPROCESSORS

CONTROL VOLTAGE CONTROL VOLTAGE
ON iF > + SIGNAL PEAK ON IF < —SIGNAL PEAK
OFF IF < ~SIGNAL PEAK — |Vpinchoff OFF IF > + SIGNAL PEAK + | Vpinchott

(a) (8)

CONTROL VOLTAGE
ON IF > + SIGNAL PEAK + | Vihreshoid!
OFF IF = —SiGNAL PEAK

(c}

P-CHANNEL
CONTROL VOLTAGE

‘SIGNAL

N-CHANNEL
CONTROL VOLTAGE

N-CHANNEL P- CHANNEL

ON-RESISTANCE.

COMBINATION

N-CHANNEL P-CHANNEL
THRESHOLD THRESHOLD

CONTROL VOLTAGE

(0)

Fig. 7-10. Basic FET analog switches. (A) N-channel junction FET. (B)
P-channel junction FET. (C) N-channel MOSFET. (D) Complemen-
tary MOSFET switch.

DIGITAL-TO-ANALOG AND ANALOG-TO-DiGITAl. CONVERTERS 229

diode and the gate-source resistor into the signal source. Fortunately, this
current can usually be ignored if the signal source is a low impedance.

The P-channel switch is essentially the same except that the positive
swing of the control voltage must exceed the positive signal peak by the
pinchoff potential. P-channel FETs are generally slower and have higher on
resistance than N-channel FETs by a factor of two to three. One fact of life is
that really low on resistance is incompatible with low pinchoff voltages. The
best switching JFETs have on resistances in the range of 20 ohms and
pinchoff voltages close to 10 V. Thus, standard +15-V power supplies
would not be able to switch +10-V signals when using such high-
performance devices.

MOSFET Switch

Metal-oxide gate FETs (MOSFET) are also frequently used for switch-
ing. The MOSFET is the most nearly perfect switching transistor available
from the standpoint of control-to-signal isolation. Basic operation is the same
as with a JFET except that the gate is insulated from the channel and all
voltages are shifted up somewhat. An N-channel MOSFET, for example, is

normaily off with a zero gate-to-source voltage. The gate must become more
positive than a threshold voltage before the switch turns on. The gate may also
swing negative with no effect other than driving the device deeper into
cutoff. In fact, the gate voltage swing is limited only by internal breakdown
voltages; it is otherwise isolated (except for a small capacitance) from the
channel.

One difficulty with MOSFETs is that the on resistance is indefinite; the
more positive the gate the lower the resistance. If the MOSFET is carrying an

audio signal into a finite load resistance, the channel resistance will be

modulated by the signal itself, causing nonlinear distortion. This happens
because the gate- (fixed drive voltage) to-source (varying audio signal) vol-

tage will be changing. Since there is a saturation effect at large gate-to-source
voltages, distortion will be minimized by suitable control overdrive. Distor-
tion is also reduced by using larger load resistances. A typical switching
N-channel MOSFET might have a nominal on resistance of 100 chms that

may vary from 75 ohms to 150 ohms with + 15-V drive and + 10-V signals.
Newer MOS technologies such as DMOS and VMOS can actually attain on
resistances as low as 1 ohm and carry ampere level currents!

A very nice analog switch may be constructed from two MOSFETs of
opposite polarity connected in parallel. To turn on, both switches must be
driven on by opposite polarity control voltages, which can reverse to drive
both switches off. The major advantage of this circuit is that signal voltage
levels as large as the drive voltages may be handled. Although each indi-
vidual switch is highly nonlinear and even cuts off for part of the signal cycle,
the parallel combination is always on. In fact, when the on resistance of the
N-channel unit is increasing with positive-going signals, the P-channel resis-

230 MUSICAL APPLICATIONS OF MICROPROCESSORS

+15V

10 2
TO SWITCH

—O CONTROL
INPUT

TTL
INPUT
O= +15 VOUTPUT
= —15 VOUTPUT

2
2Nn2222

Qi
2N2907

=I5V

Fig. 7-11. FET switch driver

tance is decreasing to compensate. The result is considerably less signal
distortion. This structure is called a CMOS (complementary MOS) transmis-

sion gate and is available in integrated form as quad switches and eight-
channel analog multiplexors at very low cost. The disadvantage of most
integrated transmission gates is a +7.5-V signal and drive-voltage limita-
tion. Recently, “B-series” CMOS has become available and can handle up to
+9-V signals, adequate for an 8-V standard system, although some care in
use will have to be exercised. Specialized units with even higher voltage
ratings are available but at a much higher cost.

Figure 7-11 shows a good general-purpose driver for hoth JFETs and

MOSFETs that can in turn be driven by TTL logic. The driver output swings
between whatever positive and negative supply voltages are connected. The
output is negative for a logic high input, which would drive N-channel FET
switches off. In operation, Q1 performs as a level shifter by feeding the

approximately 3-mA logic input current through to the base of Q2. The
220-pF capacitor speeds up the turnoff of Q2 (turnon of N-channel FETs) by
removing its stored base charge. As shown, the circuit will provide switching
times of around 200 N sec. Without C1 this deteriorates to around I psec.

Recently, completely integrated analog switches have appeared on the
market. These “BIFET” devices accept normal logic levels and analog supply
voltages of +15 V and provide several NFET switching functions per pack-
age. Each switch in a typical array of four can handle + 10-V analog signals
and switching time is about 0.5 fusec. These ate perfect for most applications

not requiring really high speed or exceptionally low on resistances.

Current-to-Voltage Conversion

Returning to DACs, it is often the case that the output amplifier limits
many performance parameters, particularly settling time. The purpose of the

amplifier, of course, is to isolate the DAC resistor network from load varia-

tions so that accuracy is maintained. By far the simplest output buffer is
simply a voltage follower op-amp connected to a voltage output DAC net-

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS 231

GAIN TRIM

CURRENT
INPUT
FROM
CURRENT
QUTPUT
DAC

Vret

Fig. 7-12. Fast, inexpensive current-to-voltage converter

work. Although simple, it is relatively slow when general-purpose op-amps
are connected as voltage followers because of the heavy frequency compensa-
tion required. Specialized voltage-follower amplifiers such as the LM310 are
so fast, however, that overall speed may be dominated by the DAC output
capacitance.

Nearly all commercial DACs are inherently current-output devices.
Many of these can actually generate small voltages across small load resistors

with no loss of linearity. A non-inverting amplifier with gain can amplify the
resulting fractional volt signal to standard levels with good speed, since less
frequency compensation is needed, Noise pickup could be a problem,
though, if this technique is used with high-resolution DACs.

The current-to-voltage converter configuration shown in Fig. 7-12 is

probably the best, really inexpensive circuit available for most applications of
cutrent-output DACs. The “three-for-a-dollar” LM301 op-amp using feed-
forward compensation easily gives under 3-fsec settling times, normally
obtainable only with more costly “high-speed” op-amps. Although the effec-

tive zero impedance of the amplifier summing node eliminates output capaci-
tance slowdown, in practice Cl is usually needed to keep the DAC output
capacitance from making the op-amp unstable. Gain and offset errors are also
easily trimmed out in this circuit because the adjustments do not interact.

Number Coding

Several different binary codes are in common use with DACs. All of the

example circuits given previously were unipolar, that is, gave output vol-

tages between zero and a Vref or output currents between zero and Irn. One

way to obtain a bipolar voltage output would be to use the dual emitter-
follower bipolar transistor switch shown in Fig. 7-9 with a bipolar reference
supply. The result would be a voltage output DAC that would swing be-

tween —Vref and +Vrf—1LSB (switches connected to R-2R ladder). For

example, all zeroes would give — Vref, 10000 . . . would give zero volts, and

11111. . . would give one step less than + Vr. Such a code is called offsee

232 MUSICAL APPLICATIONS OF MICROPROCESSORS

Dac
OUTPUT

UNIPOLAR BIPOLAR
2.0 © +1.0Vpey
|.75 +075 Veer m
15 #05Vet we
1.25 +0.25 Vet 101
1.0 o 100

0.75 ~0.25 Vref Ol
o5 —0.5 Viet oo

0.25 -0.75 Vet 00!
° =1.0 Vref F900

Fig. 7-13. Otfset binary coding

binary because it is equivalent to a plain unsigned binary (positive output
only) DAC output berween zero and +2Vr/f shifted down by Vn as in Fig.
7-13. In fact, inherently bipolar output DAC networks are not usually builc.
Instead, a unpiolar DAC is used and half of the reference voltage is swbtracted

from the DAC output in the output amplifier. With a current output DAC
connected to a current-to-voltage converter, the offset can be accomplished
by drawing a current equal to one-half the full-scale DAC current out of the
amplifier summing node.

Most computers use twos-complement representation for bipolar num-
bers, however. Fortunately, conversion of twos-complement binary to offset
binary is very simple; the most significant bit (the “sign” bit) is simply
inverted! No other logic or corrections are needed. This, of course, is

extremely simple to do in the computer program, the DAC interface, or the
most significant DAC switch itself.

There is a practical disadvantage to offset binary coding for bipolar
output. Recall that the effect of a slight error in the weight of the most
significant bit showed up as an odd-sized step in the exact middle of the

output range and nowhere else. Also, since the most significant bit has the
most stringent accuracy requirement, this type of error would be the most
difficult to avoid. With offset binary, this midscale error would show up at
the zero output level, precisely where it would be most noticed.

H H
! BIPOLAR

UNIPOLAR, { OUTPUT
INPUT H

'
1
1

SIGN BIT
TRIM CONTROL

*MATCH TO 1/2 LSB OR BETTER

Fig. 7-14. Sign-bit amplifier

DIGITAL-TO-ANALOG AND ANALOG-TO-DiGrraL CONVERTERS 233

‘BG SELECT TO

BINARY
INPUT

5

6

7 1/65 MINIMIZE RINGING

8

3

+,
(+10 v)

Fig. 7-15. Application of 1408-type IC DAC

Sign magnitude is another coding scheme that eliminates this error. An
N-bit sign-magnitude number has a sign bit and N—1 magnitude bits,
which form an unsigned binary fraction. A sign-magnitude DAC would send
the magnitude value to a conventional unipolar DAC and then use the sign
bit to control the output amplifier. When the sign bit is zero, the amplifier
would pass the DAC output unaltered. When it is one, the amplifier would

become an inverter an give negative outputs for positive inputs. Such a
“sign-bit amplifier” is shown in Fig. 7-14. Although this circuit can have a
gain error if the two resistors are not equal, any error around zero is small and

can be easily trimmed out by zeroing the op-amp’s offset voltage. Another
advantage is that this circuit effectively adds a bit of resolution to the overall
DAC without doubling the resistor network accuracy requirement.

Conversion of twos complement, which would still be the preferred

internal computer code, to sign magnitude is fairly simple. The function
needed would pass che twos-complement value bits unaltered if the sign bit

were zero and invert them if it were one. The conditional inversion is easily
accomplished with exclusive-or gates in the interface or can be done by

software.

Some Commercial DACs

For most applications requiring resolutions greater than 5 or 6 bits, the
expense and difficulty of finding precision resistors outweighs the cost of a
commercial prepackaged DAC. Most modern 8- and 10-bit units are

monolithic and packaged in standard 16-pin IC packages. Twelve-bit and
higher resolutions until recently were invariably hybrid devices usually pack-
aged in small epoxy modules. At least one monolithic 12-bit DAC is now on
the market despite claims by its competition that true 12-bit accuracy is not

234 MusICAL APPLICATIONS OF MICROPROCESSORS

possible with present monolithic technology. In this section, the most

widely used inexpensive devices in the 8-, 10-, and 12-bit resolution range

will be briefly described. There are, of course, a large number of similar

devices on the market that will perform just as well in computer-controlled

synthesizer applications.

1408 Type for & Bits

One of the earliest 8-bit monolithic DACs was developed by Motorola
and bears the generic type number 1408/1508. The 1508 is an expensive
milicary temperature range device, but the 1408 performs nearly as well in
room temperature environments and costs less than $5. The 1408 is offered

in 6-, 7-, and 8-bit /inearity grades, although all have 8 bits of resolution.
The linearity grade is indicated by an “-X” following the type number. For
this discussion, use of the 8-bit grade is assumed.

Like most inexpensive monolithic DACs, the 1408 is a bare-bones
device incorporating little more than the analog switches and R-2R ladder
network. An external reference source and output amplifier are required for a
complete DAC. The 1408 is basically a current-activated device; the refer-
ence is a current and the oucput is a current. It is also a multiplying DAC.
The output current, Joe, is equal to the reference current, Ir, times the

binary input expressed as an unsigned binary fraction between 0 and 0.994.
The reference current may range from 0 to about 4 mA, although below 0.5
mA linearity errors increase such that monotonicity cannot be guaranteed.
The reference current must always be positive and the output current is
actually negative, meaning that the DAC output sévés current. Standard
power supply voltages of +5 V and —15 V are used.

Figure 7-15 shows a typical hookup for the 1408. Although other
methods of supplying the reference current exist, the one shown is the
simplest. The J+ input sinks the reference current at a voltage equal to the
voltage at Irf-. For a reference voltage of + 10 V with respect to ground, /ref—

is tied co ground and Jnf+ receives a reference current of 2 mA (the optimum

value) through a 5K resistor (R 1) tied to the reference voltage. A compensa-
tion capacitor of 100 pF is required to frequency compensate the internal
reference current circuitry.

An output voltage range of — 10 to | 10 is developed from the 0 to —2

mA output current with a current-to-voltage converter. A +1.0 mA current
from the reference voltage source through R2 offsets — 1.0 mA of the DAC
output, giving a net current swing into the amplifier of — 1.0 to +1.0 mA.
This current is then converted into a —10-V to +10-V swing as a
function of R3. The current output settling time is about 0.3 fesec, which is
extended to approximately 3 fusec by the amplifier. R2 and R3 may be made
adjustable over a small range (low value trim pot in series with a slightly
reduced resistor) to precisely calibrate the scale factor and offset.

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS 235

10 ko 410 ke 1OkQ

Nees
ANY
VOLTAGE
BETWEEN
—10 AND
+10V

ted er ia ae
Lp

JO KD

Fig. 7-16. 7530-type 10-bit IC DAC

The digital input is offset binary coded but may be converted to twos
complement by placing an inverter in the path to B7. Standard TTL logic
levels are acceptable and the loading is less than one-half unit load.

7530 Type for 10 Bits

For several years, 8-bit linearity was the best that could be done with
bipolar monolithic circuitry. However, ion implantation coupled with
CMOS switch technology has made possible an inexpensive ($20) 10-bit
DAC with an unusual but very flexible structure. The generic number is
7530 and the originator is Analog Devices, although it is available from
other manufacturers. Like the 1408, reduced linearity devices are available so
check carefully that the grade being ordered is rated for 10-bit linearity. An
identical 12-bit resolution unit, the 7531, is also available, but the best

linearity currently available is still 10 bits. This could be expected to im-
prove in the future, making it a recommended device for 12-bit applications.

As can be seen in Fig. 7-16, the 7530 consists of nothing except

precision resistors and CMOS analog switches! The reference is a voltage that
can range anywhere between —10 V and +10 V. The reference is applied
directly to the R-2R ladder network, which provides an equivalent 10K pure
resistive load to ground. The analog switches steer weighted current from the
ladder into the two output buses, which must be held at near ground poten-
tial. A single supply voltage is required, which may range between +5 V
and + 15 V. Since the power supply operates only the switches, its value and
regulation has virtually no effect on the analog output. A clever feature of

this design is that all parts of the analog switches are always at ground

potential considerably simplifying the internal switch drivers and allowing
the single low-voltage power supply. The logic inputs are TTL level compat-
ible regardless of supply voltage and draw essentially zero input current. A
precision feedback resistor is provided for an external current-to-voltage
converter.

By far the most important feature of this circuit is its ability to handle
bipolar reference inputs. In fact, there is nothing to prevent audio signals up

236 MUSICAL APPLICATIONS OF MICROPROCESSORS

DIGITAL { :
INPUT |

[—p4 B9 FEEDBACK

SIGNED
DIGITAL lout
INPUT © OUTPUT

REFERENCE
INPUT

*MATCHED TO 0.1%

(8)

Fig. 7-17. Applications of the 7530 10-bit DAC IC. (A) Digital potentiometer.
(B) Four-quadrant multiplying DAC.

to 10 V in amplitude from being applied to the reference input. The two
output buses are complements of each other. With all switches in the zero

state (shown), the entire reference current (less 1LSB) is directed to the Iow2

bus and none goes to Jow!. The converse is true for all switches in the one
state. In the intermediate states, the sum of the two currents equals the
reference current less 1LSB. Thus, if the input, D, is considered to be an

unsigned binary fraction, then Tout = (Vrefl/10,000)D and Tou2 =
(Vr! 10,000) (0.999 — D).

Figure 7—17 shows two typical connections of the 7530. The first is a
digital potentiometer, which is useful as an audio gain control as well as a
general-purpose fixed-reference DAC. The output is simply the digital input

expressed as an unsigned binary fraction times the reference. If the reference
is an audio signal, then the circuit acts as a standard audio potentiometer with
a gain between zero and very nearly unity. Distortion should be zero, since
the CMOS analog switches are operating at a constant ground potential. Such
a citcuit has obvious application in the computer-controlled synthesizer.

The second circuit is a full fowr-quadrant multiplying DAC. Four quad-
tant means that the final output voltage is the correct algebraic product of a
Signed reference voltage and a signed digital input. This normally highly
complex function is obtained with the addition of nothing more than one
op-amp and two matched resistors. The extra op-amp negates the current
from [ow2 and combines it with the current from Jowi in the output amplifier.

Dicrral-TO-ANALOG AND ANALOG-TO- DIGITAL CONVERTERS 237

The effect is that the rwo currents are subtracted, giving a result that can be
either positive or negative. An inherent offset of 1/2LSB exists, however,

which can be cancelled by connecting a 10M resistor between the reference
input and the Jox2 terminal of the 7530. The digital input is offset binary,
which can be converted to twos complement with a logic inverter.

Higher-Resolution Units

At the 12-bit level and beyond, hybrid circuitry is presently the lowest
costing method of constructing DACs. This does not always mean a large
epoxy module, however. The DAC349 from Hybrid Systems is packaged in a
standard 24-pin ceramic DIP and looks like any other IC. For less than $30 it
offers features not normally available in an economy device. It is a complete
DAC including a precision-regulated voltage reference and an output
amplifier. However, these elements are brought out to package pins rather
than being connected internally allowing the user to supply a variable (unipo-

lar) reference or his own output amplifier if desired. Several precision scaling
and offset resistors are also included in the package, allowing simple pin

connections to select 0 to 10, —5 to +5, and —10 to +10 ourput ranges.
Perhaps the only disadvantage of this unit is the slow internal amplifier,
which can take as long as 20 msec to settle after a full-scale output change.
An external amplifier can boost the speed substantially and still utilize the
internal scaling resistors, however.

Even higher resolution is available at a proportionate increase in cost.
Fourteen-bit linearity (16-bit resolution) costs about $100, true 16-bit

linearity is around $350, and an unbelievable 18-bit (J part in a quarter
million) unit goes for nearly $1,000. With this kind of precision, one no
longer casually connects ordinary op-amps with solder on ordinary circuit
boards. The various gain and offset errors of the amplifiers and thermocouple
voltages in the wiring can easily wipe out the advantage of 16- and 18-bit
accuracy. Fortunately, 12-bit accuracy is generally sufficienc for producing
control voltages in a computer-controlled analog synthesizer system.

Multiplexing DACs

Even though DACs have decreased dramatically in size and cost from
earlier units, it is still far too expensive to use a 12-bit DAC every time a

computer-generated control voltage is needed. Fortunately, it is possible to
multiplex che output of a single fast converter and make it look like several
identical but slower converters.

Figure 7-18 shows the fundamental concept of DAC multiplexing.
Each multiplexed output consists of an analog switch, storage capacitor, and
a voltage-follower op-amp. The idea is to store the output voltage for each
channel in the capacitor rather than a separate register--DAC combination.
For example, when output 1 must be updated the single DAC is given the

238 MUSICAL APPLICATIONS OF MICROPROCESSORS

= out! oisitaL ~§ | YOLTAGE fob
INPUT og DAC cl |

}

Fig. 7-18. DAC multiplexing

corresponding digital input, a delay for DAC settling is taken, and $1 is
closed momentarily to update the charge on C1. Following this, other chan-
nels could be updated with no effect on output 1. If the switch, capacitor,
and voltage follower have no leakage, the new voltage level would persist
indefinitely until a further update was required. Thus, one could visualize a
multiple-channel DAC board for a microcomputer in which the program
would supply a channel number and corresponding voltage level whenever an
output voltage needs to be changed. The board would have only one DAC
and numerous sample-and-hold (SAIT) channels of the type just described,
but it would look like a board with possibly dozens of individual 12-bit
DACs.

Of course, in the real world several factors combine to give less than
ideal performance. Since there are finite leakages, it is necessary to refresh the
storage capacitors periodically to prevent output drift, not unlike refreshing a
dynamic microcomputer memory. The main limitation of the number of
channels that can be driven from one DAC is the ratio of channel-drift time
to channel-update time. With constant-leakage currents, the holding
capacitor should be large to minimize the drift rate. However, it should be
small to minimize the update time. In a practical music application, update
times beyond 50 jasec could limit the speed with which the channels could
be manipulated. As a result, the requirement for adequate speed places an
upper limit on the capacitor size and consequently refresh interval.

When developing a practical circuit for DAC multiplexing, several
factors must be considered. The main DAC is an important contributor to
overal] performance and, of course, determines the resolution of the system.
Since this one DAC will contro! a large number of channels, its cost will be
divided N ways. A good-quality, stable unit carefully trimmed for minimum
error should be used, since any errors here will affect all channels. High speed
is definitely a benefit so a couple of extra bucks spent on a high-speed output
amplifier for the DAC would be worthwhile.

DIGITAL-TO-ANALOG AND ANALOG-TO-DiGiTaL CONVERTERS 239

Several analog switch characteristics are important in DAC output
multiplexing applications. “On” resistance, for example, greatly affects the
time necessary for updating but does not contribute to inaccuracy. This is
because the capacitive load acts as an infinite load resistance after it has

charged to the DAC voltage through the switch. Likewise, signal-dependent
on resistance would not be expected to distort the signal. A very important
parameter is the “feedthrough glitch” from the switch when it turns off. This
glitch will cause an output error because it slightly alters the capacitor
voltage ac the moment of turnoff. This error may be made as small as desired
by increasing the hold capacitor but then update time is increased. A good

switch then would have low on resistance and low glitch energy, normally
conflicting requirements.

Since a large number of analog switches will be used, the required drive
circuitry becomes important. With individual FET switches, the digital-
decoding and level-shifting circuits would probably dominate a board with
more than a few channels. A 16-channel unit using individual JFETs, for

example, would require a 1-of-16 TTL decoder and 16 driver circuits like the
one in Fig. 7-11. Integrated switch-driver circuits would still require the
decoder.

Analog Multiplexors

Integrated circuit analog multiplexors, however, are ideal for the applica-
tion. An eight-channel multiplexor, for example, contains a 1-of-8 decoder,
eight switch drivers, and eight analog switches. One side of each switch is
connected to eight individual package pins and the other sides all connect to
a ninth pin. Three address inputs select the desired switch and a fourth
chip-enable input controls operation of the selected switch. Although these
circuits were intended to select one of eight ‘nputs and connect it to a single
output, they work just as well in reverse for output multiplexing a DAC. Two

eight-channel multiplexors are easily combined into a 16-channel equivalent
as shown in Fig. 7-19. The scheme can be readily expanded to additional
channels not unlike expanding a microcomputer memory.

The 4051 is a very inexpensive CMOS eight-channel analog multiplex-
or that can be had for less than $1.50. Its main limitation, as with all

low-cost CMOS, is a restricted signal-voltage capability of 15 V peak to
peak. One application that could use the 4051 directly is a multichannel 0 to
+10 DAC for generating unipolar control voltages. Since the voltages being
switched are between 0 V and +10 V, the 4051 could be powered from the

+15-V system supply. Logic inputs to the 4051 must swing between Vs
(connected to ground along with Vee in this case) and Vdd (+15), which is

easily accomplished with high-voltage open-collector TTL drivers such as
7406, 7407, 7426, 7445, etc., and a pullup resistor to +15. The 4051

could also be used to switch +5-V analog levels if it were connected to +5-V
and ~5-V power supplies. An internal level shifter allows the digital inputs
to retain a positive only swing of 0 V to +5 V. The resulting +5-V signal on

240 MusicaL APPLICATIONS OF MICROPROCESSORS

+15V

—+|
DIGITAL
InpuT oS

VOLTAGE
OUTPUT
DAC

CHANNEL
15

sw COM jot
a =

CHANNEL
5 14

=

0TO +1I0V

+15V

oe a CHANNEL
@

7445
LOF10 é
DECODER | &

‘SWITCH 2

ENABLE x
©
2

AVAILABLE yw
FOR a
EXPANSION a
TO 64 a
CHANNELS a

BINARY
CHANNEL
SELECT

T

Fig. 7-19. 16-channel multiplexed DAC using CD4051

the hold capacitor could be boosted to + 10-V standard levels in the buffer
amplifier or used directly in a 5-V system.

A “B-series” 4051 405 1B) can be used in the bipolar configuration to
switch *+8-V signals and thus directly handle the full voltage range of an

8-V system. In order to do this, well-regulated supply voltages of +8 V and
—8 V (buffered system reference voltage is ideal) must be used to power the

CMOS. Logic swings between ground and +8 V are required. Although
often no more expensive, the 4051B is likely to be harder to purchase than
the standard 4051.

BIFET analog multiplexors handling a +10-V signal range without
strain are also available. These are easier to use, require standard + 15-V
power, utilize TTL logic levels but have a higher on resistance (350 ohms as

compared to 100 ohms for the 4051), and are much more expensive. Another

Dicrra.-ro-ANALOG AND ANALOG-TO-DiGITAL CONVERTERS 241

advantage of these circuits is their immunity to static discharge, since JFETs
rather than MOSFETs are used internally.

Hold Capacitors

The hold capacitor also influences performance greatly. Not only does
its value determine the update speed and required refresh interval, its dielec-
tric material determines the accuracy of the held voltage. All capacitors have
a “memory” effect to some degree, which becomes apparent when the
voltage on the capacitor is suddenly changed after having been constant for a
Jong time. The result is that the new voltage level gradually creeps toward
the old level with a time constant on the order of 20 msec. The final amount
of creep may range from over 1% for ceramic disk capacitors to less than
0.01% for polystyrene or polypropylene capacitors. Although a decreased

refresh interval can minimize the effect, polystyrene should always be used
for the hold capacitor dielectric.

The capacitor size is largely determined by the required update time
and the on resistance of the analog switch. Note that some switches with an

otherwise low resistance may require external series resistance to limit the

current when large changes in output voltage occur such as from —10 to
+10 V. Without limiting resistance, a 50-ohm switch would try to conduct
nearly half an amp (if the DAC output amplifier could deliver it) when
switched on. For purposes of calculation, a total switch and limiting resis-
tance of 400 ohms will be assumed.

Part of the update time is spent waiting for the DAC to settle. With a
decent output amplifier on the DAC, this can be around 5 usec. Thus, if the

total update time is to be 50 pusec, then 45 are available for capacitor
charging. Assuming a worst-case transition of the full 20-V range, a worst-
case error of one-half che resolution of a 12-bit main DAC would require the
capacitor to charge within 2.4 mV or about 0.012% of its final value. With a
normal negative exponential charging curve at least ORC time, constants will
be required to update the capacitor that accurately. The RC time constant
therefore should be 5 jsec or less, meaning that C can be no larger than
0.016 “PF. Unfortunately, this is not always large enough to swamp out the

effect of feedthrough glitch in the analog switch. Larger capacitors up to
perhaps 0.1 «F (about the largest polystyrene value available) may be usable,
however, if large voltage steps are avoided or several refresh periods for final
channel settling is acceptable.

Channel Output Amplifier

The channel output amplifier to a large degree determines the refresh
period, since its input bias current is normally the largest contribution co
leakage from the storage capacitor. This problem may be easily circumvented

by using one of the newer FET input op-amps that have vanishingly small

242 MUusIcAL APPLICATIONS OF MICROPROCESSORS

bias currents. However, these are normally single devices and tend to have

larger offset voltages than bipolar input stage devices. So, as an exercise, let

us determine just how bad the situation would be with a standard bipolar

op-amp.

The LM324A is a popular quad op-amp with an unusually low bias
current of 45 nA and a typical offset voltage of 2 mV, a little less than
one-half the step size of a 12-bic, +10-V DAC. With a hold capacitor of
0.016 pF calculated previously, the drift rate due to bias current will be 2.8
Visec. Thus, if drift is to be held to less than one-half the DAC step size (2.5

mV) between refreshes, the refresh interval should be less than 880 psec. A

refresh operation could be expected to take considerably less time than a full
update operation, since the capacitor voltage change is normally very small.
A 20-psec refresh time, for example, would allow 5 sec for DAC settling

and a liberal three time constants for capacitor recharge. With these num-

bers, it should be possible to keep 880 jasec/20 sec=44 channels refreshed,
and it would be realistic to support as many as 64 with a 2-time constant
recharge period. Larger capacitors (to minimize switch glitch error) yield a
slightly increased channel capacity because, although the longer drift time is
cancelled by longer recharge time, the DAC settling time becomes less of a
factor. Thus, it would be worth considering the LM324 as the channel
output amplifier in a system with 64 or fewer channels.

Refresh Logic

As with dynamic memory in a microcomputer system, refreshing the
multiplexed DAC presents some problems that partially offset the lower cost.
One method of handling the refresh requirement would use the mi-
crocomputer system’s interval timer to interrupt the program periodically.
The interrupt service routine would then update all of the DAC channels
from a table in memory and return. Whenever the main program actually
wanted to change a DAC channel output, it would directly update both the
output and the corresponding table location.

Although easily implemented, this scheme has two serious difficulties.
One is the time stolen from the main program for the refresh operation.
With 64 channels and bipolar channel amplifiers, all available time would be
used to refresh the DAC. Even with FET amplifiers, a substantial amount of
time may be stolen. Also, if the microcomputer is stopped or a nonmusic-
playing program is executed, such as the system monitor, the DAC refresh-
ing stops and the channel output voltages drift away to undefined levels. If
the synthesizer were not shut down, the drifting voltages could produce a
teally raucous racket! Thus, it is advantageous to perform the refresh au-
tomatically with some scanning logic—or a logic replacement mi-
croprocessor dedicated to the refreshing operation.

DIGITAL-TO-ANALOG AND ANALOG-TO- DIGITAL CONVERTERS 243

MHz

16, ADDRESS BUS
oa

6502
MICROPROCESSOR

8 DATA BUS

f ¢ fh g t 10

6532 6532 2708
Pid TIMER PIA TIMER EPROM
RAM RAM

i Bish I. B 1d?

(STROBE :
— CHANNEL &

ivverrace| ATA eer oureuT
WITH r

USING
SYSTEM | COMMAND

at
7 ANALOG tn

me” [T? ey MULTIPLexoR | =
300 1 CHANNEL 127,

OUTPUT

=
Fig. 7-20. An intelligent 128-channel multiplexed DAC

(status

An Intelligent DAC?

A 6502 and three additional support chips would make a superb mul-
tiplexed DAC controller. Figure 7—20 outlines such a unit that could support
up to 128 channels. The 6532 interface chips simultaneously provide two

8-bit I/O ports, 128 bytes of read/write memory, and one interval timer
each. These provide all of the interfacing needed between the control proces-
sor and the using system, DAC, and analog multiplexor. The 2708 PROM
provides nonvolatile program storage for up to 1,024 bytes, ample for a very
sophisticated refresh routine indeed. These four ICs could be expected to cost
less than $50 total, which is less than 40 cents per channel.

Using a microprocessor for refresh control offers a lot more advantages
than a low package count, however. The using system, for example, can
communicate the 12 bits of data and 7-bit channel address on a byte basis
with full request/acknowledge handshaking. After the data is transferred, it
can go on about its business, while the DAC micro goes through the gyra-
tions of updating the channel. With proper programming of the DAC micro,
burst rate updating much faster than is directly possible could be accommo-
dated by storing the data away for later action. The micro could be cognizant
of the magnitude of voltage change on the storage capacitors and decrease the
“wait for settle” delays when the change was small. Average throughput

could be further increased by shorting out the 300-ohm protective resistor
except when a large voltage step occurred. With the timers available on the
6532 chips, some higher-level commands such as “linearly ramp channel 43
from —2.5 V to +1.6 V over the next 700 msec” could be implemented
right in the DAC, relieving the host system of that sort of task.

244 MusicaAL APPLICATIONS OF MICROPROCESSORS

Analog-to-Digital Converters

In a computet-controlled analog synthesis system, ADCs are used
mostly for the input of manual data. Control knobs, slide pots, joysticks, and
existing synthesizer keyboards are all sources of voltage that need to be
converted into numbers for use by the system. In some cases, the output of

analysis devices such as envelope followers, pitch trackers, filter banks, or
even a raw audio signal must also be converted into digital form at medium
(100 samples/sec) to high (10K to 50K samples/sec) speeds.

Single-Shot Method

The simplest ADC method, which is often used in microprocessor-

based games, utilizes a sémg/e-shot or monostable multivibrator. Effectively,
the quantity to be digitized, which must usually be a resistance but can be a
de voltage, is made to vary the pulse duration of a single-shot circuit. The
variable to be digitized is now time, which can be easily measured by a
counting loop in the microprocessor or an external hardware counter.

Figure 7—2 1 shows how a variable resistance such as a rotary or slide pot
can be digitized directly by the microcomputer. To perform a measurement,
the digitizing routine would first pulse an output bit connected to the
trigger input of the single-shot IC. Following application of the trigger, the
microcomputer would enter a routine that looks at the state of the single-shot
via an input-port bit and counts a register up from zero every loop that it

remains on. When the single-shot times out, an exit is taken from the loop

and the content of the register is the converted value.

The shortest loop possible in 8080 machine code to do this is 13.5 jusec
and with the 6502 it is 8 asec. (The LSI-11 is not suited for software timing

because of its highly variable cycle time.) For 8-bit equivalent resolution (1
part in 256) using an 8080, the single-shot time would have to be 256 times
13.5 psec or about 3.45 mSec for maximum resistance. In a 6502-based
system, this time is reduced to 2.05 msec for the same resolution. Unfortu-

SELECT FOR
DESIRED RESOLUTION

20 ko
. 22k0

VARIABLE
TO BE
DIGITIZED

TO INPUT.
PORT BIT

FROM
OUTPUT
PORT
BIT

Fig. 7-21. Single-shot method of analog-to-digital conversion

DIGITAL«TO-ANALOG AND ANALOG-TO-DiGiTaL CONVERTERS 245

CONTROLLED BY
OUTPUT PORT BIT

COMPARATOR

TO INPUT
PORT SIT

VOLTAGE
TO

MEASURE

Fig. 7-22. Single-slope integration method

nately, the time cannot go to zero for minimum resistance so before the
converted value is used, the time corresponding to minimum resistance

(one-tenth the maximum time in the example) will have to be subtracted

out. This method is capable of higher resolutions by further extending the
maximum single-shot period; however, 8 bits is usually quite sufficient for
digitizing single-turn or short travel slide potentiometers.

This technique is also readily extended to measuring voltages with the
circuit in Fig. 7-22. Normally, the analog switch is closed and the inte-
grator output voltage is therefore zero. To make a measurement, the mi-
crocomputer opens the switch and monitors the output of the comparator as
before. The integrator output now starts going positive at a constant rate

determined by the reference voltage magnitude. When it finally becomes
more positive than the unknown voltage, the comparator switches low and

the accumulated count is the converted value. As before, the resolution
attainable is dependent on the speed of the microcomputer and the time
available for conversion.

Dual-Slope Method

One problem with both of the preceding circuits is that accuracy and
stability depend on the quality of a capacitor. The circuit in Fig. 7-23
overcomes this difficulty by comparing the input voltage with a reference
voltage, using the capacitor only as a comparison medium. A measurement

cycle consists of two phases. Normally S2 is on, forcing the integrator output
to zero. During phase 1, S1 selects the unknown voltage for the integrator
input, and $2 is opened to allow the integrator to charge negative at a rate
dependent on the unknown voltage. The amount of time spent in phase 1 is
constant and carefully controlled by a counting loop similar to that used for
measurement. At the beginning of phase 2, S1 is flipped so that the negative
reference voltage is connected to the integrator. Being of opposite polarity,
the integrator starts to recharge toward zero again. The time necessary to

246 MUSICAL APPLICATIONS OF MICROPROCESSORS

VOLTAGE TOG ig SI
MEASURE R

COMPARATOR

TO INPUT
PORT BIT

~Vret

Fig. 7-23. Dual-slope integration method

reach and cross zero is monitored by the microcomputer as before. If a similar

loop is used in each phase, the converted value will be in fractional terms of
the reference voltage and the value of the capacitor is no longer critical.

Accuracy in excess of 12 bits is readily obtained with this dual-slope
circuit, although long conversion times would still be necessary with the
microcomputer doing the timing and control. Every additional bit of resolu-
tion would double the time required for conversion. Dual slope takes about
twice as long as the single-slope or single-shot method because both the
reference and the unknown are, in effect, digitized. A hardware counter

could be used instead to increase the speed, but these techniques still remain
relatively slow.

Integrated circuit dual-slope ADCs are available with resolutions as
high as 20,000 steps. Unfortunately, most of these are intended for digital
panel meters and therefore have decimal outputs. The MM5863 from Na-

tional Semiconductor, however, provides 12-bit binary output and conver-
sion times as short as 20 msec when used with an LF11300 “analog front
end” circuit. This is adequately fast for digitizing most slowly changing
voltages.

Linear Search and Tracking ADC

The better techniques for analog-to-digital conversion work by compar-
ing che unknown analog voltage with the output of a DAC using the basic
configuration in Fig. 7-24, In practice, the DAC output is systematically
varied until it matches the unknown as closely as possible as determined by
the comparator. When this is accomplished, the input to the DAC is the
digital equivalent of the unknown voltage. The key to high speed is an
efficient search algorithm and a fast DAC and comparator.

The simplest search method is the linear search. The DAC is set to zero
(or negative full scale if it is bipolar) and then incremented one step at a time
until the comparator switches from high to low, indicating that the un-
known input voltage has just been crossed. Of course, this is not likely to be
any faster than the voltage-to-time methods described earlier. However, if
the unknown voltage has not changed much since the last reading, the search
could be started at the last value rather than zero.

DiIGITAL-10-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS 247

UNKNOWN
INPUT VOLTAGE

CONVERTED

CONTROLLER
(LOGIC OR
MICROPROCESSOR)

Fig. 7-24. Analog-to-digital conversion using a DAC

A refinement of the linear search is the tracking ADC. In operation, the
comparator output is constantly monitored. If the comparator output is
high, the DAC ouput is increased one step. If it is low, the DAC is backed

off one step. The result is that the DAC always contains the digital equiva-
lent of the input voltage within one step, provided the unknown voltage
changes slowly. The inherent one-step oscillation around the correct value

may be suppressed by use of a window comparator, which has an “equals”
output as well as a greater-than and less-than output. If the equals window is
set to be a little over one step wide, the oscillation is stopped. A window
comparator is simply two ordinary comparators with different reference
voltages—the difference being the window width.

The control circuit for a tracking ADC is exceptionally simple, just a
high-frequency oscillator and an up—down counter. The comparator output is
connected to the direction control input of the counter and the clock makes
the counter count in the indicated direction. The clock period must be longer
than the settling time of the DAC. Usually in a microcomputer system, the

clock can be a microprocessor clock phase chosen such that the counter never
changes when it might be read by the microprocessor. As long as the rate of
input voltage change does not exceed the counting speed, the tracking ADC
has a “zero” conversion time. The slew rate limitation can be very real,
however. For example, a 12-bit tracking ADC with 1-MHz clock would

require over 4 msec to slew from one end of the range ro the other. If used for
direct digitizing of audio, such a converter could not handle full-scale sine

waves higher than 77 Hz without serious efrors.

Successive Approximation Search

The most efficient search algorithm and the one used by all high-speed
ADCs is termed successive approximation. The same algorithm is called a d:nary

search by computer scientists. It works by progressively narrowing in on the
unknown voltage level by testing a series of carefully chosen “trial’’ voltages
and looking at the comparator output for a high—low indication. (This sarne

248 MUSICAL APPLICATIONS OF MICROPROCESSORS

UNKNOWN

TIME

Fig. 7-25. Successive approximation search method

problem is the basis of a popular computer game in which the computer
“thinks” of a random number and responds to the player’s guesses with a “too
high” or “too low” verdict.) It is easily proven that no more efficient search
algorithm exists when only a high-low comparison decision is available for

each trial.
Referring to Fig. 7-25, it is easy to see how the algorithm works. The

example is one of homing in on an unknown voltage of +3.253 V using a

DAC with a range of — 10 V to +10 V in the ADC system. The first trial is
used to determine the polarity of the unknown voltage. The DAC is set to 0
V output and the comparator is read after sufficient delay for settling. In this
case, the comparator output would be high, indicating that the unknown is
higher than the trial, which is indeed the case. The next trial value should be
+5 V. This time the comparator output would be low, indicating that the
trial was too high.

At this point it is known that the unknown is somewhere between 0 V

and +5 V. The rule is that the next trial value should always be set midway
in the range that the unknown is known to occupy. The result of the trial
will be a new range, half the size of the previous one, that is also known to
surround the unknown. Proceeding, the next trial would be midway between
O and +5, namely +2.5, The sequence would continue: low, try 3.75; high,

try 3.125; low, try 3.437; high, try 3.281; high, etc. Note that after only
seven trials the unknown has been pinned down to within 30 mV, better
than 0.15% of full-scale accuracy. Eventually the voltage range surrounding
the unknown becomes as small as the step size of the DAC used to generate
the trial voltages, and the conversion is declared to be complete. The last
trial value is the converted result.

Now if the reader is observant he may have noted that the trial values
are nice round numbers—in the binary sense. Assuming the use of an 8-bic

DiGiTal-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERTERS 249

offset binary DAC, the sequence of trials expressed in binary would be:
10000000 (0), 11000000 (5), 10100000 (2.5), 10110000 (3.75), 10101000

(3.125), 10101100 (3.437), 10101010 (3.281), etc.

It curns out that computation of the next trial value is really no compu-
tation at all. It is simply a bit manipulation that any microprocessor is quite

adept ac. If the binary input to the DAC is treated as a register, the manipu-
lation is as follows:

1

Note

. Start by clearing the DAC to all zero bits and begin the procedure at
the leftmost (most significant) bit.

. Set the current bit to a one to generate the nexe trial value.

Wait for settling of the DAC (not usually necessary as a separate step
unless the DAC is slow or the microprocessor is exceptionally fast).

. Look at the comparator output: if the unknown is higher than the trial,
g0 to step 6, otherwise continue to step 5.

. Reset the current bit back to a zero.
- Move one bit position right and go to step 2 for the next trial. If all of
the bits have been exhausted, the conversion is finished, and the DAC

register contains the converted value.

that the number of trials will be constant and exactly equal to the
resolution of the DAC being used. This means that doubling the resolution
by adding a bit will only lengthen the conversion time slightly, unlike
previous methods in which conversion time would also be doubled.

* "DAC" IS DAC OUTPUT PORT ADDRESS
* MOST SIGNIFICANT BIT OF “CMP" IS COMPARATOR, 1 IF INPUT IS
* GREATER THAN DAC OUTPUT, 0 OTHERWISE
+ RETURNS WITH CONVERTED VALUE IN A, TWO'S COMPLEMENT NOTATION
* USES REGISTERS B AND C
* 27 BYTES, AVERAGE OF 348 MICROSECONDS EXECUTION TIME

0000 0680 ADC = MVI_—s&B 80H INITIALIZE TRIAL BIT REGISTER
0002 3£00 MVIA,O INITIALIZE TRIAL VALUE
0004 80 ADC1] ORA 8B SET TRIAL BIT INA
0005 D300 OUT DAC SEND TRIAL VALUE TO DAC
0007 48 MOV C,A SAVE A IN C
0008 DB02 IN CHP TEST COMPARATOR OUTPUT
OO0A B7 ORA A
0008 79 MOV A,C RESTORE A FROM C
000C FALOOO JM ADC2 LEAVE TRIAL BIT ON IF INPUT .GT. DAC
OOOF AB XRA 8 TURN TRIAL BIT OFF IF INPUT .LT. OAC
0010 4F ADc2 MOV C,A SHIFT TRIAL BIT RIGHT 1 POSITION
0011 78 MOV A,B
0012 OF RRC
0013 47 MOV B,A
0014 79 MOV. AAC
0015 020400 JNC ADCL LOOP IF BIT NOT SHIFTED OUT OF B
0018 £80 XR1 80H FLIP SIGN BIT TO GET TWO'S COMPLEMENT
001A C9 RET RETURN WITH RESULT IN A

Fig. 7-26. Successive approximation analog-to-digital conversion routine for
the 8080

250 Musical APPLICATIONS OF MICROPROCESSORS

: "DAC" IS DAC OUTPUT PORT ADDRESS
‘i MOST SIGNIFICANT BIT OF "CMP" IS COMPARATOR, 1 IF INPUT IS
; GREATER THAN DAC OUTPUT, 0 OTHERWISE
i RETURNS WITH CONVERTED VALUE IN A, TWO'S COMPLEMENT NOTATION
a USES INDEX REGISTER X AND ONE TEMPORARY MEMORY LOCATION
; 25 BYTES, AVERAGE OF 199 MICROSECONDS EXECUTION TIME

0000 A980 ADC: LDA #X'80 3; INITIALIZE TRIAL BIT REGISTER
0002 8580 STA TRLBIT ; LOCATION TRLBIT ASSUMED TO BE LN PAGE 0
0004 A900 LOA #0 3; INITIALIZE TRIAL’ VALUE
0006 0580 ADCL: ORA TRLBIT ; SET TRIAL BIT INA
0008 800017 STA DAC 3; SEND TRIAL VALUE TO DAC
0008 AEO217 LOX CMP 3 TEST COMPARATOR OUTPUT
OO0E 3002 BMI ADC2 ; LEAVE TRIAL BIT ON IF INPUT .GT. DAC
0010 4580 EOR TRLBIT ; TURN TRIAL BIT OFF IUF INPUT .LT. DAC
0012 4680 ADC2: LSR TRLBIT 3; SHIFT TRIAL BIT RIGHT ONE POSITION
0014 90FO BCC ADC1 ; LOOP IF BIT NOT SHIFTED OUT OF TRLBIT
a016 4980 EOR #X'80 3 FLIP SIGN BIT TO GET TWO'S COMPLEMENT
0018 60 RTS 3 RETURN

Fig. 7-27. Successive approximation analog-to-digital conversion routine for
the 6502

Successive Approximation Logic

Just to show how efficient this algorithm is and how practical it is to
execute on a microcomputer, it has been coded into assembly language
subroutines for both the 8080 and the 6502 microprocessors in Figs. 7-26
and 7-27. In both subroutines, the DAC is considered to be an 8-bit offset

binary-coded unit at the symbolic address DAC, and the comparator is
assumed to be connected to the most significant bit (sign bit) of the input
port addressed symbolically by CMP. A one from the comparator indicates
that the unknown is Aigher than the trial. The output from each subroutine is
an 8-bit signed twos-complement number; however, removing one instruc-

tion will preserve the natural binary coding when a unipolar ADC is being
implemented.

First, the programs are exceptionally short; only 27 bytes for the 8080

and 25 bytes for the 6502. They are also very fast (348 usec for the 8080 and
199 psec for the 6502) compared to the figures that were discussed earlier.
With this kind of inherent speed, the microcomputer system could easily
digitize several manual controls 100 times/sec with little impact on the time
available for other tasks.

Resolutions beyond 8 bits are readily handled by 8-bit microprocessors,
but the program size and conversion time increase substantially because of
the double precision operations now required. A 12-bit subroutine coded for
the LSI-11 (Fig. 7-28) reveals the power and speed of this processor as well as
some of the advantages of memory-mapped I/O.

A hardware successive approximation controller is also easy to build
and, in fact, now can be purchased as a single IC good for up to 12 bits.
With a hardware controller, the final limit on conversion speed is the settling

000000
000004
000010
“000014
000020
900022
1900026
900030
000034
000036
‘00042
900046

DIGITAL-TO-ANALOG AND ANALOG-TO- DIGITAL CONVERTERS 251

"DAC" IS DAC OUTPUT PORT ADDRESS, 12 BITS LEFT JUSTIFIED
"BAC" IS ASSUMED TO BE A READ/WRITE REGISTER
MOST SIGNIFICANT BIT OF "CMP" IS COMPARATOR, 1 IF INPUT IS
GREATER THAN DAC OUTPUT, O OTHERWISE

USES ONLY RO
40 BYTES, AVERAGE OF 480 MICROSECONDS EXECUTION TIME

012700 000000 ADC: MOV = #0,RO 3 INITIALIZE TRIAL BIT REGISTER
010037 177000 MOV RO, @#DAC 3 INITIALIZE TRIAL VALUE IN DAC
050037 177000 ADC1: BIS RO, @#DAC 3 TURN ON TRIAL BIT IN DAC
005737 177002 TST @#CMP 3 TEST COMPARATOR
100402 BMI ADC2 ; LEAVE TRIAL BIT ON IF INPUT .GT. DAC
074037 177000 XOR RO, GHDAC 3 TURN TRIAL BIT OFF IF INPUT .LT. DAC

006000 ADC2: ROR = R0 3 SHIFT TRIAL BIT RIGHT 1
032700 000010 BIT #000010,R0 3 TEST If ALL TRIALS DONE
001365 BNE ADC1 3 LOOP IF NOT
013700 177000 MOV = @#DAC ,RO 3 PUT RESULT INTO RO AND CONVERT TO TWO'S
062700 100000 ADD #100000,R0 3 COMPLEMENT
000207 RTS PC 3 RETURN

Fig. 7-28. Successive approximation analog-to-digital conversion routine for
the LSt-11

time of the DAC and the delay of the comparator. Since even a mediocre
75-cent comparator responds in 200 nsec (LM311 type), the challenge is
presented by the DAC. Because the speed of most DACs is determined by the
output amplifier, it would be nice if it could be eliminated. This, in fact, can

be done easily if the connection to the comparator is slightly altered. Rather
than using a vo/iage comparator with a voltage output DAC and an unknown
input voltage, what is desired is a current comparator that can be connected
directly to a current-output DAC. The unknown voltage can be converted to
a current by use of an accurate series resistor.

True current comparators with sufficient accuracy are not generally
available but the configuration shown in Fig. 7-29 is virtually as good and
uses the same LM311-type voltage comparator. A mismatch between the

DAC current output and the unknown current will tend to pull the 311
inverting input away from ground, thus switching the comparator according
to the direction of the mismatch. The two diodes across the comparator
inputs limit the voltage swing for large mismatches, thereby maintaining

high speed (small voltage swing minimizes effect of stray capacitances) and
keeping the current output DAC happy. With this circuit configuration and
a hardware successive approximation unit, conversion times of less than 20
sec regardless of the input voltage level or rate of change are routine for 12

bits of resolution.

Sample and Hold

There is one practical difficulty, however, with the successive approxi-
mation algorithm; it assumes that the unknown voltage input does not
change during the course of the conversion. If it does change, significant

RETURNS WITH CONVERTED 12 BIT VALUE IN RO, TWO'S COMPLEMENT

252 MUSICAL APPLICATIONS OF MICROPROCESSORS

UNKNOWN
INPUT
VOLTAGE

Iho
CURRENT To

payee SUCCESSIVE
APPROXIMATION:
LOGIC

Fig. 7-29. Analog circuitry for a high-speed ADC

conversion errors can occur, although their magnitude will not exceed the
total amount of change over the conversion interval. Even though successive
approximation ADCs are quite fast, signals one might think are slow moving
can still change enough in a few microseconds to create an error of several
resolution steps in a high-resolution converter. A 20-Hz full-scale sine wave
“moves” at rates above one step (12-bit ADC) every 4 msec. If the conversion
time was a speedy 16 usec, random errors as large as four steps would result,

giving an effective resolution of only 10 bits. Such a “raw” ADC would be
worthless for converting audio signals.

The same sample-and-hold setup that was used to multiplex a DAC can
also be used to sample a fast-moving signal and then hold its instantaneous
value at a predictable point in time for accurate conversion. The performance
requirements of the sample and hold can be substantially greater than for
DAC multiplexing, however. When in the sample mode (switch closed), the

on resistance and holding capacitor size must be small enough so that a large
difference between input voltage and capacitor voltage does not develop due
to the rapidly changing input. Ideally, this difference amounts to a slight
low-pass filtering of the signal, but if the multiplexor on resistance is non-
linear, it can also introduce distortion. Of course, low on resistance and small

hold capacitors contribute to larger switching transient errors. With a good
sample and hold, full-range audio signals can be converted with ADCs as
slow as 25 usec. This topic will be discussed more fully in Chapter 12.

Multiplexing ADCs

Like DACs, ADCs are generally too expensive to use for each signal to
be digitized. Again, however, mu/tiplexing can be used to make one fast ADC
look like scveral slower ones. Even the speed tradeoff is not really necessary
with techniques such as the single-slope integrator in Fig. 7-22. To add

more channels, one simply adds more comparators (type 339 quad com-
parators work well) with che plus inputs all connected to the single integrator
and the minus inputs connecting to individual unknown voltages. The com-
parator outputs go to individual input-port bits of the microcomputer. The

microprocessor counting loop can be modified to actually perform eight
analog-to-digital conversions simultaneously! Although the simultaneous
conversion loop will be slower than a single-channel loop, it will not be eight

DIGITAL-TO-ANALOG AND ANALOG-TO-DiGITaL CONVERTERS 253

times slower, which results in increased pet channel conversion speed as well
as hardware savings. A similar parallel conversion approach could also be
used with the linear-search ADC method in which a DAC replaces the
integrator.

Although simultaneous conversion is not possible with the successive
approximation search method, multiplexing by adding comparators is a very
simple and effective method. A digital multiplexor such as a 74150 16-
channel unit can accept a binary channel number and effectively connect the
addressed comparator to the successive approximation logic or input-port
bit. Thus, duplication of the expensive trial DAC is avoided. Note that this
is restricted to slowly moving signals unless a sample-and-hold circuit is
added to each channel.

Analog multiplexing several inputs into one sample-and-hold/ADC
combination is probably the most used ADC multiplexing technique. The
same analog multiplexors that were suitable for DACs are equally good for
ADCs; the roles of input and output are simply interchanged. A dedicated
microprocessor makes an excellent ADC multiplex controller as well. For
continuous sampling of several changing signals, the dedicated micto allows
each channel to have its own sample rate matched to the signal to be dig-
itized. Even compensation for known errors in the signal source could be
handled on a per-channel basis by the micro.

®

se

Signal Routing

In the previous two chapters, the sound-synthesizing elements that are part
of a computer-controlled analog synthesizer were studied in detail. First,
voltage-controlled circuits such as oscillators, amplifiers, and filters that do

the actual sound waveform generation and modification were discussed. This
was followed in Chapter 7 by a discussion of interface elements such as DACs
and analog switches that allow the computer to control the analog synthesis
circuits. The final step in the synthesis portion of the system is interconnec-
tion of these synthesis and interface elements into a useful system. Of course,
there are almost as many ways to do this as there are system designers, but an

attempt will be made to group these into three different organizational
philosophies, all of which have been hinted at in previous discussion.

The first organization, which we shall call “Type 1,” is really no

organization at all. The analog elements are simply mounted in rows on a
front panel, each independent of the others except for power. The computer
interface elements are likewise grouped together and are also logically inde-
pendent. Interconnection is done manually by means of patch cords or pin-
boards, just as on a conventional synthesizer. In fact, most systems of this
type incorporate a standard analog synthesizer or a collection of standard
synthesizer modules. Interface elements may be standard multichannel DACs
with nothing more added than a jack panel to accept standard patch cords. In
such a system, the computer automates such tasks as sequencing, generation
of arbitrary envelope shapes, smooth manipulation of several parameters

simultaneously, and controlling polyphony. Note that these are the most

difficult tasks to perform on a classic manual synthesizer system. Since
off-the-shelf components can be utilized and the overall organization does not
differ greatly from conventional systerns, this approach would be expected to
be the most popular, at least for the near future.

The Type 2 organization is like Type 1 except that the computer is in
complete control of the interconnections among elements as well. [In its most

elementary form, it is a Type | system with a computer-controlled switching

255

256 MUSICAL APPLICATIONS OF MICROPROCESSORS

matrix added to replace the manual patch cords. A completely general
switching matrix very quickly becomes prohibitive in size, but fortunately
there are ways to reduce it without undue sacrifice in flexibility. If the analog
modules are precalibrated, the synthesizer may be packaged as a black box
with perhaps four signal outputs representing final quadraphonic sound.
Essentially, such a system is a low-cost analog approach to the capabilities of
totally digital synthesizers, which will be described in Section III. The
advantage of this organization, of course, is that every aspect of sound
pfoduction can be specified, edited, stored, and retrieved automatically by
the computer. A side benefit is more efficient module use because the inrer-

connection patterns can be dynamically changed.
The Type 3 approach is a ‘‘voice-oriented” or “instrument-oriented”

organization. The fundamental idea here is that extreme interconnection
flexibility is not required because most synthesis work utilizes a small
number of standard patches for most sounds. Thus, these standard configura-
tions can be prepatched as part of the design of an instrument module. Several
different kinds of instrument modules would be used in a typical setup, each
corresponding, more or less, to a traditional orchestral instrument. All in-

puts to the modules would be digital from the control computer's I/O bus,
while the module’s output is mixed onto an analog “channel bus” corre-

sponding toa channel in the final sound. Such a setup is extremely modular
because of the parallel buses. To add a voice module, one simply plugs it in.
When all sackets are filled, additional ones ate simply connected in parallel
with the same buses. Another advantage is that this organization is concep-
tually simple, since interconnection is not a variable to be considered. The
user composes for and controls the system much like a typical orchestra but
with a wider range of timbres to choose from and freedom from human player
umitations.

Of course, any real system is unlikely to be a pure case of any of these
three organizations. A fundamentally Type 1 system, for example, is quite
likely to have some kind of rudimentary interconnection control. One tech-
nique is the use of additional VCAs in some signal paths to enable and
disable control signals at various times. In addition, Type 3 concepts may be
used to reduce the number of computer control channels needed. A pure
Type 2 system can become too large to be practical unless some Type | and
Type 3 concepts are incorporated as well. A Type 3 system might have a

small portion devoted to uncommitted elementary modules for special effects
use. Thus, an actual system is likely to incorporate some aspects of all three
organizational types. Nevertheless, it is seldom difficult to classify a
computer-controlled analog system into one of these three categories.

The remainder of this chapter will be devoted to a more detailed look at
some of the techniques that can be used in each organizational philosophy.
An understanding of this material should enable the reader to evaluate the
various approaches and develop his own personal bias.

SIGNAL ROUTING 257

Music SOFTWARE
KEYB | sorsnex eee | SYSTEM |

COMPUTER

SYNTHESIZER: ERENCE BOX
(MULTICHANNEL DAC) |

eee e reas raeree:

ine G4

or <u | Cale se
Fig. 8-1. Type 1 manually patched system

Manually Patched Computer-Controlled System

As mentioned previously, the manually patched system is really noth-
ing more than a box of DACs added to an otherwise conventional synthesizer
as shown in Fig. 8—1. Since use of standard off-the-shelf components (includ-
ing the computer system) is one of the attractions of this organization, most
comments will be made with this in mind. This, of course, should not

discourage home construction of the needed modules (which can easily cost
one-quarter as much as purchased modules), but most hobbyists would prob-
ably be interested in one of the more sophisticated organizations.

The synthesizer is obviously an important part of the system. In many
cases, one must make do with an existing available synthesizer. If a synthe-

sizer or a collection of modules is being purchased for the system, however,

attention cto a few key characteristics will insure success with a minimum of

effort.

Synthesizer Requirements

Overall quality of the modules should be moderate to high. One should
not.accept poorer performance from a synthesizer that is to be computer
controlled than would be acceptable for manual control. In fact, the com-
puter is usually much ées able to correct for deficiencies in the analog
modules than a human player is. For example, a person using a ribbon
controller or other proportional control device hears the sounds as they are

258 Musical APPLICATIONS OF MicROPROCESSORS

produced and can instantly (and unconsciously) correct for tuning errors. The

computer, on the other hand, would typically run through a stored or

preprogrammed control sequence with no knowledge of the sound coming

out. If the tuning drifted, it would be necessary to reject the recording and
either retune the module (usually with a slight twist of a panel control) or
edit the computer's control sequence to compensate. Predictable response to
control voltages is also desirable particularly with preprogrammed computer
control (as opposed to storage and retrieval of manually generated control
functions). Without clearly predictable response, many of the advantages of
programmed performance are lost. Clearly, a stable and predictable synthe-

sizer is desirable.
Another important feature is total voltage control of all parameters that

are variable. Every panel control that performs a function that cannot also be
voltage controlled is a function over which the computer has no control.
Consequently, that function must remain static throughout a computer-
controlled sequence. For example, many voltage-controlled filters have panel
controls for Q (bandpass sharpness) and no other provision for varying Q.
Thus, Q must be initially set and left alone during the performance or a
cueing system devised whereby the computer can signal the operator to twist
the control! Another example would be the duty-cycle control for the
rectangular-wave output on many voltage-controlled oscillators. Rotary
switches used to select one of several operating modes rather than simulta-
neous output of all modes such as with state-variable filters is another “‘fea-

ture” of some modules that limits their usefulness in a computer-controlled
system.

A final requirement is consistent control characteristics. This is not
normally a problem with prepackaged synthesizers or modules from a single
manufacturer but can become a real problem in a mixed system. For exam-
ple, if some modules work on a 10-V standard and others work with 5 V, it is

necessary to keep track of which modules are patched to what computer
interface channels. This is normally a greater problem than mixing modules
in a purely manual system, since in the latter case panel controls can often be
set for acceptable performance and the operator can adapt to the somewhat
changed characteristics. Likewise, signal level differences may cause gross
errors in tonal balance unless the computer is informed or the necessary
adjusumenis are made when che patch is set up.

Control Computer Requirements

The control computer, of course, is the heart of the system and should
also be selected with some care. Again, however, one may be forced to use an
existing computer. Fortunately, virtually any computer can be made to work
well given sufficient programming effort, but a couple of computer charac-
teristics greatly simplify the implementation of a Type 1 system, particularly

SIGNAL ROUTING 259

if all subsystems. are purchased. The first question to ask is: What -digital/
analog interface boards are available to plug into my computer and are they
cost effective? Probably the best system from this standpoint is the S-100
type closely followed by the PDP-8 and other popular minicomputers. Un-
fortunately, many analog interface boards emphasize analog-to-digital con-
version more than the digital-to-analog, which is needed for synthesis work.
At the time of writing, there was at least one cost effective 16-channel DAC

board available for S-100. systems. As microcomputer-controlled synthesis
gains momentum, boards with more channels at a much lower cost per
channel are sure to become available.

Another feature that is virtually mandatory in a control computer is a

so-called real-time clock or interval timer. This hardware feature allows the

computer to be cognizant of the passage of time without regard for the
execution time of the software. This capability is necessary for accurate and,
above all, repeatable timing of the music performance. If multitrack re-
cordings of the music are being made, it may be desirable to have a real-time
clock that can be externally driven or synchronized. Since many systems use
the ac power line as the timing reference, it is not difficult to record power

line hum when the first music track is recorded and then use playback of that
track to synchronize subsequent recordings. The real-time clock on the
LSI-11 microcomputer is an example of a line-frequency-referenced clock.

As anybody who has done real-time control programming knows, it is
not possible to have too much speed. An adequately fast computer simplifies

programming and allows many otherwise important time factors to be ig-
nored. An amply fast machine allows normally inefficient but convenient
programming techniques such as high-level languages to be used for many of

the control functions. As was described in Chapter 5, there is currently not a
great spread in modern microprocessor speeds, but one should avoid the
exceptionally slow early ones such as the 8008 for music synthesizer control.

Computer Interface Box

The biggest variable in the system, however, is the computer interface
box itself. This would be expected to consist of a number of DAC channels,
each connected to a standard jack.

The first question that arises naturally is: How many DAC channels are
required? A maximum number is easily arrived at by totaling the control

inputs on all of the modules in the synthesizer. Thus, it would be possible tor

the computer to manipulate every control input in the system, which would
be the ultimate in flexibility. Of course, many modules have two or more

control inputs connected essentially in parallel so computer control of multi-
ple parallel inputs would be redundant. For example, many VCOs have three
control inputs: a primary frequency control input, a secondary one for injec-
tion of vibrato, and a third normally used for a constant transposition vol-
tage. Typically, the computer would supply the primary and transposition

260 MUSICAL APPLICATIONS OF MICROPROCESSORS

controls and another oscillator would supply the vibrato signal. However,
rather than using two DAC channels and doing the combining (addition) in
the VCO, one channel can be used and the addition done in the computer.

Thus, a practical maximum channel count would be the total number of

volcage-controlled functions available in the synthesizer.
Next, it is necessary to decide what the resolution and accuracy of the

DACs should be. If 16-bit DACs were cheap, they would probably be used
exclusively and the question of resolution could be ignored. However, the
cost of the DAC is important in nearly all cases except very large multiplexed
systems where one DAC (and its cost) might serve over 100 oucput channels.

As was mentioned many times in the previous chapter, 12 bits fora DAC is a
good compromise between resolution and cost. The 4096 output levels of
such a DAC are close enough together so that any stepping effect, such as

when the DAC is controlling the frequency of a VCO, is virtually inaudible.
Although 12-bitters are relatively cheap ($30), output multiplexing is

still necessary to obtain an acceptable per-channel cost figure. Commercial
analog output subsystems seldom multiplex more than 16 outputs from a

single DAC and therefore cost in the neighborhood of $10 to $25 per

channel. The main reason for small multiplex factors in these units is the

manufacturer's desire to retain high update speeds, much higher than neces-
sary to control a synthesizer. Sticking with off-the-shelf modules, it may be
possible to purchase collections of sample-and-hold amplifiers at less cost and
further expand a 16-channel board. The home builder, on the other hand,

can utilize the techniques already discussed and add over 100 channels to a
single inexpensive DAC at a parts cost of little more than a dollar per
channel.

Another factor to consider is the update (sample) rates to be used in
controlling the synthesizer. Required update rates are highly application
dependent. For example, in synthesizing speech, 100 updates of the
parameters per second are usually ample for producing speech of high qual-
ity. In music synthesis, one of the key questions is whether the computer will
generate envelope shapes through the analog interface or whether envelope
generator modules will be used with the computer controlling just the
parameters of the envelopes. If the computer generates envelopes directly,

update rates up to 500/sec may be necessary for accurate rendition of fast

envelopes. Most other control functions get along nicely on 100 updates/sec.

Finally, it may be desirable to incorporate a low-pass filter in the DAC
outputs, particularly if a dedicated DAC is used for each channel. The filter
prevents the control voltages from changing at an excessively high rate when
an update is performed. This can be important because fast transients on
control inputs may couple audibly into the controlled signal path as clicks.
The cutoff frequency of the filter is best determined by experiment but a
good starting value is the reciprocal of the shortest update interval to be
used. This is usually low enough to be effective, yet high enough to avoid

SIGNAL ROUTING 261

| sovsrx | oes SOFTWARE SYSTEM

ry

| vs 2 ee + *
MATRIX
CONTROL

COMPUTER-CONTROLLED SWITCHING MATRIX

Fig. 8-2, Type 2 automatically patched system

distortion of the control voltage contours. Most multiplexed DACs, how-

ever, provide sufficient filtering in the channel sample-and-holds themselves.

Automatically Patched
Computer-Controlled System

An automatically patched system in its elementary form is a Type |
system with the jacks and patch cords replaced by an electronic switching
matrix thac is under che computer's control. Such a system is represented in
Fig. 8-2 but in practice the switching matrix may be organized differently

from the two-dimensional matrix shown. Comments about the synthesizer
and the computer made earlier are just as valid in a Type 2 system. There-
fore, let us proceed directly to a discussion of the switching matrix.

The simplest type of patching matrix, at least conceptually, is the
straight rectangular array of single-pole switches as in the drawing. All
subsystem outputs, including the DACs, drive the columns, and all of the

subsystem inputs are connected to rows. The final synthesizer output is

considered as an input to a speaker subsystem. The number of switches in the

262 Musical APPLICATIONS OF MICROPROCESSORS

matrix then is simply the product of the rows and columns. This number

increases approximately as the sqvare of system size and can obviously become

very large. The flexibility, however, is perfect, since any ourput can be

connected to any input. Note though the restriction that two ovtpxts cannot

be tied together (to the same input); in this case, only one switch on any

given row can be closed. This may lead to simplification of the switching

arrangement.

Matrix Reduction by Point Elimination

Since the pure matrix approach is impractical for all but the smallest
systems, ways of reducing its size must be found if Type 2 systems are to be
practical at all. One obvious saving results from the realization that some
output-to-input connections are not useful or just plain illogical. For exam-
ple, a voltage-controlled filter signal output driving a control input on the
same filter is not likely to be a useful or even predictable connection. In fact,

virtually all self-driving connections can be eliminated. The one case in
which self-driving might be useful is a VCO driving its own frequency
control input. This is really a case of frequency modulation, in which the
modulating and modulated signal frequencies are the same and has the effect
of distorting the waveforms in strange ways.

Since the multichannel DAC is typically the largest single contributor
of outputs, substantial savings can be made here. For example, the DACs
will normally only drive control inputs, not signal inputs; thus, those

switches can be removed. Actually, a few should be retained in the event that

a signal input does need to be driven. Savings can also be made by dedicating
DAC outputs to narrow ranges of control inputs. This can be done with little
if any flexibility loss because all DAC outputs are normally equal; thus, it
makes no difference which one is used to drive a particular input. If two
widely separated control inputs must be driven by the same DAC, two DAC

channels may be utilized and the computer can be responsible for giving both
the same data.

Other connection restrictions can be built in to further reduce the
switch count. Flexibilicty may be retained for special cases by adding extra
rows and columns with each added row connected to a column. Then, if a

special case requires a connection for which there is no path because of
omitted switches, the signal may be routed through one of the extra rows and

columns to make the connection. There is a clear tradeoff between intercon-
nection restriction and extra circuits to retain flexibility. If too many
switches are omitted, it may require more added circuits to maintain flexibil-
ity than were saved by the omissions.

Reduction by Subgroup Organization

One way to organize and formalize interconnection restrictions is to
consider the overall patching matrix as a set of independent submatrices.

SIGNAL ROUTING 263

First, the set of modules in the system, including outputs from the interface

DACs, are divided into groups. The modules chosen to form a group should
form a compatible ser, that is, in a real patching situation the interconnec-

tions among elements of the group would be a maximum and “outside”
connections to other groups would be a minimum. Since the matrix size is

proportional to the square of the number of modules in the group, the size of
the individual submatrices can be dramatically reduced. In fact, it is easy to
show that the theoretical reduction in overall matrix size is proportional to

the number of subgroups it is broken into if the subgroups are equal in size.
For example, if a matrix were broken into five equal-sized subgroups, then

the total number of switches would be one-fifth as large.
Of course, in a practical system one subgroup must be able to connect

to another. Therefore, “communications” input columns and output rows for

the subgroup must be added as in Fig. 8-3. The limit on subdivision is
reached when the quantity of switches devoted to communications exceeds
that saved by the subdivision.

Other methods are available for reducing switch count and are, of
course, widely used in very large switching matrices such as a telephone
central office. The basic idea in all of these is to concentrate the myriad of
inputs into a few “‘buses” with one set of switches and then distribute the
buses to the desired outputs with another set of switches. If the number of
buses remains constant, then the number of switches increases /inearly with

increases in input and output count rather than exponentially. The difficulty

with such schemes in patching a synthesizer is that their fundamental as-
sumption, that a smad/ number of inputs are connected to outputs, is not
valid. One will generally find that a large fraction of available inputs, out-
puts, and modules are used in a significant number of patches.

SUBGROUP | MODULES: SUBGROUP 2 MODULES.
A ra

|
ala

COMMUNICATION |
SUBGROUP | MATRIX CONNECTIONS: SUBGROLP 2 MATRIX

Fig. 8-3. Subgroup organization of switching matrix

264 MUSICAL APPLICATIONS OF MICROPROCESSORS

Assuming that a suitable submatrix organization and set of intercon-
nection restrictions has been established, it becomes apparent that going
from a block diagram of a patch to a pattern of matrix switch closings is no
longer straightforward. Things can become so complex that a given patch

might not seem possible when in fact it is. Of course, this is an excellent job

for the control computer, which can be programmed to accept the patching
specification directly and chen search for an interconnection pattern that
implements it.

Reduction Example

A concrete example should serve to illustrate these points. Let’s assume
that a moderately large system is to be automatically patched and that the
maximum practical amount of flexibility is desired. The system to be
patched is as follows:

1. 8 VCO 3 control in, 4 signal out

2. 16 VCA | control in, 2 signal in, 1 signal out
3.4 VCF 2 control in, 1 signal in, 3 signal out

4.4 special modules, 1 signal in, 1 control in, 1 signal out

5. 32-channel DAC

A little arithmetic will reveal that there is a total of 92 inputs and 96
outputs, giving no fewer than 8,832 crosspoints in the matrix.

If the system is to be organized as one large matrix, the first reduction
step is to eliminate self-patching paths, which amounts to a 184-switch
reduction. If DAC outputs are only allowed to drive the 52 control inputs,
then 32(92—52) = 1,280 more switches are eliminated. Finally, if each

individual DAC is only allowed to drive one of two control inputs, then
30 X 52 = 1,664 switches can be removed. There are now only 5,704
switches in the matrix and virtually no flexibility has been lost. Other
interconnection restrictions can be made to reduce the number even more.

Now let’s divide the system into four subsystems with four subma-
trices. Each subsystem will be identical and consist simply of one-quarter of
the cotal for each type of module. Taken straight, each submatrix will have
24 columns of inputs and 23 rows of outputs for a total of 552 switches. This
times four submatrices gives 2,208 switches, which is one-quarter of the
original total. However, provisions must be made for communication be-
tween submatrices. If four submatrix inputs and outputs are added for com-
munication, the submatrix grows to 756 switches or a system total of 3,024,

still about one-third of the straight full matrix size.
For a final estimate, the interconnections within the submatrix can be

restricted as before. Self-patching removes 46 switches, DAC to control
inputs only eliminates 80 more, and DAC to only two inputs cuts another
104 off. Thus, the final submatrix size is 526 switches and a total system size
of a little over 2,000 switching points. This is obviously large but not

SIGNAL ROUTING 265

completely impractical. The only real sacrifice in flexibility so far has been
the limic of four signals connecting one subsystem with the others. Further
reductions can be made by further restricting interconnections, requiring
some manual patching, such as among subsystems, or permanent patching of

those connections that are nearly always made. Properly planned and backed
by an automatic signal routing program, these additional restrictions can
have a minimal effect on the utility of the system.

Mechanical Relays

In actually implementing a switching matrix, a number of switching

methods can be used. The primary split is between mechanical switches,
such as relays, and solid-state analog switches. The main advantage of relay

switching is the essentially zero contact resistance and total immunity to
signal overload conditions. Disadvantages besides. bulk and cost are slow
response times and excessive noise if a circuit is switched live.

One type of relay specifically made for matrix switching is the tele-
phone crossbar switch. These consist of contact assemblies arranged into rows
and columns. A relay coil is needed for every row and column rather than
every crosspoint, making the device very cost effective in the larger sizes such
as 50 X 50 or 100 X 100. Unfortunately, they are highly specialized de-
vices, generally only available to telephone equipment manufacturers. The
true hobbyist experimenter may be able to occasionally find them in scrap
yards, however.

A related device, also used in telephone switching systems, is the
stepping relay. The simplest type functions as a 10- or 20-position
solenoid-driven rotary switch that may be stepped into any position by
pulsing the coil. Another type has two coils and two-dimensional movement.
With proper pulsing of the coils, the armature may be connected to any of

100 points. One advantage of stepping relays is their inherent memory; they
will stay put until moved to a different position. The disadvantages are very

slow speed (1 to 2 sec to step to the desired position) and extremely noisy
operation.

One type of relay that is practical is the magnetically latched reed relay.
The contacts are sealed in glass, operation takes 1 to 2 msec, and they are

essentially inaudible. A permanent bias magnet (or separate bias winding)
gives a latching action. The bias field is insufficient to cause closure of the

relay but can hold it closed. A current pulse that aids the bias field will close
the relay, while one that opposes it will open the relay. The coils can be

wired in a matrix array just like the contacts. Thus, to establish a connection
between, say, column 31 and row 17, one would pulse coil column 31
positive and coil row 17 negative for a millisecond to turn that relay on. Reed
relays designed for matrix operation may even have two coils in addition to
the bias coil, which eliminates the need for diodes when connected in a

matrix.

266 MUSICAL APPLICATIONS OF MICROPROCESSORS

Semiconductor Analog Switches

Semiconductor switches are likely to be of more interest. The “contact”
resistance of the switch can become a problem, however, because the voltage
drop across this resistance will have an effect on the apparent sensitivity of
control inputs. For example, a 300-ohm switch resistance and 100K control
inpuc impedance will cause an error of 30 mV on a 10-V control signal or
nearly half a semitone. Op-amp buffers at some outputs of the switching
matrix can easily eliminate this error. Signal overload may be a problem with
analog switches. The most inexpensive CMOS switches are limited to 8 V
peak and severely distort any signals beyond that.

At this time, the best low-cost semiconductor switch for matrices is the

Type 4051 8-channel multiplexor. These cost less than 20 cents per switch
and function as a nine-position rotary switch with the ninth position being
“off.” A 3-bit address selects one of eight “on” positions, while a fourth bit
unconditionally turns the switch off. Unfortunately, the address bits are not
latched, so a 4-bit register must supplement each eight-channel switch.
Another drawback is that, when switching analog voltages in excess of 5 V
peak, the control inputs of the 4051 are not TTL compatible. The switch on
resistance is about 50 ohms; therefore, buffering of the matrix output would
not normally be required.

Figure 8-4 shows an 8 X 8 switching matrix using the 4051. Address
latching is provided by Type 4724 8-bit addressable latches, which provide
eight latches in a 16-pin package. One set of voltage level shifters converts
standard TTL level array inputs to CMOS levels to drive the addressable
latches, which can then be connected directly to the 4051s. Connected as
shown, the 32 bits required to control the eight 405 ls are directly addressed
by the computer as eight 4-bit words. Each 4-bic word controls a row. If the
row is not to be connected to anything, then the most significant bit is on. If
a column is to be selected, this bit is turned off and the binary address of the

desired column is placed in the three lower bits. The circuit is readily
expanded to larger matrices. Sparse matrices, however, must have a multiple
of eight columns that can connect to each row.

The example system mentioned earlier could be quite effectively
patched using such a switching matrix. Each of the four submatrices could fit
on a single board with about 60 pins needed for analog I/O connections and
pethaps 16 digital signal pins for control. The 526 switching points would
be handled by approximately 70 of the 4051 analog multiplexors driven by
half as many addressable latches. The resulting count of roughly 120 IC
packages, which would be arranged in a highly structured array, is the same

order of complexity as many memory boards and would cost less than $200
for parts. Smaller submatrices would, of course, require much smaller
switching arrays. While not a one-evening project or an impulse purchase, an
automatic patching system is certainly practical when compared with the rest
of the system.

SIGNAL ROUTING 267

ToN}-———————orow 7
7 aos

ENag 5S
4
3

az
at 1

= ao
TOM OW 6

sos! 7
¢

ENB
4
3

a2 |
ai 1

p———fio___ of
onow>

405i 7

onow &

now 3

1 OROW2

ROW |

ROW

ALL CMOS (S OPERATED FROM oSesse rs “TYPICAL +8 AND ~8 VOLTAGES ee
LEVEL COLUMNS
smrteR = —8Y

Fig. 84. Eight-by-eight analog switching matrix

One brand new (and consequently expensive at the moment) analog
switch IC that promises to simplify such matrices even further is the Fair-

child Type 4741 or RCA CD22100 4 X 4 crosspoint switch. Besides having
twice as many switching elements in a package as the 4051, this CMOS

268 Musical APPLICATIONS OF MICROPROCESSORS

| wusic | | Joystick | ++ [
sea

SYSTEM |

COMPUTER

< OIGITAL 1/0 BUS

2-CHANNEL AUSIO BUS

Fig. 8-5. Fixed-patched system

device has an on-chip 16-bit addressable latch. Each bit of the latch controls
a switch in the 4 X 4 array; thus, the digital interface is identical to the
405 1/4724 setup. With this device, the submatrix example could be im-
plemented with about 40 IC packages, well within the range of S-100 size
boards (5 X 10 inches).

Fixed-Patched Computer-Controlled System

An instrument-oriented synthesizer is really a radical departure from
the function-oriented synthesizer discussed up to this point. The system
“building blocks” are now entire sounds or “voices” rather than low-level
signal-processing functions. Thus, a typical synthesis setup should require
fewer modules and interconnections as well as being easier to understand.
The price paid for this simplicity is flexibility, since many decisions have
been made by the module designer rather than the user. For clarity we will
refer to the usual voltage-controlled functions such as VCOs, VCAs, etc., as

“function modules” and the others as “voice modules.”
An analogy to logic ICs is easily drawn. The typical function modules

are like fundamental logic elements such as gates, flip-flops, and single-
shots. Voice modules, on the other hand, are more like MSI circuits such as

SIGNAL RouTING 269

decoders, counters, multiplexors, and read-only memories. In modern logic
design, one often uses these sophisticated MSI functions to perform mundane
functions that earlier might have been done with discrete gates merely be-
cause the interconnections are simpler. Likewise, since computer-controlled

interconnection between synthesizer function modules can become complex,
a higher-level building block can be used to reduce the complexity.

Figure 8-5 gives an idea of how a fixed-patched system might be put
together. Although a single-voice module configuration is shown, both less
flexible and more flexible modules can be imagined. As in a Type 2 system,
the computer can be in complete control of the system with all user inputs
passing through ir. A digital bus connecting all of the module inputs to-
gether is driven by the computer. Each module has a unique set of addresses
and each control function in the module is a member of the set. The module
outputs are mixed onto one or more analog channel buses, which correspond
to stereo or quad audio channels. With proper design of the digital and
analog buses, an essentially unlimited number of modules may be added to
form very large systems.

Voice Module Design

Since the user is forced to live with them, the design of the voice
modules is very important. The major design variables are flexibility and
sophistication. At one extreme of flexibility we have very specific modules
that are not unlike a rank of organ pipes. At the other extreme is flexibility
equivalent to a small submatrix of function modules discussed earlier. A
simplistic module may be little more than a simple tone source combined
with a gain control amplifier (an IC sound generator chip for electronic
games has been announced and falls into this category), while a sophisticated
one may go to great lengths co duplicate the sound of a particular instru-

ment.
Specific function modules are probably the most difficult to design but

are the easiest to use. Typically, the goal might be to emulate a particular

instrument at least well enough to be convincing when played in combina-
tion with other instruments. Figure 8-6 gives a general structure for such a

aR FIXED veo ee FTER vea OUTPUT

fo

ms

8 1012 BITS |
DIGITAL INPUT GATE TRIGGER

Fig. 8-6. Fixed-instrument voice module

ENVELOPE
GENERATOR

270 MUSICAL APPLICATIONS OF MICROPROCESSORS

BANDPASS
FILTER

BANDPASS:
FILTER

.

OUTPUT

“STRIKE”
PULSE

@ TO $2 BITS
OVERALL
AMPLITUDE

(a)

OUTPUT

ENVELOPE
GENERATOR

OVERALL STRIKE
AMPLITUDE

(B)

Fig. 8-7. Basic percussion instrument generators. (A) Resonant percussive
sound generator. (B) Noisy percussive sound generator.

module. The initial signal is generated by a VCO driven by a DAC. If the
instrument to be emulated has fixed tuning (such as a piano or organ), the
DAC may have as few as 6 bits of resolution. The combination of nonlinear
waveshaper and fixed filter produces the characteristic timbre of the instru-
ment. The shaper provides spectral characteristics that track the frequency of
the VCO, whereas the filter provides formants (peaks in the spectrum) that
remain constant. The VCA, its DAC, and envelope generator complete the

sound processing and produce the final oucput at the desired amplitude.
Additional circuitry may be added to enhance realism. One example

would be the use of a noise generator to introduce small random variations in
frequency and amplitude. Another refinement would be interaction between
amplitude and the waveshaper/filter to simulate muted and blaring timbres
of the instrument.

A percussive sound module might take the form of Fig. 8-7. The first
case covers resonant sources such as wood blocks and many types of pitched
drums. Basically, a sharp pulse excites one or more high Q bandpass filters to
produce damped sine waves. The second case covers instruments such as
cymbals, which consist largely of enveloped, filtered noise. A snare drum
generator would require both generator types.

SIGNAL ROUTING 271

Increasing Flexibility

A synthesizer based on such specific fixed function modules is little
more than a computer-controlled organ with a wider than normal selection of
stops. More flexibility can be had by making the previously fixed elements
variable under computer control. For example, the fixed filter could be made
variable as could the waveshaper. Some or all of the envelope parameters
could also be made variable. With these changes, a single module type could
cover a range of instrument types with appropriate control from the com-
puter.

An even more generalized module could be imagined. A selector might

be added to the VCO so that any of the standard VCO waveshapes could be
selected. Ultimately, a programmable waveform generator (in which a small
memory loaded by the computer contains the waveform) driven by the VCO
would be used. The filter could be expanded to a full VCF with selection of
the filtering function as well as the cutoff frequency and Q factor. The
envelope generator could also have a programmable envelope shape like the
waveform generator.

Even with voice modules in which every parameter can be controlled,
there are still serious flexibility limitations. For example, a sound may
require two independently tunable formants, which require cwo bandpass
filters, while our voice module only has one. FM synthesis is not possible
because only one VCO is present. In fact, the majority of special effects are
just not available on fixed-patched voice modules. Thus, a few function
modules are needed to supplement the voice modules if a flexible, compre-

hensive system is the goal.

Direct Digital Interface

The interface between digital signals from the computer and control
inputs of the signal-processing components can often be simplified. The
reason is that standard voltage levels and response functions are not needed,
since all control paths are /ocal to the module. Thus, a current output DAC

might feed directly into a current-controlled oscillator without conversion to
standard voltage levels, exponential conversion, etc. A multiplying DAC
could be used to directly control gain without transconductance gain cells
and so forth. The result is that a voice module will cost considerably less than
the equivalence collection of standard voltage-controlled modules and com-

panion multichannel DAC.
As mentioned earlier one strength of the fixed-patched approach is the

possibility of easy, nearly infinite expandability. This is made possible by
totally parallel buses, both digital and analog, connecting the modules to-
gether. Proper design of the buses, however, is necessary to realize this

potential.
The usual microcomputer bus is not at all acceptable for the digital

control bus of the synthesizer. For one, its speed requirement severely limits

272

+8V

PROCESSOR _,8
BUS i ae: is

TYPICAL
3 BUS ORIVER

STROBE
PORT |

PoRT BUS
Lig} “2 DRIVERS

STROBE |
PORT 2

—t -
g | PORT Bus

3 DRIVERS

STROBE
Port 3.

PORT : Bus
Ls 4 < DRIVERS

STROBE
PORT 4

SETTLE STROBE
DELAY WIDTH

lO psec|+2.v [> 6

MUSICAL APPLICATIONS OF MICROPROCESSORS

IN
MODULE

UPPER
ADORESS

8 gy __»
LOWER:
ADDRESS

SINGLE-SHOTS.

ADDRESS
AND
DATA
VALIO
STROBE

Fig. 8-8. Voice modular synthesizer digital bus

the length and load allowable on the bus. Also, its high-speed signals, which
flip around wildly all the time, are a source of noise that can easily get into
the audio citcuitry. The solution is a bus used only for transmitting data to
the voice modules. Since the microcomputer program that will be sending
data to the modules over the bus cannot go much faster than a word every 10
to 20 yisec, the bus can be slowed considerably, thus allowing long lengths
and minimizing noise generation. One technique that works well for control-
ling rise times is to use op-amp voltage followers for bus drivers! An LM324
quad op-amp, for example, provides nice clean ramps with a 6- to 10-psec

SIGNAL ROUTING 273

Fi BUS

93 1 COAX
'

TYPICAL BUS DRIVERS

SELECT TO MATCH
BUS IMPEDANCE

tid V SWING

OP-AMP.
OUTPUT 1V/ MA

© BUS
CURRENT

PROTECTION
DIODES

PROTECTION

~
CURRENT
OUTPUT
MULTIPLYING
DAC

1
!
1

OTA OUTPUT |

1
1
1
t
,
I
i
i |KO t1mA

PROTECTION

MDAC USED AS
& DIGITAL POT.

!
i I
i
i
1

i i
'
i I
1 1
1 1
{
'
i i
|
i {
(t
t
(i I
i

Fig. 8-9. Voice modular synthesizer audio bus

transition time for TTL levels. Slow switching CMOS logic on the modules
themselves provides virtually no load to the bus and tolerates slow rise times
without oscillation.

Figure 8-8 shows the implementation of an example synthesizer bus.
For simplicity, the bus is capable of output only, that is, data cannot be read
back from the synthesizer modules. Kor maximum flexfbility and expandabil-
ity, 16 address lines and 16 data lines are defined. ‘The interface between the
bus and the computer consists simply of four 8-bit output ports, or if a

16-bic processor is used, two 16-bit ports. With up to 65,536 addresses
available, an addressing standard can be defined whereby the most significant
8 bits define a particular module and the least significant 8 bits address a

function within thac module allowing up to 256 modules and 256 functions
per module to be addressed.

To perform a data transfer, one merely sets up the address and data
output ports. When the last port has been written into by the mi-
crocomputer, a pair of single-shots times out the data transfer to the synthe-
sizer over the next 20 psec. A CMOS gate and latches on the module board
decode the register address and latch the data in response to data on the bus.
Series resistors on the CMOS inputs protect against mishaps on the bus.

274 MUSICAL APPLICATIONS OF MICROPROCESSORS

Because of the slow speed of the bus and inherent noise immunity of
CMOS, several feet of open backplane wiring can be easily driven without
perceptible signal degradation. If the bus must be run some distance in a
cable, the 32 data and address lines can be individual conductors with no

special shielding. The write-enable signal, however, should be run as a

twisted pair with ground to minimize noise pickup from the other signal
lines. Combined with an overall shield, cable lengths up to 50 feet can be
easily accommodated.

Audio Bus

The audio bus in Fig. 8-9 is a bit unusual. One line is used for each
audio channel in the final synthesizer output; therefore, from one to four

would be typical. Analog switches and/or programmable gain amplifiers
determine which audio channel a particular module drives, thus setting the
voice’s position in acoustic space. To minimize noise pickup from the
backplane and allow a virtually unlimited number of modules to combine
their outputs, the audio lines are current sensitive. This means that each audio
bus line is terminated with an amplifier with near-zero input impedance.
The modules pump audio cxrrent up to 1 mA peak into the bus lines either
from a voltage source with series resistor or directly from current output
devices such as transconductance gain cells or multiplying DACs. The zero
impedance amplifier is simply an op-amp current-to-voltage converter. The
capacitor across the feedback resistor is chosen to cancel the bus capacitance.
Even though the digital bus is optimized for minimum noise generation and
the audio bus is relatively immune to noise pickup, it should be kept away
from the digital bus and run as a twisted pair with ground around the
backplane. When outside the backplane area, the audio signals should be run
in low-capacitance (93 ohms) coax cable.

Da

Organ Keyboard Interface

After a suitable synthesizer for output and a computer for control have been
found, the final and ultimately most important subsystems are the devices
used to communicate musical ideas to the system. The next three chapters
will discuss devices for original input of musical material as well as equip-
ment useful for displaying and editing the material. These input techniques
are equally valid for real-time computer-controlled synthesizers and direct

computer synthesis, which will be discussed at length in Section III. Most of
chem are fairly standard and were originally developed for computer applica-
tions other than music. One exception is the music keyboard, which is the

subject of this chapter.

Undoubtedly the most popular musical input device will be a standard
organ keyboard. Most new users will prefer it, at least initially, because of
familiarity and because for most reasonably conventional music it is simply
the most efficient method for getting musical data into the computer. Also,
being a mass-produced item, the typical purchase price for a keyboard
mechanism is quite reasonable compared with construction from scratch.

Even so, the usual organ keyboard leaves a lot to be desired. For
example, the only “information” available about a key closure is which key
was struck and for how long. This is just as well, since the typical organ
would not be able to utilize additional information anyway. However, a
music synthesizer, particularly a computer-controlled one, can and should

utilize every bit of information available. To this end, special keyboards that
also sense the speed of key depression, variations in pressure while it is down,

and other variables have been constructed. Fortunately, some of these fea-
tures are easily retrofitted to standard keyboards or in some cases may be
merely a function of the interface circuitry used to connect the keyboard co

the system.
One final keyboard characteristic, which piano and organ players usu-

ally take for granted, is polyphony, i.e., simultaneous sounds in response to
simultaneous key closures. Whereas in an organ or piano there is one tone
generator per key, such is not the case in a synthesizer. Furthermore, the

275

276 MUSICAL APPLICATIONS OF MICROPROCESSORS

TRIGGER TRANSITION
DETECT

CONTROL
VOLTAGE
QUTPUT

GATE

-15V

f OPEN | CLOSE

KEYS 9A5, =

BS

GATE

TRIGGER ae | ee |

85

CONTROL AS a NS,
VOLTAGE enn 65 = 3365
OUTPUT

ADSR
ENVELOPE

Fig. 9-1. Typical synthesizer keyboard

multiple synthesizer voices may be quite different from each other. Thus, the
major tasks for a polyphonic synthesizer keyboard are not only orderly con-
nection of a voice to a depressed key but assignment of the “correct” voice to
the key.

Adapting a Standard Synthesizer
Keyboard for Computer Input

Since most standard synthesizers contain one or more keyboards al-
ready, it might be useful to consider interfacing such a keyboard to a mi-
crocomputer. The standard synthesizer keyboard usually provides three out-
puts; digital trigger and gate and an analog control voltage proportional to
the key last depressed. The gate output is high (logic 1) whenever any key is
depressed. The trigger output is a short pulse that signals the exact instant

ORGAN: KEYBOARD INTERFACE 277

that a key is pressed. Typically, these two outputs would go to an envelope
generator, which in turn controls a VCA to shape the amplitude envelope of
the notes.

Figure 9—1 is a simplified schematic diagram of such a keyboard. The
heart of the unit is the keyboard itself. Organ keyboards are usually con-
structed with a straight gold-plated spring wire attached to each key. When
a key is pressed, this wire contacts a stationary gold-plated rod running the
length of the keyboard. This rod is called a “keyboard bus” in organ-builder’s
terms. For the synthesizer interface, the spring wire on each key connects toa
tap point on a series string of resistors designated R in the diagram. A
current source sends a constant current through the string, creating an equal

voltage drop across each resistor. For 100-ohm resistors (a common value)
and '/12 V/resistor (12-tone scale and 1 V/octave output) the current would

be 0.83 mA. Thus, the keyboard bus picks up a definite voltage when a key
is pressed against it. If two or more keys simultaneously contact the bus, the
voltage corresponding to the /awest key pressed appears on the bus due to the
action of the constant current source. The remainder of the interface circuit
essentially looks at the bus voltage and produces proper gate, trigger, and
control voltage outputs.

Gate and Trigger

The gate ourput is the easiest to generate. If no keys are pressed, R1 (in
the megohm range) tends to pull che bus down toward — 15 V. D1, however,

limits the fall co about —0.5 V. When any key is pressed, the bus is
immediately pulled up to a positive voltage dependent on the key pressed.
The gate voltage then may be taken from a comparator referenced to ground,
which will produce a logic one for positive bus voltage and a zero for negative
bus voltage. C1 is a noise filter in the range of 200 pF, while Al is a unity
gain buffer, which prevents loading of the keyboard bus.

The trigger circuit must provide a short (1 to 10 msec) pulse at the

beginning of each key closure. In all cases but one, this occurs when there is a
sudden change in keyboard bus voltage. In the circuit shown, a transition
detector generates a pulse whenever such a sudden change happens. This
pulse would be the trigger output if it were not for the case that occurs when
a single contacting key is lifted. In this case, the trigger pulse should be
suppressed. To solve the problem, the wansition detector output is delayed

slightly and logically anded with the gate signal. The result triggers a
one-shot, which provides the actual trigger output. Thus, when the transi-

tion to no keys is detected it is blocked from producing a trigger. The delay
need only be long enough for the gate comparator to respond.

The control voltage output from the keyboard normally follows the bus
voltage. However, when no keys are pressed, it should reflect the voltage
level of the last key released. This is necessary because most envelope
generators do not begin their decay until the gate voltage has gone away. In

278 MUSICAL APPLICATIONS OF MICROPROCESSORS

effect, a sample-and-hold function is needed. $1 and C2 form the sample-

and-hold, which is updated whenever a trigger is generated. C2 should be a
low-leakage low-dielectric absorption type (polystyrene) and A3 should be a
low-bias type so that the control voltage output does not audibly drift during
long decays. R2 and C3 provide adjustable portamento, which is a gliding
effect between notes.

The timing diagram illustrates a typical playing sequence on the
keyboard. For an isolated key closure, the gate goes high during the closure
time and the trigger is coincident with the rising edge of the gate. The
control voltage ourpur goes from whatever it was to the level corresponding
to note G5. The next case is a three-note sequence in which the key closures
overlap somewhat. The first note (A5) starts the gate and trigger as before.
When B5 is initially struck, nothing happens because A5, being lower than
B5, takes precedence and no voltage change occurs on the keyboard bus.
When AS5 is finally released, the change in bus voltage is detected and
another trigger is generated and updates the control voltage output. Re-
sponse to the following G5 is immediate, however, since it is lower than BS.

At the end of the sequence, when G5 is released, the trigger is suppressed
and the control voltage output remains at the G5 level. Also shown is a
typical ADSR envelope that might be generated in response to the illustrated
gate and trigger sequence.

Computer Interface

Interfacing such a keyboard to a computer is fairly simple. Basically, all
that is needed is an ADC connected to the control voltage output and two
input port bits connected to the trigger and gate signals. Whenever a trigger

occurs, an analog-to-digital conversion would be initiated. If keyboard oper-
ation is restricted to the 12-tone equally tempered scale, then the ADC need
only be accurate enough to determine which key is pressed. Thus, a 6-bit
ADC is sufficient for a five-octave keyboard provided that the voltage step
from key to key is matched to the ADC step size.

Once interfaced, it is a simple matter to write a program loop that
looks at these inputs and controls the synthesizer in response to them. If

keyboard activity is to be stored for later editing and recall, a real-time clock
is needed. The program would then note the time and the keyboard voltage
whenever a trigger occurred or the gate changed. Maximum program flexi-
bilicy is attained if triggers and gate changes are connected to the interrupt
structure on the computer. Then the program may do other tasks and still
respond co the keyboard quickly when necessary.

Figure 9-2 is a simplified diagram of a suitable interface. The gate,
trigger, and ADC output data enter through an input port. The flip-flop is
set whenever a trigger pulse or trailing gate edge occurs, which signifies a
significant keyboard event. When set, this flip-flop may request an interrupt
via the 7405 open-collector inverter. The interrupt service routine can de-

OxrGan Kevsoarb INTERFACE 279

PARALLEL
INPUTS

INTREQ
o

TRIGGER
KEYBOARD COMPUTER:

CONTROL
VOLTAGE
OUTPUT ANALOG

INPUT PARALLEL,
ADC DATA’

Fig. 9-2. Analog keyboard-to-computer interface

termine if the keyboard is requesting by examining the trigger and gate
signals. After reading the ADC output, the request flip-flop can be reset
through an output port bit. If a 6-bit ADC is used, the entire interface only
requires 8 input port bits and 1 output port bit. The interface is equally
applicable to software ADC methods. Once the interrupt service routine
determines that the keyboard caused the interrupt, the ADC subroutine can
be entered to read the keyboard voltage.

Polyphonic Keyboards

In spite of its vast audio-processing power, most analog synthesizers are
inherently monophonic (one note at a time) instruments. In fact it is usually

the keyboard that causes this limitation. One can always use multiple
keyboards with a voice for each but an increasingly popular musical applica-
tion of microprocessors is as polyphonic keyboard controllers that allow a
synthesizer player to become a real-time one-man band. Before discussing
such a keyboard controller, let’s examine a fairly common analog technique

used to obtain two simultaneous independent notes from a single keyboard.

Two-Note Keyboard

Figure 9-3 shows the idea behind a two-note analog keyboard using a
single-keyboard bus. As mentioned in the single-note interface, when more
than one key is pressed, the bus voltage will correspond to the /oweit key
pressed. What is needed is an additional circuit to generate a voltage propor-
tional to the Aighest key pressed as well. Examining the situation with two
keys down, it is seen that all of the resistors between the two keys are shorted
out (three resistors in the example). Since the string is driven by a constant-
current source, the voltage at the top of the string, E2, will decrease by an

amount equal to the voltage that would normally appear across the shorted

280 MusICAL APPLICATIONS OF MICROPROCESSORS

i SS
N RESISTORS AND KEYS.

Fig. 9-3. Two-note analog keyboard

resistors. This decrease, when added to the low-note voltage that is already
available, will yield a voltage proportional to the highest key pressed. The
voltage decrease may be determined by subtracting E2 from a reference
voltage, E3, which has been adjusted to be equal to the normal top-of-string
voltage with no keys depressed. Thus, the highest note output is equal to El
+ (E3 — E2), where E1 is the low-note output. Op-amp A3 in conjunction
with four matched R1 resistors performs this calculation, while Al and A2
buffer the bus and top point from loading.

Before discussing trigger and gate circuitry, let's think a little about
how the keyboard shou/d respond to various playing situations. For conven-

ience, the low note will be called Voice 1 and the high note will be called

Voice 2. With no keys pressed, the two gates should be down, and the two
voltage outputs should be held at their previous values. If two keys are
pressed simultaneously, then both gates should rise, both triggers should
fire, and the control voltages should move to their respective values. So far no
problem, but what happens if only one key is pressed? Ideally, only one voice
would respond while the other remains idle. If one does remain idle, which

should it be? Likewise, if two keys are down initially and one is lifted, ideally

ORGAN KEYBOARD INTERFACE 281

one of the gates would go away and the corresponding voltage output would
not change. Which one should it be? These problems would be particularly
important if the voices were different, such as a rich timbre for the low notes
and a thin timbre for the high notes. If the answer ts consistent such that the
high note always takes precedence when only one key is down, the circuitry
can be designed easily enough. But then the question becomes whether that
choice is appropriate for all music that will be played. In a nutshell, this
defines the assignment problem that is difficult for two voices and purely a
matter of compromise for more than two.

Ultimate Limitations

If the trigger and gate circuitry used on the one-voice keyboard is
applied to each channel of the two-voice case, the behavior will be far from
ideal. First, the two gates would be identical because both would be looking

for a positive bus voltage. In addition, if only one key is pressed, both voices
would trigger and both would output the same control voltage. If a second
key is struck, one voice will retrigger and update its output depending on
whether the second note is lower or higher than the first.

So far the problems are not particularly bad if both voices have the same
timbre. The real difficulty occurs when two keys are down and the player
attempts to release them simultaneously, expecting the two-note chord to die
out during the envelope decay. What will almost surely happen instead is
that one of the keys will release first, and the voice that was assigned to that
key will trigger and update itself to the other key. The end result will be that
the two voices will decay while playing the same note and it is not even
predictable which note it will be!

Obviously, logic and delay circuits can be added to obtain performance
closer to the ideal. The most important element would be a circuit to
specifically detect when only one key is down and modify the gate and
trigger action according to the chosen set of rules. Since one set of rules may
not be appropriate for all playing situations, a selector switch might be added
to allow changing the rules. Even with its limitations, the two-voice analog
keyboard is an inexpensive feature often found in prepackaged synthesizers
and used primarily as a selling point.

Beyond two voices, it is necessary to return to the digital domain.

Actually, an all-digital keyboard interface would make the most sense for
musical input to a computer, since a digital-to-analog operation (series resis-
tor string and keyswitches) and an analog-to-digital operation can both be
bypassed. It should be intuitively obvious that a suitable digital circuit can
constantly scan all of the keyswitch contacts, track the state of each one, and

report significant events to the computer. Assignment of keys to voices would
then be done in the control computer, where as little or as much intelligence
as necessary can be applied to the task.

282 MusIcat APPLICATIONS OF MICROPROCESSORS

A Microprocessor-Based Keyboard Interface

Not only can digital logic solve the polyphonic keyboard problem and

thereby effect an efficient, completely general interface to a microcomputer,

but also a dedicated microprocessor can replace the logic. In this section, a

five-octave velocity-sensitive keyboard interface will be described, which uses a

6502 microprocessor to perform all of the needed logic functions. Using a

dedicated microprocessor results in an interface that uses a minimum of

parts, is easy to build, is flexible in that the operational characteristics may

be altered by reprogramming, and is actually inexpensive.

Velocity Sensing

Before delving into the actual circuitry and programming, let’s develop

a set of specifications for the unit. First, what is velocity sensing and how is it

implemented? Basically, velocity sensing is a very inexpensive way to obtain

additional information about keystrokes beyond simple duration. The keys
on a piano, for example, are velocity sensitive. The actual speed of key travel
downward at the exact instant of key “bottoming” solely determines the force
with which the hammer strikes the string. In fact, the hammer “coasts” a

finite discance from the point of key bottoming to actual contact with the
string. Thus, variations in velocity or pressure while the key is going down do
not affect the sound! Unfortunately, a velocity-sensitive organ keyboard will
not feel at all like a piano keyboard because the inertia of the hammer is
absent, but the same kind of information will be available. Note that since

we are using a synthesizer the velocity information need not necessarily

control the amplitude of the note. It could just as well control timbre,
vibrato, or the envelope.

The mechanical modification necessary to allow velocity sensing on an
organ keyboard is really quite simple. All that is required is a second
keyboard bus spaced a fixed distance above the standard bus and positioned
such that the keys’ spring wires make contact with it when in the #p position.
Now, when a key travels down, the wire will first break contact with the

upper bus after a short distance, float freely between the buses for the
majority of the travel, and then finally contact the lower bus just before the
key bottoms. The average downward velocity of the wire and thus the key
may be determined by measuring the time interval between breaking the
upper contact and making the lower one! If desired, the speed of release at
the end of a note may also be determined, which might indeed be used to

vary envelope decay. For monophonic keyboards, it is relatively easy to
design analog timing circuits that will produce a control voltage output
proportional to velocity. For polyphonic keyboards, however, only digital
scanning logic can cope with the problem.

The actual characteristics of standard two-bus commercial keyboards
are not quite ideal but can be lived with. Contact resistance, for example, is

ORGAN KEYBOARD INTERFACE 283

quite low and perfectly suitable for carrying any kind of logic signal. The
contact time differential used for velocity sensing varies from a minimum of
around 5 msec co a reasonable maximum of 50 msec. Attempting to pound
the key for shorter times results in severe bounce of the key itself as well as
possible damage. Gently easing the key down for longer times requires so
much care that it is unlikely to be done. Variations in the differential from
key to key and even the same key from stroke to stroke are in the range of
20% up or down. The very light touch characteristic of organ keyboards is
probably responsible for much of the variation.

Contact bounce is a problem that must be dealt with if spurious out-

purs are to be prevented. Bounce on contact make is generally 1 msec,
although ic can be as long as 3 msec. Bounce on break, however, can be as
long as 5 msec which normally occurs for the slower velocities. Thus, to
retain any degree of accuracy in velocity timing the keyboard controller logic
must define the time differential as being between the /ast bounce of contact
break on one bus to the first bounce of contact make on the other bus. With a
microprocessor doing the work, such sophistication is relatively simple.

Keyboard Evenis

The real purpose of the keyboard interface is to report all ségnificant
keyboard activity to the using system. With velocity sensing, this requires
five pieces of information about each keystroke:

1. A number defining the key
2, When it was pressed
3. A number defining the depression velocity
4, When it was released
5. A number defining the release velocity

If the cime of depression and release are defined as elapsed time from an
arbitrary point such as the beginning of the song, then the time relationship
among all keystrokes is retained and the keyboard activity can be stored and
reproduced exactly or edited.

For a real-time playing situation, each piece of information should be
reported as soon as it is available. It is possible to break each keystroke into
two parts, which will be called events. A depression event would therefore

consist of a key identification, its depression velocity, and the “time of day”
that it was depressed. Similarly, a release event would specify which key, its
release speed, and when it was released. With information in this form, it

becomes easy for the system control computer to operate the synthesizer in
immediate response to the keyboard and/or record the playing sequence.

For convenience in this design example, each keyboard event will con-

sist of four 8-bit bytes. The first byte will be the key identification, which
will be a binary number between 0 and 60 with 0 corresponding to C1 and

284 MUSICAL APPLICATIONS OF MICROPROCESSORS

60 corresponding to C6 on the five-octave 61-note keyboard. The most
significant bit of this byte will distinguish press events from release events
with a 1 signifying depression. The second byte will be a velocity value in
which small numbers correspond to high velocities (short “float” times). The
third and fourth bytes will be the time of day in 1-msec increments. Al-
though this only pins down the time to within 65 sec, that should be quite
close enough to avoid confusion. If desired, a fifth byte could extend unique
timing information to over 4 hr.

The keyboard interface will present these four bytes as 32 parallel bits
that can be read by the using system in any way it sees fic. However, it is
extremely important that a handshake protocol be defined so that there is no
risk of an event becoming lost because another event occurred before the
using system could read the first one. This can be accomplished with a
request/response flip-flop similar to the one used with the analog keyboard.
When the keyboard has an event ready, it updates the 32-bit parallel output
and sets the request flip-flop. The using system seeing the request on, reads
the 32 bits and resets the request flip-flop. The keyboard is prevented from
outputting new data while the flip-flop is on. If another event does occur
before the using system reads the previous one, the keyboard can save it in a
first-in-first-out queue. In hard-wired logic, such queues are expensive, burt

KEYBOARD

AUX RESET

tyr? . +5
100 uF =

Fig. 9-4. Keyboard interface microprocessor

OrGaN KEYBOARD INTERFACE 285

KEYB EN

AS

Ad

74153
EN

UPPER BUS
LOWER BUS

* 080-086
MUST READ
ZEROES

E2

Fig. 9-5. Keyboard multiplexor

with a microprocessor-based interface, they are virtually free. If the time of
the event is ascertained when it occurs rather than when it is read by the
using system, such queuing has no effect on keystroke timing accuracy. As

286 MUSICAL APPLICATIONS OF MICROPROCESSORS

with the analog keyboard, it is best to connect the digital keyboard to the
host computer’s interrupt system so that fast response is retained without
tying up the music-synthesis program by constantly looking for keyboard
events.

Hardware Configuration

The hardware configuration of the interface is relatively simple as can
be seen in the simplified schematic of Fig. 9-4. First, of course, is the 6502
microprocessor, which could be easily replaced with a 6503 (28 pins and 4K
addressing range) for absolute minimum space and cost tequirements. Pro-
gram storage is provided by a single type 2708 erasable programmable
read-only memory (EPROM), which holds 1K bytes. A type 6532 “combina-

tion” chip supplies 128 bytes of RAM, 16 bits of I/O, and an interval timer
that will be used to determine the “time of day” that keys are pressed. The
RAM will be used to hold information about the state of each key, as a queue
for events waiting to be accepted by the host, and for general temporary
storage.

Auxillary logic will be required to decode addresses, latch the 32-bit
output, and to actually connect to the 61 keys on the keyboard. The latter is
accomplished with a 6l-input digital multiplexor as in Fig. 9-5. The

keyboard appears to the microprocessor as 128 memory locations at addresses
0400-047Fig. The first 64 addresses, 0400-043F, select a key and the upper
keyboard bus, while 0440-047F select the same keys but the lower keyboard
bus. The data read from this pseudomemory have bit 7 (the sign bit) off if the
selected key is contacting the selected bus and on otherwise. The other bits are
forced to be zero, which is required for proper operation of the keyboard
program to be described. Addressing the keyboard like memory makes key
scanning much faster than it would otherwise be. A complete memory map is
shown below:

Hex address range Device addressed

0000—-007F 128 bytes RAM in 6532

0080—-O00FE V/O ports and timer in 6532
0100—-03FF 0000-)0FF repeated three times
0400-043F Music keyboard upper bus
0440-047F Music keyboard lower bus
0480-07FF 0400-047F repeated seven times
0800-OBFF Unassigned, available for expansion
OCOO—OFFF 1K bytes EPROM 2708 type
1000-FFFF OO0—OFFF repeated 15 times

Nore that since address decoding is incomplete a variety of addresses
will refer to the same device. In particular, the EPROM can be reached by
addresses between FCOO and FEFF, which include the interrupt vectors. The

ORGAN KEYBOARD INTERFACE 287

#> REQUEST

ACKNOWLEDGE

LK
07 a7

par Lespare DB.
374s 3] KEY Pe | m SPARE 3/373 2 | NUMBER

PBS

PB4

KEY # OEN

PBz

PBI
Pad

6532
PR?

PAG
a VEL OEN

Aa
PAS

3 | s74uss
Pee, 2 | 37s:
PAI
PAC

TIME Hi OEN

TIME LO OEN

Fig. 9-6. Using system interface

128 bytes of RAM in the 6532 can be reached by both page zero and page
one addresses, which allows both stack usage and convenient page zero
addressing.

The remaining logic is shown in Fig. 9-6. The four-latch ICs are wired
to 12 of the port bits on the 6532 as a sirmple output expansion (12 bits to 32
bits). The keyboard program can manipulate the data and clock inputs to the
latches and thus exert complete control over their contents. The four groups
of three-state outputs from the latches allow flexible and convenient interfac-
ing to the using system. Two more of the port bits are used to control and
sense the handshake flip-flop. The remaining 2 bits are available for expan-
sion.

288 Musical APPLICATIONS OF MICROPROCESSORS

Software Functions

Of course, with a microprocessor-based interface, hardware is only half

the battle. The fundamental software job is to scan the 61 keys as fast as

possible and handle any that are not contacting the upper bus (i.e., de-

pressed) in an appropriate manner. In the fundamental program structure,

time is broken into fixed length segments, and an attempt is made to do

everything necessary in each time period. The most important housekeeping

functions are done first and then the keyboard is scanned starting at the low

end. In the rare event that keyboard activity is such that processing takes

longer than a time segment, an interrupt from the timer will abort scanning

and start the next cycle. Thus, the highest few keys might experience an

occasional one count error in event or velocity timing under very heavy

keyboard activity conditions.
One of the first software design steps (and in fact the first feasibility

study step) is to determine how fast the scanning can be done and therefore
the length of a time segment. If a straightforward scanning loop is not fast
enough for adequate velocity timing resolution, then something less
straightforward will be necessary.

As it turns out, a simple scanning loop can test a key and go to the next
if it is up in 12 jesec, which means that a scan of the entire keyboard would
take 732 psec. Allowing 70 usec of additional overhead for handling the
timer and setting up for a scan, it would seem to be possible to complete a
scan every millisecond, which is che desired resolution of key timing. How-
ever, if a key is found to’ be down or was down in the previous scan, then
additional processing is necessary. Further study of key-down processing
reveals that the time used varies from a minimum of 37 wsec when the key
is fully depressed and held to a maximum of 100 asec when an event is

queued. Thus, a time allotment of a millisecond would only cover a
maximum of five fully down keys and less than that when events are queued,
which is not really satisfactory. Although several courses of action are possi-
ble (2-MHz version of 6502 or external hardware to make key scanning
faster), for this example the scan period will be increased to 1.28 msec.
Velocity timing will therefore have a resolution of 1.28 msec, which is
adequate when compared with normal variation in the velocity time dif-
ferential.

Software Flowchart

An overall program flowchart is given in Fig. 9-7. When power is first
applied or after a reset, all of the important program variables are initialized
and then the main loop is entered. In the loop, the “time of day” is updated
first taking into account the 1.28-msec update interval and 1.0-msec time of

day units. Next the queue of events is checked. If an event is in the queue,

then a check is made to determine if the previous event is still awaiting

ORGAN KEYBOARD INTERFACE 289

START
(POWER UP)

INITIALIZE

ee eee

H
1

1 REMOVE EVENT| REQUEST I FROM QUEUE | FLOP ON AND OUTPUT IT
i
i
1
1
! TURN REQUEST
' FLOP ON

I
TIMER
INTERRUPT INITIALIZE

KEY ADDRESS

1S
KEY INACT
ani uP

YES

INCRE MENT
KEY ADDRESS.

(EVERY FIFTH)

PROCESS
DOWN
KEY

WAIT FOR
END OF TIME
PERIOD

Fig. 8-7. Overall program flow

action by the host system. If so, the event is left in the queue and the
program continues. Otherwise, the event is removed from the queue, put
into the output ports, and deleted from the queue.

Key scanning is next. Each key is tested to determine if it is contacting
the upper bus and had been previously as well. If not, an exit from the
scanning loop is taken to process the active key. Key-down processing looks
at the previous “‘state’’ of the key and decides whether to start or continue a
velocity count, queue an event, or just do nothing. After key-down process-

290 MUSICAL APPLICATIONS OF MICROPROCESSORS

V, OUTPUT
REL
EVENT,

U, ZERO oe a
VELOCITY. Yt UL , wetoe INCREMENT INCREMENT OuN VELOCITY

COUNT COUNT L, ZERO
VELOCITY

L, OUTPUT
PRESS
EVENT.

U= CONTACTING LPPER BUS
NOT CONTACTING UPPER BUS

L= CONTACTING LOWER BUS
u T=NOT CONTACTING LOWER BUS

Fig. 9-8. Keyboard state diagram

ing, the scanning loop is reentered at the point of exit and scanning con-
tinues. If the entire keyboard is scanned before the 1.28-msec time slot
elapses, a “‘do-nothing” loop is entered, which waits for a timer interrupt
signifying the end of the slot.

Let us look more closely at the key-down processing. A key actually

goes through four “phases” as it is pressed and released. These are up, going
down, fully down, and going up, which will be assigned phase or “‘state”’
numbers 0, 1, 2, and 3. If it were not for contact bounce or possible sloppy
playing style, the key would always go through these states in strict se-
quence, and velocity timing could be accomplished by noting the number of
scan periods spent in phases 1 and 3. Bounce, however, is quite real, so it is

not uncommon for the state sequence to “backtrack” and complicate matters.
The solution is to simulate a “finite state machine’ for each key as in Fig.
9-8. In this diagram, each circle represents the previous state of the key. Each
arrow leaving a circle represents a particular combination of bus contacts for

the key. Every possible combination of previous state and bus contact has
such an arrow, which points to what the wext state of the key will be. Some

arrows also specify an action to be performed. For example, State 1 has three

outgoing arrows even though one of them reenters the same state. If the

previous state was 1 and the lower bus is contacted by the key under consid-
eration, then the next state is 2 and a press event is generated, Likewise, if

neither bus is contacted, then the next state is also 1 and the velocity count is
incremented.

It is easy to see how contact bounce is taken care of by studying the
diagram. Bounce while the upper contact is opening on the downstroke may

cause the traversal from 0 to 1 and back to 0 several times. Each time contact

ORGAN KEYBOARD INTERFACE 291

with the upper bus is remade the velocity count is reset. Finally, however,
the bouncing stops and the State 1 looparound increments the velocity
counter on each sean cycle. The very first time contact with the lower bus is
seen, a press event is generated using the accumulated velocity count. Thus,

the desired timing from /ast upper bounce to first lower bounce is im-
plemented. An exactly analogous sequence occurs when the key is released.
Note that simultaneous contact with both upper and lower buses is physi-
cally impossible and therefore not accounted for in the diagram.

Program Description

A complete, assembled program listing for the keyboard is given in
Fig. 9-9. Looking at RAM memory allocation first, it is seen that nearly half
of it is devoted to saving information about the state of each key. The low 2
bits of each byte are used co hold the state number, while the upper 6 bits are
used as a velocity counter. The entire state byte is 0 if a key is inactive.
Thirty-two more bytes are used to implement an event queue, which allows
up to seven events to be stacked up before overflow. Five bytes are used to

MKBCP MUSIC KEYBOARD CONTROL PROGRAM
OOCUMENTATION, EQUATES, DATA STORAGE

«PAGE "DOCUMENTATION, EQUATES, DATA STORAGE‘
3 5 THIS EXAMPLE PROGRAM SCANS A 61 NOTE VELOCITY SENSITIVE MUSIC
4 : KEYBOARD AND FORMATS THE SIGNIFICANT EVENTS INTO 4 BYTE GROUPS
$ " FOR USE BY A HOST MICROCOMPUTER SYSTEM,
6
7 : DEVICE AND MEMORY ADDRESSES
8
9 0000 PORAM X*0000 ; FIRST PAGE 0 RAM LOCATION

16 0080 PAREG X'0080 3 6532 1/0 PORT A DATA REGISTER
11 0081 PADIR x'0081 6532 1/0 PORT A DIRECTION REGISTER
NS o iss ~ 2 3S m a

eC

K'0082 3 §532 1/0 PORT B DATA REGISTER
13 0083 PBDIR x*0083 ; 6532 1/0 PORT B DIRECTION REGISTER
14 009C TMWR I X'009C 3 6532 TIMER WRITE, ENABLE TIMER INTERRUPT
1§ 0100 P1RAM x'0100 3 FIRST PAGE 1 RAM LOCATION (IS SAME 128
16 ; BYTES AS PORAM
17 0400 MYBU = x'0400 ; BASE ADDRESS OF MUSIC KEYBOARD UPPER BUS
18 0440 MKYBL = x'0440 ; BASE ADDRESS OF MUSIC KEYBOARD LOWER BUS
19 FCOO ROM = X'FCOO 3 FIRST LOCATION IN 1k EPROM
20
2l 3 RAM MEMORY ALLOCATION
22
23 0000
24 0000 3 SPACE FOR THE CURRENT STATE OF 61 KEYS
25 0030 3 EVENT QUEUE INPUT POINTER
26 O03E 3 EVENT QUEUE OUTPUT POINTER
27 003F 3 SPACE TO QUEUE UP TO 7 EVENTS
28 OOSF ; ELAPSED TIME IN MILLISECONDS SINCE TURNON
29 0062 3 FRACTIONAL PART OF ELAPSED TIME
30 0064 3 5 COUNTER FOR TIMER INTERRUPTS
31 0065 ; INDIRECT POINTER FOR VECTOR JUMP
32

Fig. 9-9. Listing of keyboard control program

292 Musicac APPLICATIONS OF MICROPROCESSORS

MKBCP MUSIC KEYBOARD CONTROL PROGRAM
INITIALIZATION AND MAIN LOOP

PAGE "INITIALIZATION AND MAIN LOOP*
33 5 INITIALIZATION
34
35 0067 = ROM 3 START AT BEGINNING OF ROM
36 FCOO D8 INIT: CLD 3 SET BINARY ARITHMETIC MODE
37 FCOl A250 LOX #80 3 INITIALIZE STACK POINTER TO END OF PAGE 1
38 FCO3 9A TXS 3 RAM
39 FCO4 ASFF LDA #X'FF 3 SET DATA DIRECTION REGISTERS ON 6532
40 FCO6 8581 STA PADIR 3 PORT A TO ALL OUTPUTS
41 FCO8 ASIF LDA #X'1F 3 PORT B BITS 0-4 TO OUTPUTS, REMAINDER TO
42 FCOA 8583 STA PBDIR 3 INPUTS
43 FCOC A900 LDA #V¥CJPTB 3 INITIALIZE UPPER BYTE OF VECTOR JUMP
44 FCOE 8565 STA VCJPPT 3 POINTER
45 FC10 A905 LOA #5 3 INITIALIZE TIMER INTERRUPT COUNT
46 FC12 8564 STA TIMCNT
47 FC14 AFF LOA #255 3 START TIMER, SET FOR 255 MICROSECONDS
48 FC16 859C STA TMWRI 3 AND ENABLE TIMER INTERRUPT
49 FC18 58 CLI 3 ENABLE INTERRUPT SYSTEM
50
$1 H MAIN PROGRAM LOOP
52
53 FC19 A562 MLOOP: LDA TIMEF 3 ADD 1+18350/65536 MILLISECONDS TO ELAPSED
54 FC1B 18 CLC 3 TIME
55 FC1C 69AE ADC #183508X'FF 3 FIRST DO FRACTIONAL PART
56 FC1E 8562 STA TIMEF
57 FC20 A563 LDA TIMEF+1
58 FC22 6947 ADC #18350/256
59 FC24 8563 STA TIMEF+]
60 FC26 ASSF LDA TIME 3 THEN INTEGER PART
61 FC28 6901 AOC #1
62 FC2A 855F STA TIME
63 FC2C 9006 BCC QUCK
64 FC2E E660 INC TIME+1 3 CARRY THROUGH HIGH TWO BYTES
65 FC30 D002 BNE QUCK
66 FC32 E661 INC TIME+2
67 FC34 AG3E QuckK: ==LDX QuOP 5 TEST IF ANYTHING IN THE EVENT QUEUE
68 FC36 £430 CPX QuIP
69 FC38 FO3E BEQ KYSCN 3 GO TO KEY SCAN IF NOT
70 FC3A A582 LDA PBREG 3 TEST IF I/O WAITING ON HOST
71 FC3C 2920 AND #X'20
72 FC3E D038 BNE KYSCN 3 GO TO KEY SCAN IF SO
73 FC40 A000 Lby #0 3 DEQUEUE AN EVENT AND OUTPUT IT IF NOT
74 FC42 B53F LDA EVQU,x 3 KEY ID
75 FC44 8580 STA PAREG
76 FC46 A908 LDA #X'08 3 STROBE IT INTO 1/0 REGISTER
77 FC48 8582 STA PBREG
78 FC4A 8482 STY PBREG
79 FCAC B5S40 LDA EVQU+1,x 3 VELOCITY
80 FC4E 8580 STA PAREG
81 FCSO A904 LDA #X'04
82 FC52 8582 STA PBREG
83 FC54 8462 STY PBREG
84 FCS6 B54] LDA EvQu+2,x 3 TIME OF EVENT LOW
85 FCS8 8580 STA PAREG
86 FC5A A902 LDA #X'02

Fig. 9-9. Listing of keyboard control program (cont.)

ORGAN KEYBOARD INTERFACE 293

MKBCP MUSIC KEYBOARD CONTROL PROGRAM
INTTIALIZATION AND MAIN LOOP

87 FCSC 8582 STA PBREG
88 FCSE B48? STY PBREG
89 FC60 BS42 LDA EVQU+3,X 5 TIME OF EVENT HIGH
90 FC62 8580 STA PAREG
91 FC6& ASO] LDA #x'O1
92 FC66 8582 STA PBREG
93 FC68 8482 STY PBREG
94 FC6A A910 LDA #X'10 3 SET THE REQUEST FLIP-FLOP
95 FC6C 8582 STA PBREG
96 FCBE 8482 STY PBREG
97 FC70 BA TXA 3 MOVE QUEUE OUTPUT POINTER UP 1 NOTCH
98 FC71 18 cic
99 FC72 6904 ADC #4

100 FC74 2951F AND #X'1F 3 WITH WRAPAROUND FOR 32 BYTES OF QUEUE
re FC76 &853E STA QuaP
02
an 3 SCAN THE KEYBOARD. SCAN LOOP IS EXPANDED BY 4 FOR GREATER SPEED

105 FC78 AO3C KYSCN: LOY #60 ; INITIALIZE KEY ADDRESS
106 FC7A 001B BNE KYSCN4 3 ENTER EXPANDED LOOP AT PROPER PLACE
107 FC7C 890004 KYSCNI: LDA MKYBL,Y 3 GET UPPER BUS CONTACT INDICATION
108 FC7F 190900 ORA MKYBST,Y 3 COMBINE WITH PREVIOUS KEY STATE
1o9 Fc82 BOZO BNE KYPROC 3 BRANCH IF ACTION REQUIRED
110 FC84 88 KYSCNA: DEY 3 DECREMENT KEY ADDRESS
111 FC8s geod KYSCN2: LOA MKYBU,Y 3 REPEAT FOR NEXT KEY
112 Fess 190000 ORA MKYBST,Y
113 FC8B BO17 BNE KYPROC
114 FC8D 88 KYSCNB: DEY
115 FC8E B90004 KYSCN3: LDA MKYBU,Y 3 REPEAT FOR NEXT KEY
116 FC91 190090 ORA MKYBST,Y
117 FC94 DOOE BNE KYPROC
118 FC96 88 KYSCNC: DEY
119 FC97 890004 KYSCN4: LDA MKYBU,Y 3 REPEAT FOR NEXT KEY
120 FC9A 190000 ORA MKYBST,Y
121 FC9D DOOS BNE KYPROC
122 FCOF 88 KYSCND: DEY 3 DECREMENT KEY ADDRESS AND TEST IF DONE
123 FCAO 10DA BPL KYSCN1 3 GO SCAN MORE KEYS IF NOT FINISHED
124 FCA2 30FE KYSCNS: BMI KkYSCNS 3 WAIT FOR TIMER INTERRUPT
125
126 ; BASED ON PREVIOUS KEY STATE DISPATCH TO CORRECT KEY PROCESSING
127
128 FCA4 2903 KYPROC: AND #xX'03 3 ISOLATE STATE NUMBER
129 FCA6 0A ASLA 3 SET UP VECTOR JUMP
130 FCA7 OA ASLA
131 FCA8 8565 STA VCJPPT
132 FCAA 6C6500 UMP (VCJPPT) ; 00 THE VECTOR JUMP
133
134 : RE-ENTER THE SCAN LOOP AT THE PROPER PLACE BASED ON KEY ADORESS
135
136 FCAD 98 SCNREN: TYA 3 GET LOW 2 BITS OF KEY ADDRESS IN CARRY
137 FCAE 6A RORA 3 AND SIGN FLAGS
138 FCAF 6A RORA
139 FCBO 1004 BPL SCNREI 3 REMAINDER OF (KEY ADORESS)/4
140 FCB2 BOEB BCS KYSCND 3
141 FCB4 9007 BCC KYSCNB 1

Fig. 9-9. Listing of keyboard control program (cont.)

294 MusiCAL APPLICATIONS OF MICROPROCESSORS

MKBCP MUSIC KEYBOARD CONTROL PROGRAM
INITIALIZATION AND MAIN LOOP

142 FCB6 BODE SCNRE1: BCS KYSCNC #2
143 FCB8 90CA BCC KYSCNA 30
144
145 3 KEY STATE PROCESSING ROUTINES
146
147 FCBA A901 STATO: LOA #1 3 SET THE STATE TO 1 AND ZERO THE VELOCITY
148 FCBC 990000 STA MKYBST,Y 3 COUNT
tee FCBF DOEC BNE SCNREN 3 RE-ENTER SCANNING LOOP
50
11
152 FCC1 B90004 STAT1: LDA MKYBU,Y 3 TEST KEY CONTACT WITH UPPER BUS
153 FCC4 3005 BMI STATIA 3 JUMP IF NOT CONTACTING IT
154 FCC6 990000 STA MKYBST,Y 3; CLEAR KEY STATE TO 0 (INACTIVE) IF
158 FCC9 FOE2 BEQ SCNREN 3 CONTACTING IT AND RE-ENTER SCAN LOOP
156 FCCB B94004 STATIA: LDA MKYBL,Y 3 TEST KEY CONTACT WITH LOWER BUS
157 FCCE 100F BPL STATIC 3 JUMP IF CONTACTING IT
158 FCDO B90000 LOA MKYBST,Y 3 IF NOT, GET KEY STATE AND INCREMENT THE
159 FCD3 18 cLe 3 VELOCITY COUNT
160 FCO4 6904 ADC #4
161 FCD6 9002 BCC STATIB 3 SKIP IF NO OVERFLOW
162 FCD8 £904 SBC #4 3 RESTORE MAX VELOCITY COUNT IF OVERFLOW
163 FCDA 990000 STATIB: STA MKYBST,Y
164 FCDD DOCE BNE SCNREN 3 RE-ENTER SCAN LOOP
165 FCDF A630 STATIC: LDX QUIP 3 OUTPUT AN EVENT, GET QUEUE INPUT POINTER
166 FCE1 0980 ORA #Xx'80 3 FIRST BYTE = KEY 10 NUMBER, DEPRESS
167 FCE3 78 SEI 3 DISABLE TIMER INTERRUPT WHILE QUEUEING
168 FCE4 943F STY EVQU,X 3 STORE IT
169 FCE6 B90000 LDA MKYBST,Y 3 GET KEY STATE
170 FCE9 4A LSRA 3 ISOLATE AND RIGHT JUSTIFY VELOCITY COUNT
171 FCEA 4A LSRA
172 FCEB 9540 STA EVQU+1,Xx 3 OUTPUT AS SECOND BYTE OF EVENT
173 FCED ASSF LDA TIME 3 GET LOW BYTE OF TIME
174 FCEF 9541 STA- EVQU+2,x 3 OUTPUT AS THIRD BYTE
175 FCF1 A560 LDA TIME+1 ; GET HIGH BYTE OF TIME
176 FCF3 9542 STA EVQU+3,xX 3 OUTPUT AS FOURTH BYTE
177 FCF5 8A TXA 3 MOVE QUEUE INPUT POINTER UP 1 NOTCH
178 FCF6 18 cLe
179 FCF7 6904 ADC #4
180 FCF9 291F AND #X'1F ; WITH WRAPAROUND
181 FCFB 853D STA QUIP
182 FCFD A902 LOA #2 3 SET KEY STATE TO 2
183 FCFF 990000 STA MKYBST,Y
184 FDO2 58 CLI 3 RE-ENABLE INTERRUPTS
a FO03 DOA8 BNE SCNREN 3 RESUME SCANNING

187
188 FD0S 894004 STAT2: LDA MKYBL,Y 3 TEST KEY CONTACT WITH LOWER BUS
189 FDOB 10A3 BPL SCNREN 3 RESUME SCANNING IF IN CONTACT
190 FDOA A903 LDA #3 3 SET THE STATE TO 3 AND ZERO VELOCITY
191 FDOC 990000 STA MKYBST,Y 3 COUNT IF NO CONTACT
ie FOOF DOSC BNE SCNREN 3 AND RESUME SCANNING
93

{2 FOll 894004 STAT3: LDA MKYBL,Y 3 TEST KEY CONTACT WITH LOWER BUS
196 FD14 3007 BMI STAT3A 3 JUMP IF NOT CONTACTING IT

Fig. 9-9. Listing of keyboard contro! program (cont.)

ORGAN KEYBOARD INTERFACE 295

MKBCP MUSIC KEYBOARD CONTROL PROGRAM
INITIALIZATION AND MAIN LOOP

197
198
199
200
201
202
203
204
205
206
207
208
209
210
2ll
212
213
214
215
216
217
218

FO16
FO18
FOB
FO1D
F020
F022
F024
Foes
FO27
F029
FD2B
FO2ZE
FO31
F033
F034
F036
FD39
FDA
FO3B
Fo30
FO3F
F041
F043
FOa5
FD46
FD7
Fpa9
FO4B
FD4D
FO4F
Fos2
FD53

FOS6
FDS
FO5A
FDSB
FDS)
FDSF
FD60
FD61
FOG2

F065
FFOO
FFO3

FFO4
FFO7
FFOS
FFOB

1080

4CADFC

4C19FC

4CBAFC
00

A4CC1FC

STAT3A:

STAT3B:

STAT3C:

TIMINT:

TIMIN]:

VCUPTB:

Fig. 9-9.

LOA #2 ; SET STATE TO 2 AND CLEAR VELOCITY COUNT
STA MKYBST,Y IF CONTACTING LOWER BUS 3
BNE SCNREN ; RE-ENTER SCAN LOOP
LDA MKYBU,Y 3 TEST KEY CONTACT WITH UPPER BUS
BPL STATIC 3 JUMP IF CONTACTING IT
LOA MKYBST ; IF NOT, GET KEY STATE AND INCREMENT THE
cle 3 VELOCITY COUNT
ADC #4
BCC STAT3B 3 SKIP IF NO OVERFLOW
SBC #4 3 RESTORE MAX VELOCITY COUNT IF OVERFLOW
STA MKYBST,Y
UMP SCNREN ; RE-ENTER SCAN LOOP
Lox QuiP 3 OUTPUT AN EVENT, GET QUEUE INPUT POINTER
SEI ; DISABLE TIMER INPURRUPT WHILE QUEUEING
STY EVQU,xX 3 STORE FIRST BYTE = KEY ID NUMBER, RELEASE
LDA MKYBST,Y 3 GET KEY STATE
LSRA 3 ISOLATE AND RIGHT JUSTIFY VELOCITY COUNT
LSRA
STA EVQU+1,X% 3 OUTPUT AS SECOND BYTE OF EVENT
LDA TIME 3 GET LOW BYTE OF TIME
STA EVQU+2,X 3 OUTPUT AS THIRD BYTE
LDA TIME+1] 3 GET HIGH BYTE OF TIME
STA EVQU+3,X 3 OUTPUT AS FOURTH BYTE
TXA 3 MOVE QUEUE INPUT POINTER UP 1 NOTCH
cLe
ADC #4
AND #X'1F 3 WITH WRAPAROUND
STA QUIP
LDA #0 3 SET KEY STATE TO O (INACTIVE)
STA MKYBST,Y
CLI 3 RE-ENABLE INTERRUPTS
UMP = SCNREN 3 RESUME SCANNING

PROCESS TIMER INTERRUPT

DEC TIMCNT 3 TEST IF FIFTH TIMER INTERRUPT
BEQ TIMIN] 3 SKIP AHEAD IF SO
RTI 3 IF NOT, RETURN FROM INTERRUPT
LDA #5 3 RESET 5 INTERRUPT COUNTER
STA TIMCNT
PLA ; CLEAN OFF STACK FROM INTERRUPT SEQUENCE
PLA
PLA
uMP = MLOOP 3 GO TO MAIN LOOP FOR ANOTHER TIME PERIOD

INDIRECT JUMP TABLE FOR STATE PROCESSING

-= X'FFOO ; TABLE MUST START ON A PAGE BOUNDARY
UMP STATO 3 GO TO STATE O PROCESSING
BYTE 0 3 1 BYTE PAD SO THAT VECTOR ENTRY ADDRESSES

; ARE DIVISIBLE BY 4
UMP STATI ; GO TO STATE 1
-BYTE 0
dMP = STAT2 ; GO TO STATE 2
«BYTE 0

Listing of keyboard control program (cont.)

296 MUSICAL APPLICATIONS OF MICROPROCESSORS

MKBCP MUSIC KEYBOARD CONTROL PROGRAM
INITIALIZATION AND MAIN LOOP

252 FFOC 4C11FD IMP © STAT3 3 GO TO STATE 3
253
254 ; MACHINE INTERRUPT AND RESET VECTORS
255
256 FFOF «= X'FFFA
257 FFFA 0000 «WORD O ; NON-MASKABLE INTERRUPT, NOT USED
258 FFFC OOFC ~WORD INIT ; RESET, GO TO INITIALIZATION ROUTINE
259 FFFE S6FD «WORD TIMINT ; MASKABLE INTERRUPT, GO TO TIMER SERVICE
260 3 ROUTINE
261 0000 «END

NO ERROR LINES

Fig. 9-9. Listing of keyboard control program (cont.)

store the time of day in such a format that the most significant three bytes
give it in units of milliseconds. The remainder is used for miscellaneous
temporary storage and the processor stack.

A word should be said about how the timer is actually handled in the
program. The timer in the 6532 is really intended for use as an znéerval timer
and what is needed for the keyboard program is an interrupting osc#//ator with
a 1.28-msec period. Fortunately, the timer can be set up as an oscillator, but

the only period available in that mode is 256 usec. Thus, the timer service
routine maintains a counter and on every /i/th interrupt a new scan starts and
the time of day is updated. In order for the time of day to be in exact
millisecond units when the update interval is 1.28 msec, binary fractional
arithmetic is utilized to add 1.47GE16 to the time of day, which is equal to
1.2810 to an accuracy of 0.0005%. Thus, timing is as accurate as the crystal
used to clock the 6502.

The event queue is a classic circular queue, which is quite simple to
handle. An input pointer always points to the first available queue slot, while
an output pointer designates the first slot that contains valid data. If both
pointers point to the same slot, the queue is empty and no data is available.

After a deposit or withdrawal from the queue, the pointers are incremented
by four, since each event requires four bytes. Wraparound of the circular
queue from end to beginning is implemented by masking the queue pointers
so that they can never contain a value larger than 31. No test is made for a
full queue so if more than seven events are stacked up due to nonresponse
from the host, they will be lost. Timer interrupts are disabled during quene
operations, but since the timer is an oscillator, no timing errors accumulate.

Actual scanning of the keyboard is slightly unconventional due to the
need for high speed. Since the vast majority of keys will be inactive, the scan
loop ts made as efficient as possible for that case. Also the scanning loop is
expanded by a factor of four to decrease the time per key from 15 jssec to an
average of 12.25 sec for a total savings of 167 gsec. Any key that is not
both in State 0 and contacting the upper bus causes a vector jump to the
appropriate processing routine, which is based on the 2-bit state code kept

ORGAN KEYBOARD INTERFACE 297

for each key. Since a vector jump is used to get to the processing routine,
returning to the proper paint in the expanded scan loop is a little ricky but
quite fast. The state processing routines themselves simply implement the
state diagram of Fig. 9-8. Note the convenience of indexed addressing where
the key number currently being considered is always kept in the Y register
and can be used to direct/y access contact status as well as the state byte for the
current key.

Improvements

The keyboard just described is not the last word by any means. Another

fairly easily obtainable contact arrangement is called a “second-touch”
keyboard. With normal playing pressure, it behaves just like a conventional
keyboard. However, additional pressure at the end of the stroke causes the
key to travel a bit more and make contact with a second bus. It should even
be possible to couple the second-touch mechanism with the velocity-sensing
mechanism just discussed and end up with a very versatile keyboard indeed.

For a true pressure-sensitive keyboard, one needs an inexpensive /inear
transducer instead of contacts. One such transducer that is environment proof

and free of wear problems is a saturating magnetic core. These in fact are so
cheap (less than 40 cents) and reliable that they are commonly used for
computer keyboards. The device consists of a ferrite torroid core about 1/10
inch outside diameter and a small magnet. Two single-turn windings pass
through the core. When the magnet is far ftom the core, it behaves as a
transformer with good coupling between primary and secondary. As the
magnet approaches, the coupling decreases linearly to near zero when the

magnet is close enough to fully saturate the core. The linear range is about

0.1 inch. All that is required to determine the degree of coupling is a
controlled pulse of current through the primary coil. The height of the
secondary pulse, which occurs within 200 nsec of the primary pulse, is

proportional to the coupling and thus magnet position.

10
Other Input Methods

Quite a number of other input methods are useful in che computer-controlled
synthesis system. These can be broken down into four major categories. The
first is manual real-time input such as the keyboard just discussed. This
method is characterized by the user physically manipulating a mechanical
device of some sort that is directly interfaced to the system. The second is
source-signal analysis, which has already been discussed somewhat. Depend-
ing on the circumstances, it may be simply an extension of manual input

methods such as using the sound of a conventiona! musical instrament (which
the user is physically manipulating) as input to the system. In other cases, it
may involve analysis of some signal that the user did not generate and over
which direct control is not exercised. The third method, which may not be

considered to be a valid input method by some, involves the evaluation of
mathematical equations or simple random chance to control some or all

aspects of a piece. Finally, we have music languages, which might be consid-

ered as the physical manipulation of a typewriter keyboard. The difference,
however, is that the manipulation is not in real time so the user has an

unlimited amount of time to consider what the input will be.
In this chapter methods one and three will be emphasized. Source-

signal analysis will be covered in Chapter 17, while music languages will be
detailed in Chapter 18.

Manual Input Devices

Just about anything that can be moved, bent, twisted, or banged on

and can accommodate contacts or a transducer has probably been used as an
input source to a synthesizer. Of course, if a device can generate a control
voltage for a synthesizer, then an ADC can interface the device to a com-

puter.

Ribbon Controller

One of the more unique and interesting devices is the ribbon controller.
In many ways, the ribbon controller resembles the resistor string analog

299

300 Musical APPLICATIONS OF MICROPROCESSORS

STRETCHED CURRENT
RIBBON

CONDUCTIVE
TRACK

VOLTAGE
OUTPUT

Fig. 10-1. Ribbon controller

keyboard described earlier. The device is constructed from a conductive
(resistive) strip of material placed under a length of stretched wire or metal
ribbon as in Fig. 10~1. Typical lengths of the conductive track may be as
much as 3 feet, while the spacing between the wire and the track when not in
use is on the order of 1/4 inch.

In operation, a constant current is passed through the resistive track,
and the output of the device is taken from the ribbon itself. To use, the
player merely presses the ribbon against the track wherever desired and an
output voltage proportional to distance from the point of contact to the

ground end of the track is produced. Proper selection of ribbon and track
materials allows the user to easily slide a finger along the ribbon to create
smoothly varying output voltages. An interface circuit similar to that for the
resistor string keyboard can be used to generate trigger and gate signals from
the raw voltage output. Even the dual voice analog keyboard scheme is
applicable for controlling two nearly independent voices (they cannot cross
each other) from a single ribbon controller.

Although most often used as a “free-form” controller, it is easy to add

calibration markings so that the general location of the various notes can be
instantly determined. ‘The player's ear, however, is the final judge of proper
playing position. This brings up an important point about this and most
other manual controllers. Immediate audible feedback is necessary to use
these devices at all even if the application is strictly input to the computer for
later use.

It is also possible to add “frets” to the resistive track simply by affixing
pieces of fairly large wire at desired locations along the track. For a dedicated
fretted controller, the track itself may be replaced with a string of equal-
valued resistors with each junction terminating at a fret wire glued to a

nonconductive backing. At this point, the ribbon controller becomes a
keyboard without the keys. It would not be difficult co set up devices with
multiple ribbons that would resemble the fingerboard of a guitar.

OTHER INPUT METHODS 301

Related direct input devices are rotary and linear slide potentiome-
ters. The slide pot, which is a fairly recent development, is of particular

interest, since it is actually a mimature ribbon controller with the ribbon in
constant contact with the track and a handle to simplify the sliding. Their
most common application is in fancy consumer audio equipment and sound
studio control boards but iong travel units (3 1/2 inches) also make good
direct input devices. Their low cost (as little as 50 cents each) means that
quite a number can be provided and used simultaneously. Rotary pots,
especially if fitted with a large knob and calibrated scale, have also been
shown to be effective direct input devices.

Joysticks

One limitation of ribbon controllers and various types of potentiome-
ters is that essentially only one degree of movement freedom is available,
which in turn implies that only one output from the device is present. The
human hand, on the other hand, is capable of several degrees of freedom in its

movement. Devices for direct hand manipulation are called joysticks, a name
derived from a similar, but much larger, device used as an aircraft control.
Joysticks may have only one or several degrees of freedom but the term
usually applies to a two-axis (two degrees of freedom) device.

A joystick usually takes the form of a handle poking through a hole in
the top of the joystick cover. The handle may be 2 to 5 inches long and can
be moved forward and back or sideways or any combination of these motions
always pivoting about the hole in the cover. The joystick produces two
outputs, one proportional to the X component (sideways) of the handle

position and the other proportional to Y (forward or back). Ideally, the unit
should offer the same resistance to motion in any direction but some inexpen-

sive ones may favor motion along the principal axes. For some applications it
is desirable for the handle to remain in its last position when released, while
for others a spring return to center (X=O,Y = O) is appropriate.

A variety of mechanical arrangements is used to separate lever move-
ment into X and Y components, but the most ingenious is shown in Fig.
10-2. The arrangement of brackets does the separation, while two standard

rotary pots are used to convert the motion into output voltages. Note that

only a fraction of the pots’ rotary range is utilized so some postprocessing of
the output voltage will probably be necessary.

Joysticks of reasonable quality are commonly available for abouc $5.00.
Although these may not be quite as smooth acting as one constructed accord-

ing to the figure, they are small and convenient. One nice feature is that each

axis consists of two pots ganged together. Connecting the two pots dif-

ferentially can provide a bipolar output voltage that may not require

additional processing to utilize.
Joysticks can be readily extended to three or more degrees of freedom.

The third axis can simply be twisting of the handle as it is moved left and

right, forward and back. To add such a capability to Fig. 10-2, plan one

302 MUSICAL APPLICATIONS OF MICROPROCESSORS

Fig. 10-2. Two-axis joystick construction. Source: Electronotes Musical En-
gineers Handbook, 1975.

merely replaces the handle with a third pot whose shaft becomes the handle.
The fourth axis could be a mechanism for sensing up and down motion of the
handle. One might even conceive of a fifth output that would be proportional
to squeezing pressure on the handle!

Graphic Digitizer

Although not a new input device, graphic digitizers have recently been

reduced in cost sufficiently to suggest their use as a dynamic input device.
The digitizer acts somewhat like a two-dimensional ribbon controller and
typically consists of a flat padlike surface perhaps a foot square and a special
stylus that the user holds like a pen. When near the surface, the device
outputs the X and Y coordinates of the pen tip position to an accuracy of
0.01 inch or better. In one mode of operation, X and Y are sent out 50 or

more times/sec, allowing the host system to determine not only the pen

position but its velocity. In another mode, outputs are only generated when

the user presses the pen on the pad, thus allowing precise coordinates to be
entered. A sheet of paper may be placed on the pad surface and anything
princed on it entered into the system. The possibilities in a music system are
endless, ranging from a two-dimensional keyboard to a quick method of
inputing sheet music. Even three-dimensional digitizers are available. The

position of a pen point in three-dimensional space (as large as 36 inches on
a side) is output as X, Y, and Z coordinates!

Another novel input method is the breath control transducer. Essentially
these are nothing more than pressure transducers with a tube that can be
inserted into the user's mouth. Variations in breath pressure, which may be
positive or negative, are converted into output variations. Such devices are

most useful when the user's hands and feet are already tied up manipulating
other input devices.

OTHER INPUT METHODS 303

Modified Musical Instruments

Many potential users of a computer-based synthesis system may have
spent years perfecting playing techniques on various instruments such‘as the
guitar or clarinet. Accordingly, it has become common to fit contacts and
other sensors co these instruments for easy input into a synthesizer or com-

puter. For example, it is relatively simple to install contacts under the keys of
a clarinet. This coupled with a rough amplitude analysis of the actual clarinet
sound gives the functional equivalent of a keyboard. Translating key closure
patterns into equivalent notes is not so simple because it is the pattern of keys
that are pressed that is important. When going from one pattern to another,

it is unlikely chat all of the keys will make or break simultaneously so some
intelligence is required to prevent spurious note outputs. Also many notes
have “alternate fingerings.” Thus, even if the clarinet is to be used to control

a synthesizer directly, a microprocessor would be useful as part of the inter-
face.

Guitar controllers are another popular item. These are actually an
application of source-signal analysis, but the guitar and associated pickups
are usually modified to simplify the analysis task. For example, since simul-
taneous tones are very difficult to separate, an independent magnetic pickup
is provided for each string. Also, since strong harmonics can lead to pitch
errors when the signal is analyzed, the pickups are placed near the center of
the string length. If such a guitar were simply connected to a conventional
amplifier, the sound would be quite dull and lifeless.

Typically, the guitar’s audio signal is analyzed into amplitude and
frequency parameters for each of the six strings. Often the amplitude channel
is used merely as a trigger source for an envelope generator, thus, the synthe-

sized sound may have any amplitude envelope desired. One of the attractions
of guitar controllers is the fact that they are inherently polyphonic. Not only
can up to six nearly independent tones (each string has a somewhat different
frequency range) be simultaneously controlled, there is no problem in the
assignment of notes to voices; the string corresponds to the voice.

Algorithmic Input

Certainly everyone has been exposed in one way or another to the often
beautiful images created from mathematical equations. The spiragraph,

which is a machine for drawing cycloids, and its output is such an example.
In fact, much computer art is done by evaluating various equations. Often
“random-number generators” are used to set the parameters of the equations
and chen the computer takes off and generates an image. The “artistic” part
of the process is the knowledge of what equations make good “material” and
the judgment to modify or reject unsuitable results.

The same concepts can be applied to sounds and music. In fact, many

purely analog synthesizers have the means for automatically generating se-

304 MUSICAL APPLICATIONS OF MICROPROCESSORS

quences of control voltages that may be highly ordered, totally random, or

anything in between. Likewise, a computer user has at his disposal the ability
to evaluate equations of any complexity for ordered sequences and a
random-number generator for disordered sequences. Algorithms for averag-
ing and selecting random data can also be easily set up. Since this whole

discussion crosses the line between music performance and music composi-
tion, it will be kept brief and no value judgments will be made about the
various techniques.

A complete electronic music performance involves many sequences of
events and dozens of time-varying parameters. On the other hand, a simple
melody really only requires two parameters, the pitches and durations of the
notes. Since conventional music starts with a melody and adds accompani-
ment, algorithmic composition efforts usually concentrate on generating
melodies. Depending on the application, the “melody” may be as simple as a

repeating sequence of notes or a genuine attempt at automatically composing

a true melody.

Sample-and-Hold Module

One very useful device for sequence generation that is present on many
analog synthesizers is a sample-and-hold (SAH) module. Functionally, it is
the same device that was discussed in the section on analog-to-digital conver-
sion. For synthesizer use, it has a signal input, a trigger input, and a signal
output. When a trigger occurs, the output is immediately updated to match
the input. Between triggers, the output remains constant at its last value.

The trigger input is usually designed so that any kind of waveform can drive
it with perhaps the positive-going zero crossings of the wave being the
trigger points. In essence, the SAH module accepts a continuously varying

input and produces a stepwise output where the trigger initiates each step.
Thus, if the SAH outpuc drives a VCO and the trigger also drives an
envelope generator, then a distinct “note” is produced for each trigger.

SIGNAL
INPUT

4
TRIGGER

mer Lh ff of} tt} tt a

ry

SIGNAL ae
al OUTPUT [—— __——

Fig. 10-3. Sampling a low-frequency sawtooth wave

OTHER INPUT METHODS 305

SIGNAL
INPUT

4
TRIGGER

an J) f } f f 2 f 0 J 2

SIGNAL
ouTPuT = =

ae) be

Fig. 10-4. Sampling a high-frequency sawtooth wave

One of the simplest applications of the SAH module is in producing
arpeggios. If a very-low-frequency (0.2 Hz) sawtooth wave is fed into the
signal input and a 2 Hz pulse is fed into the trigger input, the output will be
a staircase wave as in Fig. 10-3. When controlling a VCO, the staircase will
produce an ascending sequence of 10 notes that repeats indefinitely. The
actual notes depend on the amplitude of the sawtooth and the VCO settings.

If the pulse and sawtooth frequencies are not in a precise integral ratio,
then each repetition of the sequence will be different. It is not difficult to
adjust things to produce a scale of fifths that increases (or decreases) a
half-step each iteration for six iterations and then repeats. If the sawtooth
frequency is increased so that it is slightly higher than the trigger frequency,
a descending series of notes is produced as illustrated in Fig. 10-4. Note that a
slight change in the relative frequencies of the two waves can have a profound
effect on the output sequence. This sensitivity increases as the sawtooth

frequency increases. In the kilohertz range, interesting patterns of sequence
evolution are produced as the sawtooth frequency drifts slightly due to
imperfections in the VCO generating it. One can become completely ab-
sorbed in knob twiddling using a such a setup.

For truly random sequences, the SAH module can be set up to sample
white noise. One would feed white noise into the signal input and a constant
frequency into the trigger input. The output then would be a random series
of steps. When using a typical analog white noise generator (diode junction
noise), the steps are completely random and will never repeat. When this
signal drives a VCO (use the sine wave output), the resulting series of

random pitches of identical duration is the typical Hollywood conception of a
computer hard at work.

Two SAH modules set up according to Fig. 10-5 will produce a
random pitch sequence with random durations. Essentially, the first SAH

determines the pitches, while the second determines the durations by con-

306 Musical APPLICATIONS OF MICROPROCESSORS

SAH

i ENVELOPE
SENERATOR el ad GENERATOR

TRIG TRIG

LOW- FREQUENCY
vco

Fig. 10-5. Generator for random notes of random duration

trolling the VCO that provides the trigger pulses. The result is more in-
teresting but sill completely disordered.

Statistics

Although random sequences are unpredictable, they do have definite
statistical properties. The most important ones are the mean or average

value, the standard deviation, and the probability density function. The
output of virtually any noise generator will have an avetage value of zero. If a

mean of +5 V is desired, all that is necessary is to add a dc voltage of that
magnitude. The standard deviation is equivalent to the rms voltage of the
noise; thus, it may be changed with a simple gain control. Most noise sources
also have a gaussian (bell-shaped normal curve) density function, which is not

quite as easy to change. Even though a SAH module converts white noise
into a random series of steps, the sampling process does not change any of
these statistical properties.

The probability density function can be changed by using the SAH
module differently. The idea is to randomly sample a periodic waveform. The
resulting probability density function depends only on the shape of the
sampled waveform, not on the properties of the noise source. Figure 10-6

shows a setup to do this. If the waveform to be sampled is in the kilohertz
range, then only slight random variations in the sampling interval are
needed. Thus, for practical purposes the step durations can still be controlled
as desired.

Fortunately, the standard synthesizer waveforms give desirable density
functions. Both the sawtooth and the triangular wave give a uniform (flat-
topped) distribution. A sine wave gives a reasonable likeness of a normal

distribution, which might be useful for cleaning up the output of an other-
wise poor noise source. Note that unlike a true normal distribution, there is
an upper limit on peak deviation from the mean. A square wave gives two
spikes, which means that only two different output voltages are possible and
there is a random selection between them. (Actually this only applies to
perfect square waves and SAHs; in a real situation one would occasionally get

OrHER INPUT METHODS 307

DESIRED.
WAVEFORM

ra ALTERED
veo RANDOM

VOLTAGE
SEQUENCE

STEP
DURATION
CONTROL
VOLTAGE

NOISE
GENERATOR

Fig. 10-6. Altering the probability density function

an intermediate output.) A rectangular wave gives similar results, but one
value will be more probable than the other according to the duty cycle of the
wave.

So far the SAH module was assumed to be perfect, that is, the input

was instantly sampled and held. In a real SAH module, each occurrence of
the trigger fires a single shot, which closes the sampling switch long enough

for the hold capacitor to charge up to the instantaneous input signal voltage.

Typically, this time is in the low microsecond range and is constant. If a
resistance is inserted in serics with the analog switch then the output will
move toward the input during the sample interval but will not reach it. The
effect is sometimes called “slew limiting” of the SAH.

Figure 10—7 shows the effect of sampling a low-frequency square wave
with such a degraded SAH. The output is a series of tising and falling
arpeggios, but the pitch intervals start large and then decrease after each
direction reversal. Altering the series resistor changes the step size and rate of
interval decrease considerably. The effect on sampled white noise is also

SIGNAL
tpt

TRIGSER
(eee S| | oe

SIGNAL
OUTPUT > =>

Fig. 10-7. Slew-limited sampling of square wave

308 MUSICAL APPLICATIONS OF MICROPROCESSORS

interesting. As the resistor is increased, the random output changes from

total disorder toward a more correlated result. Unfortunately, the standard

deviation also decreases, which would have to be counteracted with a VCA in

a practical application. Obviously, voltage control of slew limiting would be

a useful SAH feature.

Controlling Randomness

As was mentioned, a slew-limited SAH module is capable of imparting
a degree of order in random sequences. Actually, it is possible to get exactly
the same results by passing the signal to be sampled through a single-pole

R-C low-pass filter first. If white noise is to be sampled, then this amounts to
filtering the noise. The slew-limited SAH module is actually a discrete-time
low-pass filter, which is the first step toward a digital filter!

A sequence of random numbers is actually sampled whice noise. Thus,
one can easily write a program to simulate analog sampling of white noise by

using the RND (random number) function available in the BASIC pro-
gramming language. If a synthesizer is interfaced to the computer, then
random numbers can be fed to an oscillator to produce the same kinds of note
sequences available with analog setups. One point to be aware of is that most
random number generators have a uniform probability distribution, generally
between 0.0 and 1.0. A good approximation to a gaussian distribution may
be had by adding up 12 random numbers (distributed uniformly between 0.0
and 1.0) and subtracting 6.0 from the sam. The mean of the result will be 0

and the standard deviation will be 1.0.
The name “stochastic music” refers to music (melodies) that orginates

from sequences of random numbers. It should be apparent that raw random
numbers, regardless of the probability distribution function, would create
rather uninteresting music. Each note is an independent entity, with no
relation to what came before and no influence on what follows.

A very simple algorithm can be applied to a random sequence, how-
ever, to produce a highly correlated sequence that might be more interesting.
The basic idea is to use random numbers to determine the direction and
magnitude of pitch movement rather than the pitches themselves. As a simple
example, let’s say that the pitches are ta be notes on the chromatic equal-

tempered scale and that the maximum allowable interval between successive
notes is an octave. Thus, a sequence of random integers falling becween —12
and +12 inclusive is needed. The BASIC expression INT(25*RND(1))

—12 will produce such a sequence. To produce a note sequence, numbers

would first be assigned ro the notes on the scale. Next, a starting point,

such as middle C, must be selected. To determine what the next note should

be, one simply evaluates the above expression and adds the random number
to the numerical equivalent of the previous note.

One undesirable side effect of this process is that the notes can run off

the ends of the scale. One solution is to treat the ends of the keyboard as

Oruer INpur METHODS 309

“reflecting barriers,” which would “bounce” the sequence back toward mid-
dle C. For a gentle reflecting action, one might alter the split of up/down
probabilities to favor down when the current note is high and vice versa.

In any case, the resulting “melody” is highly correlated because the
pitch of the current note depends on a// of the preceding notes as well as a
random input. Likewise, the current note will influence all future notes. The
audible effece of such a sequence (particularly if the maximum allowed inter-
val is small) can be described as an aimless wandering with few surprises.
Most listeners would say that the sequence is too correlated to be really
interesting.

Various schemes have been tried to produce sequences that are more
correlated than raw random numbers but less correlated than the method just
described provides. Just as white noise has a flat spectrum, the sampled
white noise associated with raw random numbers also has a flat spectrum.
The algorithm just discussed is actually a simple digital filrer; an integrator
to be exact. An integrator is simply a low-pass filter with a 6-dB/octave
cutoff slope. Unlike the typical low-pass filter, however, the response curve
continues to increase as frequency decreases without limit. The random
numbers emerging from the process then have a filtered spectrum that in-
creases by 6 dB for each octave of frequency decrease. Thus, it would seem
that other digital filters would be useful for modifying random sequences.

More Sophisticated Techniques

One such filter that has been studied is a so-called “pink noise” or
“I/F” filter, which has a slope that rises 3 dB/octave as frequency decreases.
The 1/F designation is used because the spectral power per hertz of bandwidth
is inversely proportional to frequency. Since this is midway between 0 dB

and 6 dB, the degree of correlation should also be intermediate. Listening

tests bear this out; most people rate 1/F sequences as more pleasing than raw
or integrated sequences. Unfortunately, a good 1/F digital filter is quite
complex.

Another idea is to provide a mechanism whereby the influence of past
events either ceases or diminishes as the sequence continues. For example,
one might specify that the next note wil! depend on the previous three notes
and a random input. One implementation method involves a large table that

lists every possible combination of the three previous notes. Each entry in the
table specifies a percentage probability for the next note. The random-
number generator is used to select the next note based on the specified
probabilities. The character of the music generated thus depends on the table
entries and the number of prior notes considered.

One method for filling the table is analysis of existing music. For
example, one might perform a statistical analysis of all four note sequences in

the most popular Bach organ fugues. The data obtained could be compiled
inco a table like che one just described. There would probably be numerous

310 MUSICAL APPLICATIONS OF MICROPROCESSORS

combinations that did not occur in the music analyzed, so one might have to
add a “back-tracking” capability to the program. One problem with extend-
ing the technique to consider longer sequences of notes is the tremendous
increase in table size. The analysis of most conventional music, however,

would result in a large proportion of empty (zero probability) table entries.

Thus, it may be more compact to formulate the data into a set of rules.
Besides memory savings, it is usually easier to experiment with the rules than
thousands of probability table entries.

The results of such efforts have been: mildly successful in producing
interesting sequences. Pieces produced by analyzing Bach's music, for exam-
ple, may sound Bach-like for a short run of a few notes. However, after
listening for awhile, it becomes apparent that the music is just drifting
aimlessly and getting nowhere. Overanalysis is likely to result in whole
phrases from the analyzed material appearing in the output.

Analog Feedback Techniques

Another method of producing sequences is to use the principle of
feedback. The sequences produced, while definitely not random, are complex
and often unpredictab The basic idea is to set up a collection of devices or
modules, each of whic nas an input, an output, and performs some process-
ing function. The modules are strung together and the output of the last
module is fed back into the input of the first. Multiple-feedback paths can

also exist. A simple sequence, even a single event, is then fed into the chain
and gets processed over and over changing some on each trip. With multiple

feedback paths, the sequence may be split and duplicated on each evolution.
One of the simplest setups is a series of SAH modules, alJ driven by the

same trigger as in Fig. 10-8. A multiple-input VCA is used to selectively
mix an input from outside and one or more feedback loops. With only the
input enabled, the final output from the system is simply a delayed, sampled
version of the input. Outputs taken from intermediate states would be
identical but with differing delays. This might be useful in creating sequence
echo effects or even have a sequence play a “round” with itself.

With the end-around feedback path enabled, many possibilities exist.
One could, for example, fill the SAH chain with a short sequence of notes
(five SAHs could hold a five-note sequence), disable the input, and recircu-

late the same sequence. If the SAH modules were perfect, the sequence
would repeat indefinitely, but in reality analog errors would accumulate and
the sequence would evolve in perhaps interesting ways. If, instead of remov-
ing the external input, it were fed a constant 1/12 V, the sequence would

shift upward a half step on each interaction. If the feedback gain were greater
or lesser than unity, the pitch intervals in the sequence would progressively
increase or decrease, respectively. Enabling a second feedback path would
create such complex patterns that they may be difficult to predict beyond the

OrnHeR INPUT METHODS 311

MAIN FEEDBACK PATH

AUXILIARY FEEDBACK PATH

I | i
Nu fe] san SAH SAH |- SAH SAH [| sa OUT

INPUT: Ti

LOW-FREQUENCY
veo

Fig. 10-8. SAH module feedback sequence generator

first repetition. The use of slew-limited SAH modules adds yet another
dimension of possibilities.

Digital Feedback Techniques

A digital feedback system can be set up using flip-flops connected as a
shift register. Figure 10—9 shows such a system. The input summer that
drives che register is a parity generator that actually computes the “modulus
2 sum” of all its inputs. The switches enable a particular feedback path if
closed. A low-frequency VCO provides trigger pulses to drive the system.
The output, of course, is simply a two-level digital signal that may change
only in conjunction with a trigger pulse. As such, it is useful for rhythm
generation, but there are methods for controlling multiple-frequency tones
also.

The sequence generated depends entirely on the configuration of open
and closed switches. Since there are 2N possible switch combinations, a fairly

small number of stages can create a nearly infinite number of different
patterns ranging from highly structured to virtually random. The sequence
length (number of clock cycles necessary to cause the sequence to repeat)

varies from just 2 to 2N —1, where N is the number of shift register stages.

OUTPUT SEQUENCE

PARITY GENERATOR

LOW- FREQUENCY
vco

Fig. 10-9. Feedback shift register sequence generator

312 MusICAL APPLICATIONS OF MICROPROCESSORS

(a)

(B)

(c)

Fig. 10-10. Some 8-bit feedback shift register sequences. Note: Switch states
read left ta right as in Fig. 10-9. One cycle of the output sequence
from the parity generator is shown, (A) Switches = 00000011. (B)
Switches = 00000111. (C) Switches = 00001001.

From this vast array of sequences, Fig. 10-10 shows a few of those possible
with an 8-bit register.

The Muse

At least one interesting device has been marketed that is based on the
feedback shift register principle. It is called the “Muse” and is advertised as a
music composition machine with which the user, by setting several levers

OrHer Input METHODS 313

(0)

Fig. 10-10. Some 8-bit feedback shift register sequences (cont.) (D) Switches =
10000001. (E) Switches = 00011101. This is the longest possible
sequence using an 8-bit register (255 bits).

and switches, controls a sequence generator, which in turn controls a single
oscillator to produce notes.

A simplified block diagram of the device is shown in Fig. 10-11.
Thirty-eight different digital signals are generated by several counter stages
and a 31-stage shift register. These signals along with constant 0 and 1 are
connected to 40 signal rows. Eight 40-position slide switches divided into
two groups of four switches act as columns and can select any individual row
signal. Four of the switches, which are called ‘‘theme” controls, feed a parity
generator whose output feeds the 31-position shift register. The other four
switches, designated “interval” controls, are connected through some trans-

lation logic to a 5-bit DAC, which drives a VCO tone generator and output
speaker. The VCO and DAC are adjusted so that the step size is a semitone
on the equally tempered scale and the translation logic converts its 4-bit
input into a 5-bit output according to the conventions of the major musical

scale. An adjustable low-frequency oscillator clocks the counters and shift
register.

314 MusicaL APPLICATIONS OF MICROPROCESSORS

TEMPO
CONTROL

THEME INTERVAL

WEY 2 ABCD
\LOW-FREQUENCY
osc

IN

3
STAGE 03 83
SHIFT eal foe

MAJOR SCALE
TRANSLATION
LOGIC

=

PITCH CONTROL

Fig. 10-11. Block diagram of Muse

PARITY
GENERATOR

In the Muse, the rows driven by the counters and constant 0 and 1 are

designated as the “C’” (counter) region. Five of these rows are connected to a
simple 5-bit counter, while two more connect to a divide-by-6 and divide-
by-12 counter. The outputs of the various counters are normally used for
short, highly ordered sequences. For example, if the “A” switch is set to row
“CL”, B co C2, C to C4, etc., the device will generate an ascending major

scale. Essentially, a binary counter has been connected to the DAC, which

would be expected to generate an ascending staircase waveform. If switch A

Orner INPUT METHODS 315

is moved to the C1/2 position, the scale will still ascend but by alternate

intervals of one note and three notes. Moving B and D back to the off
position (constant 0 row), results in a pair of trills: C-

D-C-D-G-A-G-A-C-D Many other combinations, of course, are possi-

ble, but the sequence length will never be more than 64 notes using the C6
row or 32 notes otherwise.

The 31 rows in the “B” (binary) region are driven by the 31 stage shift
register, which shifts downward from row 1 to 2 to 3, etc. The four “theme”
switches are used to control the shift register by determining what will be
shifted into the register’s first stage input. If they are set in the C region,
then the register acts merely as a delay line. This can be useful in creating
cannon effects. However, if one or more are set in the B region, then a

feedback path into the shift register is created and some complex sequences
indeed can result. One possibility is to set the cheme switches for a complex
sequence, set three of the interval switches in the C region for a repetitive
tone pattern, and set the fourth somewhere in the B region. The result is that
the repetitive pattern is modified according to the shift register pattern.
Although one can think through what the effects of a particular switch
setting might be, there are so many degrees of freedom that one usually
succumbs to random tinkering. The number of unique combinations is for all
practical purposes infinite.

Obviously, the concept can be easily expanded to more stages, more
notes, more voices, rhythm control, and even scale changes. Of all the

algorithmic “composition” methods discussed thus far, the author feels that
this one holds the most promise and is the most fun to use. It is obvious that
the Muse can be easily simulated on any microcomputer system using any
language desired. Although user interaction may not be as convenient as the

many slide bars and switches on the real thing, it becomes easy to expand or
restructure the device with minor program changes. Also, with the user

interaction techniques discussed in the next chapter, even the user interface
can be improved upon.

il
Control Sequence

Display and Editing

One of the unique capabilities of a computer-controlled synthesizer is mean-
ingful graphic communication with the user. Many of the normally abstract
ideas about sound parameter variation become concrete objects when vi-
sualized through a computer-driven graphic display. As such, they become
much easier to manipulate as well as comprehend. Imagine for a moment

reading the text of this book without the benefit of illustrations. The no-

tions of waveshape, spectrum shape, parameter variation contours, etc.,

would be difficult to visualize regardless of the quality of exposition. With
figures to illustrate ideas, understanding of the point being illustraced as well
as its relation to other points is made easy, almost natural. “Dynamic”
illustrations in which variables actually move is better yet for understanding
relationships. A graphic display device provides these aids to the music
system user who must constantly conceptualize a myriad of interrelated
parameters and effects in the evolving composition.

Not very long ago one interacted with a computer music system solely

through punched cards. The keypunch machine in the computer center was

the only means available for editing the sound material, which consisted of
music language statements and an occasional tabulated curve. Alphanumeric
display terminals for on-line editing of text were rare, while graphic display
consoles were exceedingly expensive luxuries. Now an interactive al-

phanumeric display is expected even on small, inexpensive home systems and
reasonably adequate graphic capability costs less than $500.

Whereas the previously discussed musical input methods concentrated
on getting data into the system in an initial good form, this chapter will

discuss methods for building up a composition from little or nothing
through editing. Editing is a process whereby a body of initial material is
modified or rearranged in response to commands by the user. It also covers
the addition of new material and the deletion of old or unwanted material.
An ideal computer music-editing system should be able to accept input in a
variety of forms, such as keyboard activity, source signal analysis, al-
gorithmic sequence generation, and music language statements. It should be

317

318 MUSICAL APPLICATIONS OF MICROPROCESSORS

able to “show” the material to the user in several ways, such as music

language statements, standard or specialized music notation, graphs of

parameter variation, and actual synthesized sound. The editing commands

should be simple yet powerful and correspond to the method chosen for

showing the material to be edited. Composition by editing is a uniquely

interactive method for producing the kind of music the user really has in

mind rather than the best approximation that human dexterity or music

language restrictions allow.

Types of Display Devices

Historically, computer data displays have been divided into two types,
alphanumeric and graphic. The former is so named because it is designed to
display strictly letters and numbers, whereas the latter is more generalized,
being capable of displaying line drawings or in some cases gray scale images.

Theoretically, the alphanumeric display is a proper subset of graphic displays
because, after all, characters are nothing more than graphic shapes. However,
the very generality of graphic display means that character display quality or

quantity is likely to be less for equivalently priced devices. Because of this,
many computer users have the mistaken idea that a graphic display can never

do as good a job on text as can the alphanumeric type. A good-quality
graphic display, however, can certainly equal the performance of commonly
used, less expensive text-only displays with the added convenience of a

single-display device for both types of information.
Many display technologies have been used to display characters and

graphics. Although other methods have claimed to be superior to the cathode
ray tube in one way or another, the CRT remains the undisputed leader and
likely will continue to be until the late 1980s. CRT hardware is cheap
because of heavy usage in television, radar, and oscilloscopes. Display resolu-
tion can be very high; a million resolvable points is routine and upward of 20
million can be done. The most commonly used CRT displays are fast,
capable of being completely updated in milliseconds. Although other
capabilities such as gray scale and color presentations are important for some

applications, the following discussion will focus on monochrome displays
capable of line drawings and alphanumerics.

A graphic CRT display can be thought of as a two-dimensional rectan-
gular surface. Any point on the surface can be specified by giving X and Y
coordinates. However, since digital logic drives the display, there is a limit
to the number of discrete X and Y coordinate values. The smallest increment
possible in either direction is commonly called a raster unit. A low-resolution
display may have as few as 200 raster units in each direction, whereas a
high-resolution display might have 4,000 or more. The electron beam that
creates the spot of light on the screen does have a finite size, however. In fact,
it is often larger than the raster unit size in a high-resolution display. Herein

CONTROL SEQUENCE DisPLAY AND EDITING 319

(ay (8)

Fig. 11-1. Methods of displaying a line. (A) Line-plotting display. (B) Point-
plotting display.

lies the difference between addressable points, which are the product of X and
Y raster unit counts, and resolvable points, which refer to the quantity that
can theoretically be displayed without merging into a continuous sheet of
light.

Graphic Display Classifications

Graphic displays are classified by whether the fundamental display

element is a /ine or a dot (point). A line drawing display is capable of drawing
a smooth continuous line from any X,Y coordinate (X and Y are integers in

terms of raster units) to any other on command. A point display is capable of
illuminating any combination of dots at X and Y raster unit intersections.
Figure 1]—1 shows the difference in appearance between the two presenta-
tions in which all other factors such as number of raster units and beam size
are equal. Clearly, the line display provides a superior image. This is because
only the endpoints are constrained to be at grid points in the line display.

Line drawing displays are usually called vector displays because the lines
satisfy the mathematical definition of a vector. Such displays have a number
of important advantages besides better-looking images. The most important
is that they are easy to program. The display accepts data in essentially the
same form that it is likely to be manipulated and stored in. Another advan-

tage is that interactive editing of the image is fairly easy co implement and
large data buffers in memory are generally not required. Resolution of the
image (number of horizontal and vertical raster units) can be made quite high
for a moderate increase in cost and memory usage.

There arc, however, disadvantages that prevent vector from being the
dominant CRT display technology. Perhaps most serious is the required
CRT monitor, which consists of the tube, high-voltage power supply, and X
and Y deflection amplifiers. It must be capable of raxdom (on command) X

320 Musical APPLICATIONS OF MICROPROCESSORS

and Y deflection of the beam. Unfortunately, home TV sets or standard video
monitors do not fall into this category. Oscilloscopes, however, do provide
random positioning capability, but the screen size is fairly small. A large
screen random deflection display monitor is currently a specialized, expensive
device. Another problem is that without an adjunct character generator
circuit and small-angle deflection circuit the amount of text that can be
displayed is limited.

A Simple Vector Display

Perhaps the best way to become acquainted with the characteristics of
vector displays is to describe a simple unit that is easily built, is inexpensive,
and gives surprisingly good performance. It may be interfaced to any com-
puter that has two 8-bit output ports. The output consists of X, Y, and Z
(beam on-off control) voltages that can use any oscilloscope having dc-
coupled amplifiers as a display monitor. The resolution is 256% 256 raster
units, but the quality is equivalent to much larger dot-type displays.

One fact of life is that the image on the tube must be rewritten
continuously. This is called refreshing the display and is necessary to prevent
it from fading away within a fraction of a second. For most display monitors,
the image must be refreshed at least 40 times/sec to avoid flicker. Maximum
image complexity is directly proportional to the number of lines that may be
drawn in one refresh interval. Very detailed, complex drawings are possible,
however, if some flicker is allowed. It is also sometimes possible to obtain an
oscilloscope with a /ong-persistence phosphor in which the image does not fade
so quickly. These are usually yellow or orange in color as opposed to green
and are commonly used in medical applications. The display to be described

requires about 50 sec to draw a line. Thus, about 500 lines may be drawn in
the 25-msec interval allowed for a 40-Hz refresh rate.

Two 8-bit output ports are used to control the display. Port one is used
for specifying X and Y coordinates. The coordinates are unsigned numbers in
the range of 0 to 255 with zero corresponding to the bottom and left edges of
the screen. Only 4 bits of the other port are used. The “save X” bit when a
logic one causes the content of port one to be interpreted as an X coordinate
and stored in an internal register. The “move X” bit causes the previously
saved X to be sent to the X DAC, which then immediately moves the CRT
beam to the new X position. “Move Y” immediately transfers port 1 to the Y
DAC and moves the beam. The fourth bit is called “draw,” which turns the

beam on for 50 psec and sets up for controlled movement so that straight lines
are drawn. For proper operation of draw, move X and move Y should be set
simultaneously with draw.

A typical sequence for drawing a line between two arbitrary endpoints,
Xi,Y1 and X2,Y2 would be as follows:

1. Initially port 2 (the control port) is zeros.

CONTROL SEQUENCE Disptay AND EDITING 321

nN . Store X1 into port 1 (the coordinate port).
- Set “store X” and “move X” bits co ones and then zeros to cause an
immediate move to X1.

4. Store Y1 into port 1.
5. Set “move Y” bit to a one then a zero to cause an immediate move to

Yi.

. Store X2 into port 1.
7. Set “store X” bit on then off to store Xz in the display generator

without affecting the X DAC.
8. Store Y2 into port 1.
9. Set “move X,” “move Y,” and “draw” bits on.

10. Wait 50 psec for the line to be drawn,
11. Clear the contro) port to zeros,

we

Dn

Usually the majority of an image is formed by line segments joined end-to-
end. In this case, each additional segment after the first only requires Steps 6
to 11 to be executed.

Display List Interpreter

In actual use, a display subroutine would be written that would display
all of the line segments needed for the desired image once and then return. A
display list in memory can specify the line segments in a form that allows
rapid retrieval and display yet easy manipulation of the list for editing. The
display subroutine then becomes a display list interpreter executing commands
from the list not unlike a BASIC interpreter. Although considerably more
sophisticated list formats are possible, let us describe one that is simple yet
well suited for this display.

The display list consists of individual “list elements’ strung end to
end. Each element contains an “operation code” byte followed by “operand”
bytes. Code Ulis, for example, will specify a move with the beam off;
therefore, it will be followed by two bytes specifying X,Y coordinates of the
destination. Code 02 specifies an isolated line segment; thus, X1,Y1 and

X2,Y2 will follow as four bytes. For drawing connected line segments, it is
most efficient if they are drawn consecutively. Accordingly, code 03 indi-
cates that a count byte and a series of coordinates follows. A move will be
done to the first coordinate of the series and thereafter lines will be drawn
from point to point through the series. The count byte specifies up to 255
lines in the series.

In music synthesis applications, it is common to display graphs in
which one axis, usually X, simply increments for each line in the graph.
Considerable space saving is therefore possible by defining a “graph” seg-
ment type. Code 04 is used to specify a graph. It is followed by a count byte,

322 MUSICAL APPLICATIONS OF MICROPROCESSORS

an increment byte, the initial X coordinate, and then a series of Y coordinate

bytes. The count byte is as before, while the increment byte specifies the
amount that X is incremented for each graph point. The initial X byte is
needed to specify where the graph begins horizontally. For completeness, one
could specify code 05 as being a graph with Y being automatically in-
cremented. The end of the entire display list is specified by a code of 00.

Many other element types can be defined to make image editing easier
and faster. If one desired to move a set of lines vertically by 10 raster units it
would be necessary to alter the Y coordinates of every one of the lines
individually. The idea of relative coordinates overcomes this problem. With
relative coordinates, the position of all line endpoints are relative to a

specified point. By changing the coordinates of the specified point (origin),
one can change the position of all lines that are relative to that point. To
implement this, code 06 will specify an origin segment and will be followed
by X,Y of the new origin. Codes 07 to OB correspond to 01 to 05 except that
all coordinates are relative.

It is also useful to be able to skip portions of a display list or reuse parts
of it for similar subimages. Code OC is used to specify an unconditional
jump. It is followed by two bytes that specify where in memory the remain-
der of the list is located. The jump simplifies editing because a deletion, for
example, can simply insert a jump that skips around the unwanted list
elements. Code OD is similar except it specifies “jump to subroutine.” The
address of the next list element is saved and a jump to another display list is
taken. When a “return” (code OE) is seen in the secondary list, a jump back
to the saved address is taken. If the display list interpreter is written so that
return addresses are saved on the processor's stack, the sublists may be

nested.

Relative coordinates make such “image subroutines” very useful. A
common subroutine, such as the shape of an object, can be used to draw the

object at different positions on the screen. One would have a “‘set relative
origin” element followed by a “jump to subroutine” element for each copy of
the object desired. This technique would also be useful for displaying charac-
ters.

To facilitate compact storage of text, code OF will specify an ASCII
mode. It is followed by the X,Y coordinate of the first character and then the
text itself as normal ASCII character codes. The ASCH “ETX” character is
used co indicate end of text and a return to graphics mode. One could define
a variety of control characters in the text co allow formating without going to
graphic mode and changing coordinates for each line of text. Note that
graphic text display is quite capable of proportional spacing (different letters
are different widths such as the text of this book) and superscripts or sub-
scripts or even varying point (character) size. Unfortunately, with this simple
display example only a few dozen characters can be drawn in a 25-msec
refresh interval.

CONTROL SEQUENCE DispLAY AND EDITING 323

Keeping the Image Refreshed

To maintain the image on the screen without flicker, the list interpret-
er would have to be called at lease 40 times/sec. An easy way to keep the
display refreshed and do other work as well is to have an interval timer
interrupt 40 times/sec. The interrupt service routine would refresh the dis-
play once and return. If priority interrupts are available, the display should

probably be the lowest priority. If more than 25 msec is required to display
the list, the system woutd revert to a state in which the list size determines
the refresh rate, which would be less than 40 Hz.

Obviously, the system can become completely tied up refreshing the
display if the image is complex. Often this is not a problem if the application

PORT!
Bits
0-7 . ny 7478 QD D 7475, ap

se ac & oo
8 a8 8 —————e

ae oA A oa
SAVE 4 ouKcD cukeo

Tox cL Kas Tox
DAC

i
MOVE 1

TOY
AXIS
pac

H CLKCO 50 psec ENDMATCH

O+I5V

1kO Zout

O +15 ¥ = OFF
O= ON

ANALOG
eee << 6 O SWITCH

DRAW ORIVE

(a)

Fig. 11-2. (A) Simple vector graphic display intertace—digital portion.

324 MUSICAL APPLICATIONS OF MICROPROCESSORS

10 pF

é x

ANALOG +i5v -I5V
SWITCH
DRIVE

10 pF

i TYPE
4016

if SWITCH

MSB

0.0027 pF

- y
AXIS: OUTPUT
(NPUT
|

IR+
IR-
GNO

Voc Vee CMP:

+15¥ -15V
(B)

Fig. 11-2 (Cont.). (B) Analog portion.

is simply editing curves or text where the system is waiting on the user
virtually 100% of the time anyway. For other applications, it would be nice
if the display automatically refreshed itself from the display list. One possi-
bility is to utilize a small “trainer” microcomputer as a dedicated display
processor. The main system would transfer display list data to it through a
serial or parallel port. A display program in the dedicated micro would
continuously interpret the list and keep the display refreshed. Small one-
board systems based on the 6502 such as the Synertek SYM are ideal because

the overall high speed of the 6502 allows complex list structures to be
processed as fast as the display generator can accept data. Although small,
such microcomputer boards have sufficient memory capacity to hold exten-
sive display lists and even list-editing software.

Vector Generator Circuit

Figures 11-2A and B show a schematic of the vector display generator.
The digital portion of the interface is quite simple, consisting mostly of type

CONTROL SEQUENCE DISPLAY AND EDITING 325

OUTPUT ouTPUT
INPUT SI, $2 51, $2

Lok STEP CLOSED OPEN

BEAM ON TIME
50 psec

TIME

Fig. 11-3. Step response of vector generator

7ALS75 quad transparent latches. The latches are necessary because the same
port is used for both X and Y coordinates and to insure that the X and Y
DACs are updated simultaneously when a line is to be drawn. The term
transparent means that as long as the clock input is high, the input data
passes straighc through to the output. Thus, a move X operation, which calls
for setting both “save X" and “move X” control bits high, enables che clocks
on both sets of X latches allowing data to pass through che leftmost set and
be latched into the rightmost set. The single shot is used to carefully control

the beam on time independent of program timing when a draw is executed.
This prevents bright dots at the ends of lines. The Z axis output is boosted to
15 V by a transistor, since most oscilloscopes require high-level drive to
control the beam.

The heart of the analog section is the X and Y DACs. Type MC1408L8
DACs are used in a circuit similar to that in Fig. 7-15. The offset circuit has
been modified, however, to provide a voltage output (from current-to-
voltage converter op-amp) of +2.5 fora digital input of 0 and +7.5 for an
input of 255. The type TLO084 is a very convenient quad FET input op-amp
selected here for its speed.

Unfortunately, generating the X and Y voltage contours necessary for
drawing a smooth, uniformly bright line between arbitrary endpoints on a
CRT is not as simple as it sounds. The task is called vector generation and
circuits that do it are called vector generators. An ideal vector generator would
move the beam at a constant, uniform velocity regardless of the line length or
orientation, would be free of wiggles and other distortions at the endpoints,

and would have good matching of lines sharing the same endpoint. To make
matters worse, the necessary analog computations must be done accurately at
high speeds. The vector generator used in this simple display sacrifices
constant velocity in the interest of simplicity. The effect of varying beam
velocity is that short lines will appear to be brighter than long lines and the
portion toward the endpoints may also be brighter than the middle. To the
eye, the effect is not objectionable buc it does create difficulty if one wishes to
photograph the screen.

326 MUSICAL APPLICATIONS OF MICROPROCESSORS

127,254

0,|27 254,127

127,0

PROPER TEST PATTERN ONE SHOT TOO LONG

ONE SHOT TOO SHORT UNMATCHED RESPONSE
(Y AXIS SLOWER)

UNMATCHED RESPONSE TEST PATTERN SHOWING
(X AXIS SLOWER) CURVATURE.

Fig. 11-4. Adjustment of vector generator

Vector generation is accomplished by using a portion of the step re-
sponse of a tesonant low-pass filter. Figure 11-3 shows the step response of
the filter used. Note that the filter output rises from its previous value fairly
linearly, overshoots the final value, and then oscillates around it for a time

before settling. Since the time from the input step to the output first crossing
the final value is constant and the curve during this time is reasonably linear,

it is suitable for use as a vector generator. Note that line straightness on the

screen depends on matching the X and Y curves, not on the straightness of the
curves themselves. S1 and S2 have been added to quickly damp out the
oscillation around the final value after the line has been drawn and to allow
fast moving with the beam off. Their effect is to raise the cutoff frequency of
the filter about 20-fold. The switches themselves are inexpensive CMOS
transmission gates. Since the voltages being switched are between +2.5 V
and +7.5 V plus some margin for overshoot, the CMOS is powered between

CONTROL SEQUENCE DisPLAY AND EDITING 327

+10 V and ground. This also allows simple open-collector TTL gates to
drive the switches.

Adjustment of the circuit is fairly simple. First the gain and offset pots
on each DAC must be adjusred so that 00 gives +2.5 V output and FF gives

+7.5 V. Next, using an oscilloscope, the low-pass filters in the vector

generator should be adjusted for identical step response shape and time to
first final value crossing. If the capacitors are initially matched to within 1%
or so, then shape matching should not be a problem and the two pots in the
X axis circuit can be adjusted for time matching. Finally, using a test pattern
consisting of a diamand (all lines at 45°), the end match pot should be

adjusted so that the lines just meet. If one line passes the other before
meeting, then the step response balance should be touched up a bit. Any
curvature of the lines due co the vector generator can be ascertained by
displaying a 45° angle line and then a series of points (lines with zero
length) along the path that should have been traversed by the line.

Note that very little additional expense is involved in improving the
resolution of the display. For example, the number of addressable points may
be increased 16-fold merely by using 10-bit DACs and a couple of extra latch
packages. With 12-bic DACs, the raster unit size becomes so small that X
and Y coordinates become essentially “continuous” quantities. The signifi-
cance of this is seen by considering the display of, say, an arbitrary number of
equally spaced lines in a fixed area of, say, one-half the screen width. With
256 raster units, one-half of the screen would be 128 raster units. If 47 lines

need to be displayed, the space between lines should be 128/47 = 2.723
raster units. On the screen some lines would actually be three units apart
while others are only two, obviously not equally spaced. With a 4096
raster-unit display, however, the lines would be 43 and 44 units apart and
thus appear quite equally spaced on the screen.

Raster Scan Displays

The other major CRT display type is commonly called a raster scan
display. This is because the deflection circuits in the CRT monitor constantly
scan a rectangular area in a set pattern consisting of numerous parallel
horizontal lines. As the beam scans, it may be turned on and off at controlled

times to show a dot pattern representing the desired image. Since the deflec-
tion amplifiers always handle the same waveform (normally a sawtooth) at a
constant frequency, they may be made quite inexpensively even for the high
power levels required for large-screen magnetic deflection tubes. This and
the fact that our national television system works on the same principle are
key advantages of raster scan displays. Note that since time is the only

variable required to control dot position, the raster scan display is inherently

a digital device.

328 Musica APPLICATIONS OF MICROPROCESSORS

(B)

Fig. 11-5. Simple (A) and interlaced (B) raster scanning

The maximum resolution of a raster scan display is fairly well defined
by the scanning frequencies used. Since television receivers and TV standard
video monitors are so common, the low-cost raster display maker is essen-
tially locked into standard TV frequencies, which are 15,750 Hz horizontal
and 60 Hz vertical. For a normal scanning pattern, this yields 262 horizontal
scan lines of which roughly 240 are usable (the others are wasted during
vertical retrace). There is no hard limit on horizontal resolution, but there is
little reason to have more points per inch than the vertical axis. With a 4:3
aspect ratio (screen width:height), this gives a horizontal resolution of 320
points.

A technique called interlacing effectively doubles the vertical resolution
to 480 lines. It does this by vertically shifting odd-numbered screen scans
one-half the scan line spacing with respect to even-numbered scans. Al-
though effective for moving pictures viewed at a distance which is typical of

CONTROL SEQUENCE DisPLay AND EDITING 329

television, an expensive precision monitor is required for an acceptable sta-
tionary image when viewed at close range, which is more typical of computer
displays. Higher horizontal rates of 30 kHz or 60 kHz and/or slower vertical
rates of 30 Hz are other methods of achieving up to 2,000 scan lines per
frame, which is the practical limit of real-time raster display technology.

Nevertheless, 240 X 320 resolution is quite usable for music applica-
tions. Alchough the image appears much coarser, a 256 X 256 raster display
gives just as accurate a picture as a 256 X 256 vector display would for
waveform plots. The difference would really show up, however, if a number
of lines at different angles pass through a small portion of the screen. With a

taster display, the lines may just merge into a patch of light making it
difficult co trace an individual line through the maze. A vector display, on
the other hand, would retain good line identity in such a situation.

Unlike the vector display just described, automatic screen refresh by
external hardware is inherent in raster displays. The overwhelming reason for

this is the blazing speed with which data must be read from the display list
and sent to the display to keep up with the scanning. As an example,
consider that the horizontal sweep period of standard TV is roughly 64
msec. In practice, at least 15 jesec must be subtracted co allow for horizon-
tal retrace, leaving about 50 ysec for the image. For a horizontal resolution

of 320 points, no fewer than 320 bits must be sent to the display during this
time. This gives a bit rate of 6.4 MHz or a byte every 1.25 fusec, much too
fast for directly programmed output. Thus, in practice an exact screen image
is stored in a display buffer that may either be part of the display interface or
may be main microcomputer memory with direct memory access (DMA)

used to rapidly read the data for display.

Display Buffer

The display buffer required for a raster display can become quite large
indeed. A full 320 x 240 display would be 76,800 bits or 9.6K bytes,
which is comparable to the total memory capacity of many microcomputer

systems. Note that even if scanning frequency limitations did not exist
doubling the resolution would increase the display buffer size (and therefore

cost) four times. Commercial display designers have devised numerous ways
to reduce this, but all of them involve trading off either display generality or

programming ease or both. The two most common schemes also attempt to
combine text display and graphic display functions by adding special graphic
symbols to the character set of an otherwise normal text display. One method
divides the character cell into three rows of two squares each and assigns 64
character codes to cover all of the possible combinations of light and dark
squares. The resulting graphic resolution ranges from 128 X 48 for
hobbyist-level 16-line 64-character displays to 160 X 72 for commercial
24-line 80-character units. This is obviously quite coarse but is at lease
completely general within the limited resolution.

330 Musica APPLICATIONS OF MICROPROCESSORS

The other method adds various graphic character shapes such as hori-
zontal, vertical, and diagonal lines and corners, junctions, arcs, etc., to the

character set. The user can then select line segments from this set and piece
images together that appear to be of high resolution. While excellent for
images such as game boards, bar charts, and other highly structured mate-
rial, the technique is quite limited on arbitrary lines and curves such as

music-control functions and waveforms.

Bit-Mapped Display Interfaces

Thus, for any kind of serious graphics work a true b/t-mapped or pixel
display is a necessity. The term bit-mapped means that every point on the
display literally corresponds to a bit in the display memory, whereas pixel
refers to the fact that individual picture e/ements can be manipulated.

At the time of writing, two suitable bit-mapped graphics interfaces
were on the market at prices of $400 or less. One, made by Matrox, comes in
two versions and produces 256 X 256 resolution on a standard TV monitor.
One version is self-contained on a printed circuit board and plugs directly
into an S-100 bus. The other version is in a potted module with universal
interface that can be connected to the I/O ports of any microcomputer.
Operation is quite simple. To address a point, one sets 8-bit X and 8-bit Y
tegisters and then issues either a set bit or clear bit command. A command
for clearing the screen is also available as a convenience. Incidently, Matrox
also has units up to 512 * 1024 resolution for the LSI-11 microcomputer
bur at considerably higher cost (that’s a half-million bits or 64K bytes!).

Another unit made by Micro Technology Unlimited works with 6502-
and 6800-based micrcomputers and is termed the “Visible Memory.” This is
literally true as the device appears to the host as a simple 8K memory
expansion. The content of the memory, however, is displayed as a 320 wide
X 200 high dot pattern with the bits on the display corresponding to bits in
the memory. Addressing an individual bit is somewhat more cumbersome
than with the Matrox unit, since X and Y coordinates must be translated into

an equivalent memory address and bit number. A simple “plot point” sub-
routine, however, can easily solve the problem. One advantage of the device
besides the under $250 price is the fact that the user has 8K of additional
memory available when the display is not needed.

Unfortunately, a pixel display is difficule and space consuming to
program. Whereas one can simply specify the coordinates of the endpoints of
a line with a vector display, all of the points in between must be specified
with the pixel display. This in itself is an interesting problem: define an
algorithm that illuminates the det set of points possible on a fixed grid
between two endpoints, also on the grid. In any case, a graphic subroutine
package is a necessity when using a pixel display. Routines for point plot-
ting, line drawing, and character generation are all necessary.

CONTROL SEQUENCE DisPLAY AND EDITING 331

Editing the Display List

The real problem with pixel displays, however, lies in the fact that the
display buffer does not contain data in a format that can be edited in genetal;
it is just a mass of bits. As was mentioned earlier, a vector display list can be
organized by objects, making it easy to locate an object, move it, delete it, or
add a new one without regard to other objeces on the screen. In contrast, the

data in a pixel display buffer is organized by position in the display field. From
looking at the data itself it is practically impossible to delineate objects and
determine their exact size and orientation.

Direct editing of a pixel list is of necessity very limited. As an example,

consider a pixel display showing a number of lines in which some of the lines
may cross. If the user wants co delete a line it would not be difficult for him
(using human eyes) to recognize the line on the display and supply its

endpoints to the editing program. The program would then simply trace
through the line and turn the pixels off, thus erasing it. Adding a new line
would be simply a matter of specifying it and setting the appropriate pixels
on. Thus, one would think that moving a line could be accomplished by first
deleting it and redrawing it elsewhere. A very serious problem occurs, how-
ever, if the line of interest crosses another because a little gap will be left in
the second line when the first is deleted. If interactive line movement using
perhaps a joystick is to be implemented, large portions of the second line
may be erased as the first moves around.

The only way to overcome the editing problem in general is to maintain
two display lists, one in pixel format for the display and the other in vector
format for editing and saving results. The easiest way to handle the two lists
is to execute all editing operations on the vector list and then call a routine to
interpret the vector list and create an updated pixel list whenever anything
has changed. In many cases, this would call for erasing the pixel list and
regenerating it completely from the vector lise. In other cases, it may be
possible to regenerate only a portion of the pixel list, or in the case of
additions, simply do similar operations to both lists. When editing is com-
plete, it is the vector list that should be stored.

Applications of Graphic Displays in Music

The term “interactive graphics” is commonly used to refer to the
activities about to be described. Three fundamental subsystems are required
in an interactive graphics application. First, of course, is the computer and
graphic display device. Second is the array of input devices used by the
operator to communicate with the system. Last is the software necessaty to

tie it all together. In a well-implemented interactive graphics application,
the user sits with eyes glued to the screen, hands manipulating input devices,
and mind closing the feedback loop. The effect is as if the image on the

332 MUSICAL APPLICATIONS OF MICROPROCESSORS

screen is an extension of the user’s consciousness. To meet this goal, a highly

effective human interface, both input devices and software, is required.

Many of the music input devices described previously are suitable for
and in fact some were otginally developed for interactive graphics work. A
joystick, for example, is typically a two-dimensional device, thus mating
perfectly with a two-dimensional display. When connected to the computer
through an ADC and suitable programming, one can point to objects or
literally draw curves on the face of the display. As a practical matter, how-
ever, it is fairly difficult to control a joystick precisely; thus, intended
straight lines are crooked and pointing is somewhat of a trial-and-error
procedure.

Graphic Input Techniques

A mouse is a related device that overcomes the awkwardness of a joy-
stick. Typically, ic is about the size and shape of an orange half and is
equipped with orthogonal wheels that allow it to roll around easily on a table
top. The wheels are connected to transducers and provide X and Y outputs.
Essentially, the position of the mouse corresponds to the joystick’s handle,
but a much larger movement range allows more precise control. Another

device called a trackball consists of a smooth ball about the size of a baseball
sitting nearly frictionless in a stationary socket. The user can roll the ball in
any direction and thus provide X and Y outputs. Since the range may
encompass one of more complete revolutions, control is more precise. Its

major advantage is conservation of table space.
The graphic digitizer mentioned earlier is the most precise of all. Since

the pen or stylus is completely frictionless, one may input to the system as
accurately as drawing on paper can be done. In fact, because of their precision
and repeatabilicy, a screen outline may be taped to the digitizer surface and
used as a guide in the interaction process. If real ink is used in the digitizer
pen, then a permanent record of the input is produced as a by-product.

It would seem though that the ideal situation would be drawing di-
tectly on the display screen itself and in fact devices called /ight pens actually
accomplish this—almost. A light pen consists of a high-speed photocell and
a lens system that makes its angle of acceptance very small and localized. If
placed on the surface of the CRT directly above an il/uminated portion of the
image, a pulsc is generated whenever the beam refreshes that part of the

image. With che software-refreshed vector display described previously, the
pulse can be connected to interrupt the CPU while the line “seen” by the pen
is drawn. With a pixel display, additional hardware is generally necessary to
determine the X and Y positions of the beam when the pulse occurs. In either
case, one can easily point to an object on the screen and the program can
ascertain which object it is or its location.

Drawing on the screen where nothing currently exists is a little more
difficult. In practice, a tracking pattern is displayed, which the user can point

CONTROL SEQUENCE DISPLAY AND EDITING 333

to and move around. The path. followed by the pattern then becomes the
drawn line. Vatious types of tracking patterns are used, but the circle type is

easiest to understand. A circle of dots is displayed that has a diameter slightly
larger than the acceptance area of the light pen. As long as the pen points to
the center region, no light is seen and the pattern remains stationary. Pen
movement in any direction, however, will put one of the dots in sight of the
pen. The cracking program in the computer will respond by moving the
entire pattern such that the new pen position is in the center. Besides

drawing lines, interactive graphics software can provide for “attaching” the
tracking pattern to an object, which can then be positioned as desired.

Unfortunately, a vector display or extremely fast computer is just about
mandatory for this degree of interaction.

Light pens do have their problems, however. In general, they must be
carefully tuned to the display used such as by adjusting the focus length to
match CRT faceplate thickness. For tracking applications, the CRT bright-
ness needs to be tightly controlled to avoid the effects of light scattering
within the CRT faceplate and ambient light. Short persistence phosphors are
necessary for good pulse resolution, although long persistence visible short
persistence infrared types exist. Obtaining the necessary speed at low light
levels is a design problem that increases cost. Nevertheless, a properly func-
tioning light pen is a joy to use and probably the best interactive graphics
input device available short of mind reading.

Finally, most interactive graphics setups use a standard typewriter

keyboard and a special function keyboard. Each function key is set up to
instruct the interactive program to perform a specific function each time the
key is pressed. The actual function of a particular key is entirely dependent
on the particular interactive software in use at the time. For example, six
keys may be reserved to control the display. One might expand the image
5% when pressed and a second could shrink it 5%. Four more could move
the entire display left, right, up, or down. Other often-used interactive

functions may be assigned to other keys. A function keyboard works just like
an alphanumeric keyboard but is usually limited to 16 to 32 keys and
constructed so that the key legends may be easily changed. In fact, legend
overlay sheets are commonly used and one would typically have a sheet for
each interactive program available. In sophisticated systems the sheets may
actually be punched or otherwise coded so that the program can verify that

the operator has actually inserted the correct one!

Composition by Editing

Now that the tools used in interactive graphics have been described,
let's look at how these can be used to communicate musical and acoustical
ideas to a computer-based synthesis system.

First, consider a case in which direct control of several sound parame-

ters simultaneously is desired. Further assume that the exact shape of the

334 MUSICAL APPLICATIONS OF MICROPROCESSORS

variation contours and their interrelation is critically important in creating

the desired audible result. To make matters more difficult, the shape of the
tequired contours is only roughly known. Finally, the rapidity of the varia-
tions is such that real-time manual control is out of the question. What has
been described is a perfect example of synthesizing a realistic singing voice,
although the concepts apply to any complex, rapidly changing sound.

Composition by editing is best done if one starts with some approxi-

mation, no matter how coarse, of the desired results. In realistic speech

synthesis one might start by analyzing natural speech into the parameters of
interest. Even if the goal is a female siuging voice and the input is a

gravel-throated male voice, the set of parameter variations that results is close

enough to the final result so that the necessary editing changes are somewhat
apparent. One might also use a “speech synthesis by rule” program, which
accepts a phonetic spelling and produces a first cut at the values needed.

SAWTOOTH

veo vA

“PITCH” "VOICE
PARAMETER AMPLITUDE

PARAMETER
Lan

F ° MIX vcr Mix) |» our
"HISS AMPLITUDE
PARAMETER ri

? =|

FORMANT 4

re

FORMANT 3

ver

FORMANT 2

ver

FORMANT |

Fig. 11-6. Singing voice synthesis patch

CONTROL SEQUENCE DisPLAY AND EDITING 335

Again, even though the initial values are crude, a starting point is estab-
lished from which improvements may be made.

With an interactive graphics editing system, the task of determining
magnitude and direction of necessary changes and then actually accomplish-
ing the changes is considerably simplified. An editing function is distin-
guished from an input function by the fact that its action depends on what is
already there. Some editing functions may be reversible. This means that two
functions with opposite effect are available and that anything done by one can
be undone by applying the other. Nonreversible functions can only be un-
done by retrieving a copy of the data made prior to execution of the nonrever-
sible function. Examples of both types of functions will be given later in this
discussion.

Figure 11—G shows the configuration of analog-synthesizing equipment
used in this example. The application is speech (singing) synthesis, and seven
independent parameters are to be controlled. Four of these are the center
frequencies of the four bandpass filters used to simulate the first four for-
mants of speech. Two more are used to control the amplitude of the voice
(buzz) and noise (hiss) sources. The last determines the pitch of the voice. It
is assumed that a multiple-channel DAC has been connected to the computer
so that the synthesizer modules can be controlled. For an application such as
this, 50 to 100 updates of the parameters per second should be sufficient.

While experts in the field might argue the completeness of this model
for producing a convincing singing voice, it is the author's belief that precise

control of the parameters available is often more important than the number

of parameters being controlled. The purpose here is to understand how
interactive graphics can be utilized to quickly determine how these seven
parameters should be varied to obtain the desired result. Further details
concerning speech synthesis theory and practice are abundantly available in

the references.
Figure 11—7 shows what a graphic display representation of a portion of

these seven control functions might look like. The horizontal axis is time and
the vertical axes depend on the particular curve. With all seven functions
shown at once, it is easy to see the relationships that exist among the

functions. When more detail is required, such as when actually editing one
of the curves, a command or function key would be available to suppress
display of all but one or two of the curves.

Also shown is a cursor that can be used to designate a specific point in
time on the functions. The cursor can be easily moved back and forth to find
the area of interest. Any of the input devices mentioned earlier could be used

to move the cursor, even the function keyboard. To aid the user in finding
the audible area of interest, the program could be set up to actually send the
corresponding data to the synthesizer as the cursor is moved.

Each of the seven parameter values, of course, has some kind of physical
units, such as hertz for the formant and pitch frequencies. While the exact

336 MUSICAL APPLICATIONS OF MICROPROCESSORS

TIME = 56.17.23
F2

7 /
Fig. 11-7. Typical display of portion of speech synthesis sequence

value of a parameter may not be as important as its relationship to other

parameters, it is often necessary to know the value more precisely than the
display shows it. Accordingly, the values of each parameter at the current
cursor position is displayed at the bottom of the screen.

For critically comparing two parameters, it ts useful to be able to plot
one against another as is done in the bottom right corner. Commands, of
course, would be available to select the parameters being compared. The
curve shown represents the time interval spanning the screen and the empha-

sized point represents the current cursor position. One ching the curve does
not show is the time scale, but the user can get a good feel for it by moving
the cursor and noting the corresponding movement of the emphasized point.
It is even possible to have editing functions that operate on this curve (often
called a trajectory) directly.

Editing Functions

Now, how might these curves be edited? Simple sample-by-sample
alteration of a curve should be available but would certainly not be very
productive. Let’s first look at the kinds of curve editing that might be

needed and then define editing functions that would make the task easier for
the user. For example, the user might decide that a certain segment of the
sequence moves too fast. A corresponding editing function should therefore

CONTROL SEQUENCE DisPLaY AND EDITING 337

UNEDITED
CURVE

EDITED CURVE
WITHOUT
INTERPOLATION

EDITED CURVE
WiTh
INTERPOLATION

shay Me 0% | EDIT
y INTERVAL

TRANSITION
INTERVAL

Fig. 11-8. Interpolation window

allow the user to point out the time interval to be changed with the graphic
cursor and then stretch it by 10%. At this point, the sequence can be played
for evaluation. This can be made a reversible function by including a corre-
sponding shrink by 10% command. The user can experiment until satisfied
chat any remaining imperfections in the sound sequence are due to other
causes.

Other operations could be defined that act on only one curve. For
example, the amplitude of the white noise may need to be generally increased
in a certain area. Again the interval could be pointed out and a command to
taise all hiss amplitudes in the region by | dB might be invoked. A com-
plementary decrease by 1-dB function makes this a reversible function. A

copy function might be imagined whereby the contour of one curve could be
copied to another curve over a specified interval. Contours could also be
swapped or even called up from a library of contours that had been success-
fully used earlier. Note that these are nonreversible functions. The editing
software should have provisions for saving the status of things before a
nonreversible function is performed.

At this point, a potential problem ts seen. These editing changes can
result in a discontinuity at the boundary between edited and unedited por-
tions of the curves. What is needed is a method of znterpolation so that the
boundary transitions are smooth. Figure 11-8 should be helpful in visualiz-
ing how such interpolation might be done. A key concept is the idea of an
interpolation window. An interpolation window is itself a curve that varies

338 MUSICAL APPLICATIONS OF MICROPROCESSORS

AWA
HAAN i) | AN

AVATAVRRACUA LA NVHVK
RESULT

Fig. 11-9. Interpolation between two different curves

between 0% and 100%. In use, it is applied to two curves; the original
unedited curve and the edited but not interpolated curve. The result is a
third, interpolated curve that actually consists of a weighted sum of the first
two curves. In effect, the interpolation window specifies how to weight the
sum, At the 0% points, the result is equal to the unedited curve. At the 50%
points, the result lies midway between unedited and edited curves. At the
100% point, it is all edited curve. As can be seen, interpolation considerably

smooths the transition between unedited and edited segments.
In use, no single interpolation window shape is ideal for all situations.

One variable is the width of the transition interval relative to the edit
interval. Another is the shape of the transition interval itself. Although the
window is continuous at the beginning and end of the transition interval, its
slope is not. A smooth fillet at these points might be more desirable for many
applications.

The concept of interpolation and variable interpolation windows can be
useful for other functions as well. For example, rather than interpolating
unedited and edited curves, one might want to interpolate between two
completely different curves. Figure 11-9 shows how two curves, A and B,

are combined using an interpolation curve. The result starts out the same as
A but then gradually acquires an increasing proportion of B’s characteristics.
Eventually, it is all B. Like the interpolation windows, various shapes and
durations for the interpolation curve are possible.

Another possibility is interpolation between a varying curve and a
constant. The effect is a “pulling” of the varying curve toward the constant
and a reduction in the degree of variation. From these examples, it should be

ConTROL SEQUENCE DispLay AND EDITING 339

P38 . . .
P28 . . . ee
Pie

ca ie ey a OE,

3 62 A c 8

Gt E 6 BOC

ee

Fig. 11-10. Typical display of portion of rhythm sequence

obvious that interpolation is a very powerful technique not only for editing
but for building up control functions from nothing.

Noncontinuous Curves

Not all synthesis control functions are continuous curves; some are

discrete on—off functions. A good example would be rhythm instruments.
Some of these, such as drums, have no “duration” per se, so the only variable

to represent on the screen is discrete points in time. Others may have a

controllable duration, so initiation and conclusion points are needed. Figure
11-10 shows how a complex rhythm might be represented on a graphic
display screen. Each line of symbols represents a different percussion instru-
ment. For those with initiation points only, a simple point is plotted when

the sound starts. For those with duration, a line connecting initiation and

conclusion points is drawn. In the general case, percussion sounds are com-
bined with notes of a definite pitch, which themselves have a duration and
can be represented by lines as well but with an identifier, perhaps a small
letter or number over the line, to specify the note’s pitch, amplitude, or
other information. Parameter curves for complex sounds could be mixed in as

well.

340 MusIicac APPLICATIONS OF MICROPROCESSORS

Editing functions for on—off controls are much simpler than for parame-
ter curves, since time is the only significant variable. Essentially, all that can
be done is to move initiation and conclusion points forward and back, delete
events, and add events. In the case of identified events, the identification can

be changed. It would also be desirable to be able to reassign a string of events
to a different instrument.

Note that all of this is starting to approach a method of computer music
notation but with a heavy graphic orientation. Actually, standard music
notation is somewhat graphic, at least in the representation of note pitches
and to some extent nore sequencing, but beyond that it is strictly symbolic.

A system could certainly be set up to conveniently enter and edit music
notation using a graphic display, but its usefulness would be limited primar-
ily to conventional music and ordinary musical sounds. For the more imag-
inative works that a computer music system allows, specialized notation
methods optimized for ease in manipulation, not ease of writing, should be
used. Manipulation is important because, with a graphic editor, it is far
easier to modify a faulty score than to rewrite it.

SECTION UI

Digital Synthesis
and

Sound Modification

In the previous section, the application of microcomputers to the control of
external synthesis equipment was examined in detail. In the remaining chap-
ters, we will discuss methods of having digital logic or the computer itself
merely simudate such equipment. As was mentioned briefly in Chapter 4, this
is by far the most powerful synthesis technique known because amy computer
can simulate gy quantity of conventional or special-purpose synthesis

equipment. Although the full benefit of such flexibility usually requires
operation outside of real time, the concepts are useful in designing real-time
digital synthesis systems as well

12

Digital-to-Analog
and Analog-to-Digital

Conversion of Audio

One of the most important components of a digital sound synthesis system is
the DAC used to convert digital data into an analog audio signal. Converse-
ly, sound modification by digital methods requires an ADC of high quality.
Unfortunately, one cannot simply buy a DAC or ADC module from a conver-
ter company, interface it to a computer or other digital device, connect it to
an audio system, and expect good results. Although the modules do indeed
convert between analog and digital domains, additional hardware and signal
processing is necessary before they can handle audio well. Since synthesis is of
greatest interest here, this discussion will be concerned primarily with
digital-to-analog conversion of audio signals.

In Chapter 4, it was learned that ar least in theory the audio quality
possible with a DAC is dependent on only two factors. The sample rate, which
is the speed at which numbers are fed co the DAC, determines the upper
frequency response limit of che system, while the reso/wtion, which is related
to the number of possible output voltage steps, determines the signal-to-
noise ratio. Unfortunately, however, there are other sources of error that tend
to degrade the signal-to-noise ratio. In Chapter 7, it was noted that when the
digital input toa DAC is changed the output may not move smoothly to the

the new value. Instead, it can glitch momentarily to a voltage far removed

from either the previous or the new voltage. Such glitching produces distor-
tion that may be severe. Even if glitching was absent, the DAC’s output
amplifier will contribute to distortion if it ever séews between voltage levels.
Inexpensive, slow amplifiers can generate a large ammount of high-frequency
distortion this way.

Figure 12-1 shows what a practical, high-performance audio DAC
system would consist of. First, a rock-steady sample rate is essential, since
any variation increases noise and distortion. For exarnple, even a 10-nsec
random jitter in the sample-co-sample time can create a noise floor just 66 dB
below the signal level at a 50-kHz sample rate. This in effect negates the
benefit of using DACs with more than 11 bits of resolution. Generally, a
fixed-frequency crystal oscillator driving a programmable (or fixed) modulus

343

344 Musical APPLICATIONS OF MICROPROCESSORS

PARALLEL
DATA FROM
COMPUTER

FIRST-IN
FIRST-OUT
BUFFER

DEGLITCHER SHARP
AND SLEW LOW-PASS Lm BUT uy HIGH-RESOLUTION

DAS ELIMINATOR FILTER

SAMPLE RATE

PROGRAMMABLE
DIVIDER

{
STABLE CLOCK
OSCILLATOR

Fig. 12-1 High-quality audio DAC system

counter is used for the time base. Such a setup can be expected to exhibit a
jitter of less than 1 nsec if the oscillator is shielded from electrical noise.
Also, the higher crystal frequencies such as 10 MHz tend to reduce jitter
even further.

Because of the stabiliry requirement, connecting the DAC directly to
an output port and then using the computer's interrupt system to time the

samples is unsuitable for anything other than initial experimentation. The

same applies to the direct memory access facility of most computers. Instead,
a first-in, first-out buffer is inserted between the computer and the DAC.
With the buffer, sample pulses from the time base cause an immediate (or
with constant delay) transfer of data to the DAC while the computer has
additional time to provide the next sample to the buffer. Often only one
stage of buffering, which makes it a simple register, is sufficient. In other
cases, FIFO IC chips containing 40 or so stages can bridge gaps in the data
flow up to nearly a millisecond at 50 kHz. In fact, the computer itself will
typically be acting as a large FIFO if the data is coming from a mass storage
device.

Ocher elements in the chain are the high-resolution DAC, low-pass
fileer, and combination deglitcher/antislew device. Each of these will be

described in detail in the following sections.

Increasing Dynamic Range

The most difficult and hence most expensive requirement of a high-
fidelty audio DAC is the high-resolution DAC module. Earlier it was shown
that the maximum signal-to-noise ratio that can be expected from an N bit
DAC is 6N dB. Note the importance of the word maximum. This refers to the

ideal condition in which the signal exactly fills the full-scale range of the

DIGITAL-TO-ANALOG AND ANALOG-TO-DiGITaL CONVERSION OF AUDIO 345

DAC. A signal level higher than this will inctease distortion (which is the
same as noise if the signal is a complex waveform) due to clipping, while a
lower-level signal will reduce the S/N ratio because the noise level is inde-
pendent of the signal level. The graph in Fig. 12-2 shows this effect. Also
shown is the S/N ratio characteristic of a typical professional audio tape
recorder rated at 60 dB S/N. Note that these curves represent unweighted,
wideband signal/noise + distortion) and do not take into account the fact

that the tape recorder’s mostly high-frequency noise may be less audible than
the white noise typical of DACs.

The most obvious feature of the graph is the very sudden onset of

overload (clipping) distortion in the DAC curves. The tape recorder, on the
other hand, has a more gradual overload characteristic. At the 40-dB point,
which represents 1% overload distortion (the minimum amount audible to
most people), the tape recorder is handling about 10 dB more signal than a
10-bit DAC can. This is called “headroom” and is valuable for handling
momentary peaks and overloads without excessive distortion. For the 10-bit
DAC to have the same amount of headroom, the average signal it handles
must be reduced by 10 dB. Thus, a 12-bit DAC would probably be needed
to equal the tape recorder’s noise performance with any real signal containing
momentary peaks.

In the following discussion, it is assumed that 16-bit sample words are
available from the synthesis process. This level of precision fits the word size
of 8- and 16-bit computers and is generally regarded as the ultimate in an
audio DAC system. However, the discussion applies equally well to other

sample sizes both more and less than 16 bits.

Brute Force

It is clear from the foregoing that a high-resolution DAC will be

needed in a high-fidelity DAC system. Even with a 12-bit DAC and 10 dB of
headroom, signal levels must be carefully monitored to maintain an overall
high S/N while at the same time avoiding overload. The additional dynamic
range afforded by 14- and 16-bit DACs not only improves the sound (in live
performance anyway) but reduces the effort required to control signal levels.

Whereas a suitable 12-bit DAC module can be purchased for about
$30, additional resoluuion comes at a high price. Fourteen bits, for example,

command $150 or more while 16 bits go for about $300. These prices are for
units with guaranteed monotonicity and linearity errors of less than one-half
of the least significant bit over a reasonably wide temperature range.

The price also pays for a super precise and stable reference voltage
source so that the full-scale accuracy is comparable to the linearity. In audio
work, full-scale accuracy is of little concern, since its only effect is a shift in

signal amplitude. For example, a 1% shift in reference voltage, which would

be intolerable in normal applications of these DACs, would amount to only a

346 MUSICAL APPLICATIONS OF MICROPROCESSORS

90

80

70

= 60-dB RATED
a 60 TAPE RECORDER

50

10-d8
HEADROOM

SIGNAL + DISTORTION

NOISE

wb 8

10 fi L L 1 L =m
—l00 -90 —80 —70 —60 —50 —40 ~30 —20 -—10 -0 +10 +20 +30

SIGNAL LEVEL RELATIVE TO OVERLOAD POINT (4B)

Fig. 12-2. Noise performance of several DACs and a professional tape re-
corder

0.08-dB shift in level. Perhaps someday lower costing DAC modules with-
our such stable references will be designed for audio applications.

Another potential complication is that the manufacturers of these units
recommend periodic (monthly) “recalibration” in order to continuously meet
their specifications. This should not be surprising, since one-half of the least
significant bit on a 16-bitter is a mere 0.0008% or 8 parts per million. Any
ordinary resistor or zener diode would drift that much from the heat of a
cigarette 3 feet away! Even the precision, low-drift components used in these
DACs can experience a small but permanent shift if exposed to extremes in
temperature.

Fortunately, though, nearly all of the long-term drift is due to the
zener reference source having no audible effect. Amplifier offset shifts may
also contribute but again there is no audible effect. The ladder resistors that
determine the linearity and therefore the noise level are matched and nor-
mally drife together. Thus, a yearly check is probably all that is required if
temperature extremes are avoided.

In the final analysis, if one wants better than 12-bit performance and a

minimum of trouble, and an extra couple of hundred dollars is not really

significant, then a true 14- or 16-bit DAC is probably the best choice. Note
also that this is the only way to attain the noise performance suggested by the
curves in Fig. 12-2 without compromise. The cost-cutting techniques that
will be studied next all sacrifice something in order to avoid using a crue
high-resolution DAC.

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 347

Sign-Magnitude Coding

Looking again at the curves in Fig. 12-2, it is seen that the maximum
S/N ratio of 96 dB for a 16-bit DAC occurs right at the point of overload. In
a real listening situation, this would correspond to the peak of the loudest
crescendo in the piece. At the ear-shattering volume chis might represent,

one is highly unlikely to notice a noise level scarcely louder than a heartbeat.
On the other hand, during extremely quiet passages when the noise would be
noticed most, the noise level remains unchanged meaning that the S/N ratio
has degraded.

It would be nice if some of the excess S/N at high signal levels could be
traded off for a cheaper DAC without affecting or even improving the S/N at
lower signal levels. This, in fact, is possible and can be accomplished in at
least three different ways.

Although not specifically mentioned previously, an audio DAC must
be connected so that both positive and negative voltages can be produced.
Normally, this is accomplished by offset binary coding and shifting the
normally unipolar DAC output down by exactly one-half of full scale. In
audio applications, a de blocking capacitor is sufficient for the level shifting.

Low signal levels imply that the zet DAC output hovers around zero.

An offset binary DAC, however, sces this as one-half scale. In Chapter 7, it

was determined that the most significant bit of the DAC had the greatest
accuracy requirement; therefore, it is logical to assume that the greatest
linearity error would occur when the MSB switches. Unfortunately, this

occurs at half scale also so this kind of DAC imperfection would directly
subtract from the S/N ratio at /ow signal levels as well as high. Thus, with
offset binary coding, one must use a highly linear DAC.

The sign-magnitude method of obtaining a bipolar DAC output does
not suffer from this problem. Using the basic circuit configuration that was
shown in Fig. 7-14, small signal levels will only exercise the lesser signifi-
cant DAC bits, thus eliminating the noise caused by errors in the most
significant bits. As a side effect, the sign-bit amplifier provides the equiva-
lent of one additional bit of resolution making a 16-bit DAC act like a
17-bitter!

The significance of all this is that inexpensive DACs with 16 bits of
resolution but only 13 or so bits of dinearity are available. When linearity is
less than resolution it means that the mosc significant bits are off enough to
raake the DAC nonlinear at the points where the affected bits change. A
16-bit DAC with 13-bit linearity could have nearly an eight-step gap or
backtrack right at 1/2 scale, lesser errors at 1/4 and 3/4 scale, and an even

smaller error at 1/8, 3/8, 5/8, and 7/8 scale. If connected in an offset binary

circuit, it would perform no better than a 13-bit DAC. But when connected
in a sign-magnitude circuit, we have just the tradeoff that we have been
looking for as the curve in Fig. 12-3 shows.

348 Musical APPLICATIONS OF MICROPROCESSORS

gol

Bot

70;
cy
Z| sof 16-8IT
2 SIGN-MAGNITUDE
& WITH 13-BIT
8). sop LINEARITY
alt
brated
+\/2 +)? 40
z
& Z| 30

20

10 4 ka n 4 —— n n 4 n
-l00 -90 —8 —70 —680 —50 —40 —30 —20 —I0 oO +10 +20

SIGNAL LEVEL RELATIVE TO OVERLOAD (d8)

Fig, 12-3. Performance of degraded linearity sign-magnitude DAC

At low levels, the signal has insufficient amplitude to even reach the
nonlinearities at 1/8 scale. Thus, at these levels the S/N ratio is what would

be expected from a true 16-bit DAC. At higher levels, the little glitches at
1/8, V/A, etc., tend to raise the noise level to what a 13-bit DAC would
provide. But since the sound is so loud at this point anyway the increased
noise will be totally inaudible. In effect, the shaded area is what is given up
when a $100 pseudo-16-bit DAC is substituted for the $300 true 16-bit

unit.

In using the sign-magnitude circuit, it is mandatory that the two
resistors be accurately matched. If they are not, an unpleasant even order
harmonic distortion is generated. The two analog switches required to switch

between normal and inverted DAC output are not much of a problem, since
one of them would be used anyway in the deglitcher to be described.

Some logic is required to convert normal twos-complement integers to
sign-magnitude integers. This consists of a set of N-1 exclusive-or gates
inserted in series with the 15 low order bits to the DAC. When the input is
negative, the gates invert the twos-complement negative number back into a
positive magnitude. The DAC output should be offset by +1/2 the step size
to retain a distinction between 0 and —1, which is translated to —0O.

Note that this method could be extended to additional bits, since the

most significant bits no longer must be precisely calibrated. As a practical
matter, though, personal computers are unlikely to have words longer than

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 349

3-8IT
GAIN DIGITAL
CONTROL

ANALOG
12-8IT 12-8IT IGNAL | GAIN-CONTROLLED|
DATA ac AMPLIFIER OUTPUT

Fig. 12-4. Floating-point DAC

16 bits for quite some time, and the difference would probably be inaudible
anyway.

Floating-Point DACs

A method commonly used in analog audio equipment to improve
apparent S/N ratio is to “ride che gain.” Strong signals are made stronger by
increasing the gain, while weak signals are made even weaker by reducing
the gain. Since the noise is most audible at low signal levels, the act of

reducing the gain also reduces the noise and so improves the $/N ratio. The
main problem encountered in this scheme is knowing when and how much to
change the gain setting.

In an audio DAC application, it should be possible to apply the same
concept to a 12-bit DAC to improve its S/N ratio at low signal levels.
Consider the setup in Fig. 12-4. Twelve-bit samples operate the 12-bit DAC
in the normal way. However, three additional bits control a variable-gain

amplifier, which the DAC drives. Low signal levels are created by pro-
gramming the amplifier for a low gain rather than reducing the digital
sample values going to the DAC. Thus, the DAC’s noise is also reduced and
the resulting S/N ratio tends to be constant at low signal levels.

Let us assume for a moment that the programmable gain amplifier has

eight possible gain settings, each a factor of two apart. Thus, gains of 1.0,
0.5, 0.25,. . . , 0.0078 are possible. The corresponding S/N ratio graph for
the system is shown in Fig. 12-5. The maximum S/N ratio is no more than
that of an ordinary 12-bit DAC, but at low signal levels it is actually better
than a true 16-bit unit! Furthermore, only 15 bits are used for the samples.
Note that these are theoretical figures, since retaining a noise level 115 dB
below the overload point in subsequent circuitry is quite a feat indeed.

Since the gain data are carried along with the signal data in each

sample, there is no problem in handling transients as there is in an analog
audio system. The data format is actually very much like the floating point
number format in computer arithmetic. The 12 bits going to the DAC are
the “fraction” part, while the 3 bits going to the gain control circuit are the
“exponent.” The base of 2 is set by the design of the gain control circuit.

A floating-point DAC can also be viewed as having a variable step size.
In the region close to zero, the step size is quite small, which minimizes

350 MUsICAL APPLICATIONS OF MICROPROCESSORS

{ (6-BIT OAc

90
(2-8IT FLOATING
POINT DAC

ao}

(a8)

NOISE.

o 3S T

SIGNAL + DISTORTION

= ts]

30)

20

-10
—!40 —120 —l10 —100 —90 —80 —70 —60 —50 -—40 —30 —20 —I0 Oo +10 +20

SIGNAL LEVEL RELATIVE TO OVERLOAD (dB)

Fig. 12-5. Floating-point DAC performance

quantization noise. As the signal level increases, the step size becomes twice
as large, four times, etc., until at levels near overload the steps are 128 times

larger than at low levels. Of course, every time the step size is doubled the
quantization noise increases by 6 dB, but the signal has also increased by 6
dB; thus, the S/N ratio is nearly constant.

One problem in using this setup is that the sample data must be
converted from their typical 16-bit signed integer format into the floating
point format, which can be time consuming. A relatively simple hardware
translator, however, can be placed between the computer and the DAC to
accomplish this on the fly. Essentially, the translator must determine which
of several “ranges” each sample lies in. The range determination then con-
trols the amplifier and a parallel shifter, which insures that the most signifi-
cant 12 bits in the particular sample are sent to the DAC. Operation would
be as follows:

Digital sample values Bits to DAC Gain selection

0000—07FF O-11 0.0625

0800—OFFF 1-12 0.125

1000-1 FFF 2-13 0.25
200083FFF 3-14 0.5
4000—7 FFE 4-15 1.0

DicitaL-TO-ANALOG AND ANALOG-TO-DiGITAL CONVERSION OF AUDIO 351

A similar table can be constructed for negative sample values. Note
that the lowest gain used is 0.0625. If the input samples are normal 16-bit
integers, it is not possible to get the extra dynamic range that floating-point
format allows.

Aside from the parallel shifter, constructing a floating-point DAC is
fairly simple. For the DAC part, one would use a standard 12-bit DAC

module set up for offset binary coding with an inverter in the most signifi-
cant bit to make it twos complement. The gain-controlled amplifier must be
accurate, at least to the 0.012% level to retain 12-bit performance. If the

gains are not accurate, there can be a nonlinearity at points where the gain

switches such as in Fig. 12-6. Simple analog switches with precision gain-
setting resistors can be used for the amplifier. A multiplying DAC could also
be used if it can accept a bipolar reference. The main DAC output would be
connected to the reference input of the multiplying DAC. The 3-bit “‘expo-
nent’ would be sent to a 1-of-8 decoder whose outputs would be connected
to the most significant 8 bits of the MDAC. The MDAC output then
becomes the final system output.

Exponential DACs

Just as exponential control voltages in analog synthesizers allow accu-
rate, noise-free representation of parameters having a wide range, exponential
DACs, which are also called companding DACs, can increase audio dynamic
range with a limited number of sample bits. For use with audio signals, which

are inherently linear, one would first take the logarithm of the sample value.
When fed to an exponential DAC, the output becomes a linear function
again. One could also view an exponential DAC as having a continuously

increasing step size as the output voltage increases. Thus, the step size is a
constant percentage of the oxtput voltage rather than just a constant voltage.

QUTPUT VOLTAGE

Yo
DIGITAL INPUT

Fig. 12-6. Effect of gain accuracy

352 Musical APPLICATIONS OF MICROPROCESSORS

Exponential DACs are ideal for absolutely minimizing the number of
bits in each sample without unduly sacrificing dynamic range. An 8-bit
scheme used extensively in long-distance telephone circuits, for example,
maintains a nearly constant S/N ratio of 35 dB over a 35-dB signal level
range, a feat that would otherwise require a 12-bir DAC.

Actually, a floating-point DAC is the first step toward an exponential
DAC. Their drawback is the 6-dB ripple in S/N ratio that is apparent in Fig.
12-5. A true exponential DAC would have no ripple in the S/N curve at all.

One possibility for an exponential DAC circuit was shown in Fig. 7-7.
For use as a DAC rather than an attenuator, one would simply apply a

constant de input voltage. A nice property of this circuit is that dynamic
range and maximum S/N ratio can be independently adjusted. Each added
bit on the left dowbles the dynamic range measured in decibels. Each added bit
on the right increases the S/N ratio by about 6 dB. Note, however, that there

is no escaping resistor accuracy requirements; they still must be as accurate as
a conventional DAC with an equivalent S/N rating. One problem with the
circuit is the large number of amplifiers required, one per bit. Besides the
possible accumulation of offset errors and amplifier noise, such a cascade
tends to have a long settling time.

Another approach to the construction of an exponential DAC is essen-

tially an extension of the floating-point approach using a smaller conven-
tional DAC and greater-resolution gain-controlled amplifier. Rather than the
base being 2.0, it could be V2. The gains available would therefore be 1.0,

0.707, 0.5, 0.353, 0.25, etc. The S/N ripple then would be about 3 dB.

Smaller bases such as #2 or 8/2 would cut the ripple to 1.5 dB and 0.75
dB, respectively. What this actually amounts to is a piecewise linear approx-
imation of a true exponential curve.

Which Is Best?

The logical question, then, is: Which technique is best for high-
fidelity audio? Using a true 16-bit DAC is unmatched for convenience and
does the best job possible on 16-bit sample data. It is expensive, however,
and may require maintenance. Actually, the other techniques were developed
years ago when a true 16-bit DAC was considered an “impossible dream.”

Next in convenience is the use of a pseudo-16-bit DAC and sign-
magnitude coding. In exchange for the minor problem of designing a suit-
able sign-bit amplifier, one can save a couple of hundred dollars and achieve
performance audibly identical to a true 16-bit DAC.

Floating-point and exponential DACs have the lowest potential cost for
a wide-dynamic-range audio DAC. They are also suitable for expansion
beyond the dynamic range of a true 16-bit unit if other audio components
can be improved enough to make it worthwhile. However, the gain-
controlled amplifier settling time and overall coding complexity make it a
difficult technique to implement with discrete logic.

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 353

Thus, the sign-magnitude coding method is probably preferred, at
least for use by individual experimenters.

Reducing Distortion

As was mentioned earlier, glitching of the DAC can contribute to

distortion that is unrelated to the resolution of the DAC itself. Actually,

there would be no problem if the glitch magnitude and polarity were inde-
pendent of the DAC output. Unfortunately, however, the glitch magnitude
depends heavily on both the individual DAC steps involved and their combi-

nation. Typically, the largest glitch is experienced when the most significant
bit of the DAC changes during the transition. Proportionally smaller glitches
are associated with the lesser significant bits because, after all, their influence

on the output is less.

If the DAC is offset binary encoded, the largest glitch, therefore, occurs
right at zero crossing. Unfortunately, even low-amplitude signals are going
to cross zero so the distortion due to glitching can become absolutely intoler-
able at low signal levels. The distortion also becomes worse at higher fre-
quencies, since more glitch energy per unit time (power) is being released.

Sign-magnitude coding can have the same problem because of switching
transients from the sign-bit amplifier. Floating-point DACs, however, at-
tenuate the zero-crossing glitch along with the signal at low levels.

Glitch magnitude and duration are not often specified on a DAC data

sheet. When they are, the units are very likely to be volt-seconds because of
the unpredictable nature of DAC glitches. Unfortunately, this alone is insuf-
ficient information to even estimate the distortion that might be produced in
an audio application. What is needed is the rms voltage of the glitch and its
duration so that the energy content can be determined.

Low-Glitch DAC Circuits

The two primary causes of glitching in DAC circuits are differences in
the switching time of the various bits (skew) and differences between the bit
turn-on and turn-off times. In some DAC circuits, the most significant bit
switches carry considerably more current than the least significant bits, thus
contributing to differences in switching times. Some R-2R designs, how-
ever, pass the same current through all of the bit switches, thus eliminating

this cause of skew. Even the digital input register can contribute to skew,
since it will undoubtedly span two or more iCs that may have different
propagation times. The use of high-speed Schottky registers, which are
verified to have equal delay times, will minimize this source of skew. Any
sign-magnitude or floating-point translation logic should be in front of the

input register as well.

354 MUSICAL APPLICATIONS OF MICROPROCESSORS

Nonsymmetrical turn-on/turn-off time is an accepted fact of life among
TIL logic designers. The reason is storage time in the saturated bipolar
transistor switches, which also applies to many DAC analog switch designs.
The digital input registers often accentuate the problem for the same reason.
There are, however, low-glitch DACs on the market that use emitter-

coupled logic internally for the register and nonsaturating current steering
analog switches.

Typically, these are only available in 12-bit versions, since they are
designed primarily for CRT deflection circuits. One type that is available has
a maximum glitch amplitude of 40 mV, a duration of 60 nsec, and a

full-scale output of +5 V. With a 1-kHz full amplitude output, the glitch
distortion would be about—78 dB with respect to the signal, about 6 dB
below its 12-bit quantization noise. At 10 kHz, however, the glitch distor-
tion rises by 10 dB, making it the dominant noise source.

Sample-and-Hold Deglitcher

The usual solution to DAC glitching at the sample rates used in audio
applications is the incorporation of a sample-and-hold module at the output

of the DAC. In operation, it would be switched to the hold state just prior to
loading the next sample into the DAC and would not be switched back into
the track mode until the DAC has settled at the new level. In this way,
glitches from the DAC are not allowed to reach the output.

As a practical matter, however, even SAH modules glitch when

switched from one state to another. This is alright, however, #f the mag-

nitude and polarity of the glitches are constant and independent of the signal
level. In that case, the glitches contain energy only at the sample rate and its
harmonics, which will eventually be filtered out. Most commercial SAH

modules are fairly good in this respect. A linear variation of glitch magnitude
with the signal level can also be acceptable, since the only effect then would
be a slight shift in the de level of the output.

Another SAH parameter that must be constant for low distortion is the
switching time from hold to sample mode. If this varies nonlinearly with
signal voltage level, then harmonic distortion is produced. Unfortunately,
the switching time of most analog switches is signal voltage dependent. The
reason is that they cannot turn on (or off) until the switch driver voltage
crosses the switch threshold voltage which, as was discussed in Chapter 7, is
relative to the signal voltage. Since the driver voltage does not have a zero
tise time, the time to cross the threshold voltage will vary with the signal
level. A linear variation would be alright, but a perfectly linear drive voltage
ramp is unlikely. However, if the drive voltage is of sufficiently large
amplitude and centered with respect to the signal, reasonably linear variation
can be obtained.

DiGtraAL-TO-ANALOG AND ANALOG-TO-DiciTAL CONVERSION OF AUDIO 355

Slew-Limiting Distortion

There still exists a subtle yet quite significant distortion mechanism in
the typical SAH module that is unrelated to glitching or switching time

Fig. 12-7. Typicat feedback SAH circuit

variation. The mechanism is slew limiting of the amplifiers in the SAH
module when switching from hold mode to sample mode. Figure 12—7 shows
a typical SAH module. When the sampling switch is closed, the circuit acts
as a simple voltage follower. When open, A2 buffers the capacitor voltage
and produces the output voltage. The effective offset voltage is dependent
only on the characteristics of Al. This is normally important, since A2 is

optimized for low-bias current and typically has a high offset voltage (A2
could even be a simple FET source follower, which, in fact, is often done).

The problem occurs when the input voltage changes while the circuit is
in hold mode. When this occurs, Al goes into saturation, since its feedback

is from the previous input voltage. When S recloses, the capacitor is charged

at a nearly constant rate from the saturated output of Al through the switch

resistance until its voltage essentially matches the new input voltage. At this

point, Al comes out of saturation and the output settles.

Figure 12-8 shows how linear charging of the hold capacitor contrib-
utes to distortion. For a one-unit change from one sample to the next, the
shaded error is one-half square unit. But for a two-unit change, the error is
two square units. Thus, the error is proportional to the square of the dif-
ference between successive samples. It’s not difficult to see how this can
generate a great deal of distortion, especially since slew times can easily reach

20% of the sample interval with this type of circuit.

If the step response is a normal inverse exponential instead of a linear

ramp, the error is directly proportional to the step size. This situation does
not cause any distortion, although it can affect the apparent overall signal
amplitude from the DAC when the steps are large (high signal frequency).

Figure 12-9 shows a simple SAH that can be designed not to slew
under any circumstances. If che values of R and C are properly chosen, then
the voltage change across C will never exceed (or even approach) the slew rate
of the amplifier. For example, if the DAC produces + 10 V and the R-C

time constant is 1.0 psec, then the maximum rate of change of capacitor

voltage (for a step of-10 V to +10 V or vice versa) would be 20 V/sec.
A standard high-speed op-amp such as an LM318, which is rated at 50

356 MUSICAL APPLICATIONS OF MICROPROCESSORS

eam Co mms ae pms Ee a SAH CONTROL HOLD

4 TIMES THE AREA

‘SLEW-LIMITED SAH SNE Y

Le ¢

EXPONENTIAL
-

RESPONSE SAH ’ TWICE THE AAT

x Hy

Fig. 12-8. Mechanism of slew-limiting distortion

Vipsec, would do nicely. One must be careful to limit the peak current
through the analog switch to a value less chan its saturation current or a
secondary slewing effect may be introduced. The offset cancellation and low
drift of the previous SAH circuit are simply not needed in audio applications
where dc cannot be heard and maximum hold times are around 10 psec.

Track-and-Ground Circuit

Another type of deglitcher that is suitable for audio DACs is called a

track-and-ground circuit. Essentially, it uses one or possibly two analog
switches co disconnect from the DAC and ground the filter input during the

period that the DAC is glitching. In doing so, problems with SAH slewing,
hold capacitor nonlinearity, and even part of the switching transient are

neatly bypassed.
Figure 12—10 shows a simplified schematic of a two-switch track-and-

ground circuit integrated with a sign-bit switch for a sign-magnitude DAC.
The A and B switches select between straight DAC output and inverted DAC
output according to the desired polarity. However, both are open while the
DAC is settling at a new voltage level. Switch C grounds the filter input
during the turn-off transient of A or B, the DAC settling time, and the
turnon of A or B. Although the grounding is not perfect due to on resistance
of C, it substantially attenuates feedthrough of DAC glitches and transients
from A and B. The only transient seen by the filter is from switch C itself and
most of that is shunted to ground. Finally, since there are no amplifiers in

the switching signal path, there is nothing to slew.
There does appear to be a drawback with the circuit, however. Rather

than getting a stairstep approximation of the audio waveform, the filter gets
pulses of constant width and variable height. Actually, the mathematics of
sampled waveform reconstruction are derived on the assumption that the
samples entering the filter are of zero width and varying but infinite height.
Fortunately, the only effect of finite width pulses is a slight reduction in the

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 357

Fig. 12-9. Simple nonslewing SAH

amplitude of high-frequency reconstructed waves, or simply a loss of treble.
A pure stairstep approximation such as from an ideal DAC or SAH deglitcher
is actually a train of pulses with width equal to the sample period.

The graph in Fig. 12-11 shows that even this is a relatively minor

effect. The stairstep approximation is down nearly 4 dB at the Nyquist
frequency but only about 1.32 dB down at 60% of the Nyquist frequency,
which represents a 15-kHz signal at a 50-kHz sample rate. With pulses half
as long as the sample period, a reasonable value for the previous track-and-
ground circuit, the corresponding figures are 0.912 dB and 0.323 dB. In any
case, the high-frequency droop can be compensated for in the low-pass filter.

Rt

CAC
OUTPUT

To
AWA al

SWITCH B FILTER
DRIVER

SWITCH A SWITCH C
DRIVER DRIVER

*ULTRA-MATCHED RESISTORS

pac + fv M yw,
OUTPUT

oN
Swircu OFF

ON
Swircn OFF ae oe

ON
SwiTcH ore —I Lares

FILTER *
inpur + _,—T 1

Fig. 12-10. Track-and-ground circuit

358 MUSICAL APPLICATIONS OF MICROPROCESSORS

Low-Pass Filter

The final component of the audio DAC system is the low-pass filter,

which removes the sampling frequency and unwanted copies of the signal

spectrum. Not all audio DAC/ADC applications require the same degree of

filter sophistication, however. A DAC application at a 50-kHz sample rate,

0 25%

50%

100%
(STAIRSTEP]

AMPLITUDE, (dB)

0
0.005 0.007 0.0! 0.015 0.02 0.03 0.04005 0075 0.1 GIS 02 0.3 04 05

SIGNAL FREQUENCY AS A FRACTION OF THE SAMPLE RATE

Fig. 12-11. Effect of finite DAC pulse width on high-frequency amplitude

for example, really needs a filter only to avoid burning out tweeters and
interfering with the bias frequency of tape recorders. The ear itself is quite
capable of filtering everything above 25 kHz. DAC applications at substan-
tially lower sample rates need a reasonably good filter because the alias
frequencies are audible. A sample rate of 15 kHz, which would give good
AM radio quality, would produce quite a harsh sound if frequencies above
7.5 kHz were not attenuated at Jeast 30 dB to 40 dB. Audio-to-digital

conversion at low to medium (10 kHz to 30 kHz) sample rates requires the
best filters’ because high-frequency program content, which usually cannot be
controlled, may transform into quite audible lower frequencies upon digitiz-
ing.

Low-Pass Filter Model

Figure 12-12 shows a model low-pass filter shape that all real low-pass
fileers resemble to some extent. The passband is the set of frequencies that
the filter passes with little or no atrenuation and extends from dc to the cutoff
frequency. The stopband extends from the cutoff frequency to infinity and is

DiciraL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 359

the set of frequencies that the filter attenuates substantially. The cutoff slope
is a measure of how shatply the filter distinguishes between passband and
stopband regions. An ideal low-pass filter would exhibit a perfectly flat
passband, an infinite cutoff slope, and complete signal attenuation in the
stopband.

Cutoff frequency is not always a consistently defined term. For simple
filters, it is usually given as the frequency at which the signal is attenuated

(a8)

OUTPUT

CUTOFF FREQUENCY

PASSBAND STOPBAND

FREQUENCY LOG SCALE

Fig. 12-12. Model low-pass filter shape

by 3 dB or co about 70% of its low-frequency amplitude. For more sophisti-
cated filters, it is the lowest frequency at which cutoff becomes evident. In
either case, the cutoff frequency merely marks the beginning of noticeable
attenuation and certainly should not be set equal to one-half the sample rate
in audio DAC applications.

In many cases, the cutoff slope of the filter is reasonably linear when
frequency is plorted on a log scale and the filter attenuation is plotted in

decibels (as is done in Fig. 12-12). On such a scale, frequency decades, which

are tenfold increases, and octaves, which are frequency doublings, are of
consistent length anywhere on the scale. Since the cutoff slope is approxi-

mately linear, it is convenient to specify it in terms of “decibels per decade”
or “decibels per octave” with the latter being the more common term. In
cases in which the cutoff slope is not constant, it is almost always steeper
close to the cutoff frequency than further out. In these cases, either the
maximum and ultimate slopes are both given or a composite figure, which is
the average slope over the first octave beyond cutoff, is given.

Sometimes che pole count is used to characterize the steepness of the
cutoff slope. In simple filters, the ultimate cutoff slope is always equal to the
number of effective reactive elements in the filter circuit times 6 dB/octave. A
reactive element is either a capacitor or inductor directly in the signal path

that is not performing a coupling, bypass, or suppression function. More
complex filrers may have an initial cutoff steepness greater than this but will

always end up with GN slopes well beyond cutoff.

360 MUusICAL APPLICATIONS OF MICROPROCESSORS

Actual Filter Requirements

In designing or experimenting with digital synthesis, one must make
an intelligent tradeoff among three key variables: desired audio bandwidth,

sample rate, and required filter performance. In general, the sharper the filter
cutoff, the lower the sampling frequency can be with respect to the highest
signal frequency.

As an example, consider a requirement for an audio frequency response
flat to 5 kHz and an alias distortion level of at least 50 dB below the signal
level. For an infinite cutoff slope filter, the sample rate could be as low as 10
kHz. Since that is out of the question, let us try a sample race of 12 kHz and

see how sharp the cutoff slope must be. The easiest way to determine this is
to consider the worst case, which is the synthesis of a single tone right at the
top of the frequency range, which in this case is 5 kHz. The lowest alias
frequency with the 12-kHz sample rate is 12-5 or 7 kHz and the filter
must atcenuate this by at least 50 dB, Assuming the cutoff frequency is 5
kHz, the interval from 5 kHz to 7 kHz is just short of one-half an octave
using the formula: Octaves = 1.443LN(FA/F/), where Fh and F/ are the

upper and lower frequencies, respectively. Thus, the cutoff slope would have
to be 95 dB to 100 dB/octave, a very high figure indeed. If the sample rate
were raised 25% to 15 kHz, the filter could go all the way to 10 kHz before
it must attenuate 50 dB. This gives a cutoff slope of only 50 dB/octave, a
much, much easier filter to implement. In most cases, these requirements

could be relaxed somewhat. It is unlikely that one would want to shatter
glass with a maximum-amplitude, maximum-frequency tone and then worry
about small fractions of a percent of alias distortion.

Both of the preceding examples assumed that the digital synthesis
system never tried to generate frequencies higher than 5 kHz. As will be seen

SECTION
!

SECTION
} 2 ‘i

SECTION
a

{A}

INPUT SECTION SECTION

(8)

iNPUT f—™ OUTPUT

Beet ouTPuT

Fig. 12-13. Methods of filter section combination. (A) Parallel method. (B)
Cascade method.

DIGITAL-TO-ANALOG. AND ANALOG-TO-DIGITAL CONVERSION OF AuDIO 361

later, it may be difficult to meet that constraint and still make good use of
frequencies close to 5 kHz. If a 6-kHz tone was actually synthesized in the
15-kHz system, the simple filter would pass its a/ias at 8 kHz with an
attenuation of only 33 dB. On the other hand, if one used the filrer designed
for a 12-kHz system with a 15-kHz sample rate, it would be permissible to
synthesize frequencies as high as 8 AHz without exceeding the -50-dB alias
rejection requirement. Note that 8 kHz is actually above one-half the sample
rate. Its alias frequency is therefore /ower than the signal frequency, but since

that is 7 kHz, the filter attenuates it adequately. The conclusion, then, is
that a yood filrer can either reduce the requited sample rate, simplify the
synthesis computations, or some of both.

Sharp Low-Pass Filter Design

Sharp low-pass filter design is itself an interesting topic that has filled
many books, usually with quite a bit of mathematics. Here we will just
discuss the general characteristics of various filter types so that the reader can
make an intelligent decision in choosing one.

The simplest type of low-pass filter is the single-pole R-C. Unfortu-
nately, its gentle cutoff slope of 6 dB/octave is totally inadequate for an audio
DAC, Also its passband flatness is not very good.

In order to get sharper slopes and flatter passbands, several filter sections
may be combined together. There are two methods of combination called
parallel and cascade, which are shown in Fig. 12—13. In the parallel setup, the
same raw input signal is filtered by each of the sections and then their
outputs are combined together, not necessarily equally, in the mixer. In the
cascade arrangement, the signal passes through filter sections one after
another. Thus, any filtering action of the second stage is in addition to that
of the first stage and so forth.

With the cascade arrangement, it is easy to determine the total

amplitude response if the amplitude response of each section is known. The
filter gain at any given frequency is simply the product of the section gains at
that frequency. If gains are expressed in decibels (usually negative, since a
filter is designed to attenuate certain frequencies), then the overall decibel gain
is simply the swm of the section decibel gains.

The overall response of the parallel arrangement is considerably more
difficule to determine, since the phase response of the sections must also be

known. If the section outputs are out of phase, which is the usual case, then

their sum in the mixer will be /ess than the sum of their gains. Nevertheless,

there are certain advantages of the parallel arrangement. Also, for the types of
filters that will be discussed, any response curve chat can be obtained with
one arrangement can be precisely duplicated using the same number of
sections of the same complexity wired in the other arrangement, alchough
the individual section responses will be different. Thus, for convenience, the

examples will use the cascade arrangement.

362 Musical APPLICATIONS OF MICROPROCESSORS

I SECTION

14 yy a 8

GAIN (48)
ow 8

-6 1
0.02 0.03 0.05 0.0701 O15 02 03 05 O7 10 1.520 25 5.0 7.0 10.0 15.0 20.0

FREQUENCY (kHz)

Fig. 12-14. Iterative R-C filter performance

Iterative R-C Low-Pass Filter

Returning to the simple R-C filter, Fig. 12-14 shows what can be done
by cascading these simple sections using a unity-gain buffer amplifier be-
tween each section for isolation. The curves are all normalized so that the

—3-dB frequency is the same for each curve. For any individual curve, all of
the sections are identical. However, each curve requires sections with a
different cutoff frequency. As can be seen, adding more sections improves

4

Gain (dB)

Hl Ss

~30

35

40
0.02 0.03 0.05007 0101502 03 05 07 10 15 20 30 50 70 10 15 2

FREQUENCY (kHz)

Fig. 12-15. Two-pole R-L-C filter section performance

DIGITAL-TO-ANALOG AND ANALOG-TO-DiGITAL CONVERSION OF AUDIO 363

~2

GAIN (4B)

-55

=
7.0 10.0 15.9 20.0 2 ne

60 1
0.02 0.03 0.05 007 0.1015 02 03 05 07 10 15 20 30 51

FREQUENCY (kHe)

Fig. 12-16. Cascaded two-pole R-L-C filter performance. Q = 0.707.

cutoff slope, although passband flatness is affected only slightly. However,
even 32 sections does not give a very sharp cutoff for the first 50 dB, which is
the most important region for sample filtering. Using the 32-section filter,
the sample rare must be 5.45 times the —3-dB frequency to be assured of
—50-dB alias distortion. This type of filter is termed “iterative R-C” and is
used primarily where overshoot and ringing cannot be tolerated in the step
response.

R-L-C Filters
Another basic type of low-pass filter section is the two-pole R-L-C

resonant type. This filter has an ultimate slope of 12 dB/octave/section.
What makes it interesting is that a response shaping parameter, Q, is avail-
able. Figure 12—15 shows the response of this type of filter section with

different values of @. When Q = 1/2, the response degrades to that of a two
section R-C. Higher Qs tend to “pump up” the gain just below cutoff and

increase the slope just after cutoff. Unfortunately, @s much above 1 create an
undesirable peak in the response.

Now, how about cascading these improved sections? Figure 12-16

shows the result when various numbers of @ = 0.707 section are cascaded.
Note that just 8 sections, which is only 16 reactive elements, gives a better
response than 32 R-C sections. Since there was no response peak in any of the
sections, the overall response is also peak-free. With the 8-section filter, a

sample rate 3.44 times the cutoff frequency would be suitable for an audio
DAC.

Butterworth Response
Even this level of performance leaves a lot to be desired. Fortunately, it

is possible to merely adjust the Q factors of the sections and obtain better

364 Musica. APPLICATIONS OF MICROPROCESSORS

SECTION 2

\
COMBINATION

SECTION I

GAIN (4B)

-60.
“02 0.03 0.05 0.07 OF 05 62 03 05 OF 10 15 20 30 50 70 10 15 20

FREQUENCY (kHe)

Fig. 12-17. Individual section response of two-section Butterworth

performance yet. Using a two-section filter as an example, the trick is to
increase the Q of the second section so that the resulting peak in the section
response tends to fill in the rounded area just beyond cutoff of the first
section response. The result in Fig. 12-17 shows that this scheme is indeed
successful in improving the passband flatness just short of cutoff as well as
reaching the ultimate slope of 24 dB/octave soon after cutoff. Shown in Fig.
12-18 is the response of three-, four-, six-, and eight-section cascades. With

this level of performance, an eight-section filter allows a sample rate just
2.43 times the cutoff frequency.

One little detail that was not mentioned is how to calculate what the
section Qs should be to get the optimum benefit of this technique. First,
however, one must define rigorously what is meant by optimum. For the
curves in Fig. 12-17, optimum was taken to mean the flattest response possible
before cutoff and the steepest s/gpe as soon after cutoff as possible. The job is to
take the set of realizable response curves for the R-L-C section and approxi-
mate the shape of an ideal low-pass filter with the sum of a specified number
of them. The problem is not unlike finding the Fourier series for a square
wave in which the best combination of curvy sine waves to approximate the
square shape is determined.

The solution to the problem lies in evaluating what mathematicians
call Butterworth polynomials, named after the person who discovered them.
A filter based on these polynomials is called a Butterworth filter and gives
the sharpest cutoff possible when no peaks in the passband can be tolerated.
As such, it is often called a maximally flat filter. A Butterworth filter is

completely specified by giving the number of poles which is twice the section

DiciraL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 365

GAIN (4B)

é 8

81 \6 \4 \3 SECTIONS

55

-60 2
0.02 0.03 0.05 007 O1 015 O2 03 05 07 10 LS 2.

FREQUENCY (kHz)

30 50 70 10 1 20 °

Fig. 12-18, Butterworth filter performance

count. Although an odd number of poles is possible (one of the sections is a
simple R-C instead of R-L-C), it is rare. Four-pole Butterworth filters are

common, eight-pole units are considered fairly sophisticated, and 12- to 16-
polers are really super!

Chebyshev Response

In some applications, such as audio DACs, sharp cutoff may be more
important than absolutely flat passband response. After all, even the best
speaker systems have frequency response unevenness that can reach several

decibels, particularly in the upper treble range. With the technique of using

resonant peaks to fill in holes for better response, it is possible to get an even

sharper initial cutoff slope in exchange for a somewhat uneven passband.
Initial slope was emphasized because these, like all other poles-only filters,
have an ultimate slope of GN decibels/octave, where N is the number of

poles.
The basic idea is to adjust the resonant frequencies and slightly over-

peak the individual sections so that the drop just before cutoff is somewhat
overfilled. When this is done to a multisection filter, the Q of the highest Q
section can become quite large. Looking back to Fig. 12-15, it is seen that
the downslope of the @ = 8 response reaches a maximum value of nearly 54
dBfoctave just beyond the peak, although further out it settles back to a
normal 12 dB/octave. Likewise, the Qs of che overpeaked sections contribute

to an initial cutoff slope substantially greater than 6N dB/octave. Even
further out when the slope settles back co GN, the ground gained is retained,
resulting in greater attenuation at any stopband frequency.

366 MUSICAL APPLICATIONS OF MICROPROCESSORS

0 dB = BUTTERWORTH

GAIN (48)

1.0 4B\\0.25 48

Ol 012 0.15 0.2 025 03 04 0.5 06 08 10 12 14 16 18 20
FREQUENCY (kHz)

Fig. 12-19. Five-section Chebyshev filter response

The section cutoff frequencies and Q factors for an overcompensated
filter can be determined using Chebyshev polynomials. Whereas the Butter-
worth filter has only one shape parameter, the Chebyshev filter has two: the
number of poles and the passband ripple. The ripple figure specifies how

uneven the passband is allowed to be in terms of decibels. Thus, a 0.5-dB

Chebyshev filter has a maximum peak just 0.5 dB above the minimum valley
in the passband. As it turns out, the optimum arrangement of peaks and
valleys results in all of them being equal in amplitude; thus, the filter is said
to have equiripple in the passband.

Figure 12-19 shows two five-section Chebyshev filters with differing
amounts of ripple allowed plus a Butterworth, which can be considered to be
a Chebyshev with zero ripple, for comparison. Note that by merely allowing
0.25 dB of ripple, a reasonable amount for high-fidelity audio, that a 50-dB
attenuation is achieved at 1.30 times the cutoff frequency rather than 1.62.
This in turn would allow a sample rate as low as 2.3 times the cutoff
frequency.

Elliptical Response

Believe it or not, there is still something that can be done to improve
cutoff slope. The idea is to follow the basic low-pass filter with a band-reject
(notch) filter tuned just a little beyond the cutoff frequency in an attempt to
make the cutoff sharper. Essentially, the notch depresses the response just

after cutoff in much the same way that peaks improve the flatness just before
cutoff.

Unfortunately, to be effective the notch must be narrow. Thus, on the
other side of the notch, the response curve starts back up toward what it

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 367

|
-30 \

40
GAIN (dB}

-50

O4 i215 0.2 0.25 03 04 O05 06 0.8 To 12 14 16 18 20

FREQUENCY (kHz)

Fig. 12-20. Performance of 10-element elliptical filter

would have been without the notch filcer. At this point, another notch can be
inserted to press the curve back down again. This is continued until the
original filter curve has dropped low enough to be satisfactory without
further help. Figure 12-20 shows the response curve of a 10-¢element (it is no
longer meaningful to give section or pole counts) elliptical filter. With such
a filter, the sample rate could be a mere 2.19 times the cutoff frequency, the
best yet.

Such filters are called elliptical (also Cauer) filters after the mathemati-
cal functions that describe them. Three parameters are necessary to specify an
elliptical filter: the order, which is equivalent to the number of reactive

components, the allowable passband tipple, and the minimum allowable
stopband attenuation, also called stopband ripple. The latter figure is needed
in order to determine how closely the notches must be spaced. With such a
large number of variables, design tables for elliptical filters are almost impos-
sible to find and their design procedure is quite complex. So, although the
elliptical response provides the sharpest cutoff with the fewest number of
reactive elements, it is probably better for the home designer/experimenter to
stick with Butterworth or Chebyshev types.

Phase Shift

So far in this discussion the phase response of the low-pass filters has

been ignored. Regretfully, ic is a fact of life that the sharper a filter cuts off,
the worse its phase shift will be right before cutoff (the phase after cutoff is

368 Musica APPLICATIONS OF MICROPROCESSORS

re eee
2 @

FILTER OUTPUT VOLTAGE

By

@ | @ 8 4 § © * € & ® & @ B® @ 8
TIME (msec)

Fig. 12-21. Step response of five-section 0.25-dB Chebyshev filter (1 kHz
cutoff)

not important, since the signal is greatly attenuated). Poor phase response in
a filter also means poor transient response, which is evident in Fig. 12-21,

which shows the response of the five-section 0.25-dB Chebyshev to the
leading edge of a square wave.

The ringing waveform is due to the four peaked low-pass sections that
make up the filter. Since they are sharper, elliptical filters are even worse,
while Butterworth types, although much better, are still far from perfect. It

is important to realize, however, that, while this might be characterized as

poor transient response for a filter, it is quite good compared to normal audio
standards, particularly for speakers. The majority of the ringing is right at
the top edge of the passband, and, while it appears to imply a large peak in
the response, we have seen that it only amounts to 0.25 dB. Also note that
such an isolated step function should never come from the DAC, since it

implies the synthesis of frequencies far beyond one-half the sample rate.
Thus, this filter characteristic should not be confused with what hi-fi

critics term poor transient response, which is usually a mid- and low-

frequency phenomenon. In any case, a decision must be made between a
sophisticated filter and low sample rate or a simpler fileer with better tran-
sient response and a higher sample rate.

Finite Sample Width Compensation

Earlier it was mentioned that if the DAC output was actual steps or
pulses of finite width a slight high-frequency rolloff was inevitable. Figure
12-11 showed that the rolloff is about 3 dB for 100% width and less than 1

Dictral-1o-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 369

dB for 50% width at one-half the sample frequency. With reasonably good
filters, this would amount to no more than 2 dB of loss at the top of the

frequency range. For the utmost in fidelity, it may be desirable to compen-
sate for the rolloff, particularly if the pulse width is equal to the sample
period (stairstep DAC output). Correction for this effect can best be accom-
plished in the low-pass filter. Although it is mathematically possible to
design a filter with other than flat passbands, it is a very involved process.

If a Butterworth filter is being used, a slight rise in response just before
cutoff can be effected by raising the Qs of the lowest Q stages. This action
does not have much effect on the cutoff characteristics and in fact can be

expected to raise the 50-dB cutoff point no more than a couple of decibels.
Correcting a Chebyshev or elliptical filter is best accomplished by adding
another resonant low-pass section with a resonant frequency somewhat be-
yond the main filter cutoff frequency. Q factors in the range of 1 to 2 for the
added section will provide a gentle but accelerating rise in the otherwise flat
passband, which then abruptly cuts off as before. Any resonant peak in the
extra section will occur so far into the main filter stopband that its effect will
be completely insignificant.

Checking for proper compensation is really quite simple. The computer
is simply programmed to provide a sine wave frequency sweep over the useful
audio range. An oscilloscope connected to the filter output can then be
observed for maximum overall flatness as the compensation Q control is
adjusted.

Building a Filter

The first decision to be made in building a filter for an aduio DAC is
whether it is to be passive, that is, use real inductors, or active, using only

resistors, capacitors, and amplifiers. Nowadays, an active implementation is

chosen almost automatically for any audio-frequency filter. The lise of appar-

= ie)
R

INPUT Oh © OUTPUT

Ga. F, and Q are known, then
 » 60r c2

1
Ro oe aie

Fig. 12-22. Sallen and Key resonant low-pass section

370

OUTPUT
{DRIVE FROM
4 ZERO
IMPEDANCE
SOURCE}

MUSICAL APPLICATIONS OF MICROPROCESSORS

Ri

ca
(PF)

4.200

19,360
16,133
12,910

9,680

9,680
9,680

Sample 3-dB A1 C1 c2 A2

Rate’ Cutoff (k2) (pF) (PF) (2)

(kHz) (kHz)
3 2.67 15.2 17,360 7,500 14.9

10 3.33 16.2 13.900 6000 14.9
12 4.0 15.2 11,590 5,000 14.9
15 60 122 11590 5,000 14.9
20 667 9.14 11,590 5,000 14.9

25 833 7.311190 5,000 11.9
30 10.0 6.09 11,590 5,000 9.93
40 19.34.57 11,590 5,000 7.45 9,680

C4

(PF) (kM) (PF

64.190

51.353

51,353

$1,353

51,353

51,353

51,353

51,353,

1,250
4,000

833

667

500

500

500

500

15.4
15.4
12.8

10.3

7.70

616

5.13
3.85

‘Filter response is down 40 dB at 1/2 sampling frequency

(ay

(pF)

200

>
NH

Sample
Rate”
(kHz)

co
(pr

308 RY
Cute (KO)
{He}

3.08 1274
985 1274
4.82 1274
S77 1274
789 1274
9.82 1019
15 Bao
164 637

a
(pF)

ce
(pF)

Re
(ka)

C4
(pF)

Ra
ky

19,700
15,780
13.130
10,500
7.880
7,880
7,880
7,980

1.250
10,008
8.336
6.987
5.000
5.000
5.000
5,000

19.99 17,400 2,500 15.61
15.99 13,918 2,000 18.61
15.99 11,600 1,867 15.61
15.99 9,280 1,933 15.61
1599 6,959 1,000 117%
12.79 6,989 1,000 9.37
10.66 6,959 1.000 7.81
8.00 6,959 1,000 Ses

“Filter response is dawn 50 dB al 7:2 sampling trequency

(8)

cs
(FY

22,450
17,980
14,970

11,975
11,975
11.975
11,975

cs Ra
(pFy (kay

o7
(pF)

cA RB
(oF) (kn)

937 13.97 a0,250 450 15.84
750 1857 30,200 360 13.82
625 13.57 26,896 300 17,52
300 19.85 26.896 300 9.27

B14 26,696 300 691
65) 26,806 300 5.68
5.43 26.896 300 461
4.07 26,836 300 3.45

OOUTPUT

=e OFtaMPs
= Male

ca oto
(oF) (pF)

100,000 109
91.680 100
91689 100
91,680 100
91,680 100
91,880 100
91.680 100
31,690 100

Fig. 12-23. Design data for active Chebyshev filters. (A) Three-section 1-dB
tipple. (B) Five-section 0.25-dB ripple.

DiciraL-To-ANALOG AND ANALOG-TO-DiGiTaL CONVERSION OF AUDIO. 371

ent advantages is long, but most of them are the result of eliminating induc-
tors.

Two possible picfalls must be avoided when designing a sharp active
low-pass filter for use with a DAC, particularly 16-bit units. One is noise in
the amplifiers, especially since several will be in the signal path. The other is
distortion and possible overload. Remember that a 16-bit DAC is capable of
distortions on the order of 0.0015%, so just about any amount of amplifier
distortion is going to be excessive. Active filter configurations that require
high-gain wide bandwidth amplifiers should therefore be avoided.

Of the three best-known configurations for a resonant low-pass section
(Sallen and Key, multiple feedback, and state variable), the Sallen and Key

circuit shown in Fig. 12-22 has many important advantages. First, it is hard
to imagine a circuit using fewer components. Also, the filter characteristics
are relatively insensitive to component variations. Most important, however,
is the amplifier requirement, a simple unity-gain buffer with ideally infinite
input impedance and zero output impedance. Such an amplifier is very easily
constructed with an ordinary op-amp, special voltage-follower op-amp, or
discrete components. Since the gain is unity, the output noise amplitude is
nearly the same as the input referred noise level, which is what appears on the
amplifier spec sheet. Also, the frequency-independent 100% feedback
minimizes the amplifier distortion. About the only negative aspect of the
circuit is chat high Q factors require a large spread in capacitor values.
Therefore, one must be careful not to let C2 get so small that amplifier input
capacitance becomes a significant factor.

Figure 12-23 and Table 12-1 give design data for Butterworth and
Chebyshev filters using Sallen and Key sections. In Fig, 12-23, complete
data including component values is found for a five-section 0.25-dB and a

three-section 1-dB Chebyshev. The former is recommended for ultra-high-
fidelity applications, while the latter is quite suitable for experimentation. In
fact, it is common practice to utilize two different sample rates in computer
music applications. The lower rate would be used for experimentation and
fast turnaround where quality is not overly important, while the higher rate

would be used for the final performance. Thus, one good filter would be
constructed for the higher rate and one or more of the simpler types would
satisfy experimental needs. Table 12-1 provides data that can be used to
design a filter with nearly any number of sections, ripple amplitude, and
cutoff frequency. When selecting components for the filter, be sure to use
5% or better polystyrene capacitors and 1% metal film resistors, particularly
with four or more sections. A good amplifier to use is, believe it or not, an
LM318 high-speed op-amp, which gives acceptably low noise and total
freedom from slewing distortion.

MUusiCAL APPLICATIONS OF MICROPROCESSORS 372

2
8
 ve

p
e
o

€89'S
ose'e

619%
B
r

t

2
0
4

S28S°0

SS66°0
2
e
s
6
'
0

2
5
8
8
0

9
6
2
2
0

€
9
7
9
'
0

o
z
6
r
'
0

08ze'0
9981'0

raat
8

o
r
e
e

b
e
d

eor'y
v
6
L
e

862'L
y80'l

‘188S'0

+
6
6
0

6S76'0
€
2
9
8
'
0

2
8
1
2
0

6
e
s
s
0

€2Ze'0
g
2
l
2
0

O
L

2

B
E
 LE

e
e
l
'
s

e
e
e

e
s
e
t

O
O
L
L

0685'0

0
2
6
6
0

SL26'0
s
e
o
s
'
0

v
l
e
g
o

9
6
2
7
0

69¢2'0
e
k

3

v
e
l

926ee
9v0'e

8Z1'b
906S'0

2
8
8
6
0

ye6e'0
2
6
2
2
0

$90S'0
Ov62'0

e
e
k

s

2
6
0
8

g
s
r
2

p
e
r
t

bE6s'O

8z86'0
e
6
r
e
'
0

6219'0
€Z96'0

es'h
v

6
9
7

eee'l
266S'0

2
1
2
6
0

8292'0
8
8
9
7
0

S
e
t

€

s
e
t
e

0619'0
16r6'0

1679'0
ogre

@
v
l
9
2
0

12e6'0
65°91

I

e4
—

8
2
8
5
0

Z
2
y
s
o

9
0
S

0

$
1
S
O

r
I
s
S
d

E
R
S
O
D

z
Z
p
s
o
d

t
y
s
o
n

a
n
e

S
U
O
I
a
S

{0 JOQUININ

e
w
s
d

2
0
8
4

9
2
S

4

$ I
S

4

r
r
y
s
a

e
w
s

e
v
g
a

L
y
p
s
d

o
s

O't =
Aouenbay

yong
gp

10
=
addy

bons
eel

h
1
9
0
°

7
8
8
2
0

8969°0
699S'0

s7cs'0
vz0s'0

e
r
 t

8
99r'r

PIS L
L0r6'0

12020
$06¢°0

2625'0
Z£0S'0

1S*h
Z

les'e
20€"L

e128°0
Z0E90

ZtrS'0
er0s'0

19h
9

961'E
LoL

12020
z19S°0

290S'0
eb

s
e9s'z

66680
vl09'0

8605'0
$02

’
ze6'L

12020
9ZbS'0

192
€

SOE'L
LLps'O

eb
2

1202°0
6LLt

L

epson
248S0

9NSD
S
s
d

FPSO
FeSO

ZHSO
1HSO

‘4
Suo;}9ES Jo JaqUnY

s
y

O'L
=

A
o
u
e
n
b
e
y

uonses

=
A
o
u
e
n
b
a
y

y
o
n
g

(yuonvenng)
GP

oO =
s
/
d
i
y

su
ay
ly

As
ys
Aq
ey
y

41
05

Be
q

UB
ls
eq

"1
-2
1

e1
qe

L

DiGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 373

€9r't

c
o
o
r

S6'rL
s
é
v
e

9vg's
e
s
z
€

b
l
v
™

€029°0
SS66'0

9
2
8
6
0

cees'0
2
9
2
2
0

1079°0
E
L
e
r
o

6
8
0
0

eZeh'0
beh

8
s
o
s
e

o
e

Lb

O
v
e
'
s

0
0
°
F

S
w
e

Z
e
v

o1zg°0

Ov66'0
6rr6'0

v6P3"0
2
2
1
2
0

9
2
5
0

Olse’0
6
2
9
1
0

v
e

zZ
L
e
S
e

6
'
s

aly
y yo
o
"

8
6
r
L

022z9°0

8
6
6
0

2
9
2
6
0

9
8
6
2
0

8
6
1
9
'
0

o
g
0
r
'
0

S
6
1
0

6
L
L

9
LO6L
g
a
t
a
s

v
6
s
'
c

g
e
s
t

2€29°0

Z886'0
9
6
3
0

6
4
1
2
0

l
o
s
r
o

pee
0

g
a
b

S
P
S
E

6
9
r
e

Z
O

k

6
9
2
9
0

6
1
8
6
0

£
0
7
8
0

rv8s'0
6
8
2
0

o
r
l

v

oes"9
Z
e

6e89'0
6
8
9
6
0

£
s
€
Z
0

€62E°0
zeil

€
pre’?

SS0Z°0
9
4
6
0

S
c
r
s
'
0

80'€
ro

2E98'0
2
4
9
8
0

p
e
s
t

L

4

8
1
9
5
0

£
1
5
0

9
”
S
O
D

s
y
s
o

e
S

e
N
s
S
O

2
v
s
n
d

£
1
9
8
0

a
e

s
u
o
a
e
s

JO 4
a
q
U
I
N
N

a
p
s
4

2
g

4 9S

4 g
s

P
s
d

e
i
s

2
n
s
g
d

1
g

Oey
= Aouenbexy
y
o
n
g

g
p

g
o

= ad
d
y

8
g
°
B
E

es/el
S
e
b

9S9'r
a
s
h
e

160°2
g9sel

Srcg'0

S
S
6
6
0

8
2
9
6
0

2res'0
S2Z220

szv9'0
ssePr0

v
a
l
e
o

gegL'0
BRL

8
9S 62

1es'6
e
e
s

L98°¢
isl'@

892°1
igz9°0.

bP66°0
€
S
6
'
0

2s08°0
t
G
L
2
0

OZ¢S°0
v
6
S
E
0

s98t'o
S
h
L

Z
6
r
L

12

8
2
6
9

€
9
L
e

e
g
c
e

2
8
2
°

1929°0
6
1
6
6
0

7
9
2
6
0

so08'0
€
v
e
o
'
0

e
s
i
r
o

6
9
1
2
0

bee
9

P
S
L

6eL
Pb

L
e

B
E
L

£
4
2
9
0

8
8
6
0

t968°0
veel
0 90
6
r
'
0

8
8
5
2
0

o
e

S
6
2
2
6

See?e
S
B
e
L

L0E9'C

e
c
8
6
'
0

BErs'0
8
S
6
S
'
0

Loze’0
8
h

v
L
e
g
g

Z
s
s
t

€Ze9°0
0
0
2
6
'
0

L
9
¢
2
0

rLir'o
B
e
t

€

6es'2
szs9°0

ber6'0
e68s'0

O
c
é

4
©
6
0
8
0

£
6
6
8
0

oo'ot
b

a

5

8
R
S
O

2
2
8
0

9
9
S

0D
S
N
s
o

b
s
o

€
v
p
s
o

e
v
s
o

£
5
0

—

SUONnDaS
JO J

O
q
U
N
N

e
n
s

£
v
s
d

9
1
S

4 SP
S
4

P
P
S
A

e
v
g
a

e
n
s

L
w
S
d

S
4

O01 = Aouenbey yong gp Sz0 = addiy

MUSICAL APPLICATIONS OF MICROPROCESSORS 374

O
L
S

S
6
6
0

&
P
s
o
d

8
S
4

v
a
e
L

€s'0L
0L8°9

e
r
o
"

Lv0'e
Z
é

9
6
0

0€88"0
15220

L8e9°0
622¢0

szo'e
L
e
r

80°PL
esa'2

6r6'P7
v
e
r
e

v6L
4

Ov66'0
9br6'0

s
e
r
e

80120
68ES'0

6ere'0
L
e
e

zeoL
o
e
s
’

18ve
oze't

8166'0
1Sz6'0

9
9
6
2
0

0
9
1
9
0

og6e'0
62°ee

r6'9
O
S
'
s

29e"b
1886°0

E
6
8
0

arllzo
elér0

92'Ph
OLe'r

8S6b
St86'0

€2ze8'0
9rdo'0

Z10'8
0022

6296'0
19220 29S e cee

Z2vYSO0
9
1
8
0

S
P
S
O

r
y
s
o

€
n
y
s
o
d

zenpso
2
S

4
9
8
S

4

g
p
s
a
4

r
y
s
d

6
2
S

4
e
n
g

(2U09)
“b-Zb

P1981

t9
p2
°0

bzeLo
Ont

a

69¢2'0
40St'0

ebb
Z

08r2'0
SSZL'0

S
t

g
6
6
2
0

6
6
0
2
0

9
a

s
sesz'0

8
0
9
2
0

e
v

v
£
1
9
2
0

cere'o
a
L
b

&
osez'0

v96r'0
s
o
c

@
£
9
5
6
0

s6¢8'0
2éPb

t

e4

i
n
e
g

-
-
—
<
—
-
=
*

S
U
0
}
D
E
S

J
O

J
E
Q
U
I
N
N

E
S
A

ned
OL

=
Aouanbay

y
o
n
g

gp
o'L

=
ejddiy

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 375

The last concern is the order of the sections in the cascade. Mathemati-
cally, the order is not significant but in real life it can make a substantial
difference. The problems are most acute with the highest Q section. The high
Q means that internal amplifier noise frequencies in the vicinity of the
resonant peak will be amplified. It also means that large-amplitude signals
tight at the peak frequency can be amplified to the point of overload. To
minimize noise, the highest Q section should be placed first, right after the
DAC. Here, noise at the resonant frequency will be considerably attenuated
by subsequent stages. Unfortunately, since it sees raw DAC output, certain
data patterns could severely overload it. Thus, if an op-amp buffer is used in
the filter sections, the fowest Q section should connect to the DAC with
successively higher @ sections following toward the output.

Passive Implementation

Even considering the advantages of small size, inexpensive compo-
nents, etc., passive implementation of the filter does have some advantages.

For one, it is possible (but quite difficult) to design the filter using no
amplifiers at all, thus eliminating amplifier noise and distortion concerns.
Even when amplifiers are used to isolate the sections in order to simplify the
design, they must only transform impedances (high input impedance and
low output impedance) with unity gain, which does not even have to be
exactly unity. The L-C networks are very easy to tune, which is necessary

with the higher order filters. Finally the notch sections, if used, are easier to
implement and tune.

INPUT

“DRIVE FROM AN OP-AMP OUTPUT OR SUBTRACT THE SOURCE IMPEDANCE FROM Ry

Sample 3-08 ct ca c3 food cs cé C7 at L2 3

fates cutoth PF) EF) PF) F) (mH) (mH) (mH)
(kite) teeta)
a 336 17,700 22.950 18.875 12.575 1,625 5,000 9925 267.5 2U93 1648

10 420 14,960 18.380 15,100 19.080 1.300 4.000 7480 2148341318
12 504 11,860 15,900 12,582 9.983 1,083 3,933 8.217 «1783 1828 108.7
18 830 9440 12240 10.007 6,707 BHT 2OG7 4973 HR TRAST.
20 40 7.080 9.183 7.850 5.030650 «2,000 3,750 107 nt es
25 1050 $664 7,344 6,040 4,00 © 520 1,600 Bese 56734 SS
20 1261 4.720 6120 5.033 3353 43319932487 719.43.
40 1681 3.640 4.590 9,775 2815 92510001865 83H ASA aR
“Filter response 1s down 50 48 at 1/2 sampling frequency

Fig. 12-24. Passive implementation of 10-element elliptical filter. Source: The
Technology of Computer Music. MIT Press, 1969.

376 MusIcaL APPLICATIONS OF MICROPROCESSORS

STROBE
f—* DAC

REGISTER

+5V

SWITCH C
CONTROL

+5

SWITCH
}—> AAND 8

CONTROL

(A)

Fig. 12-25. (A) Timing generator.

On the minus side, the inductors are susceptible to hum pickup from
stray magnetic fields and therefore should be of torroid or pot core construc-
tion and kept away from power transformers. Also, it is conceivable that
nonlinearities in the magnetic core could contribute a slight amount of
distortion so relatively wide air gaps within the core should be used. Inductor
size and Q are not much of a problem because the section resonant frequencies
are typically in the high audio range.

Figure 12—24 shows a passive implementation of the 10-element ellip-
tical filcer whose amplitude response was shown in Fig. 12-20. ‘Vables of
element values are given for common sample rates. For a filter this sharp, the
elements must be accurate, at least to 1%. This is normally accomplished
with an impedance bridge, a bunch of polystyrene capacitors, and a supply of
ferrite pot cores and magnet wire. The pot cores usually have tuning slugs,
which simplify the task of getting exactly the right inductance. The source

driving the filter should have a 5K resistive impedance, while the amplifier
shown at the output provides a 5K load. These values are not especially
critical but should be held within 20% for best performance.

DiGrrau-To-ANALOG AND ANALOG-TO-DiGITaL CONVERSION OF AUDIO 377

ae NEGATIVE

16 BIT TWOS 8) BIO
COMPLEMENT|
DATA FROM § 83
USING 88
SYST! SYSTEMS

36
a5

DAC 169-168
DATEL SYSTEMS:

83 84
i 82 83
a 82

| 38 81
80

GNO +5V

+15 V

OiGiTAL = “ANALOG.
GROUND GROUND

REQUEST i
DATA -

STROBE
FROM Bae al
using “PreK 8
SYSTEM

47kO 7 47ko
+5¥

STROBE 100 pF =
——————— ease
REGISTER

(B)

Fig. 12-25. (Cont.) (B) DAC registers and DAC (digital side).

A Complete Audio DAC

Figure 12-25 shows a reasonably complete schematic of an inexpensive
yet high-quality audio DAC using the concepts developed in the preceding
sections. Ir is a 16-bit unit having 14-bit linearity at high signal levels and
uses the sign-magnitude method of coding internally. Maximum sample rate
is 50 kHz, although the filter shown is set up for a 25-kHz sample rate,

which corresponds to a 9.5-kHz audio bandwidth. Timing for the DAC and
analog switches is derived from a built-in crystal oscillator and counter
combination. Other sample rates can be accommodated by changing the filter

378 MUusICAL APPLICATIONS OF MICROPROCESSORS

5 pF

$0500!
IMO, 5% 2001, 1% (SIGNETICS)

20 oF hs
al sp

25kN, 1%
DAC

3
1200
(% 4 2 Sok 8

2
BALANCE toed] $2?

“ai ul ashe ate ou
FI rl ‘6
ta] GND —

REF OUT J

ry
REF IN =15V

= ANALOG +
° '$05200

(SIGNETICS)

ina SWITCH C Nse ,
CONTROL Le do

SWITCH A,B g : Wet
CONTROL {>< + +

he a} 1ko
NEGATIVE

> +15

mat 7 631 6.1 a

5,000

tae
GROUND RESISTANCE IN RAL

CAPACITANCE IN pF
(0)

Fig. 12-25. (Cont.). (C) DAC (analog side) and sign-bit amplifier. (D) Output
filter.

components and crystal. Total cost of parts using the indicated DAC module
should be considerably less than $200.

For best performance, the circuitry should be constructed over a ground
plane such as a piece of copper-clad vector board. There can never be too
many power-supply bypass capacitors. The digital circuitry should be kept
away from the analog elements as much as possible. In particular, the hold-
ing register should be right at the edge of the board, and its input data lines
should go immediately offboard to the host. Finally, the entire unit should

DIGITAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 379

SAMPLE PERIOD = 49 sec ————+ ma] [2.5 psec

of: fe|s s|e|

‘STROBE
DAC ps

TIME SLOT hojuhia|is}ielis o| 1 lelslals|ol7|a 9 19 ufiehis|is|is 4

switcH ON
ABB OFF

swrcuc ON J l l OFF

FILTER
INPUT

Fig. 12-26. Audio DAC timing diagram

be shielded, at least by steel front and back plates, and mounted in a separate
enclosure.

The timing diagram in Fig. 12-26 should be self-explanatory. The
strobe output from the DAC informs the host system that a new sample has
been latched from the data in lines and that the next sample should be made
available. The audio output signal is 10 V peak-to-peak in amplitude, which

should be enough to overcome minor ground-loop noise. Ground-loop con-
cerns may be completely eliminated in exchange for dc response by incor-
porating a standard 600-ohm line transformer into the unit. The ourput
amplifier can drive a primary impedance as low as 600 ohms.

Only two adjustments are necessary and both affect the sign-bit
amplifier. First, the offset pot should be adjusted so that the sample sequence
—1, 0, +1, —1, etc., produces a three-step staircase with all steps equal in

height (at 157 wl’ per step, a sensitive scope will be needed to see it at all).
Then the gain pot should be adjusted so that positive and negative full-scale
voltages are identical in magnitude. Again, this requires a highly accurate

differential or digital voltmeter co accomplish perfectly. The alternative is to
use ultramatched (0.005% to equal the DAC) resistors in the sign-bit
amplitier.

Audio Digitizing

At this time, let us take a brief look at analog-to-digital conversion of
audio. In a synthesis application, the major reason for digitizing audio is for

modification or source-signal analysis. Consequently, there is not as much
need for superdynamic range and distortion figures as with the audio DAC.

Like the DAC, an off-the-shelf ADC alone is not suitable for audio. A

block diagram of an audio ADC is shown in Fig. 12-27. The low-pass filter

380 MUSICAL APPLICATIONS OF MICROPROCESSORS

FAST
Neue PoWrpAss SAMPLE AND

FILTER HOLD

HIGH- SPEED.
DAC

FAST
COMPARATOR

ait ho
SAMPLE SUCCESSIVE
TIMING: APPROX
CLOCK LoGi¢

Fig. 12-27. Audio ADC

considerations are the same as those with the DAC except that high sample
tates do wot eliminate the need for a filter. The DAC used for successive
approximation must be reasonably fast in order to attain the higher audio
sample rates. For example, the settling time of the DAC plus the response
time of the comparator must be less than 2 msec if 12-bit conversions are to
be done at 40 kHz. This can be a very strict requirement if a fast sample rate
and high resolution for audio recording/playback is desired. The successive
approximation logic is as described in Chapter 7. The FIFO buffer holds the

last sample value converted until the host can accept it. As with the DAC,
the buffer may be as simple as a single register or a true multilevel hardware
FIFO. Uniformity of sample rate is just as important as before and therefore
should come from a crystal-controlled timing generator.

The sample-and-hold, however, performs a completely different func-
tion. Rather than gating out glitches, its job is to capture the input signal at
an instant in time and hold it long enough to be digitized. Slewing and
glitching are not important, but aperture time and aperture uncertainty are
critical for low noise and distortion in the converted results.

Figure 12-28 illustrates the job to be done by the SAH module. Acqui-
sition time specifies the interval between the sample command and the time
when the SAH is adequately following the signal. This time usually varies
with signal level but need not cause concern unless ic becomes longer than

the sample period minus the ADC conversion time. Even when the signal is
being followed, there is a finite lag in the tracking called tracking error. As

long as the lag time is constant, its only effect is a very slight reduction in
high-frequency response, but if it varies with signal amplitude, distortion
can be introduced.

When the hold command is given, there is a finite delay before the
sampling switch sterts to turn off, which is called aperture delay. Once the
switch begins to turn off, there is an additional delay before it is completely

DiGiTAL-TO-ANALOG AND ANALOG-TO-DIGITAL CONVERSION OF AUDIO 381

i]
HOLD DROOP SAH OUTPUT

APERTURE
OELAY eel

VOLTAGE

ACQUISTION
TIME "4

mame nn

nore ——4.__ SAMPLE —-

TIME

Fig. 12-28. SAH errors

H0L0 ———+l-—sampLe—

turned off, which is called aperture time, and is a critical audio SAH parame-
ter. It is critical because the partially off switch is highly nonlinear and
contributes to distortion. Aperture uncertainty is a variation in aperture delay
usually caused by variations in signal amplitude. It has the same distortion-
causing effect as variation in the sample rate. Both of these aperture errors
create distortion proportional to frequency and amplitude. Essentially, then,
the aperture is the effective time width over which the signal voltage is
measured and, much like a camera lens, a small aperture gives sharper focus
over a wider range of conditions.

Hold step usually is not important unless it varies with signal level.

One must wait until the turn-off transient decays before starting the conver-
sion cycle, however. Hold droop is almost never a problem, since the hold

time is a few dozen microseconds at most.
Often, it is helpful to have an automatic gain-control (AGC) circuit in

the signal path before the SAH and ADC to keep signal levels consistently
high. In order to retain information about the dynamics of the input, it

would be a simple matter to digitize the gain-control voltage in the AGC
circuit with an inexpensive 8-bit ADC module. Since this voltage changes
slowly, its sample rate could be as low as tens of hertz. Internally, the AGC
information could multiply the samples from, say, a 12-bit ADC into full

16-bit samples and restore the dynamic range. Note that the response speed
of the AGC circuit has no bearing on the accuracy of reconstruction provided
it is fast enough to suppress sudden, high-amplitude transients below the
ADC clipping point.

13
Digital Tone

Generation
Techniques

Because of its total generality, there can be difficulty in knowing where to
start in designing a direct digital synthesis system. Most often, though, the
fundamental concepts of analog synthesis, which have been proven through
years of use, form the basis for a digital synthesis system. Thus, digital
equivalents of tone generators, sound modifiers, and control mechanisms are
incorporated into the system, hopefully with improved characteristics and
flexibility. In fact, some direct synthesis software systems simulate a com-
plete “voltage’-controlled synthesizer along with provisions for simulated

patch cords! In this chapter, the digital equivalents of analog tone generators
will be described followed later by other tone-generation techniques that are
practical only in the digital domain.

One of the many strengths of digital tone generation is that the fre-
quency and amplitude of the resulting waveforms are extremely accurate and
stable with time. The user need have no concern whatever about the unpre-
dictable results that frequency and amplitude errors can create. Also, the
exact phase between two or more digitally generated tones can be controlled
to an equal degree of precision. Of course, tf slight relative errors are desired
for, say, an ensemble effect, they will actually have to be added in.

Although the previous chapter may have seemed to be preoccupied
with vanishingly low noise and distortion figures for the overall sound,
individual tones need not be of such high quality. For example, a slight

amount of harmonic distortion on a single tone is completely inaudible,
while even the effece of a larger amount is simply a slight change in timbre.
The equivalent amount of distortion in an ensemble of sounds would be very
objectionable because of the accompanying intermodulation distortion. Also,
super-signal-to-noise ratios for a single tone are not needed because sub-
sequent signal processing, which is what would change the amplitude, also

processes the noise, thus retaining whatever the tone’s S/N ratio is independent
of signal level. These are important points because, as will be shown later,
extra effort and computation time are necessary for ultra-low-distortion tone
generation.

383

384 MUSICAL APPLICATIONS OF MICROPROCESSORS

One of the big problems with the generation of tones of arbitrary

frequency and waveform is the avoidance of alias distortion. As it turns out,
it is quite possible, sometimes unavoidable, to digitally generate a tone
having frequency components above one-half the sample rate. When this
occurs, the higher frequencies are reflected down as lower frequencies that
then sail right through the DAC’s low-pass filter, no matter how sophisti-
cated. The audible effect is usually harsh distortion or excessive noise, and it

occurs even with single tones. The only way to positively avoid this source of

alias distortion is to avoid generating significant amounts of excessively high
frequencies.

Direct Waveform Computation

One of the easiest ways to generate tones digitally is to simulate the
opetation of an analog voltage-controlled oscillator. In an actual synthesis
program, the “oscillator” would probably be a subroutine that accepts some
arguments (control “voltages’’) such as one or more frequency parameters and

retufns one or more results representing samples on one or more output

waveforms. The subroutine would probably also require some carryover stor-
age from one sample to the next.

The analog VCO that was described in Chapter 6 consisted of three
major parts: control input acquisition, the sawtooth oscillator proper, and

waveshaping circuits. A digital equivalent will require the same setup. Con-
centrating on che oscillator part, it was seen to consist of a current source, an

integrator, a comparator, and a discharge (reset) circuit. Fortunately, the

digital equivalents to all of these are exceptionally simple and, most impor-
tant, require very little computation time.

Digital Sawtooth Oscillator

An integrator is an accumulator, somewhat like a bucket that inte-
grates the flow rate of water entering it. A computer accumulator is also an
integrator; ,it accumulates discrete-sized “pieces” represented by numbers
added to it via the “add’’ instruction. When a bucket overflows, it remains
full and only the excess water is lost. When an accumulator overflows, its

entire contents are dumped and integration starts anew. Thus, it should be
apparent that if one considers a number that is repeatedly added to a comput-
er’s accumulator to be a “‘current,’’ the accumulator contents to be the

integrator’s output, and the overflow phenomenon of binary arithmetic to be
a combination comparator/discharge circuit, one has a sawtooth oscillator
just like the analog one.

This can be clarified by examining the program segment below, writ-
ten in 8080 assembly language:

Dierrat. TONE GENERATION TECHNIQUES 385

LOOP ADD B ADD B REGISTER TO ACCUMULATOR
OUT DAC WRITE ACCUMULATOR OUT TO DAC
NOP WAIT 16 STATES FOR A TOTAL
NOP LOOP TIME OF 20US WHICH GIVES
NOP A 50 KHZ SAMPLE RATE
NOP
JMP LOOP ~ REPEAT

Assuming that the A register was initially O and that the B register
contains 1, the sequence of numbers that would be sent to the DAC would be
1, 2,3,4,.. . 125, 126, 127. Now, assuming twos-complement arithme-

tic, the next addition would try to produce 128, which, of course, overflows

the 8080's 8-bic accumulator, producing instead a result of —128. The
sequence would continue —127, —126,..., —2, —1, 0, I, etc., anda

full sawtooth cycle has been completed. The overflow from +127 to — 128
is simply the sawtooth flyback.

In a typical 8080, this loop would execute in 20 asec, giving a sample
rate of 50 kHz. Since 256 times around the loop are required for a single
sawtooth cycle, the sawtooth frequency will be 50 kHz/256 =195.3 Hz,
essentially G below middle C. Now, what if register B has the value 2 in it?
Register A, starting at zero would be 0, 2, 4,..., 124, 126, —128,
-126,..., —2, 0, 2, ete. It would take only 128 iterations for a

complete cycle, so the tone frequency would be 390.6 Hz, precisely twice
what it was. Other frequencies can be had by setting B to other values. Thus,
continuing the analog sawtooth analogy, the content of register B represents
the current into the integrator, although it will be called the /ncrement in the
discussion to follow.

Improving Frequency Resolution

Obviously, only a very limited number of frequencies is available with
this basic loop. Another way to change the sawtooth frequency is to change

the loop time and thus the sample rate. However, this would violate the holy

dogma of direct computer synthesis, which decrees that the sample rate shall
remain constant throughout the system.

Actually, the numbers in the accumulator and the B register should be
considered as fractions between —1 and +1. Thus, the accumulator starts at
0, increments in units of 1/128 to 127/128, overflows to — 128/128, con-

tinues to 0, and repeats. The B register can hold values of 1/128, 2/128,
3/128, etc. The sawtooth frequency is given by F = 50,000//2, where / is
the fraction stored in register B, the 50,000 is the sample rate, and the 2 is
because the sawtooth traverses a range of 2 units; from —1 to +1. In order

to get finer frequency resolution, it is simply necessary to specify the incre-
ment with more precision.

386 Musica APPLICATIONS OF MICROPROCESSORS

Increasing the accumulator and increment word length to 16 bits im-

proves frequency resolution considerably. A modified loop to do this is:

LOOP DAD B DOUBLE ADD BC REGISTER TO HL REGISTER

MOV A,H SEND MOST SIGNIFICANT BYTE OF HL

OUT DAC TO THE DAC
MOV A,H WAIT 5 STATES FOR 50 KHZ SAMPLE RATE

JMP LOOP REPEAT

Here registers H and L function as the accumulator with H being the

most significant byte, while registers B and C hold the increment with B
being most significant. The formula for frequency is the same as before, but
now the frequency resolution is 256 times better or about 0.75 Hz. Thus, if
it is desired to generate middle C, which has a frequency of 261.625 Hz, the
value of the increment should be J = 2F/50,000, which evaluates to

0.010465. Converted to fractional form with a denominator of 32,768, it

would be closest to 343/32,768 and therefore registers B and C would

contain 343 or the hex equivalent, 0157. The important point is that the

frequency resolution has been improved from an unacceptable 195 Hz to a
mere 0.75 Hz. Extending the fractions to 24 bits gives a resolution of 0.003
Hz (1 cycle/5 min), which for practical purposes makes frequency a continu-
ous variable.

One interesting property of the digital sawtooth generator is that the
increment can be negative as easily as it is positive. With negative increments,
the sawtooth slopes downward and underflows upward, just the opposite of
positive increments. This behavior satisfies the mathematical requirements
for a negative frequency, which is a handy property if dynamic depth fre-
quency modulation is being performed because then one does not need to
worry about possible negative frequencies.

Other Waveforms

Just as an analog sawtooth can be easily converted into other
waveforms, some simple computations are all that is necessary to transform
digital sawtooths. Programming for the conversion would simply accept a
sample from the sawtooth generator and return a sample of the converted
waveform. Perhaps the simplest is conversion into a square waveform. Saw-
tooth samples are merely tested to determine if they are positive or negative.
If positive, a value equal to positive full scale is produced, otherwise negative
full scale is sent out. Rectangular waves with the width specified by a
parameter are nearly as easy, simply compare the sawtooth samples with the
parameter rather than with zero.

Conversion to a triangular waveform requires a little more manipula-
tion, although it still parallels the analog operation. Full-wave rectification is

Dicrra TONE GENERATION TECHNIQUES 387

equivalent to an absolute value function, thus the first step is to test the

sawtooth sample and negate it if it is negative. A potential problem exists,
however, because there is no. positive equivalent of negative full scale in
twos-complement arithmetic. If this value is seen, simply convert to the
largest positive number which results in an ever so slightly clipped triangle
wave. The next step is to center the triangle, which is accomplished by
subtracting one-half of full scale from the absolute value. The result now is a

triangle wave but with one-half of the normal amplitude. A final shift left by
1 bit doubles the amplicude to full scale.

Conversion to a sine wave 1s most difficult. ‘he analog-rounding cir-
cuits used co do the job have as their digital equivalent either the evaluation
of an equation representing the rounding curve ot a table lookup. Of these
two, table lookup is far faster but does require some memory for the table.
The brute-force way to handle table lookup is to simply take a sawtooth
sample and treat it as an integer index into a table of sines. The table entry
would be fetched and returned as the sine wave sample. Memory usage can be
cut by a factor of four by realizing that the sine function is redundant. Thus,
if the sawtooth sample, 5, is between zeto and one-half full scale use the table

entry directly. If it is between one-half and full scale, look into the table at

1.0 — S. If S is negative, negate the table entry before using it.
Still, if the sawtooth samples have very many significant bits, the table

size can become quite large. One could truncate S by just ignoring the less
significant bits and looking up in a smaller table. Rounding is another

possibilicy that is implemented simply by adding the value of the most
significant bit ignored to the sample before truncation. As we shall see lacer,
rounding has no effect on the audible portion of the error. Generally, trunca-
tion is accurate enough if a reasonable size table is used. For example, a
256-entry table, which would require 512 bytes, using symmetry would be
the equivalent of 1,024 entries. The distortion incurred by using this table
would be approximarely 54 dB below the signal level, or the equivalent of
0.2% distortion. Actually, che kind of distortion produced will sound more
like noise so a S/N ratio is the more appropriate measure. At very low
frequencies, the noise amplitude will appear to be modulated by the signal.

Linear Interpolation

The most accurate approach, however, is interpolation between the sine

table entries. Linear interpolation gives good results for very gentle curves
such as sine waves and, if done perfectly, could be expected to reduce the
noise level to — 103 dB based on a 256-entry table with symmecry, which is
the limic of 16-bit samples anyway. Figure 13-1 shows generalized linear
interpolation and some important information about it. Essentially, the job

is to compute the correct value of F(X) given an arbitrary X, where X is che

sawtooth sample and F(X) is the sine sample. Xi and X2 are tabulated

388 MUSICAL APPLICATIONS OF MICROPROCESSORS

FKg) ---=-2- eee -- nnn noe

F(x) F(X) $---=-----------29

F(x)

a) ee i

' {
|

|
4
x ae

F (Xe) -F (Xs)
F(X) = FOG) + (K — Xs) Froo-ree)

Fig. 13-1. Linear interpolation

arguments, while F(X1) and F(X2) are the tabulated sines of those argu-

ments.
Due to the nature of the table and binary arithmetic, the computation

is actually simpler than it looks. Since the table is tabulated in equal incre-

ments of X, the quantity Xz — X1 is a constant. If the cable has a power
of two number of entries, then even the division by X2 — X1 is a simple
shifting operation. As a result, the overall computation is reduced to two
subtractions, an addition, and one multiplication.

As an example, consider linear interpolation in a sine table of only 64
entries using a 16-bit argument and assuming that the table entries are
signed 16-bit values. Let’s further assume that a separate table giving
F(X2) — F(X1)/(X2—X1) is also available, which will be called che first

derivative table and that its entries have been scaled to make the following
operations possible. Figure 13—2 illustrates binary linear interpolation.

The first step is to save the most significant 2 bits of the argument and
transform the remaining 14 bits into a positive, first-quadrant value. Next,
using only the 6 bits left in the upper byte, access the function table to get

F(X1) and the derivative table to get F(X2) — F(Xi)(X2—X). Fi-

nally, multiply the lower byte of the argument, which is X — Xi, by the
derivative and add the product (possibly shifted for scaling) to F(X 1) fetched
earlier. The derivative table entry need be only one byte long; therefore, the
multiply is an 8- X 8-bit operation, which can be quite fast even in software
on an 8-bit machine. Before returning, the two saved bits, which identify the

quadrant, should be examined and the function value adjusted accordingly.
The linear interpolation is so effective that this 192-byte table gives a sine
wave with 30 dB less noise than a 512-byte table using the brute-force
method. In practice, it would be up to the programmer to decide if the
memory savings and improved noise level are worth the extra computation
time, particularly if hardware multiply is not available.

Dietrat Tonk GENERATION TECHNIQUES 389

I6-BFT ANGLE WORD (x)

ares Pear
QUADRANT TABLE xX
SELECT LOOKUP in)

ARGUMENT
(x)

MULTIPLY —™

FIRST DERIVATIVE
_F (Xp) F(X)

ke = Xi

'
16-BIT
RESULT

Fig. 13-2. Linear interpolation in a sine table

Alias Distortion

So far everything sounds great; all of the normal analog synthesizer
waveforms are available in digital form with adequate frequency resolution
and are just waiting to be processed further. There exists, however, one
problem that can only be minimized and that is alias distortion from the
upper harmonics of most of these waveforms. When the algorithms just
described are used to generate samples on a waveform, the samples generated
are exactly the same as would have come from an ADC sampling the equiva-
lent analog waveform with no low-pass filter’ Thus, one would expect the
higher harmonics to fold back into the audio range and create distortion.

Before deciding what to do about the problem, its severity should be
determined. As a “best-case” example, Jet us assume a sample rate of 50
kHz, the use of a sharp 15-kHz low-pass filter in the output DAC, and a
1-kHz sawtooth wave. The idea is to add up the power in all of the unaliased
harmonics in the 15-kHz range and compare this with the sum of the aliased
harmonics that are i the 15-kHz range.

The power spectrum of a sawtooth wave is well known and is
Pn = Pifa*, where Pn is the power in the wth harmonic relative to the
power in the fundamental. Thus, the “signal” is 1 + 1/4 + 1/9...

390 Musical APPLICATIONS OF MICROPROCESSORS

+ 1/225 for the first 15 harmonics that lie within the range of the low-pass
filter. Harmonics 16 through 34 do zot contribute to the signal or the
distortion, since they or their aliases are above 15 kHz in this example.
Harmonics 35 to 65, 85 to 115, etc., contribute to the distortion. If the

calculations are carried out, it is found that the signal power is 1.58 units,
while the distortion due to the first-two groups of foldovers is 0.01717 unit
giving a S/N ratio of about 20 dB. Actually, if the example frequencies were
exact, the distortion frequencies would exactly overlap the signal frequencies
and would not be heard. However, if the signal frequency is not a submulti-
ple of the sample rate, then the distortion would be apparent.

This does not seem to be very good and in fact does not sound all that
good either. What’s worse, a 2-kHz signal can be expected to be almost 6 dB
worse, although lower frequencies can be expected to be better by about 6
dB/octave of reduction. The square wave is about 2 dB better, but a
rectangular waveform approaches 0 dB S/N as the width approaches zero.
The triangle wave S/N ratio is an acceptable 54 dB, and the sine generates no
alias distortion at all. In conclusion, the results are usable if high-amplitude,
high-frequency sawtooth and rectangular waveforms are avoided.

Besides restrictions in use, there are few options available for lowering
the distortion figure. One thing that can be done is to generate the trou-
blesome waves at a higher sample rate, pass them through a digital low-pass
filter operating at the higher rate, and then re-semple the filter output at the
lower system sample rate. For example, the sawtooth might be generated at
400 kHz, which is eight times the system rate and then fed to a simple
digital low-pass filter that cuts off at 15 kHz. Only every eighth sample

emerging from the filter would actually be used. With this setup, the S/N
ratio for the 1-kHz sawtooth would be improved to 38 dB. While the
computation time necessary to do this in software is much greater than that
required for some of the more sophisticated tone generation techniques, it
can be a viable hardware technique whereby simplicity of the algorithm often
outweighs computation time considerations because the digital hardware is
so fast.

Table Lookup Method

If direct computer synthesis is to live up to its promise of nearly infinite
flexibility and very high sound quality, then better tone-generation tech-
niques than the simulation of analog synthesizer oscillators will have to be
used. One of these involves scanning of precomputed waveform tables. An
important advantage is that the sample values stored in the table can in many
instances be selected so that alias distortion is not a problem. Another is that
microprocessors are far more efficient in looking up waveform samples than
in computing them from scratch.

Elementary tone generation by table scanning is just what the terms
imply: a simple loop is programmed to fetch the table entries one at a time

DicitaL TONE GENERATION TECHNIQUES 391

DIRECTION
OF SCAN

oN TABLE. POINTER
SAMPLE N+1

POINTER
INCREMENT

POWTER Pot
--—— SAMPLE N

32-ENTRY
16 WAVEFORM 0

TABLE

Fig. 13-3. Waveform table scanning

and send them to the DAC. When the end of the table is reached, scanning

should continue uninterrupted at the beginning. Each time through the
table is one cycle of the waveform. Figure 13-3 shows graphically a gener-
alized table-scanning process. Since the beginning follows the end, the table
can be imagined to be circular. The table pointer points to an entry and the
pointer increment specifies how far the pointer is to advance between sam-
ples.

If the number of table entries is a power of two, the ‘‘wraparound” can
be simplified. Essentially, an J-bit counter is programmed, where
I = logeN, and N is the number of table entries. The value of the counter
is used as a pointer into the table. When the counter overflows from
maximum count to zero, the pointer automatically starts at the beginning of

the table. Thus, tables of 256 entries are extremely convenient in an 8-bit

microcomputer, since the lower byte of the address pointer can be used as the
counter and the upper byte, which is the “page number” (block of 256
memory addresses starting at an address divisible by 256) of the table, is left

alone.

Controlling Frequency

As with sawtooth oscillator simulation, the frequency of the tone may
be changed by altering the time between lookups, but this amounts to
changing the sample rate. Thus, frequency control is achieved by changing
the increment from | to 2 to 3, etc. Note that this means that table entries

are skipped as the scanning proceeds. However, as long as the number of

392 Musical APPLICATIONS OF MICROPROCESSORS

ADDRESS OF “TABLE ENTRY

on 1
é | 3 BYTES IN L PAGE NUMBER TABLE PONTER |. Fach “IN

f INTEC MEMORY rai ae tl ah

IGNORE DOUBLE-AOD
CARRY EACH SAMPLE

TA ERENEREMERT: wer | ER pores RSEEMERT

Fig. 13-4. Table scanning in an &-bit microprocessor

entries skipped is less than one-half the period of the highest significant
harmonic in the tabulated waveform, nothing is lost and no audible noise is
added. If the number of entries skipped becomes Jarger than this, alias
distortion occurs. Also, the fact that each trip around the table is likely to be
different is of no significance, since the effect would be the same as sampling
a waveform at a rate that is not an exact multiple of its frequency.

As before, only a very few frequencies can be generated with integer
increments, so it will be necessary to extend the precision of the increment by
adding a fractional part. Now, the pointer increment and the table pointer are
mixed numbers having an integer part and a fractional part. Note that the
fractional part of the pointer implies some kind of interpolation between
adjacent table entries. For maximum speed, however, the fractional part of
the pointer can be ignored and the integer part used to select the table entry
as before.

A simple example should clarify this some. Let us assume a moderate-
performance direct synthesis system with a sample rate of 15S kHz and
waveform tables having 256 entries of 8 bits each. If a tone frequency of 220
Hz (A below middle C) is desired, the pointer increment should be 3.75466

accotding to the formula:] = NF/Fs, where | is the increment, N is the

number of table entries, F is the tone frequency, and Fs is the sample rate. In

an 8-bit machine, it is convenient to make the pointer and the increment

double-byte mixed numbers with the upper byte being the integer part and
the lower byte being the fractional part. Thus, the decimal mixed number,
3.75466 would have an integer part of 3 and a fractional part of 193, the

latter being 0.75466 multiplied by 256.
To get the next sample from the table, the increment would be

double-precision added to the pointer with overflow from the integer parts
ignored. Then the integer part of the pointer would be used to access the
table. If the microprocessor has an indirect addressing mode through mem-
ory like the 6502, then Fig. 134 illustrates how utterly simple these
operations are. A three-byte vector in memory is used for each tone. The
most significant byte gives the page address of the waveform table, while the
remaining two bytes are the pointer. An indirect load through the leftmost
two bytes of the vector are all that is necessary for the table lookup! In the
6502, the entire operation of adding the increment and getting the next

DiGtraL TONE GENERATION TECHNIQUES 393

sample from the table takes a mere 23 clock cycles, which for the standard
machine is 23 psec. While other microprocessors will be slower, this is a
highly efficient operation on all of them,

Ic is perfectly feasible to gradually change the pointer inctement in
order to gradually change the frequency. Thus, glides, vibrato, and even
dynamic depth FM can be accomplished by changing the increment as re-
quired. The only limit to che speed and magnitude of increment variation is
the FM sidebands that result. If they become broad enough, a portion may
spill over the Nyquist frequency and begin to generate alias distortion.

Table Size

A natural question at this point is, “How large should the table be for
an acceptable noise and distortion level?” Actually, there are two sources of
error in samples derived by table lookup. One is simply quantization error of
the stored samples, which can be made vanishingly small (— 100 dB) simply
by using 16 bits to store a table entry. The other error is the /wterpolation error
that occurs when the fractional part of the table pointer is nonzero. This
error, which is worst with no interpolation at all, can be made smail only by
using a large table and linear, quadratic, or higher order interpolation be-
tween the tabulated points. Thus, interpolation noise is likely to completely

dominate, and if it does not, the precision of the table entries should be
increased until it does.

Unfortunately, the average magnitude of the error, and hence noise, is

dependent on the waveform stored in the table. If the waveform can be
exactly described by a simple formula, a mathematician can always take the
formula and other parameters such as size of table, interpolation method,

sample rate, and DAC LPF cutoff and derive an exact S/N ratio.
A much simpler way to get a noise estimate is to simulate an ideal tone

generator and a table-driven tone generator and look at the difference in the
sample values generated. What is desired is the rms average of the ac compo-
nent of the difference, which represents the noise power. The ac component of

the difference is simply the actual difference samples with the long-term
average of the difference, which represents the inaudible dc component of the
error, subtracted out. Ic is also important that the two cone generators be

precisely in phase (truncating rather than rounding the table pointer intro-
duces a phase shift of m/N radians where N is the number of table entries)

otherwise the noise estimate will be excessively pessimistic.

The simulation is best done by choosing an irrational number such as
a for the pointer increment and obtaining several hundred to a thousand

samples from each generator and their differences. The rms average difference

is found by squaring the adjusted difference samples and adding them up.
The ideal signal samples are also “ac coupled,” squared, and added up. The

394 MUSICAL APPLICATIONS OF MICROPROCESSORS

1000 REM TABLE NOISE CALCULATE ROUTINE
1001 REM N-NUMBER OF TABLE ENTRIES | P=PHASE SHIFT DUE TO TRUNCATION
1010 N=256: P=1/(2*N)
1100 REM GET THE MEAN OF THE IDEAL SAMPLE STREAM AND THE MEAN OF THE
1101 REM DIFFERENCE BETWEEN IDEAL AND TABLE LOOKUP SAMPLES
1110 REM MI=MEAN OF IDEAL, M2=MEAN OF DIFFERENCE
1120 M1=0: M2=0: T1=0
1130 FOR I=1 TO 1000
1140 T1=T1+.314159
1150 IF T1>=1 THEN T1=T1-1
1160 T=TL
1170 GOSUB 2000
1180 MI=M1+S
1190 S1=S
1200 T=(INT(N*T1) /N)+P
1210 GOSUB 2000
1220 M2=M2+(S1-S)
1300 NEXT I
1310 Ml=M1/1000
1320 M2=M2/1000
1399 PRINT M1 M2
1400 REM GET THE AUDIBLE IDEAL SIGNAL POWER AND AUDIBLE NOISE POWER
1401 REM V1 IS SIGNAL POWER | V2 IS NOISE POWER
1410 V1=0: V2=0: T1=0
1420 FOR I=1 TO 1000
1430 T1=T1+.314159
1440 IF T1>=1 THEN T1=T1-1
1450 T=TL
1460 GOSUB 2000
1470 V1=V1+(S-M1)*(S-ML)
1480 S1=S
1490 T=(INT(NATL)/N)+P
1500 GOSUB 2000
1510 V2=v2+((S1-S)-M2)**2
1520 NEXT I
1600 REM PRINT RESULTS
1610 PRINT V1,V2,4.3429*(LOG(V1)-LOG(V2))
1999 STOP
2000 REM SIMPLE WAVEFORM SUBROUTINE, INPUT IS T, Os=T¢1 OUTPUT IS S
2100 S=SIN(6.283186*T)
2200 RETURN
3000 REM COMPLEX WAVEFORM SUBROUTINE, INPUT IS T, Ox=T<1 OUTPUT IS S
3100 A=6.283186*T
3110 S=SIN(A)+SIN(2*A)+SIN(3*A)+SIN(5*A)+SIN(8*A)+SIN(11*A)+SIN(14*A)
3120 S=SIN(17*A)+5
9999 END

Fig. 13-5. program to calculate table lookup interpolation noise

two sums, which represent noise and signal energy over the same test period,
are divided to obtain the S/N ratio.

Figure 13-5 is a program written in BASIC for estimating the S/N
ratio of the table lookup method with specified parameters. The subroutine
starting at stacement 2,000 should look at the variable 1’, which represents

time, and return the corresponding ideal tone sample by storing it in S. T
will always be between 0 and 1 but will never equal 1. The range of Ss
returned is not important but should be reasonable. The effect of a table
lookup tone-generation routine is simulated by quantizing T according to

DiGiTat TONE GENERATION TECHNIQUES 395

the specified number of table entries and calling the ideal cone-generator
subroutine.

The program executes in two parts. The first pact runs 1,000 samples
through and accumulates the mean of the ideal samples and the mean of the
difference. The second part runs another 1,000 samples to compute the rms
difference as described earlier. Phase shift due to truncation in the table
lookup is also corrected. When complete (the program may run for several
minutes on many systems) it prints a single number, which is the S/N ratio
in decibels. Note that this is an absolute worst case, since all noise frequen-
cies including those that would be stopped by the DAC’s filter are included.
A figure in better agreement with actual audible noise would be about 5 dB
better.

Figure 13-6 gives some results from running the program. Table sizes
of 256, 512, and 1,024 were tried with no interpolation and with linear

interpolation. Two waveforms were also tried, one being a simple sine wave
and the other being a fairly rich waveform having an equal mix of fundamen-
tal, 2, 3, 5, 8, 11, 14, and 17th harmonics.

A. NO INTERPOLATION

1. Sine waveform

a. 256 points 42.99 dB

b. 512 points 49.03 dB

c. 1024 paints 55.05 6B

2. Complex waveform

a. 256 points 23.56 dB

b. 512 points 29.55 dB
¢. 1024 points 35.41 dB

B. LINEAR INTERPOLATION

1. Sine waveform

a. 256 points 85.19 dB
b. 512 points 97.23 dB

G. 1024 points 109.28 dB

2. Complex waveform

a. 256 points 42.75 dB

b. 512 points 54.76 dB

¢. 1024 points 66.82 dB

Fig. 13-6. Worst case table noise for various combinations of table length,
stored waveform, and interpolation. (A) No interpolation. (B) Linear
interpolation.

396 MUSICAL APPLICATIONS OF MICROPROCESSORS

Filling the Table
Once a suitable table size and interpolation method has been deter-

mined, the remaining task is to fill the table with waveform samples. Since
the table is seldom, if ever, filled in real time, a variety of techniques is

applicable.
Probably the simplest method conceptually is drawing a waveform by

hand on a piece of graph paper (or a graphic digitizer) and then entering the
sample values into the table. Although simple in concept, there are a number

of constraints that should be kept in mind. One is that the table must
contain exactly one cycle of the waveform; therefore, the first and last sam-

ples are the same as any other adjacent pair and must be continuous. When
drawing, some forward planning is necessary to complete the cycle exactly at
the end of the scale. Alternatively, the cycle can be drawn freehand and the
grid lines added afterward in the proper scale.

This same constraint applies if one desires to capture a musical instru-
ment sound in a table. When digitizing the waveform, one possibility is to
simply adjust the sample rate and the tone frequency until one cycle exactly
fills N samples. Another alternative is a sample rate conversion program that
in effect does superinterpolation in order to adjust the sample rate after
several cycles of the waveform have been digitized.

When drawing by hand, it is very easy to come up with waveforms
with such strong upper harmonics that alias distortion and noise can be a
problem when the table is scanned with pointer increments larger than 1.0.
Thus, one should be careful to draw reasonably smooth curves rather than
sharp angles or discontinuous jumps. Note that if a perfect sawtooth
waveform were placed in a table, the result when scanned would be identical
ta the sawtooth oscillator studied earlier.

Table Filling by Fourier Series

The best way to fill the table is to specify the amplitudes and optionally
the phases of the harmonics desired in the waveform and then use a Fourier
series or Fourier transform program to compute the table entries. The result
when the table is scanned is a tone with the exact harmonic makeup

specified. Since the timbre of the tone has a much stronger relation to the
harmonic structure than to the appearance of the waveform, experimentation
to find the desired timbre will be easier with the Fourier series approach.

Another advantage is that alias distortion can be positively controlled.
Since the exact harmonic makeup of the table content is known, one simply
avoids having the highest harmonic of the highest frequency tone generated
using the table ever get high enough to produce an audible alias. In practice,
this means chat tables used for the higher register voices should have a more
restricted spectrum than those used for the lower-pitched voices. For exam-
ple, if the sample rate is 30 kHz, the DAC filter cuts off at 10 kHz, and the

DiGirat Tone GENERATION TECHNIQUES 397

highest note played is C6 (two octaves above middle C, 1,046 Hz), the

highest harmonic present in the table should be about the 18th. This would
alias to about 11.2 kHz, which would be attenuated. Any harmonics higher

than the 18th would alias to frequencies lower than 11 kHz and would be
attenuated little if any. For a bass voice with an upper limit of middle C, one
could go to about the 70th harmonic with no problems.

Actually computing the waveform that corresponds to a particular set

of harmonic amplitudes is quite simple in BASIC, although slow. Essentially
one computes sine waves at the fundamental and harmonic frequencies,
multiplies each by its corresponding amplitude specification, and adds them
up. For example, assume that a waveform with | unit of fundamental, 0.5
unit of second harmonic, and 0.15 unit of third harmonic is desired. Assume

further that the table size is 256 and the table entries are 8-bit twos-
complement numbers. Since the sin function in BASIC expects angles in
radians, the amgle increment that corresponds to a table increment of 1.0 is

27/256 or 0.024544. Thus, we will start the angle, A, at 0, compute the

first table entry, increment A by 0.024544, compute the second entry, and
so on until the 256th entry is done. The preliminary value of a table entry,
therefore, is equal to sin(A)+0.5sin(2A)+0. 15sin(3A). This assumes that

all of the phase angles are zero. If a 90° phase angle is desired for the third
harmonic, the third term of the expression above should be changed to
0. 15sin(3A + 1.5708), where 1.5708=(90)(277)/360.

After the preliminary table entries are computed, they must be ad-
justed and converted into binary integers for use by the table-scanning
routine, which will undoubtedly be written in assembly language. The first
step is to normalize the existing entries so that there is no overflow when

conversion is done but at the same time the full-scale range is used in order to
minimize quantization noise. This is done by scanning the table and finding
the entry with the /argest absolute value, which will be called M. Then each
entry in the table is multiplied by 127/M and “poked” into memory at the
locations reserved for the table. The poke function available in many mi-
crocomputer BASICs converts the adjusted entry from floating point to the
single-byte twos-complement integer desired.

Figure 13-7 implements these operations in an easy-to-use form. The
A array holds the harmonic amplitudes and the P array holds the phases. N
is a variable that specifies the highest harmonic to process. Ideally,
amplitude-array elements should be between 0 and 1.0 for ease in visualizing
relationships between harmonics, although the normalization process allows
virtually anything. The phase entries range from 0, which represents zero

phase shift, to 1.0 which is a 360° shift. Therefore 0.5 is 180°, 0.25 is

90°, etc. If phase of the harmonics is not important (it usually is not for

audio waveforms), the variable Q should be set to zero. This instructs the
program to set the phases randomly, since zero phase for all of the components

398 Musica APPLICATIONS OF MICROPROCESSORS

1000 REM PROGRAM TO UTILIZE THE FOURIER SERIES TO FILL A WAVEFORM TABLE
1010 REM ARRAY A HOLDS THE AMPLITUDES OF THE HARMONICS
1020 REM ARRAY P HOLDS THE PHASES OF THE HARMONICS
1030 REM THE ZEROTH ELEMENT OF A AND P CORRESPONDS TO THE DC COMPONENT
1040 REM VARIABLE N HOLDS THE NUMBER OF THE HIGHEST HARMONIC TO PROCESS
1050 REM VARIABLE M HOLDS THE SIZE OF THE TABLE TO GENERATE
1060 REM VARIABLE Q IF 0 SELECTS RANDOM PHASES, IF 1 USES ARRAY P
1070 REM ARRAY T IS THE GENERATED TABLE WITH ALL ENTRIES BETWEEN BUT NOT
1080 REM INCLUDING -1 AND +1 = +
1100 REM AMPLITUDE DATA
1110 DATA 0,.8,.6,.2,.55,1.0,.7,.3,.2,.1,.05
1120 REM PHASE DATA
1130 DATA 0,0,.2,.4,.7,.45,.1,.5,.85,.9,0
1140 LET n=i0
1150 LET M=256
1160 LET Q=1
1200 REM SET UP THE AMPLITUDE AND PHASE ARRAYS
1210 FOR I=0 TO N
1220 READ A(I)
1230 NEXT I
1240 FOR I=0 TO N
1250 IF Q=0 GOTO 1270
1260 READ P(1)
1270 GOTO 1280
1270 LET P(1)=RND(1)
1280 NEXT I
1300 REM MAIN LOOP TO COMPUTE PRELIMINARY TABLE CONTENTS
1310 FOR I=0 TO M-1
1320 LET T(I)=0
1330 LET Al=6.28318*1/M
1340 FOR J=0 TO N
1350 LET T(1)=T(I)+A(J)*COS(J*A1+6.28318*P(J))
1360 NEXT J
1370 NEXT I
1400 REM SCAN RESULTING TABLE FOR MAXIMUM ABSOLUTE VALUE
1410 LET Al=0
1420 FOR 1=0 TO M-1
1430 IF ABS(T(I})'sAl THEN LET Al=ABS(T(I))
1440 NEXT I
1500 REM NORMALIZE THE TABLE
1510 FOR I=0 TO M-1
120 LET T(1)=T(1)/Al*.99999
1530 NEXT I
1600 REM ADD CODE HERE TO OUTPUT THE TABLE IN SUITABLE FORM
1700 STOP
1800 END

Fig. 13-7. Program to optimally fill waveform tables

almost always produces waves with a single high-amplitude peak and low
average amplitude elsewhere, which is less than optimum for low noise. The
array T is the waveform table containing values between —1 and +1 when
the program returns. Additional code to convert the values into integers with
the appropriate range and to store them in the final waveform table is easily
added.

Assembly language can also be used to construct the table in 1% to
10% of the time required by a BASIC program. Part of the improvement is
due co more efficient program execution, while the rest is due to the use of

DiciTaL Tore GENERATION TECHNIQUES 399

fixed-point rather than floating-point arithmetic. Only the sin function poses
any computational difficulty and that can bypassed through use of a sine
table with a length equal to the waveform table being filled. Chapter 18 will

describe the use of integer and fractional arithmetic to maximize the speed of
digital synthesis computation.

Dynamic Timbre Variation

In a voltage-controlled synthesizer, the tone generators usually put out
an unchanging waveform that is dynamically altered by processing modules.
Although the same can be done in direct synthesis with digital filters, the
table method of tone generation lends itself well to types of timbre variation
not easily accomplished with filters.

One technique that is quite practical involves two waveform tables and
interpolation between them. The idea is to start with the waveform in Table
A and then gradually shift to a different waveform in Table B. The arithmetic
is actually quite simple. First, a mixture variable ranging between 0 and 1.0
is defined, which will be called M. The contribution of waveform B to the

resultant waveform is equal to M and the contribution of A is 1.0 — M.
The actual resultant samples are computed by evaluating
Sr=(1—M)Sa+M5Sb, where Sr is the result sample, Sa is a sample from the

A table, 5é is the B-table sample, and M is as before. Thus, as M changes

from 0 to 1.0, the mixture changes in direct proportion.
In actual use, M should be updated frequently enough so that it

changes very little between updates. Also the same table pointer should be
used on both tables to insure that they are in phase. If these rules are
followed, the transition is glitch- and noise-free even for very fast transitions.
The technique is not limited to two tables either. One could go through a

whole sequence of tables in order to precisely control a very complex tonal
evolution.

Speaking of evolution, it would be desirable to know exactly what the
spectrum of the tone does during the transition. If each harmonic has the
same phase in the two tables, then the amplitude evolution of that harmonic
will make a smooth, monotonic transition from its amplitude in cone A to its
new amplitude in tone B.

Things get quite interesting, however, if they are vot in phase. Depend-
ing on the phase and amplitude differences between the two tables, any
number of things can happen as shown in Fig. 13-8. The graph shows
amplitude and phase variations of an arbitrary harmonic during a linear
transition from wave A, where this harmonic has an amplitude of 0.4 units,
to wave B, where its amplitude is 0.9 units. Its phase in wave A is taken as a
zero reference and its phase in wave B is the parameter for the curves. When

the phase of this harmonic in wave B is also zero, the amplitude transition is

linear. It becomes progressively nonlinear and even dips momentarily along

its rise as the phase difference approaches 180°.

400 Musica. APPLICATIONS OF MICROPROCESSORS

AMPLITUDE

— TRANSITION INTERVAL _————"

TIME
(a)

180°

PHASE

‘+ TRANSITION INTERVAL ———i

TIME
(B)

Fig. 13-8. Time-variabie interpolation between two sine waves. (A) Amplitude
contours; phase difference is parameter. (B) Phase contours;
phase difference is parameter.

Note on the phase curve that the phase of the resultant shifts during the
transition as well. This dynamically shifting phase means that the harmonic
frequency is actually shifting during the transition region! The magnitude of
apparent frequency shift is proportional to the instantaneous slope of the
phase curve. Thus, at the beginning and end of the transition region, the
frequency is unchanged, but it may momentarily increase or decrease in the
middle.

The preceding applies to each harmonic in the two waves indepen-
dently. Thus, a complex harmonic evolution in which some change linearly,

some nonlinearly, and some undershoot is easily set up merely by altering the
harmonic phases in one of the waveforms. It is important to realize that,

DiciTat TONE GENERATION TECHNIQUES 401

while there is a great variety of possible transitions, the technique is not
general enough so that any arbitrary transition can be realized. One could
piecewise approximate an arbitrary transition by using a sequence of tables,
however.

Another method of dynamic spectrum variation using the table lookup
method actually amounts to a continuous Fourier series evaluation. One
would have a single table, which is actually a sine table, and program several
table pointers with pointer increments that are integer multiples of the

smallest increment. Then, using each pointer in sequence, the corresponding
samples would be fetched from the table, multiplied by a corresponding
amplitude factor, and the products added together to produce the output
sample. This is equivalent to treating each harmonic as a separate tone and
controlling its amplitude independently. Relative phase can be controlled by
temporarily adding a phase parameter to the pointer when table access is
performed but using the original pointer value when the increment is added.

The technique is not limited to exact harmonic frequencies either, since
the set of pointer increments need not be integer multiples. Most stringed
musical instruments in which the string is plucked or struck have upper
harmonics that are somewhat sharp with respect to the fundamental. Bells
and chimes have spectra that are decidedly inharmonic. For these and other
similar sounds, this is the only general technique available. Although
dynamic depth FM can also produce inharmonic spectra, only gross control is
possible; the details of the spectrum are pretty much left to chance.

While this technique can be time consuming for a large number of
harmonics, it is quite effective for a small number. Its primary strength over
faster Fourier techniques to be discussed is that amplitudes and phases of the
harmonics may be changed at any time and as rapidly as desired without
glitches and discontinuities in the composite waveform. In particular, a
hardware implementation of the technique can be extremely flexible and
effective as well as adequately fast for real-time tone generation.

Fourier Transformation

Fourier transforms are the cornerstone of many modern signal-
processing techniques. They have a list of desirable mathematical properties

that seems never to end as well as many useful physical properties for synthesis
and analysis work. The main attractive feature about any kind of Fourier

operation is that it is a bridge between the time domain, which is concerned
with waveforms and sample values, and the frequency domain, which is con-

cerned with the amplitudes and phases of frequency components. The pri-
mary need for such a bridge is that the human ear hears in the frequency
domain, while sound waves are stored, synthesized, and observed (via an

oscilloscope) in the time domain.

402 MUSICAL APPLICATIONS OF MICROPROCESSORS

As we shall see, a block of samples representing a segment of sound can
be transformed into the frequency domain via Fourier transform and appear
as a bunch of harmonic amplitudes and phases. ‘This data can then be trans-
formed éack into a block of samples unscathed and indistinguishable (within

round-off error) from the original block via an inverse Fourier transform!
Thus, Fourier transformation is a reversible operation. However, while in the

frequency domain, we can manipulate the spectrum directly by altering indi-
vidual frequency component amplitudes as desired; no filters to design and
tune are necessary. After the manipulation has been accomplished, the in-
verse transform returns the data to the timc domain. This is onc way to

implement a filter with a completely arbitrary amplitude response.
One can also synthesize a spectrum directly and convert it to the time

domain for output. This can be valuable, since most sounds are more easily
described in terms of their spectrum rather than in terms of their waveforms.
Although a method was just discussed for Fourier series synthesis, the Fourier

transform can require far less computation if the required spectral detail is
great.

In source-signal analysis using digital techniques, the first step is
nearly always Fourier transformation of the input into spectral form. Since
the ear hears in the frequency domain, it is logical that audible features of the
source signal will be much more apparent than when in the time domain. In

most cases, transformation greatly reduces the quantity of data to be proc-
essed as well.

Characteristics of the
Discrete Fourier Transform

Fourier transforms applied to sampled data are usually called discrete
Fourier transforms, since the time domain data are at discrete instants of time

and the frequency data are likewise at discrete frequencies. One very impor-
tant property of the discrete transform is that the waveform data are specific-
sized chunks called records, each consisting of a specified number of samples.
The discrete transform asswmes that the samples in the record represent
exactly one cycle of a periodic waveform. This assumption must be made
regardless of whether or not it is accually true, as in Fig. 13-9. The trans-
form then gives all of the harmonic amplitudes and phases of the assumed
periodic waveform.

This record-oriented property has several important ramifications when
constantly changing arbitrary sounds are to be synthesized or analyzed. For
most applications, the record size is fixed and often is a power of two. Thus,
even if a periodic waveform were being analyzed, it is unlikely that a record
would exactly span a single cycle. In order to reduce the resulting error, the
record size is chosen to be great enough to span several cycles of the lowest
frequency expected. Then the partial cycle at the beginning and end of the

Dicrrat Tone Generation TECHNIQUES 403

je- | RECORD =)
n ‘ z

= =
~

Mm

; MN

{a}

& A i A Lr. a
eo NS NS ~ mS

a

(Bl
[

Fig. 13-9. Actual and assumed waveforms used with discrete Fourier trans-
form. (A) Actual wave to be analyzed. (B) Assumed wave that will
be analyzed.

record is of less consequence. Techniques are available to “tail out” the ends
of the record to minimize the error even further.

When a large but nonintegral number of cycles of a truly periodic
waveform is transformed, each harmonic of the actual waveform becomes a

group of harmonics of the assumed waveform. An example of this is shown in
Fig. 13-10 in which 5.31 cycles of a waveform containing fundamental,
second, and third harmonics in equal proportions was made into a record and
Fourier transformed. The three clusters of transform harmonics correspond to
the individual harmonics of the actual waveform. High-frequency energy
above the third waveform harmonic is due to the discontinuity caused by the
nonintegral number of cycles in the record.

When a section of changing sound is marked off into a record, the
spectrum reported by the Fourier transform is the average spectrum during
the time interval represented by the record. Thus, if ane wishes to use
Fourier transformation to track a changing spectrum, the variation contours

will themselves be sampled curves with the sample period equal to the record
period. As a result, there is a tradeoff between long record size for minimum

“periodicity error” and maximum frequency resolution, and a short record

size for following rapidly changing sounds. One technique that is often
useful is to overlap successive records rather than arrange them end to end.
This way one can obtain a high “spectrum sample rate” while using ade-
quately long records.

Fourier transform synthesis is also complicated by record orientation.
There are actually two problems. One is that an integral number of cycles of

404 MusIcaL APPLICATIONS OF MICROPROCESSORS

VOLTAGE

°

it aerupeiern sveeues
a g
8 ” a
2 TRANSFORM HARMONICS

2 2 :
:

FREQUENCY

Fig. 13-10. Discrete Fourier transtorm of 5.31 cycles of a waveform containing
equal proportions of fundamental, second, and third harmonics

the synthesized waveform is just as unlikely to span the record as in the
analysis case. The other problem is that if the spectrum changes significantly
from one synthesized record to the next, there is likely to be a discontinuity
between the two records when they are spliced together. These synthesis
problems may be overcome by record overlapping and time-variable interpo-
lation between the overlapping records.

The frequency domain data produced and used by the discrete Fourier
transform bear a very specific relationship to the corresponding sample rec-
ord. In particular, the number of harmonics (including the zeroth or de
component) in the frequency domain representation is exactly one-half the
number of samples in the time domain record plus one. It is easily seen that

any more than this would not make any sense. For example, let’s assume a
record size of 200 samples taken at a sample rate of 10 kHz. The record
duration, therefore, is 20 msec, which is also the period of the assumed

periodic waveform. A 20-msec period is a 50-Hz frequency for the assumed
wave, so harmonics would fall at 50 Hz, 100 Hz, 150 Hz, etc. It is easy to

determine, then, that there are 100 harmonics at or below one-half the

sample rate and, when the dc component is included, the total becomes 101,
which is one-half the record size plus one. This also shows that the frequency

resolution of the analysis is 50 Hz or simply the reciprocal of the record
duration,

Each harmonic in turn consists of two components. Although har-
monics have been characterized by amplitude and phase so far, the Fourier

Dicrrat TONE GENERATION TECHNIQUES 405.

transform normally deals in sine and cosine components of the harmonic,
which can be negative as well as positive. Conversion between the two forms
is actually quite simple. The overall harmonic amplitude, A, is given by

A=VS5?+C?, where § is the sine component value and C is the cosine
camponent. The effective phase angle (in radians) is listed in the following
cable:

Cc S Phase angle

+ + Tan-1(S/C)
= + Tan~'(S/—C)

= = Tan '(S/C)
+ Tan-!(—8/C)

Note that these formulas always give a positive amplitude and phase
angle. Also, C will have to be tested for zero before calculating the phase
angle to avoid division overflow. When C is zero, the phase is 7/2 if S is
positive and 37/2 if § is negative. When translating from amplitude and
phase to sine and cosine the formulas are: C=Acos(P) and S=Asin(P).

Thus, conversion from one form to the other is fairly simple.

The de and Nyquist frequency components of the wave are a special case,
however. The cosine part of the zeroth harmonic is the actual dc component,
while the sine part would be expected to be zero, since a zero frequency wave

cannot have a phase angle other than zero. For mathematical completeness, it
is also necessary to consider the harmonic at exactly one-half the sample rate.

As it turns out, the Nyquist frequency harmonic must have a zero sine part
also. Note that if this Nyquist frequency component is very strong, it is an
indication of serious aliasing in the data. Thus, ina real audio signal applica-
tion, its existence can usually be ignored.

Now, if the harmonic components are counted up, we find that there is

exactly the same quantity of numbers forming the frequency domain repre-
sentation as are in the time domain representation. Actually, this is a re-
quirement if the transformation is to be precisely reversible for any arbitrary
sample set as was stated earlier. Fourier transformation is exactly what the

name implies, a data transformation. It alone is not a magic data compression
technique.

Slow Fourier Transform

Before delving into the fast Fourier transform, it is necessary to under-
stand how che straightforward but slow version works. A few pages ago there
was some discussion about filling a waveform table by evaluating a Fourier
series. By making a couple of modifications to the procedure, the inverse
(frequency domain to time domain) slow Fourier transform results. The first
modification is that the number of samples generated in the output record

406 MUSICAL APPLICATIONS OF MICROPROCESSORS

will be exactly twice the number of harmonics in the input record. The other

modification is for the sine and cosine form of the harmonic data. Thus,

when filling a waveform table of 256 entries, 128 harmonics must be

specified, although many if not most of the higher ones may be zero to avoid

aliasing problems when the table is used for synthesis.

The program segment below, illustrates the inverse slow Fourier trans-

form. The “C” and “S” arrays hold the cosine and sine harmonic data,

respectively. The dc component uses subscript 0, the fundamental uses sub-

script 1, etc. Thus, the cosine component of the eighth harmonic would be

stored in C(8) and thc sinc component would be in S(8). During execution,

the time samples will be stored in the T array, which also starts at subscript 0

and is assumed to initially contain zeroes. The constant N is simply the
number of samples in the record and should be even.

1000 FOR I=0 TO N/2-1
1001 FOR J=0 TO N-1
1002 LET TQ)=TQ)+CM)*COS(6.28318*1*J/N)
1003 NEXT J
1004 NEXT I
The outer loop steps through the harmonics starting at the zeroth and ending
one short of N/2. The inner loop steps through all of the time samples for

each harmonic adding the specified cosine and sine components to the cur-
rent content of the samples.

The “forward” transform, which converts time samples into harmonic
components, however, is what most people have in mind when they speak
about a Fourier transform. Unfortunately, its computation is not intuitively
obvious, although it turns out to be no more complex than the inverse
transform. The basic approach for determining the amplitude of a component
with a particular frequency and phase is to generate samples of the sought

component, multiply them by corresponding samples of the signal to be
analyzed, and then add up the products. The sum, after being divided by
one-half the record size for averaging and mathematical anomalies is the
amplitude of the signal component having that frequency and phase! (The de
component will be twice its correct amplitude, however.)

The truth of this can be comprehended by remembering that multiply-
ing two sinusoidal signals is equivalent to balanced modulation and produces
a signal having only sum and difference frequency components. The reader
should also recall that any sinusoidal wave averaged over an integral number
of cycles is zero. It is easily seen then if the two signals being multiplied have
different frequencies, that the product consists of two sinusoidal waves that,
when averaged over a duration having an integral number of periods for both,
gives zero. If the frequencies being multiplied are the same, the difference
frequency is zero, which is de and results in an average value equal to the
product of the signal amplitudes if they are perfectly in phase. When noc in

DierraL Ton GEneraTion TECHNIQUES 407

phase, the average is proportional to the cosine of the phase difference.
Fortunately, this procedure works even when one of the signals has many
frequency components; if one component matches it will contribute a dc

component to the product samples. Thus, by using two ‘‘probe” waves 90°
apart in phase at all of the possible harmonic frequencies of the data record,
one may determine its complete harmonic amplitude and phase makeup.

The program segment below, which is remarkably similar to the in-
verse transform segment, performs discrete Fourier analysis. The C, S, and T

arrays and N are as before and C and S are assumed to be initially zeroes.

1000 FOR I=0 TO N-1
1001 FOR J=0 TO N/2~1
1002 LET CJ)=CY)+T(1)*COS(3. 14159*1*J/N)N/2)
1003 LET SQ)=S()+T()*SING. 14 159*I*J/N)/(N/2)
1004 NEXT J
1005 NEXT I

The outer loop in this case scans the time waveform, while the inner loop
accumulates running averages of cosine and sine components of each har-

monic. Note that the Nyquist frequency component is not computed. There-
fore, if one transforms arbitrary random data and then transforms it back, the

result will not be exactly equivalent. However, practical, unaliased data will
be returned with only a slight roundoff error. Nore also that in both of these
program segments that the inner and outer loops may be interchanged with
no real effect on the results.

Fast Fourier Transform

Examination of the preceding two program segments reveals that N2
useful multiplications and additions are required for the transformation. Use-
ful is emphasized because a well-thought-out assembly language implemen-
tation of the programs could eliminate multiplications within the cosine and
sine arguments by proper indexing through a sine table. Likewise, subscript
calculations can be eliminated by use of index registers. The division by N/2
in the forward transform may still be required, but it can be deferred until
the computation is completed and then need only be a shift if the record size
is a power of two. In the case of the inverse transform, the number of

multiplications may be cut in half by using the amplitude-phase form for the
harmonics rather than cosine-sine.

Even with the world’s most efficient assembly language program, a
tremendous amount of computation is needed for even a moderate number of
samples. For example, 20-msec blocks taken at a 25 kHz sample rate would
be 500 samples that, when squared, implies about a quarter of a million
operations for the transform. Upping the sample rate to 50 kHz quadruples
the work toa million operations. An efficient assembly language program on

408 MUSICAL APPLICATIONS OF MICROPROCESSORS

a minicomputer with automatic multiply would require about a minute for
such a transform, while a BASIC equivalent running on a microcomputer

might crunch on it overnight, and that is just one record!
Like many topics in computer science, the real key to speed lies in an

efficient algorithm rather than an efficient program. In the case of the
discrete Fourier cransform, such an algorithm was first publicized in 1965
and results in an enormous reduction in computation at the expense of a
longer and rather difficult-to-understand procedure. The fast Fourier trans-
form algorithm requires approximately Nlog2N multiplications and
additions instead of N?. This means that 512 samples need only about 4,500

operations, while 1,024 samples need about 10,000 operations. This is a
savings of 100-to-1 for the 1,024-sample case!

Redundancy

The key to the fast Fourier transform (FFT) algorithm is identification

and systematic elimination of redundancy in the calculations executed by the
slow Fourier transform (SFT). From looking at the two program segments, it
is obvious that every possible product of samples (forward) or amplitudes
(inverse) and sine/cosine values is formed. Figure 13—11A shows how the sine

and cosine multipliers for each harmonic can be arranged in a square array.
The horizontal axis represents time, while the vertical axis represents fre-
quency. The number at each intersection is a sample of the sine/cosine wave
for the row at the time designated by the column.

For the forward transform, one would first write the waveform sample
values as a row of numbers above the top of the coefficient array. Then each
sample would be multiplied by every coefficient in the corresponding column
with the product written just below the coefficient. Finally, the products
would be added up by row and the sums written as a column at the right side
of the array. This column then represents the spectrum of the waveform. For
the inverse transform, the process would be reversed by starting with the
spectrum column, forming products by row, and adding by column to get a
row of time samples. Parts B and C of Fig. 13-11 show these operations for a
record size of 16 samples. Note that the row for the sine of the de compo-
nent, which would otherwise be all zeroes, has been replaced by the sine of
the Nyquist frequency component.

Examination of the array reveals considerable redundancy in the prod-
ucts, however. For example, the product of sample number 2 and the cosine
of 7/2, which is 0.707, occurs four times. If in the computation, multipli-
cation by a negative number is replaced by subtracting the product of the
corresponding positive number, then the product of sample 2 and 0.707 can
be reused eight times. Further computational savings are possible by skip-
ping multiplication altogether when the cosine or sine values ate zero or
unity. Doing all of this reduces the actual number of unique products to a

409 Dicirat TONE GENERATION TECHNIQUES

*JOSYSHIOM WUOJSUL) JONG MOIS (y) ‘"LE-EL “BIg

eg
e'

-
£0
2’

F2
6'

-
00
01

e
s
e

00
0

e8
f

L2
0L

-
2
6

CO
OL

ve
6

LO
0Z

-
E8

6
00
0°

«
e
b

-

«4
02

«
(
E
B

-

«0
00

=

eB
E

CO

Z0
L'

-
«6

26
.

O
O
D

L-

p2
6"

4O
Z'

—
CB

E
=

00
0"
.—
=»
e-
:«
dE
BE
-

LO
L’

H
Z
B
—

CO
OL

—

£
0
4
-

00
0°
!

2
0
2
-

00
0

20
2

0
0
0
1
-
4
0
2

0
0
0
.

L4
04

-
CO
OL

2
0
2
-

OO
O

40
2

00
0%

1~

20
2°

00
0°

—
_
_
_

£0
2'

-
00
0°

20
2"

00
0'
1-

20
2°

00
0°

40
2'

-
00
0%
!

4
0
Z
-

00
0

20
£

 0
00

1-

40
2

=

00
0"

Z0

Z’
"—

0G

O'
L

—
_
_
_

P
2
6

—

20
2"
:

£8
6"

O0
0'
l—

es
e

40
4"

#2
6'
-

00
0°

yZ
6

40
4’

€8

E
O
O
O

L

e
8
e
-

L4
OZ

’-

¥2
6

00
0°

—

€8
6'

-
20
2'
-

¥2
6

00
0°

=r
e6
-

20
2

E8
6

CO
Ol
~

eR
e

40
2’

26
'-

00
0’

2
6

40
2-

E8

e'
-

D0
DL

“
~
~

9
0
0
'
-

00
0°

60
0%

00
0

0
0
0
%
-

00
0°

00
0%

00
0°

00

01
'-

00

0°

c0
0!

00
0°

0
0
0
1
-
0
0
0
"

00
0%

00
0°

—
_
_
_
_

90
0°

=

00
0"
F—

00
0"

=

00
0°

=0
00

°
=

0
0
0
k

00
0"

)
«0

00
°

«0
00
°

=
:

O0
0'
F-

00
0°

=

00
0k

«0
00

°
O0
DL
-

00
0°

00
0'
L

~
~
~

-e
6'

—
20

2'
—

€8
€

O
0
0

E8
6

20
4-
-

+2
6'

-
00
0

2
6

40
2

E
8
E
-

O
O
O
L
~

E
8
e
-

20
2

#2
6

00
0

—

€8
&

=

=2
0L

—
#2

6'
-

O0
0

2
6

20
4

€
8
E
-

O
O
O
l
-

Ee
Be

-—

4
0

-e
6

00
0°

P
2
6
-

2
0
L
-

e8
E

00
01

~
~

£0
2'
-

0
0
0
1
-

20
4°

-
00

0
40
2

o0
0%

40
4°

00

0°

40
4

C
O
O
1
-

20
2

O0
0

40
2

0
0
0

40
2

00
0°

~
~

£0
2

oo
o

86
40

2
0
0
0
-
2
0
2

«0
00
°

40
2

00
0k

20
2’

00
0"

ZZ
"

O
O
O

ZO
Z'

-
00
0"

20
2

CO
OL

—

68
6

20
2’

26
"

O
O
F

26
"

ZO
L

B
E

=

00
"—

s—
sC

ie
wB

E
O
L

e
G

s
e

40
'S

ER
E

=

(0
00

"
~
~

ve
e

=

2
0
L
’
t
8
E
"

=

00
0

e
e
e

20
2’

-
26

'—

O0
00
'l
-

p2
e6

'-

LO
L’

-
EB
E'
-

00
0

ee
e

=

40
2

ZG
"

(0
00

~
~

G0
0°
l=

GO
O'
L

00
0°

F-

00
0°

}
O0

0°
1—

O
0
0

G0
0'
%-

00
0°

0
0
0
1
—

00
0'
l—

00
0'
L—

00
0°

!
O0

0'
t-

00

0%

0
0
0
-
9
0
0
1

~
~

90
0%

00
0}

O0
0}

O0
0O

F
00

01

00
01

00
0}

00
01

00
0+

00
01

O
0
0

O
0
0

00
0%

0
0
0

00
0!

D0
01

w
n
o
a
d
s

SL

bh

€l

et

ub

ol

6
8

Z
|

s
P

€
é

L
4)

OOK HK NNIMTTNHOORN
Z000H0H0HOH0H0H0NH

5
be 2

MUSICAL APPLICATIONS OF MICROPROCESSORS 410

“W
HO

JS
UB

L)

JB
LN

O-
+

PI
EM

IO
Y

JO
}

UI

Pa
rI
y

Je
oy
sy
io
M

(g
q)

“(
7U
0D
)

“L
L-

Eb

“B
id

9
Aq

pa
pi

ai
p

wi
ns

an

u
94
)

82

Se
Nq
Ua

<1

BI
ON

B
i
e

19
r'
-

B
l
e

6l
e'

~
9
G
%

B
b
l
—

£2
0°

00
0°

¥9
0°

1@
t'
-

6O
E°

G6
€E
~

O
F

F
E
E

9
9
%

00
0°

Pb
O"

ee
e'
—

40
2°

2
6
'
—
.

O
O
O

r2
6'

-
L4

02

e
e
e

-

0
0
0

E
8
6

L
4
0
4

-

e
6

O
O
O
l
-

P
e
6

L
O
L
-

E
8
E

00
0°

Z
s

29
2°

t
o
p
"

86
L°

00

0°

9
0
k
—

Sr
l"

S
S
O
-

e
t
o
-

Le
t”

t
2
b
-

8
2
h

00
0°

=L
6l
'-

F
E
E

b
r
o

OL
E”

gs
o°

p
2
6
-

4
0
2

E
8
6

O0
0.

E
8
6

4
0
2

2
6

o
0
o
%
-

r
e
e

4
0
4
-

e8
88

O
0
0

E
8
€
-

LO
L.

Pe

6'
-

O
0
D
L

£
9
0

48
9°

2@
G6
9'
-

9
9
—

00
0°

96
t'

-
6
0

ec
rO

'—

00
0°

OO
L’

-
IL

E’

9€
2%

'-

00
0°

+#
9&

EL

b’
~

1L
6r

°
00

0°

49
0°

2
0
2
—

0
0
0
+

2O
0Z

-
00
0°

20
2°

O
0
0
'
-

2
0
L

0
0
0

20
2-
—

O
0
0

4
o
Z
-

0
0
0

£
0
2

O
0
0

Z0
2°

00
0°

9
5
S

£8
5

00
0°

+9
9E

'-

6i
r.

96
4'

-
00
0°

2
0
°

eE
lO
-

O0
0l

-
00
0°

9
6
2

6
E
E
-

¥
9
E

00
0°

L6
r"
—

OL
E”

£5
0°

40
L'

—
00
0°

20
4°

0
0
0
%
~

40
2"
.

00
0°

=2

02
-

0
0
0
1

Z4
OZ
'-

00
0.

4
0
L

O
0
0
1
-
"
4
0
z
2

00
0°

4
0
¢
-

O
O
r

9
9

29
2°

L9
p'

-
 8
6L
°—

G
t
r

90
L'

-
Br
L’
-

99
0°

00
0

te
l”

t
e
k

B8
2L
—

G
E
E

L6
1°
—

F
E
E
’

1b
9’

00

0"

£8
0"

v
e
e

86
40
2)

=

E
R
E

O
O
O

L-

«
E
8
4
0
2

b
e

=

0
0
0
”
—
i
é
e
e
&
h
™
C
C
L
O
L
'
-

=

EB
E'

—
O
O
O

E8
e'

-
L
O
L

-

P
Z
6

0
0
0
°

g
s

et
e”

b
o
r

8L
r-

—
00
0°

9
5
2

B
L

€
2
0
—

E1
0’

5
0
"

té
l"

60
€-

—
00
0°

G
r

P
E
E
-

9
9
%

—
-

O
L
E

9s
0°

e
s
e

-

24
02

-
2
6

0
0
0

b
e
e
—

2
O
L

E
8
E

O
O
O
l
-

€
8
€

40
4°

ye
6'
~

O
0
0

2
6

20
Z'
-

E8
E'
-

00
0°

$
9

og
g’

00
0"

4
i
G
—

00
0°

dé
@"
—

00
0"
,

0
9
0
-
0
0
0
"

@e
L’
-

+0
00

rE
E’

=

00
0"

,
Si
G’
-

0
0
°

6
9
°

00
0°

e
l
’

0
0
0
°

00
0°

00

0°
!

C
O
O

00
0'
'-

00
0°

00

0’
!

00
0°

00
0'
'-

00
0°

0
0
0

00
0°

a0

0'
1-

0
0
0

o
n
l

0
0
0

F
S

00
0°

=6
eS
9°
,

00
0°

6
t
%
-

00
0°

6
0
z

00
0

€1
0°
-

00
0°

tL
t-

—
00
0°

6E
E

0
0
0

€
Z
p
—

00
0°

O
L
E

S
O
"

00
0°

=0
00

1—

00
0"

00
0'

t
00

0°

00
0'
1-

00
0°

0
0
0
°

00
0°

O0
0°

L-

00
0°

00
0°

!
00
0°

0
0
0
1
~

00
0°

00

07
1

y
a

29
2°

9
p

B
6
L
—

«
G
I

-

G
O
L

B
r
i

ss
o’

og

o"

Le
b”

a
k

G2
k'

—
~G

EE
—

L
6
V
—

F
E
S

t¢
9°

=

00
0°

69
1°

‘v
e6

’-

4
0
2
-

e
8
e

0
0
0
}

E
8
6

2
0

-

P
e
B
-

00
0

P
G

L
O
L

e
s
e

-

o
0
O
1
-

e
s
e

—

L4
02

ve

6'

00
0°

€
s

e
l
i
e

—

1
9
6

8
t
h

00
0°

g9

Sz
'-

Br
l’
—

€2
0°

e1

0°

#5
0'

-
12

i°

6
0
6

C
0
0

9
L
b
-

v
E
E
-

9
9
2

O
L
E

67
0"

e
e
e

2
0
2
—

2
6
'
-

00
0°

p
e
e

=

4
0
’

B
B
E

«-
-O
GO
'K
-

EB
E'
-

«
=

LO
L’

e
G

0
0
0
"
—
—
s
e
B
H
—

«
L
O
L

«C
BE

|

O
O
O
O

E
O

29
g

eg
g,

9
9
E

=

00
0"

9B
L'

-
~6
0Z
~

z
r
O
-

00
0°

C
O
O
L

Lé
t'
-

g
€
%
-

00
0°

w
o
e

e
L
r

i6
r°

00
0°

Le
e"

4
0
2
-

O
0
0
1
-

20
Z’
--

00
0°

4O
oL
’.

O
0
0
!

40
4°

00

0°

Z4
0Z
’~

O
0
O
1
-

Z0
Z-
.

O
O
O

4
0
2

B
0
0

2
0
2

00
0°

e
s

2
8
5

00
0°

9
9
8

6
l
r

96
1°

00
0°

:
e
b
O
-

e
1
0
-

O
O
!

00
0°

g
E
%
-

6
E
E
-

¥
9
E
-

00
0°

t6

r°

OL
E”

£€
0°

4
0
L

00
0°

«2
02
'—

00
0'

1-

40
z"

—
00

0°

40
2°

O
0
O
F

40
2°

00

0°

20
Z’

-
0
0
0
1
-
-
2
0
2
'
-

0
0
0

2
0
4

9
0
0
1

e
a

el
e’

6

{
9
e

B
l
e

G
i
r

G
Z

h
t
’

=

E
Z
’

00
0"

#G
O"

t@

L
G6
0€

=

G
E
E
S
E
’

99
2:

00
0

oo
s"

e
s
e

-

4
0
2
-

2
6
'
-

O
0
0
1
-

pe
6'

-
Z4

OL
’-

E8

E'
-

O
0
0

B
E

.

L
O
L

2
6
°

O
O
O
L

2
6
°

“
O
L

«E
8E

0
0
0

L
s

2
9
°

«1
96

86
L’

00
0"

9
0
k

B
L

G
0

€1
0°

t
e
k

Lé
k'

—
B2

t'
-

O0
0"

Z2
6t
°

E
E

tr
o’

O
L
E

00
0"

v
e
e

86
40
2)

«B
RE
:

=
.

00
0°

e
8
e
-

=L
40
L'
—

P
z
6
—
.

0
0
0
1
-

pe
6'

-
L4

OL
-

E
8
e

0
0
0

e
B

LO
L

v
e
s

0
0
0
"
!

re
)

og
ee

2
s
9
-

21
6°

6
l
r
-

2
£
2

G0
%'
-

09
0°

‘“
E1
0"
-

a@
bl

’-

Id
k’

w
e
e

G
E
E

G
I
S
-

el
e.

r
E
9
-

O
L
E

00
0°

00
0°

+—

0
0
0
°

0
0
0
°
1
—

00
0°

}
00

0'
1—

00
0°
!

0
0
0
1
-

0
0
0
°

00
0'

1—

00
0°

L
00

0'
!—

00
0'
L

00
0°

L~

00
0°

!
o
0
0
1
-

0
0
0
r

8
9

o
g
e
e

@
6
9
-

41
G—

-
G
i
r

-

L2
2'
-

6
0
¢
-

0
9
0
-

El
10

—-

ec
ht

ti
to

PE
E’

|

E
E

S
I
G

E
L
’

G
Q

O
L
E

00
0°

00
0°

1
O
0
0
!

O
0
0
L

OO
O'

L
G0

0'
L

O0
0'

L
00

0°
F

O0
0°
L

0
0
0

0
0
0

0
0
0

0
0
1

0
0
0
%

0
0
0
1

D
0
0
1

o
O
0
r

oi
e)

o
g
e
—

2
s
9
-

41
S9

°-

6
i
r
-

L£
£2

°-

6
0
¢
—

O9
0'

-
E
1
0
’

ab
l’

i
d
k

F
e
e

G
E
E

.

SI
S’

e
L
e

>

Fb
9

or
e”

“O
N

“WeH

15

La
s

eb

at

bk

OL

6
g

Z
z

g
S
s

b
&

@
4

0
4B

qu
In

N
sw

in
yo

sd
s

aj
dw

eg

411 Dierrat TONE GENERATION TECHNIQUES

“W
HO
JS
UE
N

JL
IN
O

SS
IB
AL
I

40}

UL
PAI

Ily

WE
US
HO
M

(9
)

(1
UC
D)

“L
L-
EL

“B
IS

Z
t
0
—

LE
O

1
b
0
—

¢p
0"

th
O'

-
1E

0°

21
0°

-
00
0°

£1
0"

=1

EO
0~

L¥
O"

r
e
o

LP
O

i€
0'

-
LO

"
Li
em

ee
e’

—
20
2°

2
6
'
—

O
0
0

pe
6'

—-

20
L

E
8
6

OO
O

Ee
8f

L
0
4
-

e
B

0
0
0
1
-

F2
6

L
O
L

—

8
"

es
0"

-
OP
O

12
0-

00

0°

12
0°

O
r
O
—

28
0°

9
5
0

25
0°

OF
0'
-

12
0°

00
0°

1é

0-

o
O

Z
g
0
-
°

9g
0°

pe
e’

—
40
2°

e8
t'
-

OO
O

es
e

L
O
L

-

26
°

O
O
O
l
-

p2
6

L
O
L
-

E8
€

00
0

e
8
f
-

10
L

P2
6

-
€v

0"
—

19
0°

&
%
0
-

00
0°

€r
0°

19

0-

&%
0°

00

0
ev
o"
—

19
0

€
v
0
-

00
0°

£0
"

i9
0'
-

&F
0°

19
0

40
2-

—
00

0%

Z
o
z
-

00
0

20
2

O
0
0

20
2°

00
0°

L4
0Z
'-

00
01

Z2
0s

'-

00
0°

40
2

00
0°

;1
-

20
2°

0
v
0
-

00
0°

O6
0

2£
50

°-

OF
0'

00

0°

OF
0'
-

4S
0°

Or

O'
-

00
0

Or
o”

=£

S0
—

O6
0

00
0°

|

OF
O'

~
25
0°

2
0
2
-

00
0°

20
2

00
0%

'-

20
2

00
0°

=

4
0
2
-

00
01

24

0Z
'-

00

0
20
2;

0
0
0
%
-

40
2

00
0

L
O
L

-

2
Z
0
-

69
0°

26
0°

€
8
0
-

z€
0°

69

0°

£
2
0
-

00
0°

22
0°

6S
0°

-
Z
E
O
-

€8
0'

26

0’

65
0°

-
22
0°

€8
0°

ve
6'
—

LO
L’

€8
e

OO
O'

l-

€8
f

LO
L

p
2
6
’

00
0

P2
6

L4
OL

-
E
8
E
-

OO
O!

E
8
e
-

L0
Z-

PZ
B

20
'—

OF

0'
-

@9
0°

00

0°

2S
0'

-
O0

r0
°

{2
0°

95
0'
-

12
0°

O¥
0

zG
0-

00

0°

Zg
0

Or
o

-
tz
0°
—

9S
0°

e
e
e
-

40
4-

p2

6
00
0°

e
6
'
-

LO
L

ER
E

O
O
O
1
-

Es
e

20
2’

F2

6-

00
0°

+2
6

1
0
L
-

€
8
e
—

€t
L—

00
0°

Et
t’

00
0°

E
l
t
-

O0
0

el
t

00
0°

E
t
t
-

02
00

et

t”

00
0°

EL
L’
-

00
0°

El
k’

et
t

00
0°

1-

00
0°

00
0°

00
0°

O
0
0
°
-

00
0°

00
0°

00
0°

C
0
0
1
-

00
0°

00
0%

00
0°

0
0
0
1
-

00
0°

00

01

00
0°

=S
0'
-

00
0°

50
°

00
0°

¥S

0'
-

00
0°

90
°

00
0°

¥S
0'

~
00

0°

+9
0

00
0°

¥S
0°
-

00
0°

43
0°

00
0°

=0
00

'1
-

00
0°

00
0%

00
0°

O
0
0
%
-

00
0°

00

01

00
0°

0
0
0
-

00
0°

00
0°
!

00
0°

0
0
0
1
-

00
0°

d
e
l

—

é
l
t
—

19
0°

S
t
"

49
0°

Z
l
i
-

L
e
t
-

00
0

Le
t”

ai

l
£9
0°
—

 6
S1

'-

19
0'

—
Zh

i’

a
b
t

6S
1°

ve

6—

4
0
L
-

B
E

O0
CL

E8
6

40
¢~

-
v2

6'
-

00
0

ve
e

20
4

e
g
e
—

O
0
0

1-

E8
€'

-
LO

Z
$e
"

61
0-

Se

O-

SP
O'

-
00

0°

S¥
0°

SE
O’

61
0'

-
6b
O'
-

61
0°

-
SE

O
$r
0°

00
0°

=

Sh
O'

-
~

SE
0'
-

61
0°

67
0"

e
s
e
-

4
0
L
-

y
2
6
-

00
0°

2
6

40
2

EB
E~

OO
O1
-

E
R
E

40
L

ve
6

60
00

"
b
e
B
-

«L
OL

-
«C
AE

GS
éi

'—

L
o
e

-

G
L
i
-

00
0°

S
L

4e
e

 -
Gd
t'

00
0

S
i
t

L
e
e

~

GL
L'

-
00
0°

Gé
l

Lb
e

Li
e

Le
e"

40

2'
—

00
0'
1-

Z0
2'

-
00
0°

24
02

00

0%

20
d’

00
0

Z4
0Z
~

O
0
0
1
-

4
0
Z
-

00
0°

20
2)

00
01

ZO
Z°

92
0"

00
0"

92
0-

LE

0"
-

92
0°

00

0°

92
0'
~

£€
0'

~
92

0'
-

00
0

92
0°

-
LE

O~

92
0'

~
00
0

92
0°

2t
0°

40
22

©6
00
0)

=«
40

4'
—

~O
00
1'
~

Z
O

00
0"

20
2

O
0
0

40
2°

00

0
40

Z'
~

O
0
0
'
-

24
04

2'
~

00
0°

20
2°

2
6
t
-

€
S
E
-

29
r'
-

O
0
S
~

2
9
r
~

ES
E-

z2

6l
-

00
0

26
t°

ES
E

zo
r

ao
s

Ze
or

es
e

26
k"

o
o
"

e
e
e
-

L0
L'

-
P
2
6
-

O
O
O

p
e
e

~

4
0
2

-

EB
E-

OO
O

ER
E

LO
L

$2
6

O0
OL

2
6

L4
02

ee
e"

00
0°

=0
00
'

=6
06
0"

+0
00

'
00
0°

00
0°

00

0°

00
0

00
0°

=

00
0

00
0°

00
0°

a0
0

00
0

00
0°

00
0°

ve
e

=

20
2

EE
"

00
0”

EB
E-

Ss

LO
L"
~

«B
G

«
O
O
O

L-

P
e
e

~

L
O
L
~

E8
E~

-
OC

O
eR

e
LO
L

>2
6

0
0
0

00
0°

00
0°

00
0°

00
0°

00

0°

00
0°

00
0°

00
0°

00
0

00
0°

00
0°

00
0°

00
0°

00
0°

00
0°

@0
0'
l~

00
0°

}
00

0°
%%

-
00
0°
!

O0
0'

1-

00
0!

OD
O'
L-

OO
O!

O0
0'
F-

00
0°
1

00
0'

!—

00
0!

O0
0'
1-

D0
01

0
0
0
1
-

go
o’

00
0°

00

0°

00
0°

00
0°

00
0°
.

00
0°

0
0

00
0"

00
0°

=
00

0
00

0°

=—
00

0
00
0°

00
0°

0
0
0

OO
C'
L

00
0°

}
O0
0°
t

C
O
O

CO
OO

L
0
0
0

00
01

O0
0!

00
0%

0
0
0

O0
0!

C0
01

00
0%

00
01

O0

01

og
e’

—
29

9'
-

LI
S’

-
6l

e-

4
2
%

-

6
0
Z
-

O
9
O
-

E1
O~

Ze
e

te
e

we
e

=

GE
E

GI
G

L
e

B
D

SI

La
s

€L

t
a

tb

oL

6
c)

Z
9

g
+

€
@

L

000° 000°

Ole

0

Ls zo

9S

99

ss so rs Lae) es

me)

zs zo Ls ze)

ee)

ke)

“ON “WEH J9qQUON ejdwes

412 MUSICAL APPLICATIONS OF MICROPROCESSORS

mere 28 instead of the original 256! Although it is not immediately apparent

how the redundancies can be identified in a general algorithm, one can use
mattix theory and trigonometric identities and derive the FFT algorithm
from this type of table.

A completely different way to look at the redundancy involves the

concept of decimation, As an example, consider a sample record with N
samples where N is even. Using the SFT, one could perform N? operations
and wind up with the spectrum. Now consider splitting the record into two
smaller records with N/2 samples in each such that the even numbered
samples go to one record and the odd numbered ones to go the other. If an
SFT is performed on each record, it will require N2/4 operations for a total of
only N?/2 operations. The trick is to combine the two resulting spectrums
into one reptesenting the true spectrum of the original record. This can be
accomplished by duplicating the even sample spectrum of N/4 harmonics and
adding with a progressive phase shift the odd sample spectrum, also dupli-

cated, to yield N/2 harmonics total. The combination requires N extra
multiplications and additions.

If N is divisible by 4, the decimation opetation could be repeated to
give four records of N/4 samples each. The SFT can be performed on each,
requiring only N?/4 operations, and the four resulting spectrums combined
in two stages to form the final spectrum. In face, if N is a power of two,
decimation can be repeated until there are N/2 subrecords, each having only
two samples as in Fig. 13-12, Note the resulting scrambled order of the
samples. This is called 4it-reversed order because if the binary representation of
the scrambled sample numbers is observed in a mitror, it will appear to be a
simple ascending binary sequence.

Since the discrete Fourier transform of two samples is trivial (the cosine
component of the single harmonic is the sum of the sample values, while the
sine component is the difference), most of the computation is combining the
subspectra together in stages to form the final spectrum. The essence of the
FFT, then, is complete decimation of the time samples followed by recombi-
nation of the frequency spectra to form the exact spectrum of the original
sample set.

Complex Arithmetic

At this point in the description of the FFT we will be forced to commit
a mathematical “copout” that is customary in such a discussion. In any case,
it will not only simplify the discussion but will facilitate the development of
an FFT program. The first step is to treat each harmonic, which has a cosine
and a sine component, as a single complex number. Although the cosine
component is normally called the ‘real’ part and the sine component the
“imaginary” part, both are quite real as far as a physical waveform is con-
cerned. Therefore, it is best to forget about “real” and “imaginary” and

DicrraL Tonge GENERATION TECHNIQUES 413

fo 1 2 3 4 5 6 7 8 9 © WN @ 8 15?

fo 274 6 8 0 2 al % 3 5 7 9 TT 8B

’ v ’ Tec v

fo 4 6 i) @ 6 0 w! 7 5 9 wt 7 Was!

+ ' \ | x '

Ce eS DT

C000 1000 4100 1100 0019 1010 0110 1110 0001 1001 O101 1101 OOLT 1011 O11 1994
ara

90 SoG} GOT O11 G19 GIOT 170 0511 1000 1001 1010 1011 1100 1101 1110 1141

Fig. 13-12. Stages in decimation of a 16-sample record

consider the complex number as a compact method of representing a pair of
closely related but independent numbers. Accordingly, complex numbers
will be represented here as two ordinary numbers, real part first, separated by
a comma in a manner much like the two-dimensional coordinates of a point.

The cosine and sine multipliers used in the computation are also con-
sidered to be complex numbers. Previously we used the cosine and sine of an

angle that incremented by 27/N for the fundamental, 477/N for the second
harmonic, etc. Now the cosine and sine of the angle will be treated as a single
complex number. Since the angles are always an integer times 277/N, we can

define a complex function, W, such that W(1)=cos(27I/N),sin(271/N),

where J is any integer and N is the number of points in the record under

414 MUSICAL APPLICATIONS OF MICROPROCESSORS

Fourier Multipliers Expressed as
Arguments of the Function

Wil) = COS(271/N), SIN(27I/N)

N= 16

Time "

oO 1 2 3 4 5 6 id 8 9 10 it 12 (13 14° 18

Q O 0 oO oO 0 oO ie) o O o oO 0 i) 0 0 oO

1 oO 1 2 3 4 5 6 7 8 9 10 1 12 13 14 16

2 0 2 4 6 8 10 12 14 it) 2 4 6 8 10 12 14

3 0 3 6 9 12 15 2 5 8 W 14 1 4 b 10 13 F

4 0 4 8 12 0 4 8 2 #O 4 8 12 0 4 8 12
5 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 ;

6 0 6 12 2 8 14 4 10 0 6 12 2 8 14 * 10 @

7 Q 7 14 5 m 3 10 1 8 15 6 13 4 1 2 9 4q

8 0 8 lo) 8 0 8 Oo 8 oO 8 te) 8 ie} 8 oO Bou

9 to) 9 2 "1 4 3 6 16 8 1 10 3 12 5 14 7 &

10 0 10 4 14 8 2 12 6 Oo 10 4 14 8 2 12 6”

W 0 it 6 1 12 7 2 13 8 3 14 9 4 15 10 5 ¢
12 Q 12 B 4 0 12 8 4 oO 12 8 4 oO 12 8 4 sy

13 ie) 13 10 7 4 1 14 abl 8 5 2 15 12 9 6 3
14 Q 14 12 10 8 6 4 2 i) 14 12 10 8 6 4 2
15 i 15 14 13 12 W 10 9 a 7 6 5 4 3 2 1

Fig. 13-13. Fourier multipliers expressed as arguments of the function W(/) =
cos(2al/N),sin(2z1/N). N = 16.

consideration which is constant throughout the FFT computation. If I ever
exceeds the range of 0 to N~1, it is customary to use the principal value,
which is simply I mod N. Finally, as if nothing is sacred, even the time
samples are considered to be complex numbers with a real part and an
imaginary parc.

As a result of going complex, the number of harmonics is equal to the
number of complex samples. Thus, the forward FFT takes a set of N complex
time samples and generates a set of N complex harmonics. As we will see
later, all of the*intermediate arithmetic in the FFT algorithm is also com-
plex.

In the real world, which includes audio, the time samples are, of

course, real, which means that the imaginary parts are zero. The correspond-

ing spectrum has only (N/2)+ 1 wnique harmonics; the remaining (N/2)—1
ate simply the complex conjugate (the signs of the sine components are reversed)
of the others less de and Nyquist frequency components. Thus, in actual use
with audio samples, one has N samples and (N/2)+1 harmonics, just as

before. Although the preceding implies considerable waste in the computa-
tion, a method of eliminating it will be described later.

DicrraL TONE GENERATION TECHNIQUES 415

With these conventions for reptesenting everything as complex num-
bers, the SFT coefficient matrix can be rewritten as in Fig. 13-13. The
numbers listed in the matrix are arguments to the W function mentioned
earlier needed to generate the proper complex multiplier. The operations
involved in going from time to frequency and back are the same as before,
except all arithmetic is now complex. In case one has forgotten (or never
knew) the basic arithmetic operations on two complex numbers, A,B and
C,D are given below:

A,B + C,D = A+C,B+D

A,B — C,D = A-D,B—D

A,B X C,D = AC-—BD,AD+BC

AB _ AC+BD BC—AD
GD CED?’ C+D?

The nice thing about the complex form of the SFT is that it is com-
pletely symmetrical. There are no special cases for de or Nyquist compo-
nents, and the form of the output is exactly the same as the form of the input.

The FFT Algorithm

At this point, we are ready to look at the FFT algorithm itself. Ac-

tually, there are many different algorithms, each with an edge over the others
in certain applications. They all, within roundoff error, give the same resulc,
however. The one that will be described here is one of the most straightfor-
ward and has the desirable property that sines and cosines (the W function)
are used in ascending order. In technical terms, it is a radix 2 FFT using time

decomposition and input bic reversal. Radix 2 means that the record size
must be a power of two. Other radices are possible, but two is the most
efficient, particularly in a binary computer.

The first step in the FFT is to completely decompose the input samples,
which means that they are scrambled in bit-reversed order as in Fig. 13-12

Fortunately, the scrambling can be accomplished without need for a second
array. One simply programs two counters, one normal] and one bit-reversed,

and iterates them from 0 to N—1. Whenever the bit-reversed counter is
numerically greater than the normal counter, the corresponding samples are

swapped. This is illustrated in Fig. 13-14 for N=16, bur the procedure

applies for any record size as long as it is a power of two. In assembly
language on a microprocessor, one could use just one counter and write a
bit-reversal function, which would take a binary number and return its
bit-reversed equivalent.

416 MUSICAL APPLICATIONS OF MICROPROCESSORS

‘Step Norma! Counter Bit Reverse Counter Action

1 0000 ‘9000 NONE
2 0001 1000 SWAP 188
3 0010 0100 SWAP 2&4
4 ont 1100 SWAP 3 & 12
5 100 0010 NONE
8 101 1010 SWAP 1085
7 110 0110 NONE
8 ort 110 SWAP 1487
9 1000 0001 NONE
10 1001 1001 NONE
4 1010 o101 NONE
12 1011 1104 SWAP 13 11
13 1100 ott NONE
14 1401 101 NONE
16 1110 ont NONE
18 1411 vt NONE

oO ! 2 3 4 5 6 id 8 9 '0 W 68 4 15

8 4 12 2 lo 6 14 | 2 5 13 3 I 7 15

Fig. 13-14. In-place bit-reverse scrambling

The second part of the procedure takes the scrambled sample set,
massages it using the W function with various arguments, and produces the
spectrum as output in natural ascending order. The computation is done in
place, which means that the sepctrum replaces the sample data with no inter-
mediate storage required! Thus, the FFT is literally a transformation of the
data in the record.

AB EF

¢,0 ————— w(I)

COMPLEX
EF = AB + WiNC.0) EXPRESSION

E = A + COS (ntinC ~ SIM(2o¥njD = NORMAL
F= B+ GOS@almO + SINZmin)C EXPRESSION

Fig. 13-15. Nodes used in FFT butterfly diagram

Digital TONE GENERATION TECHNIQUES 4l7

The massaging is best described using a special flowchart called a
butterfly diagram because of its appearance. The fundamental element of a
butterfly diagram is the node, which is illustrated in Fig. 13-15. There are
always two inputs to the node. One goes straight in, while the other is
multiplied by the W function of a specified argument before entering. In the
node, the two inputs are added together to form a single number, which may
then become the source for further computations. A node therefore implies
one complex multiplication and one complex addition. Ina computer program,
this would be accomplished with four normal multiplications and additions.

Figure 13-16 shows the butterfly diagram for a 16-point (N=16)
FFT. Note that there are N rows and log2N columns of nodes. The rows
correspond to storage locations that are initially filled with the scrambled
time samples and later become loaded with the spectrum harmonics. The
computation proceeds one column at a time starting from the time samples at
the left. In order to retain the in-place computation property of the al-
gorithm, the nodes are evaluated in pairs. Each member of the pair uses the
same inputs and produces outputs on the same rows as the inputs. Further-
more, these inputs are not used by any of the other nodes in the column.
Thus, after the node pair is evaluated, the node outputs can be stored in place

of the values used as their inputs. Careful examination reveals that the two
values of the W function used in each pair of nodes are always the negative of

oecimaren |"
TIME FFT

HARMONICS SAMPLES 8

Fig. 13-16. N = 16 FFT butterfly

MUSICAL APPLICATIONS OF MICROPROCESSORS 418

000'r-‘0 826° }—'2862°0

Le

L—‘Ov6E'O

7006'0—‘ISE'0 S099°0-"Z1S¢'0

68r'0—‘EPSb'O

esse'0-'SZrr'0

0'o

ISse0'oZrr'0

6LEr'0'EPSh'O

y0990'S1SP'0 006'0'LGEr'0 ylz'V'0vee'0 826°

b'2887'0 nore)

o'e000'e

 @PON

960'2—‘9979'0
2926'0-'2918'0
e96e'0--‘pzee'0

0'P006'0
896€°0'rz88"0
2926'0'2918'0
860°2'9929'0 0'1000'0

€z8't
-'8€2z'0

6rrZ'0-‘S9ZE0
990€'0-—'6zzb'0

o'1ser’o
990€'0'622r'0
6brz"'S9ZE°0
€28'|'8Ezz'0 0'2000'0

& @pON
€226°0-“PL 62:0

o'€26'0
o'r0es'0—

O'v0ee'o—
0'2926'0

0'r889'0-
O'6L PLO

0'zzs9'0—
€226'0' P1620

O'rl62'0
0'9922'0—

0'891¢'0—
O'L0SP'0-

O'esez'0
o'6ris'0

O'Z8LF'0—
v098'0-‘SS2'0

o'v0Se'0
0'g91S'0—

0'9942°0-
0'Z918'0

o'zest
0-

o'gece'0
o'e602'0-

+098'0'SbS2'0
O'SpSZ'0

0'1s090'0-
0's090°0-

o's0Sr'0
o'seeg'0

O'0r69'0
O'LELO'O-

zeze'0-"vz89'0
o'zezs'0

o'zzs9'0-
O'6trLO

O'6brrz'0
O'%L8r'0-

O'OLLL'O
O'OLZE'O

zeze'0're89'0
o'vze9'0

o0'e60z'0-
o'gece’0

O'rZte'O-
o'Ze9¢'0

o'Lezr'0
o'e6ee'O

08S2'0—‘eEze'O
0'08sz'0

o'ZeLyO-
O'6bLS'0

o'soze'0
0'r620°0—

o'e6ee'0
O'LeLy'O

ogsz“eeze'0
o'eeze'0

O'FELO'O-
0'0r69'0

0'9212°0
0'1262'0

o'z0Le'0
o'zo1e0

Z @
p
o
N

L @ponN
s
e
j
d
w
e
s

s
a
j
a
w
e
s

p
a
s
i
a
n
a
r
i
g

[BUHON

Lid
WIOd-9}

& JO
5]/NSeY

BJB!pouejU]
“|—EL

BIGeL

St + el eb o
| reas moet =

Diérrat Towe GENERATION TECHNIQUES 419

each other. This is important because the actual number of multiplications
required to evaluate the node pair can then be cut in half.

After the first column of nodes has been processed, everything is back
in storage in a partially ceansformed state, and processing of the next column
of nodes can begin. When the rightmost column has been evaluated, the
array contains the N complex harmonics. Note that for the first column the
nodes that should be paired for calculation are adjacent. In the next column,

the pair members are two apart, in the third column four apart, and so forth.

Also note that the mass of crossing lines forms a group of two nodes in the
first column, four nodes in the next column and so forth until there is only

one mass in the final column. These and other symmetries discovered by
examining the diagram should make the progression sufficiently clear so that
generalization for other values of N can be understood. Since the progression
is consistent from column to column, it is clear that a general FFT subroutine
can be written for any value of N that is a power of two.

Table 13-1 shows the actual sequence of intermediate results corre-
sponding to the diagram. The example time samples are of a seven-harmonic
approximation to a sawtooth wave with a few degrees of phase shift included
to make life interesting. Note that the spectrum output starts with the dc
component in the zero array position, fundamental in position 1, etc. up to
the seventh harmonic in position 7. The Nyquist component is in position 8

(the sine part is always zero), while higher array positions contain the first

through the seventh harmonics again but in descending sequence and with

the sign of the imaginary components (sines) flipped. Also note that the
correct amplitudes of the frequency components have been multiplied by N/2
except for the dc component, which is N times too large.

An FFT Subroutine in BASIC

Figure 13—17 is an FFT program written in BASIC. Although BASIC
and fast are contradictory terms, the program serves to illustrate the al-
gorithm and to allow the reader to become familiar with it. The array of
complex input samples is actually stored and handled as two arrays of normal
numbers; D1 being the real part and D2 being the imaginary part. Note that
the array subscript starts at zero. When the transformation is complete, the

spectrum is stored in the same two arrays. To insure that N is a power of two,

the record size is specified by K, which is logeN and must be a positive
integer.

In the program itself, statements 3110 to 3125 scramble the naturally
ordered time samples into bit-reversed order using the method illustrated
earlier. N3 being the “for” loop index counts naturally from 1 to N. N1 in
conjunction with statements 3114 to 3117 acts like a bit-reversed counter

taking on successive values of 0, 8, 4, 12, 2, etc. (for the N=1G case).

Whenever N 1 is greater than N3, the samples pointed to by N1 and N3 are

swapped.

420 MUSICAL APPLICATIONS OF MICROPROCESSORS

3000 REM FAST FOURIER TRANSFORM USING TIME DECOMPOSITION WITH
3001 REM INPUT BIT REVERSAL
3002 REM COMPLEX INPUT DATA IN ARRAY D1 (REAL PART) AND D2 (IMAGINARY
3003 REM PART).
3004 REM COMPUTATION IS IN PLACE, OUTPUT REPLACES INPUT
3005 REM K SPECIFIES NUMBER OF POINTS, K=LOG(2)N
3100 REM SCRAMBLE THE INPUT DATA INTO BIT REVERSED ORDER
3110 N=2**K
3111 N1=0
3112 N@=N-1
3113 FOR N3=1 TO N2
3114 N4=N
3115 N4=NAa/2
3116 IF N1+N4>N2 GOTO 3115
3117 NI=NL-INT(NI/N4)*N4+N4
3118 IF N1<=N3 GOTO 3125
3119 T1=D1(N3)
3120 D1(N3)=D1(N1)
3121 D1(N1)=T1
3122 T2=D2(N3)
3123 D2(N3)=D2(N1)
3124 D2(N1)=T2
3125 NEXT N3
3200 REM DO THE COMPLEX TRANSFORM
3210 N4=1
3211 N6=2*N4
3212 FOR N3=0 TO N4-1
3213 A=N3*3.1415927/N4
3214 C=COS(A)
3215 S=SIN(A)
3216 FOR N7=N3 TO N-1 STEP N6
3217 N8=N7+N4
3218 T1=C*D1(N8)-S*D2(N8)
3219 T2=C*D2(NB)+5*D1(N8)
3220 D1(N8)=D1(N7)-T1
3221 D2(N8)=D2(N7)-T2
3222 D1(N7)=D1(N7)#T1
3223 D2(N7)=D2(N7)+T2
3224 NEXT N7
3225 NEXT N3
3226 N4=N6
3227 IF N4<N GOTO 3211
3228 RETURN

Fig. 13-17. FFT subroutine in BASIC

Statements 3210 to 3227 implement the butterfly diagram and consist
of three nested loops. The outer loop, which spans lines 3211 to 3227, is

executed for each column of nodes. The next loop starts in line 3212 and is
iterated for each different principal value of the W function. The innermost
loop starting at 3216 covers all of the pairs of nodes using a particular

principal value. In the N=16 example, the outer loop will be executed four
times for the four columns of nodes. The middle loop will be executed one
time for column 1, twice for column 2, four times for column 3 and eight

times for the final column. The inner loop count is the inverse of the middle
loop and is executed 8, 4, 2, and 1 time for each iteration of the middle loop.

DiciraL TONE GENERATION TECHNIQUES 421

Innermost in the nest of loops is the useful calculation for a pair of

nodes. The complex numbers chat form the node inputs, outputs, and W
function are handled one part at a time according to the rules of complex
arithmetic. Note that only the lower argument value (principal value) of W’ is
explicitly evaluated, since the upper argument value gives the same result

with opposite sign. A count of useful operations for the node pair gives four
multiplications and six additions. These statements are evaluated (NlogeN)/2
times, which gives a total of 2Nlog2N multiplications and 3Nlog2N
additions.

So far the FFT has been described in terms of transforming a set of time

samples into a frequency spectrum. Because of the symmetry of the W
coefficient array, transforming a spectrum into a sample record requires only
a trivial change in the FFT subroutine. All that is necessary is to place a
minus sign in front of N3 in statement 3213. When this is done, the
spectrum to be transformed is stored in che D arrays in the same format that
it appears after a forward transform (be sure to store both the normal and the
conjugate spectrum) and the modified FFT subroutine is called. The time
samples will then appear in the D1 array with the first one at the zero
subscript position. No amplitude adjustment is necessary after the inverse

transform.

Modification for Real Data

As was noted earlier, the complex formulation of the FFT tends to be

wasteful when the time samples are real. The multiplication count turns out
to be twice the promised value, which is due to the assumption of complex
data and the redundant set of computed harmonics. Fortunately, it is possi-
ble to eliminate the wasted storage and redundant spectrum by the addition
of a real/complex conversion subroutine.

For the forward FFT, the idea is to store the even-numbered time

samples in the real part of the data array and the odd-numbered samples in
the imaginary part, thus doubling the number of samples stored. Next, the
FFT is performed as described previously. The spectrum that emerges is no
longer redundant and typically looks like a list of random numbers. At this
point, a complex-to-real conversion is performed on the specttum, which
results in a complete, conventional spectrum of N+1 harmonics for the 2N
data points. For convenience, the Nyquist component is stored as the sine

part of the de component which would otherwise always be zero.
For an inverse FFT, the spectrum is first entered into the data array

normally with no duplication required. Next a real-to-complex conversion is
performed that transforms the set of real harmonics into a complex set.
Finally, the inverse FFT is executed to generate a list of 2N time samples
stored in even-odd order as before.

Figure 13-18 is a diagram of the computations involved in the
complex-to-real conversion. First the dc and Nyquist components are both

422 MusIcAL APPLICATIONS OF MICROPROCESSORS

COMPLEX TRUE
SPECTRUM SPECTRUM

90—______»f {7 }#_______»o OC, NYQUIST

© FUND COS, SIN

AB-——"

oO 2ND

gl)
E =A +B — (A ~ B)SIN(z lin) + (C + D)COS(= In)
F = C—D-— (A ~ B)COS(In) — (C + D)SIN(z I/n)

cp *G =A+B + (A — B)SIN(z In) — (C + D)COS(z Win)

A.B—

H=— C+D ~ (A + B)COS(z In) — (C + D)SIN(z Win)

E=2A E,F

Fig. 13-18. Complex-to-real transformation for N = 16

E,F

GH

DiGtvTaL TONE GENERATION TECHNIQUES 423

derived from the de term in the complex spectrum according to the “f”’
function. Next the pairs of harmonics that would have been conjugates if the
even—odd storage arrangement were not done are combined according to the
“g” function to produce a pair of real harmonics. Finally, the “4” function is
applied to the remaining N/2th spectral component. Note that cosines and

sines of angle increments half the size of the smalJest increment used in the
FFT are utilized in evaluating g much like an extra step in the FFT. In fact,
the whole procedure can be regarded as an extra column of nodes in the FFT
algorithm.

Figures 13-19 and 13-20 are BASIC subroutines for complex-to-real

and real-to-complex conversion, respectively. The complex-to-real routine
also scales the spectrum output so that all of the harmonics, including the dc
component, are of the correct amplitude. Except for scaling, the real-to-
complex routine undoes what the complex-to-real routine does.

The conversion adds essentially 2N multiplications to the FFT, which
gives a total of 2N+2NlogeN for 2N data points. If M = 2N = the number
of real data points, this is equal to Mlog2M multiplications, which is the

4000 REM COMPLEX TO REAL TRANSFORMATION FOR FOURIER TRANSFORM
4001 REM IF REAL DATA POINTS ARE ALTERNATELY STORED IN D1 AND D2
4002 REM ARRAYS, I.£. TO->D1(0), Tl-»02(0), T2->D1(1), T3->02(1), ...
4003 REM THEN THIS ROUTINE CONVERTS THE COMPLEX SPECTRUM INTO A
4004 REM REAL COSINE-SINE SPECTRUM.
4005 REM THE ROUTINE ALSO DOES AMPLITUDE CORRECTION ON THE OC
4006 REM COMPONENT AND THE HARMONICS SO THAT THE FINAL SPECTRUM OUTPUT
4007 REM 1S THE TRUE SPECTRUM OF THE WAVE.
4008 REM THE SINE PART OF THE DC COMPONENT IS SET EQUAL TO THE NYQUIST
4009 REM COMPONENT AND SHOULD BE NEAR ZERO IF THE SAMPLE RATE OF THE
4010 REM DATA WAS ADEQUATE.
4011 REM THIS ROUTINE USES THE SAME INPUT AS THE FFT ROUTINE
4100 N=2*4K
4200 REM COMPUTE DC AND FOLDOVER COMPONENTS
4201 T1=D1(0)
4202 T2=D2(0)
4203 D1(0)=(T1+T2)/({2*N)
4204 02(0}=(11-12)/{2*N)
4300 REM COMPUTE REMAINDER OF FREQUENCY COMPONENTS
4301 FOR Nl=1 TO N/2
4302 N2=N-N1
4303 C=COS(-3.1415927*N1/N)
4304 S=SIN(-3.1415927*N1/N)
4305 T1=(D1(N1)+D1(N2))/2
4306 T2=(D1(N1)-D1(N2))/2
4307 T3=(D2(N1)+D2(N2))/2
4308 T4=(D2(N1}-02(N2))/2
4309 T5=T2*S-T3*C
4310 T6=T2*C+T3*S
4311 D1(N1)=(T1-T75)
4312 D1(N2)=(T1+T5)
4313 02(N1)=(T4-T6)
4314 02(N2)={-T4-T6
4315 NEXT N1
4316 RETURN

iN
IN
iN
)

Fig. 13-19. Complex-to-real spectrum transformation routine in BASIC

424 MUSICAL APPLICATIONS OF MICROPROCESSORS

5000 REM REAL TO COMPLEX TRANSFORMATION FOR INVERSE FOURIER TRANSFORM.
5001 REM THIS ROUTINE CONVERTS A REAL COSINE-SINE SPECTRUM INTO A
5002 REM COMPLEX SPECTRUM THAT WHEN INVERSE FOURIER TRANSFORMED WILL
5003 REM PRODUCE REAL DATA POINTS STORED SUCH THAT EVEN NUMBERED
5004 REM POINTS ARE IN THE REAL PART OF THE DATA ARRAY AND ODD
5005 REM NUMBERED POINTS ARE IN THE IMAGINARY PART OF THE ARRAY.
5006 REM THIS ROUTINE IS THE INVERSE OF THE COMPLEX TO REAL ROUTINE
5007 REM EXCEPT FOR SCALING WHICH HAS BEEN SET FOR THE PROPER OUTPUT.
5008 REM THIS ROUTINE FOLLOWED BY AN INVERSE FOURIER TRANSFORM IS THE
5009 REM EXACT INVERSE OF A FORWARD FOURIER TRANSFORM FOLLOWED BY THE
5010 REM COMPLEX TO REAL ROUTINE.
5011 REM THIS ROUTINE USES THE SAME INPUT AS THE FFT ROUTINE
5100 N=2**K
5200 REM RESTORE DC AND FOLDOVER COMPONENTS
5201 T1=n1(0)
5202 T2=D2(0)
5203 D1(O}=T1+T2
5204 D2(0)=T1-T2
5300 REM COMPUTE REMAINDER OF FREQUENCY COMPONENTS
5301 FOR N1=1 TO N/2
5302 N2=N-N1
5303 C1=COS(-3.1415927*N1/N)
5304 S1=SIN(-3.1415927*N1/N)
5305 T1=(D1(N1)+D1(N2))/2
5306 T4=(D2(N1)-D2(N2))/2
5307 T5=(D1(N2)-D1(N1))/2
5308 T6=(-D2(N1)-D2(N2))/2
5309 T2=T5*S1+T6*C1
5310 T3=T6*S1-T5*C1
5311 D1(N1)=T1+T2
5312 D1(N2)=T1-T2
5313 D2(N1)=T3+T4
5314 D2(N2)=13-T4
5315 NEXT N1
5316 RETURN

Fig. 13-20. Real-to-complex spectrum conversion routine in BASIC

promised value. With clever programming to avoid multiplication by zero
and one in the FFT and real conversion routines (especially in the first
column of the FET), one can ultimately reach a lower limit of

M [dogeat)—2] multiplications, which is a significant reduction when M is
small.

Using the FFT for Synthesis

Although the greatest value of the FFT is in sound analysis and modifi-
cation, it is covered in this chapter because it is also a powerful “synthesis-
from-scratch” technique. Unfortunately, its record-oriented properties com-
plicate application to changing spectra with arbitrary frequency components.

However, if the required spectral detail is great, the FFT can be much more
efficient in computing samples than a direct Fourier series evaluation in spite

of these complications.

In all FFT-based synthesis procedures, the general idea is to compute a
sequence of sample records using the FFT and then combine them sequen-

Digiral TONE GENERATION TECHNIQUES 425

(A)

L.
y

DISCONTINUITIES
(B)

Fig. 13-21. Generating an arbitrary frequency sine wave with the FFT. (A)
Record boundaries with a 256-Hz wave. (B) Phase correction
between records.

tially in time to produce a continuous string of samples suitable for further
processing or output to a DAC. Generally, the record size is chosen once and
remains constant throughout the synthesis but a dynamically variable record
size is conceivable. If the synthesis result is intended for human consump-
tion, record sizes in the 10-msec to 50-msec range provide the best tradeoff
between frequency and time resolution consistent with human perceptual
capabilities.

In order to get acquainted with some of the problems and their solu-
tion, let's first consider the task of generating a sine wave of an arbitrary but
constant frequency using the FFT. For the purpose of illustration, we will

assume a sample rate of 10 kHz = 0.1 msec/sample, a record size of 256 =

25.6 msec, and a sine wave frequency of 200 Hz. The first problem that will
be noted is that 200 Hz is not an exact harmonic of 1/25.6 msec = 39.0625
Hz. The closest harmonic is the fifth, which ts 195.3 Hz, an error of about

one-third semitone. If FFT synthesis is to be useful, a way must be foutid to
produce such intermediate frequencies accurately.

Figure 13-21A illustrates the problem. Shown is an exact sampled
200-Hz waveform and the record boundaries for 256-sample records. Obvi-
ously, the phase of the desired wave with respect to the record boundaries is
different for each record. in fact, the phase advances by
(200 — 5 X 39.0625)/39.0625 = 0.12 cycle every record period. Since the
spectrum fed to the FFT includes phase, one can increment the phase of the

426 MusICcAL APPLICATIONS OF MICROPROCESSORS

fifth harmonic by 0.12 X 2a before each record is calculated and. thus
generate the correct average frequency.

Unfortunately, there is a substantial glitch where the records are
spliced together as shown in Fig. 13-21B. This is due to the fact that the
wave frequency within the records is still 195 Hz and the entire phase
correction takes place between the “records. Such discontinuities are quite
objectionable. If there was a way to spread the correction throughout the
record, perhaps the results would be better.

One method of accomplishing spreading involves the concepts of record
overlap and interpolation. Overlap means that the end of one record overlaps
the beginning of the next rather than butting up against it. Time-variable
interpolation is used to combine the overlapping portions of the records into
a single string of samples in the overlap area. With this technique, the sharp
discontinuities seen earlier are spread out over the overlap interval.

Figure 13-22 shows some possibilities for overlapping and interpola-
tion. Figure 13—22A shows an overlap factor of 50%, which means that 50%
of the time there is overlap between records. Thus, a new record is started

every 0.75 times the record length. Figure 13—22B shows 100% overlap
where a new record is started when the previous one is only half complete.
Even higher orders of overlap are possible. Obviously, overlapping results in
more computation, since more records are needed per unit time.

The interpolation needed in the overlap areas is accomplished with the
same method described earlier regarding interpolation between two

waveform tables. One requirement is that the “weighting curves” always
sum up to 1.0 during the overlap interval. A linear curve is the simplest that

RECORD OVERLAP
DURATION INTERVAL OVERLAP INTERVAL
ee Ee i
| N42 N+4 [in N+2 nt+a | N+6

N= | ee ae N45 N—1[NI N+3

|. ol ae)
ReDAh : , ! ! RECORD
PERIOD = 0.75 PERIOD = 0.5
RECORD DURATION RECORD DURATICN

(A) (8)

1.0 10
0 XS xX OPP PPOrPOE ON

RECORD RECORD RECORD Ne Ne RERORD
te) (0)

Lo

Cr

"
RECORD RECORD

N+!

{€)

Fig. 13-22. Record overlap and interpolation. (A) 50% overlap. (B) 100% over-
lap. (C) Interpolation curves for 50% overlap. (D) Linear interpola-
tion for 100% overlap. (E) sin? interpolation for 100% overlap.

Dicira, TONE GENERATION TECHNIQUES 427

satisfies this requirement. A better curve for 100% overlap is the sin? curve,
which also gives a sum of 1.0 (remember that sin2A +cos?A = 1),

Now, how does overlap and interpolation affect the job of creating a
200-Hz tone with the FFT? Taking the case of 100% overlap, it is immedi-
ately obvious that the phase shift per record of the fifth harmonic needs to be
only one-half of its previous value or 0.06 cycle because there are now twice
as many records per unit time. A general expression for the phase shift per
record period with 100% overlap is: P=D(F —H)/2, where P is the phase
shift in terms of cycles/record period, F is the desired frequency in hertz, H is

the nearest harmonic frequency of the record duration, and D is the record
duration. A little study will reveal that the largest possible phase shift, 0.25,
occurs when the desired frequency falls midway between harmonics.

How well does overlap and interpolation work in smoothing out distor-
tions in the synthesis? Figure 13-23 was prepared using a “worst-case”
situation of synthesizing a 214.8-Hz wave (halfway between fifth and sixth
harmonics) with a record duration of 25.6 msec, 100% overlap, and a sin?

interpolation function. The waveform itself in Fig. 13-23A seems to be
essentially perfect when compared to the ideal below but shows 34% or about
3 dB of amplitude modulation, which is due to partial phase cancellation
during the interpolation. Such amplitude modulation is not always objec-
tionable for musical applications, since it occurs at the relatively slow record
frequency.

A more sensitive analysis was performed in Fig. 13-23B by taking the

FFT of 51.2 msec of the synthesized waveform, which, ideally, would show
an 11th harmonic component and nothing else. In fact, there is a small
amount of distortion clustered around the signal frequency that is caused by
the amplitude modulation, With arbitrary frequencies, the phase shift per
record averages only half the maximum, which corresponds to about 7.9% or
0.7 dB of modulation. Higher overlap factors and multiway interpolation in
the synthesis can reduce the distortion dramatically. A four-to-one overlap,
for example, exhibits 0.6% worst-case amplitude modulation, which is only

about 0.05 dB and therefore quite inaudible.

The Phase-Derivative Spectrum

At this point, let's examine the best way to represent an arbitrary
spectrum for use with FFT synthesis. First, we will assume that the arbitrary
spectrum, which will be called the source spectrum, is given as a list of
sinusoidal components with each component characterized by an amplitude
and a frequency parameter. If the spectrum is dynamically changing, there
will be such a list for each record period, which means chat the amplitude
and frequency parameters are sampled functions but at a relatively low sam-

ple rate.
The first step toward an FFT-compatible representation is to specify

frequencies in terms of the reciprocal of the record duration. Thus, with a

428 MUSICAL APPLICATIONS OF MICROPROCESSORS

(a)

(8)

"5 |_-— DESIRED SIGNAL

AMPLITUDE, (dB)

0
0 05 1015 2.0 3.0 3.5 4.0 5.0 6.5 6.0 7.0 7.5 6.0 9.0.9.5 10.0 10 11.5 12.0

FREQUENCY

(c)

Fig. 13-23. FFT synthesis of 5.5 harmonic using 2:1 overlap. (A) FFT-
synthesized waveform. (B) Reference-perfect waveform. (C)
Spectrum of synthesized waveform.

record duration of 25.6 msec = 1/39.0625 Hz, a 100-Hz component would
have a frequency of 2.56 units. The integer part of che rounded frequency

parameter is the harmonic in the FFT that this particular frequency compo-
nent will affect.

Next, we define the current FFT spectrum, which for convenience will be
in the amplitude-phase form. This spectrum, after conversion into cosine—

sine form, is what is Fourier transformed to produce a record. After each

record is computed, the current FFT spectrum is updated according to the

DiciraL TONE GENERATION TECHNIQUES 429

source spectrum. Note that the current spectrum will have to be copied
before the FFT is executed.

Updating the current spectrum from the source spectrum is simple if

the source spectrum components are far enough apart such that no more than

one affects any given FFT spectrum harmonic. First, each source frequency is
rounded to an integer and the amplitude simply copied to the corresponding
FFT harmonic number. Next the rounded value is subtracted from the
unrounded value and the difference is divided by two (for two-to-one overlap
factor) to yield a number between —0.25 and +0.25. This number is added
to the current phase (in units of 27 mod 1.0) of the corresponding FFT

harmonic to give a new phase. After all of the source spectrum is processed,
another FFT sample record is computed and the process is repeated. Note
that even a very-low-frequency source spectrum component, which may
correspond to the de component of the FFT, comes out alright by virtue of
the amplitude—phase to cosine—sine conversion.

Problems occur, however, when two or more source components map
into the same FFT harmonic. In real life, two such closely spaced frequencies

would slowly beat together giving an apparent frequency equal to the
stronger of the two (or the average if substantially equal) and a periodic
varying amplitude envelope with a frequency equal to the difference between
the component frequencies. While not exact, it is possible to replace the two
closely spaced components with one component and some tremolo in the
amplitude parameter for the new component.

A more exact method that works for any number of closely spaced
frequencies is to keep track of the current phase of each in a separate array.
When the FFT harmonic affected by the cluster is updated, the contents of
this array are combined according to:

Aisin(P)

Pr=ran!

A:cos(Pi)

N N

Ar= SS Aicos(P) |? + | S — Arsin(Ps |?
i=1 i=]

where N is the number of frequencies in the cluster, Af and Pi are the am-

plitude and phase, respectively, of the ‘th array element, and Ar and Pr are
the amplitude and phase of the resultant that are entered into the FFT

spectrum.
Table 13-2 shows these methods applied co a short segment of sound.

Ic is a sequence of source spectrums, spaced 12.8 msec apart. Frequency ts

430 MUSICAL APPLICATIONS OF MICROPROCESSORS

Fig. 13-24. Waveform computed from sequence of object spectrums from

Tables 13-2 and 13-3.

expressed as multiples of the inverse of the record size (39 Hz for 10-kHz
sample rate and 256 record size) and amplitude is in arbitrary units. Table
13-3 is a listing of the nonzero portion of the corresponding FFT spectrum

sequence.
Figure 13—24 is the actual waveform (with line segments connecting

the sample points for easier visualization) created by this sequence. Note that

ultrasharp attacks are simply not possible with FFT synthesis. In fact, no
event shorter than a record period can be resolved. This drives home the
primary assumption of FFT synthesis that the record size must be shorter

than the limits of human time perception yet longer than the limits of

human frequency perception for simultaneous tones.

Table 13-2. FFT Synthesis Example: Source Spectrum Sequence

Record
number Freq. Amp. Freq. Amp. Freq. Amp. Freq. Amp. Freg. Amp.

1 to) td)
2 5.7 1.0
3 60 13
4 63 1.0
5 63 1.0

6 63 1.0 21 05
7 63 1.0 2.1 0.75
8 63. 1.0 21 1.0
9 61 075 24 06 87 O02 93 02 #04 03

10 59 0.2 27° 01 87 O05 93 05 O04 07
iW 87 05 93 05 0.4 1.0
12 87 05 93° 05 04 1.0
13 87 03 93 03 0.4 1.0
14 87 0.1 93 01 0.4 1.0
15 04 1.0
16 04 1.0

DigirAt TONE GENERATION TECHNIQUES 431

Table 13-3. FFT Synthesis Example: Sequence of Object Spectrums

Record
number Hrm. Amp. Phase Hrm. Amp. Phase Hrm. Amp. Phase Hrm. Amp. Phase

1 — Alo
2 6 10
3 6 13
4 6 1.0-
5 6 1.0
6 6 1.0
7 6 1.0
8 6 1.0
9 6 075

10 6 0.20
W 9 0.951
12 9 0.809
13 9 0.000
14 9 0.162
15 Oo 1.0
16 Oo 10

0:85
0.85
0.00
0.15
0.30
0.45
0.60
0.65
0.60
0.50
0.50
0.00
0.00
0.40
0.60

COTOWNNNAN

0.5 0.05
0.75 0.10
4.0 0.15
060 035 9 0235 0.00 0 030 0.20
0.10 0.20 9 0309 050 9 0.70 0.40
1.0 0.60
1.0 0.80
1.0 0.00
1.0 0.20

Note that all harmonics not specilically listed are assumed to have zero amplitude.

14
Digital Filtering

In analog synthesis, filtering is used almost exclusively for modification of

the severely limiced oscillator waveforms available. However, as was just
discussed, digital oscillators and tone generators are considerably more flexi-
ble and are themselves capable of virtually any spectral effect desired.
Nevertheless, tone modification by filtering is still an important technique if
for no other reason than convenience. In the digital domain, such modifica-
tion may be achieved directly by giving each harmonic its own amplitude
envelope, thereby simulating the effect of a varying filter. However, use of an
actual filter may require far fewer varying parameters to achieve the desired
result, This is particularly true if the user has had experience with analog
systems because the desired result will usually be thought of in terms of
filtering.

Also, some types of sounds require the use of filters in their synthesis.
For example, it is difficult to generate “random” noise with a specified
frequency spectrum directly; however, one or more filters can easily shape a
flat noise spectrum into what is required. Also, in sound modification appli-
cations in which one has no direct control over the source material, filtering
is the only reasonable way to modify the spectrum. Frequency-sensitive time

delay (dispersion) and frequency-sensitive phase shift are functions that are
useful in chorus and reverberation simulators and that are normally regarded
as “‘all-pass’’ filtering. Finally, as we shall see in the next chapter, digital
filter ringing is a very convenient method for generating percussive sounds.

Just as a digital oscillator can generate any waveform subject to the
constraints of sampling, a digital filter can be designed to have any frequency
and phase characteristic desired with only two limitations. One is the high-
frequency limit imposed by sampling. For example, a digital high-pass filter
cannot be expected to provide a high-pass characteristic up to infinity like an
ideal analog filter would. Instead, the response is undefined beyond one-half
the sample rate and may be distorted somewhat just below one-half the
sample rate. Another limitation is that filters cannot be expected to predict
the future! While this may seem obvious, a low-pass filter specification with

433

434 Musica APPLICATIONS OF MICROPROCESSORS

R

INPUT ia c OUTPUT INPUT

Fig. 14-1. Analog R-C filters. (A) Passive implementation. (B) Active im-
plementation.

zero phase shift at all passband frequencies is asking exactly that. For exam-
ple, if the filter were presented the first three samples of a low-frequency yet
high-amplitude wave, it would have no way of “knowing” whether it really
was part of a low-frequency cycle or part of a high-frequency but low-
amplitude cycle without further data. Zero phase shift implies that such a
decision is made immediately and the samples either pass to the output or are
blocked. Linear phase shift, which implies constant time delay independent of
frequency, however, is readily available. Note that for filtering outside of real
time this constraint can be effectively overcome by delaying everything else

to match.

Digital filtering, like other aspects of digital signal processing, can be
highly mathematical. After all, a digital filter is nothing more than a
mathematical function that accepts a string of input numbers and provides a
string of output numbers. In this chapter, however, digital filters will be
discussed as a natural outgrowth of fundamental analog filtering circuits.
Later, an intuitive approach will be used to discuss filters with an arbitrary
amplitude response shape. It should be noted that many of the filtering
concepts mentioned here are equally applicable to analog filtering and some
in fact were not mentioned in the sections on analog filtering.

Digital Equivalents of Analog Filters

The simplest analog filters consist of just two components: a resistor
and a capacitor. These can be configured in two ways to provide single-pole
(6 dB/octave) low-pass or high-pass filters. For the moment, we will concen-
trate on the low-pass circuit.

Back in Chapter 6, it was shown that the exact same R-C low-pass
response could be obtained with an op-amp and an R-C feedback circuit such
as in Fig. 14—1. Careful examination of this circuit reveals a standard analog
integrator with a “leak” resistor placed across the capacitor. The resistor
causes the capacitor charge to leak away and thereby puts an upper limit on
the very low frequency and de gain of the circuit. In fact, the 3-dB attenua-
tion point is the frequency at which the capacitive reactance equals the leak

DIGITAL FILTERING 435

input Samples Output Samples
000 000
309 309
588 897
809 1,706
961 2.657

1.000 3.657
951 4.608
-809 5.417
588 6.005
309 6.314
000 6.314

~.309 6.005
—.588 5.417
—.809 4.608
—.951 3.657

~ 1,000 2.657
~.951 1,706
— 809 .897
—.588 -309
—.309 ,000
-000 .000
.309 309
-588 -397
809 1.706

(A)

Input Samples Output Samples
.000 .000
588 588
951 1.639
-951 2.490
588 3.078
000 3.078

—,588 2.490
—.951 1.539
—.951 -588
— 588 -000
.000 -000
588 588
951 1.539

(B)

Fig. 14-2. Filtering action of a digital integrator. (A) Response to sine wave
samples at 0.05 Fs. (B) Response to sine wave sampies at 0.1 Fs.

resistance. The de gain is simply the leak resistance divided by the input-
gain-determining resistor.

In the previous chapter, it was mentioned that a digital accumulator
acts like an integrator when numbers are repeatedly added to it. This is just
as true when the numbers being accumulated are samples of some arbitrary
waveform as when they represent a constant “currence” in a digital oscillator.

436 Musical APPLICATIONS OF MICROPROCESSORS

INPUT.

2
Qn > am q

OUTPUT

OUTPUT
ns is)

tNpUT

(D)

Fig. 14-2. Filtering action of a digital integrator (cont.). (C) Graphs for Fig.
14-2 (A). (D) Graphs for Fig. 14-2 (B).

Therefore, inasmuch as an integrator is a type of analog low-pass filter, an
accumulator is a type of digital low-pass filter.

As an example, consider the tables and plots of Fig. 14-2. A digital
integrator is implemented by simply adding input samples to an accumulator
and providing output samples that are the present content of the ac-
cumulator. As an experiment, two different strings of sine wave samples are
tried. The first string represents a sine wave with a frequency 1/20 of the
sample rate, while the second string has a frequency of 1/10 Fs. The
amplitudes of both input waves are identical. The resulting tables and graphs
give the response of the digital integrator to these strings of samples. Note
that the lower frequency wave comes out with approximately twice the

amplitude of the higher-frequency wave. Also note that the output wave lags

DiGrrac FItTERING 437

the input wave by 90°. This behavior is just what would be expected of a real
analog integrator. Even the dc offset at the output would be expected, since
the input was suddenly applied at zero-crossing time. Although not apparent
in the figure, the integrator does not contribute any noise or distortion to the
signals passing through but may alter the signal-to-noise ratio due to its
filtering effect.

Digital R-C Low-Pass Filter

Returning to the leaky integrator equivalent of an R-C low-pass filter,
Jet us see how the same effect can be accomplished digitally. It should be
obvious that the magnitude of the leakage current is proportional to the
voltage across the capacitor and the direction is such that the capacitor is
discharged. Since the capacitor voltage is the same as the output voltage (the
capacitor lead connected to the op-amp’s inverting input is at virtual
ground), the leakage current is proportional to the instantaneous output
voltage. This same discharging effect can be simulated by subtracting a con-
stant proportion of the accumulator’s content from the accumulator every sam-

ple period. In fact, the percentage of accumulator “charge” that should be
subtracted is exactly equal to the percentage that would have leaked through
the leakage resistor during one sample period in the analog filter.

It is well known that the capacitor voltage during discharge follows an
inverse exponential curve: E=Eoexp(—T/RC), where E is the voltage after
time T, Eo is the initial voltage, and R and C are the component values in

ohms and farads. Since the cutoff frequency is /27RC, a substitution can be
made in the equations, and it is found that E =Evexp(27F cr), where F< is the

cutoff frequency of the filter. Converting the sample period, 7’, ro the sample
rate, F:, makes the final result: E=Eoexp(—2aFdFs). Thus, the proper
percentage to subtract from the accumulator each sample period is:
l-exp(— 27rF/F:) which can be designated K. A BASIC statement for im-

plementing the digital filter then would be:

1000 LET A=A—K*A+I

where A is the accumulator content, K is the leakage constant, and / is the

input sample. This statement is executed for each input sample and succes-

sive values of A are the output samples.

One could also simply multiply the accumulator contents by 1—K,
which can be called L, and put the product back into the accumulator with
the input added in. In BASIC, the result would be:

1000 LET A=A*L+I1

which is about as simple as one can get. Note that L can never be greater than
1.0. If it were, the filter would be unstable and eventually overflow even-
floating-point arithmetic. (Imagine, a universe full of energy circulating in

this little filter!)

438 Musical APPLICATIONS OF MICROPROCESSORS

Note that the expression for finding K or L depends on the ratio of
cutoff frequency to sample frequency. This should have been expected, since
the same string of sample values can represent entirely different signal fre-
quencies if the sample rates are different. Thus, it is customary in digital
filter work to always specify frequency as a fraction of the sample rate rather
than in hertz. Amplitude response plots, therefore, have the frequency axis

calibrated from zero (or some lower limit if a log scale) to 0.5.

There is still one undesirable effect in the digital fileer. It has a substan-
tial amount of passband gain. In fact, as K is adjusted for lower cutoff
frequencies, the gain increases in inverse proportion to K. This is of no-
immediate concern with the floating-point arithmetic in BASIC but later,
when the filter arithmetic is converted to integers for increased speed, it can
become a real headache. The amount of dc gain is easily determined by
noting that for a constant input of 1.0 the output will rise until the amount

removed from the accumulator each sample period via leakage is equal to the
amount added via the input. Thus, the dc gain is 1/K or 1/((1—L). The best
way to counteract the gain is to multiply the input samples by the inverse, K,

before adding. The final filter statement therefore is:

1000 LET A=A*L+K*I

Note that two multiplications and one addition are required for each
sample processed. By rearranging constants and allowing large numbers in
the accumulator, one of the multiplications can be eliminated:

L000 LET O=K*A
1001 LET A=A—O+I

DIGITAL
FILTER

ANALOS —i8} FILTER se

20
n L L nt 1 —_

0.005 O.0F 0.02 0.05 or 0.2 Os
FREQUENCY F/F,

Fig. 14-3. Measured response of digital low-pass filter

Digitat Fi.rertinG 439

where O is now the output of the filter. Although this is certainly slower in
BASIC because of the extra staternent, it is likely to be much faster in
assembly language because of the elimination of a multiplication operation.

At this point one can repeat the Fig. 14—2 experiment with several
different frequencies to observe the typical R-C low-pass characteristic,
which was done to create Fig. 14-3. Note that near the 0.5Fs point the
—6 dB/octave cutoff slope decreases somewhat. This is due to actual aliasing
of the filter response, since it is not zero at or beyond Fi/2. As digital filters
are studied, it will be found that their amplitude response always tends to
depare from the ideal as the Nyquist frequency is approached.

One can also apply digital square waves to the filter and observe that
the output samples show the same kind of leading edge rounding that the
analog filter exhibits. In fact, the samples of the square-wave response (step
response in general) are exactly the same as ADC samples from the response of
an analog R-C low-pass filter would be. A digital filter having this property
is said ta be impulse invariant, which for our purposes means that the time
domain response is the same as the corresponding analog filter.

Signal Flow Graphs

Although the calculations involved in a digital filter can be represented
as equations or program fragments, they do not give a very clear picture of the

-0,314 8

AMPLIFIER WITH GAIN OF 0.914
MULTIPLIES INPUT SAMPLES BY 0314

MIXER OR ADDER,
ADD SAMPLES A AND 8 TOGETHER ANO SUBTRACT C TO PRODUCE
THE OUTPUT SAMPLE

ONE SAMPLE PERIOD DELAY
SAVE THE INPUT SAMPLE FOR ONE SAMPLE PERIOD AND THEN PASS:
ON TO THE OUTPUT

Fig. 14-4. Symbols used in signal flow graphs

440 MusicaL APPLICATIONS OF MICROPROCESSORS

INPUT
ATTENUATOR

+
INPUT

K=1—exp(—2nFy/Fe)
L=I-K

4 OUTPUT

1— (LEAKAGE FACTOR)
BASIC FORM

OUTPUT

FORM CONTAINING ONLY ONE MULTIPLICATION

Fig. 14-5. R-C low-pass digital filter diagram

“structure” of the filter. Singal flow graphs give such structural information
and at the same time are readily converted into program segments. The three

symbols used to construct such graphs are shown in Fig. 14-4 and with them
any kind of digital filter can be represented. The amplifier symbol represents
a multiplication operation that is really the same as an amplifier with a
specified gain. By counting up the number of such symbols in a filter
diagram, the exact number of multiplications needed to process an input
sample is determined. The summer symbol can have any number of inputs,
and each individual input may either add to or subtract from the output as
denoted by plus and minus signs at the arrowheads. The number of
additions/subtractions per sample is equal to the count less one of summer
inputs for all summers in the filter diagram.

The delay element is perhaps the most difficult to understand. In
essence, the box is a register or memory word that holds a sample value for

use the vext time the digital filter is evaluated. The Z~! symbol inside is
optional and merely designates the mathematical meaning of a one sample

delay. A typical digital filter may have several delay boxes, often connected
in series. Such a series connection behaves just like a shift register that is
shifted every sample period. If a common digital filter subroutine is being
used to simulate several different filters, a word of storage will be required for
each delay element of each filter. In many digital filters, each delay operation
is roughly equivalent to a reactive element in an analog filter.

Figure 14—5 shows the R-C low-pass filter drawn in signal flow graph
form. Converting such a diagram into a series of program statements consists
of two major steps. In the first step, the input sample and the outputs of all

Dicivat FILreRinG 441

BAND
REJECT HIGH-PASS. BANDPASS

LOW-PASS

ANALOG STATE VARIABLE FILTER

+
INPUT ——>| OUTPUT

DIGITAL INTEGRATOR

BAND HIGH-PASS BANDPASS REJECT

LOW-PASS

Fig. 14-6. Analog and digital state-variable filter

delays are multiplied by the specified constants and added/subtracted in the
indicated ways to produce the output sample and inputs to the delays. In the
secand step, the delay block inputs that were just computed are stored into
the registers corresponding to the delays. When the next input sample is to
be processed, the values just stored in the delays become the new delay
outputs.

State-Variable Digital Filter

The analogy between analog and digital filters can be extended to cover
the state-variable type as well. Recall from Chapter 6 that the state-variable
or integrator loop filter was exceedingly versatile because of a number of

442 MUSICAL APPLICATIONS OF MICROPROCESSORS

desirable properties. First, it was a second-order filter with independent con-
trol of center frequency and Q. Next, a single circuit simultaneously provides
low-pass, bandpass, high-pass, and notch outputs from a single input. Fi-

nally, ic could be cuned over a very wide range of both frequency and Q
merely by varying just three resistors (two for frequency and one for Q) or
alternatively, three gain factors. Precise matching of the two frequency-
determining controls was not necessary unless a deep notch was desired.
Since all second-order response functions are available from this one circuit,
it is an ideal building block for sharper and more complex filters.

Figure 14—6 shows the analog state-variable filter in terms of amplifiers
and integrators. Taking this and the diagram of a digital integrator, the

digital state-variable filter follows almost trivially. (Note that the configura-
tion of the first integrator has been altered somewhat. It is necessary to have a
delay inside the overall feedback loop for the network to function.) All of the
desirable characteristics of the state variable have been retained. The four
different outputs are still present and frequency and Q are independently
adjustable. A count of arithmetic operations reveals that five additions (six if
the notch output is needed) and three multiplications per sample are re-
quired. Although more efficient structures are possible for single-function
filters such as bandpass, they are not nearly as flexible and give up indepen-
dence between center frequency and Q control.

Using the rules just discussed, let us convert this diagram into a series
of BASIC statements. Before starting, the names of variables must be estab-
lished. For convenience with the limited names allowed in BASIC, the
following will be arbitrarily assigned:

I Input sample

L Low-pass output sample
B Bandpass output sample
H High-pass output sample

N Notch output sample
Fl Frequency control parameter

Ql Q control parameter
D1 Delay associated with bandpass output
D2 Delay associated with low-pass output

The first task is to compute al] of the outputs. The sequence of compu-
tation is important in order to minimize the statements and to avoid having a
variable depend on itself in the same time period. Careful examination of the
diagram reveals that if the low-pass output is evaluated first, everything else
falls into place. Thus, the first step is accomplished by the following
statements:

1000 LET L=D2+F1*D1
1001 LET H=I—-L—-Q1*D1
1602 LET B=F1*H+D1
1003 LET N=H+L

DIGITAL FILreRinG 443

Next the inputs to the delays must be computed and stored:

1004 LET D1=B

1005 LET D2=L

This completes the computation for the sample period. Note that two
statements may be saved by realizing that the current content of the two
delays is the same as the bandpass and low-pass outputs.

Tuning Relationships

In order to use the filter, it is necessary to know the relationship
between the frequency- and Q-determining factors, Fl and Q1, and the
corresponding actual physical parameters. The first logical step is to look at
these relationships in the analog filter. Referring back to Fig. 6-24, the Q of
the state-variable filter is seen co be simply the inverse of the RQ gain path

from the bandpass output through the input summing amplifier to the

high-pass output. The same behavior can also be expected from the digital
state-variable. Thus, Q1=1/Q which has a useful range from 2, correspond-
ing to a Q of 0.5, to zero which corresponds to infinite Q.

In fact, infinite Q is a reasonable situation with most digital filters.
When excited by a pulse, the infinite Q filter will ring forever with a perfect
digital sine wave neither gaining nor losing amplitude for as long as one

wishes to let che program run! Actually, che roundoff errors in integer and
some floating-point computer arithmetic cancel out each cycle so that there is

no net accumulation of error. Thus, a ringing infinite Q digital filcer is one
way to obtain high-quality sine waves without interpolating in a sine table.

Only two multiplies and two adds per sample generated are required, since
Q1 is zero and there is no input. Thus, it is a highly efficient method as well.

The center frequency relation is a little more difficult and a little less

ideal. For the analog state-variable filter, it was given as F=1/(2a@7RrC)

where RF was the integrator input resistor and C was the feedback capacitor.
It is interesting to note that at this frequency the gain of each analog

integrator is 1.0, since R=Xc=W(27FC). Thus, we would expect that

resonance would occur in the digital equivalent at the frequency at which the
integrator gain cancels the loss due to the F1 amplifiers thereby producing a

net path gain of 1.0. The gain of the digital integrator alone is approximately
Fi/2mF , where F is the test frequency and Fs is the sample rate. Thus, the

frequency of unity integrator gain is F/27, Factoring in the F] parameter,
the unity-gain frequency becomes F =F LF;/27 and conversely F1=27F/Ps,
where F is the filter's center frequency.

Unfortunately, this relationship is not exact with the error getting
worse as the center frequency approaches one-half the sample rate. The root
cause is the digital integrators whose gain at high frequencies is greater than
it should be. This is one manifestation of amplitude response aliasing that

444 MusicaL APPLICATIONS OF MICROPROCESSORS

’ 10.0

208 ACTUAL Se & oe X
s TUNING
@ 07 7
© 16 ies
= 05 Ss
= oa \ 70 £0.
= 65
% 013 WEAL | ey
S 02 TUNING | ©: e
S all 588
S aio 506
& 0.09 45 &

= 0.08 4.0

& 0.07 oe
8 0.06 Ed
& 0.05 !
O04 2.0
2 15 J 003 i
& 0.02 1.0
o01 0.5

Q 9
0 0.05 O01 O15 0.2 0.25 0.3 0.35 04 045 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

FREQUENCY PARAMETER FI

Fig. 14-7. Tuning error of digital state-variable filter

was mentioned earlier. Figure 14-7 gives an idea of the magnitude of the
error for different center frequencies. For use at less chan one-tenth che

sample rate, which is 5 kHz in a 50-kHz system, the tuning error is about
1.6% or about one-quarter semitone.

One can derive a frequency correction factor, however. The ideal gain of
the digital integrators is Fs/2aF but the actual gain is greater than this by

a factor of #F/sin(aF). The frequency correction factor, therefore, is the recip-
rocal or sin(7F)/aF. This factor varies from 1.0 at low frequencies to 0.6366

at one-half the sample rate. When combined with the approximate center
frequency formula, the result becomes: F1=2sin(aF/Fs), where F is the
center frequency and F 1 is the exact value of the frequency parameter for that
center frequency. Since the correction is relatively small and a fairly smooth
monotonically rising curve, a correction table with linear interpolation be-

tween the entries is an alternative to evaluating a sine function. In fact, one
could simply use the sine table that is almost certainly incorporated some-
where in the synthesis program that is using the digital filter.

Multiple Feedback Digital Filters

With analog filters, there are circuits available that perform a specific
low-pass, bandpass, or high-pass second order filtering function with fewer
components than the state-variable type. In exchange for their simplicity, Q
and center frequency are tied together and related to circuit components by

complex, usually nonlinear equations. Furthermore, the circuits make great

Dicirat FILTERING 445

demands on the amplifier and component characteristics and consequently
are limited to low Q factors. It seems only proper that digital filters with the
same mix of characteristics exist.

Figure 14-8 shows low-pass, bandpass, and high-pass versions of the
multiple-feedback digital filter along with design equations and program
segments. Like their analog counterparts, the best application is in fixed
filter banks for spectrum shaping. However, they can be retuned as often as
desired by recomputing the constants. Note that for low center frequency
and high Q that the A and B constants get quite close to 2.0 and 1.0,
respectively. Smal] errors in the constants can therefore have a great effect on

the filter's characteristics. It is important to realize, however, that only the
amplitude response curve is distorted; no harmonic or intermodulation dis-
tortion is ever added to the signal because of inaccurate multiplying con-
stants.

The alert reader may have noticed a degree of similarity among the
various multiple-feedback designs. There exists in fact a single digital filter
structure that can be used to implement any second order filtering function

merely by altering the constants; something difficult if not impossible to do
wich analog circuitry. The structure in Fig. 14-9 is called a cannonical second
order filter because of its generality. The structure requires only five multi-
plications and four additions per sample and uses just two storage locations.

> OUTPUT

A = 2 costint) exp fon, tei
feat

B = exp (—)
as

C + 1~ &~ 8 [FOR UNITY PASSBAND GAIN}
REM | - INPUT, 0 = OUTPUT, DI,02 = DELAY REGISTERS
LET O = AwDt- 8x02 + Gai
LET D2 = Dt
LETOr=0

{a}

Fig. 14-8. Multiple-feedback digital filters. (A) Low-pass.

446 MUSICAL APPLICATIONS OF MICROPROCESSORS

ineuT 5 ra =| 2 QUTPUT

F « CENTER FREQUENCY

F
0A
WHERE FH — UPPER 3 dB POINT

FL = LOWER 3 ob POINT

a~zewterti ee ESE)
B= exp

© = cos (nF) \T- AGE
GAIN AT F IS APPROXIMATELY Q FOR O>3

(B)

+ +
IneuT > z ~7 (os > OUTPUT

rs '

<i i {>—

z

<} 4

F = CUTOFF FREQUENCY

A= 2 onel2aF}-onp(— 2

B= et orf) re)

(c)

Fig. 14-8, Multiple-feedback digital filters (cont.). (B) Bandpass. (C) High-pass.

For ease of implementation, the summers are shown with all inputs positive

acting; negative inputs are obtained by making the corresponding constants
negative.

Examination reveals two feedback paths and two feedforward paths. Gen-
erally, the feedback paths are responsible for any peaks or poles in the

DHGIral FILTERING 447

= OUTPUT INPUT} AS,

Fig. 14-9. Cannonical second order digital filter

amplitude response curve, while the feedforward paths cause response dips or
zeroes. Note that the same design equations for the filters given earlier can be
applied to the cannonical form with any unused constants set to zero. Because
of its generality, this structure is ideal for use in a general-purpose filtering

subroutine or hardware implementation as a digital filter module,

All-Pass Digital Filter

One important type of filter that has not yet been discussed is the
all-pass filer. As its name implies, ic is not a frequency-discriminating filter

and in fact passes all frequencies equally well with unity gain. Instead, its
purpose is frequency-sensitive phase shift. All filters shift phase in varying
amounts as a natural consequence of frequency discrimination, but the all-

pass filter exhibits phase shift alone. Consequently, and all-pass network can
be used to correct for the phase shift of a regular filer without disturbing its
amplitude response. In synthesis applications, however, it is used to intro-

duce a time-varying, frequency-sensitive phase shift to otherwise stationary

sounds, thereby imparting added richness to the sound.
Before looking at the filter itself, the relation between phase shift and

time delay should be understood. Either parameter can be plotted as a
function of frequency as in Fig. 14-10. One type of all-pass filter is a simple
delay line. As shown in Fig. 14—10A, an ideal delay line has constant delay
independent of frequency. [ts phase shift, however, is a dinear function of

frequency as shown in Fig. 14—10B. This can be explained by noting that at
very low frequencies the 500-jsec delay is only a small fraction of a cycle. At
500 Hz, which is a 2,000-psec period, the 500-ysec delay becomes a quarter
cycle phase lag or —90°. At 1 kHz, the delay becomes a half cycle and so on.
At higher frequencies, the phase-shift magnitude continues to increase, but
it is customary to plot the principal value of the shift. Thus, the curve shifts
up to 180° leading and continues its decline from there.

In mathematical terms, the delay curve is the derivative (proportional
to slope) of the phase curve or, conversely, the phase curve is the integral

448 MUSICAL APPLICATIONS OF MICROPROCESSORS

DELAY (msec)

° ~ 4

o 8 &
0 000 7,000 3,000 x

FREQUENCY. (Hz)

{A}

270

a (80
=
gi ES sof
3

-
3 7 4,000
z

90
2 s
~180+

ae FREQUENCY (Hz)
(B)

gl?
Se
é
= 8
m4 s

, al
100 300 400 500600700 800 500 1k

FREQUENCY {H2)

(c)

180+

% 90

Zo
@ —90
=
* _i80

FREQUENCY (Hz)

(D3

Fig. 14-10. Phase and delay graphs. (A) Delay versus frequency of 500-sec
delay line. (B) Phase versus frequency of 500-sec delay line. (C)
Delay of a highly dispersive filter. (D) Phase of a highly dispersive
filter.

(proportional to atea under a curve) of the delay curve. As a result, only one
curve is needed to fully characterize the delay/phase behavior of the filcer.

For musical purposes, the most useful all-pass filters exhibit nonlinear
phase shifts and therefore time delays that vary with frequency. This means
that a sharp transient, which contains a wide range of frequency components,

will exit from the filter with the frequency components separated and

DIGITAL FILTERING 449

+
neuT—e{ og

ares

F ~ TURNOVER FREQUENCY
F___ WHERE FH = UPPER 90° POINT AND. ae FA=U FL = LOWER 90° POINT AND

FH-FLIS TRANSITION WIDTH

A = 2 cos (nF) exp (ZF)

8 - ow (-E*)

Fig. 14-11. Digital all-pass filter

smeared out in time. The effect is called dispersion and is quite analogous to
the effect of a prism on white light. Figures 14-10C and D illustrare an

extreme case of dispersion. Usually, high frequencies are delayed least, which
means that the transient is converted into a quickly descending frequency
sweep having a “thunk’’-like sound. Such an extreme case gives the auditory

illusion of the sound being sent over a 100-foot stretched wire and in fact is
heard frequently on Jong-distance telephone circuits. Such a large amount of
dispersion requires many filter sections in combination to emulate.

Figure 14—11 shows a second order all-pass filter that is a useful build-
ing block. Like all other second order digital filters, it is an adaptation of the
cannonical form; however, due to symmetry of the constants and unity gain,
three of the five multiplications can be bypassed. Examination of the con-
stants reveals that the feedforward and feedback paths are completely comple-
mentary. Essentially, the zeroes cancel the poles to produce a flat amplitude

respanse, but since phase shifts add rather than multiply, the frequency-

sensitive phase shift is reinforced.
The phase and delay characteristics of the basic second order all-pass

filter section are shown in Fig. 14-12. At low frequencies, the phase shift is

near zero and at high frequencies it is 360° with a monotonic, though
nonlinear, transition between. Two parameters describe the filter. One is the
“curnover frequency” in which the phase shift is 180°. The other is called the

“transition width” and is related to the sharpness of the transition from 0° to
360° shift, quite analogous to the Q of a bandpass filter. The edges of the
transition zone are where the phase shift is 90° and 270°. The delay curve

450 Musicat APPLICATIONS OF MICROPROCESSORS

PHASE (DEGREES)

—_>
Ol O15 0202503 04 0506 0.8 1.0 15 2 25 3 4 5 6 8 10

FREQUENCY (kHz)

(A)

DELAY (msec)

“Ol O15 0.2 0.2503 04 0506 08 | 16 2 25 3 45 6 8 oO”
FREQUENCY (kHz)

(8)

Fig. 14-12. (A) Phase response of two-pole all-pass filter. (B) Delay response.

shows near zero delay at the frequency extremes and maximum delay at the
turnover frequency.

More complex phase and delay characteristics may be created by cascad-
ing all-pass sections. The dispersive filter mentioned earlier may be simu-
lated by cascading a number of all-pass sections with successively higher
turnover frequencies. Since the maximum time delay is inversely related to

DiGrrat FItTERING 451

the turnover frequency (at a constant ““Q” value), the delay of the cascade is
inversely proportional to frequency.

The audible effect of fixed all-pass filters is generally subtle, but
dynamic variation of the filter parameters can have a dramatic effect. Con-
sider, for example, a cascade of four all-pass filters each with the same
turnover frequency and a relatively broad transition width. Next, assume a
1-kHz sine wave tone fed through the filters. If the filter turnover frequen-
cies are high, such as 10 kHz, the tone will be phase shifted very little. If the
turnover frequency is allowed to rapidly decrease, the tone will experience a
constantly increasing phase shift up to a maximum of 1,440° or four cycles
when the turnover frequency has decreased to 100 Hz or so.

During the turnover frequency transition, however, the tone coming
out of the filter had a lower instantaneous frequency! Reversing the sweep
will produce a momentary higher frequency. The speed of the transition
determines the peak frequency deviation. If the signal entering the filter has
numerous harmonics, the temporary frequency shift will “ripple” audibly
through the harmonics as the turnover frequency shifts. By driving the
turnover frequency parameter with a low-frequency periodic or random sig-
nal, a chorus-like effect can be obtained.

INPUT OUTPUT = INPUT

z? 2

$, Si

ol 4
0.5/7 15/T 2.6/7 VT 2/T YT

FREQUENCY FREQUENCY

(Al (8)

Fig. 14-13. Cosine (A) and sine (B) comb filters

Digital Notch Filters

Although a standard notch filter response can be created by suitable
setting of the cannonical digital filter constants, other more interesting and
useful variations are possible. The comb filter mentioned in Chapter 2 is one
of these that is very simple to produce in a digital synthesis system. The filter
is constructed by splitting the signal into two paths, inserting a time delay in

one of the paths, and mixing the signals together in equal proportions as

shown in Fig. 14-13. The filtering effect is produced by phase cancellation
between the delayed and undelayed signals. At very low frequencies, the
delay line in Fig. 14-13A has essentially no effect on the phase of the signal
so it reinforces the undelayed signal in the mixer. When the frequency

452 MUSICAL APPLICATIONS OF MICROPROCESSORS

increases such that the delay introduces a 180° phase shift, the delayed

signal cancels the undelayed signal in the mixer producing zero output.

Higher frequencies are passed in varying amounts until the phase shift

through the delay reaches 3 X 180° which produces another cancellation

and so forth. The filter in Fig. 14-13B works the same way except that the

first notch is at zero frequency.

If the delay time is slowly varied while filtering a broadband signal

source, the distinctive sound of flanging is produced. In a digital synthesis

system, the delay is very easily produced with a small memory buffer, the
size of which determines the delay. Such a technique can only give delays

that are a multiple of the sample period, which results in some choppiness in
the flanging effect. This may be overcome, at some sacrifice in noise level, by
interpolating between adjacent samples at the end of the simulated delay line
to provide essentially continuous delay variation.

Filters with an Arbitrary Response

One of the advantages of digital signal processing is that amy filter
response can be obtained in a straightforward manner. Furthermore, the
response may be changed as often and as much as desired concurrent with the
filtering action.

In the previous chapter, one method of arbitrary filtering was men-
tioned. In use, one first takes the Fourier transform of the signal to be
filtered. Next the spectrum is modified according to the filter characteristic
desired. The modification involves multiplying the amplitude of each spectral
component by the filter’s amplitude response value at the corresponding
frequency. If phase is important, the phase of each spectral component is

added to the filtet’s phase response value at the corresponding frequency. The

modified spectrum is then converted into the filtered signal via inverse
transformation.

Of course, with the FFT, the continuous stream of samples to be

filtered must be broken into records, processed, and the results spliced
together again. This indeed can be accomplished without the distortions that
were encountered in direct FFT synthesis, but the process is complex and can

be time consuming. Another method that works continuously, sample by
sample, is called direct convolution, With this method, onc can write a sub-

routine that accepts a table of numbers describing the filter’s time domain
response along with individual input samples to produce individual output
samples. The routine is exceedingly simple and can be quite efficient when
written in assembly language or implemented in hardware.

Before describing the algorithm, it is necessary to become familiar with
a filter’s ‘mpulse response because that is the table of numbers used by the filter

subroutine. The transient response of high-fidelity components is usually
characterized by noting their response to square waves. If the square-wave

DiciTAat FILTERING 453

frequency is low, the result is essentially the step response of the component.
Although few manufacturers care to admit it, hi-fi components act like
banpass filters and the step response reveals a lot (in fact, everything) about
the “filter's” characteristics.

The same idea applies to the impulse response, but the test signal is a

very narrow pulse rather than a voltage step. In theory the pulse should have

zero width, infinite amplitude, and finite energy content. In practice, an
analog impulse has a width that is small in comparison to the fastest respond-
ing element of the filter under consideration and a height small enough to
avoid distortion. In a digital system, the impulse is quite simple: just a

single 1.0 sample surrounded by a sea of zerocs. The spectrum of an isolated

w
S10 . 2
a

= 0 0
=a TIME FREQUENCY

IMPULSE WAVEFORM (MPULSE SPECTRUM

DIGITAL
FILTER

ws
8

5 = 8 i 2 z .
z z
=
oi FREQUENCY

TIME

IMPULSE RESPONSE IMPULSE RESPONSE
WAVEFORM SPECTRUM

w a $
E
a = 2

FREQUENCY
ARBITRARY AMPLITUDE
RESPONSE

w
a

2 at
Zz Zo
= a 2 a

TIME.
FREQUENCY

FILTER IMPULSE ARBITRARY PHASE
RESPONSE RESPONSE

Fig. 14-14. Impulse response relations

454 MUSICAL APPLICATIONS OF MICROPROCESSORS

impulse is equally simple: an infinite number of frequency components al! of
equal amplitude and all with zero phase angles.

The filter’s output in response to an impulse input tells everything
about its amplitude and phase response but in an easy to use form. Since the
input spectrum is flat and has zero phase, the output spectrum will directly

represent the amplitude and phase response of the filter under test! This
means that the characteristics of a digital filter can be plotted merely by
taking the Fourier transform of its impulse response. This, in fact, is how
many of the filter response curves in this book were plotted. Conversely any
amplitude and phase response may be inverse Fourier transformed co get the

corresponding impulse response. These are very important points and are
illustrated in Fig. 14-14.

If two widely separated impulses are fed to a filter, one would expect to
see two copies of the impulse response. If the first impulse is twice the height
of the second, the first response will have twice the amplitude as well but the
same basic shape. If the impulses are moved closer together, they start to
overlap. Since filters are linear, the composite output is simply the point-
by-point sum of the responses due to each impulse. This applies to any
number of impulses at any spacing.

Although it is already being taken for granted, sampled analog signals
are really strings of impulses, the height of each being proportional to the
sample values. According to the previous paragraph, the output of a filter
receiving such impulses as input is equal to the sum of the responses to each

individual sample impulse as illustrated in Fig. 14-15. This then is the crux
of direct convolution digital filtering.

Implementation

The first step in implementing the algorithm is to obtain the impulse
response in usable form. For digital filtering, samples of the impulse response
are needed. The samples must be taken at the same sample rate as the signal
to be processed. If the rate is different, all filter response frequencies will be
altered in direct proportion to the ratio of the sample rates. Any stable
impulse response will be bounded on both sides by zeroes, which can then be
discarded. Unfortunately, most responses do not suddenly cut off, so a
truncation decision must be made. Since the computation time is directly
proportional to the number of response samples retained, there is an incen-
tive to retain as few as possible. Very broadly speaking, if all of the response
samples omitted are less than 0.01 of the largest response sample, then only
filrer attenuation beyond 40 dB is likely to be disturbed to any significant
degree. Accordingly, retaining samples down to 0.001 will not disturb
attenuation curves less than 60 dB. In any case, the impulse response be-
comes a string of numbers.

The calculations involved are quite simple. Assuming that some data
has already gone through the filter, the Jth output sample is equal to the Zth

§

TIME,

(a)

: Se

(c)

Fig. 14-15. How filter impulse responses combine to produce an overall re-
sponse. (A) Input impulses. (B) Individual impulse responses. (C)
Sum of impulse responses.

456 MUSICAL APPLICATIONS OF MICROPROCESSORS

OUTPUT

Fig. 14-16. Basic structure of transversal filter

input sample times the first impulse response sample plus the (7— 1)th input
sample times the second impulse sample plus the (/—2)th input sample

times the third impulse sample, etc. for the entire set of impulse samples.

Thus, every sample processed through the filter requires N multiplies and
adds, where N is the number of impulse samples kept.

Figure 14—16 shows a conceptual structure of the filter that is very easy
to program. Essentially, the input samples are entered into a shift register

with a tap at every stage. The output at each tap is multiplied by the
associated impulse response sample and the product is summed with other
products to produce the output sample. When a new input sample is en-
tered, all of the old ones are shifted one position right and the sum of
products is evaluated again. This is often called a transversal filter because
each signal sample traverses the tabulated impulse response. Because of its
simple, highly repetitive structure, such a filter lends itself well to hardware
implementation. In fact, specialized ICs using charge-coupled circuitry have
been builc to implement filter functions useful in the telephone industry.

2000 REM SUBROUTINE TO IMPLEMENT A TRANSVERSAL FILTER
2001 REM INPUT SAMPLE IS Sl, OUTPUT SAMPLE IS $2
2002 REM IMPULSE RESPONSE OF FILTER IN IN ARRAY R, FIRST ELEMENT IN
2003 REM R(O), SECOND IN R(1),....
2004 REM N IS NUMBER OF IMPULSE RESPONSE SAMPLES
2005 REM ARRAY S HOLDS PREVIOUS SIGNAL SAMPLES, MUST BE ALL ZEROES
2006 REM WHEN THIS ROUTINE IS FIRST USED
2007 REM P IS POINTER FOR S ARRAY, IT TOO MUST BE INITIALLY ZERO
2100 S2=0
2110 S(P)=S1
2120 J=P
2130 FOR 1=0 TO N-i
2140 $2=S2+R(I)*S(0)
2150 J=J-1
2160 IF J<O THEN J=N-1
2170 NEXT I
2180 P=P+1
2190 IF P=N THEN P=0
2200 RETURN

Fig. 14-17. Transversal filter subroutine in BASIC

DiGITAL FILTERING 457

When programming according to the diagram, actually shifting the
data is very inefficient. Instead, a po/ater to the current sample is maintained
and references to stored previous sample values are made relative to the
pointer. Figure 14-17 is a program in BASIC that implements the transver-
sal filter. The R array contains the impulse response, the S atray contains
previous signal samples, and N is the number of impulse response samples.
The input sample is S1 while the output sample is 52.

In order to make maximum use of the algorithm, it is helpful to know
some additional impulse response properties. First, if the filter has zero or
linear phase its impulse response will always be perfectly symmetrical. It

such a phase response is acceptable, the number of multiplications needed per
sample can be essentially cut in half by adding the symmetrical parts to-
gether before multiplication as shown in Fig. 14-18.

There are limits to the technique too. Filters with low-frequency dis-

crimination, sharp cutoff slopes, or narrow peaks and dips in their amplitude
response tend to have long duration impulse responses and therefore will
require a lot of calculation. Thus, a simple bandpass or low-pass function is
better performed with one of the previous techniques. On the other hand, if
the amplitude response has a lot of peaks and dips, only the narrowest or

OUTPUT

SYMMETRICAL IMPULSE RESPONSE

Fig. 14-18. Simplification of Fig. 14-16 for symmetrical impulse response

q t wy Lt Ss 6

AMPLITUDE (8) Il o S

FREQUENCY (kHz)

(a)

AMPLITUDE (dB) \ ry

N a 3 g

FREQUENCY (kHz)

(B)

AMPLITUDE (dB)

FREQUENCY (kHz)

tc)

Fig. 14-19. Some example impulse responses. (A) Well-behaved response.
(B) Low-frequency feature lengthens response. (C) Sudden cutoff
lengthens response.

Dicivat FILTERING 459

lowest frequency “feature” significantly affects the duration of the impulse
response. This means that the other features essentially ride along free.

Figure 14-19 shows several response curves and their associated impulse

responses, which should aid in understanding these properties. Note in
particular that, while an ideal low-pass or bandpass filter characteristic can be
achieved with this technique, the extremely long, slowly decaying impulse
response makes its application impractical. Any attempt to shorten the re-

sponse by truncation or smoothing off destroys the ideal cutoff shape. Be-
cause of the long impulse response, the FFT filtering method should be used
when such idealized filtering functions are needed.

AMPLITUDE {¢B)

2 8

-30;

FREQUENCY (kHz!

eee reer

(0)

AMPLITUDE (4B)

40 >

FREQUENCY (kHz)

Fig. 14-19. Some example impulse responses (cont.). (D) Ideal low-pass filter
response. (E) Ideal bandpass response.

460 Musica APPLICATIONS OF MICROPROCESSORS

INPUT OUTPUT

2
us ae Sb 32

+

2 08
0 0.03

IMPULSE RESPONSE

+
INPUT | = > OUTPLT

DELAY
: = 30 msec ;

Fig. 14-20. Simple echo simulators. (A) Single echo. (B) Multiple echoes.

IMPULSE RESPONSE

(B)

Reverberation Simulation

Perhaps the simplest, yet most effective, digital signal-processing func-
tion is the simulation of reverberation. One particularly nice feature of
digital reverberation simulators is chat virtually any type of reverberation is

possible, and it is easy to switch or gradually evolve among the types.
Perceptual studies have demonstrated that listeners judge their environment
and distance from sound sources primarily by analyzing the accompanying
reverberation, Reverberation simulation is such a difficult problem with
conventional analog circuitry that designers usually turn to mechanical de-
vices such as springs and special metal plates. Even the latest “analog”
devices for reverberation (analog charge coupled ICs) actually work with a
sampled representation of the signal.

The simplest digital reverberator is nothing more than a delay of 30
msec or greater inserted into the signal path with provisions for mixing
delayed and undelayed sound as shown in Fig. 14-20. Actually, “echo
simulator” would be a better name because the audible effect is that of a
single echo. The magnitude of the delay and the relative amplitudes of direct
and delayed sound are parameters for the echo. Multiple echos may be
simulated by feeding a portion of the delayed output back into the input of
the delay element. This then creates a string of echos. The closer the feedback
factor, F, is to unity the larger the number of echos before they become
inaudible, One advantage of a digital delay over tape or other analog delay in
this application is that no signal fidelity is lost in multiple trips chrough the
delay line. Thus, feedback factors close to 1.0 are possible without fear of
some minor amplitude response peak exceeding unity feedback and causing
oscillation.

DiGIraL FILTERING 461

Even with a perfect delay line, the string of equally spaced echos
produced is nor at all like concert hall reverberation, In an empty concert hall
a clap of the hands produces not a series of echos but what sounds like white
noise with a smoothly decreasing amplitude. The amplitude decrease approx-
imates an inverse exponential function, which if plotted in decibels would be
a constant number of decibels per second. The rate of decrease is generally
specified by stating the time required for a 60-dB reduction in reverberation
amplitude. This figure is used because under normal circumstances the re-
verberation has become inaudible at that point. Typical reverberation times
for concert halls are in the 1.5-sec co 3-sec range, although values from near

zero to somewhat more than this may be useful in electronic music.

Echo density is another parameter that can be used to characterize a
reverberation process in general terms. The single delay line reverberator

suffers from a low (and constant) echo density of 0.03 echos/msec. In a

concert hall, the echo density builds up so rapidly that no echos are per-
ceived, One measure of the quality of artificial reverberation is the time
between the initial signal and when the echo density reaches I/msec. In a
good system, this should be on the order of 100 msec. Furthermore, there
should be a delay of 10 msec to 20 msec between the signal and the very first
echo if a sense of being far away from the sound is to be avoided. Finally, if
the reverberation amplitude decrease is not smooth, a somewhat different yet
distinct echo effect is perceived. A plot of the impulse response of the
reverberator is a good way to visualize the buildup of echos and the overall

smoothness of amplitude decrease.
A natural consequence of any reverberation process is an uneven

amplitude response. For example, if the amplitude response of the single-
echo generator described earlier were measured, it would be found to rise and
fall with a period (in frequency) equal to the reciprocal of the delay time. In
fact, examination of the signal flow reveals that it is the same as that of a
comb filter! However, since the ratio of delayed to direct signal is normally
less than unity, the notch depth is relatively shallow. The feedback delay line
has the same properties except that the feedback results in a series of reso-
nances. As the feedback factor approaches unity, the Qs of the resonances get
quite high, producing a very uneven amplitude response.

Concert hall reverberation also has an uneven amplitude response, but
the peaks and valleys are closely spaced, irregular, and not excessively high or

deep. It is not unusual to find several peaks and valleys per hertz of bandwidth
with an average difference between peak and valley of 12 dB. It is possible to
have high echo density combined with a low resonance density. An excellent
example is an empty locker room or even a metal garbage can. The small size

of the reverberant chamber precludes resonant modes spanning a large
number of wavelengths of moderate frequency sound. The converse situation,
a high resonance density but low echo density, can be produced by the
feedback delay line reverberator with a very long delay time, which does not
sound like reverberation at all.

462 MUSICAL APPLICATIONS OF MICROPROCESSORS

> OUTPUT

UNEQUALLY TAPPED DELAY
TOTAL DELAY © 100 msec

Fig. 14-21. Tapped delay line digital reverberator

A Practical Filter for
Concert Hall Reverberation

In theory, it is possible to exactly duplicate the acoustics of a particular
concert hall by recording its impulse response and then applying the trans-
versal filter rechnique to the sound to be reverberated. Typical reverberation
times of 2 sec, however, mean that the filter is 50K to 100K samples long,

which is clearly impractical. On the other hand just about any assemblage of
delays, summers, and multipliers will produce some kind of reverberation if
it doesn’t oscillate instead. Some, of course, are much better at simulating

convincing concert hall reverberation than others.
In order to increase the echo density, it is necessary to use several delays

of unequal length. The structure in Fig. 14-21 is the digital equivalent of
the multiple-head tape reverberation simulator mentioned in Chapter 2. The
placement of the taps and the values of the feedback constants are very
important in determining the sound of the system. Generally, the taps
should be approximately exponentially distributed but placed at prime
number locations. This insures a maximum rate of echo buildup. The feed-
back constants strongly interact with each other and in fact there is no easy
way to tell if a particular set will not cause sustained oscillation. Typical

values are around 0.8 with the long delay taps being somewhat more and the
short taps somewhat less. In any case, experimentation with the number,
placement, and gain of the taps is necessary to achieve the type of reverbera-
tion required.

Another approach is based on the concept of cascading simple reverber-
ation modules. One could use the Fig. 14--20B setup as a module and cascade
two or more of them in order to improve the echo density. One problem that
can arise is that at certain frequencies the peaks and valleys in the individual

Dicirat FILTERING 463

+ +
INPUT —>| =| >| OUTPUT

Fig. 14-22. All-pass reverberation module

amplitude responses may coincide to produce an exceptionally strong peak or
valley. One way to avoid the problem is to very carefully choose the delays of
the modules so that peaks or valleys do not coincide. However, doing this
while also scrambling the delays for good echo density would probably
require an iterative search program, and the results would not allow very
much adjustment flexibility.

A better way is to modify the multiple-echo module so that it has a
uniformly flat amplitude response. Actually, all of these reverberation dia-
grams are equivalent to familiar digital filters, the only difference being that
the delay is hundreds or thousands of samples Jong rather chan one. A slight
rearrangement of the summers can convert the multiple echo diagram into
the equivalent of an all-pass filter. Since the notches introduced by the
feedforward path cancel the resonances created by the feedback path, the
overall amplitude response is flat.

Figure 14—22 shows an all-pass reverberation module. Two parameters
characterize the module. The delay, D, determines the echo spacing for the
module, while the feedback factor, F, determines the reverberation time for

the module. Cascades of as few as three modules can give a reasonable

simulation of concert hall reverberation, although upwards of seven give
noticeably better results. As with the tapped delay line reverberator, the
delay parameters should be approximately exponentially distributed but in
all cases must be a prime number of samples. An easy way to come up with a
first approximation is to give the first stage the longest delay, which is in the
50-msec range, and then successively multiply it by a constant somewhat less
than 1.0 such as 0.78. Thus, if the longest delay were 50msec, then the
succeeding ones would be close to 39, 30.4, 23.7, etc. The shortest delay

should not be much less than 10 msec if a distant, hollow sound is to be
avoided.

Appropriate values of the feedback factor tend to be similar for all
stages, alrhough they should not be identical. The feedback factors and the
delays combine to determine the reverberation time. The reverberation time
of a single stage is the number of delay recirculations required to attenuate
the signal GO dB times the delay time. Thus, Rk=—6.9D/Ln(F), where R: is
the reverberation time in seconds, F is the feedback factor, and D is the delay

464 MUSICAL APPLICATIONS OF MICROPROCESSORS

t LEFT
OUTPUT

+

lb=18.01 |, fo=10.82
F = 0.646) *|F=0.666

+

ck + RIGHT
inet sa OUTPUT

Fig. 14-23. High-quality stereo reverberator

in seconds. For practical purposes, the reverberation time of a cascade of
sections is equal to the longest section time. Thus, if the delays get succes-
sively shorter and the feedback is approximately constant, the longest delay
section determines what the feedback factors should be.

After the initial values for each stage are determined, further refine-
ment can be performed by plotting the impulse response and making slight
adjustments to maximize the echo density and minimize any periodicity or
unevenness in the decay envelope. Figure 14—23 shows a stereo reverberator.
The subtle but significant differences between the channels insures that the
reverberation will be perceived as coming from all directions, while the
original signal retains its normal directivity.

Chorus Effect

In some ways, a chorus effect is similar to reverberation. Both are very
helpful in adding complexity and realism to simple (relative to natural)
synthesized sounds. As was detailed in Chapter 2, there are two different
approaches to implementing a chorus effect. One attempts to directly simu-
late N instruments all playing the same notes. The other seeks to simulate
the acoustic effect of a number of players. The first is most successful for
relatively small multiplicity factors, while the latter, with sufficient effort,
can give the impression of thousands of sound sources.

Direct simulation of multiple sources is the simplest. The premise is
that the basic sound of each instrument is identical to the others, but slight
differences in timing, intonation, and vibrato are what contribute to the
chorus effect. Figure 14-24 shows a diagram of a chorus simulator suitable
for a moderate multiplicity. Each of the parallel delay lines has a different,
randomly varying delay. In addition, each delayed channel undergoes a small
amount of amplitude modulation, again randomly. The varying delays in-
troduce phase and frequency modulation, which simulates differences in

DIGITAL FILTeRinG 465

VARIABLE.
— GAIN
VARIABLE
DELAY
10-50 msec DI es

——————— +
+

+
INPUT 02 s{ os >» OUTPUT

— ae,
. et

Fig. 14-24. Direct chorus simulator

timing and intonation. The amplitude modulation is of secondary impor-
tance but tends to emphasize momentary enhancements and cancellations of
the multiple sources.

The random control signals are white noise that has been low-pass

filtered with a cutoff in the range of 10 Hz to 20 Hz. It is important that the
noise used for each channel be uncorrelated (taken from a separate generator),

which is easily done with a digital noise generator (to be discussed in Chapter
15). If naturalness is desired, it is important that the peak frequency modula-
tion cause changing delay times to be held to 1 Hz of Jess for midfrequencies.

Because of the numerous variables, adjustment is best done by ear.
The system shown with a half-dozen delays is remarkably effective in

simulating a small chorus. Although a fair amount of computer memory is
necessary for the delay lines (much of it can be shared by programming a
single long line and variable taps), very little computation is required relative
to the results obtained. Because of the numerous parameters available for
experimentation, many weird and whacky effects should also be possible.

The other method of chorus simulation is considerably more involved
but much simpler than hundreds of the sections just discussed. Basically, the

idea is to use a collage of randomly varying delays, phase shifters, frequency
shifters, and frequency selective filters. Figure 14-25 is a block diagram! of
the system that was originally implemented with purely analog circuitry.
Because of its complexity, it is a good candidate for digital implementation.

This system differs from the one described earlier in that the input
spectrum is split into several bands and that differences in intonation are
simulated primarily with spectrum (frequency) shifters rather than phase or

delay shifters (although these too are used extensively). As was mentioned in

Chapter 3, a spectrum shift destroys harmonic relationships among compo-

nents of the shifted spectrum, whereas a delay shift does not.

‘The block diagram was taken from notes gathered from a technical paper delivered by
Robert Orban at the 55th convention of the Audio Engineering Society.

466 MUSICAL APPLICATIONS OF MICROPROCESSORS

BANDPASS SPECTRUM VARIASLE.
FILTER SHIFTER DELAY

40-80 Hz

Bane LPF we LPF RN =I

BANDPASS SPECTRUM VARIABLE
INPUT FILTER [| SHIFTER [| DELAY OUTPUT

80-160 Hz
BAND 2 f LPF RN LPF RN

. .
£7 . . *

° : :

VARIABLE BANDPASS SPECTRUM
DELAY FILTER SHIFTER

5-10 kHz

BAND N
LPF RN LPF RN

*LPF RN = LOW PASS FILTEREO RANDOM NOISE
BANDS TYPICALLY | OCTAVE WIDE, N=&

(A)

SiN sl 3

90 DEGREE
INPUT PHASE
SIGNAL —*| DIFFERENCE OUTPUT

NETWORK cos <
————— =

SiN
*4QUADRANT MULTIPLIERS

SHIFT __, | QUADRATURE
CONTROL | OSCILLATOR

cos

(B)

Fig. 14-25. (A) Parametric chorus simulator. (B) Spectrum shifter block dia-
gram.

Figure 14—25B diagrams a spectrum shifter consisting of three major
parts. The first and most critical is a 90° phase difference network. The
purpose of the network is co produce two output signals from a single input
such that the phase difference between che outputs is 90° independent of
frequency. Such a network is constructed from two multisection all-pass
filters as shown. Although the input-to-output phase shift of each filter alone

varies considerably with frequency, the phase difference is reasonably con-
stant over a fairly wide frequency range. More sections in the filters broaden
the frequency range of accurate 90° phase difference. Phase errors generally
cause incomplete suppression of the unwanted spectrum copy. Note that
since the input spectrum is split into fairly narrow bands that the 90° phase
difference network can be simpler than it would otherwise be.

DrGrrar FrrteRinG 467

SIN
OUTPUT

COS
OUTPUT

—(.9511Fe/Fs} ~(3.751Fc/Fs) WHERE:

A=e Asse Fo = CENTER FREQUENCY OF BAND
—{10.52Fc/Fs) -(41.50Fc/Fs) Fs = SAMPLE RATE

Ao=e As=e

Fig. 14-25. (Cont.). (C) 90 degree phase difference network detail.

The other elements are exceptionally easy to implement in digital form.
The frequency of the sine and cosine waves entering the multipliers deter-
mines the amount of spectrum shift hertz for hertz. As shown, the spectrum
is shifted up, but inversion of the driving oscillator phase will cause a
downshift instead. The oscillator is easily implemented with a sine table and
two pointers one-quarter the table length apart. Smooth transitions from

upshift to downshift are accomplished by letting the table increment go
negative, thereby generating ‘negative’ frequencies.

The entire system is operated much like the simpler chorus synthesizer.
Essentially, all of the variable elements are fed independent, slowly varying
random signals. Again, adjustment is best done by ear, although many

strange effects are possible by misadjustment.

Interpolation

Virtually everyone was taught in junior high school (before the advent
of pocket calculators anyway) how to interpolate in a table of logs or trig
functions in order to get an excra digit or two of precision. However, in
digital music synthesis, interpolation between waveform table entries or

468 Musical. APPLICATIONS OF MICROPROCESSORS

waveform samples is of interest and has, in fact, been mentioned in passing

several times so far. In this section, such interpolation will be looked at more
closely.

In general, the interpolation problem can be stated as follows: Given
one or more tabulated points (X and Y coordinates) describing some sort of
curve and an arbitrary value of X, determine as “accurately” as possible the
corresponding Y. Accurately was quoted because unless an equation is known

that exactly describes the curve in the region from which the tabulated points
were taken, there is nothing to compare the interpolated result to. In cases in
which such an equation is not known, interpolation only gives a guess of
what the untabulated value should be. One can, however, evaluate the guess

by how close it comes to the “most likely” untabulated value. Clearly, a
procedure that painstakingly evaluates all of the points in the table (or
record) should be able ta make a good guess. For our purposes, an interpola-
tion algorithm can be characterized by how many data points and how much
calculation is used to make the guess and how good it is likely to be relative
to an exhaustive procedure.

The general approach to performing interpolation is to first find an
equation that “fits” the data, that is, a plot of the equation would pass
through the data points being considered. After this is done, the X for which
a value is needed is plugged into the equation and out comes its correspond-
ing Y. The accuracy of this Y depends entirely on how well che “interpola-
tion function” models the physical process that created the data points in the

first place. This is important because there are many different equations that
will pass through the tabulated data points. Note that in the general case the

tabulated points need not be equally spaced. In synthesis applications, how-
ever, they usually are, which simplifies the calculations.

Generally speaking, the interpolation will be most accurate when the

unknown point is in the middle of the cluster of known points. If it is
completely outside the tabulated points, the process is known as extrapola-
tion, which is sheer speculation as to what the point might be if the curve
continued to behave as it did in the tabulated interval.

One class of equations that can be used in interpolation is the standard
algebraic polynomials. In general an N— sh degree polynomial can be found
that will exactly pass through N data points. Once found, the polynomial can
be easily evaluated at the unknown point. The higher the degree of the
polynomial, that is the more data points that are considered, the better the
interpolation results.

The simplest example, which is what most people call interpolation, is
linear interpolation. Here, a first-degree polynomial, which is a straight line,
is fit to two data points; one on each side of the unknown point. The
procedure for doing this was described in detail in the previous chapter. One
could also fit a quadratic curve through three points and so forth. When a

Dierrar Ficrerinc 469

KNOWN

3RD
DEGREE

NOTE Xs. Xe Ye Xs, Ve Ke, Ya
GIVEN FOR 3rd DEGREE
POLYNOMIAL INTERPOLATION

‘CUBIC FORMULA FOR X SPACING = 1.0
Yu = — 6 YoR{X.-X1} (Xu—Xz) (Xe-Xa)]

+ U2 Yo[(Xu~ Ko} (Xu ~ Xe) (Mu =Xah]
= 12 Yal (Ke Xo} Ku-Xs) OKu~Kad]}
+146 Yul (Ku Xo} (Ku-X) (Xu—Kes]

Xe Yu = UNKNOWN POINT
Xs, Yo Xs.¥s Ka. X3,¥s = FOUR TABULATED POINTS

SURROUNDING THE UNKNOWN POINT
GENERAL POLYNOMIAL INTERPOLATION FORMULA

NON
we Sve D8)

K=0 120
eK

WHERE N ~ DEGREE OF POLYNOMIAL = NUMBER OF POINTS
TO CONSIDER MINUS 1

Xie — TABULATED POINTS (Xi SPACING = 1.0)
Xu.Ya = UNKNOWN POINT

Fig. 14-26, Third- and fifth-degree interpolation polynomials

cubic is used with four data points, the procedure is called a cubic spline,
which is detailed in Fig. 14-26 and compared with a fifth-degree interpola-
tion polynomial.

470 Musica APPLICATIONS OF MICROPROCESSORS

DIGITAL ANALOG ANALOG DIGITAL

AMP : SAMPLE
othe ace STREAM
AT RATE DAE eee AT RATE Fy FILTER fo

MIN(F,, Fo)
A Fa Fo

cock cLock

Fig. 14-27. Sample-rate conversion

Interpolation Filters

In digital synthesis, one most often needs to interpolate between sam-
ple points in a single string of samples. One excellent application, which will
be used throughout the remaining discussion, is sample-rate conversion. This is

the case in which one has a string of samples taken at, say, 25 kHz and
wishes to convert it to, say, 28.371 kHz. If it is true that the 25-kHz

samples captured all of the information in the original low-pass-filcered
signal, then the conversion should be possible with no degradation of the
signal whatsoever. Downward conversion is also possible provided the signal
is low-pass filtered to less than one-half the new sample rate.

Probably the first inclination in solving the rate-conversion problem is
to linearly interpolate between the input samples as required to obtain the
output samples. Unfortunately, this simple method generates an unac-

ceptably latge amount of noise. Cubic and quintic splines are better, but the
noise is still excessive when high-frequency signals are being converted.
These simple procedures fail primarily because the sample points are sparse
compared with the variability of the curve before it was sampled, even
though we know that they are dense enough for accurate reconstruction of the
curve by a low-pass filter.

Figure 14—27 illustrates another sample-rate-changing process based on
reconstruction of the original waveform and resampling at a different rate.

The digital sample stream is converted into analog form at the original

sample rate by the DAC and filtered by the low-pass filter. The filtered
waveform is then resampled at the converted sample rate to provide the

result. The low-pass filter cutoff should be less than one-half of the ower of
the two sample rates. By studying the diagram, it is apparent that the filter
actually does the interpolation and the digital-analog-digital conversion is
just overhead. What is desired is a way to simulate this sample-rate-
conversion system completely in the digital domain.

Earlier it was Jearned that the output waveform of a filter is actually the
superposition of impulse responses, one for each input sample. Figure 14-28
shows the ideal low-pass impulse response, where the cutoff frequency is
exactly one-half of an arbitrary sample frequency. Note that the response is
zero at all sample times except the one that corresponds to the input impulse!

DiGIvaL FILTERING 471

AMPLITUDE, (4B)

SAMPLE NUMBER

Fig. 14-28. Impulse response of ideal low-pass interpolating filter

Figure 14-29 shows in detail how the impulse responses to a string of

samples combine to produce a very smooth curve that exactly passes through

the sample points that are being low-pass filtered. In this respect, the filter
output satisfies the requirements for an interpolation function of the sample
points.

At this time, we can write the equation of the smooth curve connecting
the data points. If we ignore the filter's delay and call the point at the center
of the cluster point 0 (X=0, Y=Yo) and scale the X axis in units of the
sampling period, the impulse response, Io, due to point Xo,Yo is:

To=Yosin(7X)/wX. Continuing, the response due to the point X1, Y1 is:
h=Yisin(a(X ~ V)a(X—1), where the (X~1) accounts for shifting the

impulse response right one unit so that it is centered about X1. In fact the
response due to a general point Xj, Y? is: Li=Yisin(w(X —i))/a7(X —-1). The

INDIVIDUAL
IMPULSE
RESPONSE INTERPOLATED

7 CURVE

TABULATED
POINTS

\
ALi IMPULSE
RESPONSES
EXCEPT ONE
ARE ZERO

Fig. 14-29. Action of tow-pass interpolating filter

472 Musicat APPLICATIONS OF MICROPROCESSORS

cae

wow

s8 8
AMPLITUDE (dB)

t ey S

So

i D 3
FREQUENCY (Hz)

(A)

-30

AMPLITUDE (dB)

FREQUENCY (kHz)

(B)

Fig. 14-30. Effect of truncating ideal low-pass impulse response. (A) Seven
Points kept. (B) Thirteen points kept.

overall response due to all of the points is simply the sum of the individual
responses, which can be written as:

+00
sin 7 (X—/)

Y= > v[22e |
i =—00 mX—A)

This resulting equation can now be evaluated at any desired value of X
(which can be a mixed number) to obtain a corresponding interpolated Y. For
sample rate changing, one simply increments X according to the ratio of the
new sample period to the old sample period and the string of Ys is the new
sample string.

The procedure just outlined is ideal, that is, it will give the same
sample values that would have been obtained if the signal was originally

Dierran FInreRiNG 473

AMPLITUDE {d8)

FREQUENCY (kHz)

(c)

AMPLITUDE (d8]

x 8

FREQUENCY (kHz)

(dD)

Fig. 14-30. Effect of truncating ideal low-pass impulse response (cont.). (C)
Twenty-one points kept. (D) Thirteen points kept and taiting fune-
tion used.

sampled at the new rate. Unfortunately, the infinity signs in the interpola-
tion function make it completely impractical. Since the individual impulse
response curves decrease fairly rapidly on either side of zero, it is possible to
simply cut them off at some point. If this is donc, the limits on the summa-
tion become finite such as —10 to +10 (they should be symmetrical),
which means that a cluster of 21 points is examined to determine the interpo-
lation function. When the summation is truncated like this, it is important
that the unknown point be close (within an input sample period) to the

center of the cluster.

The truncated impulse response no longer corresponds to an ideal low-
pass filter. Instead, the degraded filcer exhibits a finite cutoff slope and a
finite maximum attenuation as shown in Fig. 14-30. The finite cutoff slope
means that the data being converted must be somewhat oversampled if

474 Musical APPLICATIONS OF MICROPROCESSORS

serious alias distortion is to be avoided. The finite maximum attenuation
means that some noise will be introduced by the interpolation. It is also
possible to “tail off” the ends of the impulse response rather than truncate it.
The effect of this is to increase the maximum attenuation at the expense of
decreasing the cutoff slope. This means that if the input data is adequately
oversampled, either the interpolation noise may be reduced or fewer points
may be used in the interpolation. Tailing off will be discussed further in

Chapter 16.

The Table Method of Interpolation

Even when the number of points is reduced to a reasonable value, the
sine functions and divisions necessary to apply the method are very time

SECTION 1 SECTION2 SECTION3 SECTION4 SECTIONS SECTIONG
ADDR DATA ADDR DATA ADDR DATA ADDR DATA ADDR DATA ADDR DATA

0 .00000 32 .00000 64 .00000 96 .00000 128 .00000 160 .00000
-99833 33 -.02819 65 .01157 97 ~.00527129 .00211 161 -.00062
-99333 34 -.05422 66 .02247 98 -.01023 130 .00407 162 ~.00119
-98504 35 -.07801 67 .03263 99 ~-.01483 131 .G0587 163 -.00169
-97349 36 -.09952 68 .04198 100 -.01905 132 .00748 164 -.00213
-95878 37 -.11870 69 .05047 101 —.02286 133 .00891 165 —.00251
-94099 38 —.13554 70 .05805 102 ~—.02624 134 .01015 166 -.00282
-92022 39 -.15004 71 .06470 103 -.02918 135 .01120 167 —.00308
-89662 40 -.16220 72 .07039 104 -.03167 136 .01206 168 ~.00328
87032. 41 -.17207 73 .07511 105 —.03371 137 .01274 169 —.00343

10 84150 42 -.17968 74 07887 106 -—.03530 138 .01322 170 -.00353
11 81032 43 -—.18510 75 .08165 107 —.03644 139 .01354 171 ~—.00358
12 .77698 44 ~—.18840 76 .08349 108 -.03715 140 .01368 172 —.00358
13° .74168 45 -.18967 77 .08441 109 —.03744 141 .01366 173 -.00355
14 .70464 46 -—.18902 78 .08444 110 -.03732 142 01350 174 ~.00348
15 .66607 47 —.18654 79 .08364 1x1 —.03684 143 .01320 175 -.00339
16 .62621 48 —.18237 80 .08203 1x2 —.03599 144 .01277 176 —.00326
17 58528 «449 -.17663 81 .07967 113 —.03482 145 .01224 177 —.00311
18 54354 50 -.16956 82 .07663 1x4 -.03336 146 .01161 178 —.00295
19° .50121 51 -.16099 83 .07297 115 -.03163 147 .01090 179 -.00276
20 45854 52 -.15138 84 .06875 116 -.02967 148 .01012 180 -.00257
21 41577 53 -.14077 85 .06404 117 —.02751 149 .00928 181 —.00237
22 37312 54 -.12931 86 .05891 118 -—.02519 150 .00841 182 -.00216
23 33084 55 -.11716 87 .05344 119 —.02273 151 .00751 183 —.00194
24 .29814 56 10446 88 .04769 120 —.02019 152 .00660 184 -.00173
25 .24824 57 -.09137 89 .04174 121 -.01757 153 .00568 185 ~.00151
26 .20834 58 -.07801 90 .03565 122 -.01493 154 .00477 186 -.00129
27 = .16964 59 -.06455 91 .029151 123 -.01229 155 .00388 187 ~.00107
28 .13232 60 -.05111 92 .02337 124 -.00967 156 .00302 188 —.00085
29 .09655 61 -.03781 93 01728 125 ~.00711 157 .00219 189 -.00063
30 06248 62 -.02479 94 01132 126 -.00463 158 .00141 190 -.00042
31 03026 63 -.01215 95 .00555 127 ~.00255 159 .00068 191 -.00021

192 00000

OBNAMAHHRON =

Fig. 14-31. Interpolation table

Dieta FILTERING A75

e. INTERPOLATED Y

x

+++ +——+-—++
ae 304 & #8

°
06 UNKNOWN X = 0.375 =12/32 .

Known X Known Y Table Address Table Entry Y * Table Entry

-6 =H 204 0 0

—§ 3 172 —.00358 —.00107
—4 3 140 01368 01231

-3 1.0 108 -~-.03715 —.03715
—2 4 76 08349 03340
-1 8 44 —.18840 —.15072

0 6 12 .77698 46619
1 -.2 20 45854 —.09171

2 —4 52 —.16138 .06055

3 —8 84 06875 -.05500
4 -.6 116 ~ 02967 .01780

5 Fa 148 .01012 00101
6 2 180 ~.00257 —.00051

-25510 = Interpolated Y

Fig. 14-32. Interpolation table use example

consuming, particularly on a microcomputer. Applying a tailing function
(instead of truncating) takes even longer. The answer to this dilemma is the
maxim: When in doubt use tables! As it turns out, a very simple table
lookup algorithm can be derived that requires N multiplications, table
lookups, and additions, where N is the number of points considered. These

numbers are the same even if a tailing function is used to reduce interpolation
noise.

The basic idea is to store the impulse response in a table. Since the

impulse response is symmetrical, the cable needs to be only half the size it
would otherwise be. Figure 14-31 shows how the data is placed in the table.
First, we will assume that N is odd. The table area is then divided into

(N— 1)/2 sections and, for convenience on a binary computer, each section

contains a power of two number of points. The time span of a section is the
same as the input stream sample period. In the sample, N=13 and there

are six sections with 32 entries each for a total of 192 entries. It is also

necessary to include or imagine 16 zeroes preceding the first and following
the last section.

476 MusIcaL APPLICATIONS OF MICROPROCESSORS

Using the table for interpolation is really quite simple. First we will
restrict the unknown point to be within one-half of a sample period, either

side, of the middle tabulated point as shown in Fig. 14-32. This middle

point will be designated So while those on the left are numbered $—1, S—2,

etc., and conversely for those on the right. Next, the position of the un-
known point with respect to the central point will be expressed to the nearest
1/32 of a sample interval and will be called A. Thus, in the example, A will

always be between — 16/32 and + 15/32 inclusive. To compute the unknown
sample value, one simply iterates / through the 13 tabulated points from —6
through +6 multiplying each point value by the contents of the table at A +7

and adding up the products. The sum is the interpolated value! When
Jooking into the table the sign of the argument is ignored, which imple-

ments the symmetry. If the argument is greater than 6 or less than --6, zero

should be returned.
Note that the location of the unknown point is quantized to 1/32 of a

sampling interval. Abiding by this restriction limits the variety of sample-
rate ratios. One could reduce this restriction by increasing the size of the
table or by linear interpolation in the table, which is now allowable because
the tabulated function is densely sampled. One could also apply the table to
compute two interpolated samples, one on either side of the arbitrary un-

known sample and linearly interpolate between them, thus reducing interpo-
lation effort. This is permissible because now the waveform is grossly over-
sampled (by a factor of 32 in the example) and linear interpolation will not

add nearly as much noise as before. The two methods are in fact exactly
equivalent but the second only requires one linear interpolation rather than
13.

Actually writing a sample-rate-conversion program is somewhat tricky
because both “future” and “past” input samples are needed and because of the
different input and output sample rates. The problem is generally solved by
using an input buffer, an output buffer, and a simulated shift register for the
samples used in the interpolation. The routine would also accept a sample
rate ratio, R, which would be a mixed number either greater than or less than
unity.

In practice, the routine would initially be given a full input buffer, an
empty output buffer, and a shift register full of zeroes. It would also keep
track of a time variable, A, which corresponds to the A used in the interpola-
tion example and which is constrained to the range of —0.5 to +0.5. To
generate the next output sample, R is added to A. If the sum is between
—0.5 and +0.5, an interpolation is performed and the computed sample is
put into the output buffer. If the sum is greater than +0.5, the shift
register is shifted one position, the next input sample is taken from the input
buffer and put into the vacant shift register slot, and 1.0 is subtracted from
A. This is repeated if necessary until A is less than +0.5, at which point an
interpolation is performed generating another output sample and so forth.

DicitAaL FILTERING 477

When the output buffer becomes full, a dump routine is ealled to transfer it

someplace. Likewise, when the input buffer becomes empty, a load routine is
called to refill it.

Note that, if the sample rate is being converted downward (R>1), the

data must be separately low-pass filtered (or have been adequately oversam-
pled in the first place) prior co the sample-rate conversion. The interpolation
filcer described cuts off at one-half the input sample rate and therefore does
no bandlimiting itself.

ty}

Pereussive Sound

Generation

Up co this point, discussion has concentrated on the synthesis of basically

periodic tones. Percussive sounds, however, are quite important as well and

may in fact have even more variety than periodic types of sounds. Whereas
tones can be fairly well described by giving a few parameters, many percus-
sive sounds defy simple description. As is the case with tones, direct digital
techniques offer considerably more freedom in the synthesis of percussive
sounds than do analog techniques. Percussive sound generation is such a
large topic that only a brief introduction can be offered here. Nevertheless,
the techniques discussed should be suitable for a wide variety of percussive
sounds.

Types of Percussive Sounds

Out of the infinite variety of percussive sounds, it is possible to define
roughly four categories. Type 1 sounds are those that are basically sine wave

tones with a suitable amplitude envelope. Any of the synthesis techniques

covered previously are quite adequate for generation of the tone component of
the sound, while direct computation or table lookup is suitable for the
envelope. Nearly all sounds in this group have a moderate to strong sense of
pitch due to the periodic foundation. Familiar instruments producing sounds
in this group are wood blocks, clavés, orchestral bells, and bongo drums.

Type 2 is similar, but the underlying “tone” consists of several,

nonharmonically related sine wave components. Most free (without snares)
drums produce sounds in this category when struck with moderate force by a
padded drumstick. Unlike strings and metal bars, the various vibration
modes of a drumhead do not correspond to integrally related frequencies.
Again, the previous synthesis methods can be used to produce the basic tone
to which an amplitude envelope is added.

Type 3 sounds are best described as filtered, enveloped noise. In many
cases, the instrument physics are basically the same as for Type 2, but the

number of frequency components is so large that the sound resembles random
noise. In other cases, the instrument operates by means of scraping or rat-

479

480 Musicat APPLICATIONS OF MICROPROCESSORS

tling, thus producing random noise directly. Synthesizing such sounds basi-

cally amounts to deterinining the amplitude response of the filter and the

shape of the amplitude envelope. Cymbals, drums with snares, and sand

blocks produce sounds that are excellent examples of this type of percussion.

The last class most resembles the first but has great potential for a wide

variety of distinctive percussive sounds. These are sounds made by a non-

linear vibrator such as a ruler held over the edge of a table. The difference is

that the basic parameters of the vibration such as frequency and waveform
change as the amplitude of the vibration changes. In the case of the ruler, the
nonlinearity arises from the fact that the effective vibrating length is less on

the downstroke, where it bears against the table edge, than on the upstroke,

where it is restrained by the player’s hand. The relative time spent in each of
the two states varies with amplitude, until at low amplitude the table edge
becomes dominant and the vibration expires with a Type 1 characteristic.

Damped Sine Wave Generation

Most sounds in the first two categories can be quite adequately simu-
lated with one or more exponentially damped sine waves. Although a sine
wave tone generator can be given an amplitude envelope for this purpose, the
very fast attack characteristic of these sounds requires that the attack begin at
the zero crossing of the sine wave. Otherwise, audible clicks may be gener-
ated, particularly when the wave being enveloped is of low frequency.

A convenient way of obtaining damped sine waves with the required
attack phase continuity is to ring a high Q filter! The center frequency
determines the wave frequency and the Q determines the decay rate. Because
of the precision and stability of digital filters, even very slow decay rates are
easily handled.

The filter-ringing technique is very common in the analog world for

simulating the sounds of all kinds of percussive instruments. Its use is most
popular in electronic organs, where up to a dozen different percussion ‘‘in-
struments” are driven by digital logic to provide rhythm accompaniment to
the standard organ sound. For example, a fairly high-frequency (1-2 kHz),
high-Q (50) ringing filter is used to simulate claves. A lower-frequency (500
Hz), lower-Q (10-20) filter makes a convincing wood block sound. Even

lower frequencies (100-250 Hz) and moderate Qs do a surprisingly good job

of simulating tom-tom’s even though a real tom-tom is a Type 2 percussive
sound. Much lower frequencies (50 Hz) have all of the oomph of a bass drum
when played through a good speaker system.

To these rather common-sounding percussion “instruments,” one may

add many others by manipulating the frequencies and Qs. In particular, if a
number of clave-like instruments with pitches on a musical scale are defined,
a tune can be played that the average person almost invariably associates with
falling raindrops. And who has not heard a melody “played’’ by a coffee

PERCUSSIVE SOUND GENERATION 481

OUTPUT

CONSTANT RING TIME FORM Fe= Zin zl

0 = RING TIME
TO 37%

Fig. 15-1. Digital ringing filter

percolator or corn popper? The tuned percussive sounds in this case are in the

wood block frequency range but with somewhat lower Qs. And then we can
have all kinds of tuned thuds, bottle pops, and little pings to work with as
well.

Although any resonant digital filter of the recursive type (one that has
feedback paths) can be rung, probably the digital state-variable type is the
easiest to work with because of the essentially linear relation between the
filter parameters and digital constants. Since no input signal is required, the
structure can be simplified to one of the two shown in Fig. 15-1. To start the
filter ringing, one switializes the left delay element with a value of A and the
right delay element with zero. Following this, every iteration of the filter
will produce an output sample on a damped sine wave starting at zero and
initially going positive. The first positive peak amplitude will always be

slightly less than A depending on the Q parameter. Since the filter is a state
variable, the center frequency may be varied without affecting the Q. This
means that the damping time increases as the center frequency is reduced.

The second form of the filter shown has a ringing time that is constant
as the ringing frequency is changed. Besides being a trifle simpler in struc-
ture, the constant ring time may be more useful musically, The equation
given in the diagram gives the time required for the ringing amplitude to
decay 8.7 dB or to about 37% of its original value. Since the decay is a

482 MusICAL APPLICATIONS OF MICROPROCESSORS

constant number of decibels per second, the decay time to other endpoint

values is easily determined.
One function that is easily performed with a digital ringing filter is

dynamic variation of the filter parameters while the filter is ringing. In

particular, variations in frequency can turn a nice “ding” into a “doioing”

that sounds a lot like a ringing glass with water sloshing around in it. One
interesting property, however, is that the ringing amplitude decreases when
the frequency is raised and increases when it is lowered. This is not particu-
larly noticeable unless the frequency change is large and the Q is high.

‘Type 2 percussive sounds are also easily done with the filter-ringing

method simply by using several ringing filters. The various drums men-
tioned earlier can be more realistically simulated using the method along
with published figures for the vibration modes of uniformly stretched
drumheads. This can be important if one is synthesizing a drum solo in
which the instrument is clearly heard. A particularly effective ringing-filter
application is in the synthesis of tympana (kettledrums). The ability co cune
the filters while they are sounding means that a realistic simulation is possi-

ble.

A “Perfect” Digital Oscillator

When the Q is allowed to go to infinity, the two filter structures
become identical and one has a digital oscillator. If integer arithmetic is

used, the resulting sine wave will run forever with no noticeable amplitude

increase or decrease. In fact, such an oscillator using only 8-bit arithmetic
was sct up and allowed to run overnight with no change in amplitude. This
was particularly interesting because there was a nonintegral number of sam-
ples per cycle of the waveform. Apparently, because of the circular nature of
the oscillation, the roundoff errors cancel after a number of iterations leaving

exactly the same two numbers in the delay registers as an earlier iteration.
The perfection of the waveform is limited only by the noise inherent in the
N-bit representation of the samples generated.

The content of the other delay also describes a “‘perfect’’ sine wave but
out of phase with the first wave. In fact, the phase angle is nearly 90°
depending on the oscillator frequency. For very low frequencies (relative to
the sample frequency), it is quite close to 90°. Often a quadrature oscillator

whose outputs are exactly 90° apart is useful. The simple modification of
the infinite Q filter shown in Fig. 15-2 makes the phase difference exactly
90° independent of frequency at the expense of two additional multiplica-
tions per sample. Still this is much faster than computing a sine and cosine
from a series approximation and is much more accurate than looking in a sine
cable. The restriction, of course, is that the sine/cosine values are generated

in sequence and at equal spacing. An application of the oscillator is ina FFT
program, particularly for a large number of points. Examination of the FFT
butterfly reveals that the calculation sequence is easily arranged such that the
W function uses equally spaced sines and cosines in ascending order.

PERCUSSIVE SOUND GENERATION 483

COSINE
* ouT

SINE
OUT

100 REM C = COSINE OUTPUT
110 REM S = SINE OUTPUT
120 REM START WITH C = 1,$ = 0
1Q0LETT) - BeS 1 AxC
140 LETC = BxC ARS
150 LETS = 71
180 PRINT S
170 GOTO 130
BASIC PROGRAM FRAGMENT IMPLEMENTING
THE FILTER

Fig. 15-2. Modification of infinite Q filter for 90° phase angle

Digital Noise Generation

Type 3 percussive sounds are primarily based on filtered random noise.

Therefore, to generate such sounds digitally, a source of sampled white noise
is needed. The filtering then can be accomplished with the same filters used
in other applications.

If one were to connect an ADC to an analog white noise generator, the

resulting samples would appear to be random numbers with a gaussian
amplitude probability distribution. Actually, if the ADC included an an-

tialias low-pass filter, the noise samples would be somewhat correlated.
However, for noise sampling the filter is noc really needed, since the alias
noise will also be white and indistinguishable from the rest of the signal.

Fortunately, it is not necessary to sample analog white noise if the goal
is a string of samples that sounds and behaves like white noise. Instead, one
simply uses a random number generator with each number from the

generator being a noise sample. There are numerous random number al-
gorithms available but only two will be discussed here.

In general, 2 random number generator provides an N-bit binary
number every time it is called. Each of the 2% possible combinations should

484 Musical APPLICATIONS OF MICROPROCESSORS

be equally likely, and there should be no perceivable correlation from one
number to the next. Finally, if chese conditions are truly met, each bit or any
subset of the bits in the numbers should also be random. This last condition
implies that a random éit generator can be made into a random number
generator simply by forming groups of N random bits each. No algorithmic
random number generator completely meets all of these criteria but any
imperfections are or can be made completely inaudible.

Most random number generation algorithms are actually numerical
functions that accept their previous output as input and generate a new

-output. Although the output is related to the input in an obscure way, it
seems to be completely unrelated to it in the end application. The initial
input used when the generator is started is called the seed and can usually be
any number except zero. If the same seed number is used on two different
occasions, the series of numbers generated will also be the same.

The numerical function utilized by the generator almost always uses
integer arithmetic, and the function is carefully chosen according to the word
size of the computer. Since the output numbers are also integers with a finite
number of bits, it is obvious that at some point in the sequence the seed will
pop up again. From this point forward, the sequence repeats itself. An
efficient random number generator will generate all or nearly all of the 2N
different numbers that can be represented by an N-bit word before repeating.
Thus, ina 16-bit computer, about 65,000 random numbers can be generated

with single-precision arithmetic, Even at a 50-kHz sample rate, which gives
a repetition period of a little over 1 sec, such a generator produces perfectly
acceptable white noise for human consumption.

Linear Congruential Method

One of the most popular random number algorithms is called the Linear
congruential method. The basic function is: Raw=(AxRod+B)mod M,

where A and B are carefully chosen constants and M is the largest possible
number plus one for the chosen word length. The arithmetic is assumed to be
unsigned integer and ignoring overflow neatly implements the mod func-
tion. The generator is completely specified by giving values for A, B, and the
word length. For any given word length, there are values for A and B (besides
the trivial ones A= 1 and B= 1) that give M values before repeating. One of
the references gives an extremely detailed analysis of how to determine good
values for these parameters for general random number use. The following
table summarizes A and B values that are suitable for white noise generation
with different word lengths.

The method is quite efficient if the computer has an unsigned multiply
instruction. It does have one important shortcoming, however; the less sig-
nificant bits are not very random. If random bits or short random words ate
desired, the most significant bits should always be used.

PERCUSSIVE SOUND GENERATION 485

Word length Sequence length A B
8 256 77 55

12 4096 1485 865
16 65536 13709 13849
24 16777216 732573 3545443
32 4294967296 196314165 907633515

Shift Register Method

Another method that is superior to the linear congruential method in
some respects can be called the feedback shift register random bit generator.
As the name implies, the method generates random dts that are grouped to
form random numbers. A feedback shift register similar to that discussed in
Chapter 10 is used. By proper selection of the taps to be exclusive or-ed and

fed back, the register can generate a sequence of 2N— 1 bits before repeating.
To form an N-bit random integer, where N is equal to or less than the
register length, one simply iterates the register at least N times and then
reads the result directly from the register.

One advantage of the method is that all of the bits are random and
therefore can be used indiscriminately for random control functions. Another
advantage is that only logical operations are needed. On the other hand, the
method as presently formulated is not as efficient at generating numbers with
large N compared with the previous method even if the computer does not
have a multiply instruction. Also, when set up for iterating N times to get an
N-bit number, it fails some statistical randomness tests. This fault may be
minimized by iterating somewhat more than N times. On the other hand,
quite satisfactory white noise samples are generated with only a few itera-

tions, such as five, for full 16-bit noise samples.

The shift register method is ideally suited for hardware implementa-
tion. With very little logic (three [IC packages costing less than three dol-

lars), one can set up a random number peripheral that will pass anyone’s test
for randomness including nonrepeatability of results. The circuit in Fig.
15-3 shows a 26-stage shift register with feedback logic that would be

iterated by the microcomputet's clock. Up to 14 (8 are shown) of the register
bits are available for connection to an input port. If the clock phase used to

trigger the register is chosen properly, there is no danger of the register
changing while the computer is reading it. The 276 sequence length would
run over 30 sec alone, but variations in program execution time make it
highly unlikely that any repetition could ever be detected. Skeptics can
substitute a type 4031 64-bit register for the type 4006 18-bitter and have a
period of nearly 150 million years at 1 mHz.

Digressing for a moment, such a circuit makes an excellent analog noise

generator as well. One simply clocks it at 400 kHz or more (an R-C oscillator

486 Musica APPLICATIONS OF MICROPROCESSORS

8-B8IT RANDOM NUMBERS TO INPUT PORT

4015 CUAL 4 BIT SH. REG.

eka
F—TLKBon gia _aZA 3A O4A DB G16 028 Q38 048

14 044 048

3
Fig. 15-3, Random-number peripheral

13

ig
=z
2 8 8

4006 IB STAGE SH, REG.
12. 028 O28

6B pF Ol

OPTIONAL SELF CLOCK

MICROPROCESSOR CLOCK

is fine) and runs one of the register bits through an R-C low-pass filter with a
cutoff around 20 kHz. The output sound and waveform are indistinguishable
from diode noise sources and are much less susceptible to hum pickup. Also,
the output amplitude is repeatable and stable, a virtue not shared by diodes.

PERCUSSIVE SOUND GENERATION 487

A modification to the shift register method will greatly increase its
efficiency as a white noise subroutine. Essentially, the register and
exclusive-ors are turned inside-out, which results in several of the register

bits changing in an iteration rather than one. Assuming that the register

length is the same as the word length, the following steps are performed for
an iteration:

1. Shift the register left bringing in a zero on the right and putting the
overflow bit into the carry flag.

2. If the carry flag is off, the iteration is complete.

3. If the carry flag is on, flip selected bits in the register. This may be
accomplished by exclusive-oring a mask word with the register con-
tents. The iteration is now complete.

In a 16-bit machine, these steps may require as few as three instructions to
generate a sample of quite acceptable, if not statistically perfect, white noise.

The table below lists mask words for common computer word lengths.

Word length Sequence length Mask in hexadecimal
8 265 1D

12 4095 1D9

16 65535 1D87

24 16777215 1D872B

32 4294967295 1D872B41

Using the Random Numbers

The output of the random number generators just discussed is a string
of unsigned integers. However, since they are random, one can interpret

them as standard twos-complement numbers as well or even as binary frac-
tions. Since twos complement is slightly asymmetrical (there is one more

possible negative value than possible positive values), the mean of the se-
quence will be —0.5 of the least significant bit rather than 0. This almost
never causes problems unless the sequence is integrated for long periods of
time.

Although the output of a random number generator when sent through
a DAC sounds like white noise and in fact gives a white Fourier transform, it
does not look at all like natural white noise. The difference is its probability
density function, which is uniform rather than gaussian. As was mentioned
in Chapter 10, one can easily convert uniformly distributed random numbers
into near-gaussian distributed numbers by adding up 12 of them (assuming a
range of 0 to 1.0) and subtracting 6.0 from the sum. The mean of the result
will be O (except for the error described above) and the standard deviation

will be 1.0. The simulation is not exact because the probability of a result
greater than 6 standard deviations from the mean is 0 when it should be

488 Musical APPLICATIONS OF MICROPROCESSORS

about 2 X 107%. Actually, since uniformly distributed and gaussian-
distributed numbers sound the same and even may look the same after
filtering, there is little reason to perform the gaussian conversion.

In many synthesis or modification applications, one may need several
uncorrelated sources of white noise simultaneously. If the random number
generator is reasonably good, one can simply distribute successive numbers
to the separate processes requiring them. Thus, one random number
generator can be used to simulate any number of random processes.

Type 3 Percussive Sounds

Now that we have a source of white noise lets discuss how it can be used
to synthesize Type 3 percussive sounds. A pure Type 3 sound may be
generated by filtering the noise and applying a suitable amplitude envelope.
Very simple filters are adequate for many common sounds. For example, a
quite deadly sounding gunshot may be produced by high-pass filtering the
noise with a 300 Hz to 500 Hz cutoff and applying an envelope with zero
attack time and decay to —30 dB in 100 msec to 200 msec. Conversely, a
cannon boom is noise low-pass filtered at 100 Hz to 200 Hz with a somewhat
longer attack and decay than the gunshot. Returning to musical instru-
ments, high-pass filtering above 1 kHz with a 50 msec to 100 msec attack
and decay simulates brushes (lightly on a snare drum) quite well. Maracas
sound best with a little lower cutoff frequency and shorter attack and decay.
Cymbal crashes have about the same frequency distribution as maracas but a
fast attack and long decay in the 0.5-sec to I-sec range as well as high
overall amplitude.

Some sounds are not pure Type 3. A standard snare drum beat is the
best example and consists of a burst of virtually white noise (only the very
lowest frequencies are missing) combined with a Type 1 or Type 2 drum
sound. A very realistic close range (remember how it sounded when one
passed just 5 feet away in a parade?) bass drum sound can be produced by
amplitude modulating 500-Hz low-pass filtered noise with the primary 50
Hz damped sine wave and mixing the two together.

Noise may also be bandpass filtered to simulate other classes of sounds.
Many types of drums are more easily synthesized with filtered noise than
several damped sine waves and sound just as good if not better. The bass
drum, for example, can be done by bandpass filtering in the 50-Hz range as
in Fig. 15-4. Pitched drums such as tom-toms also come out well if some-
what higher center frequencies are used. Sometimes it may be necessary to
cascade two bandpass filcers to provide greater attenuation of frequencies far
removed from the center frequency, which would otherwise detract from the
naturalness. It should be noted that bandpass filters not only take time to die
out after the input is removed but also take time to reach full output if the
input is suddenly applied. In some cases, the filter itself may generate a
suitable envelope simply by turning the noise input on and off. Single-pole
R-C low-pass filters also have a finite build-up time, but it is relatively short.

PERCUSSIVE SOUND GENERATION 489

Bt ENVELOPE
WHITE
NOISE

FUZZ
ENVELOPE

Fig. 15-4. Bass drum simulator

Nonlinear Vibrator Simulation

Many interesting percussive sounds fall into the Type 4 category. The
vibrating ruler mentioned earlier is one example, while a strongly plucked
rubber band is another. To these everyday examples can be added any
number of artificially contrived examples.

Such sounds involve one or more nonlinear vibrating members. One
characteristic of nonlinear vibrators is that the waveform and frequency of
vibration depend to some degree on the amplitude of the vibration. A linear
vibrator, on the other hand, is totally independent of amplitude. While
every natural (and electrical analog) vibrator is nonlinear to some extent, the
effect at normal amplitude levels is small enough to ignore.

The object here is to simulate the behavior, that is, plot the vibration
waveform, of an excited nonlinear vibrator given certain vital statistics about
its components and an expression or a table describing the nonlinearity. Fig-
ure 15—5 shows a standard spring-mass vibrator, just as it would appear ina
physics textbook. The position of the mass relative to its stable or neutral
position as a function of time is the variable of interest.

The classic first step in analyzing the vibrator is to note all of the forces

acting on the mass and then apply the conservation principle that requires

these forces to balance out, that is, sum to zero. There are three forces at
work (gravity will be ignored, since it is a static force that has no effect on the

vibration dynamics): the spring-restoring force, the force of friction, and the

force of inertia. The restoring force is normally proportional to the difference
between the present position and the neutral position and always pulls to-
ward the neutral position. The force-versus-position relation is what will be
made nonlinear later. The friction force can either be due to sliding friction,
in which case its magnitude is constant (as long as there is movement) or due

to viscous friction with magnitude proportional to velocity. Viscous friction
will be used, since it is better behaved and more “‘natural.” In either case, the

direction is opposite to the direction of movement. The inertia force is
proportional to the mass of the vibrator and the acceleration (rate of speed

490 Musical APPLICATIONS OF MICROPROCESSORS

SUPPORT

SPRING

VIBRATION
MASS MOTION

(a)

R=t(P)

I=MA

(8)

A = ACCELERATION OF MASS
| = INERTIAL FORCE

= MASS
FRICTION FORCE
SPRING RESTORING FORCE

= POSITION OF MASS REL TO NEUT.
V = VELOCITY OF MASS
f = SPRING RESTORING

FORCE FUNCTION
1. Sum forces: R + F +1=0- (LINEAR OR NON-LINEAR)
2. Substitute: (P) - KV + MA = 0 K = FRICTION COEFFICIENT

3. Get in terms of P: (P) + K — +M sa = 0 (SECOND ORDER DIFF EQUATION)
4. Get in terms of A: f(/[A) + KA + MA = 0 (SECOND ORDER INTEGRAL EQUATION)

vppNE
now

Fig. 15-5. (A) Spring-mass vibrator. (B) Forces on the mass. A, acceleration of
mass; |, inertial force; M, mass; F, friction force; R, spring-restoring
force; P, position of mass relative to neutral; V, velocity of mass: f,
spring-restoring force function (linear or nonlinear); and K, friction
coefficient.

change) it is experiencing. Its direction opposes the sum of the other two
forces.

After the various forces are identified and written in equation form, it is
customary to rewrite the equation in terms of the primary variable, P (posi-
tion), instead of velocity and acceleration. This is easily done, since velocity
is the time derivative of position and acceleration is the time derivative of
velocity. The result is a standard second order differential equation.

Our goal, however, is to simulate the physical process described by the
equation, not “solve” ic in the mathematical sense. In order to get the
equation into an easily handled form for simulation, it is better to write it in
terms of acceleration, A, rather than position. If this is done, velocity is

PERCUSSIVE SOUND GENERATION 491

f

il ff +k {a= —MA

f

f ik
A

MA

Sy
= i

VK

ACCELERATION

Lb;
(B)

Di
ACCELERATION [—® VELOCITY

Pr tty
Pike

<b

Fig. 15-6. (A and B) Electrical analog of spring-mass vibrator. (C) Digital im-
plementation.

{c)

replaced by the time integral of acceleration, and position is replaced by the
double time integral of acceleration. The resulting equation then is a second
order integral equation.

At this time, we are ready to construct an electrical analog of the
mechanical vibrating system. The first step is to move the MA term to the
right side of the equation and assign it to the output of an op-amp summer as

in Fig. 15—G6. The left side of the equation now specifies the input to the
summer, which is also shown. The remaining task is supplying fa and

f fA. This can be accomplished neatly by passing the summer output,
MA, through two integrators in series and making the indicated connections

as in Fig. S—15B. This looks strangely similar to the state-variable filter and,
in fact, is exactly the same if the input is removed and the noninverting
integrators are replaced by inverting ones with the friction-feedback term
flipped to compensate.

Thus, a nonlinear vibrator may be simulated by inserting a nonlinear
transfer function in the feedback path from the low-pass output and then

492 MUSICAL APPLICATIONS OF MICROPROCESSORS

i | Wy MWANnrw

y i Wn 1 ‘DISPLACEMENT

y eon

ACCELERATION

(ay

FORCE

nnn

jean
ACCELERATION

cS)

FORCE

/ yy AARARAAKH

ar \/\ AA \ Papers ew,

ACCELERATION
(ce

Fig. 15-7. Nonlinear vibrator simulation. (A) Increasing slope. (B) Decreasing
slope. (C) Non-symmetrical slopes.

PERCUSSIVE SOUND GENERATION 493

exciting the filter for results. Although an analog nonlinearity using diodes is
quite possible (and an interesting experiment), with the digital equivalent an
equation or table describing the transfer function can be used instead.

Not just any randomly chosen curve will work for the transfer function,
however. In order for the oscillation to die out completely, the slope of the
curve must always be positive. If the slope tends to increase away from zero as
in Fig. 15—-7A, the oscillation frequency will decrease as it dies out and
vice versa. Symmetrical transfer functions lead to odd harmonics only while
nonsymmetrical ones give all harmonics. The position (low-pass) output of
the vibrator tends to have a very strong fundamental relative to the har-
monics. The velocity (bandpass) and acceleration (high-pass) outputs have
greater harmonic content.

The position feedback path is not the only one that can be made
nonlinear. The velocity path may also be nonlinear with the general effect of
distorting the decay envelope. Any of the amplifiers in the vibrator structure
can also be made nonlinear. For example, making the value of Fei dependent
on position means that the vibrating mass depends on position such as in the
vibrating ruler case. (The reader should be aware that the ruler sound cannot

be duplicated with just the nonlinear oscillator, the impact of the ruler
hitting the table excites additional resonances in the ruler that require
additional filters to simulate.) It is important to note that digital simulations
of nonlinear vibrators can easily generate frequencies above one-half the
sample rate. Thus, experiments should be done at fairly low resonant fre-
quencies and without sharp discontinuities in the nonlinear transfer func-

tions.

16
Source-Signal Analysis

One of the great strengths of digital techniques lies in the abilicy to
thoroughly analyze already existing sounds. These may either be “natural”
sounds such as musical instruments, speech, animal sounds, etc., or they

may be synthesized sounds. In either case, the goal of analysis is to determine

values of the fundamental parameters that characterize the sound and how
they vary with time.

When the ultimate purpose is synthesis, one may do analysis simply for

education. Certainly, a good understanding of the parameters of existing
sounds will aid in the specification of parameters for similar synthetic

sounds. Often, published literature will have the necessary information, but
it may be obscurely presented or applicable only to generalized or overly
specialized cases. Even when published literature is adequate initially, most
synthesis applications can be expected to gtadually specialize beyond its

scope. In either situation, firsthand analysis experience is quite helpful.
The most common application of analysis, however, is in sound modifi-

cation in which one obtains data from a natural sound and uses it to direct the
synthesis of an artificial sound. Sometimes the distortions introduced by the
analysis/synthesis process alone are sufficient for che desired results. Usually,
though, the analysis data are modified before the synthesis is performed.

Digital processing of the analysis data can usually be performed such that the
useful information is in an easily usable form. For example, if one wishes to
apply the overall spectral envelope of a particular sound to another sound, a

standard spectral analysis can be smoothed so that details about the individual
harmonics are suppressed but the overall envelope is preserved.

Digital signal analysis is a very broad, very complex topic that keeps

research staffs at many universities busy continuously. It is typically highly

mathematical as well and most literature on the subject is quite obscure
without the necessary training. Although one cannot completely escape such
complexities, an attempt will be made in this chapter to discuss the most
important and easily implemented analysis techniques. While these may not

495

496 Musical APPLICATIONS OF MICROPROCESSORS

always be the most efficient or most accurate techniques, they get the job
done. It is much more important for the beginner to actually do some
analysis programming and see the results than to have a thorough mathemat-

ical understanding of the underlying principles. Only two types of analysis
will be described in detail. The first is generalized spectrum analysis in
which the time-varying spectrum of the source sound is determined. The
second concentrates on extracting and following the frequency parameter of a

changing sound, a very useful function.

Spectrum Analysis

Most source-signal analysis begins with spectral analysis, since virtually
everything that is audible and important about a sound shows up vividly in a
spectral analysis. The results of the analysis may then be plotted, passed
directly to a synthesis process, or undergo further processing.

A time-variable spectral plot, which is also called a short-time spectral
analysis, is actually a three-dimensional “surface” that shows the relation
between time, frequency, and amplitude variables. Time and frequency are
the independent variables, while amplitude is the dependent variable. When
spectra are computed digitally, all three variables are quantized and two of
them, amplitude and frequency, are also sampled. In effect the ‘‘volume”
represented by the allowable ranges of these variables is filled with discrete
points and the spectral surface is defined only at point intersections.

Plotting Methods

Obviously, most computer graphic displays and plotters cannot di-
rectly show a three-dimensional surface. This shortcoming has resulted in at
least five distinct methods of representing the data on paper or a CRT screen.
Perhaps most obvious is an isometric drawing of the surface such as illus-
trated in Fig. 16-1A. The surface is drawn in a horizontal position with
peaks and valleys much like a land area relief map. Typically, time runs
north/south, while frequency runs east/west, although they may be inter-

changed. Height always represents amplitude. Such a representation gives a

“spectacular view” of the spectrum to say the least but is very difficult to
draw, since hidden line removal (the surface is opaque instead of transparent)
is necessary to avoid clutter.

A somewhat easiet-to-draw representation consists of a stack of stan-
dard two-dimensional curves such as illustrated in Fig. 16-1B. Each curve
represents a standard amplitude-versus-time plot at a particular frequency.
Therefore, the horizontal axis is time and the vertical axis is amplitude. Each
8taph is displaced vertically upward as well so the vertical axis is also fre-
quency. Sometimes the curves are skewed to the right as well as upward to
give an isometric effect.

A third method, which is particularly applicable to digital spectra,
approaches a true three-dimensional representation more closely. With a

SouRCE-SIGNAL ANALYSIS 497

I10dB

TIME (sec)

FREQ (kHz)

AMPLITUDE ' -

FREQUENCY $

Fig. 16-1. Methods of representing three-dimensional spectral data in two
dimensions. (A} Isometric projection. Source: Audio Engineering
Society Preprint No. 1139, “Three-Dimensienal Displays for Dem-
onstrating Transient Characteristics of Loudspeakers,” 1976. (B)
Stack of two-dimensional curves.

MUSICAL APPLICATIONS OF MICROPROCESSORS 498

Tce ec ineeceeeneeUUTEHTTLEEITT aee
seal Misa.

titi,
sll
hunni Hl

sa lTETTTTIALILU

WU

Hittin.

awpuiTuve f

SMU ALMA UTICA,
os sv4 ES SHLASU) EU LLELE TM asec ESET
HELI ETT

FREQUENCY t

sc THT UT thie

ssc TULUM CEE
AH HUHIMID I,

nUcrucctaveccanyaievansvacieecancann asin) Tinie

Hit ees
Hin

TIME —

+

AO
NI
ND
IY
S

TIME >

1g

ne
er
s

2=
=

8 EER
WAY Ore POM THO OCS:

SS0650565

weeaeae

(line printer). scale

using bar lines for Z axis. (D) Gray
Gray sonagram). (E)

mensions (cont) (C) True 3-D‘
(Kay

Fig. 16-1. Methods of representing three-dimensional spectral data in two di-

scale

SouRCE-SIGNAL ANALYSIS 499

Fig. 16-1. Methods of representing three-dimensionai spectral data in two di-
mensions (cont). (F) Optically weighted character set. Spectral plot
using optically weighted characters.

sampled spectrum, amplitude data values are only known at specific incre-
ments of time and frequency. Thus, if the two dimensions of a sheet of paper
correspond to time (horizontal) and frequency (vertical), then the area has

been divided into an array of rectangles, much like graph paper. What is
drawn within the confines of a particular rectangle represents amplitude at
that time and frequency intersection. One could simply draw a bar line in the
rectangle such thac the length corresponds to amplitude as in Fig. 16—1C, If

500 MUSICAL APPLICATIONS OF MICROPROCESSORS

Fig. 18-1. Methods of representing three-dimensional spectral data in two
dimensions (cont.). (G) Contour map (voiceprint).

the figure is drawn accurately, this is one of the better quantitative methods
of representing spectral data, since all three variables can be very easily

measured on the plot with a compass and ruler.
One can also fill the rectangle with a patch of gray (or light if on a

CRT). The density of gray or brightness of light represents amplitude as in
Fig. 16—-1D. This is commonly called a sound spectrogram, a name coined by a
company that makes analog equipment for drawing such plots. If one has a
color display, then a different color can be assigned to each amplitude quan-
tization level. Computer line printers can also be pressed into service as
spectrum plotters by defining time and frequency increments in terms of line
and character positions. The rectangles are then filled in with characters or
overprinted character combinations chosen for their apparent darkness.

In any case, this gives a very-easy-to-interpret visual representation of
the data, but measurement of amplitude from the graph is no longer possi-
ble. A very clever compromise is illustrated in Fig. 16—-1F in which 16
different “characters” based on the hexadecimal digits are defined. The idea
is to have che area covered by black in the character shape to correspond to its
numerical value. If the amplitude values are quantized to 16 levels, one can
merely read off the values while simultaneously having a “gray-scale” plot to
scan visually.

The final method is the familiar contour map approach to three-
dimensional plotting as in Fig. 16-1G. When such plots are made of speech
spectra, they are often called “voiceprints” because of the resemblance in

form to fingerprints (there is some controversy over whether they are nearly
as distinctive as fingerprints). This is perhaps the most accurate method of
representation, particularly if changes in the spectrum are slow. Unfortu-

nately, visual interpretation in terms of features valuable for synthesis is
difficult.

Time—Frequency Resolution
In a spectral plot, good frequency resolution is desirable so that indi-

vidual harmonics of the sound are clearly distinguishable. Good time resolu-
tion is also desirable so that the exact time of significant spectral events can

SOURCE-SIGNAL ANALYSIS 501

3

2 wey ~
= > gz a2 6S ry , X
= > a = = => Ao tf eat

1 — es fe = =
— a ine = Mm F.S_S. Fr

° n 1 1 Ll
Os 10 15 20

SECONDS
(A) NARROWBAND

. AAU |
: | ao

AF 4 re a Fg s aa
1

Os 20

6

5 \ ‘i

: fe rior be

2

SECONDS

(B) WIDEBAND

Fig. 16-2. Wideband and narrowband spectrograms. (A) Narrowband (45 Hz).
(B) Wideband (300 Hz). Source: Applications of Digital Signal Pro-
cessing, Alan V. Oppenheim, Editor, Prentice-Hall, 1978.

be determined. Unfortunately, spectral analysis ts limited in the frequency
and time resolution that it can show. This is not due to any particular
shortcoming in the computation or the plotting method but instead is due to
a fundamental law of physics. Since the unit of frequency is “events per
second” and the unit of time is seconds, it should be intuitively obvious that
precise measurement of the amplitude of a frequency component in the pres-
ence of other components will take a finite amount of time. In fact, if
frequency resolution of X hertz is desired, a segment of sound lasting a

minimum of 1/X sec must be analyzed. Even the human ear is subject to this
limitation. As tone bursts are made shorter, there is greater difficulty in
identifying exactly what the pitches are.

The two spectrograms in Fig. 16-2 illustrate the time-frequency
tradeoff. The first spectrogram is called a narrowband analysis because the
analysis bandwidth is about 45 Hz. This allows individual harmonics of the
sound (a human voice) to show clearly. The waving up and down of the
horizontal lines, which are the harmonics, is the result of changing voice

502 MUSICAL APPLICATIONS OF MICROPROCESSORS

FREQUENCY FREQUENCY

TIME TIME
(a) (8)

FREQUENCY

TIME

(c)

Fig. 16-3. Illustration of time-frequency resolution limitation. (A) Actual syn-
thesized tones. (B) Narrowband spectral analysis. (C) Wideband
spectral analysis.

pitch. Note that onset and termination of the major features is somewhat
smeared. The second spectrogram is a wideband analysis with an analysis
bandwidth of approximately 300 Hz. Here the time resolution is so good

(approximately 3 msec) that individual cycles of the fundamental frequency
are resolved, which causes the vertical bands. However, only the formants

show up; the harmonics are too closely spaced relative to 300 Hz to be
resolved.

Returning to the array of rectangles that makes up a digital sound
spectrogram, one can consider a narrowband analysis to correspond to rectan-
gles that are wide and short, while a wideband analysis uses narrow and tall
rectangles. The area covered by a rectangle remains constant and is equal to
approximately unity (hertz times time). The actual surface area covered on
the plot depends on the scale factor chosen for frequency and time axes. An

analog spectrogram is subject to the same limitation except that the rectan-

gles become somewhat diffuse, overlapping ellipses. By using interpolation
in two dimensions, a digital spectrogram can be made vo appear identical to

an analog one.
Although it would seem that the narrowband and wideband plots could

be combined into a single figure with both good frequency and time resolu-

tion, it is not possible to do so unambiguously. This is illustrated in Fig.
16-3 in which two nearly simultaneous cone bursts are analyzed. The nar-
rowband analysis easily separates the two tones but smears the leading and
trailing edges such that it is impossible to tell which occurred first. The
wideband analysis has very sharp leading and trailing edges, but now the two
tones are merged together so it is still not possible to say which came first.

SOURCE-SIGNAL ANALYSIS 503

Data Representation

Most of the spectral plotting methods that have been discussed have a
limited dynamic range for indicating amplitude. This is particularly true in
the gray-scale representation. Usually, it is the changes and ratios of ampli-
tude that are important rather than the absolute amplitude itself. Therefore,
it is customary to at least partially mormalize the amplitude scale so that
overall low-amplitude portions of the signal show up as well as the high-
amplitude portions. The normalizing effect can be achieved either with an
automatic gain control mechanism (which can be applied after the signal is

digitized) or by expressing the amplitude of each frequency component as a
percentage of the total spectral power for that time slot. In either case, it is
helpful to know che true overall amplitude which can be plotted as a conven-
tional graph below the spectrogram. When pitched sounds are being
analyzed, it is also nice to have a fundamental frequency plot as well, since
this information may be difficult to determine accurately from either a
narrowband or wideband analysis.

Although spectral plots are instructive to look at and, in fact, may be
the goal of educational spectral analysis, the associated data must often be
stored for later use. The most straightforward method of storing spectral data
is in frames. Each frame represents spectral data at a point in time. Within

the frame there is a byte or word for every frequency band used in the
analysis. There may also be one or two additional elements for the overall
amplitude and fundamental frequency if these data are available. With nar-
rowband analysis data, the frames would be spread far apart in time and each
frame would have a large number of elements. An example would be a frame
every 30 msec with 165 elements per frame representing 30-Hz bands up to
5 kHz. Frames for wideband analysis data would occur more often, but each
frame would have fewer elements. The corresponding example would be
7.5-msec frames with 40 elements, which gives 130-Hz resolution up to 5
kHz. Note that the amount of data to be stored per second is roughly the
same.

With many cypes of spectral data it may not be necessary to retain full
frequency resolution in the higher frequencies. For example, a frequency
change from 60 Hz to 90 Hz is interpreted by the ear as an interval of a fifth;
however, a similar shift from 5,000 Hz to 3,030 Hz is a mere 10-cent (0.1

semitone) shift, which is marginally audible if at all. As a result, the analysis

bandwidth can often be widened above a kilohertz or so without loss of
audible spectral features, thereby reducing the amount of data per spectral

frame.

Filtering Methods of Spectral Analysis

The most obvious method of performing spectral analysis is by means of

bandpass filtering. The general idea is to feed the time-varying input signal

to a large number of bandpass filters, each with a different center frequency.

504 MUSICAL APPLICATIONS OF MICROPROCESSORS

DRAWING
ELECTROSENSITIVE
PAPER

FACSIMILIE DRUM

RECORDING ORUM

MAGNETIC
HEAD

PLAYBACK RECORD |, AUDIO
AMP AMP INPU

Fig. 16-4. Kay electric sound spectograph

The amplitude of the filter outputs is sampled periodically to provide the
spectral data. If the center frequencies and Q factors of the filters are chosen
properly, all possible frequencies in the band of interest will excite at least
one filter.

Any number of analog methods for directly realizing or simulating such
a structure have been devised. Probably the most interesting is that utilized
by Kay Electric Company in their Sound Spectrograph. The basic parts of the
machine shown in Fig. 16-4 are the magnetic recording drum, the facsimile

image drum, and a single tunable bandpass filter. The recording drum is
mechanically coupled to the facsimile drum such that they rotate in unison.

In use, up to 2.4 sec of sound can be recorded on the surface of the
magnetic drum. To plot a spectrogram, a piece of electrosensitive paper
(turns dark when current is passed through it) is wrapped around the fac-
simile drum and the machine is started in playback mode. The audio signal
from the drum goes through the bandpass filter and then directly to the

writing stylus. High-amplitude filter outputs create a darker trace than
low-amplitude outputs. A leadscrew causes the writing stylus to gradually
move along the length of the drum and at the same time increase the center
frequency of the filter. Thus, the audio signal is serially analyzed at a large

number of center frequencies outside of real time. An amplitude-quantizing
attachment is also available to replace the gray-scale plot with a contour plot.

Most analog spectrum analyzers, however, use a bank of bandpass
filters so that the spectrum analysis is performed in parallel in real time. The

SouRCE-SIGNAL ANALYSIS 505

ele pes
ANALYZED MER COMPONENT

Fig. 16-5. One channel from a filterbank spectrum analyzer

structure of each channel of such an analyzer is shown in Fig. 16—5. First the

signal is bandpass filtered with a center frequency corresponding to the
channel under consideration. The output of the filter, which is still an ac

signal but with a limited frequency range, is rectified as the first step in
determining its amplitude. This is best accomplished with a full-wave rec-
tifier so that the ripple frequency will be high. A final low-pass filter removes
the ripple, giving the short time average of the bandpass filter output. For the
lowest couple of bands, the design of this filter is critical, since too much
filtering means a slow response, while inadequate filtering lets the ripple
through, effectively adding noise to the channel output.

A Digital Filterbank Spectrum Analyzer

Let’s now discuss a digital implementation of the analog filterbank
analyzer. The main advantage of the filterbank method over the Fourier
transform method that will be described later is its simplicity and case of
understanding. Because of its simplicity, dedicated hardware implementa-

AUDIO SAMPLE RATE (20 kHz) TRUM oe

(100 Hz)

/ CHANNEL
" ourput

SAMPLED
INPUT
‘SIGNAL

SPECTRUM
SAMPLE
CLOCK

Fig. 16-6. Digital filterbank spectrum analyzer

506 MUSICAL APPLICATIONS OF MICROPROCESSORS

tion is straightforward as well. Even when implemented in software, it is
reasonably efficient if the number of frequency bands is small.

A general block diagram of the structure to be implemented is shown
in Fig. 16-G. This is essentially an extension of the analog channel diagram
into digital form. The input signal is a string of samples at the normal audio
sample rate, which will be assumed to be 20 kHz in this discussion. The
sampled signal passes through a bandpass filter, rectifier, and low-pass filter
in succession, all of which operate at the audio sample rate. The oxipat of the
low-pass filter, however, changes very slowly and therefore can be resampled
at a much lower frequency to provide spectral frames at a reasonable rate such
as 100/sec. As a computer program, the analyzer would essentially accept
samples continuously and return a spectrum frame for every 200 input sam-

ples.

The first element to consider is the bandpass filter. Since only a
bandpass response is needed and the center frequencies are fixed, the cannon-
ical form will be used because it requires only two multiplications per
sample.

The next task is to select the center frequencies of the filters. The
spectrum sample period of 10 msec suggests that 100-Hz bands are op-
timum, although wider or narrower bands can be used as well. A bandwidth
narrower than 100 Hz simply means that the bandpass filter will respond
slowly to signal changes and, as a result, the channel output will be oversam-
pled. A bandwidth greater than 100 Hz means that the low-pass filter and

sampler following the rectifier will limic the channel response speed rather
than the bandpass filter.

Let’s assume, then, that we wish to minimize the number of frequency
bands yet retain enough data to provide a good representation of significant
audible features. For illustration there will be 30 frequency bands scaled on a

quasiexponential scale with bandwidths ranging from 50 Hz at the low end
to 500 Hz at 7.5 kHz. Frequencies above 7.5 kHz are not considered, since
the low-pass filter used in A-to-D conversion has probably attenuated them
anyway.

It is convenient to specify lower and upper cutoff frequencies for the
filters, especially when using a mixture of bandwidths. The center frequency,
however, is what is needed to design the filter and it is mot exactly midway
between che upper and lower cucoff points. It is, in fact, the geometric mean
of Fs and Fi and is given by WFiFs, where F: is the center frequency. This
formula holds for any definition of cutoff frequency as long as the same
definition applies to both F/ and Fs.

Given the center frequencies and bandwidths, the last task is to com-
pute the filter Q factors. Since the percentage bandwidths vary from band to
band as well as the bandwidths themselves, each filter will have a different Q.
But before the Qs can be determined, the inevitable overfap between bands
must be considered. Overlap is bound to occur because the cutoff slope at the
band edges is finite. If the Qs are made high in order to minimize overlap as

Sourcr-SIGNAL ANALYSIS 507

0 O : st OP en ate Le
=15 -15 /\
-20 -20

{\ [\
a FREQUENCY

FREQUENCY (B)

(a)

Fig. 16-7. Overlap between analyzer filters. (A) Insufficient overlap. (B) Ex-
cessive overlap.

in Fig. 167A, there will be large frequency gaps that none of the filters
respond very strongly to. On the other hand, excessive overlap degrades
frequency resolution. Overlap can be characterized by noting at what attenu-
ation adjacent amplitude responses cross. A good number for the single-
section bandpass used here is —6 dB or the 50% voltage response points. The
formula for Q based on a 6-dB bandwidth is: Q = 1.732F A(Fs—FA.

Table 16-1 and Fig. 16-8 show the 30-channel bandpass responses
with overlap at the 6-dB points. What is plotted in Fig. 16-8 is the gain
versus frequency for each filter after it has been normalized for unity gain at
the center frequency. This would seem to be the only reasonable way to
normalize filter gains, but a peculiar thing happens if one feeds white noise

into the analyzer. Some channels, notably the high-frequency wide
bandwidth ones, report a higher amplitude than others even though the
input sound has a flat spectrum!

The uneven response is due to the fact that white noise has constant
power per hertz of bandwidth, and the wider bandwidth filters therefore
absorb more power. A typical complex music spectrum would show the
same results. On the other hand, a sound having only a few widely spaced

harmonics would be analyzed correctly! The only way to avoid this dilemma

is to use equal bandwidths for all of the filters. If wider bandwidths are
desired at the higher frequencies, two or more bands can be averaged, which

does not create problems. Even though the spectral data are reduced, compu-
tation time soars. The filterbank analyzer, therefore, is best suited for rough

analysis of dense (lots of frequency components) spectra, in which case the

channel gains are normalized for equal response to white noise.
The low-pass filters following the rectifiers must also be specified. As

was mentioned earlier, their primary job is to smooth ripple from the rec-

tifier without unduly slowing response to sudden spectrum changes. How-
ever, one must be careful to avoid multisection sharp cutoff filters because
their step response includes a lot of ringing, which would distort the
analysis. A reasonable compromise is a resonant low-pass with a Q of around
0.8. Since the spectrum sample rate is 100 Hz, a cutoff frequency of 30 Hz or
so is indicated. Acceptable ripple rejection in the lowest band may require a

508 MusICcAL APPLICATIONS OF MICROPROCESSORS

Table 16-1. Filter Data for Filterbank Spectrum Analyzer

Channel Fi Fr Fe Q

1 50 100 71 2.45

100 150 122 4.24

3 150 200 173 6.00

4 200 300 245 4.24

5 300 400 346 6.00

6 400 $00 447 775

7 500 600 548 9.49

8 600 700 648 11.22

9 700 800 748 12.96

10 800 900 849 14.70

an 900 1,000 949 16.43
12 1,000 1,200 1,095 9.49

13 1,200 1,400 1,296 11.22

14 1,400 1,600 1,497 12.96

18 1,600 1,800 1,697 14.70
16 1,800 2,000 1,897 16.43

17 2,000 2,200 2,098 18.17
18 2,200 2,400 2,298 19.90
19 2,400 2,600 2,498 21.63
20 2,600 2,800 2,698 23.37
21 2,800 3,000 2,898 25.10
22 3,000 3,300 3,146 18.17
23 3,300 3,600 3,447 19.90
24 3,600 4,000 3,795 16.43
25 4,000 4,500 4,243 14.70
26 4,500 5,000 4,743 16.43
27 5,000 5,500 5,244 18,17

28 5,500 6,000 5,745 19.90
29 6,000 6,500 6,245 21.63
30 6,500 7,500 6,982 12.09

lower cutoff for that band, however. Note that aliasing is a secondary concern

when the channel outputs are sampled, since the waveform of the channel

output is of interest.

Improving the Analyzer

Before advancing to Fourier transform analysis, let’s discuss some ways
of improving the performance of the filterbank analyzer. The most obvious
improvement is bandpass filters with flatter passbands and steeper cutoffs to
improve analysis accuracy and reduce overlap. In particular, attenuation far

from the center frequency could stand considerable improvement. Such fil-

ters can be realized by cascading simple bandpass filters as was done to get a
supersharp low-pass in Chapter 12, Note, however, that sharp cutoffs in-
crease filter ring time just as surely as narrow bandwidths, so minimizing

overlap will incur a penalty in time resolution.

Another improvement is in the rectifier and low-pass filter area. If the
bandwidth is fairly small compared to the center frequency, the bandpass
filter output waveform will appear co be a pure sine wave with a varying

SOURCE-SIGNAL ANALYSIS 509

GAIN (dB)

O/B) OY / ‘Os \ SSF AK

FREQUENCY (Hz)

Fig. 16-8. Individual filter amplitude response curves

amplitude. If instead of the cannonical form, the state-vatiable bandpass
fileer form is used, the filter output and a 90° phase-shifted copy at the same
amplitude are available. The amplitude of the waves can then be determined
instantly without rectification or filtering simply by taking the square root of

the sum of their squares! This then would eliminate the rectifier and low-pass
filter at the expense of a more complex bandpass filter.

The converse is also possible, that is, the bendpass filter can be elimi-

nated as in Fig. 16-9. Here, the input signal is split and balanced modulated
(multiplied) by the two ourpurs of a quadrature oscillator running at the
center frequency of the channel. Recall that balanced modulation produces sum
and difference frequencies but suppresses the original signals. The following
low-pass filter allows only sufficiently low difference frequencies through.
Thus, the modularor-filter combination acts like a bandpass filter with a

bandwidth twice the low-pass cutoff frequency and a cutoff shape either side

de
CHANNEL
OUTPUT

QUADRATURE
OSCILLATOR SIGNAL

Fig. 16-9. Heterodyne filterbank channel

510 Musicat APPLICATIONS OF MICROPROCESSORS

of center identical to that of the low-pass. This setup is called a heterodyne

filter, since it is the beat note between the signal and a “carrier” that is
actually measured. Since the two signal paths are 90° out of phase, they may
be combined by a “square root of sum of squares” element to produce the
final channel output or they may be kept separate to retain phase information
about the signal. The sare comments regarding overlap, cutoff slope, and
ringing time apply to the low-pass filters in this implementation.

One nice thing about either the channel structure just mentioned or the
previous bandpass filter channel is that, when implemented digitally, the
gencral-purpose spectrum analyzct can be made into a harmonic tracker with
little effort. Obviously, the greatest analysis accuracy occurs when the center.
frequency of a channel exactly matches a harmonic frequency. The idea
behind a harmonic tracker is to assign a channel to each harmonic of the wave
being analyzed and then continuously vary the center frequency to remain
locked on the harmonic. A prerequisite, however, is a fundamental frequency
tracker or so-called “pitch follower." Knowing the fundamental frequency,
harmonic frequencies are easily calculated and filters can be tuned to them.
The channel output then gives a time history of the actual harmonic spectrum
of the tone, which is then directly applicable to Fourier series or FFT synthe-
sis methods.

Spectrum Analysis Using the FFT

Almost as obvious as bandpass filtering is spectral analysis by means of

Fourier analysis. After all, Fourier and his theorem is what the whole idea of
a frequency spectrum is all about. Applying Fourier analysis to exactly one
cycle of a periodic waveform in order to determine its harmonic makeup is a
theoretically simple task that, for practical purposes, yields an exact result.
On the other hand, applying it to a complex changing sound with arbitrary
frequency content is not as simple and can be far from exact as well. The
computational efficiency of the fast Fourier transform, however, makes
Fourier analysis such an attractive method of high-resolution spectral analysis
that users often go to great lengths to overcome its problems. Spectrum
analysis by digital filtering is attractive only for low-resolution (few bands)
analysis, harmonic-tracking analysis, or where the “intelligence” necessary to
implement the FFT is lacking.

As was mentioued in Chapter 13, the FFT computes the spectrum of a
finite-sized block (record) of samples. It assumes, correctly or not, that the
block of samples represents exactly one period of a perfectly periodic waveform
and in curn gives the exact harmonic amplitude and phase spectrum of the
assumed waveform. The trick in spectral analysis via FFT, then, is to break up
the continuous stream of samples into records for the FFT and to insure that
the necessary assumptions do not cause problems.

The first practical task is to decide the record size, which in turn
determines the maximum frequency and time resolution of the analysis.

SOURCE-SIGNAL ANALYSIS S11

Since the spectrum is averaged over the duration of a record, the time

resolution can be no betcer than the record duration. And since the FFT gives
harmonic frequencies that are integral multiples of the reciprocal of the
record duration, the frequency resolution can be no better than this either.

Thus, time resolution multiplied by frequency resolution can be no less than
unity. Another consideration is that for maximum efficiency and ease of
programming, the record size should be a power of two.

Continuing the example used earlier (20-kHz signal sample rate,
50-Hz frequency resolution, 100-Hz spectrum sample rate), we see that the
record size must be at least 400 samples to obtain the required frequency
resolution. The corresponding time resolution is 20 msec, which means that

the 100-Hz spectrum sample rate oversamples the changing spectrum by a

factor of two. We will see later that overlap between successive records is
often desirable and that it results in spectral oversampling as well. After
rounding up to the next power of two, the FFT example used in the follow-
ing discussion will assume a record size of 512, which gives a frequency

resolution of 39 Hz, and a spectral sample rate of 78 Hz.

Equivalent Bandpass Filter

Since the filterbank and the FFT methods of spectral analysis yield
similar results, it makes sense to talk about an equivalent bandpass filter
corresponding to each of the “harmonics” computed by the FFT. As an

example, let us study the 10th FFT harmonic. Ideally, it should act as a

bandpass filter with a lower cutoff of 9.5 X 39 Hz = 370 Hz and an upper
cutoff of 10.5 x 39 Hz = 409 Hz. Conceptually, it is simple to plot the

‘

9

-5

=I0
15

B -20

wy -2%
= -30
2 35

40

-45

50

-55

a
FREQUENCY (HARMONIC NUMBER}

Fig. 16-10. Equivalent bandpass filter response of 10th FFT harmonic

512 Musical APPLICATIONS OF MICROPROCESSORS

equivalent bandpass curve. One simply generates a large number of pure sine

waves of different frequencies (much more closely spaced than 39 Hz), pet-

forms an FET (512-sample record) of each one, and plots the amplitude of the

10th FFT harmonic as a function of sine wave frequency (the phase has no

effect). One might think that the equivalent bandpass filter would be ideal,

that is, have a flat top and vertical sides. However, the actual plot in Fig.
16-10 is quite the opposite. If one purchased an analog bandpass filter
exhibiting such a response curve, it would probably be returned for warranty

repairs!
Close examination of the curve, however, reveals that the response is

zero at all integral multiples of 39 Hz except 390 Hz, where the response is
unity. Corresponding curves for the other FFT harmonics are similar except
for being shifted up or down by a multiple of 39 Hz. Thus, the analysis of a
periodic waveform having a fundamental frequency of 39 Hz (or an integral
multiple of 39 Hz) will be exact. This should be expected because the FFT
assumes that the sample block is periodic at 39 Hz and, conversely, one
should expect some error if this is not true. The real problem with the
response curve is not its curved top or sloping sides but its poor attenuation
at frequencies far removed from the center frequency. This phenomenon is

termed /ezkage, which must be reduced to the —40-dB to —80-dB range if
the spectral analysis results are to be meaningful.

The primary cause of leakage is the discontinuity between the begin-
ning and the end of the record when the test frequency is not an integral

multiple of 39 Hz. If there were some way to adjust the ends of the record so

that they are continuous, then perhaps the leakage would be reduced. One
way to force continuity is to taper both ends of the record toward zero. Since
the first and last samples are now zero, they are also continuous. This is

accomplished by applying an amplitude envelope to the record with symmetri-
cal attack and decay. When used in this manner, such an envelope is called a
window and can have any of a number of shapes. The zero attack~and-decay
window used so far is termed a rectangular window. The shape of the window
has a powerful influence on the equivalent bandpass response shape so the
goal is to find a window shape that reduces leakage to an acceptable level.

Fortunately, windows can be evaluated more easily than computing a
point-by-point amplitude response with a separate FFT for each point. Al-
though the shape of che equivalent baudpass curve was given for the 10th

FFT harmonic, it is exactly the same for any of the FFT harmonics—

including the zeroth. Since an amplitude envelope applied to a dc voltage is
simply the amplitude envelope itself, we can perform a single FFT of the
window shape to get the equivalent bandpass response shape. Actually, only
the upper half of the BPF response is computed, the other half is identical
and in fact has been reflected against zero and combined with the upper half.
(This is why the dc component of the FFT must be divided by two before
use.)

SOURCE-SIGNAL ANALYSIS 513

ANPLITUDE, (4B)

B

0 78 156 234 312 468 624 780 936 1,092 (248

FREQUENCY (Hz)
(A)

AMPLITUDE (dB)

ie} 156 32 468 624 780 936 1,092

FREQUENCY (Hz)
(B)

Fig. 16-11. Equivalent half-bandpass filter shapes of common windows. (A)
Rectangular window. (B) Triangular window.

Of course, an FFT of the window shape will only evaluate the equiva-
lent BPF at certain discrete frequencies. To get an accurate plot of the curve
shape, a very large FFT must be performed with the window occupying a
small portion at the beginning and zeroes occupying the remainder. For
example, to check the response at eight different frequencies between each
null point, an FFT eight times the window length will have to be computed.

In our example, this means a 4,096-point FFT. On the other hand, most all

514 MusicaL APPLICATIONS OF MICROPROCESSORS

ANPLITUDE. (dB)

A) 7 195 273 429 585 74 897 1,053
FREQUENCY (Hz)

(c)

AMPLITUDE (dB)

0 156 234 312 390 468

FREQUENCY (Hz)
(0)

Fig. 16-11. Equivalent half-bandpass filter shapes of common windows
(cont.). (C) Half-sine window. (D) Hanning window.

useful windows have the same basic bandpass shape; a large central lobe with
ripples on both sides. The peak of the ripples and therefore the points of
worst leakage occur midway between the nulls, that is, at frequencies half-
way between the original FFT harmonics. Thus, the peaks of the leakage can
be plotted by evaluating an FFT only twice as long as the window.

SOURCE-SIGNAL ANALYSIS 515

AMPLITUDE (dB)

a nnn
0 156 234 312 468 624 780 936 1,092 1248

FREQUENCY (Hz)

(E)

Fig. 16-11. Equivalent half-bandpass filter shapes of common windows
(cont.}. (E) Hamming windows. HM(X) = .54—.46 (cos(27X)) 0 <=
xs

Some Example Windows

Now that they can be easily plotted, let's evaluate some windows.
Perhaps the simplest is a linear rise and fall, which is called a triangular
window. This window, along with the upper half of its equivalent bandpass
response shape, is plotted in Fig. 16~11B. Two characteristics are immedi-
ately apparent. First, the leakage attenuation is much better than that of the
rectangular window shown for reference. Second, the apparent width of the
central lobe, which is the primary bandpass response, is double that of the
rectangular window. This is the price that is paid for low leakage, and the
lower the leakage, the broader the bandpass. Thus, one must decide how
much leakage can be tolerated and choose a window that meets but does not
greatly exceed that figure. For our example, a figure of —40 dB will be chosen
and none of the secondary lobes, even the one closest to the center lobe, will

be allowed to exceed it. According to this criterion, the triangular window is
not suitable, since the first sidelobe is at —27 dB. Nevertheless, the third

and higher sidelobes are less than —40 dB, a figure that seemingly even the
100th lobe of the rectangular window cannot meet.

A similar window is the half sine wave. It has the advantage of a flat
rather than pointed top. Its characteristics are shown in Fig. 16-11C. Its
central lobe is only 1.5 times as wide as the rectangular window, yet has even

better sidelobe attenuation (beyond the first) than the triangular window. Its
second sidelobe, which is at the same frequency as the first triangular win-
dow sidelobe, is about —32 dB.

516 Musical APPLICATIONS OF MICROPROCESSORS

Although the preceding windows are continuous with zero at both

ends, there is a s/ope discontinuity at the ends. One window that provides for

continuity of slope (and continuity for a// derivatives as well) is the cosine bell

ot hanning window. Actually, it is just the point-by-point square of the

half-sine window but, due to a trig identity, is the same shape as a full cosine

cycle shifted up to the axis and turned upside down. The response curve in

Fig. 16-11D exhibits a double width central lobe and first sidelobe of —32

dB, which is still unacceptable, although the second and succeeding ones are

fine.
The last window shown is called a Hamming window and consists of a

very judicious combination of a hanning and a rectangular window. Essen-

tially the relative contributions are scaled so that the first sidelobes cancel

and the rest partially cancel. The result is a curve with all sidelobes at —42

dB or less, which is accomplished with a central lobe only twice as wide as
the rectangular window. For most audio spectral analysis work, this is the
optimum window. For specialized applications such as signal detection in the
presence of overpowering noise, other windows with sidelobes of —80 dB
and better are available at the expense of an even wider central lobe.

Performing the Analysis

At this point, we are ready to outline the procedure necessary to go
from an indefinite-length sample string to a sequence of spectral frames using

the FFT. For illustration purposes, the example of a 20-kHz sample rate,

512-point FFT, 39-Hz frequency resolution, and 78-Hz spectral sample rate
will be continued. The crux of the analysis procedure is how the continuous
stream of samples will be broken up into 512 sample records for the FFT.
One possibility is to simply take the 512 samples from the input, transform
them, take the next 512, transform, etc. If this is done, windowing of the

records may greatly attenuate or miss significant waveform details that occur
when the window amplitude is near zero. Furthermore, only 39 spectrums
will be computed per 20,000 samples (1 sec).

Overlap can be used to insure that all parts of the waveform are seen and
increase the spectral sample rate as well. The general idea is the exact inverse
of the method outlined in Chapter 13 in which direct FFT synthesis was
discussed. For two-to-one overlap, one would only take 256 samples from the
string for each spectral frame. The other 256 in the record would be left over
from the previous frame. The process can be likened to a 512-sample shift
register. Each frame time 256 new samples would be shifted in and the oldest
256 would be shifted out and thrown away. Other overlap factors (which
need not be integers) for both higher- and lower-speccrum sample rates are
possible simply by altering the number of samples shifted in.

There are a couple of complications in the computation that can lead to
a lot of partially redundant data arrays. When a window is applied to

SouRCE-SIGNAL ANALYSIS 517

overlapped sample data, it myst not alter the data itself because some of it
will be needed for overlapping purposes in the next spectral frame. Likewise,
the FFT will destroy the sample data unless a copy is made and the copy

transformed. For maximum efficiency, one can combine copying, window-
ing, and bit-reverse decimation into one program loop that takes little more
time than windowing alone. If memory space is tight, the samples that are
not needed in the next frame may be destroyed.

In summary, the procedure for converting a string of samples into a
string of spectra is as follows (512-point FFT and 2:1 overlap):

1. Discard 256 signal samples from the right half of the analysis record.
2. Copy (or equivalent) the remaining 256 samples from the left to the

right half of the analysis record.
3. Accept 256 new signal samples from the input string and put them in

the left half of the analysis record.
.Make a copy of the analysis record.
- Apply the chosen window to the copy.
-Do a 512-poine real FFT.

. The 256 sine and cosine components represent one spectral frame. They
may be stored as is or processed further.

8.Go to step | for the next spectral frame.

MONA ES

Note that twice as much output data is generated as input data if phase
information is retained. This is a result of oversampling (overlapping), but as
will be seen later such oversampling simplifies subsequent spectral process-

ing. In fact, for analysis—resynthesis applications, it may be necessary to
further oversample the sequence of spectra to obtain good resynthesis quality
after modification.

Spectral Processing

In the previous section, two methods of obtaining the time-varying
spectrum of a sound were presented. We can now assume that the spectrum
is in the form of a sequence of frames at the spectral sample rate and each
frame contains samples (in frequency) of the spectral curve at a point in time.

Three primary applications exist for the spectral data. The first is direct
modification of the spectrum and immediate FFT resynthesis as sound. The
second, which may be considered an extension of the first, is the extraction of

one or more time-varying parameters, such as fundamental frequency or gross
spectral shape. These data may then be used to control conventional synthesis
equipment such as oscillators, filters, etc., rather than direct reconstruction

with the FFT. The third application is display and subsequent study in an
effort co learn more about the processes that created the original sound.

Often, it is convenient to perform some translation of the spectral data
before it is modified. If the FFT was used for analysis, each time-frequency

518 Musical APPLICATIONS OF MICROPROCESSORS

sample of the spectrum is represented by a cosine magnitude and a sine

magnitude. We have already seen how this form can be converted into

amplitude and phase form. The amplitude, which is always positive, can be

further converted into decibels if desired. Since the human ear has difficulty

in distinguishing amplitude differences much less than 1 dB, the decibel

amplitude dara can be quantized to as few as 6 bits without serious degrada-

tion.

There may be an inclination to discard the phase data, since they have

little audible effect on the sound. However, the phase data give valuable

information about a sound parameter that is quite importaut—frequency.

The fundamental and harmonics of an arbitrary tone are unlikely to fall
precisely at the center frequencies of the analysis bands. The results of this
mismatch are twofold. First, since the bandwidth of the Hamming window

is four times the frequency spacing of the analysis, a given signal component
will show up strongly in as many as four adjacent frequency bands. Second,
the exact frequency of the signal is unknown. Even though the analysis seems
imperfect, resynthesis will yield a result essentially equal to the original
signal. It is the phase information that allows accurate reconstruction. We
will see lacer how phase can be utilized to precisely determine the component

frequencies.

Direct Spectral Modification

Spectral analysis, modification, and resynthesis via FFT comprise the
easiest method of implementing a filter with arbitrary amplitude and phase
characteristics. Often, it is the most efficient method as well, since the

computation effort is independent of the filter's response shape. Another
advantage is that time-varying filters are handled as easily as fixed ones, a
virtue not shared by the transversal method of arbitrary filter implementa-
tion. Basically, one takes the sequence of spectral frames and multiplies the
amplitude of each spectral component by the amplitude response of the filter
at the corresponding frequency. The resulting sequence of spectral frames is
then converted back into sound via FFT synthesis. When the spectral data is
in sine-cosine form, both components must be multiplied by the filter’s
amplitude response.

One can also add two or more spectra together. Since the FFT used in
synthesis is a linear process, the resule should be equivalent to individual
resynthesis and conventional mixing of the results. However, there ate two
advantages to mixing in the frequency domain. First, there is no phase
cancellation among the combined spectra if just amplitude spectra are used.
Direcely combining sine—cosine spectra, however, gives the typical amount
of interference among harmonics of the combined tones. The other advantage

of spectral combination is that only one resynthesis is necessary, thus reduc-
ing computation effort.

SOURCE-SIGNAL ANALYSIS 519

AMPLITUDE AMPLITUDE

FREQUENCY FREQUENCY
(a) {B)

8
2
2
= =

a a a ae a)
FREQUENCY

(c)

AMPLITUDE AMPLITUDE

o123456 Em
FREQUENCY FREQUENCY

(D)

Fig. 16-12. Spectrum frequency manipulations. (A) Unmodified spectral data.
(B) Spectrum shift upward. (C) Frequency interpolation. (D) Left:
Linear compression of interpolated spectrum. Right: Resampling
at original center frequencies.

Besides amplitude modification of the spectral components, many
weird and wonderful things can be accomplished by altering their frequencies
as in Fig. 16-12. If, for example, the spectral frequency resolution is 39 Hz,
an upward spectrum shift of 39 Hz can be accamplished simply by shifting
the numbers in each frame upward one slot. The de frequency band would be
replaced by zero and the highest band would be discarded. Likewise, the
spectrum may be shifted downward without the reflection around zero that
analog frequency shifters suffer from. Circular shifting and spectral inversion
are also easily accomplished.

For maximum flexibility in frequency alteration, it is necessary to
interpolate between the tabulated frequencies. The same techniques used for
time interpolation in Chapter 13 can be used for frequency interpolation in a
spectral frame. With suitable interpolation, the spectral curve can be re-
garded as continuous (infinite sample rate in frequency) and frequency shifts
of any arbitrary amount may be performed.

Instead of shifting all frequencies by an equal amount, which usually
converts harmonic tones into inhatmonic ones, the spectrum can be linearly

520 Musica APPLICATIONS OF MICROPROCESSORS

stretched or compressed. For example, if all of the frequencies were multi-
plied by two (with those beyond the high-frequency limit thrown away),
then the pitch of the sound when resynthesized would be raised an octave, but
the timing and waveform (except for high-frequency rolloff due to discarded
components) would remain unchanged! One can also monlinearly stretch,

compress, and otherwise distort the distribution of the spectral curve without
affecting the amplitudes of the peaks and valleys themselves. All of these
manipulations can, of course, be time varying. After processing, the spectral
curve is resampled at the original center frequencies and resynthesized. Note
that severe compression of the spectrum may lead to local “alias distortion”

when it is resampled for synthesis.
Time alteration of the sequence of spectrum frames is also possible with

equally strange-sounding results. In time modification, each spectral com-
ponent in the frame is considered as a time sample of the amplitude curve of
that component. If the entire set of spectral data is viewed as a rectangular
array with time in the X direction and frequency in the Y direction, then this
is equivalent to thinking in terms of rows rather chan columns.

The simplest manipulation is horizontal stretching or compression of
the sequence, which amounts to slowing or speeding of the sound events

without affecting the frequency or timbre. Time interpolation between the
spectral values can be used to implement any arbitrary amount of speed
change. When resynthesized, the modified spectrum is resampled at the
original time points.

The dispersive filter mentioned earlier may be simulated by shifting the
tows of spectral data with respect to each other such that the lower-frequency
rows are delayed more than the higher-frequency rows. Reverse dispersion in
which high frequencies are delayed more is also possible as well as nonlinear
dispersion. Small amounts of dispersion are most effective with percussive
sounds, while larger amounts affect all but the most steady of tones. Vocals
in particular are given strange accents by dispersion.

Since the spectral data are being considered as a set of simultaneously
varying waveforms, it is obvious that these waveforms may themselves be
fileered. Uniform low-pass filtering of all of the bands simply blurs rapid
changes in the spectrum, thus making vocals, for example, sound drunk.

High-pass filtering, on the other hand, emphasizes rapid changes and may
produce a “caricature” of the original sound. Resonant low-pass filtering
with moderate Q factors preserves the steady states of the spectrum but gives
any rapid changes a “‘twangy’ quality due to the overshoot and ringing of the
filter. Of course, each frequency band can be filtered differently, which tends
to combine filtering and dispersion effects.

Resynthesis

In Chapter 13, direct synthesis from amplitude and frequency data
using the FFT was described. Basically, the procedure consisted of conversion

SouRCE-SIGNAL ANALYSIS. 521

from an amplitudefrequency “source” form into an amplitude-phase and
ultimately sine-cosine “object” form that was compatible with the FFT.
However, most of the spectrum modifications that have just been discussed
can be performed directly on the sine-cosine or amplitude—frequency form of
the spectrum. Resynthesis should therefore be simplified over the method
given in Chapter 13.

One desirable property of an analysis—synthesis system is transparency,
that is, no signal distortion in the absence spectral modification. Distortion-
less reconstruction can, in fact, be done very simply using unmodified spec-
tral data from the analysis. First, each spectral frame is inverse transformed to

recover the windowed sample record that created the frame. Next, the win-

dow is divided out giving the original sequence of samples. Finally, the
overlap is removed to obtain the original continuous stream of samples. Any
difference between the original and reconstructed data is due to roundoff
error in the arithmetic, most of it probably from the window removal (divi-

sion by small numbers at the edges of the window) step.
However, if modifications are made, two things are likely to happen.

First, the inverse-transformed modified records cannot be expected to butt
together nicely and continuously like unmodified records do. Secqnd, the
inverse transform of a modified frame may show little if any evidence of a
window because the precise amplitude and phase relations necessary for the
window-shaped envelope will have been altered. Inverse windowing, there-
fore, is likely to distore the record and actually emphasize discontinuities
between the records.

Thus, the problem of eliminating interrecord discontinuities is similar
to that encountered in FFT synthesis from scratch. The same solution, that
is, windowing and synthesis overlap, used for direct synthesis is reasonably
adequate for resynthesis. The disadvantage of applying this method is that an
unmodified spectrum will no longer provide precisely the original data, since
the resynthesis manipulation itself amounts to a modification. Methods are

available to reduce resynthesis error to zero but they are complex and amount
to essentially infinite overlapping (overlap factor=record length) of the syn-

thesis. As mentioned in Chapter 13, a four-to-one synthesis overlap provides
results clearly superior to two-to-one overlap and therefore is preferred in
conjunction with four-co-one analysis or careful time interpolation of two-
to-one analysis daca.

Parameter Extraction

Instead of immediate resynthesis, one may wish co further analyze the
spectral data in an effort to extract one or more of the fundamental parame-
ters of sound. These parameters may then be used to direct a conventional
synthesis process or may be stored for later recall with the advantage that a

handful of fundamental parameters can often replace hundreds of spectral
components without loss of information significant to the application.

522 MusiIcaL APPLICATIONS OF MICROPROCESSORS

AMPLITUDE (dB)

al Iovooi¢t 1+2

FREQUENCY {Hz}

Fig. 16-13. Response of spectrum analysis with Hamming window to a single
frequency component

Variations in overall amplitude are most easily extracted, One simply
sums the amplitudes of all of the frequency bands to get the total amplitude
for the frame. This neatly overcomes problems with rectifier ripple experi-
enced in analog envelope followers, although the signal processing involved
is certainly much more complex. Another advantage is that some frequency
bands may be weighted more heavily than others. For example, if a result

with good correlation to subjective loudness is desired, the spectrum can be
weighted according to the Fletcher-Munson loudness curves described in
Chapter 1. Since the weighting curve itself depends on amplitude, some
intelligence is needed to select the proper curve anyway.

Frequency Analysis

True frequency analysis, in which the sound being analyzed is broken
down into a list of components in which the exact frequency and amplitude
of each is tabulated, is another useful form for analysis data. Note that this is
the “source-spectrum”’ form used for direct FFT synthesis in Chapter 13. The
process described there of updating the phase of the object spectrum to
obtain arbitrary frequencies can be reversed to determine what an arbitrary
frequency is from analysis data. One simply looks at the phase of successive
analysis frames and ascertains the magnitude and direction of shift from one
frame to the next. This then gives the difference between the band’s center
frequency and the signal frequency. For example, if the phase in band J
advances 45° (77/4) every frame, it can be concluded that the signal frequency
is equal to the band’s center frequency plus one-eighth of the spectral sample
tate.

With a Hamming analysis window, a single frequency component will
excite as many as four adjacent analysis bands as shown in Fig. 16-13. One
could compute frequency from the channel with the strongest response
(channel 7 in the diagram) and ignore the others and get good results.
However, if the spectrum sample rate is sufficiently high, the frequency can

be computed from avy of the responding channels. If a good, clean frequency

SOURCE-SIGNAL ANALYSIS 523

component is actually being seen (as opposed to random. noise), then all of
the frequency measures will yield the same value. A high spectral sample rate

is necessary because otherwise the phase shift for a distant band such as [+2
in the diagram may exceed 180° per frame and give a false result. For the
Hamming window, an analysis overlap factor of four or more would give a
sufficiently high spectral sample rate.

Another constraint is that frequency resolution must be high enough so
that every component of the signal is completely resolved. [f the components

are not completely separated, serious errors in frequency and amplitude
measurement are likely. For a Hamming window, this means that frequency
components can be no closer than four times the reciprocal of the analysis
record duration. In our analysis example (20-kHz Fs, 512-sample analysis
record), this evaluates to about 150 Hz. The only reasonable way to improve
frequency resolution is to use longer analysis records, which, of course,
degrade time resolution. Alternatively, if all of the frequency components are
nearly equal in amplitude, a rectangular window having one-half the
bandwidth of the Hamming window can be considered.

Once the frequency of a component has been determined, its amplitude
must be calculated to complete the analysis. The simplest method is to note

the band with the greatest response to the component and use its response
amplitude. The error incurred when doing this is small enough (1.5 dB
maximum for a Hamming window) that it can be ignored in many applica-
tions. For greater accuracy, the curved top of the equivalent bandpass filrer

can be considered and a correction factor derived based on the difference
between the dominant band’s center frequency and the actual signal fre-
quency. One could also rms sum (square root of the sum of squares) the

responding bands co get a single amplitude measurement for the component.
Of course, all of the analysis bands will show some response due to noise or

leakage. However, only those with sufficiently high outputs and reasonable
frequency correlation among adjacent bands should actually be considered as
detecting a valid signal component.

Spectral Shape Analysis

Many natural sounds can be madeled as an oscillator driving a filter as
in Fig. 16-14. The oscillator’s waveform is called the excitation function and is
normally rich in harmonics. The filter is called the system function and is
typically rather complex having several resonant peaks and possibly some
notches as well. The spectrum of the output sound is the point-by-point
product of the excitation function spectrum and the amplitude response of
the filrer as in Fig. 16—14B. In musical applications, the frequency of the
excitation function is the primary variable, since it determines the pitch of
the resulting tone. The waveform may also change some, typically acquiring
additional upper harmonic amplitude as its overall amplitude increases. Al-

524 MUusICAL APPLICATIONS OF MICROPROCESSORS

todd
(EXCITATION (SYSTEM OUTPUT
FUNCTION) FUNCTION)

OSCILLATOR FILTER

FREQUENCY RESPONSE
SHAPE

WAVEFORM

(a)

w b= TPs,

8 ime 2
5 ‘ 3
re \ 6
s 3 S

i inare —
FREQUENCY FREQUENCY

SPECTRUM OF OSCILLATOR AMPLITUDE RESPONSE OF FILTER

Y{ I

N
ee .

SPECTRUM OF OUTPUT

{B)

Fig. 16-14. Natural sound modeling. (A) Simple model of natural sound pro-
cess. (B) Spectral interpretation of simple model.

ternatively, the excitation function can be white noise, which does invalidate

the pitch parameter but has no effect on anything else. The system function
may be either fixed or variable depending on the sound being modeled.

The range of natural sounds to which this model is applicable is ac-
tually very large. Most wind instruments, such as the bassoon, and bowed
string instruments, such as the violin, are well described by this model. The
human voice is a prime example. In these examples, a harmonic-rich excita-

tion function is generated by a vibrating element such as a reed, sticky
string, or flapping folds of flesh. Resonators in the instruments, such as the
folded tube of the bassoon, wood panels with odd-shaped cutouts, or oral and

nasal cavities filter the excitation function before it actually escapes into the
air. Musical instruments usually have fixed resonators (notable exceptions are
muted brass instruments), whereas the human voice depends on a highly

variable resonator for its expression. All of these resonators may have a
number of distinct resonant frequencies (peaks in the amplitude response)

SOURCE-SIGNAL ANALYSIS 525

and some, such as the violin, can have significant antiresonant valleys as

well.
In technical terms, the resonant peaks are called poles of the system

function while the notches, if present, are termed zeroes. In speech and

music work, the zeroes are frequently ignored and the poles are called for-
mants. The goal of formant estimation is determination of the number of
formants, their resonant frequencies, and possibly their bandwidth or Q
factors. This information represents the characteristics of the filter, which is

usually a majority portion of the analyzed sound's timbre. Musical applica-
tions of formant analysis seek the design of a filter with the same formant
structure as the analyzed sound. Different synthesized excitation functions
are then modified by the filter. The resulting sound has the most prominent
characteristics of both. For example, if vocal vowel sounds are used for the

formant analysis and the resultant filter is driven with a square-wave excita-
tion function, the vowel quality would be retained but with the characteristi-
cally hollow timbre of square waves!

Perhaps the most straightforward method of formant analysis is to scan
the amplitude spectrum and find the center points of high-amplitude clusters
of harmonics. The center points are the formant frequencies. The bandwidths
may be estimated by noting the 3-dB points on either side of each peak. This
method works well only if the harmonics are dense compared to the
bandwidths of the formants, which means a low excitation frequency. This is
because the excitation function harmonics effectively sample the filter re-

sponse curve and insufficiently dense sampling leads to aliasing and incorrect
conclusions regarding the response curve. Even if the sampling is theoreti-

cally dense enough, interpolation may have to be used to increase it further so

that the center point and 3-dB points of the peaks can be accurately deter-
mined. Note that the original spectral analysis need not resolve the har-
monics themselves to be useful for this method of formant analysis.

Linear Prediction

A more refined method of formant analysis is called inear prediction

because, by specifying the filter involved in the original sound generation,
one is able to predict what future time samples of the sound are likely to be.
Although originally developed for the efficient transmission of speech signals
over limited bandwidth channels, linear prediction is useful in music synthe-
sis because it results in an actual design of the filter represented by the system
function. Unfortunately, the calculations are too involved to be covered here
in simple terms but the general characteristics of linear prediction can be

discussed. Additional reference material is listed in the bibliography.
In linear prediction, the actual filrer used to generate the sound being

analyzed is approximated by a filter having a specified number of poles and
zeroes. Often, because of computational difficulties encountered in handling

526 MusicaL APPLICATIONS OF MICROPROCESSORS

the zeroes, an a/l-pole model is used. The filter resulting from all-pole linear

prediction analysis gives the “best” (least-square error) approximation possi-

ble when constrained to the specified number of poles (twice the number of

resonances). Often, the appropriate number of resonances to use can be

determined from a physical knowledge of the natural sound source. In such

cases, the linear prediction model can be expected to give excellent results. In
cases in which the filter is arbitrary, a balance between resonance count and

result quality will have to be determined by experiment. If vocals are being

analyzed, three or four resonances are quite sufficient to capture the intelli-
gence of the words. Many more are necessary to characterize the timbre in
sufficient detail for recognition of the singer’s identity. Figure 16—15 shows
the results of linear prediction analysis of a vowel sound with different

resonance counts.
An all-poles digital linear prediction calculation usually results in the

set of multiplier coefficients necessary for implementation of the filter in can-

nonical form. These coefficients apply only to the feedback paths; the feed-
forward coefficients, which implement zeroes, are zero for an all-poles model.
The number of coefficients from the calculation will be 2N+1, where N is

the number of resonances. The extra coefficient is an overall gain factor. The

cannonical form of the filter can be converted into cascade form with N
sections. The conversion is desirable because multiplier accuracy require-
ments of the cascade form are much less than the cannonical form.

Note that linear prediction just gives the filter design, not the actual

formant frequencies and bandwidths. Although the latter can be determined
by analyzing the filter, they are not needed to utilize the filter for synthesis
with an arbitrary excitation function.

Homomorphic Analysis

In digital music synthesis using the natural sound model of Fig.
16-14, all that is really needed is a plot of the filter's amplitude response.
With such a plot, the methods of arbitrary filter implementation discussed in
Chapter 14 can be used to apply the filter to a different excitation function.
However, a typical spectrum plot such as the one in Fig. 16-16A shows
effects due to discrete harmonics of the excitation function as well as general
trends due to the system function. In homomorphic analysis, the goal is to

obtain an amplitude response curve of the system function independent of the
characteristics of the excitation function.

From examination of the overall spectrum, it is obvious that what is

desired is a “smoothed” plot of the spectrum that retains the general spectral
shape but suppresses the individual harmonic “noise.” This smoothing may
be accomplished by a moving average, which is actually a digital low-pass
transversal filter, or by other low-pass filters applied to the frequency sample
sequence just like they would be normally applied to a time sample sequence.

SourcE-SIGNAL ANALYSIS 527

18549
INPUT SIGNAL

AMPLITUDE

= 13776
[o] Ng

TIME IN SAMPLES

106

T SHORT -TIME SPECTRUM
48

66
° 3000

FREQUENCY IN HZ

406
LPC SPECTRUM N=2

dB

66 1 . 1 1 L i i L f
8 3000

FREQUENCY IN HZ

106 7
N=4

a8 r

66 fl 1 1 : 1 n 7 1 n
fe) 3000

FREQUENCY IN HZ
106 ——

N=6
68

66 1. 1. . f 1 r f 1 n
te) 3000

FREQUENCY IN HZ

N=8

dB

f r 1 L n
3000

FREQUENCY IN HZ

106
=10

48

66 SS Se i
° 3000

FREQUENCY IN HZ

Fig. 16-15. Effectiveness of linear preditive spectral analysis. Source: Digital
Processing of Speech Signals, L.R. Rabiner and R.W. Schafer,
Prentice-Hall, 1978.

In the following discussion, the spectrum will in fact be considered as a time

sequence and terms relating to time-sequence processing will be used.

Unfortunately, applying a linear filter to a raw amplitude spectrum is

not really mathematically correct. In the natural sound model, the final

LOG AMPLITUDE

528 MUSICAL APPLICATIONS OF MICROPROCESSORS

RELATIVE AMPLITUDE | alah nal
1 ag

20 Hz S kHz

FREQUENCY

(a)

1008
ite: l

\

i 7
20 Hi Shr

FREQUENCY
(B)

Fig. 16-16. Homomorphic spectral analysis. (A) Conventional linear scale
spectrum. (B) Log scale spectrum.

spectrum shape is due to multiplication of the excitation function spectrum
and the system function response curve. Our goal is to separate the two
spectra based on differences in their variability or “frequency content” (re-

member the spectral curve is being considered as a time sequence) by filter-
ing. A filter, however, can only separate components that have been added,
not multiplied, together. Thus, directly filtering the raw spectrum can lead

to incorrect, though not necessarily useless, results.

The problem is solved by remembering from high school math that the
product of two numbers is equal to the ancilog of the svm of their logarithms.
Thus, if the amplitude spectrum is converted to decibels as in Fig. 16-16B,
then the resultanc shape is the sum of the excitation decibel spectrum and the
filter response curve in decibels, The two curves may now be separated by
filtering using a high-pass to recover the excitation spectrum and a low-pass
to obtain a clean system function response shape. In music synthesis, the

LOG AMPLITUDE

SouRCE-SIGNAL ANALYSIS 529

‘SYSTEM EXCITATION
FUNCTION FUNCTION

yo” f :
s \ i ‘
= | H :
2 H i 3 |
w i H
> H H
5 H i
Fre] H \ i Cy A athe. Be

50 4S as
“Time”

(c)

10 4B

20 Hz 5 kHz
FREQUENCY

(p)

Fig. 16-16. Homomorphic spectral analysis (cont.). (C) Magnitude of the
cepstrum. (D) Smoothed log spectrum.

recovered excitation function is usually discarded, except for its fundamental
frequency, and the recovered system function ts utilized.

Of course, the Fourier transform can also be used to implement the
separation filter with the advantage of zero phase shift. Phase shift (delay) in
the separation filter is undesirable because it shifts all of the recovered
frequencies upward (or downward depending on the direction of filtering).
The forward Fourier transform of a decibel spectrum, however, is a
mathematical absurdity and so the word cepstrum was coined to refer to it.
The word is formed by reverse spelling of the first half of the word “spec-
trum” and tacking on the laste half. It is only fitting, then, to call the
independent variable of a cepseral plot, which has the dimension of time,

quefrency! A cepstral plot is shown in Fig. 16—16C.
Low-quefrency values in the cepstrum are due to the system function

shape, while high-quefrency values are due to the excitation function. To
recover the system function shape, all quefrency values above a certain cutoff
point are set to zero and the inverse Fourier transform is taken. Figure
16-16D shows a cepstrally smoothed spectrum. To recover the excitation

function, low-quefrency values are omitted and the inverse transform is
taken.

530 MUSICAL APPLICATIONS OF MICROPROCESSORS

Pitch Measurement

One of the most difficult tasks in source-signal analysis is determina-
tion of pitch. Actually, “fundamental frequency” or “period” would be
better terms because pitch is a subjective parameter, whereas frequency and
period are objective parameters. Nevertheless, for musical instrument

sounds, there is a one-to-one correspondence between frequency and musical

pitch.
One reason that acceptable pitch measurement is so difficult is that

errors are acutely obvious. A momentary error of a semitone, for example,
completely changes the character of a musical phrase, whereas a similar error

(6%) in amplitude measurement or spectral shape determination would go
unnoticed. Most pitch detector errors are likely to be much larger yet with
common values of one or even two octaves. With errors being so obvious, it

is much easier to judge the performance of a pitch detector compared with an
amplitude detector or formant estimator. The net result is an abundance of
pitch detection schemes covering a wide range of complexity and perfor-
mance levels. Even so, it is safe to say that none of them is completely

satisfactory, that is, agree with a human observer in all cases. Another
potential problem is that most pitch detection research has been with speech

sounds. In some ways, musical instrument sounds will be easier to analyze,
while in others they may be more difficult.

Typical accuracy specifications for a frequency counter are 0.001% or 1
Hz, whichever is greater. However; anyone who has purchased such a device
and then tried to use it to: tune a musical instrument knows that a very clean,
smooth waveform is necessary to avoid gross errors. The reason, of course, is

that the frequency counter responds to zero crossings (a zero crossing is said to
occur when the signal voltage changes sign from plus to minus or minus to
plus) of the waveform and complex musical instrument waveforms may have
any even number of zero crossings per cycle.

Figure 16-17 shows a number of unquestionably periodic waveforms.
The human ear has no problem in determining their pitch, but all of the
pitch detection schemes that will be discussed will fail miserably on at least
one of them. Although the waveforms are contrived, it is reasonable to expect
something like each of them to occur occasionally in musical instrument
tones. The last waveform, which is just white noise, can be a problem as well

because a pitch detector should also give an indication that the sound is
unpitched.

Tf a pitch detector output is to agree with a human observer, it is
reasonable to first ask how the human performs the task. Unfortunately, that
is not known for sure, but two distinctly different theories have evolved. The
first proposes that pitch is judged by detecting the periodicity of the
waveform. The example waveforms are certainly periodic, and, in fact, care-
ful visual determination of their period of repetition would give an accurate
result in all cases. Changing waveforms would give a little more trouble
because the waveshape repetition would not be precise every period. Pitch

SouRCE-SIGNAL ANALYSIS 531

(a)

(B)

Pmioe

(c)

Fig. 16-17. Troublesome waveforms for pitch detectors. (A) Sine wave (only
one frequency component). (B) Flattened sine wave (rounded
peak is hard to detect accurately). (C) Missing fundamental.

532 MUSICAL APPLICATIONS OF MICROPROCESSORS

(0)

{F)

Fig. 16-17. Troublesome waveforms for pitch detectors (cont.). (D) Strong
harmonic. (E) Contrived wave in which peak detection is useless.
(F) Speech sounds.

SouRCE-SIGNAL ANALYSIS 533

—-

(6)

mu | Ail

CH)

Fig. 16-17. Troublesome waveforms for pitch detectors (cont.). (G) Rapidly
changing amplitude. (H) White noise (has no pitch)

detector designs based on finding the period of repetition are time domain

methods, since they directly examine the time waveform.

The second theory maintains that the ear performs a frequency analysis

of each harmonic and then computes the “lowest common divisor” to deter-

mine what the fundamental frequency is even if the fundamental component

itself is missing. Such an analysis method also works well for the example

534 MUSICAL APPLICATIONS OF MiCROPROCESSORS

waveforms, but blind application of it can lead to errors with rapidly chang-

ing waveforms and unpitched sounds.

In truth, human hearing probably utilizes both kinds of information. It

is unlikely that the pitch of high-pass (1-kHz) filtered 60-Hz buzz is deter-

mined from a frequency analysis because of the resolution necessary to ac-

count for the-very precise judgments people are capable of. On the other

band, waveforms are easily contrived in which the periodicity is not easily

spotted visually yet they are also accurately judged. Then we have the case of

bells and chimes, which are decidedly nonperiodic and therefore nonhar-
monic yet produce a strong sensation of pitch. Last, but not least, the

existence of a tone that sounds as if its pitch is continuously rising—
forever!—aunderlines the fact that human pitch perception is a very complex

topic indeed.

Time-Domain Methods

The simplest pitch detection methods work in the time domain, where
the waveform itself is examined for periodicity. In fact, it is the period that is
measured chat requires a division to determine the corresponding frequency.

Most time-domain methods were developed for analog implementation;
however, they can be readily implemented as a program for processing sam-

pled data. One problem with sampled data is that the period determination
is normally made in terms of an integer number of samples. This can lead to
significant errors unless the sample rate is high or interpolation is used, both
of which increase processing time.

In order to improve pitch detector performance, it is common practice
to preprocess the signal. Typically, this consists of low-pass filtering to remove
high-frequency harmonics and noise that may contribute to jitter or confuse
the detection algorithm. An obvious question, then, is what the cutoff

frequency should be. If the sounds being analyzed have a strong (but not
necessarily dominant) fundamental, then it is appropriate to set the cutoff
just above the highest fundamental expected. Often, dynamic filters are
utilized, in which case the cutoff can track just above the current fundamen-
tal frequency. If the fundamental is dominant, as it often is in direct string
pickups and mouthpiece microphones, such preprocessing may be sufficient
to allow a simple zero-crossing detector to do the actual period detection.
Even if the fundamental is not dominant, repeated integration can make it
dominant. Unfortunately, the integrators emphasize low-frequency tran-
sients and may actually blank out the zero-crossing detector for hundreds of

‘This is usually demonstrated as a continuous upward sweep or an ascending musical
scale that never stops. In reality, the effect is much like the stripes on a harber pole,
and, in fact, a spectrogram of che former example is an endless series of upward
sloping diagonal bars. For a scale, the continuous cise is simply quantized at musical
scale pitches.

SOURCE-SIGNAL ANALYSIS 535

PULSE PERIOD = SIGNAL PERIOD

BLANKING
‘SWITCH

INPUT. DOWNSLOPE

SIGNAL PEAK
DETECTOR

‘SINGLE
OUTPUT

BHT CONVERSION
FREQUENCY
INDICATION

CUTOFF = 1.2 FAST OR SLOW
FREQUENCY DISCHARGE

SINGLE
Shor

TIME = 80%
OF PERIOD

ADAPTIVE
CONTROL
PROCESSING

Fig. 16-18. Simple time-domain pitch detector. Source: Electronotes Newslet-
ter # 55, July, 1975.

milliseconds following a transient. Of course, if the fundamental is absent as
in Figs. 16-17C and F, low-pass preprocessing may filter our the entire
signal and leave nothing to process further. Thus, with more sophisticated
pitch detectors, the preprocessing filter cutoff should be fairly high, such as 1
kHz, and used primarily for reducing noise.

Experience with typical instrument waveforms and examination of Fig.
16-17 reveals that in all cases but one the location of waveform peaks contains
sufficient information for determining periodicity. In fact, a simple positive
peak detector with dynamic threshold performs infinitely better than a zero-
crossing detector. A dynamic threshold is implemented by setting the

threshold for peak detection to some fraction of the amplitude of the last
detected peak. The trick is to make this fraction smal] enough so that sounds
of decreasing amplitude, such as Fig. 16-17G, are followed properly yet
high enough to avoid double peaks from waveforms such as Fig. 16—-17F.
When double peaks are unavoidable, the detector can be blanked for some
fraction of the currently measured period. Peaks would not be detected
during the blanking interval. Of course, any peak detector scheme will fail
on the waveform in Fig. 16-17D, which has two equally spaced positive
peaks of equal amplitude. However, Fig. 16—17D has only one negative peak
so perhaps two detectors, one for positive and one for negative peaks, would

work better. Where there is disagreement between the two, the one report-
ing the longest period would be selected for output.

Let's examine a fairly simple pitch detector based on peak detection

that has been reasonably successful as an analog implementation and should

2

?This pitch detector was designed by B.A. Hutchins and was described in Electronotes
53-55.

536 MusiICaL APPLICATIONS OF MICROPROCESSORS

work quite well in digital form. Before starting, though, the reader should
be aware that it will surely fail on the waveforms in Fig. 16—17D and E and
may be temporarily confused by Figs. 16-17F and G. Nevertheless, its
simplicity is attractive and its performance adequate for “data taking” where
errors can be edited out later.

Figure 16-18 is a block diagram of the detector. Input processing
consists of a two-section Butterworth low-pass followed by a 30-Hz cutoff
high-pass to suppress low-frequency noise. The low-pass is tunable via a
feedback path from the detector output and during normal operation is set to
pass only the fundamental. In cases in which the fundamental is weak, the
tuning could be adjusted to allow the lower harmonics through (if the
fundamental is absent at least two harmonics are required to determine the

pitch). The diode following the high-pass, although not actually present,
emphasizes that only positive peaks are processed by the system.

The downslope peak detector is an improvement over the standard type
in that dynamic thresholding is automatic. Figure 16-19 is a simplified

schematic of the detector with typical analog waveforms. The ideal diode and
storage capacitor form a peak-holding circuit that holds the highest voltage
reached by the input. The leakage resistor serves to slowly discharge the peak
holder to allow proper response to changing input signals. A buffer amplifier
followed by slight (1% to 596) attenuation passes a large fraction of the most
recent peak voltage to a comparator, which compares this voltage to the raw
input. When the peak reverses and starts back down, the comparator ourput
goes positive. When the input re-reverses and crosses the (decayed) held peak

iNPUT PEAK
DETECTED

‘es
ATTENUATOR

Neo A

SLOPE
OETERMINED
BY Rleok

OUTPUT

Fig. 16-19. Downstope peak detector

SOURCE-SIGNAL ANALYSIS 537

again, the comparator goes negative. If the leakage current is low, the circuit

is capable of responding exclusively to the highest peak in the presence of
other peaks of nearly equal height. However, too little leakage inhibits
response to decaying signals entirely. In a digital implementation, the pre-
cise point of comparator switching can be determined by interpolation at the
switching point only, thus avoiding a significant increase in computation
elsewhere.

In an analog implementation, single-shot number 1 simply indicates

the beginning of a new period. The output converter is a period-to-voltage
converter followed by a reciprocal element. In a digital implementation, one

would simply count samples between peak detections for the period and doa
digital division or table lookup.

The adaptive contro] processor looks at the current frequency and sets
three detection parameters accordingly. The preprocessor filter cutoff is set at
about 1.2 times the current frequency, while the blanking single shot is set
for 80% of the current period. The peak detector discharge rate is normally
set fairly high to allow tracking of decaying signals. During startup from
silence, however, it is set for little or no discharge. Startup also requires that
the low-pass filter revert to a high cutoff frequency and that the blanking
time be set to a low value. As soon as two peaks are detected, which then
gives a preliminary period estimate, the parameters are set accordingly. If the
first estimate is erroneous due to multiple peaks, the filter cutoff and blank-
ing will continue to favor high frequencies until the peak detector has
charged to the absolute highest peak in the signal. At this point, a longer
period would be found and the feedback would adjust to favor it. The
processor also detects long dead periods and resets to the startup mode in
response.

One way to improve the performance of the detector is to construct a
duplicate that processes negative peaks. As before, if the two disagree, the
final pitch output should the lower of the two estimates. With this im-
provement, about the only waveforms that it would consistently fail on
would be Fig. 16-17E and a backward version of Fig. 16-17F, the latter of

which is unlikely to occur unless the speech had been subjected to severe
dispersion.

The idea of using multiple detectors and taking a majority vote has
been carried to the limit in a scheme proposed by Gold and Rabiner. The
general idea is to make several (six) estimates of the period using individual
peak and valley (negative peak) amplitudes as well as differences between
peak and valley and peak and previous peak. These six estimates along with
the preceding two estimates for each are combined in a decision tree to obtain
the final estimate. If there is a significant lack in consistency among the 18

values, no decision is made and the sound is declared to be unpitched. A full

explanation of the algorithm is quite involved and would require too much
space to reproduce here. Although seemingly complex, the programming is

straightforward and efficient.

538 MUSICAL APPLICATIONS OF MICROPROCESSORS

A SIGNAL
VALUE OF

COMBINE AVERAGE AUTOCORREL ATION L 8B | FUNCTION AT LAG L SAMPLE
DELAY

S10
5
zo . = LAG
© S
o |-~— ni)

COMBINATION FUNCTION = AxB

z
S
& 10
i)
z & 5
a —m LAG
| perion ——-|

COMBINATION FUNCTION = |A—B

Fig. 16-20. Autocorrelation analyzer

The algorithm actually settles on the correct period for each of the
sample waveforms and flags the noise as well. There is a potential problem
with the waveform in Fig. 16-17B whose very broad, nearly flat peak would
make any kind of pitch detection based on peak analysis susceptible to noise.
Also, if the amplitude of the crook in Fig. 16—17E was reduced so that the

peaks around zero disappeared, the method would fail. The interested reader
is referred to the bibliography for references giving exact implementation
details.

Autocorrelation

The most sophisticated of time-domain techniques is termed ausocorre-

Jation analysis. Autocorrelation means literally that a section of the waveform
spanning several cycles is compared with a time-delayed version of itself as in
Fig. 16-20. In practice, the delay starts at zero and is increased until the
correlation reaches a high peak, which, in theory, indicates a full-cycle delay.

In true autocorrelation, the raw and delayed signal samples are com-
bined by taking their sample-by-sample product, adding up the products for
enough samples to cover at least two pitch periods, and dividing by the
number of samples processed to get the value of the autocorrelation function
for a particular delay value or Jag. This process is repeated for different lags
until the largest peak is found. If none of the peaks is very large, then the
sound is unpitched.

A related technique combines the two signals by adding up the
sample-by-sample magnitude of their difference. When the signals remesh at
a lag equal to the period, the differences will tend toward zero, which means
that a large dip in the correlation function is being sought.

Source-SIGNAL ANALYSIS 539

Quite obviously, either method involves a lot of calculation, approxi-

mately M x N opérations, where M is the number of samples in the
waveform section being analyzed and N is the number of lags tried in the

peak/dip search, It can be reduced substantially by only evaluating lags that
are close to the last measured pitch period.

In theory, true autocorrelation is guaranteed to produce maximum-

height peaks only at multiples of the true period. Thus, any perfectly
periodic waveform will be correctly analyzed by the autocorrelation method.
A changing waveform, however, is a different story. When the waveform
changes, the peak corresponding to the pitch period is smaller than it would

otherwise be because of the inexact repetition. There are also additional peaks
that may be due to strong harmonics, formants, etc. If the pitch peak
attenuation due to waveform change is great enough, these secondary peaks
will cause an error.

Frequency-Domain Methods

Pitch detection in the frequency domain is fairly simple to understand
but does imply a lot of computation to obtain the spectrum. However, if the
spectrum is used for formant analysis, then the additional processing neces-
sary for pitch detection is relatively minor.

The most straightforward frequency-domain pitch-detection scheme is
an extension of frequency analysis mentioned earlier. The idea is to take the
measured frequency of each significant component found and determine the
greatest common divisor. For example, if components were found at 500 Hz,
700 Hz, 1,100 Hz, and 1,500 Hz, the fundamental would be 100 Hz

because it is the highest possible frequency for which all of the measured
frequencies are harmonics. In real life, though, the frequency measurements

will not be exact because of noise, a changing spectrum, etc. Thus, classic
greatest-common-divisor algorithms will have to be extensively modified to
allow some slop. Also, confining attention to the strongest half-dozen or
fewer components will lessen the likelihood of confusion. If the least com-
mon multiple turns out to be a ridiculous number such as 20 Hz (any value
less than the spectrum analysis bandwidth is suspect), then an unpitched
sound should be assumed.

The primary difficulty with the frequency-analysis method is the re-
striction on harmonic spacing so that accurate analysis is assured. When low
fundamental frequencies are to be analyzed, this leads to very long analysis
records and the possibility of significant frequency content changes over the
duration of the record, which in turn can lead to errors.

Homomorphic spectral analysis leads to a very good pitch detector, in
fact one of the best available for speech sounds. In a cepstral plot, the
low-quefrency values correspond to the spectrum shape, while high-

quefrency values correspond to the excitation function. For harmonic-rich

tones, there will be a single sharp peak in the upper part of the cepstrum that

540 Musica APPLICATIONS OF MICROPROCESSORS

corresponds to the fundamental frequency of the sound. The reciprocal of the
quefrency of the peak is the fundamental frequency. This peak will be present
even if the actual fundamental and several lower harmonics of the analyzed
tone are missing, a situation that confuses pitch detectors using low-pass
preprocessing.

However, confusion is possible in certain cases. For example, if the

excitation function has only odd order harmonics such as a square or triangu-

lar wave, the cepstrum will give a fundamental frequency twice its correct
value. This is because the cepstrum essentially responds to periodicity of
harmonic spacing, and the spacing of odd order harmonics is twice the fun-
damental frequency. A pure sine wave, which all other schemes discussed
handle beautifully, gives a pitch estimate equal to the reciprocal of the record
length used in analysis! These failures could be a problem with certain kinds
of musical instrument sound such as a clarinet or a flute. Thus, cepstral pitch
detection should be augmented by other pitch-detection schemes for
maximum accuracy.

7
Digital Hardware

At this point, we are ready to start discussing actual implementation and use
of some of the digital sound synthesis and modification techniques that have
been described. There is, however, a natural division between hardware and

software implementation techniques. Either can perform any of the functions
that have been studied. A hardware approach performs the data movement
and calculations considerably faster than software. In fact, the usual goal of
hardware implementation is real-time operation. Software, on the other
hand, is cheaper, easier, and more flexible but much slower. Finally, the $5
MOS microprocessor and high-speed bipolar microprocessors make possible a
third category that behaves in a system like a hardware implementation but
1s designed, and for the most part, built like a software implementation.

Hardware implementation and real-time operation seem to be of
greatest interest to most people at this time. Digital synthesis hardware can
be integrated into an overall computer-controlled system in several ways,

however. At the lowest level, one can build modules that on the outside act
just like analog modules but offer greater precision, more flexibility, and
perform functions impossible to do with analog hardware. Along the same
lines, the voice-per-board method of system organization can be done en-
tirely with digital hardware and with the same advantages. One may define
and construct a modular digital synthesizer that conceptually acts like a
modular voltage-controlled synthesizer but is all digital, including the
signal-routing system. It is also practical to consider an actual programmable
“computer” specialized for ultra-high-speed execution of synthesis al-
gorithms in an effort to combine the flexibility of software with the speed

necessary for real-time operation. Special-purpose “black boxes” that perform
certain useful but time-consuming operations such as the FFT can also be
added as a peripheral to general-purpose computers in order to enhance the

speed of software-based synthesis.
Unfortunately, a complete discussion of all of these options is well

beyond the scope of this chapter. However, those suitable for implementa-
tion by individuals will be described in detail, while the others will only be
surveyed.

541

542 MUSICAL APPLICATIONS OF MICROPROCESSORS

Analog Module Replacement

In many cases, digital techniques and circuitry can replace analog

circuitry with the substantial advantages that have been described earlier.
One of the biggest potential advantages in this role, however, is the ability of
digital logic’ to multiplex itself among numerous channels. Modern logic is so
fast that in many cases it would just be loafing when used to implement a
single function. The surplus speed along with a small amount of memory can
instead be used to simulate several independent modules using only one set of
somewhat more complex logic. The per-function cost is then reduced, often

considerably below that of an equivalent quantity of analog modules. Digital
oscillators, which will be discussed extensively in the following paragraphs,
lend themselves well to multiplexed operation. It is not difficult to have one
logic board perform the function of 16 or more functionally independent
oscillators!

Simple Digital Oscillator Module

Enhanced frequency accuracy and greater waveform variety are the
leading advantages of a digital oscillator over a conventional voltage-
controlled type. The oscillator we will be discussing initially accepts a

single-word digital input that controls frequency and produces a single
analog output. The oscillator may be used as a stand-alone oscillator module
or may be part of a larger voice module.

The most fundamental part of the oscillator is the variable-frequency

source. Basically, all digital oscillators share one common trait in this area:

they take a fixed, crystal-controlled, high-frequency clock and divide it down
to a useful range under the control of a digital word. There are at least four
distinct ways of doing this, each with a set of advantages and disadvantages.
For the purposes of illustration, we will assume that the goal is to generate
frequencies in the audio range with infinite frequency resolution and perfect
short-term as well as long-term frequency stability.

Divide-by-N Frequency Generator

The most obvious frequency generator is the divide-by-N counter. The
circuit mercly accepts the fixed frequency reference, F, a digital number, N,

and produces an output frequency of F/N Hz. Any number of logic schemes
can be used to implement the divide-by-N, and they are all quite inexpensive
and easy to understand. Figure 17—1 shows one that requires only counter
blocks (plus one two-input gate) and is indefinitely expandable. The idea is
to load N into the counter at the beginning of an output cycle and count up
to all ones on successive clock pulses. When the counter overflows, N is
loaded again and the cycle repeats. The actual division factor is 24—N, where

M is the number of counter bits. If the twos complement of N is supplied,
however, the circuit indeed divides by N.

Dictrat HARDWARE 543

N+] OIWISOR INPUT
LSB | | | Msa

| | ca : - ! | : =
a le ie 4 rs Ta Ip te] eee B lc Ip cep AB elo oe * Te ke

cer CET ceT
uD 74161 re LD 74161 Tc Lo T4161 TC}
cur CLR cLR
ELK, Og Oc Op la &% Gg Oe a CLK On Qg Oc OD

-
DIVIDED
FREQUENCY

MASTER NOTE output
CLOCK ALL UNUSED INPUTS TIED TO {NARROW PULSE)

A SOURCE OF LOGICAL ONE

Fig. 17-1. Simple, high-speed divide-by-N counter

The master clock may be as high as 15MHz, and the output frequency
consists of pulses with a length of one clock period. N may be changed at
almest any time, bur if it is changed within 10 nsec of the end of an output
pulse, an incorrect value may be loaded into the counters and cause a momen-
tary glitch (click) in the output frequency.

The assumption behind the divide-by-N approach is that, if the clock
frequency is high enough, the frequency increment between adjacent values
of N will be small enough to be inaudible. Let’s determine how high the
master clock must be to get a resolution of 5 cents (1/20 of a semitone or

0.3%) throughout the audio range. Taking the low end first, we seek a clock
frequency, F, such that F/N=20.0 and F{N—1)=20.06, where N is the

division factor for a 20-Hz output. Using the standard procedure for solving
simultaneous equations, F and N are found to be 6.68 kHz and 334, respec-
tively. Solving the same equations at the upper end of the audio range gives
an F of 6.68 MHz and N the same as before.

Since the clock frequency must remain fixed, we are forced to use the
6.68 MHz value of F, since using lower values will not provide the required
amount of resolution at high frequencies. Thus, with a master clock of 6.68
MHz, the division ratio varies from 334 for a 20-kHz output to 334,000 for
a 20-Hz output. The counter circuit in Fig. 17—1 will therefore require 20
bits or five 4-bit counters, which could then provide frequencies as low as 6.4
Hz. While the resolution at high frequencies barely meets specification, the
resolution at low frequencies is 1,000 times better than required. Note thac
the high-frequency resolution can only be improved by a factor of two before
counter speed limitations become a factor. Clearly, the divide-by-N method
of frequency generation performs best when generating low frequencies.

One advantage of the divide-by-N method is that the output frequency

is pure, that is, there is no jitter in the period other than that of the master

544 MUSICAL APPLICATIONS OF MICROPROCESSORS

ca — 071
a7 —4 070

ast? — 069
— 068 MASTER ee i

he OUTPUT
« | 72-T0-1 FREQUENCY
® } MULTIPLEXOR

* | (5 74ci50)

p2 — oz
cate —fo

—_
C2 —) 9° ponress

T-BIT FREQUENCY
SELECT

Fig. 17-2. Equal-tempered scale frequency generator

clock. The circuit merely passes every Nth inpuc pulse to the output. A
potential problem with the method, however, is the highly nonlinear, recip-
rocal relation between N and output frequency.

Modern electronic organs use dividers to produce all of the notes on the
12-tone equally tempered scale simultaneously. The heart of these instruments
is an IC called a “top octave divider.” This IC (sometimes a set of two)

accepts a high-frequency clock input and produces 12 different output fre-
quencies, which correspond to the 12 equally tempered notes in the highest
octave of the organ. Associated with each output internally is a simple
divide-by-N counter with appropriate Ns wired in. Each output in turn
drives a 6-bit binary counter, which provides the lower notes in precise
octave increments as shown in Fig. 17-2.

One example is the MM5555 family from National Semiconductor.
The type 5555 and 5556 ICs accept an input frequency of 2.12608 MHz and
produce outputs from C8 (four octaves above middle C) to B8 (4,186 Hz to
7,902 Hz) plus a C9 output. By judicious selection of the clock frequency,
the maximum output frequency error has been made less than 0.66 cent with
respect to ideal equal temperment. The 5554 hex flip-flop divides these
down as low as C2, which is about 65 Hz. For a programmable oscillator, a
multiplexor (it should be CMOS to match the weird logic levels used by the
5555 family) can be added to select one of the 72 output frequencies under
control of a digital address input. Thus, if only 12-cone equally tempered

note frequencies are desired, they can be selected with a simple 7-bit number

Dieta, HARDWARE 545

M-BIT SYNCHRONOUS COUNTER

TO MORE
STAGES.

M=4
2M = 16
N=11

Fin 11
Fou = sar > 0.6875 Fin

No Ni No Ns

Q3 G2 O1 Q0 G3 G2 G1 GO OUT
o 6 0 40 o o 08 1 1

o o 0 1 o Oo 0 0 0

oo 1 90 oo oD F 1
o o t 1 o 1 0 0 1
oo1 o Oo o 0 0 1 1

ojo4 oo1 o 0 0 0 0

o 1 1 0 o Oo oO 1 1
oo4 1 1 1 oO 0 O 1

t o 0 0 o 0 0 f 1

1 6 8 1 o Oo Oo 0 0

ae a | 0 oo 0 1 1

1 o 1 1 o 1 0 0 1

4 1 Go oO o 0 0 1 1

17 °1 0 74 o 0 60 0 0
1 q 1 0 0 0 0 1 1

1614 to4 o 0 0 0 o

Fig. 17-3. Rate multiplier

that directly corresponds to the note rather than a 20-bit number that would

have to be looked up in a table. Also, multiple simultaneous outputs can be

implemented by adding multiplexors only.

Rate Multiplier

The rate multiplier is a combination counter and logic network specift-

cally designed for variable-frequency generation. Its basic form is illustrated

in Fig. 17-3. The fixed-frequency clock is fed to a standard binary counter of

546 Musica. APPLICATIONS OF MICROPROCESSORS

RATE MULT OUT J HEY VED VIP TL UdD VUE Vat Pd oat Vt td Pau) ti) dod tt do

+2rurerour] | Pd t 1 ae (| Pupp) tit pe pt

+4 FILTER OUT | (Ll ll L J 1 | i

+B FILTER OUT [Ll _I — a |

Fig. 17-4. Operation of jitter filter for rate multiplier

M bits that just continuously counts through its 2 possible states. The

gating network compares the content of the counter with the frequency

control word and based on the comparison either allows a clock pulse through

or blocks it. The average output frequency is equal to FN/2™, where F is the

clock frequency and M and N are as before. Note that unlike the divide-by-N

approach, the rate multiplier produces an output frequency directly propor-

tional to N rather than inversely proportional. Note also that by increasing

the number of counter bits that the frequency resolution may be made as
high as desired without altering the clock frequency.

So far this sounds ideal but there is a catch. Examining the gating
structure and truth table for N=11, it is seen that the output pulses are

erratically spaced, although there are indeed 11 of them per 16 input pulses.
A litle furcher study of the effect of different Ns reveals that the instantaneous
output frequency never varies over a range greater than two to one, although

it is never less than that either unless N is a power of two, in which case it

does not vary at all. The audible effect of such frequency jitter is a very rough
sound to say the least.,Thus, it is clear that a rate multiplier alone is

unsuitable as an audio tone source.
One can, however, “digitally filter” the jittery output with a simple

binary counter and reduce the percentage of frequency modulation. Figure
17-4 shows how a divide-by-8 counter smooths the frequency jitter substan-
tially from 100% to about 12%. Unfortunately, the clock frequency must be
increased by a factor of 8 to compensate for the frequency division of the jitter
filter. By adding stages to the filter counter, the jitter may be made as small
as desired, subject only to the clock-frequency limit of the rate-multiplier
counter. A divide-by-256 filter counter, which leaves only a trace of rough-
ness in the sound, is probably adequate in most cases. Thus, if the rate

multiplier is to be used to produce frequencies up to 20 kHz, the clock
frequency must be 5.12 MHz, about what it was with the divide-by-N
approach.

With an overall output frequency relation af FN/2M+J, where J is the
number of bits in the jitter filter, it is seen that frequency is a linear function
of the digital word, N. Thus, frequency resolution is poorest at /ow frequen-
cies rather than at high frequencies. If one wishes to experiment with rate

multipliers, the 7497 is a 6-bit cascadable unit that functions up to 20 MHz.
Four of these, an 8-bit filter counter (74393), and a 5-MHz crystal oscillator

are sufficient to build a frequency source with good resolution at all but the
very lowest audio frequencies (1.5% at 20 Hz).

Dicrral. HARDWARE 547

OUTPUT
FREQUENCY

FREQUENCY
CONTROL
(INPUT N

M BITS

MASTER
CLOCK —w|
Fe

M BITS

NF.
Fout = oF

Fig. 17-5. Accumulator-divider structure

Accumulator Divider
The accumulator-divider method is based on the digital sawtooth

generator discussed in Chapter 13. The basic structure shown in Fig. 17-5
consists of a set of binary adders and a D-type register. The adders sum the
current register contents and the frequency control word together and feed
the result back to the register, which latches it up on the next clock pulse.

Thus, N is repeatedly added to the M-bit register, which overflows whenever
the accumulated sum exceeds 24—!, The overflow frequency is the output

frequency which can be conveniently detected by monitoring the most signif-
icant register bit. As with the sawtooth generator, the output frequency is
FN/2™M, the same as the rate multiplier. Note that the division ratio must be
two or greater in order to use the MSB as the output.

The circuit can be considered co let every N/2“th clock pulse through to
the output. When this ratio is an integer, which only occurs when N is a

power of two, the output pulse train is jitter-free. When it is not an integer,
it alternates between the integer values on either side such that the long-term
average is exactly equal co the fractional value. For example, if M is 16 (2 is
65,536) and N is 384, the ratio 2M/N is 65536/384 or 170.66667. The
circuit will alternate dividing by 170 and by 171 with the latter occurring
twice as often as the former. Thus, the peak sime jitter is never more chan one
clock period. The peak-to-peak frequency jitter in percent is simply the recip-
rocal of N. Thus, at low output frequencies the jitter is very smal] but gets
worse as the output frequency is increased. Contrast this with the rate

multiplier, which has an essentially constant jitter regardless of output fre-

quency.

The absolute frequency resolution of the accumulator divider is depen-
dent entirely on the register length, M, and can be increased without theoret-
ical limit. The relative resolution as a fraction of a particular ourput

frequency is simply 1/N for the N required to produce the frequency of
interest. The lowest possible output frequency is F/2M, while the highest is
F/2 if the most significant register bit is the output. The master clock
frequency determines the time jitter, which is one clock period peak to peak.

548 MUSICAL APPLICATIONS OF MICROPROCESSORS

DIVIDED
OUTPUT

716

6 4

74830 T4175
6

Fig. 17-6. Experimental accumulator divider

As an example, let’s assume that an oscillator with 1-cent (0.06%)

resolution over a 20-Hz to 20-kHz frequency range and inaudible jitter is
desired. Under normal conditions, 0.5% frequency shift is about the
minimum audible for single tones of moderate frequency. It is reasonable to
assume that this much jitter at 20 kHz would be completely inaudible, while
at midfrequencies the jitter is far less anyway. At 1 kHz, for example, it
would be a mere 0.025%, which is much lower than the wow and flutter

figures for most audio equipment.
The first step is to determine the clock frequency from the jitter re-

quirement. The period of the highest frequency is 50 pisec and 0.59% of this
is 250 nsec. Thus, the clock frequency must be at least 4 MHz to meet the
jitcer specification. To meet the resolution requirement at 20 Hz, N must be
1/0.0006 or about 1,600. If the output frequency equation is rewritten as
F=6.4 X 109/2M, M can be found by applying M=log2(6.4 x 109/20),
which yields a figure of 28.2. Thus, the adder and register must be 28 bits
long. Note, however, that N will never be greater than 1,342,178, which
means that only about 20 bits are needed to represent N. The remaining

Digital HARDWARE 549

fl
DIVIDE -BY-N

OUTPUT

MASTER
CLOCK

FREG a

vco DIVIDE-BY-N.

LOW-PASS]
FILTER

conTRot 4
VOLTAGE

Fig. 17-7. Phase-locked-loop frequency synthesizer

adder B inputs should be grounded. In fact, the upper eight adder and
register bits can actually be replaced by a simple counter that is enabled to
count when the most significant remaining adder generates a carry out. In
this respect, the “extra” eight bits in M function is a jitter filter!

If one wishes to experiment with the accumulator divider, the general

circuit structure shown in Fig. 17-G is suggested. The A version of the type
7483 adder has a high-speed carry generation circuit internally, which be-
comes important when several are used for long words. The 74161 is a
synchronous counter that is easily enabled to count when an adder carryout is

present. If, however, the most significant A input to the most significant
adder is zero, then the most significant register bit is guaranteed to flip,
which can then be used to trigger a ripple counter such as a 74393 instead.

Phase-Locked Loop

When using the preceding methods, an output could only be produced
coincident with a clock pulse. Therefore, the frequency resolution and time
resolution (jitter) is limited by how finely time can be divided up by the
clock. The phase-locked-loop (PLL) method, however, uses a tunable oscil-
lator, which generates the output frequency, and a feedback mechanism that
keeps it locked on the correct frequency relative to a second fixed frequency
clock.

The structure of the PLL frequency synthesizer is shown in Fig. 17-7.
Two independent divide-by-N counters are used along with independent
inputs, Ni and Ne. The Ni counter reduces the master clock frequency to
some convenient value. The Ne. divider likewise divides the voltage-
controlled oscillator output to, when the circuit is stabilized, the same

convenient value. The phase comparator looks at the two frequencies and
produces a de correction voltage that tends to adjust the VCO to equalize the

comparator inputs. In effect, the upper counter divides the clock to an
intermediate frequency, while the lower counter and VCO multiplies this up
to the desired output frequency. The output frequency is therefore equal to
F(Ni/N2) with no theoretical restriction on the values of N1 and Ne. Thus,

any rational output frequency may be produced.

550 Musica APPLICATIONS OF MICROPROCESSORS

The circuit should also, theoretically, have a jitter-free output regard-
less of the relation between output frequency and master clock frequency. In

reality, however, the phase-comparator error voltage output has significant
tipple, which is filtered by the low-pass filter. Any remaining ripple will
tend to jitter the VCO. An effective filter, unfortunately, slows the response

to changing digital inputs. This, in fact, is a major limitation of the circuit
as a musical oscillator, alchough it is useful in precision test equipment in

which frequency changing is by front panel controls and is done infrequently.
There is also a serious range limitation unless the low-pass filter and certain
VCO parameters are altered as a function of final output frequency.

Which is Best?

Of these four techniques, which comes closest to the goals of infinite
resolution and freedom from short-term frequency jitter? The divide-by-N is
the only technique with a totally clean output and, given a suitably high
clock frequency, can have excellent resolution at low- and midaudio frequen-

cies as well. As we shall see later, it does not lend itself well to multiplexing,

however. The rate multiplier has no resolution limitation but does exhibit
significant frequency jitter at all frequencies, which must be filtered. Its

main advantage is the availability of specialized rate multiplier ICs, which
reduce parts count. It does, however, multiplex well. The accumulator di-
vider has no resolution limit either, and its jitter decreases with output

frequency. It is the most complex, however, but it does multiplex quite well.
The PLL divider was included for completeness; it is not recommended as a

music oscillator except in very limiced situations.
The accumulator divider seems to have more good features than the

others, alchough it is more complex. We will see later how multiplexing can
actually make it the simplest in terms of parts count. The divide-by-N is

probably the best for a dedicated oscillator, where its nonlinear control
characteristic can be tolerated.

Waveshaping the Oscillator Output

The frequency-generation circuits that have been discussed thus far
either put out narrow pulses or square waves at the desired frequency. For use
as a practical analog oscillator replacement, other output waveforms are
necessary. A pulse output is readily converted to a sawtooth wave by the
circuit in Fig. 17-8. The pulse, which may only be 100 nsec wide, is
stretched by the single shot and discharges the capacitor through a transistor

switch. The current source (which can be just a resistor for audio applica-
tions) then recharges the capacitor during the remainder of the cycle. Square
waves, such as from the accumulator divider, can also operate the circuit.

There is a problem, however: the amplitude decreases as frequency
increases, While not objectionable for a limited range of two octaves ot less,
it must be compensated over a wider range. The charging current could be

DiciraL HARDWARE 551

MOST SIGNIFICANT
0 BITS OF N

MOAC | MORE | RE. IN

mM —
DIVIDER RAW ald CONSTANT
outeuT SAWTOOTH AMPLITUDE

ouTPUT

(a)

Fig. 17-8. Digital divider waveshaping circuits. (A) Generating a sawtooth
wave. (B) Compensating a sawtooth from a divide-by-N oscillator.

increased at higher frequencies by deriving it from a DAC connected to the
most significant frequency control bits. For a divide-by-N frequency source,
a multiplying DAC could be placed in the feedback path of an op-amp to
provide reciprocal compensation. :

Along these same lines, a square-wave output can be integrated into a
triangle wave, and a multiplying DAC can be used to raise the integrator

gain at high frequencies. Two variable integrators in a state-variable low-pass
configuration can filter a square wave into a reasonable sine wave as well. The
2040 integrated volcage-controlled filter can do both of these jobs quite well
and can be driven directly from a current output DAC.

Although these essentially analog methods do work, they seem to
defeat the whole purpose of going digital in an oscillator module. Much more
flexible waveshaping can be had by implementing some of the techniques
discussed in Chapter 13. In the example of accumulator division given
earlier, the most significant 8 bits of the register were implemented as a
binary counter, which counted through every one of its states every cycle. If
an 8-bit DAC is connected to the counter, a sawtooth wave with amplitude

independent of frequency would emerge. One could also construct logic to
implement all of the direct waveform computation methods detailed in
Chapter 13 such as triangle and sine conversion as well.

Another possibility is table lookup shaping followed by digital-to-
analog conversion and filtering to get an analog output. In hardware, this is

accomplished by placing a read-only memory (ROM) between the accumulator
divider and the DAC as in Fig. 17-9. The ROM functions exactly like a

ost
SIGNIFICANT 8-BIT LOW-PASS ANALOG 8 BITS OF B GG Foon OAC FILTER OUTPUT
DIVIDER

ADDRESS
INPUT OUTPUT

Fig. 17-9. Digital waveshaping of digital oscillator

552 MUSICAL APPLICATIONS OF MICROPROCESSORS

ACCUMULATOR
DIVIDER

ADDRESS
SELECTOR

OUTPUT
PORT #1

8-BIT pac | fe LPF Lo

OUTPUT
PORT #2 L____}

PORT HS

Fig. 17-10. Digital waveshaping using RAM

waveform table and simply transforms sawtooth input samples into samples

on any waveform desired.
A particularly convenient type of ROM to use is the erasable and

reprogrammable variety (EPROM) such as the 1702, which is organized as
256 8-bit words. Since this type of EPROM is virtually obsolete for mi-
croprocessor program storage, it can be purchased for $3 or less. The type
2708 EPROM is four times larger with 1,024 8-bit words. A digital oscil-
lator with four different waveforms may be constructed by connecting the
lower 8 address bits to the frequency divider and using the remaining 2
address bits to select one of four waveforms. An EPROM programmer con-
nected to the user's microcomputer would allow the waveforms to be com-
puted in BASIC and then written intco EPROM for use in the oscillator
module.

Obviously, read/write memory can also be used to hold the waveform.

If this is done, the control computer can set the oscillator output waveform
and even change it during the course of the music. Figure 17-10 shows how
the RAM is connected between the divider and the DAC. The main item of
interest is the address selector. During normal operation, the accumulator
divider is selected as the source of addresses for the RAM. When a new
waveform is to be written into the RAM, the selector allows addresses from

the first microcomputer output port to reach the RAM instead. A second
output port provides the data to be written, while a third port controls the
write enable line on the RAM and the address selector. Up to three

additional oscillators can be serviced with the same interface by paralleling

address and data with the first oscillator and distributing the six remaining
control bits among the other oscillators.

A convenient RAM to use is a pair of 2101s, which provides 256 words
of 8 bits with separate data input and output. Note that gradual waveform
changes during a note are not really possible because addressing the RAM for
writing thoroughly scrambles the read data going to the DAC. This can be
overcome with holding registers and careful timing bur is unlikely to be

DicrraL HARDWARE 553

ACTIVE EOGES

LoGi¢
ACTIVITY STABLE STABLE

(a)

LOGIC
ACTIVITY

|||.
READ WRITE READ WRITE
FROM INTO

MEMORY MEMORY
AND AND

COMPUTE OUTPLIT

OSCILLATOR] OSCILLATOR OSCILLATOR| OSCILLATOR eee
® ' N-I a

ed
MINOR |
CLOCK
CYCLE

| MAJOR CLOCK CYCLE ——————>

(8)

Fig. 17-11. Timing of generalized digital oscillators. (A) Nonmultiplexed oscil-
lator timing. (B) Multiplexed oscillator timing.

practical with a dedicated oscillator. With multiple oscillators, however, one

can be reprogrammed, while the others continue to function normally.

Variable and Constant Sample Rate

The oscillator and ROM/RAM waveshaper just discussed is an example

of variable sample rate digital synthesis. Earlier, it was strongly suggested that

the sample rate should remain constant in a digital synthesis system. This in
fact is true if the system is handling several unrelated signals at once.

However, a dedicated oscillator is handling only one signal so the rule can be
relaxed somewhat with important advantages,

Using the Fig. 17-10 system as an example, we ignore for a moment

the fact that the count-up rate of the most significant 8 bits of the ac-
cumulator divider is not exactly constant. Therefore, if the raw DAC output
is examined, it is found to consist of exactly 256 steps per cycle of the
waveform and each cycle is identical to the previous one. As the division ratio
and hence synthesized wave frequency is changed, the stepped wave is merely
stretched or compressed, but its step-by-step shape remains constant. The
spectrum of such a wave is exactly harmonic, including all of the alias copies

of the intended spectrum. Thus, the alias distortion is purely Harmonic distor-

554 MusiIcaL APPLICATIONS OF MICROPROCESSORS

tion rather than intermodulation distortion and white noise. Furthermore,

and this is the crux of the matter, the quantization noise is also harmonic

distortion! This means that perfectly clean sounding tones can be produced
with 8 and even fewer bit DACs.

Since the reader is not really expected to believe the previous paragraph

immediately, let’s discuss the meaning of harmonic distortion. In audio
equipment, the most prevalent measure of quality is harmonic distortion.

Literally, this means that any tone entering the equipment will leave with its
harmonic amplitude relationships altered. Even large amounts (several per-
cent) of such distortion are inaudible provided the distortion is pure, that is,

no other type of distortion is present, and that the amplitude alteration is

spread out evenly among the harmonics.
However, the mechanism that causes harmonic distortion in audio

equipment does not meet either criteria when several tones are present simul-

taneously. First, intermodulation (IM) distortion is inevitable, which causes
easily heard nonharmonic frequencies to occur. In fact, an amplifier with pure
harmonic distortion would be quite an interesting device indeed. Second, the
harmonic portion of the distortion tends to concentrate at high frequencies,
where it is easily heard. Historically, harmonic distortion ratings were used
because they were easy to measure and correlate well with IM readings,
which are a much better measure of subjective distortion. Although direct
IM measurements are now easily performed, tradition requires that harmonic
distortion still be quoted on spec sheets.

As an example, consider the synthesis of a tone having the exact har-
monic makeup (chosen at random) listed in Table 17-1. For the sake of

argument, let’s assume that only 64 words of memory (64 samples per cycle)

are available and that each word is a paltry 6 bits long, which means that a
6-bit DAC can be used. Also shown in Table 17-1 are the corresponding
sample values to 16-bit (5-digit) accuracy and rounded to 6-bit accuracy. The
final column shows the actual harmonic spectrum that would emerge from
this low-budget tone generator.

The first surprise is that the difference between desired and actual
harmonic amplitudes expressed in decibels is not very great, at least for the
significant high-amplitude ones. Lower-amplitude harmonics do suffer
greater alteration but are more likely to be masked by the higher-amplitude
harmonics. The real difference is that no harmonic can be entirely absent

because of the quantization “noise.” In actual use with a fairly “bright”
harmonic spectrum, the approximation errors would be audible but would be
characterized as a slight timbre alteration rather than distortion; much like

the audible difference between two presumably excellent speaker systems of
different manufacture. The use of 8 bits and 256 steps for the waveform of a
digital oscillator is therefore well justified.

Although the alias frequencies are also harmonic, they should be fil-
tered if a high-pitched “chime” effect is to be avoided. Unfortunately, the

Dicrra, HARDWARE 555

filter cutoff must track the cone frequency as it changes. This used to be an
expensive proposition but a 2040 VCF driven by an 8-bit DAC connected to
the frequency control word can now solve the problem for under $15. In
many cases, it may be possible to omit the filter. For example, when using a
256-entry waveform table, only fundamental frequencies below 150 Hz re-
quire filtering, since otherwise the alias frequencies are entirely beyond 20

Table 17-1. Performance of a 64-Word 6-Bit Waveform Table

Harmonic number Desired amplitude Actual amplitude

1) —100 —48.67
4 3 —3.14
2 -5 -5.13
3 —10 —10.28
4 -8 -8.27
5 -2 —2,02
6 10] 0.16
7 4 —4.27
8 -10 -10.29
9 -15 —14.88

10 -19 -19.45
11 —10 —10.15

12 6 -5.09
13 = -1.12
14 -6 —6.2
15 -12 -12.14
16 20 —21.06

17-32 -100 —§2.24 best
—36.72 worst

Ideal Actual Ideal Actual Ideal Actual
sample sample sample sample sample sample
values values values values values values

—0.051854 —0.0625 —0.181621 0.1875 —0.005724 0.0
0.249919 0.25 —0.182356 0.1875 0.243738 0.25
0.353100 0.34375 -0.174635 ~0.1875 0.470721 0.46875

0.150009 0.15625 —0.383177 —0.375 0.463172 0.46875
0.072522 0.0625 —0.224204 ~0.21875 0.248244 0.25
0.460679 0.46875 ~0.106272 —0.09375 —0.028076 - 0.03125
0.909300 0.90625 -0.463232 —0.46875 —0.353254 -0.34375
0.745635 0.71875 —0.999997 0.96875 -0.720503 ~—0.71875
0.068102 0.0625 -0.990784 —0.96875 -0.903528 -0.875

—0.280506 —0.28125 —0.335606 —0.34375 —0.654850 ~—0.65625
0.090172 0.09375 0.217383 0.21875 --0.086723 —0.09375
0.536646 0.53125 0.136746 0.125 0.389132 0.375
0.334821 0.34375 = ~—0.134930 -0.125 0.526439 0.5

—0.255813 —0.25 0.0744874 0.0625 0.424187 0.40625
—0.407391 ~0.40625 0.585016 0.5625 0.319785 0.3125
0.058757 0.0625 0.643670 0.625 0.248252 0.25
0.452688 0.4375 0.0782302 0.0625 0.158014 0.15625
0.213340 0.21875 —0.486549 —0.46875 0.084257 0.09375

—0.364094 —0.34375 —0.559661 0.5625 0.082703 0.09375
—0.584477 -0.5625 —0.330236 —0.3125 0.070032 0.0625
—0.244755 —0.25 —0.151069 -0.15625 —0.058026 ~0.0625

—0.177100 0.1875

556 Musical APPLICATIONS OF MICROPROCESSORS

kHz. In fact, mellow tones containing few harmonics can be generated
filter-free down to 80 Hz.

A dedicated digital tone generator can, of course, be based on the

constant sample rate approach too. The structure is basically the same as
Figs. 17-9 and 17-10 except for the following:

1, The master clock (sample rate) is much slower, such as 50 kHz.

2. The most significant bits of the accumulator divider will be actual
register bits, since the slow clock eliminates the “jitter-filter’’ counter

(the jitter now becomes interpolation error).

3. The waveform memory will require more words (1,024) and more bits
per word (10-12), since interpolation and quantization error will now
be white noise instead of pure harmonic distortion.

The constant sample rate tone generator is, in fact, a precise hardware
implementation of the software table-scanning technique described in Chap-
ter 13. In exchange for additional hardware complexity, one has a structure

that can use a fixed low-pass filter (probably no filter at all for 50-kHz sample
rate), operates at a much lower clock rate, and can be easily multiplexed.

There is one serious problem that the variable sample rate approach did not
have and that is “harmonic overflow” or alias distortion caused by generating
frequencies beyond one-half the sample rate. This may be controlled only by
cutting back on stored waveform complexity when high-frequency tones are
being generated.

Multiplexed Digital Oscillator

Digital circuitry has the unique ability to be time multiplexed among
several, possibly unrelated, tasks. Although a large time-sharing computer is
the epitome of this concept, quite small amounts of very ordinary logic can
be multiplexed among several similar tasks and made to act like many copies
of itself. Probably the best way to illustrate time multiplexing is to describe a
specific example and then generalize from it. Since digital oscillators have
been under discussion, let’s examine the design and implementation of a
multiplexed digital oscillator module having the following general specifica-
tions:

1. Sixteen independent oscillators are simulated.
2. Each oscillator has an independently programmable waveform.
3. Moderately high tonal quality (50 dB S/N) is desired.
4, Waveforms may be dynamically updated without glitching the output.

Although the last feature may be impractical in a single-channel oscillator,
its cost is divided by 16 when multiplexed.

A typical nonmultiplexed digital oscillator has a timing diagram some-
thing like Fig. 17-11A. Immediately following the active clock edge, things
happen and signals change. A finite time later, everything settles down and

Dierrat HARDWARE 557

FREQUENCY EXTERNAL EXTERNAL
‘CONTROL 1N ADDRESS SELECT DATAIN WRITE

Ui
10, [1,024 10 10. ACCUMULATOR) \DORESS 10-BIT

ReGRTER PRESS yaveronn : "3 SAH | sourpur

SAMPLE
crock

Fig. 17-12. Nonmultiplexed oscillator organization

remains stable until the next active clock edge. The time between settling
and the next clock is “wasted” because nothing is happening.

Multiplexing utilizes this idle time by assigning it to the “data” for one
or more additional oscillators as illustrated in Fig. 17—11B. Such data consist
of the frequency control word, the state of the counter in the frequency
divider, and the waveshaping table. Essentially, the data are read from a
memory, the next state is determined by the logic, and the result is written

back into the memory and an output citcuit. The entire sequence for a
particular oscillator takes place during one #énor clock cycle. A major clock cycle
consists of N minor clock cycles, where N is the number of oscillators
simulated. There will, in fact, be a minor clock cycle counter that identifies
minor cycles within a major cycle. Thus, the sample rate for each oscillator is
the major clock frequency, while the ¢hroughput rate for the computation logic

is N times the sample rate or the minor clock frequency.

Before proceeding further, the implementation technique for the oscil-
lator must be determined. One thing to keep in mind is that the minor cycle
frequency is N times the effective clock frequency for a particular oscillator.
This eliminates the variable sample rate techniques described earlier because
they all require a clock frequency on the order of 5 MHz. To multiplex these
according to the specs above would require a throughput rate of 16 X 5 or 80

MHz, somewhat beyond the capabilities of standard logic. Thus, a fixed
sample rate approach will be used. In the example system being discussed,

the sample rate will be set at 62.5 kHz, which when multiplied by 16 yields
a throughput rate of 1.0 MHz. This equates to a major cycle time of 16 usec
and a minor cycle time of 1.0 psec.

Hardware Structure

The first step in designing the multiplexed oscillator is to draw a
detailed block diagram of the equivalent nonmultiplexed oscillator as in Fig.
17-12. Note that the data input to the oscillator logic comes from a register
and that the DAC output goes to a sample-and-hold, which acts like an
analog register. The 20-bit word length chosen for the accumulator allows a
frequency resolution of 0.3% at 20 Hz and 0.005% (equal to typical crystal

Musical APPLICATIONS OF MICROPROCESSORS 558

SINdINO
SOTVNY

91

uoneziuebio
soyeyioso

p
e
x
e
d
y
i
n
w

‘er-zt
“614 "N39

ONIWIL

“960

2SibZ
| 499135
ssayady

S
L
M

NI
NI

viva
ssauaoy

F
e

Y
a
L
N
d
W
O
D

T
O
H
L
N
O
D

WOUSTONLNOD
WHOLEAUR

a
i
d

NI
NI

vivd
ssayaoy

U
H

¥
3
L
N
d
W
O
D

T
O
4
1
N
O
D

WOY4
TO¥LNOD

AINSNOIHS

oscillator accuracy) at 1 kHz. The LO-bit word length for waveform address

and data gives a S/N ratio of greater than 50 dB for the tone.
—13, one

f N words and ad-

In converting to the multiplexed oscillator shown in Fig. 17

replaces all registers with memories, each consist ing o'
dressed by the minor clock cycle counter. In the case of the waveform tables,

DiGitaL HARDWARE 959

an N times larger memory holds all of the waveforms, and a particular section
is addressed by the minor cycle counter. Thus, the frequency control word
becomes the freguency control memory, which is 16 words of 20 bits, and the
accumulator register becomes the accumulator memory, which is the same size.
The waveform memory grows to 16K by 10 if each oscillator is to have a
different waveform. The final outputs now come from 16 SAH circuits,

which are addressed like a 16-position analog memory.
Before determining the timing diagram, components must be selected

for the various blocks. Such a selection must be made on the basis of speed
and cost. Obviously, memories that require a 2 pasec cycle time cannot be

used, but, on the other hand, a 50-nsec bipolar memory would be overkill for
the waveform tables. For this example, the waveform memory will use 10
type 4116 MOS dynamic RAMs, which are organized as 16,384 words of 1
bit each. Although 16K RAMs are the cheapest form of memory available,
their dynamic nature requires periodic refreshing to retain data. Refreshing is
accomplished simply by reading at least one location in each of the 128

blocks of 128 addresses every 2 msec. Since the oscillators are constantly

scanning through the waveform memory, it will be automatically refreshed
provided that zero frequency (or an exact multiple of 7.8125 kHz) is not
programmed for all of the oscillators simultaneously.

Frequency control words and accumulators will be stored in 10 type
7489 bipolar memories, which are conveniently organized as 16 words of 4
bits each. The address selector for the waveform memory uses four type

74153 dual one-of-four multiplexors, which simultaneously select between
accumulator and external addresses and between lower and upper 7-bit halves
as required by the 4116s.' The frequency control memory address must also
pass through a selector to allow the control computer to write frequency

control words into the memory. This may be implemented with a single

74157. The 20-bit adder will use five cascaded type 7483A 4-bit adders.
Unfortunately, there are a few timing and design details that require

additional latches to correct. One problem is that the 7489 memories do not

have an edge-triggered write. This means that a race condition is possible
when writing, which can be corrected by inserting a 20-bit holding register
between the adder output and the accumulator memory input. Another
problem is that the 4116 waveform memory only activates its data output for
a short time at the end of a memory cycle. Vhus, another holding register

between the 4116s and the DAC is required. Almost any edge-triggered
latch can be used for the holding registers but the type 74175 will be
specified because of its low cost and ready availability. Figure 17-13 shows a
block diagram of the complete multiplexed oscillator. Excluding the timing

The type 4116 RAM actually time multiplexes 14 address bits on 7 address pins. Two
clock inpurs called row address strobe (RAS) and column address strobe (CAS) trigger
internal latches, which then reconstruct che full 14-bit address. The reader should
consult the manufacturer's data sheet (Mostek Corporation) for full details.

560 MUSICAL APPLICATIONS OF MICROPROCESSORS

|-—————— ONE MINOR CLOCK CYCLE

TIME PHASES j= INTERNAL ——*|—— EXTERNAL

afaletar¢airlels

MINOR CYCLE COUNTER a Gel

FREQ, AND ACCUM. MEMORY DATA

ADDER OUTPUT

CLOCK ADDER HOLD REG, Cc

ACCUMULATOR MEMORY WRITE D

AVEFORM EXTERNAL ADDRESS £ Sh oe

fea INTERNAL ADDRESS

aaa HIGH 7 BITS

Low 7 BITS reel | L__J ee

4ll6 ROW ADDRESS STROBE § Lf je

41/6 COLUMN ADDRESS STROBE H f l f l
FREQ. CONTROL Jaen
MEMORY ADDRESS A l J

INTERNAL SELECT

FREQ. CONTROL MEMORY 8 J L
WRITE

41l6 WRITE 1 J l

DAC HOLD REG. CLOCK J l f l

CHANNEL | SAMPLE oo pr [ee pees

ae
DAC SETTLING i —_—_—_———_

Fig. 17-14. Multiplexed oscillator timing diagram

generator and interface to the control computer, the total digital IC package
count is approximately 40.

Timing

Figure 17-14 shows a timing diagram for the events that take place
during one minor clock cycle. The only difference from one minor cycle to the
next is the content of the minor cycle counter, which addresses the various
memories involved, Each minor clock cycle consists of two subcycles that are
termed internal and external subcycles. During the first subcycle, the required
internal oscillator calculations are performed. The second subcycle is avail-
able to the external control computer for writing in new frequency control

words or new waveforms if it so desires. Each subcycle is further divided into
four ‘‘phases,” each 125 nsec in duration. These phases are used to sequence
the various events that take place. All of the necessary timing signals (except

DiGiraL HARDWARE 561

CAS, which utilizes a 30-nsec delay element) can be generated by a 3-bit
counter driven by an 8-MHz crystal-controlled clock.

At the beginning of a minor cycle, which is also the beginning of an
internal subcycle, the minor cycle counter is incremented, which causes an
address change to the frequency control memory and the accumulator mem-
ory. Since these are bipolar memories, the newly addressed contents emerge
about 50 nsec later. The adder, which sees a stable input about midway

through Phase 0, produces a stable output by the middle of Phase 1. At the
beginning of Phase 2, the adder output is latched in the adder holding
register and during Phase 3 the sum is written back into the accumulator

memory. While all of this is going on, the previous contents of the ac-
cumulator memory are used to address the waveform memory in conjunction
with 4 bits from the minor cycle counter, which identifies which stored

waveform to use. The address selector switches between low 7-bit mode and

high 7-bit mode as required by the 4116s at the beginning of Phase 2. The
RAS spans Phases | to 3 while the CAS spans Phases 2 and 3 but with a 30-
nsec turn-on delay to allow address switching to complete. At the end of
Phase 3, data from the waveform memory ts available and is latched into the

DAC register.
The DAC is allowed to settle during the second subcycle and the

appropriate SAH channel is updated during the first half of the ext minor
cycle. Thus, SAH channel I will actually contain che signal from oscillator
I-1 which is corrected simply by relabeling the analog outputs.

This time skew from one minor cycle to the next is an example of
pipelining, which is a very powerful logic throughput enhancement tech-
nique. It is applicable whenever a repetitive sequence of operations is to be
done by logic (or sampled analog) blocks connected in series. Rather than
making the logic fast enough to do all of the operations in one clock period,

only one operation per clock is performed. The data words shift down the
chain one position per cycle and are operated on in assembly line fashion.
Since a given block has a full cycle to “do its thing,” slower logic can be
used. Conversely, the throughput rate can be speeded up, often by several
times compared with a nonpipelined approach. Pipelining is very easy to

implement when strictly repetitive tasks are performed. Fortunately, nearly
all hardware implementations of digital synthesis techniques are sufficiently
repetitive.

Returning to the oscillator timing diagram, the external subcycle is

used to allow the control computer to access the frequency control and
waveform memories without interfering with the oscillator operation. Fol-
lowing address settling in Phase 0, Phases 1 to 3 are available for writing into
the frequency control memory. An and gate connected to the RAM’s write

enable input inhibits actual writing unless the control computer specifically

allows it. A similar arrangement is used for writing into the waveform

562 MusICAL APPLICATIONS OF MICROPROCESSORS

memory. The waveform memory can also be read externally if desired. If

write enable is not exercised, read data is available during Phase 3.

Interfacing to the Control Computer

The simplest method of interfacing the oscillator is direct connection of
the 50 external input signals to 50 output port bits and suitable software
manipulation of the bits to effect the desired results. Timing requirements
for writing into the frequency control memory are very simple. First, the
write enable pulse must be at least 1 psec in duration. Also the 4-bit address
must be set up and stable 30 nsec before write enable is turned on and must
remain stable for 30 nsec after it is removed.

The waveform memory is a little more difficult to handle. Essentially,

none of its inputs are allowed to change during an external subcycle. This
requirement may be satisfied by inserting latches between the computer and
the waveform memory inputs and clocking the latches at the beginning of
minor cycles.

The number of output port bits required may be cut in half by realizing
that simultaneous writing into both memories is not likely to be done. Since
each memory requires 24 bits of information (address + data), only 24 port

bits are needed plus two more for the write enables. Since registers are
required anyway for operating the waveform memory, one may fill the regis-
ters 8 bits at a time with only 8 bits needed for the data and 5 bits used for
control as shown in Fig. 17-15.

Fourier Series Tone Generator

The oscillator module just described is certainly quite versatile but does
suffer one shortcoming: dynamic variation of the waveform, that is, smooth

changes during the duration of a single note, is not really practical. Although

the logic timing is such that a new waveform can be written without interfer-
ing with waveform scanning, it would be very difficult to rewrite a waveform
on the fly and insure that discontinuities due to half-old/half-new waveform

scanning did not occur. One could possibly use two oscillator channels along
with variable-gain amplifiers to alternately interpolate between successive
versions of the waveform. In any case, variable filters would probably be used
for dynamic variation.

What is needed is a Fourier transform or Fourier series tone
generator, which is set up for continuous variation of the harmonic
amplitudes and possibly the phases as well. When one realizes that such a
tone generator is really nothing more than a bank of sine wave oscillators
operating at harmonically related frequencies and having independent
amplitude control, it becomes obvious that a multiplexed oscillator could do
the job. Although the previous oscillator could provide up to 16 harmonic
{and inharmonic as well) frequencies, external gain control elements would

DiciraL HaRDWwaRe 563

5-BIT PORT 2 B-BIT PORT 1

‘if

8-BIT REGISTER 8-BIT REGISTER 8-BIT REGISTER
274175 cul leuk 2 74175 ik 2 74175

([f f 8

OSCILLATOR % \ WRITE WRITE.

10 WAVE FORM WAVEFORM ENABLE ENABLE
TABLE TABLE FREQUENCY WAVEFORM
ADDRESS DATA

FREQUENCY DATA

Fig. 17-15. Minimal microcomputer interface

be necessary to control relative amplitude. Thus, an optimized Fourier series
tone generator will be briefly described. Note that, although the unit is
multiplexed in order to generate numerous harmonics, it can only generate a

single composite tone, whereas the previous oscillator could generate 16
tones. Many musical situations, however, call for a solo instrument of great

expressiveness with accompaniment in the background. The solo could there-
fore be played by the Fourier series generator, while the less critical accom-
paniment could be played by the oscillator bank described earlier.

The unit that will be described has the following general specifications:

. Up to 64 harmonics in an unbroken series from 0 to 63.

. Amplitude is independently adjustable.

. Phase is independently adjustable.

. Amplitude and phase may be updated at any time without glitching

the output.

5. Fundamental frequency is controlled by a single 20-bic word.
6. The output is a 16-bit word at 62.5-kHz sample rate.

RW re

Much of the basic structure and organization of the previous multiplexed
oscillator will be retained. Thus, the Fourier series is evaluated via “brute

force’ in which each harmonic is individually computed, scaled, and

summed, Although a computation time savings of 10-to-1 is theoretically
possible chrough use of the FFT, the computation logic would be much more
complex. Also, as was seen in Chapter 13, FFT synthesis of arbitrary fre-
quencies (which is necessary in a fixed sample rate implementation) is even

more complex. Another advantage of brute-force evaluation is that amplitude
and phase changes take effect immediately, between samples, rather than
between FFT records.

MusIcaL APPLICATIONS OF MICROPROCESSORS 564

K
o

Jeuueyo
sluowseY-9[6uls

B
Jo WesBeip

y90Ig
“9i-ZL

‘BIZ

‘STANNUHD UBHLO

Wout

yaawnn OINOWUYH

v
C
h

300)
woav1nAn2oV

waLsio7a 1
K

02)
S
a
n

sive
o
z

ped
NoUveINI9
KC
02 “TOUINOD

asm
nls

%
AONENOFH4

AQNINOIYS

HOLY INNO

DINONYTH
02

K
o

NI
-1

04
.N

OO
.

NI
TO
¥L
NO
9

Ni
_Y

OM
LN

OD

a
l

|

BO
NL
IT
EN
Y

a8
vk

d
AD

NA
NO

BU
S

Hardware Structure

17-16 shows the Following the same development as before, Fig.
conceptual block diagram of a single harmonic channel without multiplex-

DicrraL HARDWARE 565

ing. The first obvious feature is that three control variables are involved:
frequency, amplitude, and phase. Another feature is the inclusion of two
multiplier blocks, one for multiplying the frequency parameter by the har-
monic number and the other for multiplying the sine table content by the
amplitude variable. Phase control is implemented by adding the phase shift
parameter to the accumulator contents in a separate phase adder before feeding
it to the sine table. Finally, we have a harmonic accumulator, which sums the

output of this channel with that of the other harmonic channels to provide
the final output, which is then sent to the DAC.

Before continuing further, a few things should be said about the word

lengths of the various blocks. When the 20-bit frequency control word is
multiplied by the 6-bit harmonic number, a 26-bit product is expected.
However, in order to use the same accumulator frequency generator and
sample rate as before, only the /ow order 20 bits of the product are used.

Thus, product overflow is possible when high fundamental frequencies are
used. While this may seem to be an operational restriction, a little thought
will reveal that product overflow is indicative of serious alias distortion in the
tone anyway. When using the tone generator, the amplitudes of all har-
monics that exceed 31 kHz will have to be made zero. The word lengths in
the sine lookup blocks are 10 bits, the same as before. When 64 individual
sine waves are added up, the result is a 16-bit final output word.

Let’s now look at these blocks and see how they would be implemented
in the multiplexed case. Since there are 64 harmonics, the amplitudes and

phases can be stored in two 64-bit by 10-bit memories. The throughput rate
is 64 X 62.5 kHz=4 MHz or 250 nsec minor clock cycle, which means that
bipolar or fast MOS memories will be needed. Unfortunately, 64 words is a
somewhat nonstandard size for memory ICs and using the 16- X 4-bit type
7489 memory means that 20 packages would be required. Other possibilities
are the 2101A-1, which has a 200 nsec cycle time, and the 93422, which is a

50 nsec bipolar device. The latter is fast enough to be used directly, whereas
the MOS 2101A-1 would have to be pipelined. Both of these have identical
pin connections and are organized as 256 words of 4 bits; thus, three-quarters
of their capacity will not be utilized.

When considering 64 channels, each with harmonically related fre-
quencies,” the leftmost four blocks in Fig. 17-16 seem to be redundanc. In
pacticular, ic would be nice to eliminate the harmonic multiplier as well as
individual frequency generation accumulators. In order to see how this might
be done, consider the case in which the frequency control word has a value of
1 and the entire module had just been reset, that is, all 64 frequency
generation accumulators set to 0. After one sample period (16 psec), the

2If one wishes to generate decidedly nonharmonic cones, the 64 frequency generation
subsystems may be retained. The frequency control words would then come from a
64-word x 20-bir memory rather chan a harmonic multiplier. Thus, one has essen-
tially 64 independent sine wave generators and a 64-channel mixer with independent
gain contro! for each channel. The phase control adders are useless in such an applica-
tion and therefore can be omitted

566 MUSICAL APPLIGATIONS OF MICROPROCESSORS

TQ MULTIPLEXED
PHASE ADDER

Ep 20 8 \
FREQUENCY FREQUENCY ‘ADDER (NOEXING

FREQUENCY TR ADDER [30 } GENERATOR i 20 CONTROL IN RB ONTO Na [a> ‘ACCUMULATOR ro nae es
cuK K

MAJOR CYCLE MINOR CYCLE
RATE 62.5 KHZ RATE 4 MHz

Fig. 17-17. Harmonic-frequency generator

fundamental accumulator has a value of 1, second harmonic 2, third 3, etc.

After a second sample period cycle, they are 2, 4, 6, etc., and after a third

cycle they are 3, G, 9, etc. After a number of sample periods, overflow of the
highest harmonic is inevitable. This is merely an indication that it has
completed a full cycle and can be ignored. In fact, all of the harmonics will

overflow as they complete full cycles.
These same relationships hold regardless of the value of the frequency

control word. Thus, the content of the fundamental’s accumulator can be

multiplied by the harmonic number to obtain what wox/d be in the har-
monics’ accumulators if they had their own accumulators and adders! This
then eliminates 63 frequency generation subsystems. Only the low 20 bits of
the 26-bit product should be retained to properly implernent the overflow
phenomenon mentioned earlier.

Now that the redundant frequency generators are eliminated, let's see

about getting rid of the multiplier as well. If the multiplexing is done in
order of increasing harmonic numbers, then multiplication by 2, 3, 4, etc.,
can be accomplished by successive addition of the fundamental’s frequency
generation accumulator into a second indexing accumulator. Thus, the har-

monic multiplier is replaced by an adder and accumulator. The substructure
that accomplishes this is shown in Fig. 17-17. Note that this substructure is

not multiplexed, but it does provide multiplexed data to the 64 sine
generators, which, of course, are multiplexed. The frequency-control register

and the two accumulators are therefore actual registers rather than memories.

In operation, the frequency-generation accumulator is clocked at the 62.5-
kHz major cycle rate, while the indexing accumulator is clocked at the
4-MHz minor cycle rate. Note that the indexing accumulator must be
cleared at the beginning of every major cycle for proper operation.

Amplitude Multiplier

The amplitude multiplier is much more difficult to eliminate so let’s
see what is involved in hardware multiplication. There are a multitude of
hardware multiplication techniques that would require an entire chapter to

describe in detail. There are, however, basically two ways of multiplying in

Dicrral. HARDWARE 567

hardware. The first is the serial shift and add algorithm or serial muttiplica-
tion. When an M-bic multiplier is being multiplied by an N-bit multi-
plicand, the basic approach is to examine the M bits one bit at a time and

based on the result either add the multiplicand to a product accumulator
followed by a shift or just do the shift (either the accumulator can move right
or the multiplicand can move left). This approach is economical of hardware
requiring just an N-bit adder, an M + N-bit shift register, and an N-bit
latch but is slow, since M clock cycles are necessary to compute the product.
With Schottky TTL logic, shift and add can be done at about a 20-MHz rate,
which means thata 10 X 10 multiplication requires 500 nsec to perform, too

slow for the Fourier series generator as curtently specified, although possibly
adequate for a 32-harmonic implementation.

The second approach is called parallel multiplication. Essentially, a large
number of adders and gates is combined to form a massive combinational
logic network that accepts the factors as static inputs and eventually produces
the product output after the logic states have stabilized. For short word
lengths, it may even be practical to use a ROM as a multiplication table.

Besides much higher speed, the parallel multiplier is much easier to use,
since no clocks or timing signals are necessary. Settling time from when

operands are applied to when the result is stable is in the 150-nsec range for
10-bit operands and a 20-bit product.

Each IC manufacturer has its own pet parallel multiplier line. Most
popular are building-block modules such as 4 X 4 and 2 X 4 parallel

multipliers. The former consists of two ICs (actually 256 x 4-bit mask
programmed ROMs) interconnected, whereas the latter is self-contained.
Longer word lengths are handled by cascading the blocks in two dimensions.
This means that the required 10 X 10 multiplier would need a3 X 3=9
array of 4 X 4 blocks or a3 X 5 array of 2 X 4 blocks. Cascading of the 4 x
4 variety (748284 and 74S285 made by Texas Instruments) requires external
adder IC’s, whereas the 2 X 4 type (AM2505 made by advanced Micro
Devices) can be directly interconnected with no external circuitry required.

Recently, complete parallel multipliers for long word lengths have

been put on a single chip and introduced by TRW, Signetics, and other
manufacturers. In some cases, an adder and accumulator is also provided,

meaning that sum-of-products, such as are required here, can be accom-
plished with no added external circuitry. These are certainly easy to use and

save considerable space and power bur, at this time, cost substantially more
than the parts necessary for a component multiplier. In any case, a parallel

multiplier is indicated for the Fourier series tone generator.
Before continuing, let’s briefly investigate a method for eliminating the

amplitude multiplier. It is well known that if two sine waves of exactly the

same frequency and unity amplicude bur of different phase are added, that

the amplitude and phase of the resultant depends on the phase Jifference

according to:

568 MUSICAL APPLICATIONS OF MICROPROCESSORS

Pi—P2 p= Pit+P2
A=2 cos 3 3

where A is the resultant amplicude, P is the resultant phase, and P1 and Pe

are the phases of the individual waves. Thus, the two parameters P1 and

Pz can be manipulated to give the effect of A and P parameters. The advan-

tage, of course, is that multiplication by A and addition to the harmonic

accumulator is replaced by two additions to the accumulator. There are

disadvantages, however. One is that the throughput rate of the phase adder

and sine table is doubled; another is the highly nonlinear relation between

P1,P2 and A,P, which would probably require a translation table to over-

come. The most serious disadvantage, however, is that greatly increased

resolution in the sine table is necessary for good control at low-amplitude

levels where the two waves nearly cancel. This means both more words in the
sine table as well as greater word length. To equal the dynamic range and

noise performance of the 1024 X 10-bit sine table with a true multiplier, one
would have to go to a 4,096 entry sine table with 16 bits per entry.

A complete block diagram of the generator is shown in Fig. 17-18. A
timing diagram for the generator is given in Fig. 17-19. Note that a
pipeline register has been inserted between the sine ROM and the amplitude
multiplier. The purpose is to isolate the propagation delay of the phase adder
and sine ROM from the delay of the amplitude multiplier. The only side
effect is that the phase memory address for harmonic N is N, whereas the
amplitude memory address is N+1. This can be avoided by inserting another
pipeline register between the amplitude memory and the multiplier. How-
ever, for minimum cost the control computer can simply take the skew into
account when writing into the memories. The harmonic accumulator adds up

the 64 sine waves during a major cycle. At the end of the cycle, its content is
transferred to the output register, which holds it for the entire duration of
the next major cycle, thus giving the DAC stable data.

All timing is derived from an 8-MHz crystal clock. Two clock cycles
make a minor cycle and 64 minor cycles make a major cycle. All of the clock
and clear inputs to the various blocks are assumed to be positive edge
triggered. The first one-quarter of each minor cycle is devoted to external
access to the amplitude and phase memories and the frequency-control regis-

ter. This rapid rate of access allows the generator to be connected directly to
the bus of most microcomputers with no wait states or buffer memories
needed. The remaining three-quarters of each minor cycle, which is about
190 nsec, is aliowed for memory access, adder delay, etc. The parallel
amplitude multiplier must therefore act in approximately 150 nsec.

Rapid, glitchless updating of phase makes possible a control technique
that can be used to simulate inexact runing of the harmonics. If the control

computer periodically increments the phase parameter of a harmonic, the

569 Dicira. HakDWARE

Jo
ye
sa
ua
G

au
c)

sa
va

s
s
a
n
o

ey
ej
dw
od

-g
1-
z}

“B
ig

Af
ld

LN
O

(3

78
VN

3
FL
IY
M

TW
NY

31
X3

)
0 (2
03

72
8

SS
3u

dQ
¥

TW
NY

AL
Xa

)
9 (9079 FT9AD YOrYW) &

441
(49070

31049
YONIN)

¥

2
¥3LNNO9

es
7049

YONI
|] 9

ZH
W

8 YO
LV
77
19
S0

W
A
S
A
Y
S

NI ssayday

aad LOW

Jan Lodwy ¥

CEICIPEL
a
y

ANIT3did

570 Musica APPLICATIONS OF MICROPROCESSORS

MINOR.
CYCLE,

8-H CLOCK JUL LLL Le

MAJOR CYCLE CLOCK (B) im

EXTERNAL ADDRESS SELECT (C) Nn Mn l J NSLS

EXTERNAL WRITE ENABLE {D) J hl fl I l St

[ete

Fig. 17-19. Timing diagram for Fourier series tone generator

effective frequency of that harmonic will be increased somewhat. Although
the magnitude of frequency shift is restricted to a few hertz, the technique is
useful in simulating a real vibrating string with slightly sharp upper har-

monics.

An Intelligent Oscillator?

The best method of interfacing either of the previously described oscil-
lators to a system is the use of a dedicated microprocessor. Actually operating
such an oscillator bank with frequency glides and dynamic waveform changes

to worry about, not to mention other modules in the system such as

amplifiers and filters, may pose a very heavy load on the control computer, It
would be much nicer if the oscillator bank could be given high-level com-
mands such as “increase frequency of channel 7 from C4 to G4 linearly over a
period of 300 msec starting at time point 1230,” or “change the harmonic
content smoothly from what it is currently to the following specification over

the next 150 msec.”

A dedicated processor to perform such functions would actually add
very little to the module cost. Two-thousand bytes of program ROM should
be sufficient for a moderately sophisticated command interpreter. Read/write
memory is only necessary for miscellaneous programming use and the storage
of parameters; thus, it can be 256 or at most 1K bytes in size. Memory and

V/O interfacing would involve about five additional ICs. A simple logic

replacement microprocessor such as a 6502 suffices quite well for the intelli-
gence. The net result is that less chan $50 worth of extra parts can be added
to make an intelligent oscillator.

Speaking of the 6502 microprocessor, the observant reader may have
noticed that the 16-channel multiplexed oscillator timing diagram exactly

parallels the 6502's bus timing. In fact, one could drive the 6502 clock with
the internal/external address selector signal. Since the 6502 does nothing
during the first half of its 1-pisec bus cycle, that half would be the oscillator’s

Dierrat HaRDWarE 571

internal half cycle. The external half cycle would be devoted ro the mi-
croprocessor, which could then dérectly write into the frequency and
waveform memories. In fact, with some attention to detail, these memories

could appear to the micro as regular read/write memory and thereby elimi-
nate interface ports and registers altogether!

Communication between the control computer and the oscillator can
now be more casual. This allows techniques such as serial asychronous (RS-
232),> which are normally useless in real-time conerol applications, to be

effectively utilized. In turn, this means that digital modules can be designed
with a “universal interface” chat can easily connect co any kind of control
computer. Furthermore, interpretive high-level languages, such as BASIC,

can be used to control the oscillators and other intelligent digital music
modules.

Modular Digital Synthesizer

Up to this point, we have been discussing the digital implementation
of analog modules in which an analog output is retained. These outputs are

then interconnected and processed further in the axalog domain just as if they
had originated in an analog module. In a modular digital synthesizer, all
signal generation, processing, and interconnection are done in the digital
domain. Only the final two- or four-channel audio output is in analog form.
One advantage of an all-digital synthesizer is the elimination of vast quan-
tities of DACs. Another is that multiplexed operation of the component
modules makes available very large numbers of module functions at an
attractive per-module cost. The biggest advantage in the author's mind,
however, is complete interconnection flexibility. As we saw in Chapter 8, a
generalized analog-switching matrix for even a moderate number of modules
can become very large indeed. An equivalent digital matrix using read/write

memory is compact and economical. At this point in history, there are as
many different digital synthesizer organizations as there are digital synthe-
sizers in existence. The organization in Fig. 17-20, however, represents an
ideal that most of all them approach to some degree. The entire system
revolves around two major memories. The control memory contains all oper-
ation parameters for all of the modules, including interconnection informa-
tion. The control computer writes into the control memory, while the mod-

ules read from ic.

3This is the method mosc often used co talk to ‘normal’ peripherals such as terminals,
printers, etc. Ic is a serial by bit technique that is inherently slow (compared with
microprocessor speed) and usually implemented with little or no busy/done feedback
or error checking. Its main virtue is standardization and minimal wiring complexity
QG wires are sufficient for bidirectional communication).

572 MusICAL APPLICATIONS OF MICROPROCESSORS

CONTROL
COMPUTER

CONTROL
MEMORY

ATOR, GENERATOR PROCESSOR] ,,, |PROCESSOR| OUTPUT
MODULE ae cal MODULE MODULE MODULE

i]

SIGNAL
MEMORY

Fig. 17-20. Digital synthesizer organization

The signal memory contains sample words of all signals in the system.

Essentially, every module ovtpur is associated with a word in the memory.
During each system sample period, the content of the signal memory is
updated by the modules according to theit current output samples. Every
module input represents a read access to an address specified by the control
memory. Interconnection then is accomplished simply by specifying read

addresses for module inputs! The modules themselves are normally highly
multiplexed so a single “oscillator board” might actually represent 16 oscil-
Jator functions. In a truly modular system, one can easily add multichannel
modules simply by connecting them to the memory buses.

A Hard-Wired Digital Synthesizer

Probably the best way to introduce the basic concepts of a digital
modular synthesizer is to briefly describe one fairly simple unit that has been
proposed. The basic idea is to emulate the operation of a large modular
analog system with the advantages of direct computer control, program-

mable interconnection matrix, and, of course, extreme accutacy, freedom

from drift, etc. Analog module terminology will be used co describe the
digital modules, since from the control computer's point of view, the whole
system looks just like a multitude of DACs driving analog modules coupled
with a signal routing matrix.

The system as it was originally proposed has the following modules,
although there is certainly room for expansion:

16-way multiplexed oscillator
16-way multiplexed mixer/controlled amplifier
16-way multiplexed state-variable filter
16-way multiplexed contour (envelope) generator
16-way multiplexed universal filter

DiciTat HARDWARE 573.

| CONTROL MEMORY |

FIXED
CONTROLS

ADDRESS

MODULE

SIGNAL,
ANPUT st SIGNAL
ADDRESSES INPUTS OUTPUTS

ADDRESS READ DATA WRITE DATA

SIGNAL MEMORY

Fig. 17-21. Typical digital synthesizer module

16-way multiplexed multiinput mixing amplifier
32 “pseudo”-DACs
4 final output DACs
2 white noise generators (uniform and gaussian)
1 reverberation element

The system sample rate is 62.5 kHz and all signals are 16-bit twos-
complement values. Full scale is considered to be 12 bits, however, with the

extra bits used to provide substantial “headroom” in the signal processing.
Figure 17-21 shows the general structure of a module. Up to seven

classes of digital words are handled by the module. “Fixed” controls are
values fetched from the control memory that act just like adjustment knobs
on analog modules. They are called fixed because only the control computer
can alter their values, not other modules in the system. Addresses for signal
memory read accesses are also read from the control memory. One address is
read for each of the module’s signal inputs and is sent to the signal memory,
which returns a signal input. Since a unique location in the signal memory is

associated with every module output, these addresses serve to define inter-

modular connections. Signal output words from the module are written into

the control memory at locations defined when the module is built. Many
modules require temporary storage from one sample to the next. In multi-

plexed modules, this is a smal] memory, which is called the ‘‘save memory.”

Usually, the save memory is not a system resource, but rather it is part of the

module itself.
In most respects, the module functions parallel the equivalent analog

modules. The oscillator module, for example, has cwo signal inputs that are
summed and control frequency just like a VCO. The tuning relationship is
exponential with a resolution of 3 cents. In the original proposal, the oscil-

lator provided the “basic four” waveforms (sawtooth, triangle, rectangle,

574 MusICAL APPLICATIONS OF MICROPROCESSORS

sine) to four locations in the signal memory, but the present low cost of

memory would make a programmable waveform equally practical. Fixed

controls for “octaves per unit" and zero offset would also be included, al-

though they were not originally present.

The mixer/controlled amplifier acts just like an analog VCA. Although

the control computer is capable of generating slow contours for envelopes and

so forth, a 16-way multiplexed contour generator with four different curve

segment shapes is provided to relieve it of that function. Virtually any

contour shape can be constructed from the linear, concave, convex, and “S$”

curves available.

The universal filter module consists of 16 general second order cannoni-

cal digital filters in which each of the five multiplying factors is read from the

control memory. Since the input and output of each filter communicates

with the signal memory, they can be cascaded, paralleled, and even made
into a filter bank spectrum analyzer by suitable setting of control words and
signal memory addresses. The pseudo-DAC module simply serves as a
method for the control computer to write directly into the signal memory.

As might be expected, the system is performance limited by the two
memories. Although the control memory is shown as a system-wide resource,
in reality it is part of the individual modules. Only the control computer

requires access to all of the control memory. Modules need only access the
portion that holds their own control words. Control memory design, then, is
equivalent to that employed in the multiplexed oscillators described earlier.
Thus, the control memory does not limit performance as modules are added.

The signal memory is a different story, however. Every module must be
able to access any part of it at random. In fact, the total number of read
accesses per sample period is equal to the total number of signal inputs in the

system. Likewise, the number of write accesses per sample period is equal to
the number of signal outputs in the system. The total number of words in the
memory is also equal to the number of outputs. Thus, at first glance, N + M
memory cycles must be performed in a sample period, where N is the number
of inputs and M is the number of outputs. The proposed system had provi-
sions for 288 inputs and 288 outputs. A straightforward time-multiplexed
signal memory would need a cycle speed of 27 nsec to get all 576 accesses
accomplished in a 16-jsec sample interval.

The cycle rate can be nearly cuc in half if writing is performed in an

orderly fashion. This is quite reasonable, since every word is written each
sample period and write addresses are preassigned to the modules. In order to
save time when writing, the memory array is organized such that several
write ports are formed that can be written into simultaneously. In the
proposed system, the signal memory consisted of 18 blocks of 16 words each.
Only 16 write cycles were therefore necessary to update the entire memory.
By using the block write, the number of memory accesses per 16pssec is cut

DicrraL HARDWARE 575

down to 304, which allows a 50-nsec read cycle and a 100-nsec write cycle; a
practical figure for conventional logic.

The number of signal inputs in the system is therefore limited by signal
memory speed. The only way to ovetcome that limitation without sacrificing
interconnection flexibility is to completely duplicate the memory so that two
real read access ports are available. The same data would be written into the
same addresses in both memories simultaneously. Reading would be inde-
pendent with half of the modules reading from one memory, while the
remainder read from the other half. The memory throughput capability
would therefore be doubled. Memory splitting without duplication is also

possible if a communication module is defined that can transfer selected signals

from one-half of the system to the other.

Signal-Processing Computer

In spite of the flexibility of a modular digital synthesizer, nothing
matches the generality of an ordinary computer in sound synthesis and
modification. However, only the largest general-purpose computers ate fast
enough for really significant real-time synthesis, not to mention their enor-
mous cost. A specialized signal-processing computer, however, is less general
than a standard computer but more general than the collection of hard-wired
modules described earlier. The primary benefit of a signal-processing com-
puter is that the computations, their sequencing, and their eventual disposi-

tion can all be specified by programming.

Speed is gained by taking advantage of repetition and using “mac-
roinstructions,” both of which allow a high degree of parallelism and pipelin-

ing. Speed is also enhanced by the virtual absence of conditional branch-type
instructions, which normally bog down a pipelined machine. One simple
type of macroinstruction can be represented by the expression A = A + B +
CD, where A is an accumulator register and B, C, and D are variable

operands. This single instruction replaces two adds, a multiply, and several
data move instructions in a typical computer yet requires little if any extra

hardware to implement because of the nature of multiplication. Such an
instruction is useful in implementing digital filters and performing the fast
Fourier transform. As a matter of fact, an instruction to perform the calcula-

tions involved in evaluating an FFT node pair is well within the realm of
practicality. Other macroinstructions might perform linear interpolation,

maximum-value selection, or table lookup (including argument scaling and
table origin offset), again with a single instruction.

Repetition is denoted by arranging data in blocks and then executing a

particular instruction on the entire block. In this manner, a long, highly

efficient pipeline can be kept filled with data a high percentage of the time.
For example, a parallel multiplier array can be pipelined by placing a set of

registers between each level of 2 X 4 multiplier blocks. Although the overall

576 MUSICAL APPLICATIONS OF MICROPROCESSORS

input-to-output delay is increased substantially, the throughput rate is in-

creased dramatically. It is not unreasonable to obtain a new product every 40

nsec with TTL logic. This is possible because in a nonpipelined parallel
multiplier the top levels settle out first and become idle, while the lower
levels continue to settle. Pipelining allows new data to be given to the top

levels as soon as they settle.
A special case of the signal-processing computer is the array processor.

These are normally hard-wired or microprogrammed to perform a limited

variety of operations on blocks of numbers at very high speed. Normally they
are interfaced to a host computer as a direct memory access I/O device. In
operation, one or more arrays of numbers are transferred to the array proces-
sor followed by a sequence of operation commands. Often, these operations
are at a very high level such as computation of the autocorrelation function,
conversion of an array of complex numbers from polar form to rectangular
form and vice versa, or even a complete FFT. It is not unusual for an array
processor optimized for FFT computation to compute a 1,024-point FFT in
15 msec using 16-bit arithmetic! Such a device can require an entire rack full
of logic, however.

Much sound synthesis computation can be effectively performed by an
array processor. For example, one block of samples can be an audio signal,
while a second block can be an amplitude envelope. An array multiplication
(computes element-by-element product) operation will then recurn an array
of enveloped samples. Transversal digital filtering is another array-oriented

operation that can be performed efficiently on an array processor.
Even with the tremendous speed improvement offered by signal-

processing computers and array processors, there is no guarantee that real-
time operation can be sustained during highly complex portions of the score.
Nevertheless, such devices are very useful in composing a complex piece
where subsets of the final score can be performed in real time. They are also
valuable in the final run where what might be hours of computation is
reduced to minutes.

Digital Voice-Per-Board System

The voice modular concept of synthesizer organization is also well
suited co digital implementation. In general terms, a voice module is noth-
ing more than a frequency generator, static waveshaper, optional dynamic

waveshaper (variable filter), and amplitude controller connected in a series

string as in Fig. 17-22, A one or more channel envelope generator controls

the amplitude and dynamic waveshaper. A very wide variety of new and
existing musical instruments can be simulated by suitable setting of
parameters.

We have seen how digital circuitry does an excellent job implementing
the oscillator and static waveshaper and, when multiplexed sufficiently, does

Dietra, HARDWARE 577

STATIC OYNAMIE | AMPLITUDE wean} ae - WAVESHAPERT—*|ConTROL = OuTPUT

FREQUENCY WAVE SHAPE FILTER AMPLITUDE
ba ae PP PARAMETER

ENVELOPE
COMPUTER GENERATOR

| CONTROL

ENVELOPE
PARAMETERS

Fig. 17-22. General voice module

so at low cost. The dynamic waveshaper can be implemented via Fourier

series (in which case the static waveshaper is not needed) or with a digital

filter. The amplitude-control element is simply a multiplier, whereas en-

velope generation can be done by the using system or a dedicated mi-
croprocessor.

When cost is an overriding factor, the Fourier series approach is out
(remember that the entire unit diagrammed in Fig. 17-18 is just one voice).
A digital filter and amplitude multiplier would only be practical in a highly
multiplexed voice module and even then the hardware for such “simple”
signal processing would dominate the module's cost, mainly because of the
multiplications required. At this time, analog-variable filters and controlled
amplifiers can do the job cheaper, while theit inaccuracies are not significant
in this application. Thus, in a voice module, digital techniques are most

effective for frequency- and static-waveform generation, while analog tech-
niques are best for economical processing of the tone.

When hybrid techniques are used in a voice module, multiplexing of
the frequency generator and waveshaper becomes less attractive because the
analog portion of the module cannot be multiplexed. In fact, most of the
current work in this area is with nonmultiplexed “voice-per-board” modules
that can be built, or purchased, one at a time as need (or budget) dictates.

This does not mean that some logic functions cannot be profitably shared.
The crystal frequency standard, for example, can be shared among modules as

can the interface to the control computer.

A Hybrid Voice Module

Figure 17-23 is a block diagram of a hybrid voice module that is

practical for an individual to build. Very little is present that has not been
discussed in detail previously. The most interesting feature is a “floating-
point” method of specifying the frequency parameter. The method allows a
frequency resolution of better than 1 cent throughout the audio range with a

578 MUSICAL APPLICATIONS OF MICROPROCESSORS

WRITE NEW
MOPE;oL WAVEFORMS
WORD ADOR OATA WRITE

POST 5
DNIDER

waverorm| [SYMMETRY] VARIABLE
LooKuP TS TaBee- 8 et ANTIALIAS
via SPLITTING FILTER
ey Losic

JITTER
FILTER
+4

! 7 ver
MODE

wie. SELEC

1 2-B1T WeBIT ener
JACCUMULATOR| bres
DIvioER DAC

FREQUENCY
CONTROL (0) 2
WORD

3 vcA
NSB VALUE ADDRESS

PRESCALER
=2N
=Ns8
[EN AUDIO

OUTPUT

17,145893-MHz
OSCILLATOR

Fig, 17-23. Hybrid voice module

single 15-bit parameter. The idea is to use the most significant 3 bits of the
parameter to specify an octave ahd 12 additional bits to specify a frequency

within the octave.
The frequency and waveform generator utilizes variable-sample-rate

techniques to minimize the size and resolution required in the waveform
memory. Waveforms as coarse as 4-bit resolution and 16 steps have been
successfully used in similar generators, and while a wide variety of timbres
was available, waveforms of very low harmonic content are not really possi-
ble.

The frequency generator consists of an eight-stage prescaler followed by
a 12-bit accumulator divider, which drives an 11-bit jitter filter and
waveform address generator. The prescaler divides the 17. 145893-MHz mas-
ter clock (=2!° times the frequency of middle C) by 2, 4, 8, . . . 256 under
control of the 3-bit “exponent” in the frequency-control word. The ac-
cumulator divider uses the 12-bit “fraction” of the control word to divide by
values nominally between 1.0 and 2.0, although much higher division fac-

DictraL HARDWARE 579

IN
7 8 9 0 HW i B MW 1 16 17 1 19 20

HARMONIC NUMBER

AMPLITUDE (48)

t 1 1 1 t i} t 1 | t t Se sess ese 8 as
pte 7 eae ee —————— pies 2

(a)

Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum. (A)
Example waveform with no symmetry and spectrum.

tors are possible with a loss in resolution. The first 2 bits of the postdivider
function as jitter filter, while the remaining 9 bits participate in waveform

table lookup. The highest fundamental frequency that can be generated is 33
kHz, whereas the lowest frequency for full resolution is 65.4 Hz, although
much lower frequencies are possible with less frequency resolution.

The basic waveform generator is a 256-word x 8-bit read/write mem-
ory. It may hold either four different 64-point waveforms, two 128-point
waves, or a single 256-point waveform. To increase flexibility and partially

overcome the small size of the waveform memory, particularly when the
four-waveform mode is selected, symmetry logic has been added. Under the

580 MUSICAL APPLICATIONS OF MICROPROCESSORS

AMPLITUDE, (4B)

“ |

SAA
12345 10 40

HARMONIC NUMBER

(B)

Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum
(cont.). (B) Waveform with even symmetry added and spectrum.

control of a mode word, normal operation plus 4 degrees of symmetry can be
imposed on the tabulated waveform without changing the memory contents.
Figure 17—24 illustrates the symmetry options and their effect on the shape
and harmonic spectrum of the tabulated wave. Option 1 is called even sym-
metry and consists of alternately playing the waveform forward for a cycle and
backward for a cycle. The audible effect is a tone with substantially the same
timbre and brillance bur an octave lower in pitch. Odd symmetry is created

when the waveform is alternately played right-side-up for a cycle and
upside-down for a cycle. The resulting tone has the same degree of brilliance

DIGITAL HARDWARE 581

-20

AMPLITUDE, (d8) -35.

-60
3 5 ? 9 I 13-15 I7 19 21 23 25 27 29 3) 33 35 37 39

HARMONIC NUMBER

Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum
{cont.). (C) Waveform with odd symmetry added and spectrum.

and other characteristics as the original but also has the distinctive hollow
quality of odd order harmonics plus octave-lowered pitch. Even symmetry

may be followed by odd symmetry, which gives a two-octave pitch reduc-
tion, odd order harmonics, and a weird timbre reminiscent of balanced
modulation or spectrum shifting. Finally, odd symmetry followed by even
symmetry retains the two-octave drop but removes the hollow quality from
the timbre.

Fortunately, this kind of symmetry logic is quite simple. Even sym-
metry is created by conditionally inverting the 8 address bits entering the

582 MUSICAL APPLICATIONS OF MICROPROCESSORS

0)

-5

-10

-15

B~20
2
8 -25

5-30
a
3-35

-40

~45

50

a | | m0 | | Fe ioe
r3s79i 5 2 aT al 31 8 7 73

HARMONIC NUMBER

(0)

Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum
(cont.). (D) Waveform with even symmetry followed by odd sym-
metry and spectrum.

waveform memory. On even scans though the waveform memory, the ad-

dress bits pass unaltered, while on odd scans they are inverted by exclusive-or
gates, thus addressing the table backward. Odd symmetry is similarly im-
plemented by conditionally inverting the 8 data bits leaving the memory,
which are assumed to be offset binary encoded. The most significant 2 bits of
the postdivider in conjunction with the symmetry selection determines when
address or data should be inverted.

Figure 17-25 shows a logic schematic of the frequency generator and
static waveform generator. The 17. 14-MHz frequency standard is sent to an

DicttaL HARDWARE 583

AMPLITUDE, (dB)

123567 910f 2l 30 4l] 61 4 1g

HARMONIC NUMBER

Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum
fcont.). (E) Waveform with odd symmetry followed by even sym-
metry and spectrum.

8-bit prescaler counter built with 74LS161 counters. The “LS” version is
necessary because a timing anomaly of the standard 74161 prevents operation

at high clock frequencies. An eight-input multiplexor (74151) selects one of
the eight divided outputs under the control of three frequency control bits.
The multiplexor output is strobed by a D-type flip-flop to suppress glitches
when the frequency control register is changed.

The prescaler output clocks both the accumulator and the postdivider.
The latter is enabled to count only when the adder in the accumulator divider
generates a carry output. Note that the frequency and mode control registers

584 Musica APPLICATIONS OF MICROPROCESSORS

[ise ee
fo 5>

woDe.
CONTROL
word oac

wcrsoaLe

EREQUENCY
CONTROL eae WORD HIGH a
3eITs 7586 a
aN. HIGE

cu

¥s0 SELECT WRITE
ADDRESS WRITE. DATA

ADDRESS
FOR WRITING TO
WAVEFORW MEMORY

u
OF
QE

ae Fate
Ea

FREQUENCY D u SontRoL a €
weap tow errs 8

a

‘a

to FRE,
en. iow

Taser
ley Te

CLR OD
ak a
CET 0B ie our i Q
cep OA 14 7474
st ‘c c) 8

o
FaLsreT
wT #745787 OR EQUIVALENT
ciR 0b BROGRAMMED.SCLORDING
cK ac TO TABLE 17-2,
ce op
cer on

17.) 45893 MH?
FUNDAMENTAL AT

Fig. 17-25. Digital portion of hybrid voice module

DicttaL HARDWARE 585

are also clocked by the prescaler output. This prevents its content from
changing at inopportune times and glitching the adders or waveform
generator. Since the 74173 is a synchronous load register, it must be enabled

by the control computer long enough to be loaded by the next clock pulse.
Even with the largest prescaler division ratio selected, the lead delay is never
more than 15 psec.

Symmetry logic and waveform partitioning logic has been incorporated
into a single 256-word X 4-bit programmable read-only memory. Three of
the ROM address bits are the three most significant bits of the postdivider,

whereas the remaining five address bits are the waveform mode control bits.
Thus, one of 32 different waveform memory operating modes can be
selected. This allows nearly all combinations of waveform table size (64, 128,

or 256), waveform selection when the smaller sizes are used, and symmetry

to be specified. Two of the ROM output bits control conditional com-
plementers on the waveform memory, while the other two are the most

Table 17-2. Waveform Memory Scan Control! PROM Pattern

Mode Most significant accumulator bits? Mode
Number’ O 1 2 3 4 5 6 7 description

ie) oe 0 0 0 0 0 0 0 64 points, wave 1, no symmetry
1 6 40 4 0 4 0 4 even symmetry
2 0 8 0 8 0 8 QO 8 odd symmetry
3 0 ¢ 8 40 6 8 4 odd-even symmetry
4 0 4.8 © 0 4 8 CG even-odd symmetry
5 1 1 1 1 1 1 1 a wave 2, no symmetry
6 1 656 1 6 41 5&6 1 5 even symmetry
7 1 £9 #1 9°44 9 1 9 odd symmetry
8 1D9 5 ‘1 Dg 5 odd-even symmetry
9 15 9 OD 1 5 9 DO even-odd symmetry

10 2 2 2 2 2 2 2 2 wave 3, no symmetry
1 2 6 2 6 2 6 2 6 even symmetry
12 2 A 2 A 2 A 2 A odd symmetry
13 2 E—E A 6 2 E A 6 odd-even symmetry
14 2 6 A E 2 6 AE even-odd symmetry
15 3°93 3 3 3 3 3 3 wave 4, no symmetry
16 3 * 3 7 3 F 8 F even symmetry
17 3 B 3 B 3 B 83 B odd symmetry
18 3 F B 7 3 F B 7 odd-even symmetry
19 3 7 B F 3 7 B F ever-odd symmetry
20 CO) 1 0 1 ie) al ie) | 128 points, wave 1, na symmetry

24 0 1 4 5 @ 1 4° § even symmetry
22 0 1 8 $ G0 1-8 9 odd symmetry
23 0 1 C¢ D 8 9 4 § odd-even symmetry
24 o 1 4 5 8 8 € D even-odd symmetry
25 2 3 2 3 2 3 2 3 wave 2, no symmetry

26 2 3 6 7 23 6 7 even symmetry
27 2 3 A B 2 3 A B odd symmetry
28 2 3 E F A B. 6 7 odd-even symmetry
29 2 5 6 7 A B E F even-odd symmetry

30 o 1 2 3 0 1 2 8 256 points, wave 1, no symmetry

31 0 1 2 3 4 5 6 7 even symmetry

Notes: ‘Most significant § PROM address bits expressed in decimal.
2Least significant 3 PROM address bits expressed in decimal.
3PROM contents expressed in hexadecimal.

586 Musical APPLICATIONS OF MICROPROCESSORS

significant waveform memory address bits. The other six waveform memory
address bits are taken directly from the postdivider.

Although the exact ROM contents will depend on personal preference,
Table 17-2 shows one possibility that works well. The chosen combinations
of waveform size, symmetry, etc., are simply arranged sequentially and
assigned mode numbers from 0 to 31, which corresponds to the 5-bit mode
control input. The only omitted waveform combinations are odd, even—odd,

and odd—even symmetry with 256-point waveforms.
Final values from the waveform memory are sent directly to an inexpen-

sive 8-bit DAC. From this point forward, the tone will be processed by the

voltage-controlled analog circuitry in Fig. 17-26. The four control voleages
required are generated by a 10 bit DAC that is multiplexed four ways using
sample-and-hold circuits. Note that writing into the waveform memory will
generate intolerable noise and therefore must be done while the amplitude is
set to zero. This is one reason for multiple-waveform capability.

One problem with all variable-sample-rate techniques is the need for a
tracking antialias filter. Without the filter, low-frequency waveforms with
little harmonic content will exhibit a “chime-like” effect due to the high
alias frequencies that are unmasked by the absence of strong high-frequency
harmonics (remember that with variable sample rate, the alias frequencies

themselves are harmonic). The filtering requirement is simplified consid-
erably by using one channel of the 10-bit multiplexed DAC to drive a 2050
VCF IC connected as a two-section Butterworth filter. Although the filter

control could be slaved to the frequency control word, the latter's floating
point format complicates matters. Thus, for simplicity and maximum flexi-
bility (one may want to under- or over-filter the waveform for special func-
tions), the antialias filter is independently controlled. Utilization of the
exponential tuning feature of the 2050 allows a 1,000-to-1 tuning range
with a step size so small (0.79) it is inaudible.

The dynamic waveshaping filter can take on many forms, but here the
simple state-variable type is used. Two channels of the 10-bit multiplexed
DAC are used to control center frequency and Q factor of the filter. Exponen-
tial tuning of both parameters at the rate of 100 steps/octave retains better

than 0.7% resolution over a 1,000-to-1 range. A 2-bit word and some analog
switches select the filter's operating mode.

A VCA built with a 3080 gain control element uses the remaining

10-bit DAC channel to control amplitude in steps of 1/10 dB with a theoret-
ical range of 100 dB. Note that any nonlinear distortion in the VCA results
in pure harmonic distortion of the waveform, since only one tone is being
handled.

Interfacing to the control computer is not explicitly shown because of
wide variations in computer types, word lengths, and personal bias. When
updating the frequency control words, however, it is important that all 15
bits change simultaneously. When using an 8-bit host, this requirement is

Bi
Np
ow

aa
I0

A
pu
gk
y

jo

u
o
o
d

Go
ye
uy

“g
z-

z1

“B
14

587

ss34oay
crear)

‘
=

=
Buvodn

T
G
N
N
V
H
D

cif om
vats

vuv0
v
d

|

‘Lif OL

o

vP—
203735,
NOLLIWNd
a wa
d

F cist
|
 =
‘via

Dicira HARDWARE

588 MUSICAL APPLICATIONS OF MICROPROCESSORS

taken care of with an additional buffer register much like the vector graphics

oscilloscope interface described in Chapter 11. Writing into the waveform

memory and multiplexed DAC memory should conform with the timing

requirements of the RAM chips used.

Commercial Voice Modules

Unlike the complete digital synthesizers discussed previously, digital

voice-per-board modules are on the market now and are being sold in signift-
cant numbers. Actually, these are hybrid modules much like the one just

described but with different cost—flexibility-quality tradeoffs. One of the

most popular units is one made by Solid State Music (the same company that

developed the 2000 series of analog synthesizer ICs), which is a completely
self-contained board that plugs into an S-100 bus computer. Another is made
by ALF Products, which uses a proprietary bus for control. However, a
sophisticated S-100 bus adapter is available. They also make a synthesizer

mainframe that includes an intelligent (6502) interface usable with any kind
of host. In either case, each board generates a single voice. Multiple boards
are used for real-time polyphonic synthesis.

Solid State Music SBI

Looking more closely at the Solid State Music SB1 synthesizer board
diagrammed in Fig. 17—27, it is seen to resemble the unit just described but
at a somewhat more primitive level. An I/O interface IC is used to interface
to the host computer bus with the advantage that all control parameters can

be read back from the board. The frequency generator utilizes a 14.31818-
MHz (four times the color TV subcarrier frequency) precision clock, which is
fed to an 8-bit divide-by-N divider. The output of the divider enters an 8-bit
divide-by-256 counter, which, when combined with a nine-input octave
selector, implements division by 1, 2, 4, .. . 256. A 12-bic frequency

control word is thus needed to control the output, which is 32 times the
ultimate frequency. Unfortunately, the resolution of the 8-bit divide-by-N
block is about 0.8% or around 12 cents; an error that critical listeners can

easily hear, particularly in chords.

The static waveform generator consists of an additional 5-bit counter
driven by the frequency generator, which in turn addresses a 32-point section

of the 256 X 8 waveform memory. Eight different waveforms can therefore
be stored in the waveform memory. The memory output then drives an 8-bit
DAC for the final waveform. No antialias filter is provided, so use is re-
stricted to relatively bright timbres unless the fundamental frequency is high

(500 Hz) or a chime-like effect can be tolerated at low frequencies.
A different approach to dynamic waveshaping is utilized in the SB1.

An on-board envelope generator also sequences through four of the eight
stored waveforms. Thus, a rough approximation of dynamic waveform varia-

DierraL HARDWARE 589

wave
GROUP WRITE
SELECT WAVETORM

—

Counter [39
wae 256x8 8-BIT AUDIO

2 eR oat YEA F—e) VCR Pm ourput

FREQUENCY Sanspir
OO a SELECTOR “EXPONENT

WRITE
ENVELOPE

2
awit [MSE 6x4 4-e1T
COUNTER ENVELOPE Dae
+16 MEMORY

FREQUENCY 8-BIT C1 4-BIT I ENVELOPE VOLUME 4-817
eat COUNTER | gunarioN—S7| COUNTER | CONTROL—4| Dac
FRACTION N

14.318 MHz 200 tz

Fig. 17-27. Solid-state music SB1 simplified block diagram

tion is implemented. One drawback of this approach, even with considerably

more intermediate waveforms, is discontinuities when switching from one

waveform to another. Nevertheless, it is an appropriate technique for accom-

paniment voices. Amplitude control is by two VCAs connected in series.

One is used for enveloping the tone, while the other is an overall volume
control. Each is driven by a 4-bit DAC giving coarse but usually acceptable
amplitude control.

One nice feature of the board is the built-in programmable envelope
generator. The amplitude envelope shape is actually written into a 16-word

X 4-bit “waveform” memory, which allows arbitrary envelope shapes to be
specified. A 4-bit counter driven by a 4-bit divide-by-N block driven by a
200-Hz (trimpot adjustable) oscillator scans the envelope memory. The pro-
grammable divider is used to control the envelope duration. Each four counts
of the envelope scan counter also selects a different waveform,

590 MUSICAL APPLICATIONS OF MICROPROCESSORS.

WAVEFORM STEREO POSITION

U
di:

LEFT
OUTPUT

Je8iT N26 8 8-8iT LOW-PASS ANALOG
COUNTER [7 WAVEFORMT 8 pac | *YFILTER VeA [| owitcH
+128 MEMORY wear

CNTL cNTL OurPuT

FILTER
OCTAVE 8-INPUT CUTOFF Ry 4-87

T! FREQUENCY bac SELECT SELECTOR FREQUE

)

el ATTACK
COUNTER: oT
+128 RATE

ANALOG
_f- DECAY er 8-BIT w|ADSR ANALOG
x32 RATE —/) DAC ENVELOPE MULTIPLY
FREQUENCY GENERATOR

MULTIPLIER

i SUSTAIN 3 8-BIT

exvernal 4 AMPLITUDE OAC
REFERENCE

EQUALLY

TEMPERED —2NJ 16- INPUT.
REFERENCE —'©/] SELECTOR
FREQUENCIES

VOLUME
CONTROL:

NCTE
SELECT

Fig. 17-28. ALF Products AD8 simplified block diagram

ALF Products AD8

Figure 17-28 is a block diagram of the AD8 synthesizer board from
ALF products. The frequency generator utilizes a top octave divider, which is
actually located on the system interface board and shared among voice mod-
ules. A 4-bit code chen selects one of 12-note frequencies, while another
4-bit code selects one of 7 octaves. Although the frequencies are very accurate

for the 12-tone equal-tempered scale, flexibility to use other tuning systems,
“bend” a note, or do glides is completely absent (although four “external
reference” inputs allow external oscillators to perform these functions). One
unique feature of the frequency generator is the inclusion of a frequency
multiplier using a PLL, which partially offsets frequency division in the
waveform generator.

The waveform generator utilizes a single 128-point X 8-bit waveform
memory. Following the 8-bir DAC, a programmable low-pass filter at-

Dicitat. HARDWARE 591

tenuates alias frequencies. A 4-bit value selects one of 16 possible cutoff
frequencies. There is no provision for dynamic waveshaping.

An unusually sophisticated hybrid envelope generator is provided. Four
8-bit values select attack rate (decibels per millisecond), decay/release rate,
sustain amplitude, and overall amplitude. A sequential digital circuit and an
analog integrator are used to approximate the standard ADSR envelope.

In spite of their limitations, very listenable music can be synthesized in
real time if a sufficient quantity of either type of board (four to eight or more)
is available. At an average cost of $250 each, a large system can become an
expensive proposition, although the cost compares favorably with large elec-
tronic organs, which such a system emulates quite well. A complete setup for

general music synthesis requires percussion instruments as well, but the
author is not aware of any percussion voice boards being on the market.

IB
Music Synthesis

Software

With few exceptions, the entire discussion up to this point has concentrated

on hardware-related items, both digital and analog. The key to a successful

computer music system, particularly one utilizing direct synthesis tech-
niques, however, is efficient and easy to use software. Actually in the final

analysis, software is the real frontier in computer music tegardless of the
sound generation technique utilized. Little of the preceding hardware discus-
sion can be considered “new” and almost certainly none of it is revolutionary.
On the other hand, any given programmer with a suitable knowledge of
music and synthesis techniques can create a music-oriented programming
system significantly different from others that have been done and may
possibly stage a software breakthrough. This is as ic should be, since, after
all, the general-purpose computer was conceived as a finite hardware device
with infinite application possibilities through programming.

Computer music “systems,” where a system is the combination of

musical I/O hardware with software “glue,” can be separated into two easily
distinguishable groups. The first group covers systems designed for real-time
performance directly from manual input devices such as keyboards and
source-signal analysis. The second group covers “programmed” performance,

either real-time or not, in which the sounds are carefully specified prior to
the actual synthesis. While the former type of system has not been empha-

sized in this text, it is of interest to a great many people. In terms of
software, however, such systems tend to be specialized for particular combi-

nations of input devices and synthesis techniques. The second type of system
tends to be much more general. Often, these develop along classic software
system lines with the concepts of tasks, events, macros, supervisors, and

languages being integral parts.
In this chapter, programming techniques for the programmed perform-

ance type of system will be discussed. In addition, the anatomy of a simplis-
tic but expandable music software system will be described. It is immaterial
whether the synthesis is performed in real time or not, since the “score” is
definitely prepared outside of real time. In most cases, nonreal-time direct

593

594 MUSICAL APPLICATIONS OF MICROPROCESSORS

Score A SORE oy | OPERATING SYSTEM FUNCTIONS
EDIT, SAVE, LOAD, EXECUTE, PRINT, LEVEL 5
COMPILE

LOAD MUSIC PROGRAM INTO MEMORY, OPEN SCORE
FILE AND SAMPLE FILE 240 EMECUTE

SCORE ys [MACROFUNC TIONS
REPEAT, REFRAIN, TRILL, CHANGE KEY| LEVEL 4

EXECUTABLE SCORE
STATEMENTS

wehbo | STANDARD MUSIC INTERPRETER
FUNCTIONS LeveL 3 NOTES, VOICE DEFINIT!ON, TEMPO,
EVENTS

WAVEFORM TABLES ENVELOPE
TABLES SPEED PARAMETERS

CMe terE Te nvELOPE SHAPING ROUTINES
RATE | ADSR, PIECEWISE LINEAR, CURVED LEVEL 2

SHAPE RECONSTRUCTION

FREQUENCY AMPLITUDE
WAVEFORM, SPECTRUM

yee [SOUND GENERATION ROUTINES
RATE | OIRECT-WAVE COMPUTATION, TABLE LEVEL |

LOOKUP, INVERSE FOURIER FRANS-

FORMATION
SAMPLES

ee | REvERGERATION ano cHoRUS |
RATE \ I LEVEL @

cs eeggesianations wses|

SAMPLES TO
BAC OR
STORAGE
Device

synthesis will be assumed because it is more general and, in most respects,
more difficult than real-time performance using external synthesis hardware.

Organization of Music Software Systems

Like most nontrivial software systems, a music synthesis software sys-
tem is organized into a hierarchy of programs and functions. Figure 18-1
illustrates chat at least five distinct levels can be identified ranging from the

lowest level sample-by-sample computations to the highest level operating
system functions. The levels are distinguished by the time scale at which
they operate. The lower levels operate in the micro- and millisecond terms of
individual waveform and envelope samples, while the higher levels operate
on the scale of seconds associated with notes and phrases in the musical
performance. Information flow is generally from the higher levels to the

lower levels, although in some cases signaling in the opposite direction may
be done.

Fig. 18-1. Music software system hierarchy

Muste SYNTHESIS SOFTWARE 595

Often, each level is served by a distinct program or set of subroutines
and in fact the programming languages used may vary from level to level.
Over all a music synthesis software system for programmed performance
operates as an svterpretive system that extracts information from the uset-
prepared score and then acts on the information, The higher levels do the
information extraction and organization, while the lower levels do the actual

execution,

The lowest level synthesis routines, which will be called “Level 1”
routines, operate at the sample rate of the final sound. This means that a

single “loop” through the synthesis routine generates only one sample of the

final sound. Basically, the routine accepts sound parameters as input and
generates sound samples as output. The output samples may be mixed with
the output of other Level 1 routines or the same routine with different
parameters. Details of the routine, of course, depend heavily on the synthesis
method chosen. If waveform table lookup is the primary scheme utilized,
then each loop involves the computation of a new lookup address based on a
frequency parameter, actual table lookup based on a waveshape parameter,
amplitude adjustment based on an amplitude parameter, and output based
on a location parameter.

Usually, a Level 1 synthesis routine will generate a “block” of samples

before returning to the next higher level. This saves most of the considerable
overhead associated with call and return linkage and the passing of param-
eters. In the hierarchical system being outlined, the parameters of the

sound being synthesized are assumed to be constant throughout the block.
Often, a sample buffer is used to hold one or more blocks of samples. As
samples are computed, they are algebraically added to corresponding samples
in the buffer in a manner analogous to the audio bus of an analog voice
modular system. If stereo or quad is being synthesized, there will be a
distinct buffer for each channel of sound.

In some cases, there may be a “Level 0” routine that processes sound

samples from the buffer before playing them through the DAC or writing
them on a storage device. The usual function of such a routine is the addition
of reverberation or a chorus effect to the sound. Parameters from the upper

levels are often required to control the effects produced, particularly when
they are used in a piece for dramatic contrast.

Level 2 routines operate at what can be called the “envelope sample

rate.” This is the rate at which the fundamental parameters needed by the
Level 1 routines are updated and is equal to the audio sample rate divided by
their block size. Rates of 50 Hz to 2,000 Hz are useful, which corresponds to

update periods of 0.5 msec to 20 msec. Level 2 routines accept envelope
parameters from the higher levels and supply sound parameters to the Level 1
routines. Envelope parameter descriptions vary widely, however, and a typi-
cal system may use different Level 2 routines simultaneously according to
envelope type and description.

596 MUSICAL APPLICATIONS OF MICROPROCESSORS

For example, amplitude envelope needs are often satisfied by the ADSR

shape, which can be completely described by five parameters. It is the

responsibility of a Level 2 routine to generate samples of the shape as needed,

given the parameters, and then pass these samples as parameters to the Level

l routines. A different Level 2 routine may produce arbitrary contour shapes

using a piecewise linear or curvilinear approximation. With such approxima-

tions, the higher-level routine specifies segment endpoints, the amount of
time spanned by the segment, and the segment shape (linear, concave,

convex, etc.). Yet another might interpolate between tabulated samples of a
shape that could be the result of a source-signal analysis, for example.

Level 3 routines comprise the bulk of the coding in the system. Their
job is to accept music language statements, which are character strings,

extract the information contained in them (or flag an error if the statement is
incomprehensible), and supply parameters to Levels 1 and 2 routines. It is
also responsible for setting up waveform and envelope shape tables, if used,
in response to voicing statements in the score. It is hard to pin down the

exact rate of execution for a Level 3 routine, but it is generally at the rate that

notes are played. This is often called the “syllabic rate” from the correspond-
ing level in the hierarchy of routines that comprise a typical speech synthesis

system.
Level 4 programming is a superset of Level 3. In most music, there is a

considerable amount of repetition that when added to the many conventions
of standard music notation results in a conventional score much shorter than

the corresponding computer score expressed as character strings. The concept
of macroinstructions is useful in taking advantage of these properties of the
score to reduce its size. Basically, a macroinstruction is a command to the

macroexpander (the Level 4 routine under consideration) to convert a state-

ment such as “repeat the following three-note sequence eight times’ into
eight repetitions of the three-note statement, which are then interpreted by
the Level 3 routine just as if the user had written the sequence eight times

himself. Most macroexpanders allow loops, conditional tests, counters, and
procedure calls (subroutines), suggesting their use as a composition tool as
well.

Even though they are not really part of the music software system,
operating system functions on Level 5 have been included for completeness.
These are the routines that allow the user to prepare and edit the score file,
link and load the music system programs into memory, and control the

reading of the score file and writing of the sample file in a non-real-time
system. Depending on the installation, the operating system may range from
a paper tape editor and loader to a full disk operating system. In a loosely

structured music software system, the operating system is vital in its role of
maintaining the data base.

Implementation of the Levels

Current thinking in computer science dictates that each of these levels
be independently implemented as a separate program and linked together

Music SYNTHESIS SOFTWARE 597

only for execution. In fact, each level should probably be broken down
further into many subroutines. While this book is not the place to discuss
modular and structured programming practices, it is clear that the major
levels need not all be coded in the same programming language. In fact, the
optimum balance between programming effort and music program speed
requires that different languages be used on different levels.

There is a little question that Levels 0 and 1 should be implemented in
assembly language for the machine being used. The reason, of course, is that
they execute at the sound sample rate of 8 kHz to 50 kHz. Furthermore, for

almost any personal computer, fixed-point (integer) arithmetic must be used
for the sample calculations. Most programmers are unfamiliar with the fine
points of fixed-point computation, having been spoiled by the floating-point
capabilities of large mainframe computers or high-level languages. Since
integer computation is vital to acceptable speed with microcomputers, it will
be discussed in detail later.

In isolated instances, the lower-level routines have actually been im-

plemented in the microcode of a microprogrammed minicomputer. This essen-
tially means that new instructions are added to the computer’s repertoire that

facilitate sample computation. What is actually happening is that the inter-

nal machine registers and logical elements are being directly manipulated
by the microcode at maximum speed without the overhead of reading in-
structions from main memory. Although two to three times faster,
microprogramming is even more obscure and difficult than assembly pro-

gramming. Also, only the larger minicomputers allow user microprogram-

ming anyway.

Dedicated hardware such as was discussed in the previous chapter can
be thought of as replacing Level 1 routines. If the dedicated hardware is

intelligent, Level 2 may also be replaced. In computer-controlled analog

systems, voltage-contralled oscillators, amplifiers, and filters perform the

functions of Level 1 routines, while envelope generators do the Level 2
functions.

High-Level Languages

Level 3 routines are best implemented in a higher-level language,
particularly in a non-real-time system. This level of the music system typi-

cally handles a relatively small volume of data but does a lot of character
string scanning, data table maintenance, and decision making. Thus, only a

small portion of the computational effort is spent in these routines, while a
large portion of the programming effort is sunk into them, High-level
languages tend to minimize the programming effort required while simulta-

neously making the programs easier to read and modify (if adequately com-
mented). High-level languages for microcomputer systems almost invariably

have features chat make it easy to link to assembly level routines.
The natural question, of course, is: Which high-level language should

be used in the upper levels of a music software system? Like microprocessor

598 MUSICAL APPLICATIONS OF MICROPROCESSORS

selection itself, language preference tends to be more a matter of personal
experience (and raste) than scientific weighing of virtues and drawbacks. The

following, therefore, amounts to nothing more than a summary of the au-

thor’s biases, which, hopefully, are shared by a majority of readers.
The primary virtue of BASIC, of course, is its nearly universal im-

plementation on microcomputer systems. Drawbacks are many but most
serious are the lack of a true subroutine capability and a restricted variable-
naming convention. Its formal mechanism for linking to assembly language

leaves much to be desired, although tricks for enhancing it abound. These
shortcomings make writing and implementation of large programs in BASIC
more difficult than necessary. Nevertheless, BASIC is excellent for getting
started, and after all, has been used in programming examples so far.

FORTRAN is the grandaddy of programming languages and is now
available on some microcomputers. For musical purposes, it is very similar to

BASIC but with subroutine and naming restrictions removed. It is, however,
somewhat weaker in the handling of character string data than BASIC is.
Since FORTRAN is compiled, it is faster than a BASIC program, which is
usually interpreted. The best-known direct computer synthesis program,
MUSIC V, is implemented in FORTRAN but is far too big and dependent
on a big mainframe operating system to run on a microcomputer without

extensive modification. FORTRAN would be a good choice for someone
already familiar with it but should probably be bypassed by newcomers in
favor of a more “modern” language.

COBOL, the most widely used big-computer language, is unsuitable
for a music software system.

APL may be available on some microcomputers. While it is an excel-
lent problem-solving language for those adept in its use, it is an extremely
self-contained, “isolationist” language. This means that communication

with the operating system, assembly language programs, and data files is
poor or nonexistent. While not suitable for a music performance system, it
may be useful in exploring computer composition techniques.

The remaining are called “block-structured” languages because of the
way that statements are grouped together and the mechanism for variable
storage allocation. “System programming” languages such as PL/M are mid-
way between assembly languages and other high-level languages. As such,
they are easier to use than assembly language but are still too closely tied to
the machine for maximum ease of use and good portability.

PASCAL is a new high-level language that is gaining popularity among
microcomputer users, primarily through the efforts of the University of
Southern California at San Diego (USCSD). It is fairly conventional in appear-
ance but satisfies programming purists because of its structured properties.
Linkage to assembly language is well provided for through the same “call”
mechanism used for PASCAL subroutines. The linking loader that is part of a
PASCAL system insures that the assembly language subroutine has access to
PASCAL variables and vice versa. This language is highly recommended for
implementation of the higher levels of a music programming system.

Muste SYNTHESIS SOFTWARE 599

C is another new language that seems to be gaining followers. It is
curtently implemented on the LSI-11 and to a lesser extent (“Tiny” C) on

other microprocessors. Its main distinguishing feature is a somewhat cryptic,

although compact, syntax, which may make an inadequately commented
program difficult to comprehend.

One programming language property that is taking on increasing sig-

nificance is portability. Ac the current rate of microprocessor evolution, it is
quite likely that the computer being used will become obsolete in the course
of music system development (this has happened twice to the author and
threatens to happen again). Parts of the system implemented in a high-level

language should be easily transportable to a new system if required. PASCAL
promises to be very good in this respect. Although the low-level assembly
language routines are not portable, they can usually be kept small, thus
minimizing the effort needed to reimplement them on different hardware.

Low-Level Programming Techniques

Because they are executed so much, low-level sample computation

routines completely dominate the speed characteristics of a direct computer
synthesis system. Arithmetic operations in turn dominate the execution time

of these low-level routines, particularly on a microcomputer. This is in stark

contrast with most general-purpose assembly level programming in which
arithmetic instructions are among the /east used. Unless the reader has an

IBM 370 or other large mainframe computer handy, it is a sure bet that these

arithmetic operations will be of the fixed-point variety. The techniques of
fixed-point computation are rapidly becoming an obscure art, however. In
the next few pages these will be described to the depth necessary for use in
digital signal-processing applications. Reasonable familiarity with the binary
number system will be assumed. If the reader lacks such knowledge, intro-

ductory chapters of nearly any book on microprocessor programming can

provide the background.
Adequately illustrating such a discussion requires an example mi-

ccoprocessor. Although Chapter 5 strongly suggested that the LSI-11 or
other 16-bit machine should be used for direct synthesis applications, we will

be using the 6502 microprocessor here for illustration. Such a choice can be
rationalized! in a couple of ways. First, programming just about any other
choice would be easier, since the 6502 does not have hardware multiply or
divide or even double byte add and subtract. Thus, understanding the given
examples implemented on a 6502 will make similar implementation on a
better machine seem simple in comparison. Another reason is that the 6502
is the basis of a great number of very inexpensive microcomputer systems.
Examples are the minimal KIM-1, SYM-1, and AIM-65 single-board com-

puters priced between $180 and $375, Commodore PET complete system for
$800, and APPLE-II color graphics system for around $1,000.

'The eruth is the author's LSI-11-based system is not yet “up and running.”

600 Musica APPLICATIONS OF MICROPROCESSORS

The examples would not be very interesting unless actual synthesis and

analysis experiments can be performed. Fortunately, direct synthesis support

for 6502-based systems is provided by a company called Micro Technology

Unlimited. These people have available an “8-bit Audio System” board

consisting of an 8-bit DAC (adjusted to better than one-quarter LSB linear-

ity), sharp 3.5-kHz low-pass filter (three-section 0.5-dB Chebyshev), and a

half-watt audio power amplifier, all of which runs on a single 5-V power

supply and costs less than $50. An ADC subsystem with microphone pre-

amp, low-pass filter, sample-and-hold amplifier, and 8-bit 15-usec ADC is

also available for somewhat more. While these items are definitely not hi-fi,

they are indeed capable of illustrating all of the synthesis, modification, and

analysis techniques described in previous chapters. Most experimentation

will require a large memory buffer co hold a few seconds of sampled sound (or
external mass storage device), although some real-time operations are possi-

ble. A 32K memory, for example, will hold about 3.5 sec of sound at the
sample rate for which these boards were designed.

Properties of Binary Arithmetic

Before plunging into programming examples, it is wise to review the
characteristics of binary arithmetic that are important to signal processing.
We will be dealing with two fundamentally different kinds of numbers,
Signed twos-complement numbers and znsigned numbers. In an unsigned
number, the weight of each bit is two raised to the bit number power. Thus,

a single byte in the 6502 can represent any number from 0 through +255.
Unsigned numbers are therefore always positive. In programming, they are

normally used to represent addresses but in signal processing they are most
useful as multiplying coefficients in digital filters, etc. Besides doubled
dynamic range compared with signed numbers, the use of unsigned numbers
simplifies the associated multiplications.

Signed twos-complement numbers are probably more familiar to most
readers. The bit weights are the same as in unsigned numbers except that bit
7 (the leftmost) has a weight of —128. The number is negative only if this
bic is a 1; thus, it is called the sign bit. The remaining bits are called
magnitude bits, although it must be remembered thar they have been com-

plemented in the case of a negative number. A signed single-byte number
can therefore represent quantities be-ween —128 and +127. In signal proc-
essing, signed numbers are used to represent audio signal samples that
invariably swing positive and negative.

A signed twos-complement number can be xegated, that is, N converted
to —N or —N converted to N, by complementing every bit in che number

and then incrementing the result by one. This will not work for the number
~ 128, however, because the increment operation overflows and the result

becomes — 128 again. Since negation will be required often in signal process-
ing, mere existence of the largest negative number in a sample stream may

Music SYNTHESIS SOETWARE G01

cause an overflow that gives rise to a full-amplitude noise spike. Avuidance of
such overflows usually requires an extra bit of precision in the numbers that

may propagate when calculations are chained togethet. Thus, it is wise to
prevent the occurrence of the largest negative number in synthesized samples
and to search and correct ADC data by converting any —128s to —127
(which amounts to slight clipping rather than a full-scale noise spike) or the
equivalent when other word lengths are used.

Fixed-point arithmetic is often equated with integer arithmetic because
memory addresses are usually involved. In signal processing, fractions and
mixed numbers are more common. There are at least two ways to think about

such numbers. One involves the concept of a scale factor. The numbers
being manipulated are considered to be the product of the actual quan-
tity and a scale factor that the programmer keeps track of. The scale factor is
chosen so that when it multiplies the numbers being handled, the results are
pure integers, which are “compatible” with integer arithmetic. In the course

of a chained calculation, the scale factors change so as to maintain the largest

range of integers possible without overflowing the chosen word lengths.

The other method, which will be used here, involves the concept of a

binary point. The function, meaning, and consequences of binary-point posi-
tion are the same as they are with decimal points and decimal arithmetic.
The microcomputer can be likened to an old mechanical calculator or a slide
rule in which raw numbers are fed in and raw answers come out. It is the
operator's responsibility to place the decimal point. Binary integers have the

binary point to the right of the magnitude bits: Binary fractions have the
binary point to the left of the magnitude bits. For unsigned numbers, this
means to the left of a// bits, while signed numbers have the point between
the sign bit and the rest of the bits. Mixed numbers can have the binary point
anywhere in between.

A good way to think of mixed binary numbers is to consider their
resolution, which is the weight of the least significant bit, and their range,

which is the largest number that can be represented. We will also be refer-
ring to their integer part, which is the string of bits to the left of the point,
and their fractional part, which is the string to the right. Thus, a signed
number with the binary point between bits 3 and 4 as illustrated in Fig.
18-2 has a resolution of 1/16 or 0.0625 and a range of 715/16 or 7.9375
(which can be called 8 for convenience). The integer part is bits 4—G and the

fractional part is bits 0-3. Integers, of course, have a resolution of unity and
a range dependent on word size, while fractions have a range just shore of

unity and a resolution determined by word size.
The last property of binary numbers is word size or simply the number

of bits allocated to the representation of the number. Arithmetic word sizes
are usually chosen to be integer multiples of the computer's word size, or in

the case of a sophisticated machine, a multiple of the smallest directly
addressable data element, usually an 8-bit byte. When the word size of a

602 MUSICAL APPLICATIONS OF MICROPROCESSORS

-27 28 2 24 23 22 a 20

SIGNED INTEGER [es] 64 | 32 IE | a] 4 | 2 | |

7 6 5 4 3 2@ ft 90
1 1 0 0 J Oo ol |. 53.

= 2 gf © gt pe? 23 e*

SIGNED MIXED NUMBER [-8 | 412 | ' | va] \/8 [vs |

7 6 & @ 3 2@ Tf OO
1 1 06 O 1 0 1 1 =~3.3125

SIGNED FRACTION 72 \/8 | 16 | 1/32

7 6 5S 4 3 2
bok 3g 1 0 = —0.4140625

Fig. 18-2. Binary point placement

number is greater than the word size of the machine, the number is said to be

a double-precision or multiple-precision number. Thus, with the 6502 example
machine, 16-bic numbers are double-precision quantities, 24 bits is triple-
precision, etc.

Before the advent of microprocessors, visualization of multiple preci-
sion numbers on paper and in memory was a simple, unambiguous task. A
double-precision number, for example, would be visualized as consisting of a
high order, more significant part and a low order, less significant part. When
written on paper, it is natural and even necessary to write the high order part

to the left of the low order part. If one listed a portion of memory containing
the number, it would be reasonable to expect it to look the same as it did on
the notepad. However, many of the most popular microprocessors (6502
included) handle double-precision unsigned numbers (namely memory ad-
dresses) /ow byte first! Thus, the address byces of instructions and indirect

address pointers all appear on a memory dump backward. Furthermore, since
address arithmetic is done one byte at a time, the programmer must be aware
of this to get these operations done right.

The question, then, is: Should 2// numbers be stored and manipulated

backward or just addresses? The author has tried it both ways and found
neither to be completely satisfactory on the 6502. However, in signal-
processing work, it is recommended that all numbers except addresses be
scored in natural order. One reason is that data arithmetic will predominate,

which means that confusion will be only partial rather than tocal. The other
reason is that more powerful 16 and even pseudo-32-bit microcomputers will
eventually eliminate the problem by directly handling the word sizes of
interest—in natural order.

Music SYNTHESIS SOFWARE 603

Addition and Subtraction

Ac this point, we are ready co discuss the effect of arithmetic operations
on the various kinds of numbers. We will be discussing the four fundamental
arithmetic operations (addition, subtraction, multiplication, and division)
and their effect on the word size and binary point placement in the result.
Rules governing mixed operands such as signed/unsigned and different word
sizes will also be discussed.

Addition is the most fundamental operation and is usually considered
the simplest. The operands of an addition are not distinguished from each
other and are simply called addends. The following is a summary of the rules
of binary addition of signed numbers:

1. The binary points of the addends must line up before addition unless
scaling (multiplying or dividing by a power of 2) of one addend is
specifically desired.

2. The range of the result can be up to twice as large as that of the widest
range addend (one extra bit added to the integer part) and the resolu-
tion of the result is equal to that of the highest resolution addend (no
change in the fractional part).

In heeding the first rule, it may be necessary to shift one of the addends
with respect to the other. When shifting left, zeroes should be brought in
from the right. When shifting right, bits equal to the sign bic must be
brought in. Adding entire bytes to the left of a short number so that it can be
added to a long number is essentially equivalent to shifting right so these
bytes must be filled with sign bits. If an unsigned number is to be added to a
signed number, it is usually necessary to provide a high order extension of
the signed number because of the greater range of the unsigned number.

Rule 2 simply says that to avoid overflow when unknown numbers are
added up, it is necessary to allow for sums larger than the addends. When a
string of equal-length numbers is being added, the word size of the final sum

will not exceed logeN more bits than the word sizes of the addends, where N
is the number of numbers added. If it is known that the addends do not cover

the full range allowed by their word size, then the word size allowed for the

sum may be less than that given by the rule.
The usable resolution of the sum may be less than the resolution given

by Rule 2. If the addend with less resolution is an audio signal or other

“approximate”’ value, the usable resolution of the result cannot be any greater
because of quantization noise.

In subtraction, there is a distinction between the operands. When done
on paper, the top number is called the minuend and the number being
subtracted is called the subtrahend. Twos-complement subtraction is gener-
ally accomplished by negating the subtrahend and adding the result to the
minuend. This may be done either by a hardware subtract instruction or by
actually complementing the subtrahend and adding. Since signed operands

604 Musical APPLICATIONS OF MICROPROCESSORS

were assumed for addition anyway, the properties and rules for subtraction

are the same as for addition.
Often, such as in digital filters, a quantity of numbers that partially

cancel each other may be added up. A property of twos-complement arithme-

tic is that the order of addition/subtraction is immaterial. This is true even if

intermediate sums overflow! This is a handy property to keep in mind

because it may allow the word size of intermediate results to be the same as

the addends.

Multiplication

The rules of binary multiplication are quite different from addition and

subtraction. In particular, there is none governing location of the binary

points of the operands. Those governing the range and resolution of the

result are as follows:

1. The range of the result is the product of the ranges of the operands.
This means that the number of magnitude bits in the integer part of
the product is the swm of the number of magnitude bits in the integer

parts of the operands.
2. The resolution of the result is the product of the resolutions of the

operands. This means that the number of fraction bits in the product is
the sum of the number of fraction bits in the operands.

From the foregoing we can conclude that if the operands are of equal
length, the result length is twice as great. Actually, it is one bit shorter when
both operands are signed (provided that Jargest negative numbers are
avoided). It is also easy to see that when both operands are fractions that the
range of the result is unchanged, although the resolution is increased. Thus,
fractional arithmetic is attractive because a chain of multiplications will not

increase the range of numbers to be handled. Note that, if both operands are
signed binary fractions, the binary point in the result wil] be two positions to
the right of the sign bit of the result, that is, the sign bit will be duplicated.

Thus, one would normally shift the double-length fractional product left one
position before using it.

One may be tempted to conclude that the excess resolution that may
result can always he discarded without any loss of significant data. This is not

generally true if one of the factors is small. S/N ratio will be lost if the excess
resolution is discarded in such a situation, but the absolute noise level

telative to full scale will remain constant. Ideally, multiplication and other

arithmetic operations are done with word lengths longer than the initial
input samples or final output samples in order to eliminate “computational
noise” from the results. Of course, this must be tempered by a possible
increase in computation time, particularly when using machines like the
6502.

Music SYNTHESIS SOPTWARE 605

Division

Division is by far the mest difficult fixed-point arithmetic operation to
control. Fortunately, it is not needed very often in signal-processing work
and in many of the remaining cases it can still be eliminated. Division
operands must be carefully distinguished. The numerator is called the divi-
dend and the denominator is called the divisor. Like multiplication, there is
no restriction on the position of the operands’ binary points, although there

is definitely a practical restriction. Unlike multiplication, nothing concrete
can be said in general about the range and resolution of a division result. This
should be obvious, since division by very small numbers gives rise to a very
large quotient, while for most operands there is no limit to how far the
fractional part of the quotient can be carried.

Fixed-point binary division is customarily done with a dividend word
length precisely double the divisor word length. The quotient is restricted to
a word length equal co the divisor. With these restrictions, the rules of
binary division are as follows:

1, The upper Aa/f of the dividend must be numerically smadler than the
numerical value of the divisor to avoid overflow.

2. The range of the quotient is equal to the range of the dividend divided
by the range of the divisor. This means that the number of bits in the
integer part of the quotient is equal to the number of integer bits in the
dividend minus the number of integer bits in the divisor.

3. The resolution of the quotient is equal to the resolution of the dividend
divided by the resolution of the divisor. This means that the number of
fraction bits in the quotient is equal to the number of fraction bits in
the dividend minus the number of fraction bits in the divisor.

Examination of these rules reveals that one just can’t win with division.

For example, if both operands have the same word size and both are fractions,

the one used for the dividend must be padded on the right by N zeroes,
where N is the fraction size desired in the quotient. Thus, if the desired
resolution is the same as the operands, the dividend must also be smaller than
the divisor so that the range of the result is less than unity. The only way to
cover all possible combinations (except a zero divisor) of two N-bit fractional
operands without overflow or loss of resolution is to use a dividend 4N bits

long and a divisor 2N bits long. The dividend used in the arithmetic opera-
tion would be the actual N dividend bits padded on the left by N zeroes (or
sign bits if signed) and padded on the right by 2N zeroes. The divisor would
similarly be padded by N zeroes on the right. The 2N quotient bits then
allow N range bits (N—1 for signed operands) and N resolution bits. Fortu-
nately, when division is needed in signal processing (usually for computing a

scale factor), the values of the operands will be known well enough to avoid
trouble.

606 Musica. APPLICATIONS OF MICROPROCESSORS

Required Arithmetic Instructions

Regardless of whether hardware instructions are available or an arith-
metic subroutine package is being used, there is a certain “complete set” of
operations that is needed for straightforward signal-processing computation.

Such a set is usually built around a particular word length. When hardware

instructions are available, this is usually the machine's accumulator word
length. Some of the operations produce or process double words, which then
require a pair of registers to hold. In fact, classic single-accumulator comput-
ers usually had an accumulator extension or multiplicr/quoticnt register,

which was used to hold the low order half of double words.
For illustrating a fixed-point arithmetic package with the 6502, a word

length of 8 bits will be used for simplicity, although 16 bits would be more
practical in high-quality synthesis. Since the 6502 has very few registers, two
bytes are set aside in memory for a double-word accumulator. The other
operand if single byte or its address if double byte is passed to the subroutine
in a register. Following is a list of the arithmetic operations and the operand
word lengths that would be expected in such a package:

1. Double-word load accumulator
2.Double-word store accumulator

3.Double-word addition to accumulator
4, Double-word subtraction from accumulator
5.Double-word negation of accumulator
6. Double-word left shifting of accumulator
7.Double-word signed and unsigned right shifting of accumulator
8.Unsigned multiplication 8 X 8=16
9.Signed multiplication (uses unsigned multiplication as a subroutine)

8 X B=15

10. Unsigned division 16/8=8
11. Signed division (uses unsigned division as a subroutine) 15/8=8

Double-word addition is necessary for forming sums of products that will in
general be double-word values. Shifting operations are needed for scaling. Of
course, single-word addition, subtraction, negation, and shifting are also
necessary. It is often helpful to have a “load with sign extend” operation,
which is used to translate a single-word signed value into a double-wourd one.
It is surprising how many computers, both micro and mini, that claim to
have complete hardware arithmetic capability fail to include all of these
necessary operations.

A Fixed-Point Arithmetic Package
for the 6502

Here we will briefly describe the 8-bit arithmetic package for the 6502
shown in Fig. 18-3. A pseudo-16-bit accumulator is assumed to exist in

Music SYNTHESIS SOFTWARE 607

MATHS 8 BIT MATH PACK
8 BIT ARITHMETIC PACKAGE FOR THE 6502

-PASE 'B BIT ARITHMETIC PACKAGE FOR THE 6502'

ALL ROUTINES UTILIZE A 16 BIT PSEUDO ACCUMULATOR IN PAGE 0.
ACCH IS THE HIGH BYTE AND ACCL IS THE LOW BYTE OF THE PSEUDO

ROUTINES REQUIRING A DOUBLE BYTE SECOND OPERAND EXPECT X TO
POINT TO THE HIGH BYTE OF THE OPERAND WHICH IS ASSUMED TO BE

ROUTINES REQUIRING A SINGLE BYTE SECOND
OPERAND EXPECT IT TO BE IN THE HARDWARE ACCUMULATOR.
ALL ROUTINES PRESERVE X, THEY MAY DESTROY A AND Y.

3 STORAGE AREA FOR ARITHMETIC PACKAGE
3 PSEUDO ACCUMULATOR HIGH BYTE

PSEUDO ACCUMULATOR LOW BYTE
3 TEMPORARY STORAGE FOR UNSIGNED MPY/DIV
3 TEMPORARY STORAGE FOR SIGNED MPY/DIV

DOUBLE LOAD
MOVE HIGH BYTE FROM ADDRESS IN X
TO PSEUDO ACCUMULATOR
MOVE LOW BYTE FROM ADDRESS IN X PLUS 1
TO PSEUDO ACCUMULATOR
RETURN

DOUBLE STORE
MOVE HIGH BYTE FROM PSEUDO ACCUMULATOR
TO ADDRESS IN X
MOVE LOW BYTE FROM PSEUDO ACCUMULATOR
TO ADORESS IN X PLUS 1
RETURN

DOUBLE ADD
ADD LOW PART OF PSEUDO ACCUMULATOR
TO LOW BYTE POINTED TO BY X+1

AND PUT RESULT IN PSEUDO ACCUMULATOR
ADD HIGH PART OF PSEUDO ACCUMULATOR TO
HIGH BYTE POINTED TO BY X
USING CARRY FROM LOW PARTS
RETURN

DOUBLE SUBTRACT
SUBTRACT LOW BYTE POINTED TO BY X
FROM LOW PART OF PSEUDO ACCUMULATOR

AND PUT RESULT IN PSEUDO ACCUMULATOR
SUBTRACT HIGH BYTE POINTED TO BY X
FROM HIGH PART OF PSEUDO ACCUMULATOR
USING BORROW FROM LOWER PARTS
RETURN

3 3 ARITHMETIC PACKAGE FOR THE 6502
4 3
5 3
§ 3 ACCUMULATOR.

8 3
ie = STORED ON PAGE ZERO.

ll H
12
13 0000 = XE 3
14 00€8 ACCH: 1=.4 1 3
15 OQE9 ACCL: + 1 3
16 QOEA TEMP1: .=.+ 1 z
17 OGEB TEMP2: .=.+ 1 3
18
3 OOEC = x'200
2 3
21 0200 8500 DLO: LDA 0,X ;
22 0202 85E8 STA ACCH :
23 0204 B501 LDA 1,X 3
24 0206 85E9 STA ACCL ;
25 0208 60 RTS 3
26
27 ;
28 0209 ASES DST: LDA ACCH 3
29 0208 9500 STA 0,X 3
30 0200 ASE9 LDA ACCL 3
31 O20F 9501 STA 1,X w
32 0211 60 RTS 3
33
34 ;
35 0212 ASE9 DADD: LDA ACCL 3
36 0214 18 CLC 3
37 0215 7501 Apc §1,X
38 0217 85E9 STA ACCL 3
39 0219 ASE8 LOA ACCH ;
40 0218 7500 ADC 0,X 3
41 021D 85E8 STA ACCH F
42 021F 60 RTS 3
43
44 ;
45 0220 ASE9 DSUB: LDA ACCL
46 0222 38 SEC 3
47 0223 F501 SBC 1,X
48 0225 8559 STA ACCL ;
49 0227 ASE8 LDA ACCH 3
50 0229 F500 sBc 0, X 3
51 0228 85E8 STA ACCH 3
52 022D 60 RTS 3
§3

Fig. 18-3. Signal-processing math package for the 6502

608 MUSICAL APPLICATIONS OF MICROPROCESSORS

MATHB 8 BIT MATH PACK
8 BIT ARITHMETIC PACKAGE FOR THE 6502

92 0253 85EA UMULT: STA TEMPL
$3 0255 A900 UMULTO: LDA #0

SAVE MULTIPLICAND
ZERO UPPER PRODUCT

$4 ; DOUBLE NEGATE
55 O22E ASED ONEG: LDA ACCL ; COMPLEMENT LOW BYTE OF PSEUDO ACCUMULATOR
56 0230 49FF EOR #X'FF
57 0232 85E9 STA = ACCL
58 0234 A5E8 LDA ACCH ; COMPLEMENT HIGH BYTE
59 0236 49FF EOR #X'FF
60 0238 8558 STA ACCH
61 023A E6E9 INC = ACCL 3 INCREMENT THE RESULT
62 023C D002 BNE DNEGRT
63 023E E6ES INC ACCH
64 0240 60 DNEGRT: RTS 3 RETURN
65
66 3 DOUBLE SHIFT LEFT
67 0241 O6E9 DSHL: ASL = ACCL ; SHIFT LOW BYTE LEFT AND PUT OVERFLOW BIT
68 3 IN CARRY FLAG
69 0243 2658 ROL ACCH 3 SHIFT HIGH BYTE LEFT BRINGING IN OVERFLOW
70 3 BIT
71 0245 60 RTS 3 RETURN
72
73 ; DOUBLE SHIFT RIGHT UNSIGNED
74 0246 46E8 DSHR: LSR ACCH 3 SHIFT HIGH BYTE RIGHT AND PUT UNDERFLOW
75 3 BIT IN CARRY FLAG
76 0248 66E9 ROR ACCL 3 SHIFT LOW BYTE RIGHT BRINGING IN
77 3 UNDERFLOW BIT
78 024A 60 RTS 3 RETURN
79
80 3 DOUBLE SHIFT RIGHT SIGNED
81 024B ASE8 DSHRS: LDA ACCH 3 FIRST COPY THE SIGN BIT INTO THE CARRY
82 024D 2A ROLA 3 FLAG
83 O24E 66E8 ROR ACCH 3 THEN SHIFT HIGH BYTE RIGHT BRINGING IN
84 0250 66£9 ROR = ACCL 3 COPY OF SIGN BIT AND CONTINUE AS ABOVE
2 0252 60 RTS 3 RETURN

87 3 UNSIGNED 8X8 MULTIPLY
88 3 ENTER WITH MULTIPLICAND IN ACCUMULATOR
89 3 ENTER WITH MULTIPLIER IN ACCL
30 3 EXIT WITH DOUBLE LENGTH PRODUCT IN ACCH
91 3 AND ACCL

3
94 0257 85E8 STA ACCH
95 0259 A009 iby #9 3 SET CYCLE COUNT
96 025B 18 CLC 3 INITIALLY CLEAR CARRY
97 O25C 66E8 UMULTI: ROR ACCH 3 SHIFT PSEUDO ACCUMULATOR RIGHT BRINGING
98 O25E 66E9 ROR ACCL 3 IN ANY OVERFLOW FROM PREVIOUS ADD AND
99 3 SHIFTING QUT NEXT MULTIPLIER BIT

100 0260 88 DEY 3 DECREMENT CYCLE COUNT AND
101 0261 FOOC BEG MULTRT 3 RETURN WHEN DONE
102 0263 90F7 BCC UMULT1 3 SKIP ADDITION IF MULTIPLIER BIT WAS ZERO
103 0265 AS5E8 LDA ACCH 3 ADD SAVED MULTIPLICAND TO UPPER BYTE
104 0267 18 cLC 3 OF PSEUDO ACCUMULATOR
108 0268 65EA ADC TEMP1 3 BEING CAREFUL TO PRESERVE ANY POSSIBLE
106 026A 85E8 STA ACCH 3 CARRY OUT
107 026C 4c5C02 dMP -UMULT1 3 GO SHIFT PSEUDO ACCUMULATOR
108 026F 60 MULTRT: RTS
109

Fig. 18-3, Signal-processing math package for the 6502 (cont).

Music SYNTHESIS SOFTWARE 609

MATHS 8 BIT MATH PACK
8 BIT ARITHMETIC PACKAGE FOR THE 6502

110 3 UNSIGNED 16/8 DIVIDE
111 3 ENTER WITH 16 BIT DIVIDEND IN ACCH,ACCL
112 3 ENTER WITH DIVISOR IN REGISTER A
113 3 RETURN WITH QUOTIENT IN ACCL
114 3 RETURN WITH REMAINDER IN ACCH
115 3 DIVISOR MUST BE LARGER THAN ACCH TO
116 3 AVOID OVERFLOW
117 0270 85EA UDIV: STA TEMPL 3 SAVE DIVISOR
118 0272 A008 LOY #8 3 SET CYCLE COUNT
119 0274 06E9 ASL ACCL 3 SHIFT DIVIDEND LOW
120 0276 2668 UDIV1: ROL ACCH 3 SHIFT DIVIDEND HIGH
121 0278 BOOB BCS UDIV2 3 JUMP IF A 1 SHIFTED OUT OF DIVIDEND
122 027A ASES LDA ACCH 3 SUBTRACT DIVISOR FROM ACCH
123 027C 38 SEC
124 027D ESEA SBC TEMP1
125 027F 9010 BCC UDI V4 3 JUMP TO SHIFT AND COUNT IF UNDERFLOW IS
126 3 IMMENIENT, CARRY IS QUOTIENT BIT
127 0281 8558 STA ACCH 3 STORE DIFFERENCE IF NO UNDERFLOW, CARRY
128 3 FLAG IS QUOTIENT BIT
129 0283 BOOC BCS uDIV4 3 GO TO SHIFT AND COUNT
130 0285 A5E8 UDIV2: LDA ACCH 3 SUBTRACT DIVISOR FROM ACCH
131 0287 ESEA SBC -TEMP1
132 0289 B005 BCS UDIV3 3 SKIP IF UNDERFLOW IMMENIENT
133 0288 85£8 STA ACCH 3 STORE DIFFERENCE IF NO UNDERFLOW
134 0280 38 SEC 3 QUOTIENT BIT IS A ONE
135 028E BOOL BCS UDIV4 3 @ TO SHIFT AND COUNT
136 0290 18 UDIV3: CLC 3 QUOTIENT BIT IS A ZERO
137 0291 26€9 UDIV4: ROL ACCL 3 SHIFT DIVIDEND LOW PART
138 0293 88 DEY ; COUNT ITERATIONS
139 0294 DOEO BNE UDIV1 ; LOOP IF NOT DONE
140° 0296 60 RTS 3 OTHERWISE RETURN
141
142 3 TWO QUADRANT MULTIPLY
143 ; USAGE IS THE SAME AS WITH UMULT
144 3 PSEUDO ACCUMULATOR CONTAINS THE SIGNED
145 3 FACTOR AND THE MACHINE ACCUMULATOR
146 3 CONTAINS THE UNSIGNED FACTOR
147 0297 85EA MULT2Q: STA TEMPL 3 SAVE UNSIGNED MULTIPLICAND
148 0299 ASEO LDA ACCL 3 SAVE SIGNED MULTIPLIER
149 029B 85E8 STA TEMP2
150 0290 205502 JSR UMULTO 3 DO AN UNSIGNED MULTIPLICATION
151 02A0 ASEB LDA TEMP2 3 TEST SIGN OF MULTIPLIER
152 02A2 1007 BPL MULT2R 3 GO RETURN IF POSITIVE
153 02A4 ASE LDA ACCH 3 SUBTRACT MULTIPLICAND FROM HIGH PRODUCT
154 02A6 38 SEC
155 02A7 ESEA SBC TEMP? 3 IF MULTIPLIER IS NEGATIVE
156 O2A9 &5E8 STA ACCH
157 02AB 60 MULT2R: RTS 3 RETURN
158
159 3 SIGNED MULTIPLY
160 3 USAGE IS THE SAME AS WITH UMULT
161 O2AC 85EA SMULT: STA TEMPL 3 SAVE MULTIPLICAND
162 O2AE ASED LDA ACCL 3 SAVE MULTIPLIER
163 02B0 85€B STA TEMP2
164 0282 205302 JSR = UMULT 3 00 AN UNSIGNED MULTIPLICATION
165 02B5 A5EA LOA TEMP1 3 TEST SIGN OF MULTIPLICAND
166 0287 1007 BPL = SMULT1 3 JUMP AHEAD IF POSITIVE

610

MATHS 8 BIT MATH PACK
8 BIT ARITHMETIC PACKAGE FOR THE 6502

167 02B9 ASES LDA ACCH
168 0288 38 SEC
169 O2BC ESEB SBC -TEMP2
170 O2BE 858 STA ACCH
171 02CO ASEB SMULT1: LDA TEMP2
172 02€2 1007 BPL = SMULT2
173 02C4 ASE8 LDA ACCH
174 02C6 38 SEC
175 02C7 E5SEA SBC TEMP1
176 02C9 85E8 STA ACCH
177 02CB 60 SMULT2: RTS
178
179
180
181
182
183
184 O2CC 85EA Div2Q: STA TEMPL
185 O2CE ASE8 LOA ACCH
186 02D0 85EB STA TEMP2
187 02D2 ASE8 LDA ACCH
188 02D4 1003 BPL DIV2Q1
189 0206 202E02 JSR -DNEG
190 0209 207002 DIV2Ql: JSR UDIV
191 02DC ASEB LDA TEMP2
192 O2DE 1008 BPL DIV2Q2
193 02EQ A5E9 LDA ACCL
194 O2E2 49FF EOR #X'FF
195 02E4 85E9 STA ACCL
196 O2E6 E6E9 INC ACCL
197 O2E8 60 O1V2Q2: RTS
198
199
200
201 O2E9 85EA SOIV: STA TEMP1
202 O2EB 45E8 EOR = ACCH
203 O2ZED 85EB STA TEMP2
204 O2EF ASES8 LDA ACCH
205 02F1 1003 BPL SDIV1
206 O2F3 202E02 JSR = DNEG
207 O2F6 ASEA SOIV1: LDA TEMP
208 02F8 1005 BPL SDIV2
209 O2FA 49FF EOR #X'FF
210 O2FC 18 cLe
211 O2FD 6901 ADC #1
212 O2FF 207002 SDIV2: JSR UOIV
213 0302 ASEB LDA -TEMP2
214 0304 1008 BPL = SDIV3
215 0306 ASE LDA ACCL
216 0308 49FF EOR #X‘FF
217 030A 85E9 STA ACCL
218 030C E6E9 INC = ACCL
219 030E 60 SDIV3: RTS
220

MUSICAL APPLICATIONS OF MICROPROCESSORS

SUBTRACT MULTIPLIER FROM HIGH PRODUCT
IF MULTIPLICAND IS NEGATIVE

TEST SIGN OF MULTIPLIER
GO RETURN IF POSITIVE
SUBTRACT MULTIPLICAND FROM HIGH PRODUCT
IF MULTIPLIER IS NEGATIVE

RETURN

TWO QUADRANT DIVIDE
USAGE IS THE SAME AS WITH UDIV
PSEUDO ACCUMULATOR CONTAINS THE SIGNED
DIVIDEND AND THE MACHINE ACCUMULATOR
CONTAINS THE UNSIGNED DIVISOR
SAVE DIVISOR
COMPUTE SIGN OF QUOTIENT
SAVE THE SIGN UNTIL LATER
TEST SIGN OF DIVIDEND
SKIP IF POSITIVE
TWOS COMPLEMENT DIVIDEND IF NEGATIVE
00 THE DIVISON
TEST DESIRED SIGN OF QUOTIENT
GO RETURN IF SHOULD BE POSITIVE
TWOS COMPLEMENT QUOTIENT IF SHOULD BE
NEGATIVE

RETURN

SIGNED DIVIDE
USAGE IS THE SAME AS WITH UDIV
SAVE DIVISOR
COMPUTE SIGN OF QUOTIENT
SAVE THE SIGN UNTIL LATER
TEST SIGN OF DIVIDEND
SKIP IF POSITIVE
TWOS COMPLEMENT DIVIDEND IF NEGATIVE
TEST SIGN OF DIVISOR
JUMP IF POSITIVE
TWOS COMPLEMENT DIVISOR IF NEGATIVE

00 THE DIVISON
TEST DESIRED SIGN OF QUOTIENT
GO RETURN IF SHOULD BE POSITIVE
TWOS COMPLEMENT QUOTIENT IF SHOULD BE
NEGATIVE

RETURN

Fig. 18-3. Signal-processing math package for the 6502 (cont.).

Music SYNTHESIS SOFTWARE 611

page zero memory at location ACCH for the high order half and ACCL for
the low order half. All subroutines that require a double-byte second operand
expect the address of the high order half of the operand to be in the X index
register. Single-byte second operands are expected to be in the hardware
accumulator.

Load and store are trivially simple. Although they can be easily done by
in-line code in the calling program, using the subroutines will make a

signal-processing program easier to read and later convert to a machine with
hardware to replace this package.

Double-precision addition and subtraction are equally straightforward.
Both process the low bytes first and then use the carry flag to transmit carry

information to the high bytes. Note that the 6502 does not have add and
subtract in which the carry flag is ignored. Therefore, it is frequently neces-
sary to clear or set the carry before an addition or subtraction, respectively.
Negation is performed by flipping all of the pseudoaccumulator bits with
exclusive-or instructions and then double-length incrementing the result.

Note that carry out of the low byte when incrementing is detected by testing
for a zero result, since the increment instruction does not affect the carry flag.

The shift routines do one shift at a time, again using the carry flag to
transfer bits from one byte to the other. Note that when shifting right the
left byte is shifted first, whereas when shifting left the right byte is shifted
first. A fair amount of fooling around is necessary to duplicate the sign bit
when doing a signed shift right. A machine with decent arithmetic capabil-

ity would explicitly provide a shift with sign-extend instruction. Note that
the ability of the 6502 co directly modify memory greatly simplifies many
operations on the pseudoaccumulator.

The basic multiplication subroutine handles two 8-bit unsigned num-
bers and produces a 16-bit unsigned product. While most computer users
know that the proper way to multiply involves shifting and adding, the

number of inefficient (or just plain incorrect) multiply subroutines that have
been published (IC manufacturers are the worst offenders) indicates a general
lack of understanding in this area. Minicomputer designers of the 1960s,

PRODUCT

r
SHIFT ENTIRE REGISTER AND CARRY MULTIPLIER,
ee MULTIPLIER BITS

eS = —}

()—L TTT ¢

AOD IF
MULTIPLIER <———————
BIT (S AONE

LTT TI
MULTIPLICAND

Fig. 18-4. Shift-and-add multiplication

612 MUSICAL APPLICATIONS OF MICROPROCESSORS

however, did know how to multiply and as it turns out their hardware
methods are highly efficient in software too.

Figure 18—4 illustrates the shift and add multiplication algorithm.
Two “registers” are involved; the multiplicand register which is 8 bits long,
and the 16-bit pseudoaccumulator. Prior to multiplication, the multiplicand
is placed in the mulciplicand register, the multiplier is placed in the low
order half of the pseudoaccumulator, and the high order half is cleared. A
shift and add cycle consists of shifting the entire pseudoaccumulator right
one bit and testing the least significant bit shifted out. If this bit is a zero,
the cycle is complete. If the bic is a onc, the multiplicand register is single-
precision added to the upper half of the pseudoaccumulator. This addition may
overflow, so it is important to bring in the carry flag when the next shift
cycle is done. A little thought will reveal that as the multiplication pro-
gresses the multiplier is “eaten away” at its right end and the product grows

downward as the multiplier is shifted out. A total of 814 cycles are needed to
complete the operation, The half-cycle is a final shift of the pseudoac-

cumulator to bring in a possible overflow from the last addition and properly
align the product.

The above algorithm is different from many that are published in that
the product is shifted right and the multiplicand stands still rather than

vice versa. Efficiency improvement is due to both product and multiplier
shifting being handled simultaneously and the fact that only single-precision
addition of the partial products is required. If the upper part of the pseudoac-

cumulator is not cleared prior to multiplication, its contents wind up being
added to the product. Since this may be useful and actually saves a slight
amount of time, the unsigned multiplication routine provides an alternate
entry point thac skips clearing the product. Note that binary multiplication,
even with the “free add” included, cannot overflow.

Unsigned binary division, illustrated in Fig. 18-5, is precisely the
reverse of multiplication. The algorithm can be described as a “shift and
conditionally subtract” procedure, opposite that of multiplication, Again,

CrVIDEND
K r

a SHIFT ENTIRE REGISTER LEFT

REMAINDER QUOTIENT
~ T =

e= Loe

SUBTRACT IF
RESULT 15

NOU NEGATIVE QUOTIENT BITS
TOR SUCCESSFUL

1 oe SUBTRACT

oes a
DIViSOR

Fig. 18-5. Shift-and-subtract division

Music SYNTHESIS SOFTWARE 613

two registers are involved. The dividend is a double-length value, which is
held in the pseudoaccumulator. The divisor is kept in the same register as the
multiplicand was in multiplication and is not altered by the division routine.

A shift and subtract cycle begins by shifting the entire pseudoac-
cumulator left, being sure to bring in the carry flag on the right end. Next
the divisor is single-precision subtracted from the high order half of the divi-
dend and the result suspended. If the subtraction underflowed (that is, went

negative, which is not allowed in unsigned arithmetic), the result is thrown

away. If the subtraction did not underflow, the result replaces the high order
portion of the dividend. Deciding whether an underflow occurted is a little

tricky because a significant dividend bit may have been shifted out when the
dividend was shifted left. The table below can be used to determine if an
underflow occurred:

Carry from shift Carry from subtract Underflow? Quotient bit
0 0 Yes 0

0 1 No 1
1 0 No 1
| 1 Yes 0

The quotient bit value from the table is saved in the carry flag and shifted
into the pseudoaccumulator on the next cycle.

As the division progresses, the dividend is eaten away on the left by

subtracting the divisor, while the quotient is shifted in bit by bit on the
right. The final result finds the quotient in the right half and the remainder
in the left half of the pseudoaccumulator. Eight-and-a-half shift/subtract
cycles are required to complete the division. The last half cycle is necessary to
bring in the last quotient bit without moving the remainder out of position.
Note thar a subsequent call to UMULTO, which would multiply the quo-
tient by the divisor and add in the remainder, will recover the dividend

exactly.
In signal processing both two-quadrant (unsigned X signed) and four

quadrant (signed X signed) multiplication is needed. The obvious procedure
is to take the absolute values of the operands, perform the operation, and
then adjust the sign of the product according to the rules of algebra. The

signed multiplication routine, however, uses a different approach that is
more efficient and actually works with largest negative numbers. The idea is

to go ahead and multiply the raw operands with the unsigned multiply

routine and correct the result later.
The correction turns out to be quite simple. After unsigned multiplica-

tion, the multiplicand sign is tested. If it is negative, the multiplier is
unsigned, single-precision subtracted from the upper half of the pseudoac-
cumulator. Then the multiplier sign is tested and the multiplicand is condi-

614 MUSICAL APPLICATIONS OF MICROPROCESSORS

tionally subtracted in the same manner. If one of the operands is unsigned,

only the signed operand need be tested. The author does not know of a

simple correction procedure for division so it is handled using the absolute-

value method.

Example Programs

The best way to illustrate use of the arithmetic package and scaling

techniques for fixed-point arithmetic is to actually study a couple of simple

signal-processing programs. Two reasonably useful functions will be covered.

The first is a generalized digital filcer using the state-variable structure. The

second is a Fourier series (SFT method) program designed to optimally fill

8-bit, 256-word waveform tables for low-budget direct synthesis.

Before tackling the digital filter programming, let’s discuss exactly

what the program should do and how it would be used. For full flexibility as
a state-variable filter, one input sample is required, four output samples are
produced, and two parameters are needed. The input and output samples are
assumed to be 8-bit signed binary fractions. The dynamic range of frequency
and @ parameters are maximized if they are unsigned values. Referring to
Chapter 14, we recall that the useful range of the frequency and Q multipliers
is 0 to 2. Therefore, the binary point will be between bits 6 and 7 in these

8-bit multipliers.
The digital filter wil] he programmed as a subroutine and the input

sample will be passed to it in the accumulator. For ease of understanding, the
four output samples will be stored in specific locations in memory and the
two parameters will be taken from specific memory locations. Note that this,
like all recursive digital filters, requires storage registers to hold values from
sample to sample. Two 16-bit numbers will therefore be stored in dedicated
memory locations as well. A truly general-purpose routine should have the

addresses of input, output, parameter, and register storage passed to it to
minimize data shuffling when using the same routine to simulate many
different filters.

Figure 18—6 shows a signal flow diagram for the filter along with the
sequence of calculations spelled out in detail. Note that all addition and
subtraction operations are done using 16-bit arithmetic. In fact, except for
the input sample itself, all addition and subtraction operands are 16 bits in

length because they are the result of multiplications. Also note that while the
result of a multiplication is allowed to have a range of 1.99, the result of all
additions and subtractions must have a range of 0.99 or less.

It is apparent, then, that overflow can easily occur if the input signal is
near maximum and the Q is high (@Q factor low). This is simply a consequence
of the fact that a digital filter can have a gain substantially greater than
unity. One might be tempted to consider moving the binary point of the
filter output to eliminate the possibility of overflow until the cumulative

effect of cascading several such “scaled filters” in a general-purpose digital

Music: SYNTHESIS SOFTWARE 615

FREQUENCY ap FREQUENCY

INPUT, HP, BP, LP, NOTCH S.XXXXXXK

Q, FREQUENCY XXXXXXKX

ac S. KKMANK AKA KK AKAN

SEQUENCE OF CALCULATIONS
STEP OPERATION —_ BINARY REPRESENTATION

————
ES SXXXXKKXXXKXKKK

X FREQ _XXXXXXXX _
FS XXXXXKKXXKKKAKK

HS XKXXXXXXXKKXKKX
GS KKXXKKXXXXEXAKK

LP OUTPUT

ES SXXXXXXXKXXXXKK
x@ XXXXXKKX

A SXXXXXXAXKKKKKKK
“A S XXX XXKAXKXXKKKXKK

-6 SSXXXXXXXKXXKKAXKK

singul $ SXXXXXXXOO00000
B S SMXKKXXXAXXKKKKXKK
ae iP UTPUT

Co SK EXXR KKK RKARE KK

S SMX KKXXKKKKKKKK
5 x KRKEXK SESW AOA “~BP QUTPUT

He SKXKXXKXX

“* NGTCH OUTPUT

Fig. 18-6. Signal flow diagram of fixed-point arithmetic digital filter

synthesis system is considered. It can be a viable technique in dedicated filter
applications such as a spectrum analyzer, however. Of course, with 8-bit
samples and arithmetic, the programmer constantly walks a tightrope in

keeping signal levels high to maximize S/N ratio, while keeping them low

616 Musica APPLICATIONS OF MICROPROCESSORS

STATE VARIABLE DIGITAL FILTER

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

48
A2CO
200002
204102
ASES
85E9
ASCH
209702
A2c2
201202
200902
204102
ASES
85C8
A2cO
200002
204102
ASES
85E9
ASC?
209702
A2c2
201202
A2c4
200902

202002
200902
204102

»PAGE ‘STATE VARIABLE DIGITAL FILTER"
STATE VARIABLE DIGITAL FILTER
ENTER WITH 8 BIT INPUT SAMPLE IN THE ACCUMULATOR
EXIT WITH 8 BIT QUTPUT SAMPLES IN LOPAS, BNDPAS, HIPAS, AND
NOTCH.
CENTER FREQUENCY PARAMETER IS IN FREQ AND Q PARAMETER IS IN Q.
INPUT AND OUTPUT SAMPLES ARE SIGNED FRACTIONS.
FREQUENCY AND Q PARAMETERS ARE UNSIGNED NUMBERS WITH A RANGE OF
2.0 AND A RESOLUTION OF 1/128.

DELAY1
DELAY2
TEMP:
FREQ:
q:
LOPAS:
BNDPAS
HIPAS:
BNDREJ:

SVDFLT: PHA
LDX
JSR
JSR
LDA
STA
LDA
JSR
LOX
JSR
JSR
JSR
LDA
STA
LDX
JSR
JSR
LDA
STA
LDA
JSR
LOX
JSR
LOX
JSR
PLA
STA
LDA
STA
JSR
JSR
JSR
JSR

x'c0
z
2.
2
1
I
1
1
1
1

X'400

#DELAY1
DLO
DSHL
ACCH
ACCL
FREQ
MULT2Q
#DELAY2
DADD
DST
DSHL
ACCH
LOPAS
#DELAY1
OLD
DSHL
ACCH
ACCL
Q
MULT2Q
#DELAY2

STORAGE IN PAGE ZERO
STORAGE REGISTER FOR DELAY 1
STORAGE REGISTER FOR DELAY 2
TEMPORARY STORAGE FOR A 16 BIT VALUE
CENTER FREQUENCY PARAMETER
Q FACTOR PARAMETER
LOWPASS FILTERED OUTPUT SAMPLE
BANDPASS FILTERED OUTPUT SAMPLE
HIGHPASS FILTERED OUTPUT SAMPLE
BAND REJECT FILTERED OUTPUT SAMPLE

SAVE INPUT SAMPLE ON THE STACK
LOAD OUTPUT OF DELAY 1 INTO THE PSEUDO
ACCUMULATOR
SHIFT IT RIGHT 7 BIT POSITIONS FOR USE AS
THE MULTIPLIER

MULTIPLICAND IS FREQUENCY PARAMETER
TWO QUADRANT MULTIPLY
ADD OUTPUT OF DELAY 2 TO PRODUCT

PUT SUM BACK INTO DELAY 2
SHIFT LEFT ONE TO FORM LOWPASS OUTPUT

LOAD OUTPUT OF DELAY 1 INTO THE PSEUDO
ACCUMULATOR
SHIFT IT RIGHT 7 BIT POSITIONS FOR USE AS
THE MULTIPLIER

MULTIPLICAND IS Q PARAMETER
TWO QUADRANT MULTIPLY
ADD RESULT TO SAVED LOWPASS OUTPUT

SAVE IN TEMPL

5 RESTORE INPUT SAMPLE
PUT INTO PSEUDO ACCUMULATOR AND SHIFT
RIGHT ONE

SUBTRACT SAVED SUM FROM INPUT SAMPLE TO
SAVE RESULT FOR LATER USE IN NOTCH OUTPUT
FORM HIGHPASS OUTPUT

Fig. 18-6. Signal flow diagram of fixed-point arithmetic digital filter (cont.).

Music SYNTHESIS SOPTWARE 617

STATE VARIABLE DIGITAL FILTER

275 O44F ASES LDA ACCH
276 0451 85CA STA HIPAS
277 0453 85£9 STA ACCL 3 IS ALSO MULTIPLIER
278 0455 A5C6 LDA FREQ 3 MULTIPLY BY FREQ
279 0457 209702 JSR MULT2Q
280 O45A A2CcO LDX #DELAY1 3 ADD OUTPUT OF DELAY 1 TO THE PRODUCT
281 O45C 201202 JSR DADD
282 O45F 200902 JSR DST 3 PUT SUM BACK INTO DELAY 1
283 0462 204102 JSR DSHL 3 SHIFT LEFT ONE BIT
284 0465 A5EB LDA ACCH
285 0467 85C9 STA BNDPAS 3 HIGH BYTE IS BANDPASS OUTPUT
286 0469 A2C4 LDX #TEMP 3 BAND REJECT OUTPUT IS DELAY2 PLUS TEMP1
287 0468 200002 JSR -DLD
288 O46E A2C2 LOX #DELAY2
289 0470 201202 JSR DADO
290 0473 204102 JSR = DSHL
291 0476 A5E8 LDA ACCH
292 0478 85CB STA BNDREJ
eae 047A 60 RTS 3 RETURN
29)

Fig. 18-6. Signal flow diagram of fixed-point arithmetic digital filter (cont).

enough to avoid serious distortion caused by overflow. With 16-bit arithme-
tic, which is recommended for serious work, such problems are much less

severe.
The second example program, which is shown in Fig. 18-7, is included

to illustrate the use of division and as a useful program for experimentation.
The idea is ro take the spectral description of a harmonic waveform, compute

samples for one cycle of it, and store them in a waveform table. With the

6502 example machine, the waveform table is assumed to be 256 samples

long (one memory page), and to contain 8-bit signed samples.

Because of the limited resolution provided by 8 bits, it is advantageous
to maximize the amplitude of the stored waveform. It is very difficult,

however, to predict the magnitude of the largest peak of the waveform
without actually computing an entire cycle, although it is easy to prove that

the peak will not exceed the sum of the harmonic amplitudes but in most
cases will be considerably less than this because of momentary phase cancella-
tion, etc. Thus, it would be nice if the table-filling program would adjust
the waveform amplitude automatically and optimally.

The program is actually just a collection of three subroutines. The
point evaluator, FSEVAL, accepts a point number and a spectrum descrip-

tion and returns a 16-bit signed number representing the waveform at that
point in time. The point number simply represents time to a resolution of

1/256 of a cycle. The scale factor determination routine, SCALE, calls
FSEVAL 256 times in order to determine the absolute maximum sample
value that will be encountered when the table is actually filled. The table-
filling routine, FILL, also calls FSEVAL 256 times. The 16-bit values re-

turned are divided by the maximum peak found by SCALE and stored in the
waveform table as 8-bit values.

618 MUSICAL APPLICATIONS OF MICROPROCESSORS

WAVEFORM TABLE FILL USING FOURIER SERIES

«PAGE ‘WAVEFORM TABLE FILL USING FOURIER SERIES'
295
296 047B X'80 3 STORAGE IN PAGE ZERO
297 0080 HRMACC: ae 2 3 HARMONIC ACCUMULATOR
298 0082 PNTNO: yee 3 POINT NUMBER WITHIN CYCLE OF WAVE
299 0083 NDXACC: + 1 3 INDEXING ACCUMULATOR
300 0084 HRMCNT: ae 3 HARMONIC COUNTER
301 0085 MAX: ge od 3 MAXIMUM WAVEFORM AMPLITUDE
302 0086 WAVETB: cb 2 3 ADDRESS OF WAVEFORM TABLE TO FILL
303
304 0088 NHARM: at. 1 3 HIGHEST HARMONIC TO GENERATE (16 MAX)
305 0089 FSRAM: 4 3 ROOM FOR 16 HARMONIC AMPLITUDES AND
306 3; PHASES
307
308 O0A9 = X'500
309
310 ; WAVEFORM TABLE FILL ROUTINE
311 ; THIS SUBROUTINE FILLS THE WAVEFORM TABLE AT WAVETB WITH 256
312 3 SAMPLES OF THE WAVEFORM SPECIFIED BY THE SPECTRUM AT FSRAM,
313 H MAX MUST HAVE BEEN PREVIOUSLY SET GREATER THAN TWICE THE
314 3 ABSOLUTE VALUE OF THE LARGEST SAMPLE THAT WILL BE ENCOUNTERED.
315
316 0500 A900 FILL: LDA #0 ; ZERO THE POINT NUMBER
317 0502 8582 STA PNTNO
318 0504 204005 = FILL1: «JSR FSEVAL 3 EVALUATE A WAVEFORM POINT ;
319 0507 A580 LDA HRMACC ; DIVIDE POINT BY MAXIMUM POINT FOR SCALING
320 0509 85E8 STA ACCH 3 FIRST TRANSFER POINT TO PSEUOO
321 050B A581 LDA —-HRMACC+1 ; ACCUMULATOR FOR USE AS THE DIVIDEND
322 O50D 859 STA ACCL
323 OSOF A585 LDA MAX ; LOAD MAX AS THE DIVISOR (UNSIGNED)
324 0511 20CC02 Usk o1v2Q 3 DO A TWO QUADRANT DIVIDE
325 0514 ASEQ LDA ACCL 3 GET THE SIGNED QUOTIENT
326 0516 A482 LDY . PNTNO 3 GET THE POINT NUMBER
327 0518 9186 STA (WAVETB),Y — ; STORE RESULT IN WAVEFORM TABLE
328 051A F682 INC PNTNO ; INCREMENT THE POINT NUMBER
329 051C DOE6 BNE FILL 3 GO FOR ANOTHER POINT IF NOT FINISHED

O51E 60 RTS 5 RETURN WHEN FINISHED

332 : SCALE FACTOR DETERMINATION SUBROUTINE
333 THIS SUBROUTINE GOES THROUGH ONE CYCLE OF THE WAVEFORM DEFINEO
334 : BY THE SPECTRUM AT FSRAM AND FINDS THE POINT WITH THE MAXIMUM
335 ; MAGNITUDE.
336 i THIS MAGNITUDE IS THEN DOUBLED AND INCREMENTED BY ONE AND
en : STORED AS AN UNSIGNED NUMBER.

339 051F A900 SCALE: LOA #0 3 ZERO THE POINT NUMBER
340 0521 8582 STA PNTNO
341 0523 8585 STA MAX ; ZERO THE MAXIMUM MAGNITUDE
342 0625 204005 SCALE1: JSR FSEVAL 3 EVALUATE A WAVEFORM POINT
343 0528 A580 LOA. HRMACC 3 GET UPPER BYTE OF THE POINT
344 052A 1005 BPL SCALE2 ; SKIP_IF POSITIVE
345 052C 49oFF EOR #X'FF 3 NEGATE IF NEGATIVE
346 052E 18 cic
347 052F 6901 AoC #1
348 0531 ¢585 SCALE2: CMP = MAX 3 COMPARE WITH CURRENT MAXIMUM

Fig. 18-7. Waveform table filler

Music SYNTHESIS SOFTWARE 619

IAVEFORM TABLE FILL USING FOURTER SERIES

0533 3002 BMI SCALE3
0535 8§85 STA MAX
0537 E682 SCALE3: INC — PNTNO
0539 DOEA BNE | SCALE]
0538 0685 : ASL MAX
0530 E685 INC MAX TO AVOID POSSIBLE DIVISON OVERFLOW
O53F 60 RTS AND RETURN

FOURIER SERIES POINT EVALUATOR
THIS SUBROUTINE EVALUATES A POINT ON THE WAVEFORM SPECIFIED BY
THE SPECTRUM AT FSRAM.
NHARM SPECTFIFS THE HIGHEST HARMONIC TO BE INCLUDED

PNTINO IS THE POINT NUMBER TO BE EVALUATED
THE COMPUTED POINT IS RETURNED IN HRMACC AS A 16 BIT TWOS
COMPLEMENT NUMBER
DESTROYS A AND Y, SAVES X

SKIP IF NOT GREATER
UPDATE MAXIMUM IF GREATER
INCREMENT POINT NUMBER
GO FOR NEXT POINT IF NOT DONE
DOUBLE AND THEN INCREMENT MAXIMUM VALUE

0540 8A FSEVAL: TXA ; SAVE INDEX X
0541 48 PHA.
0542 A900 LDA #0 3 CLEAR HARMONIC ACCUMULATOR
0544 8580 STA HRMACC
0546 8581 STA HRMACC+1
0548 8584 STA HRMCNT 3 ZERO HARMONIC COUNTER
054A 8583 STA NOXACC 3 ZERO THE INDEXING ACCUMULATOR
054C A584 FSEV1: LDA HRMCNT ; GET CURRENT HARMONIC NUMBER AND DOUBLE IT
O54E OA ASLA
O54F AA TAX
0550 B589 LDA FSRAM,X
0552 48 PHA
0553 BS8A LDA FSRAM+1,X
0555 6583 ADC NDXACC
0557 AA TAX
0558 BD8605 LOA COSINE, X
O55B 85&9 STA ACCL
055D 68 PLA
O55E 209702 JSR MULT2Q

USE AS AN INDEX TO THE SPECTRUM TABLE
GET AMPLITUDE
SAVE ON STACK TEMPORARILY
GET PHASE
ADD IT TO THE INDEXING ACCUMULATOR
USE AS AN INDEX INTO THE COSINE TABLE
GET COSINE
SAVE AS MULTIPLICAND
RESTORE AMPLITUDE
MULTIPLY AMPLITUDE (UNSIGNED) BY COSINE
(SIGNED)
SHIFT PRODUCT RIGHT 4 FOR 12 BIT RESULT 0561 Az04 LDX #4

0563 204B02 FSEV2: JSR DSHRS
0566 CA DEX
0567 DOFA BNE FSEV2
0569 A280 LDX #HRMACC ; ADD RESULT TO HARMONIC ACCUMULATOR

056B 201202 JSR DADO
O56E 200902 JSR DST
0571 AS84 LDA HRMCNT
0573 €588 CMP NHARM
0575 FOOC BEQ FSEV3

TEST IF CURRENT HARMONIC IS LAST ONE TO
INCLUDE
GO RETURN IF SO

0577 £684 INC HRMCNT INCREMENT TO NEXT HARMONIC
0579 AS&2 LDA PNTNO ADD POINT NUMBER TO THE INDEXING

0578 18 CLC ACCUMULATOR
057C 6583 ADC NOXACC
O57E 8583 STA NDXACC
0580 4C4C05 JMP FSEV1 ; LOOP FOR ANOTHER HARMONIC

0583 68 FSEV3: PLA RESTORE INDEX X

0584 AA TAX
0585 60 RTS RETURN

Fig. 18-7. Waveform table filler (cont.).

620 MUSICAL APPLICATIONS OF MICROPROCESSORS

WAVEFORM TABLE FILL USING FOURIER SERIES

404
405 ; 256 POINT COSINE TABLE, TWOS COMPLEMENT
406
407 0586 7F7E7F7F COSINE: .BYTE X‘7F,X'7F,X'7F,X'7F,X'7F,X'7F,X'7E,X'7E
408 OS8E 7D707C78 [BYTE X*7D.X"7D,X'7C,X'7B,X'7A,X'79,X'78,X'77
409 0596 76757372 TBYTE X'76,X'75,X'73,X'72,X'71, X'6F , X60, X'6C
410 O59E 6AG86665 TBYTE X'6A,X'68,X'66,X'65,X'63, X'61,X'5E,X'5C
411 0586 5A585653 ‘BYTE X'5A,X'58,X'56,X'53,X'51,X'4E,X'4C,X'49
412 OSAE 4744413F "BYTE X'47,X'44,X'41,X'3F,X'3C,X'39, X!36,X°33
413 0586 31262828 [BYTE X'31,X'2E,X'2B,X'28,X'25,X'22, X'LF,X'IC
414 O5BE 1916120F TBYTE X!19,X'16,X'12,X'OF,X*0C,X'09, X'06,X'03
415 05C6 OOF DFAF7 "BYTE X'00,X'FD,X'FA,X'F7,X°F4,X'F1, X'EE, X'EA
416 OSCE E7E4E10E TBYTE X°E7,X"E4,X‘E1, X'DE,X ‘DB, X'D8, X*D5,X'D2
417 05D6 CFCDCAC? UBYTE X'CF,X'CD,X'CA,X'C7,X°C4,X'CL, X" BF, X'BC
418 O5DE B9B7B482 ‘BYTE X'B9,X'B7,X'B4, X'BZ, X'AF, X'AD, X'AA, X'AB
419 OSE6 AGAGA29F "BYTE X'AG,X'AG>X'AZ,X'9F, X'9D,X'9B, X'9A,X'98
420 OSEE 96949391 TBYTE X'96,X'94,X'93,X'91, X*BF, X'8E, X'8D,X'8B
421 O5F6 8Ag98B87 "BYTE X'BA,X'89,X'88, X87, X*86,X'B5,X'84,X'83
422 OSFE 83828281 "BYTE X'83,X'82,X'82,X'81,X'B1,X'81,X'B1,X'81
423 0606 81818181 “BYTE X'81,X'81,X'81,X'81,X'81,X'81,X'82,X'82
424 O60 83638485 “BYTE X'83,X'83,X'84, X'85, X'B6,X'87,X'88,X'89
425 0616 SASBEDeE BYTE X'8A,X'8B,X'8D,X'8E,X'8F,X'91,X'93,X'94
426 061E 96989A9B “BYTE X'96,X'9B8,X'9A,X'9B, X*9D,X'9F, KAZ, X'AG
427 0626 AGABAAAD “BYTE X'AG,X'AB,X'AA, X'AD, X'AF,X'B2, X'BA, X'B7
428 062E BOBCBFC1 “BYTE X'B9,X'BC,X'BF,X'C1,X'C4,X'C7,X!CA,X*CD
429 0636 CFO2D508 “BYTE X'CF,X'D2,X'D5,X'D8,X'DB,X'DE, X*E1, X'E4
430 063E E7EAEEF SBYTE X*E7,X'EA,X*EE, X*F1, X°F4, X'F7,X'FA, X*FD
431 0646 00030609 “BYTE X'O0,X'03,X'06,X'09,X'0C,X'OF,X'12,X'16
432 O64E 191C1F22 “BYTE X*19, X*1C,X*1FX'22,X'25,X'28, X'2B, X!2E
433 0656 31333639 TBYTE X'315X'335X'36,K'39,X'3C,X!3E,X'41 4X44
434 O65E 47494C4E SBYTE X'47,X'49,X'4C,X°4E, X'52,X'53,X'56, X'58
435 0666 5ASC5E61 ‘BYTE X'5A,X'5C,X'5E,X'61,X'63,X'65, X'66,X'68
436 O66E 6AGCEDEF “BYTE X'6A,X'6C,X'6D,X'6F,X'71,X"72,X'73,X!75
437 0676 76777879 ‘BYTE X*76,X'77,X'78,X'79.X'7A,X!7B,X'7C,X! 7D
438 O67E 707E7E7F SBYTE X"7D,X*7E,X°7E,X'7F,X'7F XE, XZ, X TE

Fig. 18-7. Waveform table filler (cont.).

The spectrum description expected by these routines consists of pairs of
8-bit unsigned numbers, each of which corresponds to a harmonic in ascend-
ing order starting with zero (the dc component). The first member of the pair
is the amplitude which is treated as an 8-bit unsigned fraction. The second

member is the phase angle of the harmonic. Zero gives a cosine wave, 64
gives an inverted sine wave, 128 gives an inverted cosine, etc. A parameter

called NHARM determines the highest harmonic number chat will be con-
sidered with smaller values giving faster computation. The scaling logic
assumes that NHARM is never greater than 16, although this can be ex-
tended by modifying the scaling computation or restricting the amplitude
sum to less than 16.

Looking closer at FSEVAL, it is seen that the product of a harmonic
amplitude and a sine table enrry is a full 16 bits. To avoid almost certain
overflow when other harmonics are added in, the product is shifted right four

Music: SYNTHESIS SOFTWARE 621

times, which effectively moves the binary point between bits 11 and 10. This
increases the range to 16 and reduces the resolution to 1/2,048. The in-
creased range positively insures against overflow for up to 16 harmonics.

In seale, only the most significant byte of the 16-bit samples produced
by FSEVAL is examined. Peak determination is by comparing the absolute
value of the upper sample bytes with a current maximum, which is kept in
MAX. This maximum is incremented by one before returning. Note that the
binary point position of MAX is between bits 3 and 2.

The FILL routine normalizes the samples by simply dividing the 16-bit
sample returned by FSEVAI by MAX. Since the binary points are in equiva-

lent positions, the point position for the quotient will be between bits 6 and
7, making it a signed fraction ready for storage in the waveform table.
Incrementing MAX by one in SCALE is required to avoid overflow in the
division, which would occur when the peak point is divided by itself. Unfor-
tunately, this action also introduces an error that reduces the scaled
amplitude somewhat. Large values of MAX minimize this error, however.

Thus, when a harmonic spectrum is prepared, the strongest harmonic should
be given an amplitude of 0.996 (0.FF). A 16/32-bit arithmetic package
would reduce the error to insignificance but would be about three times
slower on the 6502. It is important to note that this error is only an

amplitude error; it does not introduce excess noise beyond that due to the
lower amplitude. Also note that only the highest peak is normalized. It is
also possible to shift the baseline of the waveform to force positive and

negative symmetry and thus insure use of all 256 quantization levels in the
waveform table. Unfortunately, this may also introduce a significant dc
component to the waveform, which may cause trouble, such as a “thump”

when a fast amplitude envelope is applied.

NOTRAN Music System

After coming this far, it is about time to see how the various synthesis
and processing techniques can be put together for form a usable music
software system. The system that will be described here is rather small and
simple compared to mammoth systems like MUSIC V. Nevertheless, it
should serve well as an example of how a system of manageable size (for one
person) might be put together. A subset of the system to be described was
actually implemented on a university minicomputer (about twice as fast as an

LSI-11 with the multiply/divide option) in 1970 and used to perform a Bach
organ fugue? with considerable attention to detail. The version described

2The piece was “Toccata and Fugue in D Minor.” The computer was an Adage
Ambilog 200, which had a 30-bit word but for arithmetic behaved like a 15-bit
machine. Twelve-bit samples were used and the sarnple race wes 32 kHz, although
four-to-one speedup of the audio tape was necessary to obrain that speed due co the
low-density (556BPI) of the tape drives. Computation time for the 8-min piece was
about 3.5 h.

622 MUSICAL APPLICATIONS OF MICROPROCESSORS

here as well as logical extensions is within the capabilities of nearly any

microcomputer given the necessary mass storage capacity and audio DAC.

The acronym for the system is NOTRAN, which is taken from the

words, NOte TRANslation. Immediately it is apparent that the system is

based on conventional music notation and the 12-tone scale with all of its

trappings and as such it is seemingly bound to the performance of conven-

tional sounding music. This is basically true but does not detract from its

utility as a system organization example, and besides, far more people are
experienced in conventional notation. Thus, the reader is allowed to concen-
trate on the system organization, which is the purpose of this section. In any

case, the huge variety of techniques, options, and goals in music synthesis

makes “assumptions to simplify the problem” absolutely necessary if any
results at all are to be obtained. Extensions to cover other tuning and nota-

tion systems are certainly no more difficult than with other music software
systems.

Another characteristic of the NOTRAN system as described here is that

it is a programmed, non-real-time, direct digital synthesis system. However,

the three lowest levels of software could be replaced by dedicated synthesis
hardware or an interface to an analog synthesizer to allow real-time opera-

tion. The basic syntax of the language itself is not optimized for minimum
typing effort. Instead, it is designed for ease of understanding (by humans)
and ease of interpretation (by computers). However, a macroprocessor can be
used to define more advanced statements that may generate numerous basic
NOTRAN statements.

Finally, NOTRAN statements are in strict time order. All sounds
created by the NOTRAN system are discrete events having a starting time

and a duration. The starting time is determined by the location of statements
invoking the event, whereas the duration is determined both by the invoca-
tion statement and a corresponding ‘voice definition” statement. Once
started, an event runs to completion independent of other events and
statements.

In describing the NOTRAN system, the lowest-level routines and
design considerations will be covered first. While this is in direct opposition
to “top-down” philosophy, it offers a smooth transition from familiar con-
cepts already covered to the unfamiliar ones being introduced. Where word
sizes are given they were chosen for very high sound quality and can certainly

be cut back for experimentation in 8-bit systems.

Level 1 Routines

The Level 1 or actual sound generation routines in a synthesis system in
many ways determine the “character” of sounds generated by the system. The

NOTRAN system utilizes two basic types of sounds, definitely pitched tones
and percussive sounds. Accordingly, there are two Level 1 subroutines, one
for each type of sound. Although only two subroutines are involved, each

Music SyNTHESIS SOFTWARE 623

may be called several times with different arguments in order to generace

simultaneous sounds. While actual listings of these two subroutines will not
be given, it ts expected that they will be written in assembly language, The
actual code is quite straightforward and may in fact represent the majority of
machine level coding required for the entire NOTRAN system.

As mentioned earlier, efficiency considerations dictate that Level 1

routines work with blocks of samples in order to minimize call/return over-
head. All control parameters are assumed to be constant throughout the
block. A good block size is about 1 msec of samples; thus, for example

purposes we will assume a 30-kHz sample rate and a 30-sample block size.

The subroutine will therefore compute 30 samples before returning. For
maximum flexibility, these 30 samples will be added to the contents of a
30-sample, 16-bit output buffer to effect mixing. The upper level routines
will be using block counts for timing purposes so an exact 1-msec block size
is convenient.

The tone generation subroutine will operate on the table lookup princi-
ple. A table size of 1,024 16-bit words is sufficient for very high quality but
could be reduced to 256 8-bit words for lower-quality experimentation. In
either case, the subroutine needs the following five arguments passed to it:

1. Address of the waveform table (16 bits)

2. Frequency parameter (16 to 32 bits)
3. Amplitude parameter (8 or 16 bits)
4. Address of sample buffer (16 bits)

5. Waveform table pointer (16 to 32 bits to match frequency
parameter)

Note that the waveform table pointer will be changed by the computation,
while the rest of the parameters are left alone.

HIGH BYTE LOW BYTE — MNEMONIC

penal SOUND 1D — | SNDID BLOCK
ADDRESS FLAGS

+2 WAVE TABLE ADDRESS WAVTBA

+4 HIGH ORDER FREQ. PARM. FREQ

+6 LOW ORDER FREQ. PARM.

+8 AMPLITUDE PARM AMP

+10 | ADDRESS OF SAMPLE BUFF SMPBFA

+12 | HIGH ORDER WAVE TABLE PTA. | WAVTBP

+14 | LOW ORDER WAVE TABLE PTR.

+30 UNUSED

Fig. 18-8. Sound contro! block for tone generator

624 Musical APPLICATIONS OF MICROPROCESSORS

ENTRY

ESTABLISH
ADDRESSABILITY
QF SOUND
CONTROL BLOCK

INITIALIZE
30. SAMPLE COUNT

WAVTEP

SAMP ADDR =—
WAVTBA +
(19 MSB) WAVTEP

SAMPLE <—
(SAMP ADDR) « AMP

a
(SMPBFA) ——
ISMPBFA) + SAMPLE

1
INCREMENT
SMPBFA

i
DECREMENT 30
‘SAMPLE COUNT

RETURN

Fig. 18-9. Tone generator subroutine flowchart

The most efficient method of passing this information back and forth is
to treat the five items as an array and simply pass the address of the array to
the subroutine. Although the array size is fixed for this particular subroutine,
other Level 1 subroutines may require a different array size and format. Thus,
for ease of storage allocation by upper level routines and future expandability,
a fixed argument array size of, say 32 bytes will be used for all Level 1
routines.

Figure 18-8 shows one possible way to arrange the five arguments into

fields within the 32-byte sownd control block. With the 6502, LSI-11, and

most other microcomputers, indexed addressing can be used to quickly access
the fields in the sound control block. One simply loads the address of the

control block passed by the caller into a register and then uses fixed offsets to
access the data. In a machine without indexed addressing, such as the 8080,

the control block can be copied into a fixed memory area, the samples

Music SYNTHESIS SOFTWARE 625

computed, and those descriptor elements changed by the execution (such as
the table pointer) copied back. Alternatively, the order of the fields within
the block can be carefully sequenced so that increment index instructions can
be used to scan through them.

The initial byte of activity flags is used by the upper level routines to
keep track of which control blocks are actually generating sound. The sound
ID byte identiftes which Level 1 routine the control block is formatted for.

The wave table address is the address of the first entry of the waveform table
being used. The wave table pointer is shown as a 32-bit value, which consists
of a 22-bit fractional part and a 10-bit integer part. The integer part is added

to the wave table address to actually get a sample. The frequency parameter is

also shown as 32 bits and is the waveform table pointer increment. The
amplitude parameter gives the desired waveform amplitude, while the sam-
ple buffer address indicates where the 30-sample buffer is located.

Figure 18—9 shows a flowchart for the tone generator subroitine. Essen-
tially, it goes through a sample computation loop 30 times and returns. Note
that the argument giving the address of the sample buffer is incremented
during execution. This is desirable and minimizes the overhead associated
with building up large sample blocks for mass storage devices, such as 3,000
samples for IBM-style magnetic tape. The other calculations perform stan-
dard waveform table lookup without interpolation as described in Chapter
13.

The percussion generator routine is less straightforward than the tone

generator. In Chapter 15, it was seen that a wide variety of mechanisms
produce percussive sounds. Covering all of these in a single subroutine is not
practical. Figure 18-10 shows a model that can be used to approximate the
majority of common percussive instruments as well as numerous others. The
pulse-excited bandpass filter is used to provide a damped sine wave, while
the white noise source and multimode filter provide filtered noise. Three
gain controls are shown, which allow a noise envelope, the ratio of noise to

damped wave, and overall output amplitude to be independently controlled.

AMP Fog

STRIKE
PULSE

BANDPASS
Fikfee# | __(¢ OUTPUT

AMP 3
MULTIMODE |
PLTER

FQ MODE AMP 2

Fig. 18-10. Percussive sound model

626 MUSICAL APPLICATIONS OF MICROPROCESSORS

HIGH BYTE | LOWBYTE MNEMONIC

BLOCK ACTIVITY
SOUND ID SNDID

ADDRESS. FLAGS

+2 BANDPASS FILTER F RESNF

+4 BANDPASS FILTER Q RESNQ

+6 MULTIMODE FILTER F MMFF

+8 MULTIMODE FILTER Q MMFQ

+10] FILTER MODE MMFM

+12] DAMPED SINE AMP. RESNAM.

+ 14] FILTERED NOISE AMP. MMFAM

+16 | OVERALL AMP. AMP

+18] ADDRESS OF SAMPLE BUFF | SMPBFA

+20 | STORAGE FOR BANDPASS RESND1

+22 FILTER RESND2
+24 | STORAGE FOR MULTIMODE | MMFD1
+26 FILTER MMFD2
+28 | NOISE REGISTER NOISE
+30 UNUSED

Fig. 18-11. Sound conirol block for percussion generator

For maximum efficiency, amplitude control of the damped wave is controlled

by varying the intensity of the strike pulse, which only has to be done once,
rather than doing a sample-by-sample multiplication of the generator out-

put.

The sound control block for percussive sounds is shown in Fig, 18~11.

The data elements in the control block should be self-explanatory. Note that
all but two bytes of the block are used and that many of them simply describe
the percussive timbre, which is constant. In the tone generator control block,
the actual waveform was stored elsewhere and a pointer to the information was
given. This could also be done with the percussive generator and thus free up
10 bytes in its sound control block, although it was not.

Figure 18-12 is a flowchart of the major operations performed by the
Level 1 percussion routine. Note that each half of the percussive sound
model is checked for activity before computing the 30 samples. This saves

considerable time when only half of the model is needed for simple percussive
sounds.

The envelope of the filtered noise is handled by higher level routines
just as with the tone generator routine. The damped sine wave generator,

however, supplies its own envelope because of the way it works. The activity
flags are used to pass information about the damped wave generator to and
from the calling routine. The start flag is set by the caller when the percussive

Music SynrHests SOFTWARE 627

ESTABLISH
ADDRESSABILITY

DECREMEN
SMPBFA BY 30

RESNO] <— RESHAN
RESND2 <— 0

TURK START SET 30
FLAG OFF SAMPLE COUNT

ITERATE RINGING
BANDPASS FILTER

ITERATE
RANDOM-NUMBER
GENERATOR

ITERATE MULTIMCOE
FILTER ANO SELECT
OUTPUT SAMPLE.
ACCORDING TO MMF

ADD SAMPLE TO
SAMPLE BUFFER

ADD SAMPLE TO
SAMPLE BUFFER

INCREMENT
SMPBFA

INCREMENT SMPBFA DECREMENT
DECREMENT 30 COUNT 30 COUNT

SET RESON
STOP

Fig. 18-12. Percussion generator subroutine flowchart

sound is to be started. When the percussive routine sees the flag set, it
initializes one of the bandpass filter registers (the digital state-variable type is
assumed) to the damped wave amplitude and turns the start flag off. This
operation is equivalent to striking the resonator, and thereafter the filter is

iterated to produce the damped wave.
In theory, the wave amplitude will never reach zero so a mechanism is

necessary to detect when a very small amplitude is reached so that the
percussive sound can be considered complete. Thus, at the end of every

30-sample block, the bandpass filter registers are examined (their absolute
values are summed and compared with a constant representing perhaps 60 dB
of decay), and if a low enough amplitude is seen, the stop flag is turned on.

628 Musica APPLICATIONS OF MICROPROCESSORS

MODIFIED
EXPONENTIAL

A CURVES.
i w | SUSTAIN

S| AMPLITUDE 2 Lae
a
=
<0.5
w a
S a S 2 &

—

ATTACK DECAY SUSTAIN RELEASE
DURATION DURATION DURATION OURATION

TIME

ATTACK DECAY SUSTAIN RELEASE
w WAVEFORM WAVEFORM = WAVEFORM WAVEFORM
2
=
= z
w 8
&
B
& 5

ti <I Lat
25% OF 25% OF 25% OF
DECAY SUSTAIN RELEASE
DURATION DURATION DURATION

TIME

Fig. 18-13. Tone envelope details

Level 2 Generator Routines

Level 2 routines operate much like Level 1 routines except at a slower
speed. They are primarily responsible for sequencing through envelopes in
the synthesized sound. In this respect, they act much like waveform

generators but at a 1-kHz sample rate. Also, in order to crudely implement
dynamic spectrum changes during a note, several waveform tables may be

sequenced through in the course of the note. Cross-fading (time-variable
interpolation) from one waveform table to the next is therefore handled in
these routines as well. Also, there is a routine responsible for scanning the
control blocks and insuring that all of the active ones contribute their sam-
ples to the sample buffer. Finally, there is a routine that controls the collec-
tion of 30 sample blocks into larger records and initiates writing of the
records onto a mass storage device.

The most important Level 2 routine controls the execution of tone
events. A tone event is basically a pitched note that uses the Level 1 tone
subroutine to generate sound. One important aspect of a tone event is its

envelope, which is sketched in Fig. 18-13. This routine uses the standard
ADSR envelope shape, which consists of four phases. To make life interest-
ing, not only is the amplitude controlled by the envelope but the waveform is

as well. Each envelope phase can correspond to a different waveform, which,

Music SYNTHESIS SOFTWARE 629

HIGH, BYTE LOW BYTE MNEMONIC

BLOCK ADDRESS ACTIVITY FLAGS. EVENT iD EvTID

#2 TONE TYPE ENVELOPE PHASE # | TONTYP ENVPHN

+4 TIME COUNTER ENVTC

+6 ATTACK DURATION ENVAD

+8 DECAY DURATION ENVOD

+10 | SUSTAIN DURATION | ENVSD

+12 | RELEASE DURATION ENVRD

+14 | ATTACK WAVE TABLE ADDRESS ENVAW

+16 | DECAY WAVE TABLE ADDRESS ENVDW

+18 | SUSTAIN WAVE TABLE ADDRESS ENVSW

+20 | RELEASE WAVE TABLE ADDRESS ENVRW

+22 | SUSTAIN AMPLITUDE ENVSAM

+24 | OVERALL AMPLITUDE | EVTAMP

+26 | WAVE A CONTROL BLOCK ADDR. WAVACB

+28 | WAVE B CONTROL BLOCK ADDR. WAVBCB

+30 | CROSS-FADE VALUE CFVAL
+32 | CROSS-FADE INCREMENT CFINC

i - TONE FREQUENCY EVTFRQ

t —

+62| NOT USED

Fig. 18-14. Tone-event control block

although seemingly crude, is quite effective. A sudden switch from one wave
table to the next might inject objectionable clicks, however, so a “‘cross-
fading” technique is used.

From the foregoing it can be seen that this routine has several tasks to
perform. it must sequence the envelope through its four phases according to

several parameters, and it must generate an acceptable curve for each phase.
During the cross-fading interval, two tones are being generated. Besides
controlling the cross-fading itself, sound control blocks for the needed tones
must be ercated, used, and deactivated. Although this routine is much more

complex than the lower-level routines, it is executed far less frequently,

which makes the extra time tolerable.
Figure 18-14 shows the event control block for tones. Since these blocks

will rend to be large, an allocation of 64 bytes is assumed. The activity flags

and event ID fields parallel those of sound control blocks. The tone type field

indicaces which type of tone generation subroutine is to be used if the system
is ever expanded. The envelope phase number ranges from 1 to 4 to indicate
which part of the envelope is being generated. The time counter is used to

630 MusicaL APPLICATIONS OF MICROPROCESSORS

EAVPHN— 1
ENVTC= ENVAD
CFYAL*- 0.
CFINC =~ 0
START FLAG-*- OFF

FIND AN INACTIVE
SOUND CONTROL BLOCK|
AND INTEALIZE IT

COPY ENVAW, FREG.,
AMP.TO SOUND
CONTROL BLOCK

ae Se

INCREMENT ENVPHN
ENVTC= DURATION
OF ENVELOPE PHASE

CALL LEVEL) TONE
GENERATOR ROUTINE
USING WAVACB AND
AMP = EVTANP
(TABLE LOOKUP OF
ENVELOPE CURVE! ®

STOP
FLAG

EXIT

COPY SOUND (= CFVAL) CFVAL* 0 GSR ADDRESS ud COMPUTE CFINC
BASED ON ENVTC

FIND AN INACTIVE
SOUND CONTROL BLOCK'
AND INITIALIZE IT y

CALL LEVEL 1 TONE
GENERATION ROUTINE
USING WAVECB AND
AMP = EVTAMP *
(FABLE LOOKUP OF
ENVELOPE CURVE) +
CFVAL

CEACTIVATE
WAVACE
CONTROL BLOCK

CFVAL*- CFVAL + CFINC
CANNOT INCREMENT
PAST 1.0 COPY ENVAW, FREQ,

AMP TO SOUND
CONTROL BLOCK

COPY SOUND CONTROL
BLOCK ADDRESS TO.
WAVBCE

STOP wAVACB N AND wAVeCB eo
CFVAL —0
cFING =-0

eee
Fig. 18-15. Level 2 tone-control routine

count milliseconds during each phase. The next four parameters give the
duration for each phase. Two additional parameters give the sustain
amplitude relative to the peak amplitude of the attack (remember that the
ADSR shape overshoots the sustain level during attack) and the overall

amplitude of the entire event.
The remaining parameters are used to control waveform switching.

Four parameters give waveform table addresses for each of the four envelope
phases. Since sound control blocks must be created to generate sound, their
addresses ate stored in the event control block. The cross-fade value increases
from 0 to 1.0 as the old waveform fades out and the new waveform fades in.
The rate of fade is arbitrarily set to complete in one-quarter of the duration of
the current envelope segment. The cross-fade increment is computed at the
beginning of an envelope segment such that this is true.

Music SYNTHESIS SOFTWARE 631

Figure 18-15 is a rough flowchart of the Level 2 tone control routine.
Start and stop flags similar co the percussive sound control block are used to
control initiation and termination of the event. If this routine finds the start

flag on, it initializes things for the attack phase of the envelope. Since no
waveform cross-fade is used during che attack, the cross-fade parameters are
zeroed.

Note that a routine is called to find an inactive sound control block and
initialize it. This is a Level 2 utility that will be used quite often. It simply
scans the portion of memory devoted to sound control blocks and uses the
first inactive (stop flag on) one it finds. Failure to find an inactive block is an

etror condition, which means that too many sounds are going simulta-
neously. Once a sound control block is found and initialized, it is called
waveform A and its address is stored in WAVACB.

The second decision block determines if an envelope segment has ex-

pired. If so, and it is the release segment, the stop flag is set, which means
that the tone event is complete. Otherwise, the envelope phase number is
incremented and the envelope time counter is initialized to the duration of
the next phase. Since cross-fading will be necessary when entering the new
phase, the cross-fade parameters are initialized. The cross-fade value

(CFVAL) is set to zero and the increment (CFINC) is computed according to

the formula CFINC=4/ENVTC, where CFINC and CFVAL are assumed to

be fractions. With this increment, the cross-fade will be complete in one-

quarter of che duration of the current envelope phase. Finally, another sound
control block is set up and called waveférm B. Cross-fading will always fade
out waveform A and fade in waveform B.

Most of the time, entry into the tone control routine falls through the
first cwo decisions and enters a block where the Level 1 routine for waveform

A is called. The amplitude for the 30 samples that it computes is the product
of the overall event amplitude, the current-envelope amplitude, and one

minus the cross-fade value. The current-envelope amplitude is a function of

the time counter (ENVTC) and the duration of the current-envelope phase.
In an analog-envelope generator, the attack, decay, and release curves

are negative exponential functions, which never really reach their endpoints.
In the digiral domain, linear curves are easier to generate and also reach their
endpoints but do not always “sound right,” particularly with long duration
envelopes. Here, a compromise is made in which the exponential curve is

adjusted to reach the endpoint in three time constants. This may be accom-
plished as shown in Fig. 18-16 by computing a virtual endpoint 5.2%
further away from the beginning point than the actual endpoint. For
maximum efficiency in the envelope routine, the three-time constant expo-
nential curve is stored in a table. Then a table lookup based on the envelope
phase number, time counter, and envelope phase duration is performed
according to the formulas given in the figure.

After waveform A samples are computed, a test is made to determine if
cross-fading is in effect. If so, B waveform samples are also computed, which

632 Musica. APPLICATIONS OF MICROPROCESSORS

ENDPCINT 5%

TABLE CONTENTS (Y)}

2 &

4

04

0.2

0 4 =
1/3 2/3

(TIME
CONSTANT

TABLE LOOKUP ARGUMENT (x)

Y = 1,0524(1 — E~ **) for 0 =X=<1.0
ENVT!

TABLE LOOKUP: DURING ATTACK X = 1 —
ENVAI

ENVELOPE = Y

ENVTC
DURING DECAY X = ENVDD

ENVELOPE = 1 — Y(1 — ENVSAM)

ENVTC
QDUAING RELEASE X = ENVAD

ENVELOPE = ENVSAM(1 — Y)

Fig. 18-16. Truncated exponential curve

are automatically added to the A samples in the sample buffer. The
amplitude argument for B is the same as for A except that the cross-fade
value is factored in differently so that wave B fades in. If cross-fading is not in

effect, waveform B is bypassed.
After the 30 composite samples are computed, the cross-fade increment

is added to the cross-fade value. If the sum reaches 1.0, which means that the

A waveform is completely faded out, the A sound control block is deactivated

and the B sound control block becomes a new A by swapping the control
block addresses, WAVACB and WAVBCB, in the event control block. The

cross-fade parameters are then zeroed co inhibit cross-fade processing until
the next envelope phase is started. The final operation before a normal exic is
decrementing the time counter.

Control of percussive events in most respects parallels that of tone

events. The filtered noise envelope, for example, is controlled in a similar

fashion but for simplicity is a simple attack—release shape. In order to
broaden the range of sounds available from the simple model used, provisions
are made for the noise filter and ringing resonator parameters to vary during
the sound. Both the center frequency and Q factor for the noise filter may
vary, while only the ringing frequency of the resonator is adjustable. A linear
variation from a specified initial value to a specified final value is used. This
variation scheme is well defined for the enveloped noise, which has a duration

Music SYNTHESIS SOFTWARE 633

HIGH BYTE | LOW BYTE MNEMONIC

BLOCK ADDRESS| ACTIVITY FLAGS | EVENT ID EVTID

+2 PERCUSSION TYPE l ENV. PHASE #| PRCTYP ENVPHN

+4 TIME COUNTER ENVTC

+6 ATTACK DURATION ENVAD

+8 DECAY DURATION ENVDD

+10 INITIAL NOISE FILTER FREQ. | MMFIF

+12 FINAL NOISE FILTER FREQ. MMFFF

+14 INITIAL NOISE FILTER Q MMF IQ

+16 FINAL NOISE FILTER Q MMFFQ

+18 NOISE FILTER FREQ. INC. MiMFFIN

+20 NOISE FILTER Q INC. MMFQIN

+ 22 NOISE FILTER MODE MMFM

+ 24 FILTERED NOISE AMP. MMFAMP-

+26 INITIAL RESONATOR FREQ. RSNIF

+ 28 FINAL RESONATOR FREQ. RSNFF

+30 RESONATOR FREQ. INC. RSNFIN

+32 RESONATOR Q RSNQ

+ 34 RESONATOR AMPLITUDE RSNAMP

+36 SOUND CNTL BLOCK ADDR. SCBADR

+ 62 UNUSED

Fig. 18-17. Percussion-event control block

that is the sum of attack and release times. The ringing bandpass filter does
not have such a well-defined duration so for simplicity the “duration”’ is
assumed to equal that of the enveloped noise. (If no enveloped noise is

desired, its amplitude parameter may be set to zero but with an envelope
defined to establish the “pseudoduration.”’)

The percussion event control block in Fig. 18-17 again contains a large
number of parameters, most of which are manipulated similarly to those in
the tone event control block. The main difference is control information for
varying filrer parameters during the event. For maximum efficiency, an

“increment” (which can be negative) for each parameter is computed when
the event is started, and the increment is added to the filter parameter every
block of 30 samples.

Figure 18-18 is a flowchart of the percussion event control routine.
Again, it is similar to the tone routine and in most respects is simpler. The
major complication is that the “duration” of the filtered noise portion of the
event may be different from that of the damped sine wave portion. No
problem occurs if the damped wave is shorter, but, if it is longer, the event

634 MUSICAL APPLICATIONS OF MICROPROCESSORS

ENVPHN +I
ENVTC + ENVAD
START FLAG +- OFF

INCREMENT
FIND AN INACTIVE
SOUND CONTROL
AND INITIALIZE IT

COPY RSNIF, RSNG,
RSNAMP, EVTAMP, MMFM,|
MMFIF, MMFIO INTO
SOUND CONTROL
BLOCK

CALL LEVEL 1 PERCUSSION
ROUTINE USING MMFAM
MMFAM = MMFAMP «
(TABLE LOOKUP OF
ENVELOPE CURVE)

|
ADD MMFFIN, MMFQIN,

COPY CONTROL BLOCK
ADORESS TO SCBAOR —
‘COMPUTE MMFFIN,
MMFQIN, RSNFIN BASEO) RSNFIN TO GN INITIAL AND FINAL CORRESPONDING
VALUES AND ENVAD PARAMETER IN SOUND SET stor FLAG

CONTROL BLOCK IN EVENT
CONTROL BLOCK

DECREMENT ENVTC exit
BUT NOT BELOW ZERO

AND ENVDO

Fig. 18-18. Level 2 percussion-control routine

control block will have to be kept active beyond the end of the noise en-
velope. This is accomplished by the bottom-most decision block, which does
not allow the event control block stop flag to be set until the sound control
block stop flag is set. This solution requires the envelope-sequencing logic to
be smart enough to avoid overshooting the end of the envelope.

Level 2 Sequencing Routine

Up to this point, sound and cnyclope gencrator routines have becn

discussed. Although many sounds may be going simultaneously, there is
only one copy of each generator subroutine in memory. The multiple sounds
are the result of calling these routines with different event control blocks.

The Level 2 sequencer routine is responsible for scanning the area of memory
devoted to event control blocks and having each active one processed. This is
the routine that is actually called by the Level 3 routines to be discussed.

Figure 18-19 is a flowchart for the sequencer routine. Entry is directly
from the NOTRAN language interpreter and is with exactly one argument.

Music SYNTHESIS SOFTWARE 635

<—___

SCAN ALL EVENT CONTROL BLOCKS
ANO CALL APPROPRIATE LEVEL 2
GENERATOR ROUTINE FOR EACH
ACTIVE ONE FOUND.

fs
BIG SAMPLE

BUFFER FULL

NO

WRITE SAMPLE RECORD.
ON MASS -STORAGE
DEVICE

| SCAN ALL SOUND
CONTROL BLOCKS AND
RESET SAMPLE
BUFFER ADDRESSES

DECREMENT
TIME COUNT
OF SHORTEST
EVENT

Fig. 18-19. Level 2 general-control routine

This argument specifies how many milliseconds of sound to generate before
returning. Although no new events can be started dwring this interval, any
number may terminate (as mentioned earlier, events are defined by their
starting time and duration). New events can only be created by the NO-
TRAN interpreter when it is in control.

The first task is to scan the memory area devoted to event control
blocks. Every active block found is further tested for the event type and the
corresponding Level 2 generator routine is called. After a complete scan
through all of the blocks, 30 samples have been added to the sample buffer
and the buffer address pointers in all sound control blocks have been in-
cremented by 30.

The next task is to determine if the large sample buffer is full. In the
original implementation of NOTRAN, this buffer was 3,000 samples long,

which would therefore hold 100 of the small sample blocks. If the large
buffer is full, then a sample record would be written to the mass storage
device. Following this, all of the sound control blocks would be scanned and
their sample buffer addresses reset to the beginning of the large sample
buffer. While this method of handling the sample buffer seems redundant
(the buffer address field of all sound control blocks is the same), keeping the

636 MUusICAL APPLICATIONS OF MICROPROCESSORS

information separate and with the sounds facilitates implementation of stereo

or quad at a later time.
The last task is to determine if the specified duration of sound genera-

tion has elapsed. The time argument that was passed to this routine is simply

decremented and tested for zero. If the cime has not elapsed, the routine is

simply executed again for another 30 samples. When the time is elapsed, the

Level 3 NOTRAN interpreter regains control so that more events can be

started.

NOTRAN Language

Level 3 routines in the NOTRAN system are what actually look at

NOTRAN statements. Like the lower-level routines, most of the work is

simply the manipulation of tables of information. Before discussing what
these routines do, a brief description of the NOTRAN language itself is in
order. Note that up to this point the sound generation routines are com-
pletely independent (within the constraints imposed by the sound generation
models) of the actual music language used. Thus, language freaks could
completely restructure the language and still use the sound generation
routines that have been discussed.

In many ways, NOTRAN is similar co FORTRAN, which these days is
not necessarily an asset. Nevertheless, music code in the language is broken
up into statements. Each statement uses one (or more) lines of text and almost

always starts with a keyword such as TEMPO or VOICE. The keywords,

besides being easy to read, make it easy for the interpreter to identify the
type of statement. The boundaries between statements either denote the
passage of time or simply separate blocks of information.

NOTRAN statement types can be divided into three different groups.
First, there is the specification group, which is used to define the characteris-
tics of something such as an “instrument.” Specification statements are

instantaneous and do not consume any time in the musical performance.
Next, there are control statements, which influence what notes are to be

played and how they are to be played but again they do not consume any
time. Finally, there are vole statements that actually cause sound to be

generated. Usually, but not always, a duration is associated with each note.
Later, we will discuss the importance of durations in sequencing and coor-
dinating multiple, simultaneous sounds. NOTRAN statements are executed
sequentially, one after another. The standard language has no provisions for
loops or repeats, etc.; that function is left for a Level 4 macroprocessor.

VOICE Statement

The VOICE statement is a specification statement used to define all of
the parameters associated with tone-type sounds. Thus, the envelope,
amplitude, and waveform parameters associated with tones must be

Music SYNTHESIS SOFTWARE 637

Example: VOICE2 AD=80; DD=50; RD=250; SA=45; VA=15;
1,50,50; H2,20,25; H4,30,60;
1,100; H2,80; H3,20; SW=H2,75; H3,50; H4;

RW=H1

VOICEn where n is the voice ID number

AD Attack Duration in milliseconds

OD Decay Duration in milliseconds

RD Release Duration in milliseconds

SA Sustain Amplitude in percent of peak attack amp titude

VA Voice amplitude in percent of DAC full scale range

AW Attack Waveform

OW Decay Waveform

SW Sustain Waveform

RW Release Waveform

Hn Harmonic number

Fig. 18-20. Voice statement format. The example defines a voice ID of 2, and
attack duration of 80 msec, decay duration of 50 msec, release
duration of 250 msec, sustain amplitude 45% of attack amplitude,
and total voice amplitude 15% of overflow level. The attack
waveform consists of fundamental, second, and fourth harmonics
with relative amplitudes of 50%, 20%, and 30% of the full
waveform amplitude and phases of 180°, 90°, and 216°, respec-
tively. The decay waveform has fundamental, second, and fourth
harmonics with amplitudes of 50%, 40%, and 10% of the total and
random phase angles. The sustain waveform has second, third,
and fourth harmonics with amplitudes of 33.3%, 22.2%, and
44.4% of the total and random phases. The decay waveform con-
tains only the fundamental harmonic, which is, of course, 100% of
the waveform.

specified. The syntax of the VOICE statement could be as simple as a string
of parameters (numbers) separated by commas (this, in fact, is how the

original version of NOTRAN worked), but with possibly dozens of parame-
ters, it becomes very difficult for the user co read the statement. Therefore,

the convention of £eyword parameters is adopted whereby each parameter is

identified by a two-character mnemonic. This method also allows parameters
to be scrambled or omitted if desired. The statement interpreter then
supplies default parameters for the omitted ones. For example, if a simple
AR envelope is desired, then only the attack and release parameters need to
be specified and the interpreter will set the decay duration and sustain
amplitude to zero and unity, respectively.

Parameters are separated by semicolons and optionally spaces. The
semicolons act as a signal to the interpreter that more parameters, possibly on

638 Musica. APPLICATIONS OF MICROPROCESSORS

the next line, follow. Parameters probably should not be split across line

boundaries (whether this is a requirement depends on the interpreter im-

plementation), and besides, splitting makes the statement hard to read.

Parameters that specify a duration are always in units of milliseconds.

Parameters that specify an amplitude are in terms of percent. Depending on
the parameter type, the values of related parameters may have to add up to

100% or less. With other parameter types, the percentage figures merely

establish ratios and can add up to any value, although individual parameters
must be less than 100%. With these conventions for numerical parameters,
integers can normally be used; however, a decimal point and fractional part

can be tacked on for additional precision.
Figure 18-20 shows an example VOICE statement and a list of the

keyword parameters available. The number immediately following the
VOICE keyword is the ID number for the voice and note staternents; using

the voice will specify the ID number. During the course of the music, a
particular voice number may be redefined as often as desired. There is no
restriction on the numbers that can be used.

The AD, DD, and RD parameters are used to specify the durations, in
milliseconds, of three phases of the ADSR envelope. The duration of the
sustain phase depends on the note being played. The first letter identifies the
envelope phase and the D is a mnemonic for duration. If a parameter is
omitted, zero (actually 1 msec) is assumed. SA refers to sustain amplitude
and gives the sustain level relative to the peak overshoot of the attack. Note

that the percent figure refers to voltage amplitude; thus, a specification of 50
would give a sustain level 6 dB below the attack peak. Omission of this
parameter gives a default of 100%.

The voice amplitude (VA) parameter is very important. Its basic func-
tion is to specify the amplitude of the voice relative to that of other sounds.
The importance is due to the requirement that the sum of all of the voice
amplitudes of all simultaneous sounds must not exceed 100% if total freedom
from overflow is desired. This means that if at some point in the musical

score 15 simultaneous sounds have been built up, the VA parameters as-
sociated with each sound should not add up to more than 100%. Observing
this rule will virtually guarantee (since the filtered noise used in percussion
instruments is random, it cannot be absolutely guaranteed) that overflow will
not occur when the sounds are summed in the sample buffer. In most cases,

with a lot of simultaneous sounds, the amplitude sum could substantially
exceed 100% without undue risk of overflow because of the low probability
of envelope and waveform peaks all coinciding at the same time.

The remaining parameters define the four waveforms associated with
the four envelope phases. These are organized into groups of parameters. A
Stoup starts with a keyword, such as AW for attack wave, followed by an

equals sign, which signals that a group of parameters follows. Within the
group may be several parameter subgroups, each of which corresponds to a

Music SYNTHESIS SOFTWARE 639

harmonic. The subgroup starts with the keyletcer H (harmonic) immediately
followed by a number defining the harmonic number. Commas then separate
the parameters in the subgroup. The first parameter after the harmonic

number is amplitude (in percent) and the second is phase in units of 277/100
(thus, 50 specifies 180°, 25=90°, etc.). The last parameter in a subgroup is
followed with a semicolon if any more subgroups or groups follow; other-
wise, the end of the statement is assumed. If the phase parameter is omitted,
a random-number generator determines the phase, and, if the amplitude
parameter is omitted, a 100% amplitude is assumed. Omitted harmonics, of
course, have zero amplitude. The amplitude percentages in a waveform

specification simply indicate relative harmonic amplitudes; there is no re-
striction on their sum, since the waveform will be scaled after it is computed.
DW, SW, and RW are similarly used to specify groups of parameters for the
other three waveforms. If a waveform is not defined for an envelope phase,
the waveform of the previous segment will be used, which saves space in the
waveform table area of memory. The attack segment must have a waveform
specified.

PRCUS Statement

The PRCUS statement, which is detailed in Fig. 18-21, defines the

sound of a percussion instrument. The ID number and duration and
amplitude parameters closely parallel those of the voice statement. Since a

two-phase envelope is used, only the AD and RD parameters are needed.
The use of filtered noise in the percussion sound model creates some

interesting problems in specifying the amplitude of the filtered noise. The
worst problem is that the parameters specified for the filter will greatly

influence the perceived as well as actual amplitude of the filtered noise.
Although che interpreter could look at the filter bandwidth and adjust the
amplitude parameter, the correction will be inaccurate if the bandwidth

changes during the sound. For simplicity, the noise amplitude parameter
should simply be passed through with any necessary correction supplied by
the user. Another problem with filtered noise is the fact thar its peak
amplitude cannot be predicted with certainty even if uniformly distributed
noise samples are used. Nevertheless, this will seldom cause a problem unless
the noise filter bandwidth is quite smal] and the percussive voice amplitude

is a sizable portion of the DAC’s range. If a problem is encountered, it would
be easy to incorporate a test in the percussion sound generation routine to

clip excessively large filtered noise samples.
The noise filter mode parameter is different because it uses mnemonics

for its value. While convenient for the user, mode numbers could be used

just as well to simplify the interpreter program. Parameter transitions are

specified by giving two numbers separated by commas, the first of which is
the initial value of the parameter and the second is the final value. The

640 Musical. APPLICATIONS OF MICROPROCESSORS

Example: PRCUS4 AD=10; RD=70; NA=30; SA=70; VA=10;

NM=BP; NF=400,600; NQ=3; SF=100,90; SQ=15

PRCUSn where n is the percussive voice ID number

AD Attack Duration for filtered noise in milliseconds

RD Release Duration for filtered noise in milliseconds

NA Filtered noise amplitude in percent

SA Damped sine wave amplitude in percent

VA Voice Amplitude in percent of DAC full scale range

NM Noise filter Mode

BP Bandpass

LP Low-Pass

HP Righ-Pass

BR Band-Reject

NF Noise filter Frequency in Hertz initial,finat

NQ Noise filter Q factor initial,final

SF damped Sine wave Frequency in Hertz initial,final

SQ damped Sine wave Q factor

Fig. 18-21. Percussion statement format. The example defines a percussive
sound with an ID of 4, a filtered noise attack duration of 10 msec,
filtered noise release duration of 70 msec, filtered noise amplitude
of 30%, damped sine amplitude of 70%, and overall amplitude of
10% of the DAC range. The noise filter mode is bandpass, and its
center frequency increases from 400 Hz to 600 Hz during the
80-msec combined duration of the envelope. The noise filter Q
factor is constant at 3, giving a 3-dB bandwidth of 133 Hz at the
beginning of the sound. The damped sine wave frequency de-
creases from 100 Hz at a rate that will make it 90 Hz when the
filtered noise envelope expires. The damped sine wave Q of 15
will give a ring time to —60 cB of about 330 msec assuming a
constant frequency.

parameters specifying Q are different from the others in that they are pure
numbers rather than percents or durations.

Linear transition of the ringing filter frequency under the control of an
unrelated process (the noise envelope) can lead to some interesting error

situations if a decreasing frequency is specified. The problem occurs when the
center frequency decreases all the way to zero before the ringing is damped
enough to deactivace the sound. If this occurs, the frequency may go negative
(and therefore seern to start increasing from zero) or it might get stuck. With
the constant Q form of the ringing filter, sticking at zero frequency would
probably prevent the sound control block from ever being deactivated, even

Music SyNTHESIS SOFTWARE 641

though it is nét producing an audible sound. Again, exceptional condition
testing is probably necessary to eliminate the effects of this kind of error. The
testing can be relatively infrequent, however.

Control Statements

The basic level of NOTRAN has very few control statements. Many
more would undoubtedly be added if the language is extended via a macro-
processor. One of the basic control statements is the TEMPO statement. The
TEMPO statement essentially specifies a correspondence between musical
time in terms of quarter notes, etc., and real time. The statement format is

simply the keyword TEMPO followed by a valid duration specification (see
the section on nove statements), an equals sign, and a number specifying the
number of milliseconds assigned to that duration. An example statement is:

TEMPO Q=350

where Q refers to a quarter note and the 350 specifies that the quarter note
has a duration of 350 msec. If the time signature (which does not need to
be specified) is 4/4, then this corresponds to a metronome marking of 170
beats/min.

The only other control statements are START and STOP. These

keywords require no parameters and are merely used to skip over code while
the score is “debugged.” Sound generation is started when a START state-
ment is encountered and suspended when a STOP statement is seen. With
sound generation suspended, statements are interpreted and thrown away at
great speed, thus allowing rapid syntax checking or skipping of sections
known to be correct.

Comment lines may be inserted simply by making the first character on
the line an *. The interpreter then ignores the remainder of the line and goes
to the next.

Note that there are no jump or repeat statements and no provisions for
subroutines (refrains) in the basic language. A little chought will reveal that
if these are implemented in the Level 3 interpreter chat the entire NOTRAN

score would have to be in memory at once. During actual sound synthesis
much, if not most, of memory will be needed for waveform tables, control
blocks, and sample buffers. Although the text could be kept on disk and
randomly accessed in response to a jump or refrain statement, such a facility
is beyond many microcomputer operating systems. In any case, these func-
tions will be left to a higher-level macroprocessor that has all of memory
available when run.

Note Statements

Note statements are the only ones that actually produce sound and take
real time to execute. Whereas the other statements all began with a keyword,

642 Musica APPLICATIONS OF MICROPROCESSORS

a note statement begins with either an ID number or simply one or more

blanks, The statement ID number is not important to the interpreter but

may be included to identify various portions of the score such as measure

numbers to the user. The remainder of the note statement consists of one or

more event (note) specifications. As before, a semicolon following a specifica-

tion is a signal that more follow on the same or next line.

Quite a bit of information is needed in the specification such as the
voice ID, pitch, duration, and articulation so the syntax is somewhat con-
densed to save space without unduly affecting readability. For a tone event,
the specification starts with a numbet corresponding to the voice statement

defining the “instrument” that will play the event. Immediately following
the voice ID is a single letter pitch mnemonic, which is simply one of the

letters A-G. If the basic pitch must be sharped or flatted, the letter is
followed by a # or an @ sign, respectively. Following this is a single digit
specifying the octave where C4 through B4 spans the octave starting at
middle C. Note that the octave numbers “turn over” at C in accordance with
usual musical practice.

After the voice and pitch have been specified, the duration is needed. In
the original version of NOTRAN, standard fractions such as 1/4 were used
for the duration. However, single-letter mnemonics will be used here for the
common durations as listed below:

Whole note
Half note
Quarter note

Eighth note
Sixteenth note

Thirty-second note Hemore

These stock durations may be modified by appending one or more dots
(periods) or the digit 3. The dot extends the duration specified to its left by
50% and can be repeated if desired, that is, Q.. is 75% longer than a
standard quarter note. The “3” modifier indicates a triplet, which has a
duration two-thirds of that specified. This format is much faster to type than

the old fractional form but may not be quite as flexible. For example, tied
notes are not readily specified, although for most common cases dots can be
used to simulate Ged notes. A general sulution to situations such as a half

note tied to an eighth note is left to the reader's imagination.

The final variable to specify is articulation. Currently, only staccato is
recagnized and is indicated by the letter “S” following all other specifica-
tions. When normal (legato) notes are interpreted and given to the sound
generation routines, the sustain duration is made equal to the note duration
minus the attack and decay duration. Thus, the release phase of the note
occurs beyond its musical stopping point. If the note duration is shorter than
the attack plus decay time, che full attack, decay, and release phases are still

Musie SYNTHESIS SOFTWARE 643

executed. When staccato is specified, che sustain duration is made uncondi-
tionally zero.

Obviously, with so many options in statement construction, a great

variety of note specifications is possible. Below is a list of some legal specifi-
cations and how they are interpreted:

97 3C4Q Voice 3, middle C, quarter note duration (the 97 is a tag
and is not processed)

4E@4E. Voice 4, E-flat just above middle C, dotted eighth duration
(equivalent to 3/16)

2F #3838 Voice 2, F-sharp just below middle C, part of a sixteenth
note triplet in which three notes take the time normally
required by two of them. Staccato articulation.

19B@5Q3..S | What a mess! The duration should evaluate to 1/4 X 2/3 X
3/2 X 3/2 = 9/24. Voice 19 and staccato articulation are
specified.

In a long score, much of this information seems to be redundant. For exam-
ple, a melody line might run for dozens of notes in the same octave, yet the

octave number must be specified for each note. If ic weren’t for the fact that
several notes with the same voice ID can be playing simultaneously, it would
be easy to have the NOTRAN interpreter assume octave numbers. Of course,

the melody could just as well be split between two octaves and such assump-
tions would probably lead to numerous errors. Again, a general solution to

this and other redundancies is left to the reader.

Percussive note specifications are much simpler than tones because only
the voice number really has to be specified. The form: Pn is used where the P
signals a percussive voice and n refers to the ID of a percussive voice defini-
tion. For convenience in certain situations, a duration specification identical
to that described above can be appended.

Sequencing and Overlap

Now that the events themselves are fully specified, all that remains is to
define their sequencing, which relies on just two simple, bur very powerful,
concepts. The first is that every note staternent represents a distinct poit in
time. These time points are in the same sequence as the note statements. All
of the events within a single note statement start at the point in time
corresponding to the statement. Once started, each event runs for its dura-

tion and stops when finished, completely independent of other events started by
this or earlier statements.

The second key concept involves spacing of the time points. Simply

put, the shortest specified duration in a note statement determines the ammount
of real time that elapses until the next note statement is executed. Thus, if a
note statement specifies a quarter-note event, two eighth-note events, and a

sixteenth-note event, time equal to a sixteenth-note duration will clapse

644 Musica APPLICATIONS OF MICROPROCESSORS

= dee

r

ry

ere aa
2080 RE

at 1£40; RE
2D5Q; RE 1@4Q; 2E5H (A) aa (B) 1F4Q: RE

3

veda,
—f ’ of

: { A

2650

1G3Q: 2F4E; 3ESE3
3F5E3: ASI
2GdE: ASS
SESE3
1A3Q: 2G4E; SESES
BESES, ASS
DASE; RSA

(c} SDSE3

Fig. 18-22. Note-sequencing examples

before the next statement is executed. The fact that three other notes are still

playing in no way affects interpretation of the next statement. Note that

durations specified with Qs, Es, etc., ate what count. Even though a staccato

quarter note may sound for only a sixteenth-note duration, its time value is
still a quarter, and if that is the shortest time value in the statement, ic will

control the delay before the next statement. Likewise, a percussive event with
a specified duration (which need have no relation to its actual sound duration)

can control the statement duration.
Often, it is necessary to go on to the next statement even sooner. The

rest specification is provided for this purpose. A rest specification is simply
the letcer R followed by a duration specification. Its only effect is to be
factored into the shortest duration evaluation and if indeed the rest is the
shortest, it will control when the next statement is executed. This use of the
rest is quite different from normal use in which a particular voice is in-
structed to be silent. In NOTRAN, no sound is created unless a note or

percussion specification specifies it; thus, the usual rests are not needed.

Music SYNTHESIS SOFTWARE 645

However, if a period of silence is needed, a statement having a lone rest
specification can be used.

Figure 18-22 shows some common musical situations and how they
might be coded in NOTRAN. This sequencing method is quite general and
should be able to handle any situation likely ro be encountered in reasonably
conventional scores.

Level 3 Routines

The primary function of Level 3 software is to decode the NOTRAN

statements that were just described and extract their information content.
Conversely, if a typing or specification error is found, the condition should
be reported to the user. The routines for statement scanning and syntax
checking, however, are in the realm of compilers and other language analysis
programs and are therefore beyond the scope of this text. Basic NOTRAN as
specified here is very simple in comparison with a typical programming
language; thus, a statement interpreter should not be very difficult to write
even by one experienced in general programming but inexperienced in com-

pilers. In fact, a successful interpreter can be written with no knowledge of
classic compiler theory at all, just common sense. The main danger, how-
ever, is a program that might misinterpret an erroneous statement rather
than flag it as an error.

Once a statement is decoded, its information content is systematically
stored in tables. In the case of a voice statement, for example, the various

envelope parameters are stored in a table that describes the characteristics of

that voice. The waveform parameters are then used to compute a waveform
table (or tables) that is stored away, and a pointer to the table is stored along
with the envelope parameters. The voice ID is also part of these data. Before
allocating additional table space, a scan is performed to determine if the same
voice ID had been defined previously. If so, the new information replaces the
old; otherwise, more table space is allocated. Percussive voice definitions are

handled in the same way except that the parameters are different and no
waveform table is needed. TEMPO statements simply update a single tempo
variable, which then influences all succeeding time calculations.

When an actual event is encountered in a note statement, several

operations must be performed. First, the voice ID is extracted and used to
locate the table of information created earlier when the corresponding voice
statement was processed. Next, a new event control block (ECB) is created

(by scanning the control block area until an inactive one is found), and
pertinent information such as waveform table addresses and envelope
parameters are copied over to it. The frequency parameter in the ECB is set

by further scanning the specification for pitch information. Next, the dura-
tion and articulation specifications are analyzed and the information used in
conjunction with the tempo variable to set the sustain duration. Finally, the
duration is compared with the current “shortest duration,” which is updated

CAG MusIcaL APPLICATIONS OF MICROPROCESSORS

if longer. After all events in the statement are processed, the current shortest
will be the actual shortest, which is then passed as an argument to the Level 2

ECB scanner routine.

Level 4 Routines

The preceding has described a functionally complete direct digital

music synthesis system that is quite usable as is. However, even higher-level

programming can be added to further ease its use and reduce the amount of

typing effort needed to encode a score. In a nutshell, Level 4 programming

accepts a string of “extended NOTRAN” statements as input and produces a
longer string of “basic NOTRAN” statements as output. This output string
is then tun through the synthesis program (Levels 1-3) as a separate opera-

tion. The details of Level 4 programming will not be described, but perhaps
a discussion of some ideas and possibilities will give a hint of what could be

accomplished.
One easy-to-incorporate enhancement would be a key signature capabil-

ity. A new control statement would be added whereby the user could specify
the key in which the music was written. Note statements then could be
coded without explicit sharps and flats except where necessary. The Level 4
processor would provide al] of the accidentals in the output score. It might be
necessary to provide a semipermanent override capability, however, to cover

atonal and highly modulated scores. As mentioned before, other redundan-
cies such as octave selection could also be removed with similar facilities.

A somewhat more complex enhancement would be a transposition
facility. Orchestral scores, for example, are written for instruments that

actually sound pitches different from what the score says (and the player
thinks), A B-flat trumpet, for example, sounds B-flat when the player reads
and fingers C. The trumpet part of the score, therefore, has been adjusted so
that the correct pitches are played. With transposition capability, one could
declare that voice 3, for example, was a B-flat voice and therefore directly use

notes from a B-flat instrument score.

Sophisticated sequence control could also be added. Simple repeats and
jumps are obvious but a subroutine capability can allow many weird and

wonderful things to be done. Like a software subroutine, a musical sub-
routine can be written once and then called by name whenever it is needed.
Power comes from the fact that a subroutine can in turn call another one and
so on. Thus, very complex sequences can be built up from a relatively small

number of statements. Much of the usefulness of software subroutines is due
to the ability to pass argwments that then alter the action of the routine in a
specific way for that particular cal]. Arguments such as key signature, pitch
register, tempo, and voicing would allow great variety in the expression of a
musical subroutine without rewriting it. Some really nice effects can be
accomplished if a single voice line can be subroutined independent of other
simultaneous voice lines.

Music SYNTHESIS SOFTWARE 647

Many other possibilities should come to mind. In fact, the appearance
of the input language need not even bear a resemblance to NOTRAN. In this
respect, “basic NOTRAN" would be used as a musical “machine language”
with a-high-level compiler generating code for it.

Level 0 Routines

Although seemingly out of sequence, Level 0 routines are discussed
here because for most microcomputer direct synthesis installations they
would comprise a separate program and separate pass of the data. As men

tioned earlier, Level 0 routines operate on the individual sound samples

produced by the Level 1 routines to introduce reverberation, choral effects,
etc. The reader should not underestimate the utility of these simple tech-
niques in enhancing and ‘‘de-mechanizing” the sound of even the most
sophisticated synthesis methods.

The techniques described in Chapter 14, however, require large
amounts of memory for simulated delay lines and therefore would probably
not fit if implemented as part of the synthesis program. Thus, Level 0
functions would be written to read a sample stream from a mass storage
device, process it, and write the altered stream on another device.

In some cases, the “acoustical environment’ created by the Level 0

routines must change during the course of the score. If the ability to dynami-
cally specify reverberation parameters is desired, the Level 0 program will

also have to scan the score while processing the sample string. Virtually all of
the score data will be ignored, but timing will have to be followed to
determine where in the sample string to change reverberation parameters.

Playback Program

After sound samples for the score are all computed and saved on a mass
storage device, the last step is playing them back through the DAC for
conventional recording. Because of the sustained high data rate involved and
the requirement for an absolutely stable sample rate, this tends to be a highly
specialized program that may not be easy to write. Most of the problems are
due to the fact that samples are stored in blocks on the mass medium. With

IBM-type tape, the time lapse between blocks is fairly constant and predicta-

ble. Disks are far more erratic. If the next sector is even barely missed, the

playback program will have to wait a full revolution before reading it again.

Even more time is wasted when a track seek is necessary. Also, rereading a

block after an error is usually out of the question, so top-quality recording

media are a must. The net effect of such an erratic input data flow is that as

much memory as possible should be used as a data buffer.

Details of the playback program are heavily dependent on the systern

configuration. The ideal situation is an audio DAC that is interfaced to the

system as a direct memory access (DMA) device and a mass storage system

648 MUSICAL APPLICATIONS OF MICROPROCESSORS

that is also a DMA device. The DAC could be configured so that it continu-
ously scans, say, 16K words of memory in a circular fashion and generates an
interrupt whenever wraparound occurs. The playback program then attempts

to keep ahead of the DAC by reading records from the storage device. Of
course, the records cannot be read too fast or the DAC may be “lapped.” This,
of course, assumes a system that can support simultaneous DMA such as an

LSI-11.

A livable system can often be put together when only one of the two
data streams is under DMA control. The easiest situation would be a DMA
DAC coupled with a programmed transfer mass storage device. Execution

time constraints on the playback program would remain lenient as long as
sample entry into the buffer did not fall behind the DAC. Programmed
transfer to the DAC with DMA sample reading is a less desirable situation.
Assuming that the DAC is merely double-buffered (can hold one sample in a
register while converting the previous one), the playback program must be
free every sample period to get the next sample loaded before the previous
one expires. While not difficult to do most of the time, the dara must be

kept flowing even while servicing exceptional conditions on the storage
device such as an end of record interrupt or seeking to the next track. In
either case, DMA activity must not lock the processor out for long periods of
time. Programmed I/O for both data streams is quite a challenge unless the
system is fast and the sample rate is low.

5The microprogrammed memory refresh feature of the LSI-11 cannot be used by a
smple playback system because of che large blocks of rime (60 psec every 2 msec)
stolen.

Appendix

Table for Comparison of Popular Operational Amplifiers
will be found on page 650

Musical APPLICATIONS OF MICROPROCESSORS 650

*paads
yBiy

‘SH
‘uamod

moj
‘gq

‘esodund
jesauab

‘gD,
-aBeyoa

Ajddns
a
y

jo spuiyj-om)

Jse9|
Je

jo Huims
a
G
e
I
0
A

&
 40j SI B

A
P

I
N
N
O
,

~aoud sayBiy
&

12 aiqeyeae
ale

soNSLa}DeIeYO
JoY9q

ULM
SadIAep

payoajes
‘epelH

,,puepUe}S,,
AL) JO} aie

SUOHeOYIOadSz
‘yeordAy

ase
saunby

ajbuig
‘eases

jsiom
si aunBy

seujo
ayy

pue
jeodA)

si sunby
sayeq

ey;
‘uaai6

s} senjea
yo e

u
e
s

e
BJOUAA,

—:SO]ON

dd
43418

OF
eb

€
ETS)

z0-€0°0
p
8
0

do
4318

SL
€L

+
o
s

t'0-$z0'0
2ves1

quaweoe|dad
[e1aU95)

d9
43418

st
ze

s
ole

z'0-£0'0
gses1

B@AUIP.
yndjno
BuroB-eayeBeu
M07
d9
SOWla
S 6 SP
3-8
S0'0-10'0
«
O
P

LEWO.
Aiddns

‘xew
A $'2=

d5
SOWIa

S
OL

v
SI-8

S000
=
:
 Of Lev.

yun
pend

d5
sejodig

02
<0

i
£@

 .
—
 0S%-Sr

v
z
e
n

upiMpueg
@pim
inoUM
peeds
YbIH
SH
dejodig
02
se
L 9-2
00S'l-00¢
LeSaNn

“dwioo
|ewaXG

SH
dejodig

oz
02

St
o
l

008-051
s
l
e
w
 “duo
jeusayxg
semod
M07
ad
sejodig
$ zo
0

S
L
z

Lg'k
s
0
e
w

“duis
jewapg
dd
aejodig
oz
Exe)
t GL-e
osz-02
L
o
e
w

asn
ut
dwe-do
uowwiod
Iso
d5
dejodig
02
$0
I 9-2
00s-0g
Lp

sjwawwog
=
 8S).

SS800/4
(yw)

—
 (oasti/q)

(HW)
(aw)

fyu)
adAy

e@AUp
ayes

A
o
u
a
n
b
a
y

abeyonr
1Wwasne

wnayno
Mais

ueb-Ayun
1asyo

seig

2 Ssayliduiy |euonesedg sejndog jo uosiuedwioD

Bibliography

The following publications contain further detailed information on most of
the topics presented in this book. The reader should be aware, however, that
many of these references require considerable mathematical sophistication to
comprehend. An asterisk appears in front of those that would be most
valuable for further study.

Books

*Rabiner, L. R., and Schafer, R. W. Digital Processing of Speech Signals.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

Stearns, Samuel D. Digital Signal Analysis. Rochelle Park, New Jersey:
Hayden Book Company, Inc., 1975.

*Oppenheim, Alan V. Applications of Digital Signal Processing. Englewood

Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

Gold, B., and Rader, Charles M. Digital Processing of Signals. New York:
McGraw-Hill Book Company, 1969.

Hamming, R. W. Digital Filters. Englewood Cliffs, New Jersey: Prentice-
Hall, Inc., 1977.

Lam, Harry Y.-F. Analog and Digital Filters. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1979.

Johnson, David E., and Hilburn, John L. Rapid Practical Designs of Active
Filters. New York: John Wiley & Sons, Inc., 1975.

*Appleton, Jon H., and Perera, Ronald C. The Development and Practice of

Electronic Music. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1975.

*Mathews, Max V. The Technology of Computer Music. Cambridge, Mas-
sachusetts: MIT Press, 1969.

*Denes, Perer B., and Pinson, Elliot N. The Speech Chain. Bell Telephone
Laboratories, 1963.

*Flanagan, J.L. Speech Analysis Synthesis and Perception. New York: Academic

Press, Inc., 1965.

*Hutchins, Bernie. Musical Engineer's Handbook. New York: Electronotes,

1975.

651

652 Musical APPLICATIONS OF MICROPROCESSORS

Periodicals

Electronotes Newsletter, 1 Pheasant Lane, Ithaca, New York 14850

Computer Music Journal, P.O. Box e, Menlo Park, California 94025

ADC analog-to-digital converter
ADSR attack—decay—sustain—release envelope generator

AGC automatic gain control
AR attack—release envelope generator
BCD binary coded decimal
BIFET ._ process name used by National Semiconductor Inc. to refer to the

integration of bipolar and field-effect transistors on the same chip
BPF bandpass filter
BPI bytes per inch
CAS column address strobe
CMOS complementary metal-oxide field-effect transistor logic

CPU central processing unit
CRT cathode-ray tube

DAC digital-to-analog converter

DIP dual-inline package—most popular form of integrated circuit
packaging

DMA direct memory access
DOS disk-operating system

FET field-effect transistor
FFT fast Fourier transform
FIFO first-in-first-out buffer memory
Ic integrated circuit
IM intermodulation
VO input/outpur

JFET junction field-effect transistor
LPF low-pass filter

LSB least significant bit
MIPS million instructions per second

MOSFET metal-oxide field-effect transistor
MSB most significant bit
NFET N-channel field-effect transistor

OTA operational transconductance amplifier
PLL phase-locked loop j
PROM programmable read-only memory
RAM read/write memory
RAS row address strobe
rms root-mean-square
RMW read—modify—write

ROM read-only memory

SAH

SPT

S/N

VCA

VCF

vCco

VFO

BIBLIOGRAPHY

sample and hold
slow Fourier transform
signal-to-noise ratio

voltage-controlled amplifier
voltage-controlled filter
voltage-controlled oscillator
variable-frequency oscillator

653

Index

Accumulator divider, 547-549
Accuracy DAC, 216, 346
Acquisition time, 380

ADC. See Analog-to-digital conversion
Addressing modes

LSI-L1, 153-154

6502, 162-163
Algorithmic input, 303-315
Alias distortion. See Distortion, alias
AM. See Amplitude modulation
Amplifier

differential, 191-192

nonlinear, 48-54
operational, 172-173, 650
operational transconductance,

191-200

voltage-controlled, 87-88, 189-200
Amplitude modulation, 32-33

parameter, 16-18
response, definition of, 54-56
response, effect of finite pulse width,

356-358
Analog switch. See Switch, analog

Analog synthesis See Voltage control

Analog synthesizer. See Voltage-con-
trolled synthesizer

Analog-to-digital conversion, 110, 213,
244-251

audio, 379-381
dual-slope, 245-246
linear search, 246
single-shot, 244-245
successive approximation, 247-251
tracking, 247

Analysis
frequency, 522-523

homomorphic, 526-529
sound, 495-540

spectral shape, 523-529
Analysis-synthesis, 70-74, 517-518

Aperture delay, 380
Aperture uncertainty, 381
Arithmetic

binary, 600-614
complex, 412-415
fixed point, 600-614
fractional, 214-215

mixed number, 392-393
multiple precision, 601-602
program, 607-610

Array processor, 576

Attack. See Envelope, amplitude

Autocorrelation, 538-539
Automatic gain control, 381

Bandwidth, definition, 56-57
Bessel functions, 98

Bit reversal. See Decimation
Buffer

display, 329
first-in-first-out, 344, 380

Bus

LSI-11, 151-153, 330

$-100, 130, 133, 145-146, 330
6502, 159-161
8080, 143-145

Butterfly diagram, 416-417

Capacitor, hold, 241
Cascade, filter, 60, 62
Cassette, tape, 135-136
Cepstrum, 529-530, 539-540
Chorus effect, 69-70, 120, 464-467

simulator, digital, 465, 466-467
Clippers. See Amplifier, nonlinear
Clock

audio DAC timing, 343-344, 377

real-time, 259, 286

655

656 INDEX

Coding, DAC, 231-233, 347-352

Coloration, sound, 69
Comparator, window, 247

Compensation
bulk resistance, 188
discharge, 188
finite pulse width, 368-369
linearity in 3080, 197-199
op-amp, 231
temperature, 178, 187, 211

Composition
algorithmic, 303-315
by editing, 333-340

Computer
signal processing, 575-576
synthesis, direct, 38-39, 383-431,

621-648
Control blocks, NOTRAN system, 629,

633
Controller, musical instrument, 303
Convolution, direct, 452
Corner peaking, 89
Current mirror, 193-194

Current-to-voltage converter, 230-231

Cutoff frequency, 359
slope, 359

DAC. See Digital-to-analog converter
Decay. See Envelope, amplitude
Decibel, 17
Decimation, 412-413
Deglitcher, DAC. See Glitch, DAC

Deviation, frequency modulation, 95-97
Digital control of synthesizers, 170,

271-274

See also Synthesizer, computer-con-
trolled

Digital filters, 433-477
Digital filter

all-pass, 447-451
arbitrary response, 452-459
cannonical, 447
impulse invariant, 439
low-pass, 437-439, 445
multiple feedback, 444-447
program, 615-617
state-variable, 441-444,627,615-617
tuning, 443-444

90° phase shift, 465-467
Digital integrator, 384-385, 434-437

Digital-to-analog convetter, 106,
213-224, 231-239, 243,
343-354, 377-379, 551-552,
554, 600

Digital-to-analog converter
audio, 343-354, 377-379, 600

display, 320, 324
duty-cycle, 218-219
exponential, 223-224
floating-point, 349-352
intelligent, 243
resistive divider, 219-223

Digitizer, graphic, 302, 332

Disk
fixed media, 137, 647
floppy, 136-137, 647

Dispersion. See Phase response
Display

alphanumeric, 318

bit-mapped. See Display, raster
computer graphic, 318-331
list, editing. See Editing, display list

format, 321-322

raster, 327-331
vector, 319-327

Distortion
alias, 384, 389-390, 392, 396

553-556
DAC glitching, 353-354
harmonic, 553-556, 586

intermodulation, 554
slew limiting, 355-357

Division, software, 605, 612-614
DMA, 145, 151, 160-161, 329,

647-648
DOS, 140

Echo. See Reverberation
Editing

display list, 322, 331
functions, graphic display, 335-340
sound using tape recorder, 44-45
text, 138, 140

Envelope
amplitude, 32-33, 596
generation, analog, 90-91
spectral, 28, 524-529
tracking, 71

Equalizer, 61
Exponential converter, 174, 176-179

Exponential converter (comtinued)
DAC, See Digital-to-analog

converter, exponential

function, 82-83
truncated, 631-632

Fast Fourier transform. See Fourier
transform, fast

Feedback shift register. See Sequence
generation, digital

FFT. See Fourier transform, fast

Filter
active, 369-375, 378
all-pass, 447-451
bandpass, 56, 204, 270

FFT equivalent, 511-516
band-reject, 57, 205
cascade implementation, 360, 361
comb, 63-64, 451-452
constant bandwidth, 89-90

Q, 89-90
definition, 54-60

design data, 370-374
digital, 119, See also Digital filters
dispersive, 447-451, 520
heterodyne, 509-510

high-pass, 56, 205
interpolation, 470-477
jitter, 546
low-pass, 56, 109, 115, 204,

358-376
audio reconstruction, 358-376
Butterworth, 363-365, 370-372

Cauer, 366-367
Chebyshev, 365-366, 368,

370-374
elliptical, 366-367
iterative R-C, 361-363
iterative R-L-C, 362-363
vector generator, 326-327
4-pole, 209-211

notch. See Filter, band-reject
parallel implementation, 360, 361

passive, 375
ringing, 480-482

R-L-C, 203-205
spectrum analysis, 503-510
state-variable, 204-208
state-variable, digital. See Digital

filter, state-variable

INDEX 657

Filter (continued)
tracking, 586.
transversal, See Digital filter,

arbitrary response
voltage-controlled, 88-90, 201-211
I/E. See Noise, pink

Filterbank, analyzer, 505-510
Flanging. See Filter, comb
Floating point, 157, 577
EM. See Frequency modulation
Formant

definition of, 62

tracking, 72, 523-529. See also
Spectrum tracking

usage, 335, 523-525
Fourier series, 117, 396-399, 401,

562-563
Fourier transform, 401-431

computer, 575-576

discrete, 402-431
fast, 407-408, 412-424
fast, complex-real conversion,

421-424

forward, 406-421

inverse, 406, 421
program, 406, 407, 419-420,

422-424

slow, 405-407, 409-411, 562-563,
614, 618-620

in spectral analysis, 510-517

Frequency
fundamental, 22

generation, digital, 542-550
generator, harmonic, 565-566
harmonic, 22-26
modulation, 32, 94-100

patch, 99-100
negative, 99-100, 180, 386
parameter, 13-15

response. See Amplitude response
Fuzz effect, 48

Gate, music keyboard, 276-278
Gilbert multiplier, 199
Glitch, DAC, 217, 222, 353-357,

378

Handshake protocol, 284
Harmonic

Fourier transform, 404-406,
425-431

658

Harmonic (continued)
inexact, 568-570
Nyquist frequency, 405

History
microprocessor, 127-133
sound synthesis, 34-41

Hold droop, 381

step, 381

Impulse response
of concert hall, 462
of filter, 452-459, 473-474

Input-output, memory-mapped, 142,
149, 152, 160, 250

Instruction set
arithmetic, 606
LSI-11, 154-157
6502, 163-165
8080, 146-149

Interlace, raster scan display, 328-329
Interpolation

beeween waveforms, 339-401,
628-631

in curve editing, 337-339
linear, 387-388
noise. See Noise, interpolation

polynomial, 468-469
sinc function, 470-477

Interrupts
application of, 278-279, 286, 648

LSI-11, 153
6502, 161
8080, 146, 161

Toterval timer. See Clock, real-time

Jetsound effect. See Filter, comb
Jitter

in audio DAC, 343-344
in digital oscillator, 546-550

Joystick, 301-302

Keyboard

function, 333
music, 91-92, 275-297

assignment problem, 280-281

polyphonic, 281-297
pressure sensitive, 297

INDEX

Keyboard (continued)
two note, 279-281

velocity-sensitive, 282-283

Ladder, R-2R, 222-223
Language

APL, 598

assembly, 126, 141, 599
BASIC, 126, 141-142, 419-420,

423, 424, 571, 598
C, 599
FORTRAN, 126, 598

PASCAL, 598

PL/M, 598
portability, 598-599
machine. See Language, assembly
music, 120-123, 299, 621-648

Level, signals in voitage-controlled
synthesizer, 81-84

Light pen, 332-333

Linear prediction, 525-526
Linearity, DAC, 215-216, 219-221,

345-346
Logic replacement, 158-159

Machine, finite state, 290-291
Microcode, 597
Microcomputer

Altair, 129

definition, 126-127
H8, 133
IMP-16, 129

MARK-8, 129
PET, 133
TRS-80, 133

Microprocessor

definition of, 126-127
IMP-16, 129, 131

LSI-11, 132, 150-158, 244, 251,
259, 330, 599, 624, 648

Micro Nova, 132
PACE, 132
SCMP 131

Z-80, 143
4004, 127-128
6502, 131, 158-165, 243, 244, 250,

282, 324, 330, 392, 570-571,
588, 599, 606-621, 624

6503, 286
6800, 330

INDEX 659

Microprocessor (comtinwed)
8008, 128, 259

8080, 129, 143-150, 161, 244,

249, 385, 386, 625
8085, 143

9900, 132

Microprocessors, description of,
40-41, 143-165

Mixing, sound, 117
Modification

sound, 43-74
spectrum, 49-68, 518-320

Modulation index, 95-97
Modulator, balanced, 65-68
Modulator, ring, 65-68
Module

instrument, 256, 268-274
voltage-controlled, 75-78, 84-94

Monitor
software, 139-140
X-Y graphic, 319-320

Monotonicity. See Lineatity, DAC

Mouse, 332
Multiplexing

ADC, 252-253
addtess on 4116, 559-561
analog, 239-241

DACs, 237-243, 260
digital module, 542, 550, 556-562

Multiplication

hardware, 566-567
software, 604, 611-612

Multiplier
analog. See Gilbert multiplier
rate, 545-546

Multiplying DAC, 218, 236-237
Muse, 312-315

Music, definition of, 4

MUSIC V, music language, 122-123

Noise generator
analog synthesizer module, 93
generation, digital, 483-488

interpolation, 387, 393-395
pink, 93, 309
quantization, 111-112, 344-352,

554-555
unwanted analog, 274, 371, 376
unwanted digital, 272-274, 378-379

white, definition of, 30

NOTRAN music language, 121-122;
621-648

Nyquist’s theorem, 111

Operational amplifier. See Amplifier,
operational

Organ, Hammond electronic, 36
Oscillator

digital, 542-550, 556-562

sawtooth, digital, 384-386
sawtooth-pulse, 174-175, 181-184,

186
quadrature, 482-483, 509
sinewave, digital, 482
triangle-square, 174-175
voltage-controlled, 84-87, 173-189,

549
; Oscilloscope, 9
Overlap, in use of Fourier transform,

426-427, 516-517
Overtone. See Harmonic

Parameter

NOTRAN language, 637-639
sound, 8-31

variation, 31-34
Patching

automatic, 261-268
definition of, 78-80
fixed, 268-274
manual, 257-261
pinboard matrix, 78-79

Percussive sound synthesis, 479-493,
625-627

types of, 479-480

Phase cancellation multiplier, 567-568
locked loop, 549-550, 590
parameter, 20

response
definition 54-55
of filter, 367-368
of filter, all-pass, 447-448

Phosphor, display, 320
Pipelining, 561
Pitch

musical, 14-15
perception, 11-13, 530-534
tracking, 71, 530-540

Pole count, filter, 359, 367

660

Polyphony, definition of, 275-276
Portamento, 92

Printers, computer, 138-139

Q control, 208-209

definition of, 56
Quantization error, 111-112

Quefrency, 529-530, 539-540
Queue, data, 284-286, 291-296

RAM, definition of, 134
Random number generator, 483-487
RCA synthesizer, 37-38
Record, discrete Fourier transform,

424.431
Refresh

display, 320, 323, 329
dynamic RAM, 559
multiplexed DAC, 242

Relay, mechanical, 265
Resolution

binary arithmetic, 601
DAC, 213-215

display, 318-319, 327, 328

time-frequency, 500-502
Reverberation

digital, 460-464
electronic, 68-69, 120
using tape recorder, 46-47

Reverberator
all-pass, 463-464
delay line, 462

Rhythm display, 339-340

Ribbon controller, 299-300
ROM, definition of, 128

Sallen and key filter. See Filter, active
Sample

definition of, 106
playback, 114-115, 647-648

tate conversion, 470-477
definition, 106
envelope, 595, 623
selection, 109-111, 360-361

storage, 114-115
Sample-and-hold

analog synthesizer module, 93,

304-308

INDEX

Sample-and-hold (continued)

in audio DAC, 380-381
DAC deglitcher. See Glitch, DAC
etrors, 380-381

Scaling, binary in synthesizers, 170
Sequencer module, 92-93, 104, 125
Settling time, 216-217
Sequence generation

analog, 310-311
digital, 311-315, 484-487

Sideband, 97

Signal flow graph, 439-441
routing, 255-274

Signal-to-noise ratio of audio DACs,

344.352
Sine

mathematical definition, 18-20
mechanical definition, 20-21

Slew limiting distortion, 355-357
of sample-and-hold, 307-308,

355-357
Software

microcomputer system, 139-142

music synthesis, 593-648
Sonogram, 496-502
Sound spectrogram, 496-502
Spectrum analysis

definition of, 27-31

modification. See Modification,
spectrum

phase-derivitive, 427-431
plotting methods, 496-502
shift, 64-68, 465-467
tracking, 72, 523-529. See also

Formant tracking
Speed change using tape recorder,

45-56
Standards, analog synthesizer, 169-172
Statistics, 306-309, 487-488
Stochastic music, 308-310

Storage, mass, 135-138

Sustain. See Envelope, amplitude

Switch, analog, 221, 224-230

“Switched On Bach,” 40

Synthesis by Fourier transforms,
403-404, 424-431, 520-521

goals, 4-8

percussive sound, 479-493
speech, 334-336

Synthesizer
analog. See Voltage-controlled

synthesizer

Synthesizer (continued)
computer-controlled, 170-172,

255-274, 541-591
voice modular, 172

voltage-controlled. See Volrage-
controlled synthesizer

Table lookup, 118, 390-395, 623
interpolation, 474-477

Tape

1/2 inch computer, 137, 647
recorder, multitrack, 47-48,

102-103, 259

use in synthesis, 37, 43-48
Telcharmonium, 35-36
Theremin, 37
Timer, interval. See Clock, real-time
Top octave divider, 544, 590
Track-and-ground, 356-357
Trackball, 332
Tracking error, 380

Transconductance gain block, 191-192
Tremolo. See Amplitude modulation

INDEX 661

Trigger, music keyboard, 276-278

Tuning systems, 14-15

Vector generator, 324-327

Vibrato, 32-70. See also Frequency
modulation

Vibrator, nonlinear simulation,
489-493

Voice module, hybrid, 577-591
Voiceprint, 500

Voltage control, limitations, 101-103
Voltage-controlled oscillator. See

Oscillator, voltage-controlled
Voltage-controlled synthesizer, 39-40,

75-100, 169-211

Wah-wah effect, 48, 63
Waveform computation, 115-119

drawing, 9, 36-37
Waveshaper, 184-185, 187

Window, spectral analysis, 512-516,
522-523

MUSICAL APPLICATIONS
OF MICROPROCESSORS
Hal Chamberlin

Here’s a truly comprehensive book

that covers digital microprocessor

sound and music synthesis, and fea-

tures heretofore unpublished tech-
niques that are practical only with

microprocessors. Standard linear

techniques for microprocessor appli-

cation are discussed. And, in non-
mathematical language, musical ap-

plications for the newer and more

powerful 16-bit microprocessors are

explained. Also covered are all

phases of waveform shaping and fil-

tering as applied by digital devices to

electronic music generation.

The book is divided into three sec-
tions. Chapters 1 to 5 cover important

background material including ana-

log music synthesis principles, direct

digital music synthesis principles,
and much more. Chapters 6 to 11

cover the applications of micropro-

cessors to controlling analog sound-

synthesizing equipment. Chapters 12

to 18 detail digital synthesis tech-

niques. Numerous waveforms charts,

nomographs, and sample control and

generation programs written in BASIC

are used to provide actual hands-on
experimentation and application.

About the author...
Hal Chamberlin is co-founder of Micro
Technology Unlimited, a microcom-
puter accessories manufacturer, for

which he does hardware and software

design. He is the author of numerous

articles on computer music synthesis

and microprocessors and has written

a monthly column for Popular Elec-
tronics. Currently he is building an
LSI-11 based signal processing and
music synthesis system in his home.

Mr, Chamberlin received a B.S. de-
gree and M.S. degree in electrical
engineering from North Carolina

State University.

Other Books of Interest...

BASIC MICROPROCESSORS AND THE 6800
Ron Bishop

Contains two books in one: a basic guide to microprocessors for
the beginner, and a complete description of the 6800 system for the
engineer, Includes details of the hardware, addressing modes, sys-
tem configuration, programming examples, and a description of
the 6800 instruction set. #0758-2, paper, 272 pages

DESIGNING MICROCOMPUTER SYSTEMS
Udo W. Pooch and Rahul Chatiergy

Provides readers with the information necessary to build microcom-
puter systems. Discusses the hardware aspects of microcomputer
systems, including microprocessor architecture, input and output
ports, interrupt systems, programmable clocks, memory units, etc.
#5679-6, paper, 224 pages

THE S-100 BUS HANDBOOK
Dave Bursky

A comprehensive book that exclusively discusses S-100 bus com-
puter systems and how they are organized. Coverage includes:
computer fundamentals; basic electronics; the parts of the com-
puter; CPU; memory; input/output; and much more. Schematic
drawings are included. #0897-X, paper, 272 pages

Hi
HAYDEN BOOK COMPANY, INC.

Rochelle Park, New Jersey

ISBN 0-8104-5753-9

