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Pretace 

The period encompassing the mid-1970s has seen an explosive growth in the 
application of digital logic, especially programmed logic and micro- 
computers. The key to this growth is the fantastic reduction in the cost of 
logic and memory and the development of the microprocessor. In particular, 
microprocessors and microcomputer systems built around them make it pos- 
sible, practical, and even advisable to perform many functions using com- 
puter techniques that would have been done with conventional logic or 

analog circuits a very few years ago. 
Although many computer music techniques were developed over a 

decade earlier, their widespread use in the broader area of electronic music 

has not yet materialized. Now, however, the increasing power of mi- 
croprocessors and their fantastic low cost make such widespread use inevita- 
ble. 

Many of these existing techniques cannot or should not be used di- 
rectly, however. Although a microprocessor bears considerable resemblance 
to the large-scale machines on which these techniques were developed, there 
are important differences. Additionally, there are numerous new techniques 
that lend themselves well to microprocessor implementation but that are 

completely impractical using a large-scale mainframe or even minicomputer. 
In the pages to follow, the application of all important electronic and 

computer musi¢ performance techniques to microprocessors will be covered. 

In addition, some new, heretofore unpublished, cechniques that are only 

practical with microprocessors will be discussed. Finally, some of the ex- 
tremely powerful big computer signal-processing techniques will be pre- 

sented in nonmathematical language and applied to the more powerful 
16-bit microprocessors that are just now emerging. 

The text is divided into three major sections. Chapters 1 to 5 cover 
important background material, the understanding of which is necessary for 
full appreciation of the sections to follow. Chapters on analog music synthesis 
principles, digital music synthesis principles, and microprocessors should 



serve to acquaint the general reader with these areas as well as fill in the 

background of the specialized reader. 
Chapters 6 to 11 cover the application of microprocessors to controlling 

conventional analog sound-synthesizing equipment. The first two chapters 
cover typical analog modules and interfacing techniques to microprocessors. 
The remaining four chapters are devored to the control function itself, par- 
ticularly the manner in which the human user interacts with the 

microprocessor—synthesizer combination. 
Chapters 12 to 18 concentrate on purely digital synthesis techniques. 

These techniques have the greatest inherent generality and accuracy, but 

widespread use has so far been inhibited by high cost and operation outside of 
real time. Chapter 12 discusses the conversion of high-fidelity audio signals 
to and from the digital domain. Chapters 13 to 15 discuss digital signal 
generation and processing. The last three chapters describe the use and 
implementation of these digital techniques into practical equipment and 
systems. 

Throughout the discussions, the use of mathematics is minimized, and 

where present, is limited to elementary algebra and trigonometry. Instead, 
numerous charts, graphs, and sometimes computer programs in BASIC are 

used to illustrate important concepts. This does not mean that the more 
difficult concepts are skipped. For example, the fast Fourier transform and its 
workings are described and supported with a tested program listing in 
BASIC. Digital filters are also covered extensively. 

The reader is not expected to merely study and marvel at the techniques 
described. Rather, he is urged to go out and try them, apply them, and enjoy 
the results. For this purpose, many actual programs and circuit diagrams are 
included. While not every topic is reduced to practice, enough information is 
supplied or pointed out in reference material to enable the industrious reader 
to experiment with and refine the technique. 

Hal CHAMBERLIN 
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SECTION I 

Background 

Music is unique among the arts. Virtually everyone enjoys and appreciates it 

to some extent. It is certainly the richest of the fine arts, with the typical 
middle-class household spending hundreds of dollars annually on music 
hardware such as radios, phonographs, and hi-fi sound systems and software 
like records, tapes, and concert tickets. It is also unique in that it encom- 

passes a very broad range of disciplines ranging from mathematics to physics 
to computer programming. 

In the area of music synthesis by computer, it is necessary that the 
practitioner be somewhat familiar with these and other fields in order to 

master the medium. While detailed treatment of all necessary background 
material is impossible in five short chapters, that which is covered should 

serve to enlighten che reader in those areas outside of his or her primary 

interest. 



7 ie 

Muasie Synthesis Principles 

Creating and listening to music is one of man’s oldest and most popular 
pastimes. Although natural sounds from both inanimate and animate sources 

may have some of the essential characteristics of music, only man can create 

and control sounds that simultaneously possess all of the characteristics of 
music. 

Early peoples used many naturally occurring objects to create music. 

Sticks beaten together, stones pounded together, and logs being struck were 
certainly used for early rhythmic sounds. Later discovery of conch shell and 
ram’s horn trumpets added pitched sounds to the available repertoire. 

However, as the quest for new and different sounds continued, natural 
objects were modified specifically for the purpose of producing a wider range 

of sounds. Logs were hollowed and slotted for differently pitched sounds. 
Natural horns were modified in Jength or pierced with holes for the same 
purpose. At this point and for all of history to follow, music became com- 
pletely artificial and was played on wholly artificial instruments. 

Over the years, a great multitude of different instruments was invented 
and refined. Stringed instruments culminating in the piano and violin 

evolved from the earliest one-string harps. Wind instruments such as the 

trumpet and pipe organ developed from simple horns or reed pipes. Percus- 

sion instruments such as the timpant or vibraphone evolved from log drums. 
Historically, musical instrament makers have been quick to adopt 

newly available technology. Perhaps since music is of such universal interest 

and is usually regarded as a pastime, it would be natural that technologists 
would want to utilize their expertise in an enjoyable manner. The experimen- 

tal approach to utilizing new technology in music is quite reasonable, since 

the consequences of failure are nothing more than a heightened desire to 
succeed the next time. In addition, failure is not that well defined. Although 

the results may not have been expected, if they are different there are always 
some who would praise them. This would not be true in many other applica- 
tions of technology such as bridge building or vehicle design. 

It is not surprising, then, that musical instrument manufacturers have 

rapidly adopted this century’s electronic and more recent computer technol- 
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ogy. Modern electronic technology allows the design of compact instruments 
with a wider range of sounds and more precise player control of the sounds 

than had been previously available. Also of significance is the face that these 
new instruments are often much easier to play. Perhaps the ultimate in 
playing ease is a programmable instrument such as a digital computer. Since 
time need no longer be a factor, very intricate, fast-moving music may be 
played as easily as it can be written down. 

Often traditionalists, who may have spent many years perfecting the 
skills necessary to play traditional instruments, ate loudly opposed to the 
utilization of this new technology because to them music so produced is 
artificial and mechanical. Nevertheless, there is no essential difference be- 

tween the use of piston valve technology in trumpet design and computer 
programming technology in organ design. It is still the responsibility of the 
composer and performer to produce desirable musical results. 

At this point it would be wise to develop a working definition of 
music. Most physics texts define a musical sound as one that possesses a 
degree of regularity, while noise as a sound does not possess such regularity. 
Clearly, this alone is not sufficient, since a snare drum beat would be clas- 
sified as noise and fluorescent light buzz as music by this definition. 

The arrangement, in time, of component sounds is as important as the 
sounds themselves. Furthermore, this arrangement must be orderly to be 
musical. However, excessive orderliness leads to boredom. 

So far nothing has been said about the emotional aspect of music 
composition and performance. True, some of the world’s best music has a 
strong emotional appeal but that alone is not sufficient. A mortal cry of 
anguish appeals emotionally to all who hear it but is certainly not music. A 
well-executed display of sound can be just as interesting to the ear as a 
fireworks display is to the eye. 

In summary, then, good music must be composed of sounds that have 
regular vibrations but with enough variation to be continuously interesting. 
Likewise, the arrangement of sounds must be orderly bue with enough 
variety to maintain interest. Music may either express an emotional point or 

merely be a spectacular display of sound. Above all, good music must hold 
the attention of the listener. 

Goals of Music Synthesis 

Certainly, all who study electronic music techniques in general and 
particularly the readers of this book must have some goal in mind. The vast 
majority of young music students today are still educated solely on the 
traditional musical instruments such as piano, organ, or any of a multitude of 
band and orchestra instruments. Most often this involvement is not com- 
pletely spontaneous but rather is encouraged by parents and teachers, often as 
the result of a musical aptitude test. Children who get into music on their 
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own are more apt to choose the guitar, drums, or vocal music perhaps 

because of the publicity that is continuously heaped upon players of those 
instruments or because of the ready market for combo dance music. 

Electronic and computer music has an attraction to both beginning and 
thoroughly seasoned musicians. Its newness and unique capabilities are 

strong attractive qualities, Young musicians are attracted because the poten- 
tial exists for creating sounds and music never before contemplated, let alone 
heard. Experienced musicians see the opportunity to express themselves in 

new ways unfettered by the constraints of conventional instruments or the 
classical rules of composition for them. 

Wider Variety of Sounds 

Probably the most obvious and commonly sought goal of electronic 
music practitioners is broadening the repertoire of sounds available for music 
composition. Any given traditional instrument is definitely limited in the 
pitch, loudness, and timbre range of sounds that it can produce. Orchestral 
composers have often been quite clever in combining the sounds of ordinary 
instruments to produce a composite sound that does not resemble the com- 
ponents at all. Indeed, it may be theoretically possible to produce any desired 
sound in this manner. However, the proper combination is not at all obvious 
and experimentation to discover it is not always practical due to rhe cost and 

time constraints of an orchestra. 

Undoubtedly the first purely electronic sound available was the simple 
sine wave. Acoustically, a sine wave can be likened to pure refined sugar; 

good in small amounts but sickeningly sweet if overdone. The oscillators that 
produced the sine waves were usually continuously variable over a large 

frequency range making wide interval glissando (a continuous change in 
pitch from one note to the next) a reality. 

Modern electronic music techniques are capable of an infinite variety of 
musical timbres. Whereas in the past a differently shaped or proportioned 
instrument was required to explore different timbres, the same can now be 
accomplished by knob twiddling or keying numbers on a computer terminal 
keyboard. Furthermore, timbre need not be unchanging. Ic is entirely possi- 
ble for a nore ro begin sounding like a saxophone and end sounding like a 

flute with a smooth transition in between. 
Because of the human hearing mechanism, a short, rapid sequence of 

sounds may have an entirely different effect than the same sequence presented 

more slowly. Electronic and computer techniques allow such sequences to be 

accurately specified, played, and easily modified. Changing the component 
sounds, the sequence, and the rate of presentation opens up a new infinity of 
sounds available for the composition of music. 

Sheer dynamic range is a significant new musical tool. A single tone 
may start from the depths of inaudibility and creep upwards in pitch to the 
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heights of inaudibility. Any sound may be made as loud or as soft as desired. 
Thunderous, gut-shaking bass chords are available as is the most subtle solo 
melody. 

Certainly a musician working with electronics is not limited by the 

sounds available for composition. 

Performance by the Composer 

Another goal sought by many electronic musicians is, to be blunt, 
omnipotence. It is now possible for a single person to compose, perform, and 
criticize a piece of music of any degree of complexity desired. No longer is it 
necessary to write the music down part by part and find an orchestra to play 
it, and then correctly only after considerable practice. Instead, the composer 
can play the piece sequentially by part and have the parts combined in a 
recording studio. Or, with the aid of a computer, proper notation of the 

music is itself sufficient to precisely direct the performance. 

Interpretation of conventional scores has always been a problem. Many 
important variables are left unspecified. Filling in these gaps is left to the 
conductor (who may indeed be the composer himself) and the individual 
players. In cases in which some aspect of the music is unconventional, the 
fact that the performers are musicians too with their own ideas may make 
execution according to the composer's wishes very difficult. With the use of 
electronics, the composer himself can be in complete control of the perfor- 
mance. Passages can be repeated and experimented with in search of perfec- 
tion subject only to the patience of the composer. Nobody other than the 
composer himself needs to hear or judge the work until it is in final form. 

Because of the vast repertoire of new sounds available, it is less likely 
that the desired sounds and their combinations can be chosen using only 
prior knowledge and imagination. Just as the classical composer worked with 
a piano to experiment with melodies and rhythms, the contemporary com- 
poser needs to experiment. Electronics allows such experimentation with 
immediate, or nearly so, feedback of results. Additionally, the costs are such 
that experimentation is usually practical as well as possible. 

The majority of money spent on musical instruments in this country is 
by individuals who are not in any sense professional musicians. To these 
people, playing an instrument is a very enjoyable, creative pastime. The 
increasing popularity of organs over pianos and other instruments in the 
home is probably due to the greater versatility of the organ. Electronic organ 
manufacturers have been very quick to adopt new technology that increases 
the capabilities of their instruments and makes them easier to learn and use. 
In the not too distant future, programmable electronic instruments will 
allow anyone with clear ideas and time to try their hand at composing and 
performing truly serious music strictly for fun. 

Certainly, a musician working with electronics is not limited by anyone 
else in what can be achieved. 
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Increased Precision 

Another often desired goal that can only be fulfilled through the use of 
electronics is increased precision in the control of sounds. Additionally, 
aspects of sound that in the past have been left to chance or were predefined 

can now be precisely controlled. In fact, when a computer is involved, all of 
the parameters of sound must be specified somehow, even if the actual desire 
is to ignore some of them. 

In many ways the human ear is very sensitive to and critical of imper- 
fections in musical sounds. Small amounts of certain types of distortion can 
be very unpleasant, Relatively small shifts in pitch can break up an otherwise 
beautiful chord into a not so beautiful one. Many hours ate spent in practice 
sessions getting the relative volume balance between instruments correct and 
repeatable, 

Timing is another variable that must be controlled, since the ear is 
extremely sensitive to relative timing among musical events. Its capacity for 

following and analyzing rapid sound sequences exceeds the capabilities of 

conventionally played instruments. However, electronic instruments, par- 
ticularly those involving computers, have control over time to any degree of 

accuracy desired. 

In one technique of electronic tone production, for example, the user 

has complete control over the fundamental building blocks of timbre, the 
harmonic partials. Any timbre (within a broad class of timbres) may be 
created by combining the harmonics in different proportions. Timbres may 
be experimented with, saved for exact recall, and later utilized or refined 

further. The ability to document and accurately recreate timbres and sounds 
is as important as the ability to create them. 

Extreme precision in all aspects of music performance is novel but not 

necessarily good. Many will argue that such precision leads to mechanical 
sounding music. Indeed, certain kinds of uncertainty or subtle variation are 
necessary to maintain listener interest. However, if one starts with a precise 

product, then the needed imperfections may be added in the precise quantity 
desired. 

Certainly, a musician working with electronics is not limited by inac- 

curacies in the control of sounds. 

Increased Complexity 

Complexity is one of the hallmarks of contemporary music, It is used to 
increase the impact of the piece, display virtuosity both of the performer and 
the composer, and to create a rich “sound landscape” upon which the primary 

theme stands. 
Complexity in this case means the quantity of musical events per unit 

of time. Thus, it may actually be either greater speed or more parts playing 
simultaneously or both. A modern recording studio can make a small ensem- 
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ble sound like a vast collection of musicians through the use of overdubbing 

and reverberation techniques. ‘Ihe same studio can facilitate the rapid play- 

ing of music either by actually speeding up the tape or by relieving concern 

over the errors made during rapid playing. 
The use of computers allows great but well-controlled complexity to be 

built up because the music can be programmed, The programming process is 

nothing more than notation of the music according to a rigid set of rules. In 

many computer-based music systems using purely digital synthesis tech- 
niques, there is no practical limit to the speed of playing or to the number of 
instruments or sounds that may be simultaneously present. The only penalty 

for adding additional parts is a longer waiting period during one phase of the 
music production. 

Complexity in sound may also be quite subtle. Many natural sounds are 
really quite complex when described in terms of the fundamental parameters 

of sound. One interest area of many researchers is precise analysis of natural 
sounds, some of which are not normally easily repeatable. With information 
gleaned from the analysis, new sounds may be synthesized that resemble the 
original in controlled ways or emphasize one or more of its characteristics. 

Certainly, a musician working with electronics is not limited by the 
degree of sound complexity possible. 

Increased Spontaneity 

Finally, a minority of people are looking for more randomness or spon- 
taneity in the performance of music through the use of electronics. The wider 
range and greater case of control of electronic instruments makes manual 
improvisation easier and more interesting. 

Computers may generate and use random sequences to control some or 
all of the parameters of a sound. Certain mathematical processes, when used 
to control sound, lead to interesting, unpredictable results. Natural 

phenomena may also be captured electronically and used to control sound. 
One example is the use of brain waves as a control source for one or more 

oscillators. An entire record album has been created using fluctuations in the 
earth’s magnetic field as a control source. 

Certainly, a musician working with electronics is limited only by his 
own imagination. 

The Fundamental Parameters of Sound 

All music, whether it is conventional or electronic in origin, is an 

ordered collection of sounds. Accordingly, a working knowledge of the 
physics of sound is necessary to understand and intelligently experiment with 
the degree of control of sound offered by the use of computers in electronic 
music, 
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Fig. 1-1. Mechanical sound-waveform-tracing apparatus 

Steady, unchanging sounds fall into two classes, pitched and un- 

pitched. The two classes are not completely disjointed, however, since there 
are some sounds that possess characteristics of both groups. As will be shown 
later, all steady sounds can be described by a number of parameters that are 
also steady. In all cases, these parameters are scalar quantities, that is, a 

simple number with corresponding physical units. Changing sounds (all 
sounds change to some degree—otherwise they would have no beginning or 
end) are similar to steady sounds except that the parameters that describe 

them change with time. 
One way to visualize a sound is to show its waveform or the manner in 

which air pressure changes with time. Before the discovery of electronics, 
mechanical instruments similar to the one shown schematically in Fig. 1-1 
were used. Movement of the air caused by sound vibrations would be picked 
up by a diaphragm and cause a tiny mirror to rotate in synchronism with the 

vibration. A light beam reflected from the mirror onto moving photographic 
film would make a visibile waveform trace. The distance from the mirror to 
the film acted as a long but massless lever arm to effectively amplify the 
vibrations. 

Of course, sound waveforms may now be photographed on the display 
screen of an oscilloscope. In order to do this, the sound is first directed into a 
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Fig. 1-2. Some typical waveforms of steady sounds 

microphone that converts the air vibrations into equivalent electrical voltage 
vibrations. Electronic sounds, of course, already exist in electrical form. In 

either case, the electrical voltage variations control the vertical position of the 
oscilloscope beam while it is also sweeping from left to right at a constant 
rate. Thus, the plot on the screen shows equivalent air pressure on the 
vertical or Y axis and the passage of time on the horizontal or X axis. In the 
case of silence, a horizontal daseline is all that would be seen. This does not 
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fepresent zero air pressure but instead represents zero variation from current 
atmospheric pressure. Since only relatively rapid variations in pressure can be 

heard, the baseline is usually taken as a zero reference and the positive and 
negative variation around zero is the quantity of interest. 

Even using an oscilloscope presents some problems. One of these is that 

the screen is not very wide so only very short segments of the waveform may 

be conveniently displayed. The best way to visualize a waveform is to have a 
computer record it and display it on a graphic display or plot it on paper. 
From now on when the term “sound” or ‘‘vibration”’ is used, it is assumed to 
exist as an electrical signal. Listening to the sound is simply a matter of 
feeding the signal to a high-fidelity amplifier and quality speaker system. 

Typical Sound Waveforms 

Figure 1-2 shows some typical waveforms of steady sounds. The hori- 
zontal axis represents the passage of time and is marked off in milliseconds. 
The vertical axis represents air pressure but is marked off in volts due to the 
fact that the picture is actually of an electrical signal. The progression from 
left to right is from the simplest possible pitched sound (sine wave) through 
more complex pitched sounds to semipitched sounds and finally to the most 
fundamental unpitched sound (white noise). 

The waveforms in Figs. 1-2A and B are from unquestionably pitched 
sounds. Their distinguishing feature is that the waveform repeats itself 

AMPLITUDE 

° 

TIME 

(Cc) 

Fig. 1-2. Some typical waveforms of steady sounds (cont.) 
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a hit 
Fig. 1-2. Some typical waveforms of steady sounds (cont.) 

exactly as time passes. Such waveforms when heard are clear, unwavering 

musical notes and are often called tones. 
The waveform in Fig. 1-2C does not seem to repeat, at least during the 

segment shown. It is composed, however, of a small number of individually 
repeating waveforms. The sound is similar to that of a chime or belli, Such 
sounds possess definite pitch when compared to similar sounds, but when 

they are presented in isolation it is often impossible to say what the pitch 
really is in musical terms. 
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The waveforms in Figs. 1-2D and E do not repeat either, but each is 
composed of a very large (essentially infinite) number of repeating compo- 
nents. Waveform E, however, is composed of an equal mix of these compo- 
nents, whereas D contains a greatet proportion of some components than 
others. The sound of waveform E is that of rushing air, whereas D is similar 
to whistling wind. Accordingly, E is purely unpitched and D is semipitched. 

All of these waveforms can be described by means of parameters. Given 
these parameters and a synthesizer or computer, one could reproduce the 
essential characteristics of each of these waveforms and an infinity of others 
between the extremes. This does not mean that the same exact shape would 

be reproduced in all cases (although that too is possible if enough parameters 
are defined), but it does mean that those characteristics chat are audible 
would be reproduced. Not all parameters are of equal importance in accu- 
rately describing the sound, as will be shown later. 

The sine wave can be completely described with only two parameters. 
One of these is related to the time required for a single repetition of the 
waveshape and the other is related to the height of the waveform. 

The Frequency Parameter 

In Fig. 1-2A, the sine waveform repeats every 4 msec (thousandths of a 

second); thus, its period is 4 msec. Usually the reciprocal of the period is 
used and is called the frequency, which is measured in cycles per second 
according to the number of times the waveshape repeats in 1 sec. Recently, 
the composite unit cycles per second has been replaced by hertz as the unit of 
frequency. Thus, hertz or its abbreviation, Hz, will be used hereafter. Large 
values of frequency, usually called Azgh frequencies, are measured in kilohertz 
(kHz) and megahertz (MHz), which are thousands and millions of hertz, 
respectively. 

For the pure sine wave shown, the human ear is generally regarded as 
being capable of hearing frequencies between 20 Hz and 20 kHz. The 
20-kHz upper frequency limit is usually a bit optimistic, however, with 15 
kHz to 18 kHz betng more common for young people. Advancing age pushes 

the upper limit lower yet. The lower limit of 20 Hz is somewhat arbitrary, 
since such low frequencies, if they are loud enough, make their presence 
known by rustling clothing, shaking floors, and rattling windows. 

The frequency parameter of the sine wave is strongly related to the 
perceived pitch of the tone when heard. Whereas frequency is a physical 
parameter of the sound waveform, pitch is a subjective parameter that exists 
only in the mind of the listener. Without question, when frequency is 
increased, the perceived pitch also increases provided that the frequencies 
involved are in the audible range. The relationship between pitch and fre- 
quency is not linear, however. For example, an increase of 100 Hz from 100 
Hz to 200 Hz results in a large pitch change upward, but a similar 100 Hz 
increase from 5 kHz to 5.1 kHz is a nearly imperceptible increase. 
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Listening tests have shown that the relation between frequency and 

pitch is an approximately exponential one. Thus, the increase from 100 Hz to 

200 Hz represents a doubling in frequency so an equivalent pitch increase 

starting from 5 kHz would require doubling again to 10 kHz. 

Musical Pitch 

Musical pitch has its own system of measurement. Unlike frequency, 

the units are relative rather than absolute. The most fundamental unit is the 

octave. If tone B is one octave higher rhan tone A, then its frequency is exactly 

twice as high and the sensation of pitch would be twice as high. (In tests with 

musically inexperienced laymen, tone B would typically be judged to be less 

than twice as high in pitch as tone A, but such a tendency is usually 
eliminated by musical training.) Other units are the hadf-step, which is 1/12 
of an octave or a frequency ratio of 1.05946, and the cent, which is 1/100 of a 
half-step or a ratio of about 1.00059, which is roughly 0.069. A half-step is 
also the difference in pitch between two directly adjacent keys on a conven- 

tionally tuned piano. For moderately loud sounds around 1 kHz, the smallest 
change in frequency that can be perceived is around 5 cents. 

Since these pitch units are purely relative, a basis point is needed if an 
absolute pitch scale is to be defined. One such basis point is the international 
pitch standard, which defines the note, A above middle-C, as being 440.0 
Hz. The corresponding frequencies of all other musical notes can be obtained 
by applying the proper ratios to the 440-Hz standard. 

Table 1-1 gives the frequencies of some musical notes. Note that two 
systems of tuning are represented, although there are others. The most 
popular tuning system is equal temperment, which is based solely on the 
frequency ratio of the half-step being the twelfth root of 2.0 of approximately 
1.05946. The term equal temperment means that all half-steps are exactly 
the same size. The other system represented is the jast system of tuning, 

which is based on rational fraction ratios with small numbers for numerator 
and denominator. The table shows these ratios in both fractional form and 
decimal form for comparison with the equally tempered scale frequencies. 
Note that the octave ratio is exact in both scales, but there are small dif- 
ferences in all of the other ratios. 

Of the two scales, the just-tuned one is more musically accurate 

and pleasing to the ear particularly when chords are played. Musical accuracy 
here means accuracy of the important musical intervals such as the fifth, 
which is ideally a ratio of 3:2, and the third, which should be 5:4. Its 
disadvantage is that not all half-steps are the same size; thus, transposition 
from one key to another is not easily achieved. For example, the just scale 
shown is for the key of A major, meaning that the basis frequency chosen for 
application of the rational fraction ratios was 440 Hz. If another just scale 
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was constructed using a C as a basis, most of the note frequencies would be 

slightly alrered. As a result, the note D, for example, would have slightly 
different frequencies depending on the key of the music, which often changes 
in the course of a composition. This is a clearly impractical situation for all 
fixed-tuned instruments such as organs, pianos, guitars, etc. With equally 
tempered tuning, there is no problem in going from one key to another. For 
most musical applications, this advantage outweighs the sacrifice made in 
musical accuracy. 

The equal-temperment system is also used almost exclusively in elec- 
tronic music because it simplifies the electronic circuitry considerably. With 
a computer or microprocessor involved, however, it becomes feasible, al- 
though not necessarily simple, to handle just tuning and thus gain an extra 

measure of precision. 

Table 1-1. Two Musical Tuning Systems 

Equal temperment A Major just 

Note Ratio Frequency Note Ratio Frequency 

AQ 0.0625 27.500 AO 1/16 0.0625 27.500 
Al 0,1250 55,000 Al 1/8 0.1250 55.000 
A2 0.2500 110.000 A2 Wa 0.2500 110.000 

Ag 0.5000 220.000 A3 1/2 0.5000 220.000 
A#3 0.5297 233.068 
B3 0.5612 246.928 B3 9/16 0.5625 247.500 

C4 0.5946 261.624 
C#4 0.6300 277.200 C#4 5/8 0.6250 275.000 
D4 0.6674 293.656 D4 4/6 0.6667 293.333 
D#4 0.7071 311.124 
E4 0.7492 329.648 E4 3/4 0.7500 330.000 
Fa 0.7937 349.228 
F#4 0.8410 370.040 F#4 5/6 0.8333 366.667 
G4 0.8910 392.040 
G#H4 0.9439 415.316 G#4 15/16 0.9375 412.500 
A4 1.0000 440.000 Aa 1 1.0000 440.000 
A#4 1.0594 466.136 
B4 1.1224 493.856 B4 9/8 1.1250 495.000 

C5 1.1892 523.248 
C#5 1.2600 554.400 C#5 5/4 1.2500 550.000 
DS 1.3348 587.312 05 4/3 1.3333 586.667 
D#¥5 1.4142 622.248 

—5 1.4984 659.296 —5 3/2 1.5000 660.000 
F5 1.5874 698.456 
Fes 1.6820 740.080 F#S 5/3 1.6667 733.333 

G5 1.7820 784.080 
G#5 1.8878 830.632 G#5 15/8 1,8750 825.000 
AS 2.0000 880.000 AS 2 2.0000 880.000 
AG 4.0000 1760.00 AG 4 4.0000 1760.00 
A7 8.0000 3520.00 AT 8 8.0000 3250.00 
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The Amplitude Parameter 

The other parameter that describes a sine wave is the amplitude. The 
amplitude parameter is related to the height of the wave in a plot such as in 
Fig. 1-2A. In the air, amplitude would actually relate to the degree of 
change in air pressure, whereas in an electronic circuit it would relate to the 
voltage or current in the circuit. 

The most obvious way to specify the amplitude of a sine wave is to find 
the minimum voltage and the maximum voltage in the course of one cycle 
and express the amplitude as the difference between the extremes. This is 
termed the peak-to-peak amplitude. Another method is to specify the average 
amplitude, which is the long time average difference between the instantane- 
ous waveform voltage and the baseline. A typical voltmeter would respond to 
this average rather than the actual peaks of the waveform. A third method 
relates the amount of heat produced in a resistor connected to the source of 
the sine wave voltage to the amount of heat produced when the same resistor 
is connected to a source of constant dc voltage. The dc voltage required to 
produce the same amount of heat is called the effective voltage of the sine wave 
or its root-mean-square value which is abbreviated rms. Of the amplitude 
specification methods, the rms technique most accurately correlates with 
what the ear hears, whereas the peak-to-peak method most accurately pre- 
dicts the possibility of unwanted distortion in electronic recording and syn- 
thesis equipment. 

The most common unit for amplitude specification when a waveform is 
being examined is simply the volt. In rare cases, a current waveform may be 
of interest so the amplitude would be specified in milliamperes or amperes. 
When a signal is being delivered to a speaker, however, the amplitude is 

usually expressed as power in watts. The power in a signal can be calculated 
in several ways. The simplest is to multiply the instantaneous voltage by the 

instantaneous current and average the product over one repetition of the 
waveform. Another method is to square the rms voltage of the waveform and 
divide the result by the speaker impedance, which is accurate only if the 
speaker impedance is purely resistive. 

The human ear is capable of responding to a very wide range of sound 
amplitudes. The amount of sound power at 2,000 Hz that can be listened to 
without undue discomfort is about a trillion (10!) times greater than the 
power in a barely audible sound. For convenience in working with such a 
wide range of power, the bel scale (named after Alexander Graham Bell) of 
sound intensity was developed. Like musical pitch units the bel scale is 
relative. The bel unit refers to a ratio of 10 between the power of two sounds. 
Thus, sound B contains 1.0 bel more power than sound A if it is 10 times as 
powerful. Conversely, sound A would be 1 bel less powerful or —1.0 bel 
with respect to sound B. Expressed using the bel scale, the range of hearing 
would be 12 bels. 
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In actual audio work, the unit decibel, which is a tenth of a bel, is more 

commonly used. It is abbreviated dB and represents a power ratio of about 
1.259 to 1. Three decibels (which is 1.2597) represents almost exactly a ratio 
of 2.0 and 6 dB is a ratio of 4:1, Note that these are power ratios. Since power 
increases as the square of voltage (assuming constant load resistance), a 10:1 
ratio of voltage is equivalent to 100:1 ratio of power or 20 dB. Consequently, 
6 dB represents only a doubling of volrage amplitude. Expressed as a voltage 
ratio, the 120-dB range of human hearing represents a million-to-one voltage 
range. 

Since the decibel scale is relative, a basis point is needed if an absolute 

decibel scale is to be defined. For sound in air, the 0-dB reference is taken as 

10°'6 W/cm?, a very small amount of power indeed. For electrical signals, 
the reference point is 0.001 W into a 600-ohm impedance or about 0.775 V. 
For the maximum amplitude of 120 dB, the figures would be 0.1 m W/cm? 
in air and a million kilowatts of electrical power, more than most generating 

plants put out. Clearly, the standardized electrical basis point has nothing to 
do with sound amplitude. 

It should be apparent by now that there is a strong relationship between 

the amplitude of a sine wave and the loudness of the sound it represents. 
Also, as expected from the trillion-to-one audible amplitude range, the 
relationship is highly nonlinear. However, when amplitude is expressed in 
decibels, the relation is reasonably linear. The amplitude of a sound must be 
increased an average of 8.3 dB to be perceived as a doubling of loudness. For 

moderately loud sounds, 1 dB is about the smallest change in amplitude that 

is noticeable. The basis point of 10716 W/cm? for sound in air is about the 
softest sine wave at 2 kHz that can be heard by a person with good hearing. 
The basis for the electrical O-dB point is purely arbitrary. 

Frequency and Amplitude Interaction 

The frequency and amplitude parameters of a sine wave are completely 
independent. Thus, one may be varied over a wide range without affecting 
the value of the other whatsoever. This may not always be strictly true in a 
practical circuit for generating sine waves, but the amount of interaction in 

good-quality equipment is very small. 
When this sound is heard by the human ear, however, there is signifi- 

cant interaction between loudness and pitch. The most dramatic interaction 
is the effect on the apparent loudness of a constant amplitude sine wave tone 

caused by changing its frequency. 
Figure 1-3 shows the extent of this interaction. The curves show the 

amplitude change necessary to preserve constant loudness as frequency is 

varied. Note that there is relatively little interaction at large amplitudes, 
but, as the amplitude decreases, the lower-frequency sounds decrease in 
loudness much faster than higher-frequency sounds. For example, at an 
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Fig. 1-3. Loudness as a function of amplitude and frequency 

amplitude level of 60 dB (relative to 10"'© W/cm? in air) frequencies below 
35 Hz would be too soft to be noticed. As frequency increases, loudness 
increases also up to about 800 Hz where it levels off to the comfortably loud 
level of normal conversation. As frequency approaches the upper limit of 
hearing, the apparent loudness again decreases. 

The effect on pitch caused by an amplitude change is much smaller. 
Again the effect is greatest at the extremes of the frequency range. In particu- 
lar, the pitch of a low-frequency (100 Hz) sine wave tone decreases as the 
amplitude increases. The pitch shift effect is small enough to be ignored, 
however, with more complex waveshapes. 

The Mathematical Sine Shape 

Before moving on to more complex waveshapes and other parameters, 
we need to look more closely at the sine shape itself. Why is it the simplest 
possible waveform and why is it so important? The name sine wave comes 
from the sine trigonometric function. For right triangles, the sine of one of 
the other angles is the ratio of the length of the side opposite the angle to the 
length of the hypotenuse. 

Figure 14A shows how this trigonometric ratio can be converted into 
a sine wave shape. Assume that the crank, which represents the hypotenuse, 
is one unit in length and that it is being turned counterclockwise at a 
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Fig. 1-4, Mathematical sine wave generator 

constant speed. The angle, A, between the crank arm and the centerline of 
the crank axis is the angle of interest. As the crank turns and time passes, the 
angle gets progressively larger. The distance from the center of the handle to 
the horizontal centerline of the crank axis, which represents the side opposite 

the angle, is the sine of this progressively increasing angle. 

Also shown is a graph of the sine as a function of the angle. If the crank 
is being turned one revolution per second, then the frequency of the sine 
wave on the graph is 1.0 Hz, and the horizontal axis units may be changed 
from degrees to time. If the speed of turning is increased, then the frequency 
of the sine wave would also be increased. Sometimes the term “instantaneous 
angular velocity” is used when the frequency varies. If rapid variations are 
encountered, simply counting the number of complete sine wave cycles in 

1 second may not be precise enough. In such cases, angular velocity refers, 
conceptually, to the speed of crank turning, which can be measured very 
quickly. 
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One other factor is of importance on the graph, although it does not 
directly affect the sound of a single sine wave. This factor is called the phase of 
the wave and is related to the position of the crank when curning was started. 
In Fig. 1-4A, the initial crank position was straight out right. At time 0, 

the turning was started and the wave started rising initially. If instead the 
initial position was at the top of the arc, then the wave of Fig. 1-4B would 
result. The only difference is that the 0 time point has been shifted ahead 
with respect to the waveform by 0.25 sec, which is equivalent to 90° if the 
degree scale is used. Thus, waveform B is said to have a 90° degree leading 
phase with respect to waveform A and waveform A has a 90° dagging phase 

with respect to waveform B. 
Since phase is also a relative quantity, a reference point is needed for an 

absolute scale. By mathematical convention, waveform B has a O phase angle. 

Asa result, waveform A has a —90° phase angle. Waveform B is also called a 
cosine wave. In trigonometry, the cosine is the ratio of the length of the side 
adjacent the angle to the length of the hypotenuse. On the crank diagram, the 
adjacent side is represented by the distance from the center of the handle to 
the vertical centerline of the crank axis. The plot of a cosine wave will be 
exactly the same shape and amplitude as the sine wave done earlier; the only 
difference is in the phase angle. In the future, when the term sine wave is 
used, the reference will be to the actual sine shape and not to any particular 
phase angle. 

The Mechanical Sine Shape 

Although the foregoing describes a mathematical method of plotting a 
sine wave as accurately as desired, it does not explain why it is such an 
important waveshape. For the answer to that question consider the mechanical 
setup shown in Fig. 1-5. Here we have a weight hanging from a spring 

firmly attached to the ceiling. If the weight is pulled down somewhat and 
released, it will bounce up and down with a smooth motion that gradually 
diminishes. If the spring is of highly tempered steel and the experiment is 
performed in a vacuum, the vibration amplitude of the weight will decrease 

so slowly that for short observation times the amplitude will appear constant. 
The point is that the motion of the weight, if plotted as a function of time, is 
an essentially perfect sine wave. Any imperfections in the sine shape are due 
to defects in the spring and the fact that gravity is less at the top of the 
weight motion than at the bottom. The mathematical reason that two such 
different devices should have identical motion characteristics is beyond the 
scope of this discussion, however. 

The frequency of vibration of the spring-mass system may be altered by 
either changing the amount of weight or the stiffness of the spring or both. 
With a stiff spring and light weight (or even the weight of the spring itself), 
the frequency can become high enough to be heard. Note that, as the 
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Fig. 1-5. Mechanical sine wave generator 

amplitude of the vibrations gradually diminishes, the frequency remains the 
same. The rate of amplitude decay is dependent mainly on the amount of 

friction present. If the spring is held by a person rather than the ceiling, the 
vibrational energy lost to friction may be replenished by careful, syn- 
chronized movement of the spring. 

The importance of the sine wave is obvious if one realizes that all 
natural sounds come from mechanical vibration. The vibrating members in 
all cases are actually tiny spring-mass systems. Pieces of metal, logs, and 
even the air itself have a degree of springiness and mass. Striking these 

objects or exciting them by other means creates the characteristic sine wave 

vibration of either the entire object or portions of it. In most cases, more than 
one spring-mass equivalent is vibrating simultaneously, so the resulting 
sound is actually a combination of sine waves of different frequencies and 
rates of decay. 

Complex Waveforms 

At this point, we are now prepared to discuss the most interesting 
parameter of all in repeating waveforms, namely the shape of the wave itself. 
The shape of a waveform influences its timbre or tone quality. Obviously, 
there is an infinite number of possible waveshapes (and only a few less 
timbres). The only restriction is that a waveshape must be a single-valued 
function, which essentially means that the horizontal progression from left to 
right can never reverse. 
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As mentioned earlier, any natural sound waveform is really a combina- 

tion of sine waves originating from vibrating spring-mass systems. However, 
in the 17th century, a French mathematician by the name of Joseph Fourier 
proved mathematically that any waveform, regardless of origin, is actually a 
mixture of sine waves of different frequencies, amplitudes, and phases. Fur- 
thermore, he showed that if the waveform repeats steadily, then the frequen- 

cies of the component sine waves are restricted to being integer multiples of the 
repetition frequency of the waveform. Thus, if the frequency of repetition is 
100 Hz, then the component sine waves must have frequencies of 100 Hz, 

200 Hz, 300 Hz, etc., up to infinity, although any components above 20 

kHz will not contribute to the sound, since they are inaudible. Of course, 

some of them may have zero amplitude, but in general it can be assumed that 
all of them exist in the audible frequency range. 

These component sine waves are called overtones or harmonics, with the 
latter term preferred. The component having the same frequency as the 
overall waveshape is termed the fundamental frequency, which is also the first 
harmonic. The component having a frequency twice the fundamental is 
termed the first overtone or second harmonic. The third harmonic has a 
frequency three times the fundamental and so forth. Since the frequencies of 
the component waves are fixed, each one can be characterized by giving its 
amplitude and its phase angle either as an absolute quantity or with respect 

to the fundamental. 
Figure 1-6 shows how harmonic sine waves can be combined together 

to produce a waveshape that is about as far as one can get from a curvy wave. 
Combining two waveforms really means adding them point by point as 
shown to get the combined result. A squared-off waveform such as this 
actually has an infinite number of harmonics with nonzero amplitudes. A 
practical synthesis of the waveform from harmonic components has to stop 
somewhere, of course, and leave all of the higher-frequency harmonics with a 
zero amplitude. 

As can be seen, each additional harmonic gives a closer approximation 
to the desired rectangular-shaped wave. With the first 32 harmonics repre- 
sented, the approximation is getting quite close with steeply rising sides and 
reasonably flat top; however, there is still a significant amount of overshoot 

and ringing. These imperfections are mainly due to using the set of harmonic 
amplitudes designed for an infinite series and stopping the series abruptly at 
the 32nd harmonic. A modification of the amplitudes taking into account 
the fact that no harmonics above 32 are allowed produces a visibly superior 
rendition of the desired shape. 

The significance of Fourier’s theorem can be realized by noting that all 
of the acoustically important aspects of the shape of a waveform can be 
specified with a comparatively small number of parameters. For example, a 
1,000-Hz waveshape, no matter how complicated, can be specified by 20 
amplitudes and 20 phase angles corresponding to the 20 audible harmonics. 
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Fig. 1-6. Synthesis of a rectangle wave from sine waves, (A) Desired rectan- 
gular wave. (B) Fundamental and second harmonics separately. 
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Fig. 1-6. Synthesis of a rectangle wave from sine waves (cont.). (C) Funda- 
mental and second harmonics combined and separate third har- 
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Fig. 1-6. Synthesis of a rectangle wave from sine waves (cont). (E) Funda- 
mental through sixth harmonics combined. (F) Fundamental through 
10th harmonics combined. 



26 MUSICAL APPLICATIONS OF MICROPROCESSORS 

bow [pon |e 

$ 

oe —++— > 

a Wana ins 

(g) 

+ 

0 - 

(H) 

Fig. 1-6. Synthesis of a rectangle wave from sine waves (cont.). (G) Funda- 
mental through 32nd harmonics combined. (H) Fundamental through 
32nd harmonics combined with adjustment for a finite number of 
harmonics. 
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Human Ear Interpretation of Waveshape 

Up to this point, the emphasis has been on the actual shape of a wave. 

However, the human ear does not work by tracing the waveform and report- 
ing the various twists, turns, and undulations to the brain. Instead, the 

sound vibrations are crudely analyzed into sine wave components and the 
amplitudes of the components are sent to the brain for recognition. The 
phases of the harmonics with respect to the fundamental are of little impor- 
tance in tones of moderate frequency and amplitude. As a result, phase can 
usually be ignored when synthesizing sound waveforms. For example, the 
tones of Fig. 1-7 would all sound alike provided the frequency was above a 
couple of hundred hertz and the amplitude was not excessively large. The 
amplitudes of the harmonics in Fig. 1-7A, B, and C are all the same, but in 

B the fundamental has been shifted 180° with respect to the other harmonics, 
and in C the phases of all of the components have been randomly redistrib- 
uted. 

Obviously, the waveshape is not really a very good indicator of the 
timbre of the resulting sound. Since the harmonic amplitudes are a good 
indicator of timbre, a different kind of graph called a spectrum plot is useful. 
Such a graph is shown in Fig. 1-8, which is the spectrum of the rectangular 
wave used earlier. The horizontal axis is now frequency and the vertical axis is 
amplitude, usually either the peak (half of peak-to-peak) value or the rms 
value. Each harmonic is represented by a vertical line whose height depends 
on its amplitude. 

When evaluating timbre, particularly lower-frequency tones with a lot 
of harmonics, the human ear is not usually supersensitive about the exact 
amplitude of a particular harmonic. In most cases, the trend in amplitudes of 

(ah 

Fig. 1-7. (A) Normal square wave. 
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Fig. 1-7. (Cont.). (B) Square wave with fundamental shifted 180°. (C) Square 
wave with random shift of all harmonics. 

groups of harmonics is more important. A single harmonic, even the funda- 

mental, can often be eliminated without great effect on the timbre. Accord- 

ingly, it is often useful to note the spectral envelope of the harmonics, which is 
indicated by a dotted line. 

It is interesting to note that even if the fundamental component 

amplicude is forced to zero the ear is still able to determine the pitch of the 
tone. There are a number of theories that attempt to explain how this is 
accomplished. One maintains that the ear is somehow capable of picking out 
the repetition rate of the waveform, which is not destroyed by removing the 
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fundamental. Another suggests that all of the remaining component frequen- 
cies are ascertained, and the missing fundamental frequency is “computed” 
from them. 

Nonrepeating Waveforms 

With the basics of definitely pitched sounds with repeating waveforms 
in hand, let's examine more closely the last three waveforms in Fig. 1-2. As 
mentioned earlier, waveform C does not repeat but does have a pitch sense in 
relation to other similar sounds. Its spectrum is shown in Fig. |-8B, Note 

that the sine wave component frequencies are not integral multiples of some 

fundamental frequency. This is the main reason that the waveform does not 
repeat and that it does not have an absolute pitch. However, since a small 
number of component frequencies relatively far from each other are involved, 

the sound is pleasing to hear, and the waveform trace is not unduly com- 
plex. 

Actually, the stacement about the waveform never repeating needs to 

be qualified a bit. If all of the frequencies are rational numbers it wé// repeat 
eventually. If one of the frequencies is irrational, such as 7 kHz, however, 

the waveshape will indeed never repeat. At the moment, the presence or 
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Fig. 1-8. Spectrum plot. (A) Rectangle wave of Fig. 1-7. (B) Waveform of Fig. 
1-2C. 
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absence of a repeating wave pattern is rather academic, but it will be impor- 
tant later. 

Unpitched sounds and most semipitched sounds are like the waveforms 
of Fig. 1-2D and E—real messes that look more like an infant’s scribbling. 
Time waveforms of such sounds give almost no clues about how they will 
sound. A spectrum plot, however, will reveal quite a bit. The first obvious 
feature is that there is a very large number of lines representing component 

sine waves. With such a large number, the spectral envelope takes on added 
significance. In fact, most sounds of this type literally have an infinite 
number of component frequencies so the envelope is all that can be really 
plotted. 

The spectrum in Fig. 1-8D is special. It is nothing more than a 
straight line! Such a sound is called white noise because it has an even mixture 
of all audible frequencies. This is analogous to white light, which is an even 

mixture of all visible light frequencies. Any departure from a straight spec- 
tral plot can be called coloring the sound, analogous to coloring light by 
making one group of frequencies stronger than others. 

Pure white noise sounds like rushing air or distant surf. If the lower 
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frequencies are emphasized (or the higher ones eliminated) the sound be- 
comes a roar, or in an extreme case, a rumble. If the high frequencies 

predominate, a hiss is produced. 
The middle frequencies can also be emphasized as in Fig. 1-8C. If a 

wide range of middle frequencies is emphasized, the sound is only altered 
slightly. However, if a sufficiently narrow range is strengthened, a vague 
sense of pitch is produced. The apparent frequency of such a sound is nor- 
mally near the center of the group of emphasized frequencies. The narrower 

the range of frequencies that are emphasized, the more definite the pitch 
sensation. If the range ts very narrow, such as a few hertz, a clearly pitched 
but wavering tone is heard. If the waveform of such a tone is examined over 
only a few cycles, it may even appear to be a pure, repeating, sine wave! 

Multiple groups of emphasized frequencies are also possible with a clearly 
different audible effect. In fact, any spectrum envelope shape is possible. 

Parameter Variation 

In review, then, all steady sounds can be described by three fundamen- 

tal parameters: frequency if the waveform repeats, overall amplitude, and 
relative harmonic amplitudes or spectrum shape. The audible equivalents of 
these parameters are pitch, loudness, and timbre, respectively, with perhaps 

a limited degree of interaction among them. 
What about unsteady sounds? All real sounds are unsteady to some 

extent with many useful musical sounds being particularly so. Basically a 

changing sound is a steady sound whose parameters change with time. Such 
action is frequently referred to as dynamic variation of sound parameters. 
Thus, changing sounds can be described by noting how the parameters vary 
with time. 

Some terms that are often used in discussing parameter variation be- 
havior are steady state and transition. If a parameter is changing only part of 
the time, then those times when it is not changing are called steady states. 
Usually a steady state is not an absolute cessation of change but instead a 
period of relatively little change. The transitions are those periods when 
movement from one steady state to another takes place. An infinite variety of 

transition shapes are possible from a direct, linear change from one steady 
state to another to a variety of different curves. Often it is the speed and form 
of the transitions that have the greatest influence on the overall audible 
impact of a sound. 

Frequency Variation 

Dynamic variation of frequency is perhaps the most fundamental. A 

simple one-voice melody is really a series of relatively long steady states with 
essentially instantaneous transitions between them. If the frequency transi- 
tions become fairly long, the audible effect is that of a glide from note to 

note. 
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Often wich conventional instruments, a small but deliberate wavering 
of frequency is added to the extended steady states. This wavering is called 
vibrato. If the frequency parameter is plotted as a function of time on a graph, 
then the vibrato shows up as a small amplitude waveform with the baseline 
being the current steady state. This situation is termed frequency modulation 
because one waveform, the vibrato, is modulating the frequency of another 
waveform, the sound. We now have a whole new infinity of possible vibrato 
frequencies, amplitudes, and shapes. Vibrato waveforms for conventional 
instruments are usually around 6 Hz with an amplitude of 1% or so and a 
roughly sine waveshape. 

Gross alterations in the typical vibrato waveform can also have a gross 
effect on the resulting sound. If the modulating wave amplitude is greatly 
increased to several percent or even tens of percent, the result can be a very 
boingy or spacey sound. If the modulating frequency is increased to tens or 
hundreds of hertz, the sound being modulated can be completely altered. 
Clangorous sounds resembling long steel pipes being struck or breaking glass 
are easily synthesized simply by having one waveform frequency modulate 
another. This phenomenon will be studied in greater depth later. 

Amplitude Variation 

Changes in amplitude are also fundamental. Again taking a one-voice 
melody as an example, it is the amplitude changes that separate one note 
from another, particularly when two consecutive notes are of the same fre- 
quency. Such an amplitude change delineating a note or other sound is 
frequently called an amplitude envelope or just envelope. The shape and 

duration of the amplitude envelope of a note has a profound effect on the 
overall perceived timbre of the note, often as important as the spectrum 
itself. 

Figure 1-9 shows a generalized amplitude envelope. Since they are so 
important, the various transitions and steady states have been given names. 
The initial steady state is, of course, zero or silence. The intermediate steady 
state is called the sustain, which forms the body of many notes. The transition 
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Fig. 1-9. Typical amplitude envelope shape. 
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from zero to the sustain is called the attack. The duration of the attack is of 
primary importance, although its shape may also be important, particularly 
if che attack is long. The transition from the sustain back to zero is the decay. 
Again, time is the major variable. Some notes, such as a piano note, have no 
real sustain and start to decay immediately after the attack. They may, 
however, have two different rates of decay, a slow initial one, which could be 
considered the sustain, even though it is decaying, and a faster final one. 
Other envelope shapes are, of course, possible and quite useful in electronic 
music. 

As with frequency variation, an amplitude envelope may have a small 
wavering superimposed on the otherwise steady-state portions. Such 
amplitude wavering is called tremolo and, if small in amplitude, sounds much 
like vibrato to the untrained ear. Actually, the physical manipulation re- 
quired to waver the tone of conventional instruments seldom results in pure 
vibrato or tremolo; usually both are present to some degree. Large-amplitude 
tremolo gives rise to an unmistakable throbbing sound. Generalized 
amplitude modulation of one waveform by another is also possible, and in 
many cases the effects are similar to frequency modulation. This will also be 
examined more closely later. 

Spectrum Variation 

Finally, dynamic changes in the spectrum of a tone are the most in- 

teresting and the most difficult to synthesize in general. The primary dif- 
ference between spectrum variation and frequency or amplitude variation is 

that a spectrum shape is multidimensional and the other two parameters are 

single-dimensional. Because of this multidimensional nature, standard clec- 
tronic synthesis techniques for dynamic spectrum changes generally utilize 

schemes that attempt to cover a wide range of timbres by varying only one or 
two parameters of a simplified spectrum shape. 

One obvious way to control and vary the spectrum is to individually 

control the amplitudes of the individual harmonics making up the tone. This 
is a completely general technique applicable to any definitely pitched tone. 
The problem with actually accomplishing this is twofold. The first is the 

myriad of parameters to control—dozens of harmonic amplitudes for moader- 
ately pitched tones. Involving a computer or microprocessor is the only 

reasonable approach to such a control task. The other problem is deciding 
how the harmonic amplitudes shoald vary to obtain the desired effect, if 
indeed even that is known. There are methods such as analyzing natural 
sounds, evaluating mathematical formulas, or choosing amplitude contours 

at random and subjectively evaluating the results that work well in many 
instances. In any case, a computer would probably be involved in generating 

the data also. 
As mentioned previously, common synthesis techniques aim at reduc- 

ing the dimensionality of the spectral variation problem. Consider for a 
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moment a spectral envelope like the one that was shown in Fig. 1-8C, 
Disregarding the exact shape of the bell-shaped curve, it should be obvious 
that three parameters can adequately describe the spectrum. First, there is 
the width and height of the peak on the curve, and finally the frequency at 
which the peak is highest. In a typical application, the width and height of 
the curve are related. Also, since only the relative height of one portion of the 
curve with respect to another is important, the absolute height parameter is 
usually eliminated. This leaves just the width and center frequency as vari- 
ables. Note that for definitely pitched, periodic sound waveforms the spec- 
trum curve being considered is really the envelope of the individual harmonic 
amplitudes. 

It turns out that manipulation of these two variables is sufficient to 
create very interesting dynamic spectrum changes. In fact, if the width 
variable is set to a reasonable constant value such as 1/3 octave at the 6-dB 
down (with respect to the peak) points, then varying just the center fre- 
quency is almost as interesting. This in fact is the principle behind the 
“wah-wah” sound effect for guitars that became popular several years ago. 

Other methods for changing or distorting the spectrum under the 
influence of a small number of parameters exist and will be covered in more 
detail later. 

Simultaneous Sounds 

The preceding should serve as a brief introduction to the fundamental 
parameters of a single, isolated sound. Most interesting music, however, 
contains numerous simultaneous sounds. One common use for simultaneous 
sounds is chords and harmony. Another application is rhythm accompani- 
ment. Sometimes quantities of sound are used simply as a kind of acoustical 
background for a simpler but more prominent foreground. The physics and 
fundamental parameters of each component sound remain unaltered, how- 
ever. The real frontier in synthesis, after adequate control of the basic 
parameters of sound is accomplished, is applying this degree of control to 
numerous sounds, all simultaneously, and all under the direction of a single 
composet/performer. Extensive use of microprocessors in synthesis will be the 
final stride toward reaching this goal. 

History of Electronic Sound Synthesis 
Sound and music synthesis by electronic means has a long and interest- 

ing history. Although only the most significant milestones can be briefly 
described here, the effort is certainly worthwhile, since the ongoing evolu- 
tion of synthesis techniques and equipment is far from complete. Without 
exception, significant developments in sound synthesis closely followed sig- 
nificant developments in electronic and computer technology. Often, how- 
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ever, there have been gaps of many years, even decades, between when it 
became possible to apply a technique and when it became practical to do so. 

The Teleharmonium 

One of the earliest serious musical instruments that produced sound by 
purely electrical means was conceived and built by Thaddius Cahill in 1903. 
The device was called the Teleharmonium, and the name fairly accurately 
described the principles involved. As with many synthesis developments, the 
profit motive was the major driving force. Cahill’s basic concept was to 

generate music signals electrically and transmit them to subscriber’s homes 

over telephone lines for a fee. The signals would be reproduced by loudspeak- 
ers for ‘the continuous entertainment of all present.” The “harmonium” part 
of the name derives from the use of harmonically related sine waves for the 
synthesis of various timbres. 

At the performer’s end, the device resembled a conventional pipe organ 
console with two piano-like keyboards and numerous stops for controlling 
the timbre. Tone signals, however, were generated at kilowatt levels by 
specially constructed multipole, multiarmature electric generators located in 
the basement. Each generator had eight outputs representing a particular 

note pitch at octave intervals for the 8-octave range. Such generators were 

reasonably straightforward to build but were large, heavy, and expensive. 
Although 12 were planned to cover all of the notes in an octave, only 8 were 

actually built. The high power levels produced were needed to serve the large 
number of subscribers expected and overcome transmission losses. 

In addition to the generators, special multiwinding “mixing transfor- 
mers” were used to combine several tones together. A limited amount of 
harmonic mixing was utilized to vary the timbre. This was possible without 
additional windings on the generators, since the first six harmonics of any 
note on the equally tempered musical scale are also on the scale with very 
little error. The amplitude levels of the tones were controlled by means of 
inductors with movable cores to vary the inductance. In addition to the 
tonnage of iron, miles of wire were used to connect keyboard contacts to the 
other equipment. Overall, the machinery that was built weighed over 200 
tons and required 30 railroad flatcars to move. 

Generally, the device worked well and was adequately accurate and 

stable. One problem that was eventually overcome was key click. Since the 
tones were being continuously generated and merely switched on and off 
with contacts, the attack of a note was instantaneous. If a key contact closed 
at a time when the signal being switched was near a peak, a sharp rising 

transient would be generated in the output line. The solution to the problem 
was additional filter transformers to suppress the transients. 

The other problems were mostly economic. Since the planned 12 
generators were not available, some of the notes were missing, resulting in a 



36 MusICAL APPLICATIONS OF MICROPROCESSORS 

restricted set of key signatures that could be played. Another difficulty was 

that the pressure of delivering continuous music to the subscribers already 

signed up severely limited the amount of machine time available for practice 

and further refinement. 

Listeners’ reactions to Teleharmonium music were interesting, The 

initial reaction was quite favorable and understandably so. No one had ever 

heard pure, perfectly tuned sine waves before and the sparkling clear unwav- 

ering quality of the sound was quite a novelty, Over long periods of time, 

however, the novelty was replaced by subtle irritation as the overly sweet 

nature of pure sinc waves became apparent. The limited harmonic mixing 

technique that was later developed did little to remedy the situation, since 
six harmonics are too few for the lower-pitched tones and even fewer were 
provided for the higher-pitched ones due to generator limitations. A related 
problem was the extremely poor loudspeakers available at the time. Bass 
response was totally absent and the many sharp resonances of the metal horns 
would frequently emphasize particular notes or harmonics many times over 

their nominal amplitude. 

For Cahill, the project was a financial disaster, its fate eventually sealed 
by radio broadcasting. The basic concepts live on, however, in the Ham- 

mond electronic organs. The “‘tone wheels” used in these instruments are 
electric generators that perform exactly as Cahill’s except that the power 

output is only a few mécrowatts rather than many &élowatts. The needed 
amplification is supplied by electronic amplifiers. Mixing, click suppression, 
and harmonic amplitude control are performed by resistive networks requir- 
ing only additional amplifier gain to overcome their losses. The eighth 
harmonic, which is also on the equal-tempered scale, was added, skipping 
the seventh altogether. Still, the Hammond organ has a distinctive sound not 
found in any other type of electronic organ. Even if the reader has never heard 
one live, he has probably heard a record of one—over a background music 
system! 

Soundtrack Art 

Somewhat later, around 1930 after sound was added to motion pic- 

tures, some work was done with drawing sound waveforms directly onto 
film. Theoretically, this technique is infinitely powerful, since any conceiva- 

ble sound within the frequency range of the film equipment could be drawn. 
The difficulty was in figuring out exactly what to draw and how to draw it 
accurately enough to get the desired result. 

The magnitude of the problem can be appreciated by considering how a 
single, clear tone might be drawn. The clearness of a tone depends to a great 
degree on how accurately the waveform cycles repeat. Gradual variations 
from cycle to cycle are desirable, but imperfections in a single cycle add 
roughness to the tone. For even the simplest of tones, the waveform would 
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have co be carefully drafted. More complex or simultaneous tones would. be 
even more difficult. In spite of these problems, at least one interesting but 
short and simple piece was created in this way. 

Like the Teleharmonium, the concept of drawing waveforms directly is 
now fairly common. Computers and sophisticated programs, however, do the 
tedious waveform calculation and combination tasks. 

The Tape Recorder 

Without question, the most significant development in electronics for 

music synthesis as well as music recording was the tape recorder. The Ger- 
mans first developed the wire recorder during World War Il, and it was 
subsequently refined to utilize iron-oxide-coated paper tape. Plastic film 

bases were later developed, and now magnetic tape is the highest fidelity 
sound recording technique in common use. 

When on tape, sound becomes a physical object that can be cut, 
stretched, rearranged, molded, and easily re-recorded. A new breed of 

abstract composers did just that and the result, called “musique concrete,” 
sounded like nothing that had ever been heard before. In fact, before the 

popularization of synthesizer music, the public's conception of electronic 
music was of this form, which they usually characterized as a seemingly 
random collection of outrageous sounds. 

The name musique concrete stems from the fact that most, if nor all, of 

the sounds used were natural in origin, i.e., concrete. Popular source mate- 

rial included water drips, sneezes, and squeaky door hinges. Typical manipu- 
lations included gross speeding or slowing of the recorded sound, dicing the 
tape and rearranging parts of the sound often with segments in reverse, 
overdubbing to create simultaneous copies of the sound, and other tricks. 
Occasionally, a small amount of electronic equipment was used to filter and 

modify the sound in various ways. Regardless of the actual source material, 
the distortions were so severe that the final result was completely unrecogniz- 
able. 

Although usage of this sound material need not result in abstract 
compositions, it usually did. The primary difficulty was in achieving accu- 
rate enough control of the distortion processes to produce more conventional 

pitch and rhythmic scqucnces. Unfortunately, musique concrete did very 

little to popularize electronic music techniques, although it undoubtedly 
gratified a small circle of composers and listeners. 

RCA Mark LI Synthesizer 

Over the years, many special-purpose electronic musical instruments 

were developed and used. One example is the theremin (1920), which was an 

electronic tone source whose frequency and amplitude could be indepen- 
dently controlled by hand-waving near two metal plates. Others include a 
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host of keyboard instruments such as the Novachord (1938) and the 

Melochord (1949). In the early 1950s, however, work began on a general 

purpose instrument, the first electronic sound synthesizer. 
The RCA Mark II Electronic Music Synthesizer could produce two 

tones at once in which all of the important parameters could be controlled. 
The control mechanism was a roll of punched paper tape, much like a 
player-piano roll. Thus, it was a programmed machine and as such allowed 
composers ample opportunity to carefully consider variations of sound 

parameters. The program tape itself consisted of 36 channels, which were 

divided into groups. Each group used a binary code to control the associated 
parameter. A typewriter-like keyboard was used to punch and edit the tapes. 

Complex music could be built up from the basic two tones by use of a 
disk cutting lathe and disk player, which were mechanically synchronized to 
the program tape drive. Previously recorded material could be played from 
one disk, combined with new material from the synthesizer, and re-recorded 

onto another disk. 
The RCA synthesizer filled a room, primarily because all of the elec- 

tronic circuitry used vacuum tubes. Financing of the project was justified 
because of the potential for low-cost musical accompaniment of radio and 
television programming and the possibility of producing hit records. Exten- 
sive use of the machine emphasized the concept that programmed control was 
going to be necessary to adequately manipulate all of the variables that 
electronic technology had given the means to control. 

Direct Computer Synthesis 

The ultimate in programmed control was first developed in the middle 
1960s and has undergone constant refinement ever since. Large digital com- 

puters not only controlled the generation and arrangement of sounds, they 

generated the sounds themselves! This was called direct computer synthesis of 
sound because there is essentially no intermediate device necessary to synthe- 
size the sound. The only specialized electronic equipment beyond standard 
computer gear was a digital-to-analog converter (DAC), a comparatively 
simple device. Simply put, a DAC can accept a string of numbers from a 
computer and plot waveforms from them as an audio signal suitable for 
driving loudspeakers or recording. 

Such a system is ultimately flexible. Absolutely any sound within a 
restricted frequency range (and that range can easily be greater than the range 

of hearing) can be synthesized and controlled to the Nth degree. Any source 
of sound, be it natural, electronic, or imaginary, can be described by a 
mathematical model and a suitable computer program can be used to exercise 
the model and produce strings of numbers representing the resulting 
waveform, Sounds may be as simple or as complex as desired, and natural 
sounds may be imitated with accuracy limited only by the completeness of 
the corresponding mathematical model. 
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No limit exists as to the number of simultaneous sounds that may be 
generated either. Often in such a system, a discrete sound source may be just 
a set of numbers describing the parameters of the sound. Usually this would 
take only a few words of computer storage out of the tens or hundreds of 
thousands typically available. 

Obviously, such an all-powerful technique must have some limitation 

or else it would have completely superseded all other techniques. That lim- 
itation is time. Although large computers perform calculations at tremen- 

dous rates of speed, so many must be performed that several minutes of 
computer time are necessary to compute only a few seconds of music 
waveforms. The more complex the sound, the longer the calculations. The 

net resule was that considerable time elapsed between the specification of 
sound and its actual production. Considerable usually meant at least half a 
day due to typical management practices in large computer centers. 

Obviously, then, composing for the direct computer synthesis medium 
demanded considerable knowledge of the relation between mathematical 
models, sound parameters, and the ultimate sensation of the listener. It also 
required that the composer have a clear idea of what was to be accomplished. 
Without such foreknowledge and careful planning, the delays incurred by 
excessive experimentation would be unacceptable and the cost of computer 
time prohibitive. Nevertheless, many of the greatest electronic musical 
works were realized using this technique. 

Voltage-Controlled Synthesizers 

Perhaps the complete antithesis of direct computer synthesis started to 

emerge in the middle 1960s largely as the result of development of silicon 
transistors and other semiconductor devices. The concept was modular music 
synthesizing systems utilizing voltage-control concepts as a common organi- 

zational thread throughout the system. Each module in the system had a 

distinct function and usually these functions corresponded one for one with 
the fundamental parameters of sound. The modules could be easily connected 
together in an infinite variety of configurations that could be changed in 
seconds by rerouting patch cords of pins on patch boards. The whole as- 
semblage could be played by a keyboard or a number of other manual-input 
devices. 

In general, a voleage-controlled synthesizer module consists of a black 
box with inputs and outputs that are electrical signals. Signals are conceptu- 

ally divided into audio signals that represent sound and control voltages that 
represent parameters. An amplifier module, for example, would have an 
audio signal input, a control input, and an audio signal output. Varying the 
dc voltage at the control input would change the gain of the amplifier. Thus, 
it could be considered that the amplifier module altered the amplitude 
parameter of the sound passing through in accordance to the voltage at the 
control input. A filter module likewise altered the timbre of a sound passing 
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through according to a combination of one or two control inputs. Although 

oscillator modules had no signal inputs, control inputs altered the frequency 

of the output waveform and sometimes the waveform itself. 
The real power of the voltage-control concept lies in the realization that 

the only difference between a signal voltage and a control voltage is in the 

typical rates of change. Properly designed modules could process control 

voltages as easily as signals and could also be cascaded for multiple operations 

on the same or different parameters. 
Unlike direct computer synthesis, experimentation was encouraged due 

to the personal interaction and ease of use of the synthesizer. In addition, 

familiarity with the audible effect of different modules could be obtained in 
only a few hours of experimentation. Improvisation was also practical and 

widely practiced. 
One limitation of voltage-controlled synthesizers until recently, how- 

ever, was that they were essentially monophonic, i.e., one note at a time. 
The problem lies not in the voltage control technique but in the human 
interface devices such as keyboards and ultimately in the ability of the 
performer to handle all of the variables. This limitation has classically been 
overcome by the use of overdubbing to combine one musical line at a time 
with a multitrack tape recorder. 

Perhaps the most significant event in the popular history of electronic 
music occurred when a recording created with voltage-controlled equipment 
by Walter Carlos called “Switched On Bach” was released in 1969. For the 
first time, the general public was exposed to electronic music that was ‘‘real 

music” with melody, rhythm, and harmony. This shattered the old myth 
that electronic music was always abstract and disorienting and created quite a 
bit of interest among performers, listeners, and advertising agencies. 

Microprocessors 

Today the microprocessor is the hottest technical development of the 
decade. The basic power of a computer that once cost thousands of dollars is 
now available for only tens of dollars. Electronic music technology has and 

certainly will continue to benefit from microprocessors. Ultimately, tech- 
niques with the generality of direct computer synthesis and the ease of 
interaction of voltage-controlled synthesis will become commonplace. 

Microprocessors are ideally suited to automating and rendering pro- 
gtammable the standard voltage-controlled music synthesizer. The synthe- 
sizer’s strong points such as ease of use and experimentation can be retained 

in the development stages of a composition, but the advantages of pro- 
grammed operation can be realized when the final result is generated. A 
microprocessor can easily remember, catalog, and reproduce the numerous 
interconnection patterns and control sequences typically used. It can also 
generate its own control sequences based on mathematical models, inputs 
from other sources, or random chance. This entire application area of mi- 
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croprocessors is of great interest currently and is, of course, the subject of 

Section I of this book. 
The faster and more sophisticated microprocessors just starting to 

emerge are becoming powerful enough for direct synthesis techniques to be 
applied with performance approaching that of large machines of only a few 
years ago and price tags in the reach of the serious experimenter. Further- 

more, costs of the faster but simpler microprocessors are such that a multi- 

processor system, with a microprocessor for each sound to be synthesized 
simultaneously, is in the realm of practicality. What was once an oscillator 
circuit with separate waveforming circuits may become instead a mi- 

croprocesser with suitably simplified direct synthesis programming. These 
are the application areas that are the subject of Section III. 
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pund Modification Methods 

All the different methods for generating the sound material necessary for 
electronic music can be roughly categorized into two groups: those that 
generate entirely new sounds via some kind of synthesis process and those 
that merely modify existing sounds. This dichotomy is not very rigid, how- 
ever, since many synthesis methods depend heavily on modification of 
otherwise simple synthetic sounds for their results, and many modification 

methods so severely distort the original sound that the result could easily be 
considered to be synthetic. Nevertheless, the fundamental component tech- 
niques making up a methodology can be easily segregated into synthesis and 

modification processes. 
Modification techniques are usually considered to be the older of the 

two. Before the appearance of musique concrete, pure synthesis was more 

common, but the fundamental goal of most of these early efforts was to build 
a solo instrument that would fit into an orchestra. The goal of musique 
concrete, on the other hand, was to replace the orchestra and produce works 
of the magnitude of a symphony entirely by electronic means. 

Modification methods attack sound from every conceivable direction. 
Any of the simple sound parameters such as frequency, amplitude, or spec- 
trum may be directly altered. Time sequencing of the envelopes of these 
parameters may be altered in numerous ways. Parameter envelopes charac- 
teristic of one sound may be extracted and applied to another. Even simple 
judicions selection of short portions of sounds can give a completely different 

effect. 

Sound on Tape 

As mentioned previously, sound on magnetic tape is a physical object 
that may be freely manipulated. The only tools required are a tape recorder 
(two recorders are desirable), a good pair of nonmagnetic scissors, a splicing 

block with splicing tape, and imagination. A grease pencil is also necessary 

for marking the exact location of sound events on the tape. 

43 
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A so-called “full-track” tape recorder is very helpful when extensively 

editing tape. Such machines record on the full width of the tape; thus, it may 

not be turned over for additional recording time. Although such machines 

are hard to come by in the consumer new equipment market, they are fairly 

common as professional equipment. Stereophonic effects are typically added 

as a separate step later after che basic composition has been completed. Also 
the higher tape speeds available are typically used. Besides better recording 

fidelity, the many pieces of tape to be manipulated will be larger and easier 

to handle. 

Rearrangement 

The most fundamental splicing modification is rearrangement of a 
previously recorded sequence of sounds. Since a fair amount of experimenta- 
tion is usually required, the sequence is typically copied several times before 
cutting commences. One interesting introductory experiment is to record a 
scale from a musical instrument and rearrange it to form a melody. Timing is 

fairly easy to control since time = distance along the tape. Even 50 msec is 

3/4 of an inch at 15 inches/sec. 
More interesting results are obtained if parts of the envelopes of notes 

are removed or attacks and decays are interchanged. In particular, using just 
the attack portion of many musical instrument notes can create some very 
interesting results that usually will nor resemble the source instrument at all. 

A related procedure that works well with full-track recorders is to make 
an extended diagonal splice rather than the typical short diagonal or straight 
splice. The result will be that one sound will seem to dissolve into another, If 
a piece of tape is spliced in slightly crooked, the high frequencies will be lost 
on playback and the result is as if a curtain had been pulled over the sound 
source. The angle of the crooked piece determines the extent of high- 
frequency loss with greater angles producing greater losses. 

With full-track equipment, a piece of tape may also be spliced in 
backward. At first that might not seem like a very powerful technique, but it 
is. For example, ordinary English speech becomes a very strange, gutteral 
sounding foreign language nearly impossible to repeat accurately. A very 
interesting experiment is to record a sentence and learn to repeat tts back- 
ward sound. Then the sentence is spoken backward, recorded, and played 
backward again. The resulting accent is unbelievable! 

A piano recording played backward sounds like an organ with the ends 
of notes “snuffed out” by a breath of air. This is one demonstration of the 
importance of the amplitude envelope in determining the overall timbre of a 

sound. A simple piano piece performed backward and then played backward 
so the music is forward is another interesting experiment. 

Even ignoring envelopes, which is the case with relatively steady 
sounds, the character of many sounds is completely changed by playing them 

backward. If a recording of a contralto or bass singer is played backward, the 
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cutting quality of the voice disappears and the result sounds more like a 
well-tuned belch. Although the exact explanation for this will be detailed 
later, it is one. case in which the phase relationship among harmonics in a 
tone makes a big difference in timbre. 

All kinds of percussive sounds are completely altered by backward 
playing. In most cases, if the percussive sound is pitched at all, the sense of 
pitch is heightened by being played backward. This is probably due to the 
fact that for a short period following a sharp attack transient the ear is 
recovering and is less able to perceive pitch. 

Another possibility is splicing the same sound back to back to elimi- 

nate the sudden cutoff that occurs when percussive sounds are played back- 
ward. Using the attack portion for both the attack and decay, using the decay 
portion tor both, or even using the attack from one sound and dissolving into 
the decay portion of another are all possibilities. 

Speed Transposition 

Another trick that nearly everyone who owns a reel-to-reel tape recorder 

has tried at least once is playing the tape at a different speed than it was 
recorded. A speed doubling changes speech into familiar monkey chatter, 
while a speed halving produces drawn out groans. More useful effects are 
created if, when producing the source material, the undesirable speedup or 
slowdown effects of the processing are compensated for. Such an example is 
the production of the once popular “chipmunk” records in which the original 
vocals were sung much more slowly than usual in order to have a reasonable 
tempo after the speed doubling. 

More severe speed changes usually distort a sound beyond recognition. 
Male speech when slowed by a factor of 16 or more comes out sounding like 
rhythmic beating on a constantly changing drum. Other common, complex 

sounds rake on a new dimension when slowed substantially. The fine struc- 
ture that usually emerges is reminiscent of examining a pond water droplet 
through a microscope. 

Although standard tape speeds are usually powers of two times the base 

speed of 15 inches/sec, many professional recorders can be easily run at inter- 

mediate speeds. These machines usually have synchronous motors whose 

speed is precisely determined by the power line frequency rather than voleage. 
If the motor circuit is separated trom the rest of the electronics and connected 

to a power amplifier driven by a variable-frequency oscillator, the tape speed 
may be continuously varied over a fairly broad range. The newest professional 
recorders use a de servo motor system whose speed is proportional to a 

reference voltage, which is normally tightly regulated. Disconnecting the 

reference and connecting a variable voltage source can give a very wide speed 
range. 

With precisely variable speed, it is possible to record a single sound or 
note and convert it into all of the notes of the scale. A Christmas song “sung” 
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with a single dog bark is one recent application of this technique. Great 

thunderous concluding chords from a symphony may be captured and 

likewise processed or even smoothly slid from one pitch to another. If the 
rotating mass in the recorder is relatively small, it may even be able to follow 
relatively complex frequency envelopes and play different pitches on com- 

mand. 
Many musical instruments have different regésters or pitch ranges and 

produce substantially different timbres in the various registers. A particu- 
larly prominent example is the clarinet, which possesses a characteristic 

hollow woody sound in the lower register and a somewhat squawky sound in 

the upper register. With tape speed transposition, the connection between 

pitch register and actual pitch may be broken, resulting in a wider range of 
timbres than those produced by ordinary instruments. 

Special equipment has been constructed that allows speech to be played 
faster or slower than it was recorded without any pitch change. The initial 
units used rotating tape heads that would essentially break the sound into 
short segments approximately 30 msec long. When in the speedup mode, a 
portion of each segment would be thrown away and the remainder stretched 
out to fill the space. The amount thrown away and the resulting degree of 
stretch was just enough to cancel the upward pitch tendency. Slowdown was 
accomplished in a similar manner except that a fraction of the segment would 
be repeated after the entire segment was played. Although useful for altering 
speech rates for talking books or stenographers, undesirable beating effects 
with music waveforms limited the use of such equipment, Improved designs 
using digital logic and memories instead of rotating tape heads allow variable 
segment size and much better results with musical tones. 

Tape Reverberation 

Reverberation may also be added to sound entirely through the use of 
tape equipment. Actually, echo would be a better term because the effect is 
really a series of distinct echos. Most of the better quality recorders have 
separate record and playback heads mounted side-by-side from 0.75 to 2 
inches apart. Typically, the tape first passes the recording head and then 
passes the playback head, resulting in a delay between the original sound and 
the signal developed by the playback head. The magnitude of the delay 

depends on the exact tape speed and head spacing but is typically between 
100 and 500 msec, well within the range of distinct echo perception. 

A single echo is produced if the delayed playback signal is mixed with 
the original signal and recorded on another machine. Multiple echos, how- 
ever, can be produced using feedback techniques and only one recorder. The 
trick is to mix the original signal and the delayed signal but feed the result 
back to the record head of the same machine. In operation, there is initially no 
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playback signal so the original source merely passes through the mixer and is 

recorded. A split second later, this signal is picked up by the playback head, 
mixed with the continuation of the original, and recorded again. Two splic 
seconds later, it is passed around the loop again and so on, If each re- 
recording of the echo is weaker than the previous one, the echos eventually 
die out like normal echos. However, if the re-recording is at the same or 
greater amplitude, the echos continue unabated or build up until distortion 

is produced. 
Of course, the signal is degraded a little every time it is played and 

re-recorded. If the feedback factor is just a little beyond unity (re-recorded 
just a tritle louder than the original), the middle frequencies will continue to 

build up while the low and high extremes will slowly die out. If the original 
signal is an isolated sound shorter than the delay time, the result is an 

interesting change in timbre each time the sound repeats. If the process is 
allowed to continue long enough, the sound will eventually degrade into a 
howl with a periodic amplitude envelope. The user may also change the echo 

re-record volume in response to what he hears and improvise. Many sounds in 
the category of “the saucer lands” are produced in exactly this way. 

Tape echo in conjunction with other tape-editing tricks can also lead to 
interesting results. For example, if a recorded sound is played backward, is 
re-recorded with echo added, and the new recording is again played back- 
ward, the echos wind up preceding the sounds, a very strange effect. ““Preverb” 
would be an apt name for such a process. Different effective echo times with 

fixed head spacing may be accomplished by a speed transposition prior to the 
addition of reverberation followed by an inverse transposition. 

Tape-echo techniques are so powerful that specialized machines have 
been built exclusively for that purpose. Multiple playback heads with irregu- 
lar spacing was one attempt to provide enough multiple, random echos so 
that the result resembled concert hall reverberation rather than Grand Can- 
yon reverberation. Another refinement was easily movable playback heads to 
vaty the echo rate. A particularly interesting effect is produced if the head is 

moved while the recording is made. The echos would then be of a different 
pitch than the original sound! 

Multitrack Recorders 

Finally, tape equipment can be, and usually is, used to combine sounds 
together for the final result. Unfortunately, direct recording of one sound on 

top of another on the same tape track cannot be done very well. The high- 
frequency bias signal necessary for high-fidelity tape recording tends to erase 
previously recorded sounds. Two recorders or a single multitrack recorder, 
however, can be used to combine sounds onto one track. 

In a typical multitrack setup, the separate sounds to be combined are 
each recorded on a separate track of the same tape. When played, the signal 
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from each track has its own separate gain control so that the relative 

contribution of each track to the resulting whole can be controlled. A final 
mixdown run is done in which the multiple sounds are combined and recorded 
onto the two- or four-track (for stereo or quad) master tape, which represents 

the final result. Commercial multitrack machines typically have 8, 16, or 
even 24 separate tracks. Most modern recording studios depend heavily on 
multitrack tape for most of their serious work. 

Obviously, such a setup would allow a single performer to play all the 
parts of a piece one at a time and then combine them. Synchronization with 
previously recorded material is accomplished by temporarily using the sec- 
tion of the recording head that is scanning a previously recorded track for 
playback (at reduced fidelity) to the performer. Most complex music per- 
formed on voltage-controlled synthesizers is played in separate parts and 
combined with a multitrack tape machine. 

By now it should be apparent that tape manipulation methods are very 
powerful sound modification techniques. One drawback, however, is that 
often a considerable amount of work is necessary, such as careful re- 
recording, accurate cutting, and keeping track of scores of little pieces of 
tape. Thus, experimentation is hampered somewhat by the possibility of 

wasted effort. Application of computer technology, even microcomputers, 
has the potential of tremendously streamlining the process and even adding 
some new tricks. 

Electronic Sound Modification 

Over the years, quite a few “black boxes” and techniques have been 
developed for directly modifying sound. Generally, these devices consist 
entirely of electronic circuits, Rarely, however, a mechanical system does the 
bulk of the work and transducers are used for getting audio signals in and 
out. Such cases are frequently the subject of intensive research to find cost- 
effective electronic substitutes for the mechanical elements. 

The uses for sound modifiers are varied but can be divided into two 
rough groups. Obviously, such devices are of great utility in the electronic 
music studio for adding complexity to basic electronic sounds that by them- 
selves may be lifeless. The other application is as instrumental sound mod- 
ifiers for tock bands and small combos. The devices for use by this group are 
usually named by the apparent effect produced. Thus, we have “fuzz boxes,” 
“wah-wah pedals,” and “infinity sustains.” Fortunately, the physical effects 
of most of these can be easily explained in terms of the fundamental paramet- 
ets of sound. 

Nonlinear Amplifiers 

Modification of the spectrum of a sound is perhaps the most dramatic. 
Spectrum modification devices range from simple distortion boxes to sophis- 
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ticated variable filter banks. In all cases, the basic aim of a spectrum modifi- 
cation device is co change the relative amplitudes of the component har- 
mionics of the sound. Although the overall amplitude of the waveform might 
also be altered by the process, it can easily be corrected later if undesirable. 

The simplest spectrum modification device is a nonlinear amplifier 
circuit of some sort. Nonlinear in this sense simply means that the instan- 

taneous output voltage is not a constant times the input voltage. Such 
nonlinearity is best described by means of a transfer function graph such as in 
Fig. 2-1. Voltage values corresponding to the input signal waveshape are 
plotced along the Y axis and the resulting output signal waveshape is plotted 
along the X axis. Assuming that the overall gain of the amplifier is unity, a 

perfectly linear response would be represented by a straight line to infinity as 
shown. 

Any real amplifier, however, has an overload point beyond which the 
output voltage cannot deviate even though the input voltage does. Figure 
2-2A shows the transfer function of a real amplifier. Assuming for the 
moment that a sine wave somewhat greater than the overload point is the 

input signal, it is apparent that the peaks of the waveform have been clipped 
off. In fact, circuits designed specifically for such waveform distortions are 
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Fig. 2-1. Linear transfer function 
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Fig. 2-2. Nonlinear waveshaping (cont.). (C) Half-wave rectification. 

called clippers. The accompanying spectral plot shows that the distorted 
waveform now has some harmonics added that were not originally present 

although their amplitude is low. Increasing the input amplitude further 
results in more severe clipping and a greater proportion of high-frequency 
harmonics as shown in Fig. 2-2B. Thus, by varying the amplitude of the 
input, one may vary the spectrum of the output by using a clipper. In practice, 

however, clipping circuits usually allow adjustment of the clipping point of 
the transfer function, which produces the same effect. Thus, the clipping 
point becomes a parameter of the clipper that, when varied, changes the 
spectrum parameters of the output signal. 

The preceding is called a symmetrical clipper because the positive and 
negative portions of the waveform are affected similarly. Thus, the harmonics 
added are of odd order only. A nonsymmetrical clipper of one type is shown 
in Fig. 2-2C. There is no output for negative input voltages, and for positive 
inputs, the output follows the input. The output spectrum now has both 

even and odd order harmonics that were not originally present. Changing the 
clipping point of this circuit, which is shown in Fig. 2—2D, increases the 
proportion of high-frequency harmonics, although the overall output 
amplitude has decreased. 

The action of the circuit in Fig. 2-2E is somewhat interesting. None of 
the original input frequency component appears at the output and only even 
order harmonics are generated. The ear hears this result as a pitch doubling, 
since the resulting harmonic series is really an even and odd series for a 
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Fig. 2-2. Nonlinear waveshaping (cont.). (D) Half-wave rectification with 
offset. 

fundamental at twice the frequency. Figure 2-27 shows the result of varying 
two possible parameters of the transfer curve; a center clipping threshold and 
the slope (gain) for positive input signals. 

Actually, pure sine waves are seldom used as the source signal such as 
when a musical instrument’s sound is being modified. Depending on the 
exact waveform, a given nonlinearity may increase some harmonics, reduce 
others, and leave some generally unchanged. Instrumental waveforms are not 
constant either. Frequently, slight changes in input waveform (from slight 
harmonic phase changes, for example) may result in large changes in output 
spectrum. One interesting waveform that is not affected by any kind of 
nonlinear device is the square wave. Although the amplitude may be 
changed, the square waveshape is never altered. 

Of course, there are literally thousands of possible nonlinear curves, 

each with a set of parameters that may be changed to vary the output signal 
spectrum. There are important drawbacks to their use, however. One draw- 
back is that the relationship between a parameter or parameters describing a 
certain class of transfer curves and the actual spectrum in terms of harmonics 
is not always simple. For example, increasing a clipper parameter may at 
first give increased high harmonic content, but further increases of the same 
parameter might actually reduce the high harmonics or shift the em- 
phasis to middle harmonics. The situation gets much more complicated if a 
complex waveform is used for the input. 

Another important drawback is that nonlinear devices generally give 
desirable results only with single tone inpucs. If two simultaneous tones of 
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different frequency are fed in, the output spectrum contains not only har- 
monic frequencies of each tone, but every possible combination of sum and 
difference frequencies between the tones and their harmonics. For musical 
instrument use, the resulting sound is close to garbage unless the input 

frequencies are simply related such as a 3:2 ratio. For more abstract goals, 
however, anything is potentially useful even if it is not predictable. 

Filters 

While nonlinear circuits are relatively simple spectrum modifiers, their 
action is indirect. A different class of device called fi/ters acts directly on the 
spectrum changing the amplitude and phase of each sine wave component of 
the input signal by a predictable amount. Furthermore, their action on the 
spectrum is unaffected by the actual spectrum of the input signal. 

Filters can be completely specified by giving a plot of their amplitude 
response and phase response as a function of frequency. Nearly always, the 
amplitude response is termed, incorrectly, the frequency response but the 
former term will be used exclusively in this book. The test setup shown in 
Fig. 2—3 can be used to make such plots. Here we have a variable-frequency 
sine wave signal generator, a calibrated oscilloscope with dual-trace capabil- 
ity, and the filter under test. The gaén of the filter at a particular frequency 
may be determined by measuring the amplitude of the signal at the filter 

FILTER 
SINE WAVE 
GENERATOR 

DUAL - TRACE 
OSCILLOSCOPE 

OSCILLOSCOPE PRESENTATION 

Fig. 2-3. Experimental setup for characterizing a filter 
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output and dividing it by the input amplitude, which usually remains con- 
stant. The phase shift at a particular frequency may be determined by compar- 
ing the two waveforms on the oscilloscope face. Note that phase shifts greater 
than 180° leading or lagging cannot be uniquely determined at an arbitrary 
frequency with this setup. However, a point of zero phase shift can usually be 
found and the trend away from zero followed. 

The amplitude response then is plotted simply by varying the input 
frequency over the audible range and plotting the gain factor. Customarily, 
the frequency axis is logarithmic in order to accurately represent a wide range 
of frequencies, and the amplitude axis is scaled in decibels, which effectively 

makes it a log scale also. The phase response may be plotted similarly, 
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although the phase axis is usually linear. Actually, for simple filter circuitry, 
the shape of the phase response is rigidly tied to the shape of the amplitude 
response. For use as a sound modifier, the phase response of a filter is usually 

ignored. 
Theoretically, the shape of an amplitude response curve may be any- 

thing desired. However, like the principle that any waveshape may be built 
from sine shapes, amplitude response curves may be built from a small class 
of basic shapes. Figure 24 shows some of these.. 

Shape A is called a /ow-pass response because the lower frequencies are 
passed without aztenuation (reduction in amplitude), while the higher fre- 
quencies are reduced considerably. Although several parameters may be 
necessary to fully specify such a shape, two are of primary importance in 
sound modification applications. One is the cutoff frequency or the frequency 
above which the attenuation really begins to increase. By convention, the 

cutoff frequency is the frequency at which the amplitude response is 3 dB less 
(one-half the power output or 0.7071 times as much voltage) than it is at 
very low frequencies. The other parameter is the cutoff slope. In a practical 
filter of minimal or moderate complexity, the slope of amplitude decrease 
beyond the cutoff frequency approaches an asymptote, which is a straight 

line. Cutoff slope is usually stated in decibels per octave, particularly for 
musical purposes. Actually, most simple filter circuits have cutoff slopes that 
are multiples of 6 dB/octave. Thus, a simple low-pass filter might have a 
slope of 6G, 12, 18, etc., dB/octave. 

Shape B is called a Aigh-pass response for the same reason A was termed 
low-pass. The parameters of the high-pass response are also similar. 

Shape C is called a bandpass response. This is because in the general case 
a small band of frequencies are passed and the others, both higher and lower, 
are rejected. Two parameters are generally used to characterize bandpass 

responses, although four ate required for completeness. The frequency corre- 
sponding to the cop of the peak is variously termed the center frequency, 
natural frequency, resonant frequency, or pole frequency. The natural and 
resonant frequencies are actually very slightly different from the true center 
frequency, but for musical purposes they are all identical. 

The width of the curve can also be specified in different ways. One 
common method calls for measuring the frequencies of the two 3-dB down 
points, subtracting chem, and calling the result the bandwidth in hertz. In 
music, it is more useful to specify bandwidth in octaves, thus the term “1/3 
octave bandpass filter” is frequently encountered. A formula for the octave 
bandwidth in terms of the lower cutoff, FL, upper cutoff, FU, and center 
frequency, FC is BW = loge [1 + (FU—FLYFC]. A final method, which only 
applies to a certain but very common class of bandpass filters, is the quality 
factor or Q. Q is defined by the relation: @ = FC(FU — FL). The signifi- 
cance of Q will be studied in greater detail later. 
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Fig. 2-5. Effect of filtering on the spectrum 

The other two parameters are the two ultimate slopes of the sides of the 

bell-shaped curve. As before, they are usually multiples of 6 dB per octave. 
The slope just beyond the 3-dB points is usually steeper than the ultimate 
slope far from the center frequency and becomes more so for higher Qs 
(narrower bandwidths). 

The final basic filter shape is called a band-reyect (or notch) response and 
is shown in Fig. 24D. The center frequency is, of course, the frequency of 
Qreatest attenuation. Specification of the width parameter is not really stan- 
dardized because the exact shape of the notch varies considerably with the 
filter circuit. However, one common specification is, again, the difference 

between the 3-dB down points. Often, a rough attempt at specifying the 
shape is made by specifying both the 3-dB and the 60-dB notch widths. 

The effect of a filter on the spectrum of a sound can be easily deter- 
mined graphically as in Fig. 2-5. As a simple case, consider a sound with all 
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harmonics of equal strength passed through a bandpass filter. The envelope 
of the output spectrum will be the same shape as the filter’s amplitude 
response. For more common signals with a nonflat harmonic spectrum, the 

amplitude of each individual harmonic is modified directly according to the 
filter's gain or attenuation at that frequency. Thus, if a particular harmonic 
had an amplitude of —8 dB and the filter had a gain of —12 dB at that 
harmonic’s frequency, then the same harmonic would have an amplitude of 
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Fig. 2-6. Effect of filters on a square wave (cont.). (B) Low-pass filter. 
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—20 dB at the filter's output. For nonrepeating waveforms, the amplitude of 
each frequency component is similarly altered. 

Although nonlinear circuits cannot alter the shape of a square wave, a 
filter can. Figure 2~6 shows both the waveshape and spectral effect of filter 
circuits on a 200-Hz square wave. Note that in the case of the bandpass 
filter, a rapidly decaying sine wave is generated on each edge of the square 
wave. The frequency of this sine wave is che actual natural frequency, which 
for practical purposes is the same as the filter’s center frequency. The rate of 
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Fig. 2-6. Effect of filters on a square wave (cont.). (C) Bandpass filter. 
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decay is related to the filter's bandwidth or Q with narrower bandwidths 
(higher Q) resulting in a slower decay. 

As mentioned previously, more complex filter amplitude response 
shapes may be obtained by combining basic shapes. The most predictable 
method for combining two shapes is to cascade two filter sections by feeding 
the fileered output from one filter into the input of another. The resulting 
response shape is just the point-by-point sum of the individual response 
shapes, provided that they were plotted in decibels. Values from a linear gain 
scale would have to be multiplied together for the result. 

This technique is frequently used to get sharper cutoff filter shapes than 
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Fig. 2-6. Effect of filters on a square wave (cont.). (D) High-pass filter, 
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simple circuits provide. Figure 2-7, for example, shows how two rather 
sloppy low-pass shapes that can be obtained from simple circuits combine 

together to give a much improved low-pass shape. 
Fixed filters (those with constant parameter values) are commonly used 

as equalizers in music systems. An equalizer is a filter that is intended to 
compensate for nonuniform amplitude response elsewhere in a high-fidelity 
sound system. For sound modification use, however, a fixed filter can be used 

to change the overall tonal quality of the sound. A low-pass filter, for 
example, gives a muffled effect, while a high-pass filter tends to give a thin 
or tinny effect. Bandpass filters, depending on the center frequency, may have 
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Fig. 2-6. Effect of filters on a square wave (cont.), (E) Band-reject filter. 
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Fig. 2-7. Combining two filters to get a better response curve 

a “conch shell” effect on the sound. Often the essential character of the tone 

of certain musical instruments may be simulated with a simple fixed fileer 
and simple electronically generated waveforms. A double-humped bandpass 

response with humps at 1,200 Hz and 2,700 Hz, for example, resembles 

the resonance characteristics of an English horn. Sawtooth waveforms played 
through such a filter setup resemble the sound of an English horn. Such 
resonant peaks are called formants. 

Variable Filters 

Inexpensive filters with easily variable parameters that cover a wide 
range are actually a relatively recent development. The parameter most easily 
varied is the cutoff frequency or center frequency. For bandpass filters, the 
bandwidth is also easily varied. The cutoff slope, on the other hand, is a 
function of filter circuit topology rather than component values so as a result 
is difficult to control. Variable-slope filter circuits, however, are under inves- 

tigation. 

Dynamic variation of the cutoff frequency of low- or high-pass filters 
provides a definite audible effect. The upper harmonics of many percussion 
instruments, for example, decay faster than the lower harmonics do. The 
same effect may be simulated with a constant sound spectrum and a low-pass 
filter whose cutoff frequency is lowered during the course of the note. The 
opposite effect may be created by using a high-pass filter to increase high 
harmonic content as a note progresses. 
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The most dramatic variable filer effect, however, is produced by 
sweeping che center frequency of a bandpass filter. For moderate bandwidths 
(around 1/4 to 1/2 octave), the effect is similar to that of an opening and 
closing hat mute used with a trumpet or trombone. Such variable bandpass 
filters are popularly called “wah-wah” boxes due to their distinctive sound. 

If the bandwidth is made smaller yet, only one harmonic will be 
emphasized by the narrow peak, and the others will be greatly attenuated. 
Varying the center frequency in this case gives the effect of a distinct scale of 
sine wave notes as each harmonic is approached and passed by. White noise 
passed through a variable narrow-band filter is given a definite although airy 

pitch that is easily controlled. 

Several tunable bandpass filters may also be used to provide a number of 
independently movable formants. In fact, the voiced portions of human 
speech (vowels and dipthongs) may be simulated with a harmonically rich 

tone and two to four variable bandpass filters depending on the degree of 
naturalness desired. Each possible steady vowel corresponds to a particular 
steady-state combination of formant frequencies, while each dipthong corre- 
sponds to a particular pattern of formant frequency transitions. Of course, a 
good speech synthesizer requires more than this, although the formant 

generator and control means for producing accurate formant frequency varia- 
tion constitute the majority of the circuitry. 

Variable notch filters produce a somewhat more subtle effect. Using 
white notse as an input, a frequency sweeping notch filter will create a sound 
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similar to a passing jet plane. A device for reproducing such an effect exactly 

is called a comb filter because its amplitude response curve, shown in Fig. 

2-8, resembles a comb. Note that the comb filter response is like a bunch of 

notch filters with the notch frequencies regularly spaced a given number of 

hertz apart. Tuning of a notch filter amounts to increasing or decreasing the 

spacing between the notches, thus forcing the higher-frequency notches to 

move out faster than the lower-frequency ones. 
As might be expected, an actual implementation of a comb filter is 

considerably simpler than a multitude of gang-tunable notch filters. The 
physical effect observed at an airport may be explained by noting that a 

passing jet is essentially a point source of white noise and that airports have 
smooth concrete runway surfaces. Thus, one ray of sound travels directly co 
the ear and another ray (there can only be one) bounces from the pavement 
before reaching the ear. These two paths differ slightly in length and the 
difference changes as the angle of the plane changes. Due to this difference in 
path lengths, some sound frequencies are reinforced when the two rays meet 
at the ear and others are cancelled. The same effect may be created by 
splitting an audio signal into two paths, inserting a short variable delay into 
one of the paths, and then recombining the two signals. 

The initial implementation of this effect for processing arbitrary sound 
signals involved two identical tape recorders playing identical recordings of 
the sound to be processed. If the tapes were far out of synchronization, a 
distinct echo was heard. Closer synchronization produced the comb filter 

effect. Adjusements in the effective delay between the two signals were 
accomplished with light finger pressure on the tape reel flanges to slightly 
slow one of the recorders; the effect chat was produced became known as 
“flanging” a sound. 

Until recently, it was very difficult and expensive to construct a high- 
fidelity variable delay. However, now it is a fairly simple and inexpensive 
procedure with digital logic or analog delay line ICs. 

Spectrum Shifters 

While filters directly affect the amplitudes of the various frequency 
components of sounds, the actual frequency of these components remains 
unaltered. A different class of device changes the frequency of the compo- 
nents but, ideally, leaves the relative amplitudes alone. Of course, one 
technique already mentioned has the capability of shifting frequencies pro- 
portionally, chat is, multiplying every frequency by the same value, and that 
technique is tape speed transposition. 

A true spectrum shifter, however, maintains the same relative difference 
between component frequencies. For example, if a tone is composed of a 
fundamental of 200 Hz with harmonics at 400 Hz, 600 Hz, etc., then a 
spectrum shift of 31.4 Hz would result in frequency components of 231.4 
Hz, 431.4 Hz, 631.4 Hz, and so forth. Note that these frequencies are no 
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longer harmonically related. Sounds that normally have harmonic spectra 
undergo a complete change in some aspects of their timbre when shifted a 
few tens of hertz, while other aspects are relatively unaffected. In particular, 
they tend to cake on a sort of “watery” texture. Quality spectrum shifters that 
have good low-frequency response and work properly even with small 
amounts of shift are still relatively complex and expensive. 

A related but much simpler device is the balanced modulator, which is 
also known as a ring modulator. The device has two signal inputs that are 
identical and an output. In operation, an instantaneous output voltage equal 
to the product of the two input voltages with all algebraic sign conventions 
observed is generated. Figure 2-9 shows the output waveform with two 
different frequency sine waves as inputs. Note that the output spectrum 
contains neither of the input frequencies but does contain a sum frequency of 
1,200 Hz and a difference frequency of 800 Hz. 

In order to more fully understand the physical effect, consider an 
experiment in which one of the inputs is connected to a complex waveform 
with a lot of frequency components and the other input is connected to a 
variable-frequency sine wave oscillator. With the oscillator set to zero fre- 

quency, the output is the same as the other input. As the oscillator frequency 
increases, a spectral plot of the output, as in Fig. 2-10, would show each 

frequency component splitting into two components, which then move away 

from each other. Thus, one copy of the input spectrum shifts down in 
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Fig. 2-9. Action of the balanced modulator. (A) Input to A. 
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Fig. 2-9. Action of the balanced modulator (cont.). (B) Input to B. (C) Output. 
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Fig. 2-10. Operation of a spectrum inverter. (A) Input spectrum. (B) Low fre- 
quency to balanced modulator. (C) Higher frequency to balanced 
modulator. (D) 10 kHz to balanced modulator. (E) Final inverted 
spectrum. 

frequency, while the other copy shifts up. The envelope of the copies indi- 
vidually remains unaltered. Actually, a true spectrum shifter manages to 
suppress one of the copies. 

If the oscillator frequency is made high enough, frequency components 
in the downward moving copy will eventually cross zero. As they do, they are 
reflected back upward with reversed phase, since a physically negative fre- 
quency is impossible. With a continuing increase in oscillator frequency, a 

point will eventually be reached in which the entire downward moving copy 
has been reflected and the upward moving copy ceases to overlap it. If a 
low-pass filter is now inserted in the output, only the reflected copy remains. 

The interesting point about the spectrum now is that it has been averted with 
originally low-frequency components becoming high and vice versa. 

Generally, balanced modulators and spectrum inverters severely distort 
sounds into an unrecognizable and usually unpleasant grating. In fact, spec- 
trum inverters were once popular as speech scramblers, since a reinversion 
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would restore the original signal unaltered. Under certain conditions, how- 

ever, the effects of these devices are interesting and useful. 

Envelope Modifiers 

Although spectrum modification of sounds can have a profound effect 
on their timbre, altering the overall amplitude envelope can also have a 

significant effect. Perhaps the simplest envelope modification is flattening of 
the decay in order to give a steady sound amplitude that eventually cuts off 
suddenly. Thus, a plucked string instrument such as a guitar comes out 

sounding more like an organ. 
The oldest and simplest method of doing this is to use a clipping circuit 

with a low clipping threshold. As long as the input amplitude was signifi- 
cantly above the clipping point, the output amplitude remained relatively 
constant. Of course, such a device also severely distorts the spectrum. 

Later, envelope follower circuits that generated a voltage proportional 
to the amplitude of an input signal were developed. This voltage could then 
be used to control the gain of a separate amplifier in any desired manner. 
Thus, the guitar sustain device would process the evelope follower signal 
such that the amplifier gain would increase enough to cancel the decrease in 
input signal amplitude and give a constant output. By suitable processing of 
the envelope signal, the attack, sustain, and decay times of the output can be 
adjusted relatively independently of the envelope characteristics of the input. 

Electronic Reverberation 

Even utilizing all of the modification techniques mentioned so far, 
many purely electronic sounds have a “‘lifeless” quality that is often undesir- 
able. Live sounds from an orchestra, on the other hand, have a depth and 

richness that cannot be easily explained in terms of frequency, amplitude, 
and spectrum. 

The concert hall itself adds considerably to the texture of orchestra 
music. In fact, an otherwise “dry” recording of electronic sounds is consid- 
erably enhanced by playing through loudspeakers scattered around the stage of 
a good concert hall. The difference, of course, is the presence of reverberation 

in the hall in which 4 combination of direct and reflected sound reaches the 

listener. The reflected sound can come from any direction and with different 
time delays with respect to the direct sound. Reflection can also occur several 
times, each with diminishing amplitude. 

Because of the multitude of delay times, concert hall reverberation and 
tape reverberation are considerably different. The latter consists of distinct 
echoes, while the former has no perceivable echo at all. A multitude of 
techniques and devices has been developed to electronically simulate concert 
hall reverberation in tape recording. 
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The earliest attempt was an extension of the tape reverberation method. 

Rather than having just one playback head, several were used, all spaced at 
irregular intervals from the single recording head. This was fairly effective in 
suppressing distinct echoes, since so many echoes were produced. However, 

sharp transients such as a hand clap still resulted in an initial chain of echoes. 

Most other reverberation schemes are really electromechanical in na- 

ture. Objects such as special springs, metal plates, stretched gold foils, and 
even empty chambers with hard walls were fitted with transducers for signal 

input and output. The reverberation effect is created when sound waves from 
the input transducer reflect from the ends or other boundaries of the object. 
The “reverberation chamber” approach yields good results but must be quite 
large in order to achieve natural results. The other devices are considerably 
smaller due to slower propagation of sound in them as compared to air. 
Spring units typically utilize two or three different springs and are most 
popular for lower-quality work. The metal plate and gold foil units produce a 
more spacious effect with less evidence of echo due to two-dimensional 

propagation of the sound waves. 
One problem with such electromechanical devices is coloration of the 

reverberated sound, meaning a fairly gross modification of the spectrum of 
the reverberated sound. Typically, frequencies below 500 Hz and above 5 
kHz are attenuated, and response to middle frequencies is irregular. Springs 

are worst in this respect and gold foils are best. 
Recently, the plummeting costs of digital logic and memory have made 

all-electronic reverberation devices practical. Digital techniques make possi- 
ble a very high-quality audio delay line that when combined with feedback 
and mixing networks gives excellent reverberation results. Analog delay lines 

capable of handling audio signals directly may also be used in reverberation 
networks, although background noise can be a problem in exacting applica- 
tions. Although echo density and coloration can still be problems, they are a 
function of the quantity and arrangement of the component parts and not the 
physical characteristics of some specialized material. Design details of digital 
reverberation simulators will be covered more thoroughly in Section HI. 

Chorus Synthesizers 

The other “life-giving” element typically missing in electronic sounds 

is multiplicity of sound sources. A single trumpet playing a nice little solo 
has one effect, while a hundred trumpets playing the same passage in four- 
part harmony has quite a profoundly different effect. Who has not thrilled to 
the sound of thousands of voices singing the National Anthem prior to a 
football game? 

The effect of a number of players performing the same passage is called 
a chorus effect. What has been desired for a long time is a device or process 
that would accept a sound signal as an input and generate an output chat 
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resembles a large number of copies of the input signal. An obvious control 

parameter for such a device is the multiplicity factor. 

Looking more closely at the physical chorus effect, it is seen that the 

difference between two separate players and one player playing twice as loud 
is that’ the two sounds being combined are not exactly alike. For example, the 
fundamental sound frequencies will be slightly different, resulting in a slight 
beating effect. Unlike beating sine waves, the resultant amplitude of two 
beating complex waves remains relatively constant, but individual harmonics 
may momentarily cancel. Also vibrato, which is not synchronized between 
the players, may cause even greater momentary frequency differences. The 
end result is a slight, random, spectrum modulation of the resulting sound. 
As more players are added, changes in the amplitude and phase of the 
component harmonics become more pronounced and random. A spectral plot 
of 100 trumpets playing the same note would show broad peaks at each of the 
harmonic frequencies rather than narrow lines. Note that the overall spectral 
envelope is unchanged, which allows one to distinguish 100 trumpets from 
100 violins. 

Research into construction of the chorus box mentioned earlier has been 
in two different directions. One attempts to directly simulate multiple sound 
sources with a number of audio delay lines, whose delay is constantly chang- 
ing over a narrow range. The theory is that a second sound is exactly like the 
first except that the vibrations are occurring at different points in time. The 
variation in delay times prevents a constant echo effect. Multiplicity can be 
controlled fairly well with such a setup by changing the number of delay 
lines. Digital signal processing techniques are well suited for implementa- 
tion of this scheme. 

The other approach works on the basic parameters of the input sound 
attempting to simulate the effect rather than the actual chorus itself. Accord- 
ingly, it uses filters to separate che input spectrum into bands and amplitude 

and phase modulators plus spectrum shifters to randomly manipulate the 
individual bands. Finally, the sound is put back together and sent out. Al- 

though not particularly good for simulating a small group of players, the 
technique is apparently very effective for simulating a large number. A taped 
demonstration witnessed at the Spring 1977 Audio Engineering Society 
convention made a cheap portable synthesizer sound like a whole auditorium 
full of synthesizers. 

Analysis-Synthesis Methods 

It should now be well established that the synthesis of sound can be 
controlled to the tiniest of details by appropriate manipulation of the fun- 
damental parameters. The basic problem, then, is in determining exactly 
how these parameters should be varied to get the desired effect. One possibil- 
ity, of course, is experimentation so that the relation between parameter 
change and audible effect becomes familiar. If this is adequately accom- 
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plished, then the composer can readily specify what is required for the 
desired effect. There are many practical difficulties, however. One is that 
such extensive experimentation is quite time consuming even with entirely 

real-time equipment. A related problem is documenting the results of such 
experimentation. Cataloging of desirable or unusual effects discovered during 
such experimentation for later recall is possible with a computer-based sys- 
tem, however. 

One approach to the problem begins with realizing the frequency of 
requests such as, “I want something that sounds like (some natural sound) 

except for . . .” Thus, if one could determine the exact parameter variation 

of the prototype sound, then the desired parameter manipulation for the 

desired resulx might be more easily determined. Such a procedure is called 
analysis-synthesis because a prototype sound is analyzed into its component 

parameters, which may then control a synthesizer to reproduce a similar 
sound. 

Envelope Tracking 

The first step in the process is an accurate determination of the 
parameters of interest in the prototype sound. Overall amplitude is perhaps 
the easiest to extract. A device for doing this is usually called an envelope 

follower. Although rms amplitude is probably the most desirable measure, it 

is much easier to determine average amplitude. Another tradeoff that must 

be considered in the design of an envelope follower is speed of response versus 
the ability to accurately determine the amplitude of low-frequency signals. 
The reason is that the device will start to follow the slow waveform of a 
low-frequency sound itself rather than the overall average amplitude. 

Pitch Tracking 

Determining the fundamental frequency or pitch tracking is consid- 
erably more difficult. Relatively constant-frequency simple (not a lot of 
harmonics) sounds isolated from all other sounds and background noise can 
be readily processed. However, rapidly varying, complex, or insufficiently 
isolated sounds are much more difficult to follow. Semipitched sounds such 
as the chime mentioned in Chapter 1 are better handled with formant track- 

ing, which will be discussed. The most common error made by pitch track- 
ing equipment is a momentary false output that is a multiple or submultiple 
of the correct value. Multiples of the correct value are the result of mistaking 

one of the harmonics for the fundamental that might actually be very weak or 
absent. Submultiples can result when the waveform undergoes substantial 
change of parameters other than fundamental frequency. Thus, any successful 
pitch cracker for a variety sounds generally looks at periodicity of waveform 
peaks, or in the case of sophisticated computer processing, looks at every 
frequency component and determines the highest common divisor. 
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Spectrum Tracking 

Generalized spectrum tracking can be done in several ways. For defi- 
nitely pitched sounds, the amplitude envelope of each individual harmonic 
can be determined with computer-processing techniques. A somewhat sim- 

pler technique involves a bank of 10 to 30 bandpass filters and an amplitude 
envelope follower connected to the output of each filter. Any sound can be 
passed through such a filterbank analyzer, and its rough spectrum shape as a 
function of time can be determined. 

Another method that also involves a computer is formant tracking. The 
spectrum of many interesting sounds such as speech can be fairly well de- 
scribed by the frequency, height, and width of peaks in their spectrum 
shape. Frequently, even the height and width parameters are ignored. The 
resulting small number of parameters describing the time varying spectrum 
shape is quite attractive for analysis—synthesis purposes. For example, track- 

ing of just the frequency of the two lowest formants of voiced speech sounds 
is adequate for intelligible speech reconstruction. 

Unfortunately, accurate formant following is as difficult as accurate 
pitch tracking. For example, there need not necessarily be a constant number 
of formants in the sound being analyzed. As a result, the analyzer must 
recognize when two formants merge into one or when one just decreases in 
amplitude and disappears. If the overall spectrum shape contains a long 
downward slope, the ear will aften recognize a local flattening in thar trend 

as a subdued formant, even though no real peak occurs. 

Use of Analysis Results 

It should be obvious from the foregoing that really accurate analysis of 
sound into the simple parameters that have been discussed is not always 

possible. However, the accuracy that is attainable is generally quite accept- 
able for analysis—synthesis experiments. Occasionally, some hand editing of 
the data obtained is necessary to correct gross errors or fill in missing data 
caused by nearly inaudible “defects” in the prototype sound. 

Generally, the data obtained from the analysis can be represented as a 
number of curves showing how the parameters vary with time. Such a set is 
shown in Fig. 2-11. On a computer-based system, these curves would 
actually be available to the user to study and modify as desired. In a real-time 
system, these parameters would really be just varying voltages generated by 
the analysis equipment. In either case, some, if not all, of the parameters 
would be processed and then they would pass to synthesis equipment, which 
generates the modified sound. 

The analysis—synthesis technique can be applied in a number of ways. 
One intriguing possibility is transferral of certain characteristics from one 
type of sound to another. For example, let’s assume that a short trumpet solo 
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Fig. 2-11. Parameter variation of a typical natural sound. (A) Amplitude. (B) 
Pitch. (C) First formant frequency. (D) Second formant frequency. 
(E) Third formant frequency. 

passage has been analyzed into amplitude, frequency, and rough spectrum 
shape parameters. Let’s further assume that the passage is a lively one indica- 

tive of the performer's playing style. With resynthesis, these particular 

parameters could control a tone that more resembled that of a clarinet. Since 
the spectral analysis was very rough, the exact timbre of the trumpet would 
not have been captured, but the general trend that reflects changes in the 
overall tone would have been. The result would be that many of the charac- 
teristics of the trumpet playing style would have been transferred to the 

clarinet sound. Note that in a real situation it may not even be possible to 
actually play a. clarinet in such a manner. 

Besides simple transferral of parameters, modification of the curves is 
also possible. Since a parameter when converted to a varying voltage is just 
another signal, many of the processing techniques that applied to sound 
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pressure waveforms could also be applied to the parameter waveform or 
envelope. One type of processing that would have an interesting effect is 
filtering of the parameter envelopes. A high-pass filter, for example, empha- 
sizes high frequencies relative to lower frequencies. The direct effect on the 
waveform is to emphasize rapid variations and ignore slower variations and 
trends. High-pass filtering of the trumpet solo data, for example, might 
produce a caricature of the original playing style. Low-pass filtering of a 
parameter has an opposite effect in which short and rapid variations are 
smoothed out and slow variations or trends are emphasized. The result might 
very well sound as if the performer had become drunk! 

Hand manipulation of the parameters, of course, is also possible. One 
way to determine how a particular parameter contributes to an overall effect 
is to resynthesize the sound with that parameter held constant or set equal to 
some other parameter. Statistical analysis of the curves might make it possi- 
ble to completely separate two parameters that normally influence each 
other. For example, overall loudness and spectrum distribution are related in 
trumpet sounds. Loud but mellow notes are not generally possible as are soft 
but blaring notes. Conversely, two parameters that normally vary indepen- 
dently may be made interdependent. 

Of course, with a computer-based system, the results of sound analysis 
may be stored for later recall or for combining with other analysis data. 



Voltage Control Methods 

As briefly mentioned in Chapter 1, the development and use of voltage- 

controlled sound synthesizers was an important milestone in the history of 
electronic music synthesis. More than any other single development, it 

served to popularize synthesis methods not only with the listening public but 
also with composers and performers. 

Voltage control is really a fundamental concept. For the first time there 
has been established a one-to-one correspondence between an easily manipu- 
lated physical variable, a voltage level, and each of the important parameters 
of sound. Thus, manipulation of a voltage would actually be manipulation of 
a frequency, amplitude, formant position, waveform distortion parameter, 
etc. Frequently, volrage-controlled techniques are characterized as continuous 
or analog techniques because one physical variable (the signal or control 

voltage) represents another physical variable (amplitude, frequency, etc.). 
Also of importance is the modularity of voltage-controlled synthesizers. 

The synthesizer itself is nothing more than a package for holding a number of 
independent modules that may be interconnected in literally an infinite variety 
of ways. The number of simultaneous sounds and their complexity is depen- 

dent mainly on the type and number of modules available and the means 
available for controlling them. Only a very few modules are required to 
produce single simple electronic sounds. More are required for implementa- 
tion of subtle variations and multipart harmony. If a given complement of 
modules is insufficient for a particular application, more are easily added at 
moderate cost. 

Compatibility is another key characteristic of voltage-controlled synthe- 
sizers. All inputs are compatible with all outputs, meaning that any physi- 
cally possible permutation of interconnections is also electrically safe and 
potentially useful. Furthermore, in some instances outputs are compatible 
with each other. In such cases, two outputs plugged into the same input 

(with a “Y” connector, for example) actually results in mixing of the two 
signals involved in equal proportions. Compatibility often extends to the 

point that different manufacturers’ modules may be easily interconnected. 
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Finally, the modules of a madern voltage-controlled synthesizer offer 

good accuracy in the relationship between a control voltage and the value of 

the sound parameter being controlled. Thus, two modules with the same 
control input can be expected to produce nearly identical results. Although it 
is relatively simple to design and produce devices that respond to control 
voltages, designing one that accurately and consistently responds to them is 
considerably more difficult. Even so, accuracy is one characteristic that could 
benefit from improvement. 
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Fig. 3-1. General voltage-contralled module 

Typical Module Characteristics 

In examining these points more closely, let’s look first at the general 
characteristics of a typical module such as diagrammed in Fig. 3~1. This 
module has three classes of inputs and three classes of outputs. It is rare that a 
single module would actually have all six classes of input/output (I/O), but it 

is possible. 
A mechanical input is a parameter that is physically supplied by the user. 

Examples are the positions of knobs, levers, the amount of prsssure on a 
plate, the state of switches, or other nonelectronic inputs to the system. 

There may be none, one, or several such inputs on a single module. In the 
case of knobs or levers, two are often used to precisely control one variable: a 

coarse adjustment and a fine adjustment. Switches usually set particular 
operating modes and may have several positions each. With the exception of 

transducer modules such as keyboards, the mechanical inputs are usually set 
up ahead of time and then changed only infrequently during the actual 
production of sound. Thus, except for transducers, mechanical controls in- 

fluence operating parameters that stay relatively constant. 
Mechanical outputs are less common and consist of lights, meters, 

speaker cones, and similar indications to the user. Except for speakers, 
mechanical outputs are just user aids and do not directly participate in the 
synthesis process. 
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A signal input normally expects to see an ordinary audio signal in the 
20-Hz to 20-kHz frequency range. However, the signal inputs of any prop- 

erly designed module are perfectly capable of responding to dc voltage levels 
and ultrasonic frequencies up to 50 kHz and higher. This broad range allows 
signal inputs to also handle slowly varying control voltages, which is a very 
important capability. 

A signal output normally supplies an ordinary audio signal to other 
modules. Like the signal input, it is usually capable of supplying dc and 
very-low-frequency signals as well for control purposes. 

The function of a comtrol input is to accept a control voltage whose 
Instantaneous value controls some parameter of the signa] output. The pres- 

ence of control inputs is the factor that distinguishes voltage-controlled 
modules from ordinary laboratory equipment, which usually has only 
mechanical inputs. Control inputs are used for those parameters that change 

rapidly, usually within the course of a single sound or note. 
A control output is similar to a signal output except that it normally 

supplies control voltages to other modules. However, if the voltage at a 
control output varies rapidly enough, it may also be used directly as an audio 
signal. 

From the foregoing it should be apparent that the distinction between 
audio signal voltages and control voltages is in their use and not necessarily 

in their physical properties. Although control voltages typically vary slowly 
compared to audio signals, there are applications for rapidly varying control 

voltages and slowly varying audio signals. It is this lack of physical distinc- 
tion between parameters and signals that is responsible for much of the power 
of voltage-control methods. 

There is, however, one more class of signals used in the voltage- 

controlled synthesizer. These are digital on-off control signals and timing 
pulses. Only a few specialized modules, which will be discussed later, use 
them. Although it is safe to mix these digital signals with the others, the 
effects are seldom useful. Any useful effect can also be obtained through more 
“correct” interconnection procedures. 

General Module Types 

Modules can be grouped according to their primary functions. There is, 
of course, some overlap among groups, but for the most part the distinctions 

are clear. 

_ Transducers function primarily as sources of control voltages but are 
directly dependent on some form of input for determining what the control 
voltage output should be. Perhaps the best example is an organ-type 

keyboard specially designed to produce a control voltage that is a function of 
the particular key being pressed. Besides the control voltage output, the 

keyboard also produces two digital timing signals whenever a key is pressed. 
The first is called a trigger, which is a pulse that is generated on the initial 
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depression of a key. Its primary function is to mark the deginning of a note. 
The other signal is called a gate and is used to mark the duration of the note. 
The gate signal is present as long as a key is pressed. Thus, these ewo timing 
signals qualify the control voltage output from the keyboard. 

Generators are similar co transducers but generally produce a predefined 
type of output signal that can be influenced with mechanical and control 
inputs but not completely determined in detail as with a transducer. A good 
example of an audio signal generator is a voltage-controlled oscillator. Typi- 
cally, several outputs are provided, cach one supplying a different but fixed 
waveform at a fixed amplitude. The voltage level at the control input directly 
affects the frequency of the multiple waveform outputs, but the waveshape and 

amplitude, which are fixed by design, remain constant. A good example of a 
control voltage generator is the envelope generator. This device supplies a 
predetermined voltage contour in response to the trigger and gate signals 
mentioned earlier. Mechanical controls generally specify details about the 
contour generated, although rarely a control voltage might be able to specify 
some of these. 

Modifiers typically accept signal inputs and control inputs and produce 
a signal output. Modification of one or more parameters of the input signal is 
performed in accordance with the voltage levels at the control inputs. A 
voltage-controlled amplifier is a good example of a modifier. Typically, the 
signal input is of constant amplitude, but the amplitude of the output is 
determined by the control input. 

Interconnections 

In order to perform a useful function, the synthesizer modules must be 
interconnected. A true general-purpose synthesizer provides only mechanical 

mounting and operating power to the modules; otherwise they are com- 
pletely independent. Probably the most popular connection method involves 
the use of patch cords similar to those found in old telephone switchboards 
but with both ends free. The cords and standard 1/4-inch phone plugs are 
quite flexible and rugged and allow fully shielded connections that minimize 
noise pickup. A particular arrangement of patch cords is called a patch. A 
complex patch may involve so many cords that a rat’s-nest appearance results 
that may even obscure the front panel of the synthesizer. In such a situation, 
it may become difficult to follow a particular cord through the maze without 
pulling on one end of it. Even so, most users love the patch cord concept and 
on occasion can be seen to point proudly at the “jungle” that represents the 
creation of a new sound. 

Another popular interconnection technique uses a pinboard matrix. 
The matrix is divided into rows representing module outputs and columns 
representing module inputs. Each row and column is clearly labeled with 
module number, type, and signal name. A connection from an output to an 
input is made by inserting a pin at their point of intersection. An output may 
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drive multiple inputs by having pins at multiple column positions along the 
row corresponding to the output. Multiple outputs may also be connected 
together for equal mixing without the use of Y adaptors simply by inserting 
pins at multiple row positions along a single column. A complex pinboard 
matrix patch is, of course, much neater than the equivalent using patch 
cords. Furthermore, documentation of the patch is much easier. However, 

pinboard synthesizers tend to be less easily expanded due to the subpanel 
wiring between the modules and the pinboard. Also, if the row or column 
capacity of the pinboard should be exceeded, either another matrix will have 
to be added (and provisions for patching from one matrix to the other) or the 
entire matrix will have to be replaced with a larger one. Thus, pinboards are 
usually only found in “standard” models of prepackaged synthesizers. 

AUDIO SIGNALS - 

VOLTAGE- Le VOLTAGE | vourace- | 
CONTROLLED CONTROLLED CONTROLLED 
OSCILLATOR FILTER | AMPLIFIER 

CUTOFF FREQUENCY GAIN CONTROL AMPLIFIER 
CONTROL INPUT 

FREQUENCY CONTROL 
INPUT INPUT SPEAKER 

CONTROL VOLTAGE 
OUTPUT 

CONTROL VOLTAGE CONTROL VOLTAGE 
OUTPUT OUTPUT 

ENVELOPE 
GENERATOR 

ENVELOPE 
GENERATOR 

Fig. 3-2. A simple voltage-controlled module patch 

A Simple Patch 

Regardless of the method of patching, the important point is that the 
user thinks in terms of the basic parameters of sound when a patch is heing 

designed. Figure 3~2 shows a very simple patch for producing individual 
notes under the control of an organ-type keyboard. One of the keyboard 
outputs is a voltage level proportional to the key ast struck. This voltage 
determines the frequency of the voltage-controlled oscillator. The trigger and 
gate outputs from the keyboard then enter the first envelope generator, 
which produces a voltage contour in response to these timing signals. This 

voltage enters the control input of the voltage-controlled amplifier, where it 
impresses the contour shape onto the amplitude of the output signal from the 
oscillator, thus giving it an envelope. Finally, the second envelope generator 
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Fig. 3-3. Added modules for vibrato 

impresses a different contour onto the spectrum of the sound through the 
voltage-controlled filter. 

As a result, these three fundamental parameters are directly, and most 
important, visibly controlled by the three control voltages. More complex 
patches generally add modules in the control voltage paths, although a few 
more might also be added to the signal path. As an example, let us take this 
basic patch and add vibrato. Since vibrato is a small wavering of frequency 
during extended steady states, the control voltage connection between the 
keyboard and the oscillator will be broken and additional modules inserted as 
in Fig. 3-3. First, another oscillator is added, which is the source of the 
low-frequency vibrato waveform, For this example, .no control voltage is 
supplied to the oscillator; its mechanical controls are used to set the vibrato 
frequency. The vibrato voltage is combined with the keyboard output with 
the mixer module shown. Mechanical controls on the mixer determine the 
proportion of each input signal that appears at the output. For natural- 

sounding vibrato, the controls are set for only a small contribution from the 
vibrato oscillator. The resulting control voltage is then sent to the original 
oscillator and the remainder of the system as before. 

It is easy to imagine further growth of the patch, since the vibrato 
produced by the example patch is rather crude. Typically, one might want 
short notes and the beginnings of long ones to be free of vibrato. After a delay 
period on long notes, vibrato should commence gradually. Addition of 
another voltage-controlled amplifier and envelope generator in the frequency 
control voltage path will allow this effect to be produced. Similar additions 
may also be made in the amplitude and spectrum control paths. Once a good 
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understanding of the parameters of sound has been developed, most patches 
are obvious. Note that more modules may actually be tied up in processing 
control voltages than audio signals! 

Signal Levels in the Synthesizer 

So far the value of voltage control has been established and the de- 
sirability of an accurate relationship between control voltage magnitude and 
sound parametet magnitude has been mentioned. However, now the exact 
form of this relationship needs to be established. Although there is consider- 
able agreement in the industry on the control relations to be discussed, there 
are a few manufacturers of smaller systems that do things differently. 

Frequency-Control Relation 

Of all the parameters of sound, frequency is probably the most impor- 
tant. The ear is considerably more sensitive to small changes in frequency 
than any other parameter. Also, music theory is significantly more concerned 

with intervals, chords, and other pitch-related topics than it is with other 

areas. Thus, the choice of a relationship between a frequency-control voltage 
and the resulting output frequency should be chosen carefully. 

The range of human hearing can be considered to be 10 octaves, which 
isa 2! or 1,024:1 or 20 Hz ta 20 kHz range. Within chis range, a relative 

error of 1% is a minimum goal with considerably less being desirable in the 
middle four octaves. A relative error of 1% means that an intended frequency 
of 20 Hz cannot actually be less than 20 — 20/100 = 19.8 Hz or greater 
than 20.2 Hz. Likewise, any frequency between 19.8 kHz and 20.2 kHz 
would be acceptable for an intended value of 20 kHz. Note that the absolute 
magnitude of error at the high end is a whopping 200 Hz, while at the low 

end it is only 0.2 Hz. Expressed as a full-scale accuracy, a specification 
method almost universally used by the measuring-instrument industry, the 
requirement would be 0.2 Hz/20 kHz = 0.001%. Laboratory voltage- 

measuring instruments with this kind of accuracy are almost nonexistent, 

exceedingly expensive, and fragile, yet this and more is being asked of a 
voltage-controlled oscillator module for a synthesizer! 

The most obvious relationship between control voltage and frequency is 

a linear one, that is, a direct relationship between voltage and frequency. For 
the sake of argument, let us assume the relationship F=1,000V, where F is 

the output frequency in hertz and V is the control voltage in volts. With this 
relation, the audio range would be covered with a control voltage range of 
20 mV to 20 V. The 19% error alluded to earlier would amount to 200 wV at 

the low end of the range and 0.2 V at the upper end. 
Actually, 20 V is a little high for convenient use of modern linear ICs. 

A maximum of 10 V would be more reasonable. The 100-4V error now 
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allowed would be quite difficult to deal with. Typical sources of error in this 

range are thermoelectric voltages, voltages induced from stray magnetic 
fields, and thermal noise in resistors. What is worse, we expect these voltage 

levels to travel freely through patch cords without degradation. Thus, it is 

apparent that directly proportional voltage control is impractical for a wide 

control range and great relative accuracy. 

Exponential Relation 

Another relationship that makes more sense from a lot of viewpoints is 
an exponential one. Stated first in musical terms, such a relationship could be 
something like a 1 V/octave. In mathematical terms, this would be F=2¥Fo, 
where F is the output frequency, V is the control voltage in volts, and Fo is 

the basis frequency for this relative scale. For a basis frequency of 20 Hz, a 
voltage range of 0 to 10 V would cover the audible range. An interesting 
property of such a scale is chat the 1% relative accuracy desired corresponds 
to about 14.5 mV éndependent of the frequency range. Thus, rather than a 
liberal error allowance at high frequencies and a stingy one at low frequen- 
cies, the margin for error is a constant, manageable value. 

This property alone would be sufficient persuasion for adopting the 
exponential relationship, but there are many more desirable characteristics. 
In Chapter 1, it was noted that the sensation of pitch was an approximately 
exponential function of frequency. Using an exponential voltage-controlled 
oscillator, a linear increase in control voltage of, say, 1 V/sec would result in 
a reasonably steady rise of pitch. A linear VCO, on the other hand, would 
very rapidly sweep through all of the low frequencies and then seem to 
require a considerable amount of time to complete the upper end of the 
sweep. 

Even if the ear’s tesponse did not resemble an exponential curve, the 
equally tempered musical scale is precisely exponential. One octave, of 
course, corresponds to 1 V and a half-step corresponds to 1/12 V or about 
83.3 mV. Likewise, a fifth corresponds to 7/12 V and a major third is 1/3 V. 
Thus, if some arbitrary voltage level produces a particular pitch, a voltage 
1/12 V higher produces a pitch one half-step higher. 

One application of this property is in transposition from one key to 
another. Consider a melody played in the key of C ona keyboard that outputs 
control voltages. If a constant voltage of 1/6 V is added to the keyboard 
output, the melody would actually sound in the key of D. The constant 
voltage may be injected with a mixer beeween the keyboard and the oscil- 
lator, alchough most VCO modules have a basis frequency knob that does the 
same thing. 

Injection of vibrato is also considerably simplified with an exponential 
VCO. A 1% vibrato, for example, would require a 15 mV peak-to-peak 
vibrato voltage independent of what note was played. With a linear VCO, 
the vibrato would be excessive on the low notes and nearly inaudible on the 
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high ones. Thus, the vibrato amplitude would have to be made proportional 
to frequency through the use of a voltage-controlled amplifier. 

Although exponential control of frequency at the rate of 1 V/octave is 
an industry-wide standard, che best VCO modules do have a linear control 
voltage input available. Its primary use is in using tapid and deep frequency 
modulation as a method of altering the spectrum of the oscillatot’s output 
waveform without incurring an undesirable average frequency shift due to the 
modulation. 

Amplitide Relation 

Amplitude is the other parameter of primary importance that needs a 
control voltage relationship established. Whereas the audible frequency 
tange is a 1,000:1 ratio, the audible amplitude range is 1,000 times greater 
yet or 10®:1. This 120-dB range might be a nice goal for live listening in a 
soundproof room but certainly could not be utilized in a normal environ- 
ment. Furthermore, recording equipment is limited to a 60-dB to 70-dB 
range at best. Thus, a 10,000:1 or 80-dB range on voltage-controlled 

amplifiers would be a reasonable requirement. 
The accuracy requirement for amplitude control is not nearly as strin- 

gent as frequency control accuracy. A 10% error, which corresponds to about 
0.8 dB, would be barely audible. However, if the voltage-controlled 
amplifier were being used in a control voltage path processing frequency- 
related control voltages, considerably better accuracy would be desirable. 
Without going through the linear versus exponential argument again, it is 

clear that the control volrage relationship should be exponential. 
A common setup would be such that 8 V would specify unity (0 dB) 

gain and lesser voltages would decrease gain at the rate of 10 dB/volt. 
Typically, as the control voltage approaches zero and the gain is decreasing 

toward —80 dB, a squelch circuit comes into play, which actually cuts the 
signal completely off. Control voltages greater than +8 V can provide some 
positive gain in the circuit. With such a setup, the gain expression would be 

AV = 10¥—8), where AV is the voltage gain in decibels and V is the 

control voltage in volts. Like the oscillator, an added linear mode control 
input is helpful for special applications using amplitude modulation for 
timbre modification. 

Most parameters used in other modules are related to either frequency 
or amplitude and thus usually have an exponential relationship. However, 

any time that a variable is required to cover a wide range, the exponential 
relationship is useful. 

Standard Voltage Levels 

Signal levels in a voltage-controlled synthesizer, both audio and con- 
trol, are generally kept at a constane amplitude except when amplitude 
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control is actually being performed. The standardization of signal levels from 
transducer and generator modules enhances the compatibility of signals 

throughout the system. 
It has already been alluded to that control voltages range from 0 V to 

10 V in magnitude. The polarity of control voltages is usually positive, 

although some module designs will perform as expected with negative con- 

trol voltages as well. An oscillator, for example, can be coaxed into produc- 
ing subaudible frequencies for vibrato use by giving it negative control 
voltages. Although the accuracy usually deteriorates, it is still quite useful. 
Audio signals are usually 20 V peak to peak in amplitude and swing equally 

negative and positive. 
Actually, these voltage levels and amplitudes are fixed by what is 

convenient to use with IC operational amplifiers. These circuits are usually 
operated from positive and negative 15-V power supplies and start to distort 
severely if signal levels exceed 13 V in magnitude. These levels are consid- 
erably higher than the 1-V rms (2.8 V peak to peak) typically encountered in 
high-fidelity audio systems. One reason is to minimize the effect of noise and 
voltage offsets that may be encountered when a signal travels through a dozen 
or more IC amplifiers before it even leaves the synthesizer. Occasionally, it is 
desirable to cut all signal levels in half to +5 V to allow the use of inexpen- 
sive CMOS switching elements, which are limjted to 7-V power supplies. 

Sometimes the control voltage sensitivity is doubled to compensate, so a 
little more care in minimizing noisc and crror voltages is required. In other 

cases, negative control voltages are used instead to get a reasonable control 
range. 

Some Typical Modules 

Let us now take a closer look at the most often used modules in a 
voltage-controlled system. The descriptions to be given are not those of any 
particular manufacturer's line but are representative of the input, output, 
and control complement on many commercial units. Home-brew synthesizer 
modules can easily have all of the features to be discussed, since the incre- 
mental cost of adding most of them is insignificant compared to the “heart” 
circuitry of the module. Detailed design and circuit descriptions wil] be 
given in Chapter 6, in which module designs will be optimized for computer 
control of many of the operating parameters. 

Voltage-Controlled Oscillator 

The voltage-controlled oscillator, usually abbreviated VCO, is the most 
fundamental module of the system. Usually more VCOs are present than any 
other module type. An actual VCO module has a number of control inputs, 
signal outputs, and mechanical inputs. 
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Typically one might expect to find three frequency control inputs even 
though only one oscillator is to be controlled. In operation, the voltages at 
the control inputs are summed together algebraically into an effective control 
voltage. Thus, if input A is at 5 V, B is at 3 V, and C is at —4 V, then the 

effective control voltage is 5+3—4=4 V. An unused input can be con- 
sidered as a zero voltage contribution. Having multiple inputs often elimi- 
nates the need for a separate mixer module. The use of separate inputs is also 
preferable to output mixing by tying two outputs together because the 
inputs are isolated from each other, thus allowing the mixed outputs to be 
used elsewhere as well. Occasionally, a fourth input with either a 10-V/ 
octave or variable sensitivity is provided. When calculating the effective 
control voltage, the level at this input must be divided by its sensitivity 
before summing with the other control inputs. 

Usually, two mechanical inputs, each of which might have coarse and 

fine adjustment knobs, are associated with the control inputs. One of these in 
effect changes the basis frequency by adding an additional control voltage, 
which may range from —10 V to +10 V. Sometimes a range switch is 
provided in order to extend the low-frequency range down to fractions of a 
hertz. The other control is a volts per octave adjustment with the standard 
value of 1 V/octave being the middle of the range. Besides fine tuning the 
oscillator, this control can make an ordinary keyboard microtonal with 
perhaps 31 notes to the octave. Finally, there may be a sensitivity control for 
the fourth control input mentioned earlier. 

A VCO typically has several different output waveforms. Usually they 
are available simultaneously, all at the same frequency and with a fixed phase 
relationship. Sometimes, however, a tapped panel control is used to adjust a 
single output waveform as a variable mixture of two or three internal 
waveforms. Figure 3-4 shows the four fundamental synthesizer waveforms 
and their associated harmonic spectra. 

A sawtooth wave is 0 named because of its appearance. It has both odd 

and even order harmonics that fall off in amplitude as the reciprocal of the 
harmonic number, which is 6 dB/octave. Its timbre is full-bodied and some- 

what bright. At low frequencies, it does indeed sound “sawey.” 
The triangle wave resembles the sawtooth in appearance but has a quite 

different spectram. Only odd order harmonics are present and their 
amplitude falls off as the square of the harmonic number or 12 dB/foctave. 

The timbre of the triangle wave is subdued and mellow and somewhat 
hollow. The mellowness is due to weak upper harmonics, and the hollowness 
is due to the exclusively odd harmonic spectrum. 

The exact spectral characteristics of the rectangular wave depends on its 
duty cycle. The duty cycle is the ratio of the time spent in the high state 
divded by the overall period. Spectra are shown for a 50% duty cycle and a 
10% duty cycle. Note that in the 50% case, which is called a square wave, 
only odd order harmonics are present and they decrease at 6 dB/octave. The 
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Fig. 3-4. Standard voltage-controlled oscillator waveforms. (A) Sawtooth. (B) 
Triangle. (C) Rectangle 50%. (D) Rectangle 10%. (E) Sine. 

timbre is bright, very hollow, and sounds much like a kazoo in the middle 

frequencies. The 10% wave has a spectrum with considerable energy in the 
high-frequency harmonics. The spectral envelope resembles that of a comb 

filter somewhat, but after the first couple of peaks, decreases at an average 
rate of 6 dB/octave. The timbre is quite buzzy at low frequencies and pierc- 
ingly bright at middle and high frequencies. Duty cycles around 25 to 30% 
have a timbre that greatly resembles a sawtooth wave, although the indi- 
vidual harmonics are quite different. Many VCO modules have a control 
voltage input that determines the duty cycle of the rectangular wave. Others 

may just have a mechanical control to vary the duty cycle or sometimes a 
fixed 50% wave is all that is available. 
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The last waveform is a sine wave whose characteristics need not be 
reiterated. Generally, the actual oscillator portion of a VCO genetates one of 
these waveforms and the others are derived from it by use of simple nonlinear 
circuits. The most popular type of oscillator inherently produces a very 
precise sawtooth wave with the ramp portion linear to within a fraction of a 
percent and a very short “flyback” period on the order of a microsecond or 
less. A triangle wave is obtained by taking the absolute value of the sawtooth 
voltage with a full-wave rectifier circuit. Actually, the resulting triangle has 
a little notch during the sawtooth flyback period, but it is usually inaudible. 
The rectangle wave may be derived either from the sawtooth or the triangle 
by use of an infinite clipper circuit. Variations in the duty cycle are accom- 
plished by shifting the clipping threshold away from the zero voltage point. 
The sine wave is, oddly enough, created by passing the triangle wave 
through a “soft clipping” circuit. The circuit rounds the peaks of the triangle 
and produces a sine wave with 0.2 to 2% total harmonic content, quite low 
enough to get the sugary sweet timbre characteristic of sine waves. The 
waveforms are usually sent out at fixed amplitudes such as 10 V positive and 
negative, although it is conceivable that output level controls might be 
provided. 

Voltage-Controlled Amplifier 

A voltage-controlled amplifier, abbreviated VCA, in many respects 
resembles the VCO in the way that control inputs are handled. However, 
since it is a modifier module, it has signal inputs. Usually, several signal 
inputs are provided. Depending on the sophistication (and expense) of the 

module, the signals may either be added together in equal proportions, have 
a mechanical gain control to determine the contribution of each input, or 
really be equivalent to several VCAs and have a control voltage determine the 

gain of each signal input. The second-mentioned case with front panel gain 
controls is probably the most common. Occasionally, one of the signal inputs 
may be equipped with a phase inversion switch, which allows harmonic 
cancelling when synchronized, but differently shaped waves are fed in or 
special effects when processing control voltages. In any case, the VCA also 

functions as a mixer, since several signals may be combined into one. Mixing 

is the same as algebraic summation so if control voltages are processed with 

the VCA, they will add up just like the control voltage input circuitry of the 
VCco. 

The control input arrangement is similar co that of the VCO. Often 
fewer control inputs are summed together, since elaborate multisource mod- 
ulation of amplitude is less common. A decibels per volt panel control can be 
expected as well as an overall gain control. The latter is often inserted in the 
signal path after the signal inputs have been mixed together but before the 
actual VCA circuit. This is done to minimize distortion in the VCA circuit if 
the input levels are unusually high. The VCA signal output is quite 
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Fig. 3-5. Common voltage-controlled filter response shapes. (A) Low Q factor 
(1.5). (B) High Q factor (10). 

straightforward with one or two provided. If two are present, they are 
independent and the second is often the inverse of the first. 

Voltage-Controlled Filter 

The voltage-controlled filter (VCF) is the most complex and costly 
“common” module in the synthesizer. One is indispensable but more than 
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two is rare in the smaller systems. Voleage-controlled filters of adequate 
performance are a recent development, and there is still considerable room for 
improvement. 

The signal inputs and controls are similar to those of the VCA, al- 
though there may be only one or two provided. There are usually several 
signal outputs, however, each corresponding to a different filter mode. The 
most popular filtering circuit simultaneously generates a low-pass, high- 

pass, and bandpass output from a single input. A band-reject output may 
also be provided at very little additional cost. Sometimes the multiple out- 
puts are applied to a tapped potentiometer, and the user selects a mixture of 
these filtering functions to be sent to a single output. 

Although there are multiple outputs, there is only one frequency 
parameter. Under the proper operating conditions (low Q factor) the low-pass 
and high-pass —3-dB frequencies and the center frequencies of the bandpass 
and band-reject outputs are all the same. At higher Qs, the low-pass and 
high-pass filtering functions undergo a phenomenon called corner peaking, 
which is illustrated in Fig. 3-5. At very high Qs, the corner peaking be- 
comes excessive, and the audible filtering effect of low-pass, bandpass, and 
high-pass outputs becomes similar. The notch output under these conditions 
becomes so narrow that its effect on the sound is hardly noticeable. 

Since the Q factor has such an important effect, it must be variable. The 
most common configuration is a single panel control for Q. It is desirable, 
however, to have a voltage-controlled Q probably with an exponential rela- 

tionship, since the useful range for Q is from 0.5 to several hundred at least. 
One common imperfection in existing filters is that high Q factors lead to 
instability and may even cause the filter to break into intermittent oscilla- 
tion. If this was not such a problem, Qs up in the thousands would be useful 
for generating slowly decaying ringing sounds in response to a short input 
pulse. 

Normally, the frequency control inputs are straightforward and essen- 
tially identical to the frequency control inputs on the VCO. However, there 

is an interaction between frequency and Q that must be considered. Taking 
the bandpass output as an example, there are two things that may happen 

when the center frequency is varied. In a constant Q filter, the Q factor 
remains constant as center frequency is changed. This is desirable if one is 
filtering white noise to give it a sense of pitch, since the same degree of 

“‘pitchedness” will be retained regardless of the center frequency. However, if 
the filter is used to create ringing sounds, the ringing time will be much 
longer at lower frequencies than it will be at high frequencies. This is because 
Q is really related to the rate of ringing decay in terms of number of cycles 
rather than seconds. A constant bandwidth filter actually has a Q that is 
proportional to center frequency. Thus, if the bandwidth is sec to 100 Hz 
and the center frequency to 300 Hz, the effective Q is low, but if the center 
frequency is 5 kHz, the 100-Hz bandwidth represents a relatively high Q. 
Although there are applications for both types of frequency control, most 
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VCO modules ate constant Q. The ideal case would have two sets of fre- 

quency control inputs, one set with constant Q response, and the other set 

with constant bandwidth response. 
From the response curves in Fig. 3—5 it is apparent that the cutoff 

slopes of the filter responses are essentially constant regardless of Q once the 
attenuation reaches 6 dB or so. Steeper slopes are possible by cascading filters 
and driving each member of the cascade with the same control voltage. 
However, there is a growing interest in variable-slope filters, preferably 
voltage-controlled variable slope. The reason is that detailed analysis of 
mechanical instruments, particularly the trumpet, reveals that the changes in 

spectrum caused by changes in emphasis closely approximate the effect of a 
filter with fixed cutoff frequency but variable slope. Actually, implementing 
such a filter turns out to be a nontrivial task. In particular, variable mixing of 
the intermediate outputs of a cascade of ordinary filters does not work very 
well because of phase shifts through the individual filters. Reasonable ap- 
proximations are possible, however, if suitable phase correctors are used. 

Clippers 

Although the VCF is the primary spectrum modification device in the 
synthesizer, occasionally clipping and other nonlinear waveshaping functions 
are integrated into a module. About the simplest useful setup would be a 
sharp clipper with upper and lower thresholds variable by mcans of pancl 
controls or control voltages. A somewhat more flexible circuit would allow 
independent gain for positive and negative portions of the waveform and 
optional inversion of the negative portion. A very general nonlinear 

waveshaping module might have a dozen or more panel controls that to- 

gether specify an arbitrary transfer function as a multisegment approximation 
using straight line segments. The effects available with nonlinear shaping 

devices generaily cannot be duplicated with filters, but they are not as 
dramatic either. Thus, nonlinear shapers are usually found only on larger 
synthesizers. 

Envelope Generators 

The modules discussed so far can generate just about any steady or 
repetitively changing sound that can be desired. However, in order to even 
synthesize ordinary musical nores, a source of control voltages shaped like a 
common amplitude envelope is needed. The envelope generator module is 
specifically designed to perform this function. 

A simple envelope generator produces the general shape shown in Fig. 
3-6 in response to trigger and gate digital control inputs. Note that the 
envelope voltage output is zero under quiescent conditions. When the gate 
rises, the envelope rises toward a steady-state value during the attack period. 
The slope and thus the duration of the attack are usually determined by a 
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Fig. 3-6. Typical envelope generator outputs 

mechanical control. As long as the gate is held high, the envelope remains in 
its steady state. When the gate turns off, the envelope makes a decay transi- 
tion back toward zero. Again, the decay period is adjustable with a panel 
control. Note that the trigger signal is not really needed, since it has no 

influence on the envelope output. Such a simplified envelope generator is 

called an attack—release (AR) generator. 
A more sophisticated envelope generator is the attack—decay—sustain— 

release (ADSR) type. Four parameters define its shape. The slope of the 
initial attack and the final decay are adjustable as with the AR type. How- 
ever, the initial attack overshoots above the steady-state sustain level. Thus, 

the additional parameters are the amount of overshoot and the duration of the 

initial decay from the overshoot level to the sustain level. Note that the 

trigger pulse can reinitiate the overshoot cycle even if the gate remains high. 
The ADSR shape is preferred, since the initial overshoot resembles the action 
of many musical instrument types. Also, because of its retriggering capability, 
rapidly repeated notes at the same frequency are readily distinguished. If 
desired, the controls can be set to simulate the simpler AR shape. Although 

the transitions are shown as linear ramps, typical circuit implementations of 

envelope generators usually result in a decaying exponential shape. 

Music Keyboard 

The most common manual input to a synthesizer is through a standard 

organ-like keyboard with a three- to five-octave range. Outputs from the 
keyboard are a control voltage and trigger and gate digital signals. The 
control voltage output always corresponds to the key last pressed. Depending 

on the design, the output voltage with two keys pressed is equal to che lowest 
key, the highest key, or some intermediate value. The trigger pulse is 
generated on the initial depression of a key, and the gate is on as long as a key 
is pressed. 

Most keyboards have three mechanical controls. One is for adjusting 

volts per octave and another is for adjusting the voltage level of the lowest 
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key (basis voltage). Although these are redundant with VCO controls, it is 
very convenient to have them right at the keyboard itself particularly if ic 
feeds several VCOs. The third control is for portamento. When rotated away 

from its zero position, the change in control voltage output from one level to 
another when a new key is pressed slows down, resulting in a pitch glide 
from the first note to the second. 

Recently, a somewhat more sophisticated keyboard was developed that 
allows two keys to be pressed simultaneously. Two sets of outputs are pro- 
vided, one for the lowest key pressed and the other for the highest key. When 
properly scored and played with care, two independent voices with different 
characteristics may be played on one keyboard. Another simple and often 
employed scheme is to simply use several keyboards such as with theater 
organs. Digital scanning techniques have also been applied to synthesizer 
keyboard design such that truly polyphonic playing is possible. One decision 
that has to be made in the design of such a keyboard is the assignment of keys 
to control voltage—trigger—gate output groups. If the voices controlled by the 
keyboard are not all the same, the assignment of voices to keys may vary 
greatly according to playing technique or even random chance. Digital 

keyboards will be studied in greater detail in Chapter 9. 

Other Modules 

The modules that have been described so far are those that can be 
expected to be present in any synthesizer, often in multiples. There are also a 
number of specialized module types for special effects, to perform functions 
normally requiring a number of interconnected modules, and “utility” ver- 
sions of the standard modules already discussed. Utility modules, particulary 
VCOs and VCAs, are less flexible, less accurate, and therefore quite a bit less 

expensive than their standard counterparts. They aré used freely in complex 
patches where their characteristics are adequate for the task. 

Sequencer 

One specialized module that adds a measure of automation to the 
synthesis process is called a sequencer. Interesting repetitive effects can be 
created with one or more VCOs set to their very-low-frequency range and 
used as sources of control voltages. However, if a specific sequence such as a 
short melody is desired, it is not normally obvious how a group of oscillators 
might be set up to generate it. A sequencer allows the user to directly 
determine and easily modify specific, arbitrary sequences of control voltages. 

The sequencer is usually designed to simulate a keyboard; thus, it has 
trigger and gate outputs as well as the control voltage output. The simplest 
sequencers might have 16 potentiometer knobs and a “speed” control that 
determines the frequency of a clock oscillator. Each cycle of the clock causes a 
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seanning circuit co look at the next potentiometer in sequence and generate a 
control voltage according to its setting. Also trigger and gate pulses would 
be generated. The final result, if the sequencer is connected to a VCO, is that 

a sequence of 16 notes of uniform duration would be generated and repeated. 
Usually there is some way to short cycle the unit in order to produce shorter 

sequences. Frequently, the speed control has sufficient range such that the 
voltage sequence output repeats fast enough to become an audio signal. 
Thus, the sequencer becomes an arbitrary waveform generator for simple 
waveforms. 

‘The next step up consists of adding a duration control under each pitch 
control so that irregular rhythms can be easily handled. From this point 
sequencers can get increasingly sophisticated all the way up to computer 

systems and music languages. Digital sequencers can easily have up to 256 
and more steps in the sequence. Sequences may be entered and edited with a 
small digital keyboard much like those found on calculators. Sometimes a 

sequencer may act as a memory unit on a music keyboard allowing the user to 
“play” in the sequence and then edit it in memory. Microprocessor applica- 
tion as a ““supersequencer” is discussed in Chapter 11. 

Sample-and-Hold Module 

One fairly simple device that in many ways sounds like a sequencer is a 
sample-and-hold module. Like the sequencer, it has an internal clock oscil- 

lator and possibly provisions for an external oscillator. It also has a signal 
input and an output. Every cycle of the clock causes the circuit to “look” at 
the input voltage at that instant and remember it. The remembered voltage 
appears at the output as a constant value until the next clock cycle. If the 
input waveform were a slow sawtooth, for example, the output would resem- 
ble a staircase with the number of steps dependent on the ratio of clock 
frequency to input frequency. If the output voltage were connected to a 
VCO, the result would be a scale of individual pitches. More complex 

waveforms would produce sequences of notes that would either repeat, 
evolve, or be seemingly random depending on the exact ratio of sampling 

(clock) frequency to input signal frequency. 

White Noise Generator 

The white noise generator module is perhaps the simplest in the sys- 

tem, at least on the front panel. Usually there is a single output jack for che 
white noise signal. Occasionally, there might be a “pink” noise jack also. 
The difference between the two is that white noise has a constant spectral 
power per hertz of bandwidth, while pink noise has constant power per octave. 
Thus, pink noise actually sounds whiter (beteer balance between low- and 
high-frequency components) because of the exponential pitch response of the 
ear. 
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Specialized Modifiers 

Other specialized modules are based on the sound modification tech- 

niques described in Chapter 2. Reverberation simulators, usually of the 

spring type, are quite popular for enlarging the synthesized sound. Generally, 
the only control present determines the mixture of straight and reverberated 
sound. Ring modulators are also popular because of their low cost and 
distinctive effect. Typically, there are just two signal inputs with level 
control knobs and a single output. Frequency shifters are found rarely due to 
their very high cost and specialized application. 

One “module” (it is usually a free-standing unit) that has recently 

become available is a digital implementation of the speed-changing tape 
machine described earlier. In one of its modes, it has the ability to change the 
frequency of sounds passing through it without altering the harmonic struc- 
ture or overall speed of the sound. When connected in a feedback mode, a 
single note comes out as an ascending or descending series of notes. 

A Typical Patch 

Although the evolution of a relatively simple patch was described 

earlier, let us look at how a more complex patch might be designed, given a 

particular set of requirements. Throughout the discussion, the propor- 
tionality and symmetry properties of exponential voltage-controlled synthesis 
will be emphasized. ‘Vhis will also be used as an opportunity to introduce the 

technique of FM timbre synthesis, a simple yet powerful method of produc- 
ing quite a wide variety of timbres under the control of only two parameters. 

The first step in designing a complex patch, as opposed to fiddling 
around and discovering one, is to develop a physical understanding of the 
desired effect. In this case, we are trying to develop a timbre (spectrum) 
modification technique that can produce as wide a variety of effects as possi- 
ble under the control of a minimum number of parameters. In Chapter 1, 
while describing frequency modulation for the production of vibrato, it 
was mentioned chat if the vibrato frequency became high enough and the 
vibrato depth (percent modulation) became great enough, the unmodulated 
sound would be completely altered into metallic clangs and breaking glass. 
However, there are numerous intermediate conditions that produce useful 
musical tones. Since there are only two parameters tnvolved, the modulation 
frequency and amplitude, and since the range of effects is so great, the 
situation bears further investigation. 

Frequency Modulation Terminology 

Before continuing, some terms must be defined to avoid confusion. 

Two signals are involved, the modulating signal, which was the vibrato 
waveform, and the modulated signal, which is the tone being modified. The 
following terms are really defined only if the modulating signal waveform 
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and the modulated signal waveform are both sine waves and a /inear VCO (or 

linear input to an exponential VCO) is used for the modulation. The modulat- 
ing frequency is the frequency of the modulating signal. The deviation is the 
magnitude of the difference between the modulated signal’s unmodulated 
frequency (center frequency) and the highest or lowest instantaneous fre- 
quency it attains when frequency modulation is performed. Thus, the devia- 
tion is proportional to the amplitude of the modulating signal. Finally, the 

modulation index is the ratio of the deviation to the modulating frequency. 
Thus, the modulation index is also proportional to the modulating signal’s 

amplitude when the modulating signal's frequency is constant. 
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Fig. 3-7. Action of wide-deviation frequency modulation. (A) Unmodulated 

1-kHz carrier. (B) 100-Hz modulation, 200-Hz deviation. 
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Perhaps a concrete example will help to clarify these terms. Figure 
3—7A shows an unmodulated signal at 1,000 Hz and its spectrum, which, of 
course, consists of a single line, at 1 kHz. In Fig. 3-7B, a modulating signal 

of 100 Hz has been imposed, and its amplitude is such that the original 
unmedulated signal now swings between 800 Hz and 1,200 Hz for a devia- 
tion of 200 Hz. Now, one would probably expect the spectrum to spread out 
and fill the area between 800 Hz and 1,200 Hz, but as the spectral plot 
shows, such is not the case. Instead, individual sine wave component lines 
have been added, some of which are even outside of the 800-Hz to 1,200-Hz 

range. These added frequencies are often called sideband frequencies, a term 
borrowed from radio transmission jargon. Actually, a close look at the mod- 
ulated signal’s waveform reveals that its shape repeats exactly 100 times/sec. 

So according to Fourier's theorem, component frequencies of this waveform 
can only exist at multiples of 100 Hz as the spectral plot indeed shows. To 
the ear, the result is a 100-Hz tone with a rather thin, horn-like timbre. 

In the situation just described, the modulating frequency is 100 Hz, 
the deviation is 200 Hz, and the modulation index, therefore, is 200 Hz/100 

Hz = 2. Figure 3-7C shows the result of increasing the amplitude of the 
modulating signal such that the modulation index increases to 4. Additional 
spectrum lines are visible, and those that were present with the lower index 
have changed somewhat in amplitude. The audible pitch is still 100 Hz due 
to the continued harmonic spacing of 100 Hz, but the timbre is thicker, due 
to more low-frequency content, and less horn-like due to greater spreading of 
the spectrum. 

A continued increase in the modulation index causes the formation of 
an even wider spectrum to the point that the lower sideband frequencies try 
to go negative. What actually happens, though, is that they are reflected 
back into the positive frequency domain where they mix with other sideband 
frequencies already present. The resulting amplitude of a mixed sideband 
frequency (also a harmonic in this case) is dependent on the exact phase 
between the modulating frequency and the modulated frequency. 

Effect of Deep Frequency Modulation 

If the modulating frequency is increased to 200 Hz and its amplitude is 
adjusted so that the modulation index is equal to 2, then the waveform and 
spectrum of Fig. 3~7D results. Note that the rclative amplitudes of all of the 
spectral components are the same as they were in Fig. 3-7B except that they 

are spread out to 200 Hz spacing. The ear now interprets this as a 200-Hz 

tone. Thus, it seems that the apparent pitch of the trequency-modulated tone 

is equal to the modulating frequency. Before jumping to this conclusion, 

however, consider what happens if the modulating frequency is zor a submul- 

tiple of the modulated frequency, such as 171 Hz. The result in Fig. 3-7E 

shows the expected 171-Hz spacing between the sideband components, but 

these frequencies are not harmonics of a common fundamental unless 1 Hz is 
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Fig. 3-8. Bessel functions plotted in decibels 

considered a fundamental. The resulting inharmonic tone is still pleasant to 
hear but the timbre is bell-like rather than horn-like. With larger modula- 
tion indices, sideband reflection, and nonsubmultiple modulating frequen- 
cies, a reflected sideband would typically not fall on the same frequency as a 
nonreflected sideband. The result is a proliferation of spectrum lines and the 
shattering glass sound mentioned earlier. 

It should be apparent from the examples in Fig. 3—7 that the relation 
between modulation index and sideband amplitudes is not a simple one. It is 
predictable, however, with the aid of Bessel functions, some of which are 

plotted in Fig. 3-8. If one wished to determine the amplitudes of the 
sidebands of the Fig. 3-7B example, the first step would be to find the 
horizontal position corresponding to the modulation index of 2.0. The Jo 
curve at that position is the amplitude of the zeroth sideband, which is the 
1,000-Hz center frequency, J1 corresponds to the first sideband pair at 900 
Hz and 1,100 Hz, and so forth. Note that these amplitudes are with respect 
to the unmodulated 1,000-Hz signal, which is given a reference amplitude of 
0 dB. 

Thus, if the modulating and modulated frequencies remain constant 
and the modulation index changes, the spectrum undergoes a complex evolu- 
tion. This can be a very useful musical effect and is called dynamic depth FM 
timbre synthesis. With a voltage-controlled synthesizer, it is an easy tech- 

nigue to apply and produces dramatic effects with relatively few synthesizer 
modules. 
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Patch for Dynamic Depth FM 

Figure 3-9 shows a possible patch for dynamic depth FM. VCO 1 is the 
primary VCO, which provides the modulated signal. VCO 2 supplies the 
modulating signal. VCO 1 is modulated by VCO 2 through an auxiliary 
linear contral input. This is necessary for the preceding analysis to be valid. 

Note that the main frequency control voltage is connected to both VCOs. 
Since these control inputs are exponential, the “ratio” voltage level deter- 

mines the ratio between the modulated signal’s center frequency and the 
modulating frequency. If, for example, it was set co 2 V, then VCO 1 
(anmodulated) would track VCO 2, but two octaves higher. The modulation 

depth is set by a VCA controlled by an envelope generator. 
Thus, if chis setup were connected to a keyboard, for example, the 

keyboard output voltage would control the frequency of both oscillators, but 
VCO 1 would always be four times higher in frequency than VCO 2. The 
apparent pitch of the generated tones would be equal to the frequency of 
VCO 2. The trigger and gate signals from the keyboard would be connected 
to the envelope generator, which, in curn, produces the control voltage that 

derermines the modulation index, and thus the spectrum of the tone. For 

producing actual notes, the output of VCO 1 would at the very least pass 
through another VCA controlled by the same or another envelope generator 
in order to apply an amplitude envelope. 

Changing the ratio voltage also affects the modulation index and, if not 
set for a simple ratio, resules in inharmonic spectra. This voltage could even 
be set so that the modulated signal's center frequency is ées than the 
modulating frequency. One point should be kept in mind as the parameters 
in the system are varied. With the linear input to VCO 1, it is possible to 

specify a megative instantaneous frequency. The most popular VCO designs 
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will simply cease oscillating under this condition and thus invalidate the 
analysis as well as creating a suddenly harsh sound. Designs are possible, 
however, that will oscillate in opposite phase if the instantaneous frequency is 
negative. With this type of oscillator, the analysis holds and there need be no 
concern about negative frequencies. 



4 
Direct Computer 

Synthesis Methods 

Although voltage-controlled synthesis methods are very flexible and very 
popular, they are not the last word. Even though much work with direct 
computer synthesis predates widespread application of the voltage-control 
concept, it will be described here as an alternative to voltage control. As a 
matter of fact, the earliest extensive direct computer synthesis program 
actually used imaginary “modules” that corresponded closely to the voltage- 
controlled modules described in Chapter 3. 

Before starting, it should be mentioned that the techniques about to be 
described do not include the timed program loop method utilized by numer 

ous computer “music” demonstration programs. These are nearly always 

monophonic (one note at a time) and utilize rectangular waves exclusively. 
Some even rely on the pickup of electrical noise from the computer on an AM 
radio or the sound of line printer hammers striking paper to produce “tones.” 
Polyphonic timed loop programs, usually for three voices, do exist, but their 
output is narrow pulses, which tends to sound like a reed organ played 

through an acoustical phonograph! The musical value of these programs, if 

any, is limited to teaching pitch and rhythm to young children. 

Limitations of Voltage Control 

Let us first describe some of the very real limitations of voltage- 
controlled equipment and techniques. Accuracy is one problem. Although it 
has been shown that extreme accuracy in the final result may be undesirable, 
accuracy in the intermediate stages, which may then be degraded in a con- 
trolled manner, is very desirable. For example, in the FM patch just de- 
scribed, if the spectrum is harmonic and frequency components are reflected, 
they mix with unreflected frequency components, and the resulting 
amplitude is a function of the phase relationship between modulating and 
modulated signals. However, since the oscillators are not exact, they will not 
be at exactly the frequency ratio desired. The result is that the phase between 
the two is drifting continuously, and thus the spectrum is changing continu- 

101 
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ously when it should be standing still. Although this shifting spectrum may 

often be desirable, it would be nice if the speed and degree of shift could be 
controlled rather than left to chance. Even if the frequency ratio were exact, 

there is generally no way to control the actual phase with voltage-controlled 
equipment. If nothing else, precise control of impreciseness is useful for 
cteating contrast among mechanical, rich, and sloppy effects. 

Historically, voltage-controlled oscillators and filters have had the most 

serious accuracy problems. The reason is that the exponential converters used 

are not ideal devices. They are highly sensitive to temperature, and “‘parasit- 
ic” physical defects also reduce their accuracy at the extremes of the audio 

range. Tremendous improvements in accuracy and stability have been made 
over the years, however, so that today it is possible to make a VCO that is 
adequately accurate at a reasonable cost. However, even small improvements 
beyond this come at a great increase in cost and complexity. Voltage- 
controlled amplifiers had been Jess of a problem in the past, but the complex 
patches of today routinely use VCAs to process control voltages in the fre- 
quency control paths of patches. The result is that inaccuracy in the VCA 
will translate into frequency errors that are easily heard. 

One of the characteristics of direct computer synthesis is that extreme 
accuracy is inherent. The “standard precision” arithmetic in most computer 
systems is good to about seven decimal digits or one part in 10 million. If 

improved accuracy is desired, the “cost” of obtaining it is fairly small. Thus, 
the question of accuracy in the control of sound parameters generally need 
not even be raised. 

Simultaneous Sounds 

The maximum number of simultaneous sounds available is another 
voltage-controlled synthesizer limitation. One aspect of this limitation is 
that a fairly large number of modules is needed to generate and control a 
single sound. To even simulate a small chamber orchestra all at once with a 
synthesizer would be out of the question, The other aspect is the limitation of 
the performer in controlling a number of sounds with a number of parameters 
each. Thus, almost all synthesizer music is produced with the aid of a 
multitrack tape recorder. Only one part or voice of the music is performed 
and recorded at a time, and the parts are later combined by mixing the tracks 
together. 

The multitrack recorder would seem to be a complete solution to the 
simultaneous sound problem with the only disadvantage being that the 
synthesis process is taken out of real time. However, this is not the case. As a 
simple example, consider a rapid run (fast series of notes) on an instrument 
with che amplitude envelope characteristics of a piano. Assuming initial 
silence, the envelope of the first note struck would rise rapidly and then fall 
slowly. Shortly afterward, the second note would be struck, burt, since the 
first note has not yet died away, there are now two simultaneous sounds. The 
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third note would increase the number to three and so forth. At some point, 
the first note would be so faint that it could be ignored, but it is not clear 

exactly how many simultaneous sounds were built up, although it is certainly 
not more than the number of notes in the run. 

A similar run on a synthesizer keyboard would create a very different 
result even if the timbre and envelope of a single note was identical co the 
previous instrument. In this case, the first note struck would start an en- 
velope identical to the previous case, but, when the second note was struck, 

the pitch of the tone would immediately be updated to the second note’s 
frequency and a new envelope segment would be started. Thus, simultaneous 
sounds are not created, which should be obvious since only one tone oscillator 
was involved. 

Theoretically, this could be corrected with the multitrack tape recorder 
by recording each note of the run on a separate track, although such a 
procedure would not really be practical. The problem could also be partially 
solved by using a digital scanning polyphonic keyboard and enough modules 
to create up to, say, eight simultaneous independent tones. Even if in the 
ideal case there were more than eight simultaneous sounds, the effect of 

abruptly terminating the first when seven others are still sounding would 
probably go unnoticed. The important point is that such a need for latge 
numbers of simultaneous sounds may occur only rarely in a composition. 
Either all of the equipment or effort needed for the worst case must be 
available or the problem must be ignored. 

In direct computer synthesis, a virtually unlimited number of simulta- 
neous sounds may be built up when circumstances dictate. The cost of this 
capability is borne only when the event occurs. During other times, when the 

sound is simpler, the ability to handle large numbers of simultaneous sounds 
is free! This applies to other capabilities as well. The effect is like being able 
to rent additional synthesizer modules by the minute from a company with 

an essentially infinite inventory. 

Programmability 

The difficulty in controlling a number of simultaneous sounds to a 
great degree by a single performer is also overcome in direct computer 
synthesis systems. The control problem ts actually one of time: during real- 
time performance, there is simply not enough time available for the per- 

former to attend to very many variables. In the typical direct computer 

system, the control functions are programmed to any degree of detail desired 
and without time constraints. An intricate passage of only 10 sec duration 
may be fussed over for hours to get all the parameter variations right and then 
be immediately followed by a long solo requiring very little effort to specify. 
In a nutshell, the limits of complexity are determined by the imagination 
and patience of the composer and not the equipment or technique of the 

performer. 
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Sequencer modules are one attempt to add a programming capability to 
the conventional voltage-controlled synthesizer, although they typically have 

a small capacity and only control a few variables. However, more sophisti- 

cated sequencers based on microprocessors or minicomputers can extend 
voltage-controlled system programmability to the point of rivaling direct 

computer techniques. 
Experimentation in new sound generation and modification techniques is 

much easict in a direct computer synthesis system than designing, building, 
and troubleshooting precision electronic circuits. A “module” or processing 
clement is nothing more than a subprogram in the direct computer systhesis 

system. A severe modification may amount to nothing more than typing ina 
few dozen words of program code. A disastrous error requiring complete 
redesign of the process wastes only the #me spent on the faulty design, not 

numerous precision electronic components. Also, many of the modification 

techniques now under development are simply not possible with conven- 

tional analog techniques. 

Direct Computer Synthesis Problems 

Lest the preceding seem as if direct computer synthesis is faultless, let 
us look at some of its limitations given the present state of the art. 

Direct computer synthesis is presently not a real-time technique except 
in limited circumstances with fast computers. This means that once the 
sound has been specified and programmed, the computer must “crunch” on 
it for awhile before the sound is actually heard. The amount of time involved 
depends on a great many factors. Obviously, computer speed has a great 
influence, since a large campus mainframe may easily be 100 times faster 
than a personal microcomputer. Sound complexity is another important 
factor with the more complex sounds taking a greater amount of time. 
Finally, operational methods of the computer make a big difference. When 
using a campus mainframe, the delay berween program submission and 
resulting sound can be many times greater than the actual computation time 
because other people are using the machine. A personal system, on the other 

hand, does not have this problem. The net result is that the time delay can 
actually reach 1,000 times the duration of the sound being synthesized, 
although common values are 10 to 100 times. 

Programmability is simultaneously an advantage and a disadvantage of 
direct computer synthesis. Many people see it as a disadvantage because the 
“immediacy” of direct experimentation and improvisation is not present. 
Instead, programmability requires considerable preplanning and foreknowl- 
edge of the audible effects of various specifications and variations. A related 
problem is an unwillingness to learn the basic programming concepts re- 
quired to effectively use the technology. 
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Most people, including musicians and many engineers, view the com- 

puter as a very complex device that is equally complex to use. In particular, a 
complete lab manual for a large voltage-controlled synthesizer is usually not 
very thick and covers most aspects of usage from how to turn it on to the 

most advanced techniques possible with the equipment. In contrast, a man- 
ual for a particular direct synthesis program may not be any thicker but 

contains little or no background material and does not attempt to explore the 
limits of the program. If the potential user asks for applicable background 

material, he may be handed a hundred pounds of books and manuals, or 
worse yet, told that nothing suitable exists. 

A very practical difficulty with direct computer synthesis is that a 
critical mass with respect to expenditures of money for equipment and time 
for programming exists before “significant” results can be obtained. Signifi- 
cant here means musically useful output as opposed to trite little demon- 
strations. With voltage-controlled techniques and some imagination, only a 
few hundred dollars worth of equipment and a stereo tape recorder are needed 
to get a good start. Reasonable sounding results are obtained almost from the 
beginning and improve from there. A computer system capable of equivalent 
results with a direct synthesis program may cost from $4,000 on up. At this 
time, a considerable amount of programming effort is also necessary to get 
the “basic system” running. It should be noted, however, that once the 
critical mass is reached, the fu// power of direct computer synthesis is available 
with any extra expenditure going toward increased speed and convenience of 

use, 

Overcoming the Problems 

Until now the preceding limitations have severely restricted the use of 
direct computer synthesis, particularly following the commercial introduc- 
tion of voltage-control equipment. However, many of these are now being 
overcome. 

The time factor is being improved substantially through the use of very 
fast logic dedicated to the specific calculations needed for sound synthesis. 
Personal computer systems, used only by the composer himself, eliminate 
waiting time at large computer centers. The increased speed in conjunction 

with improved man—machine interfaces and personal systems now means that 

programmed control of the system can be supplemented with direct, interac- 
tive control. Programmed control is still desirable for the final output, but 

rapid interactive control can also be used for experimentation. The perceived 
complexity of computers in general and programming in particular is being 
overcome by easier to use computer systems and early introduction of pro- 
gramming concepts. It is not unusual for elementary school students to 

become very adept at programming using simplified languages. Hopefully, 
books such as this will take some of the mystery out of the theoretical aspects 
of direct computer synthesis. Even the critical mass problem is decreasing in 
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severity as the performance/price ratio of digital electronics seems to double 
every year. 

These improvements in technology coupled with inherent limitless 
capability would seem to indicate that direct computer synthesis will eventu- 
ally oust all other methods in serious electronic music applications. 

Sound in Digital Form 

Computers deal with numbers and sound consists of continuously vary- 
ing electrical signals. Somehow the two have to be accurately linked together 

in order for direct computer sound synthesis to work at all. Fortunately, this 
is possible with fewer limitations than might be expected. 

The first problem to be solved is how to represent a waveform that can 
wiggle and undulate in a seemingly infinite variety of ways with a finite 

string of numbers having a finite number of digits. Intuitively, one would 
probably suggest dividing the time axis up into a large number of segments, 
each segment being a short enough time so that the waveform does not 
change very much during the segment. The average amplitude of the 
waveform over each segment could then be converted into a number for the 
computer of vice versa. It would seem that the accuracy of the approximation 
could be made as good as desired by making the segments small enough. 

Let us take an example and see how small these segments must be for 
high-fidelity sound-to-numbers and numbers-to-sound conversion. Figure 

4-1A shows a 1-kHz sine wave that has been chopped into 100 segments per 

cycle of the wave. The segment time is thus 10 usec. Assuming that the 
desire is to generate the sine wave given the string of 100 numbers repeated 
continously, the problem is to determine how good it will be. 

Digital-to-Analog Converter 

First, however, a device to do the conversion is needed. Such a device is 

called a digétal-to-analog converter, which is usually abbreviated DAC. Such a 
device accepts numbers one at a time from a computer or other digital source 
and generates one voltage pulse per number with a height proportional to the 
number. Thus, a DAC that is calibrated in volts would give a voltage pulse 

2.758 V in amplitude if it received a numerical input of 2.758. The width of 
the pulses is constant but varies with the type of DAC. For now, the pulse 
width will be assumed to be very small compared to the spacing between 
pulses. 

Figure 4-1B shows the output from a DAC fed the 100 numbers 
representing a I-kHz sine wave. As expected, it is a string of very narrow 
pulses spaced at 10-ysec intervals. Each individual pulse or the number it 
represents is called a sample because it gives the waveform amplitude at a 
sample point in time. The frequency of the pulses is called the sample rate and 
in this case it is 100 kHz. The sample rate is almost always constant, 
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approximation fram DAC. (C) Spectrum of B. 



108 MUSICAL APPLICATIONS OF MICROPROCESSORS 

although it is conceivable that changing it to match the current degree of 

change in the waveform might be desirable. 

As was demonstrated earlier, waveform appearances can be deceiving 

when human hearing perception is involved so the spectrum of Fig. 4-1B is 

shown in Fig. 4-1C. The interesting point about the spectrum is what is xot 

present. One would think that distortion components would be spread 

throughout the spectrum at perhaps reduced amplitude compared with the 

desired 1-kHz component, but such is not the case for the 100-dB range 

shown. The first visible extraneous component is very strong but occurs at 99 
kHz, well beyond the range of hearing and audio recording devices. Thus, 

the conclusion is that sampling of the 1-kHz sine wave at a 100-kHz rate is 
more than adequate for its high-fidelity reproduction. 

Proof of Fidelity 

Some skepticism is expected at this point, so an attempt at an informal 
proof will be made. Consider a string of narrow pulses of constant height as 
in Fig. 4-2A. This is an exactly repeating waveform so its spectrum consists 
of harmonics of 100 kHz. Note that at least for the harmonics shown they 
are all of equal amplitude. Since the pulse widths must be finite, however, a 
point is reached at which higher frequency harmonic amplitudes decrease. As 
an aside, note also that a train of narrow pulses is the only waveform whose 

spectrum is the same shape as the waveform itself. 

If this pulse waveform is one input of a balanced modulator and an 

accurate, pure I-kHz sine wave is the other input, the output would be 
exactly the waveform shown previously in Fig. 4-1B. Recall from Chapter 2 
that a balanced modulator is really a multiplier that produces an output that 
is the instantaneous product of the two inputs. Examination of the two input 
waveforms and the output shows this to be true. It should also be recalled 
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Fig. 4-2. Properties of a string of pulses. (A) String of narrow pulses. (B) 
Spectrum of A. 
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that if one input to the balanced modulator is a complex signal and the other 
input is a sine wave, then each component of the spectrum of the complex 
signal is split in half with one-half moving up and the other half moving 
down in frequency an amount equal to the sine wave input’s frequency. This 
in fact is exactly what happened in Fig. 4—1C to produce pairs of components 
at 99 and 101 kHz, 199 and 201 kHz, and so on. The component at 1 kHz is 

due to the fact that the pulse train had a de (zero frequency) component that 
was also split in half. The upper half moved up to 1 kHz and the lower half 
reflected through zero up to 1 kHz. 

If desired, the spectrum of the sampled 1-kHz sine wave can be cleaned 
up with a low-pass filter. It is not very difficult to construct a filter that has 
essentially no effect at 1 kHz but that attenuates 99 kHz and higher frequen- 

cies so much that they can be ignored. If the sampled waveform of Fig. 4-1B 
were passed through such a filter all that would escape through the output 
would be the single 1-kHz frequency component, which would, of course, 
appear on an oscilloscope screen as a pure 1-kHz sine wave. 

VERY SHARP 
LOW-PASS FILTER: 

FREQUENCY (kHz) 

MUCH LESS SHARP 
LOW-PASS FILTER 

io 20 3 40 S80 6 7 8 99 100 II0 

(B) FREQUENCY (kHz) 

Fig. 4-3. Spectrum of sampled audio signals. (A) 50-kHz sample rate. (B) 

60-kHz sample rate. 

Setting the Sample Rate 

Since reproduction of the 1-kHz wave was so satisfactory, how low can 

the sampling frequency be made before the results are unsatisfactory? If, for 

example, the sample rate was lowered to 50 kHz, then the preceding analysis 

would predict a spectrum with a 1-kHz component, 49-kHz component, 

51-kHz, 99-kHz, and so forth. Other than the need for a better filter, the 

situation is just as satisfactory as before. In fact, if a very good low-pass filter 

is available, the sample rate could be as low as a shade above 2 kHz or only a 

little more than two samples per cycle of the sine wave. Obviously, the 
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assumption that the wave did not change very much from sample to sample is 

not necessary. 
Of course, for sound and music a whole spectrum of frequencies must 

be reproducible, not just single sine waves. Fortunately, a sampled arbitrary 
waveform behaves just the same as a sampled sine wave. The spectrum of the 
waveform is reproduced unaltered and then symmetrical pairs of copies 
around each harmonic of the sampling frequency are also introduced. Figure 
4-3 shows the result of a full 20-Hz to 20-kHz audio spectrum sampled at a 
50-kHz rate, Since there is no overlap between the desired spectrum and the 
copies, a low-pass filter can once again be used to eliminate the copies. 

The preceding argument is equally valid for conversion of sound 
waveforms into numbers. The waveform is first sampled with a balanced 
modulator or its equivalent and then the sample pulse amplitudes are mea- 
sured with an analog-to-digital converter (ADC),which is nothing more than 

an ultrafast digital voltmeter, Each sample thus becomes a number that may 

then be processed by the computer. No information about the curves and 
undulations of the waveform is lost provided that the spectrum of the 
waveform has no frequency components above one-half of the sampling rate. 
Unfortunately, some natural sounds do have appreciable energy beyond the 
audible range so a low-pass filter is needed to prevent these high frequencies 
from reaching the sampler and ADC. Since these frequency components are 
beyond the audible range anyway, the filter does not audibly affect the 
sound. If signal frequencies higher than half the sample rate are allowed to 

enter the sampler, their offspring in the copies will overlap the original 
spectrum and will cause'distortion. Such a situation is termed aliasing and 
the resulting distortion is called alias distortion. 

Any Sound Can Be Synthesized 

Figure 4-4 shows a block diagram of a complete audio-to-digital and 
back to audio again conversion system. If the two low-pass filters are 
matched and have infinite attenuation beyond one-half of the sample rate, 
the waveforms at points A and B are exactly alike! Since the waveform at 

point A is not audibly different from the input, this is truly a high-fidelity 
system. The computer could also be programmed to supply its own stream of 
numbers to the DAC, and it therefore follows chat the computer can produce 
any sound. Note also that the system has no low-trequency limitation, thus 
allowing signals down to de to be reproduced. 
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Fig. 4-4. Digital audio system. 
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The foregoing has all been an application of Nyquist’s theorem, which 
states in mathematical terms that an ADC or a DAC can handle signal 
frequencies from zero up to a little less than one-half the sample rate with 
absolutely no distortion due to the sampling process whatsoever. The low- 
pass filters employed to separate the desired signal from the spectrum copies 
determine how close to the theoretical one-half limit one can get. The main 

requirement of the filter is that it attenuate spurious signals above one-half 
the sample rate enough to be ignored while leaving desired signals below 
one-half the sample rate unaltered. For high-fidelity applications, this means 
that very little attenuation of frequencies up to 20 kHz is allowed and that 50 
dB or more attenuation above 30 kHz is desirable, assuming a 50-kHz 
sample rate. A filter that sharp is fairly difficult to construct but is in the 
realm of practicality. Thus, a rule of thumb is that the sample rate should be 
2.5 or more times the maximum signal frequency of interest with the larger 

figures allowing simpler filters to be used. This is shown in Fig. 4-3B, in 
which an increase in sample rate from 50 kHz to 60 kHz has reduced the 
filter cutoff slope requirement by half! 

The sample rate may also be reduced for lower fidelity applications. 
Broadcast FM quality may be obtained at 37.5 kHz and ordinary AM radio 
quality (which can be surprisingly good through decent equipment) could be 
done at 15 kHz to 20 kHz. The advantage of lower sample rates, of course, is 
a reduction in the number of samples that must be computed for a given 
duration of sound. ‘ 

Signal-to-Noise Ratio 

Of course, frequency response is not the only measure of sound quality. 
Background noise is actually a much worse problem with standard audio 
equipment. Figure 4-1C clearly indicated that the sampling process itself 

did not introduce any background noise. However, when the samples are in 
numerical form, only a finite number of digits is available to represent them, 
and this limitation does indeed introduce noise. Such roundoff error is 
termed quantization error because a sample pulse, which can be any amplitude 
whatsoever, has been quantized to the nearest available numerical representa- 
tion. Background noise due to quantization error is termed quantization 
noise. 

An actual ADC or DAC usually has a definite maximum signal 
amplicude thar it can handle. A typical value is from — 10 to +10 V. Inputs 
to an ADC beyond this range are effectively clipped, and numerical inputs to 
a DAC beyond this range are converted into a value that fits. The 20-V range 
is then broken up into a large number of gvantization levels, which is usually a 
power of two, since DACs and ADCs are typically binary devices. The 
number of quantization levels generally ranges from 256 to 65,536, which 
corresponds to 2° and 2!© or 8 and 16 bits, respectively. 
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Let us try to estimate the amount of background noise present in a 
12-bit (4,096 level) DAC output so that the number of levels necessary for 
high-fidelity reproduction can be determined. Twenty volts divided by 4,096 
equals 4.88 mV per level. Thus, the 500th level would be 2.44141 V and 
would have to be used for all desired valtages between 2.43895 and 2.44384 
V. It is reasonable to assume that if the desired voltage level falls in this 
range, it is equally likely to be anywhere in the range and the same should be 
true for any other quantization level. Thus, the average error (difference 
between desired level and the nearest quantization level) is one-quarter of the 
difference between quantization levels. This works out to an average error 

amplitude of 1.22 mV. The maximum signal amplitude without distortion 
is 10 V. Therefore, the maximum signal-to-noise ratio is 10/ 
0.00122 = 8,192. Expressed in decibels, this is about 78 dB. Actually, due 

to an oversimplified analysis, the average noise amplitude is really one-third 
of the quantization interval; thus, a more accurate figure is 76 dB. 

If the number of quantization levels were doubled (one bit added to 

make 13), the denominator of the previous equation would be halved, result- 
ing in an increase in the signal-to-noise ratio of 6 dB. Eliminating a bit 
would subtract 6 dB from the signal-to-noise ratio. In real DACs and ADCs, 

the quantization levels are not perfectly spaced or perfectly equal in size. 
Such imperfections add about 4 dB to the noise level. Thus, the signal-to- 
noise ratio that can be expected is approximately 6 dB times the number of 
bits in the DAC or ADC. 

Compared with standard audio equipment, the 72 dB available from a 
12-bit DAC is quite good, in fact better than any program source available to 
consumers and better even than much professional recording equipment. An 
increase to 16 bits is achieved by the newer direct synthesis installations, and 
one has dynamic range far exceeding any available recording device! 

As a result, direct computer synthesis utilizing a 50-kHz to 60-kHz 
sample rate and 16-bit DACs is capable of unsurpassed audio quality. At the 
other end of the spectrum, 15 kHz to 20 kHz with 10 to 12 bits gives AM 
tadio quality that is quite sufficient for experimentation, Rates as low as 8 
kHz to 10 kHz with 8 bits are suitable for demonstrations and telephone 
quality but with the bass present. 

A Typical Direct Computer 
Synthesis Installation 

Until recently, very few of the computer installations used for music 
synthesis were used exclusively for that purpose. Most of them were just large 
campus of corporate computer centers with the added equipment necessary 
for digital-to-analog conversion and occasionally analog-to-digital conver- 
sion. One property of classic direct synthesis is that only a small portion of 
the expense and size of the equipment necessary is specialized for sound 
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generation; the rest is standard computer gear that would be present anyway. 
Thus, in such cases in which the computer center already existed, the initial 

investment in sound synthesis was small. However, as we shall see later, the 

calculations necessary to produce the millions of samples needed for even a 
short musical piece can eat up large blocks of computer time, which, on the 
large machines, is priced by the second. Thus, as a practical matter, usage of 
the installation was budget limited after all. 

Today it is possible for a music or electrical engineering department to 
have its own minicomputer installation with the hardware necessary for 
direct computer synthesis. Furthcrmore, these small, inexpensive computers 

have as much if not more power than the large mainframes of a few years ago. 

Although these systems are Jess convenient to program for sound synthesis, 

they are much more convenient to use because the computer's resources are 

not shared with hundreds of other users. Also, the cost of maintaining such a 
facility is no longer directly related to the running time of direct synthesis 
programs. It is perfectly feasible to allow a program co run all night comput- 
ing another iteration of the 2-min finale to a 20-min piece. 

Microcomputers and personal computers are also at the point where it is 
practical co consider their use in small direct synthesis systems for the pur- 
pose of experimentation and increasing flexibility. The power of these ma- 
chines is surprisingly good with newer models on the brink of introduction 
equaling the power of minicomputers three or four years ago. Mi- 
crocomputers are casily interfaced with conventional synthesis equipment for 
computer control applications such as automatic patching or sequencer use. 

With the proper peripheral equipment, they can do as good a job of direct 
synthesis for unique or otherwise impossible effects as more expensive sys- 
tems although at a slower speed. The personal computer user, however, has 

only himself to please, so program running time is even less of a factor than 
with dedicated minicomputer installations. 

Minimum System 

Figure 4-5 shows the minimum hardware complement necessary for 
direct computer synthesis. Note, however, that the only device limiting the 
quality and complexity of the sound is the DAC and audio tape recorder for 
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Fig. 4-5. Minimum system for direct computer synthesis. 
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recording the results. Otherwise che fu// power of the technique is available on 

this system. More elaborate sctups can materially improve speed and conven- 

ience of use but do not directly improve the sound itself. 
The program entry and editing facility is probably the most crucial in 

providing an easy to use system. Music of significant complexity requires 
dozens and even up to hundreds of pages of typed sound specifications, music 
notation adapted for computer use, and other instructions. The ability co 
easily enter and edit this information is of great importance. Perhaps the least 
desirable medium for this task is the old punch-card and printer listing 
approach. Use of a CRT terminal is probably the most desirable of all 

standard computer input techniques. Dedicated and personal installations 
may use any technique that is appropriate or affordable, although the CRT 
terminal approach is still the most likely. 

The computer itself is not really very important. If one of the “canned” 
direct synthesis programs is to be used, the computer must be able to accept 
the language it was written in and have sufficient memory to hold the 
program. Speed is important, since it directly affects the running time of a 
synthesis program. The computer also should have ‘autorhatic multiply and 
divide,” a feature that increases the effective speed of most synthesis pro- 
grams by a factor of five or more. 

Storage of Samples 

It is safe to say that any serious direct synthesis program computing 
nontrivial music will not run in real time. This means that the 10,000 to 

50,000 samples needed for each and every second of sound simply cannot be 
computed as fast as they are used. Also, without a great deal of difficulty and 
loss of efficiency, the rate that can be computed varies erratically according to 
sound complexity and other factors. Thus, the universal approach is to 
compute the samples at whatever rate the program runs and save them on a 

mass storage device capable of holding at least a couple million samples. An 
IBM-type computer tape drive is probably the most economically suitable 
device. A single $20 reel of tape can easily hold in excess of 10 million 16-bit 
samples, giving an uninterrupted running time of over 3 min at 50 kHz. 

Large computer centers can also be expected to have enough disk capacity to 
hold a sizable number of samples, which offers several advantages over tape. 

After the samples have been computed and stored away, they must be 

passed through the DAC ar the final intended sample rate. The obvious way 
to do this is to read the samples back from the mass storage device and 
transfer them at a constant rate to the DAC. For high fidelity, however, the 
sample rate must be rock steady; even a few nanoseconds jitter will increase 
the background noise level substantially. Thus, the DAC would typically 
have its own crystal clock and at least one sample buffer. The computer 
servicing the DAC for playback must be able to provide the next sample 
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before the current one is finished. What this all means is that the computer 
must usually be totally dedicated to the task of reading samples and sending 
them to the DAC. Unfortunately, the operating systems of most large com- 
puters are unable to insure uninterrupted execution of a single program so 
music playback must be done in a stand-alone mode. 

Often the expense of monopolizing the resources of a large computer 
cannot be borne so the disk or tape containing the samples is played through 
a DAC connected to a minicomputer. In the past, it was fairly common 
practice to build a specialized hardware device for reading sample tapes. The 
design of such a device was complicated by the fact that data on computer 
tape is grouped into records of perhaps 3,000 samples each with gaps of 
several hundred samples equivalent between. The playback device thus re- 
quired a substantial buffer memory to insure the uninterrupted flow of data 
to the DAC. Of course, mini- or microcomputer installations for direct 

synthesis should not experience any of these problems. 
Sometimes the tape drives available on smaller systems may not be fast 

enough to provide the desired sample rate. This limitation may be compen- 
sated for by running the DAC at half of the desired sample rate and operating 
the audio tape recorder at half of the intended tape speed. Then when the 
audio tape is played at full speed, the desired sample rate will have been 
attained. One difficulty with this approach is that the high-frequency equali- 
zation of the audio recorder is switched according to tape speed, which would 
be expected to alter the high-frequency response somewhat. A more severe 
problem is that during recording bass frequencies down to 10 Hz will be 
generated but may not record. When played back at double speed, a distinct 
loss of bass is the result. Also, any power line hum in the recording will be 
reproduced at a much more audible 120 Hz. 

As mentioned earlier, the low-pass filter following the DAC is critical. 
One might think that if the sample rate is above 40 kHz a filter is not needed 
at all, since all unwanted frequencies are above the audible range anyway. 
However, since these frequencies are so strong, they can easily mix with the 

bias oscillator in an audio tape recorder and result in audible beat notes. 
Thus, a filter of at least moderate effectiveness is required with high sample 
rates. The filter becomes more critical at the lower sample rates used for 

experimentation because these unwanted frequencies are audible and sound 
terrible. Sharp cutoff low-pass filter design will be discussed in detail in 

Chapter 12. 

Computation of Sound Waveforms 

Now that it has been established that computers can generate sound of 
the highest quality directly, the next topic of interest is the techniques used 
for computing sound waveforms. Although one could theoretically sit down 
at a computer console and type in sample values, just about anything that 
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could be done without recourse to a pocket calculator would sound like white 
noise on playback. The problem is similar to the one experienced when 
drawing waveforms directly onto movie film. Of course, this does not even 
address the difficulty of providing tens of thousands of samples for every 
second of sound output. 

In this section, a general overview of practical methods of sound 
waveform computation will be presented. A more detailed description of 
these techniques and others along with example programs will be given in 

Section II. 

Sin and Other Built-in Functions 

An obvious method of generating a single sine wave with a computer is 
to use the sin function found in nearly all high-level programming lan- 
guages. The general expression for the Nth sample of a sine wave of fre- 
quency F and amplitude A is Sx =Asin(2aFT/Fs), where T is time in 
seconds and Fs is the sample rate in hertz. Since time and sample number are 

directly proportional and the sample rate is constant, considerable computer 
time may be saved by defining a constant K = 277/Fs and using the form 
Sn = Asin(KzF). Samples for the sine wave are computed simply by defining 
values for the variables A and F and then evaluating the expression for sample 
numbers 0, 1, 2, up toM, where M/Fs is the duration in seconds desired for 
the wave. 

Of course, during the calculations the values of A and F can change. 
Often separate expressions that are also evaluated every sample time deter- 
mine the value of A and F to be used in the “tone generation” expression 
given above. Thus, amplitude envelopes, amplitude modulation, and fre- 
quency modulation are all very easily accomplished. 

Other waveshapes may be easily computed even though a built-in 
function for the desired shape is not provided by the computer's program- 
ming language. A sawtooth wave, for example, is defined by the expression 

ne Se = ALA MOD 1.0) — 1] 

where the mod function gives only the remainder when the expression to its 
left is divided by the expression to its right. A triangle wave may be formed 
from sawtooth samples by applying 

Sn = 2A (i are 
TRI TRI SAW 2 

One must be careful when directly computing complex waveshapes 
with sharp corners and vertical lines because alias distortion can occur. When 
these waves are computed, they are computed perfectly with all of their 
harmonics up to infinity. However, those harmonics that exceed half the 
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sample rate will be reflected back down into the audible spectrum and cause 
distortion. The problem, is generally not severe as long as these waveforms are 
held co low frequencies, but it does prevent use of these shapes as fundamen- 
tal basis waves such as is done in the voltage-controlled synthesizer. 

Fourier Series 

Probably the most flexible method of generating waveshapes by com- 
puter is to use the Fourier series. Individual sine wave harmonic (or specific 
nonharmonic) frequencies can be computed at selected phase angles and 

amplitudes and summed together to produce a composite waveform. Any 
problem with alias distortion due to high harmonics is circumvented by 
simply omitting those that exceed half the sample rate from the calculation. 
Of course, the amplitudes of individual components may be continuously 
varied for a changing spectrum shape. The effect of a filter with any arbitrary 
frequency response may be simulated by multiplying each harmonic 

amplitude by the filter response curve amplitude at the corresponding fre- 
quency. 

Simultaneous Sounds 

Simultaneous sounds are easily done by computing the string of sam- 
ples for each sound and then simply adding the strings of samples together to 
get one string for the composite sound. Fortunately, the same effect is 
realized if one sample for each sound is computed and then the samples are 
added producing a single sample for the composite sound, thus greatly 
reducing storage requirements. The loudness of each sound in the combina- 
tion can be easily controlled by multiplying its samples by a gain factor for 
the sound. It is a typical practice to compute all waveforms at the same 

amplitude level and then adjust their relative amplitudes when the sounds 
are mixed. 

Since the DAC, which will eventually receive these composite samples, 

can only handle a limited range of values, it is usually convenient to define 

this range as being between ~1.0 and +1.0 and then scale the samples 
immediately before being sent to the DAC. This allows the sound generation 
programming to be independent of the actual DAC that will be used for 
playback. The amplitudes of the individual samples being summed up is 
kept considerably below 1.0 so that there is no possibility of overflow and 
distortion. 

Updating of Parameters 

The computation methods described so far are completely flexible and 
allow the parameters of sound to be changed at will at any speed and in any 
manner. Unfortunately, they are also very expensive in terms of the computa- 
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tion time required. A particulary bad case is the sin function, which is 
usually very slow compared with the overall speed of the computer. In order 
to improve speed, it is necessary to impose some restrictions so that simplify- 
ing assumptions may be made. Of course, if a particular situation demands 
full flexibility, it may be invoked for the particular sound or time under 
consideration without affecting the computation efficiency of other sounds or 
portions of the piece. 

One simplifying assumption ts that amplitudes, frequencies, spectra, 
and other parameters of the sounds being synthesized do not change rapidly. 
Thus, the programming that computes these parameters from other data can 

be done at a slower rate than the waveform computation itself. For a 50-kHz 
sample rate, it may be convenient to evaluate these slow-moving parameters 

every 25 samples rather than every sample. This, of course, reduces the 

computational load of these calculations by a factor of 25 but still gives a half 
millisecond timing resolution—a factor of 10 to 20 better than hearing 

perception. Since it is these slower variations that add most of the interest to 
sounds, they may now be made more complex without appreciably extending 
the coral computation time for the piece. 

Table Lookup 

Another assumption is that waveforms change little, if any, from one 
cycle to the next. Thus, one cycle of the waveform may be placed in a table 
and then table lookup techniques applied to quickly retrieve the samples. 
Most computers can perform a table lookup in considerably less time than 
even a simple sample computation. Unfortunately, implementation of the 
technique is complicated somewhat by the fact that, for most frequencies, 
there is a nonintegral number of samples per cycle of the waveform. The 
problem is solved by tabulating the waveform at a frequency for which there 
z an integral number of cycles per sample. When table lookup is required at 
a different frequency, the table lookup routine, for example, might be re- 
quested to “find the 8.763rd entry” in the table. Interpolation between the 
8th and 9th sample may be performed or, if the table is large enough, the 
nearest tabulated entry, which would be the 9th, would be used. There is 
thus a tradeoff between table size, lookup time, and sound quality, since 
errors result in background noise being added to the waveform. Since the 
costs of memory are declining faster than the speed of memory of computers 
is increasing, table lookup without interpolation is a frequently used tech- 
nique. In fact, completely table-driven synthesis programs are possible. Note 
that the table method can also be applied to envelopes and any other curve 
that is likely to be used more than once. Table lookup methods will be 
studied in detail in Chapter 13. 
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Hardware Aids 

Another way to increase computation speed is to connect some 
specialized hardware to the computer that is designed to be especially effi- 
cient in the calculations typically needed for music. For the microcomputer 

user, a hardware multiplier would be of great benefir if his microprocessor 
chip does not have multiply and divide built in. The difference in processing 
speed can easily be 10:1 over multiplication in software and might result in 

a three- to fivefold increase in overall music program speed. The multiplier 
could be expanded into a multiplier-summer, which would speed up sum- 

of-products calculations such as a Fourier series. A full array processor nor- 
mally performs high-speed operations on matrices and vectors such as mul- 
tiplication, addition, and even inversion. In sound synthesis, it could be used 

to compute several samples of several sounds at once and thus greatly speed 
things up. A device known as a “fast Fourier transform processor” is specifi- 
cally optimized for computing Fourier transforms. Although normally used 

to rapidly compute the spectrum of a waveform for sound and vibration 
analysis, most can also compute a waveform given the spectrum. Although 

there are limitations in using a Fourier transform processor for generating 
changing waveforms, its availability can be a great asset. 

Digital Sound Modification 

Nearly all of the sound modification techniques described in Chapter 2 

can be easily implemented in a direct computer synthesis system. Spectrum 

modification by means of filtering can be accomplished with digital filters. 
Actually, a digical filter is nothing more than an equation that specifies the 
Nth output sample as a function of several previous input samples and some 
filter response parameters. A special case is the recursive digital filter, which 

only uses the previous output sample and the current input sample along 

with response parameters to produce an output sample. All of the common 
filter amplitude response shapes such as low-pass, bandpass, and high-pass 

are easily done with recursive digital filters. Arbitrary response shapes can 
also be done in a straightforward manner with nonrecursive digital filcers. 
Calculation time is longer with these, since several up to several hundred 

previous input samples are evaluated to produce the output but the response 
shapes produced would be very difficult to duplicate with recursive digital or 
analog filters. As with all other direct synthesis techniques, there is no real 
limit to the number of digital filters that may be in use simultaneously. 
Usually the programming is done with a small group of routines for the 

different general cypes of filters and then the characteristics of specific filters 
in use at the time are simply numbers stored in a table in memory 
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Reverberation and chorus effects previously described are also easily 

done. One of the simplest operations in a direct synthesis system is delay. All 

that is required for delay is a memory buffer and a simple program for storing 
current samples into and withdrawing delayed samples from the buffer. Very 
little computation time is required for a delay function, although the buffer 
memory could become substantial for long or multiple delays. Delay times 
are easily varied in whole sample increments and interpolation may be used 
for even finer increments. Thus, all methods for reverberation and chorus 

may be applied directly and even refined considerably. If time is no object, 
the characteristics of a particular concert hall may be duplicated using only 
the waveform of a spark discharge (or other repeatable sharp sound) recorded 
in the actual hall for input. 

The tape-splicing methods covered earlier can be done also and with 

great efficiency. Generally, the computer system should have a large disk 
storage facility for quick access to a library of recorded natural and synthetic 
sounds. The largest part of such a sound-editing system is simply the book- 
keeping needed to keep track of sound fragments in various stages of comple- 
tion. The actual cutting and splicing operations could be done at a graphic 
display console showing actual waveforms or spectra with a light pen to 
specify the cut or splice points. 

One modification technique that does not always work well when done 
digitally is nonlinear waveshaping. Since clipping and other waveshape dis- 
cortions are likely to generate strong high-frequency hanmonics, alias distor- 

tion can become a problem. If necessary, the distortion operation can be done 
at a much higher sample rate at which the alias distortion is less of a 
problem, then digitally low-pass filtered to less than half of the system 
sample rate, and finally resampled. Fortunately, such gross distortion tech- 

niques are seldom needed when more refined techniques are available. 

Music Programming Systems 
and Languages 

Although most of the calculations required for direct computer synthe- 
sis are fairly simple, it is not very practical to create a piece of music by 

programming the equations one by one as needed and then assembling 
everything as one large, highly specialized program. Instead, general- 

purpose music programming systems are used. Besides reducing redundant 
programming effort, a music programming system provides the framework 
necessary for the orderly utilization of the infinite flexibility of direct com- 
puter synthesis. Also such programming systems make it possible for users 

with little computer background to effectively, if not optimally, utilize the 
system. 

Two fundamental kinds of music programming systems can be readily 
identified, A tightly structured system is planned from the start with specific 
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goals in mind. In it are all of the elements and functions necessary for the 
specification and computation of all sounds falling within the system goals. 
A distinguishing feature of tightly structured systems is the presence of a 
specification ot music language for controlling the system. A loosely struc- 
tured system basically consists of a central data base and a collection of 
programs for processing information into or out of the data base. The indi- 
vidual programs in the collection are essentially independent and new pro- 
grams may be written at any time. Systems of this type are usually the 
product of evolution. Note that the programs comprising a tightly scruc- 
tured system could easily be part of a larger loosely structured system. 

Tightly Structured System 

The music programming languages found in tightly structured systems 

are entirely different from typical computer programming languages. One 
type, which will be discussed in detail in Chapter 18, has a simplified 
structure and therefore limited goals. NOTRAN, for example, was designed 
for playing organ music. Due to this very narrow subset of possibilities 
a great many simplifying assumptions could be made. For example, musical 
conventions of pitch, duration, rhythm, and in fact conventional music 

notation itself could all be utilized to simplify the structure and language of 
the system. The calculations involved in computing the waveforms, en- 

velopes, and other parameters were narrowed to specific types. The pro- 
gramming necessary for these calculations was all done by the system im- 

plementor and need not concern the user. In fact, the user need only translate 
the written score for a piece into the NOTRAN language and then define a 
number of parameters for each organ voice used in the piece. The NOTRAN 
processor then interprets the translated score and voice parameters and sends 
this interpreted information to the ‘‘prefabricated” sound computation 
routines that actually compute the samples. 

Statements within the NOTRAN language are placed in strict time 
sequence from beginning to end. Program flow and music flow are identical 
and linear from one statement to the next. Statements are of two basic types, 
control and sound specification. Control statements make no sound and take 
no time themselves but do influence events occurring after their appearance 
up until another control statement of the same type redefines the control 
function. Voice statements (which describe the timbre or “stops” of a 

specified voice) and tempo statments (which determine the speed of playing) 

are of this type. 
Sound specification statements, on the other hand, do cause the genera- 

tion of sound and take time in a musical sense. A single note statement, for 
example, may consist of many separate note specifications, each correspond- 
ing to an individual note in the score and all starting simultaneously. Con- 
secutive notes each have their own note statements. Thus, notes in NO- 
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TRAN are specified in two dimensions: horizontally for different pitches at 
the same time (harmony) and vertically for sequencing. A note specification 
specifies a voice, a pitch, a duration, and an articulation (such as staccato). 

Additional parameters describing the timbre of the specified voice are taken 
from the last encountered corresponding voice statement. After a piece has 
been coded in the NOTRAN language, the job is essentially over. The 
complete specification of the sound is contained in the resulting string of 
NOTRAN statements, and all thac remains to be done is to run the program 

and record the results. 
As can be seen, NOTRAN is highly structured and very limited. This 

does not mean, however, that enhancements would not be possible. For 

example, a couple of years after it was first defined and implemented, percus- 
sion sounds were added. A percussive voice definition statement type was 
added and percussive note specifications were formulated. This feature was 
added, however, in a manner completely consistent with the existing struc- 
ture of the system. With such a constraint, there are definite limits to 

expansion. 

Maximum Flexibility System 

A second type of structured music system is similar but has as a goal 
maximum usable flexibility. Even with such a goal it is still necessary to 
make simplifications although not nearly as severe. The MUSIC V system, 
for example, retains the concept of a note that is best described as an event. A 

piece consists of a quantity of events, each starting at specified points in time 
independent of their durations or other events. Another simplification is that 
the system actually simulates an idealized, modular synthesizer similar in 
concept to the voltage-controlled equipment described previously. For the 
most part, sounds are generated by specifying the inputs and interconnec- 
tions of imaginary modules that themselves must be specified. In most cases, 
the user can actually think in terms of standard voltage-controlled modules 
but with functions, accuracy, range, and quantity impossible to achieve 
with real modules. 

The actual music language associated with MUSIC V is quite different 
from that of NOTRAN. In particular there is no parallel with standard 

music notation. Instead, all of the information is in terms of physical sound 
parameters such as frequency in hertz, amplitude in volts or decibels, time in 
milliseconds, etc. Often tables of values are used to specify how each of these 
parameters are to change with time during an event. 

The MUSIC V processor is actually configured into three passes or scans 

of the input data. During pass one, the services of a macroprocessor program 
are available to allow certain repetitive statements to be generated under the 
control of higher-level parameters. Also done during pass one is instrument 
definition as a combination of predefined modules called wnit generators. 
Integration of parameters in graphic form into the score is also possible. One 
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unique feature of the MUSIC V system is that during pass one the statements 
describing instruments and notes do not have to be in time order. This 
feature makes the macroprocessor more flexible and easily applied. 

Pass two is a sorting program that sequences the output from pass one 

into strict time sequence. At this point, some additional processing of 
parameters that influence a number of sequential notes can be performed, 
since the statements are in time sequence. For example, time scale shifts for 
retards or fine frequency ratio control among simultaneous notes would 
normally be done during pass two. 

Pass three is the actual language interpreter and sound generation 

program. It works much like the NOTRAN interpreter just described except 
that it is much more sophisticated. One or two streams of samples may be 
produced for monophonic and stereophonic sound, respectively. 

Extending the MUSIC V system is much less restricted than with 
NOTRAN. Most desirable expansions amount to writing additional process- 
ing programs for pass one. For example, it would be possible to write a 
processor that would convert a NOTRAN score into equivalent MUSIC V 
complete with equivalent voices constructed from available unit genetators. 
Additional unit generators or even entire instruments that are not conven- 

iently described in terms of unit generators could also be added to pass three. 

Loosely Structured Systems 

Looking again at loosely structured systems, the data base is seen to be 
the most important component of the system, in fact, the only Jink that 
holds it all together. Several different kinds of data can be kept in the data 
base. Using a hypothetical system as an example, it is obvious that sample 
data representing a previously computed piece or sampled natural sounds 

would be present. Curves of all sorts such as amplitude envelopes, spectrum 
shapes, and actual waveforms would also be present. Finally, text represent- 
ing perhaps statements in one or more music languages or just lists of 

instructions would be there too. 
The purpose of a program in the loosely structured system is to either 

convert data from the data base into sound; take data out, process it, and put 

it back in a different form; or convert external information into a suitable 

form and enter it into the data hase. A sound output program is an example 
of the first type because it would take sample data from the data base and 
convert it to sound through the DAC. A reverberation simulator would take 
sample data and perhaps a list of instructions from the data base and return 
reverberated samples to the data base. A synthesizer program would take 
language statements and curves out and produce samples. A macroprocessor 
could cake statements in a very powerful, structure-oriented rather than 
note-oriented music language and convert them into statements (probably 
much more numerous) in a lower music language. This would circumvent 
the immediate necessity of an interpreter for the new language. An input 
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processor program might look at a keyboard interfaced to the system and 
convert the key action it sees into music language statements or other suit- 
able form. A sound analysis program could take sample data and produce 
curves representing the changing patameters of the sound analyzed. Nearly 
an infinite variety of possibilities exist for programs in such a system. 

Using a loosely structured system is not unlike tape-editing methods for 
producing electronic music. Initial sound material or language statements 
are taken through a sequence of steps using various programs until the final 
result is obtained. At intermediate points, the piece may exist as a number of 
fragments at various stages of processing. Contrast this to a highly structured 

system in which the entire specification for the piece is self-contained in a 
string of language statements. 

Because of its very nature, the loosely structured system is easily and 
almost infinitely expandable. The only limitation is the structure of the data 
base itself. Even that can be expanded by adding more data types, but a 
proliferation of conversion programs could develop if many were added. 



a 

Wicroprocessors 

The development of microprocessors and the subsequent refinement of 
semiconductor memories to go with them will undoubtedly become the most 
tmportanc technological breakthrough of this decade. Even now they are 
finding their way into all kinds of products from microwave ovens to music 
synthesizers. Eventually, it will become so cheap to apply computer intelli- 
gence to products that it will be done almost automatically if even the 
slightest need exists. However, such widespread application is still in the 

future, alchough nobody really knows if that means 2 years or 10. 
Returning to the present, the significance of microprocessors in music 

synthesis is that the cost of doing things with computers is now much less 
than it was a few years ago. For the most part, computer music techniques, 
both direct and synthesizer controlled, were hypothesized and developed 
years ago by well-backed institutions. So although no really new techniques 
are made possible by microprocessors, the existing ones can now, or soon be, 
utilized by individuals at a reasonable cost. Also, the low cost of components 
makes practical the implementation of some of the grander schemes that have 
only been hypothesized in the past. 

Sequencers, for example, have been very expensive (compared to other 

modules in a voltage-controlled system) and highly specialized devices. Their 
innards consisted of dozens to a couple of hundred digital integrated circuits, 
and their front panels had several dozen controls. Even with all of this, it 
took only a few minutes of use to discover just how limited those devices 
were. Now a microprocessor in conjunction with a few integrated circuits can 
perform all of the functions of even the most sophisticated sequencers and 
still be grossly underutilized. Panel control action and quantity can be 
designed more for the convenience of the user rather than for the simplifica- 

tion of logic circuitry. The microprocessor is inherently reprogrammable for 
altered or enhanced function, although sequencer manufacturers may not 

always encourage this. In fact, microprocessors today are often designed into 
a product (not just musically oriented ones) as a cost-saving or performance- 
improving measure and are not even mentioned in advertising literature or 
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the user's manual. The reason given for such behavior is that users are not yet 

sophisticated enough to handle the increased flexibility offered by pro- 
grammability. 

The forces necessary to change this attitude are already at work, how- 
ever, because the increasing number of computers in use also brings on 
incteased public awareness of their nature, and most importantly, pro- 

grammability. In the 1960s, computers were so expensive that only large 

corporation accounting departments and well-financed research organizations 
could afford them. Consequently, there were very few people working with 
and knowledgable about computers and programming. Now with inexpen- 
sive business and school computers and particularly tens of thousands of 
hobby computers, many more people are being exposed to programming 

concepts. It has been proven many times with elementary school children 
that programming itself is an easy skill to acquire, and what's more, is nearly 

intoxicating when introduced properly. Thus, a mote aware public will 
encourage designers of all microprocessor products, not just synthesis 
equipment, to make available full flexibility through programming. 

In this chapter, a cursory review of the history of microprocessors will 
be given and the important characteristics of three microprocessor chips that 
will be exemplified in Sections II and III will be outlined. Unfortunately, a 
tutorial overview of microprocessor hardware and software fundamentals 
would require an entire book this size to cover. For those unfamiliar with 
computers in general, there are indeed several such volumes, at least one of 

which should be read in conjunction with the remaining text of this book. 

Those only familiar with a high-level computer language such as BASIC or 
FORTRAN should also study the sections of those books devoted to machine 
code programming. The discussion to follow will therefore assume some 

familiarity with fundamental hardware and software concepts so that we may 
concentrate on the specifics of music synthesis with microprocessors. 

Microprocessor Terminology 

The terminology that will be used very frequently in the discussions ta 
follow needs to be defined. A microprocessor is the central processing unit 
(CPU) of a computer system built with a small number of integrated circuits. 
Most microprocessors are single IC chips, although the more powerful ones 
may be a ser of up to six highly specialized ICs specifically designed to work 
together. Standard logic components have also been put on a single printed 
circuit board and marketed as “microprocessors,” but they do not fit the 
present definition. 

A microcomputer is a microprocessor with program memory, data storage 
memory, and input and output means added. It is functionally equivalent to 
the contents of conventional minicomputer cabinets. Recently, single-chip 
microcomputers have become available. Although they satisfy the definition, 



MICROPROCESSORS 127 

the size of the memories and I/O system provided and the difficulty or 
impossibility of expansion make them special-purpose devices unsuited for 
most general-purpose computer applications. However, they do have signifi- 
cant potential in music synthesis, which will be shown later. 

A microcomputer system is a microcomputer with actual I/O devices 
added. The ease of use and ultimate potential of the system is strongly related 
to the speed and type of I/O equipment present. Also, the majority of the 
cost of the system is due to I/O gear. A general-purpose system is one with a 
sufficient software and I/O complement to be easily used for many types of 
applications. For most work, this simply means that the system has program 
development capability, program assembly or compilation capability, and 
program execution capability. For nearly all of the musical applications of 
microprocessors that will be discussed, a general-purpose system is a neces- 
sity. 

Brief History of Microprocessors 

Although the history of microprocessors has been short, it has been very 
interesting. Reviewing their history here is relevant because it gives an idea 
of what to expect for the future. This is important in music synthesis because 
today’s large computer techniques will be implemented on tomorrow's per- 
sonal microcomputer. The dates given in this synopsis are not the manufac- 

turer’s official introduction dates but rather the approximate dates of 

availability of the devices to individuals and small businesses. Larger com- 
panies undoubtedly had access to information and prototype chips well before 
general availability. 

The microprocessor started out as just an ordinary calculator chip that 
was documented well enough by the manufacturer so that customers could 

program it. Its initial use was simply to expedite the development of 
specialized hand-held calculators and business machines such as cash regis- 
ters. Shortly thereafter, the semiconductor manufacturers realized that, 

whenever a microprocessor chip was sold, memory ICs to hold the programs 

were also sold. In fact, it was often the case thar more money was spent on 

memory than the microprocessor. Thus, the expense of developing ever more 
sophisticated microprocessor chips was justificd on the expectation of in- 

creased profits from memory device sales! 

The First True Microprocessor 

The first well publicized trae microprocessor was the 4004 from Intel, 
first available in early 1972. “True” here means a device that works primarily 

in the binary number system; is at least theoretically infinitely expandable in 
program memory size, data memory size, and I/O capability; and can handle 
text characters as easily as numbers. Such a device could, if the necessary 
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effort were expended, be programmed to handle any kind of computer task 
except at a slower speed. Intel marketed the 4004 strictly as logic replace- 
ment where speed was not important but logic decision complexity was high 
such as in traffic light controllers or automatic bowling pin setters. The 4-bit 
word size, instruction set, and data memory-addressing method utilized by 

the 4004, however, seemed quite strange to those already familiar with mini- 
and maxicomputers, so they did not show much interest in using the device 
for conventional computer applications. Another inhibition to its use by 
individuals and small enterprises was the virtual requirement that 
specialized, mask-programmed! memory components from Intel be used. 

The First Popular Microprocessor 

Several months later, Intel made available the 8008 microprocessor. 

This 8-bit machine overcame many of the problems of the 4004. It was 
designed to be usable with standard memory components from a variety of 
manufacturers. Its method of addressing memory was much more conven- 
tional with program and data memory being identical. Also, it could directly 
address without bank switching 16K bytes, an amount considered ample at 
the time. Its instruction set was definitely limited but conventional enough 
to be identified with the instruction sets of the smaller minicomputers. The 
major limitations of the 8008 were slow speed and a rudimentary interrupt 
capability. 

This air of conventionality and familiarity, however, was the key to its 
success and, in the opinion of some, the cause of sooner-than-expected use of 
microprocessors as minicomputer replacements in many applications. What 

was actually being offered was not a cheaper way to make traffic light 
controllers but a computer, with all of the capabilities and potential of other 
much more expensive computers. People knowledgeable about computers 
realized this and acted on it. University electrical engineering, chemical 
engineering, and computer science departments launched microcomputer 
projects so that each student could work with a real computer in lab sessions. 
Entrepreneurs dreamed up small microcomputer-based systems and immedi- 
ately set out to develop them. Hard-core hobbyists started building their 
own computers around the 8008. The semiconductor manufacturers found 
customers writing huge, complex programs and adding extra outboard logic 
to the microprocessor to overcome the weaknesses that still remained. 

The Dawn of Personal Computing 

One event of major significance was the publication in one of the major 
hobby electronics magazines in March 1974 of an article describing a build- 

‘A mask-programmed memory device incurs a tooling charge of $750 to $2,000 and a 
minimum order of 25 copies or more. Any change to the program requires a new 
mask. Thus, such a technique is only suitable for large-quantity production. 
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it-yourself computer based on the 8008. Although a handful of dedicated 
hebbyists had been constructing computers from surplus parts as much as 6 
years earlier, this was che first public exposure of the concept that computers 
can make a fascinating hobby. Immediately, significant interest in the 
MARK-8 arose along with three newsletter-type publications devoted to the 
computer hobby. Hundreds of machines were eventually buile, which may 
seem small until compared to only a couple dozen hobby computers in 
existence prior to thar article. 

Toward the end of 1974, Intel made available its successor to the 8008: 
the 8080. This machine was indeed an enhancement of the 8008 and was 

influenced heavily in its design by what people were coaxing the 8008 to do. 
Among its improvements were a tenfold increase in speed, quadrupled 
memory-addressing capability, unlimited stack length, and a number of 
added convenience instructions to perform tasks that were found to be sub- 
routines in nearly all 8008 programs. A few months earlier, National 

Semiconductor introduced its IMP-16 microprocessor. This device (actually a 
set of five ICs) was not just similar to a minicomputer, it was a full 16-bit 
minicomputer CPU with multiple addressing modes and optional multiply/ 
divide (a sixth IC). For some unknown reason, probably related to the 
marketing approach, it never caught on like the 8080. 

The Altair 8800 Microcomputer ' 

The next milestone in the popularization of microprocessors has to be 

the announcement in January 1975 of the Altair 8800 microcomputer kit by 
MITS as a feature article in another major hobby electronics magazine. 
Announcement is emphasized because machines were not delivered until 

several months later. Nevertheless, tremendous excitement and quite a bit of 

confusion was created by the announcement. The excitement was due to the 
microprocessor chip used: the yet to be generally available, exceedingly 

powerful (compared to the 8008) 8080. Also, the availability of a kit in- 
terested many more people who were not skilled enough to acquire parts and 

etch printed circuit boards themselves. One confusing factor was the price of 
the kit; $60 less than the current price of the microprocessor IC itself, and 
the kit contained cabinet, power supply, and several dozen additional ICs 
and other parts necessary to support the microprocessor. Most could not 

believe that the $360 8080 chip was actually included! This time thousands 
of machines were ordered and delivered, and real magazines sprang up to 
meet the tide of interest created. 

MITS itself was completely overwhelmed with thousands of orders, 
which explains the delivery délays that have since become commonplace in 
the industry. Had they been able to deliver immediately, the subsequent 
evolution of the hobby computer industry may have been entirely different 
with one manufacturer in a position of complete dominance. As it was, the 
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market was thrown wide open to dozens of small companies that materialized 

to meet the demand. 

Since the Altair used a parallel bus structure with sockets for plugging 

in extra memory and peripheral equipment interfaces, these same companies 

were able to effectively compete in the add-on market even after MITS 

started delivering machines. This bus structure, now called the S-100 bus, 

has become a defacto standard in 8080 systems because such a variety of 

CPU, memory, and peripheral interface boards are available. Keen competi- 

tion in the S-100 marketplace keeps prices low and innovation high. 

In fact, the entire microcomputer industry, not just the hobby and 

personal segment, is currently served by an unprecedented proportion of 

small businesses, many operating from a garage but supplying high-quality 

products. The cottage industry thus created is unparalleled in recent history. 

The microprocessor chip is a great equalizer, allowing the success of products 

designed with them to be more a function of the designer's creativity and be 

less dependent on capital strength or marketing clout. 

Computer Clubs and Stores 

A matter of months after the Altair was announced, computer clubs 
began to appear in major population centers and large university campuses. 
Today there are hundreds of such clubs throughout the country whose dues- 
paying membership is approaching that of amateur radio clubs, which have 
been around for decades. 

Along with clubs comes conventions, and there are currently four major 

national events yearly and many more regional and commercial ones. These 

conventions are expertly run affairs with scores of exhibitor booths, dozens of 
conference sessions, and the inevitable flea market where once exceedingly 

expensive computer-related items are now traded as freely as baseball cards. 
Soon after clubs became a well-established phenomenon, computer 

stores started to appear. Such stores specialized in computer kits and 
factory-built models, computer-oriented electronic components, and books 
about the subject. Their early success was fantastic due in part to the fact that 
mail-order had been the only way to purchase these items. There are now 
hundreds of such stores throughout the country with at least one in almost 

every city of 100,000 population or more. Many of the stores have found, 
however, that the hobby market must be supplemented by systems sales to 
businesses in order to survive. 

The Great Price Tumble 

It is well known that the semiconductor industry is the only major 
industry that seems to be trying to go bankrupt continuously. The prices of 
their products always drop through periods of inflation and recession alike. A 
product is not considered mature until identical copies are available from half 
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of the companies in the industry. Competition is furious and price lists are 
almost worthless because they are obsolete before being printed and most 
prices are determined by negotiation anyway. Even so, prices are usually set 

by what customers are willing to pay rather than manufacturing cost, which 
itself is quite volatile. 

Microprocessor products, however, seemed to amplify this behavior 
severalfold. When introduced, the published price for the 8008 was $120 in 
quantities up to 99 and a 40% faster version listed for $180. These were 
exceedingly high prices for a single IC, yet most interested users gladly paid 
it, grumbling only about the device's electrical fragility. The 8080 was 
introduced at $360—tair, compared to the 8008, considering the 8080's 
many advantages. However, the price was also high enough to be unattrac- 
tive to hobbyists. The IMP-16 at $420 was a bargain in comparison. 

Through most of 1975, the 8080 gradually became available and the 
going price dropped below $200. The 8008 dropped even faster and could be 
abtained for $40 to $50. However, in September of 1975, a well-known 

calculator manufacturer announced, and simultaneously delivered, the 6502 

microprocessor—at a price of $25 in single quantity! The 6502 was no slouch 
either. It required less support logic than the 8080, was faster, and leapfrog- 

ged the 8080's limited memory-addressing flexibility with 13 different ad- 
dressing modes. This event precipitated the fastest and farthest price decline 
ever seen, even by the semiconductor industry. In just a few months’ time, 
prices on almost all microprocessors were at one-quarter and less of their 
previous levels. 

Since then the price tumble has continued and today an 8080, 6502, 

and most other popular microprocessor chips can be obtained for $5 to $10 in 
moderate quantities. Even in single quantity through mail-order dis- 
tributors, first-run microprocessor chips can be obtained for less than $20. 
Slower, more limited microprocessors for control purposes are down to $3 for 
production, The SCMP microprocessor from National Semiconductor is an 
interesting hybrid: priced for extensive use in cost-sensitive control applica- 
tions but easy enough to program for use in some general-purpose applica- 

tions. Speed was the only sacrifice made for low cost. 
The reduction in memory prices has been only slightly less dramatic. 

As was mentioned previously, the cost of memory can be expected to domi- 
nate the cost of a general-purpose microcomputer. When the 8008 was 

introduced, the least-expensive memory component available was the 1103 
1K bit dynamic RAM at about $7 each. At this rate, an 8K byte memory 
system, about the minimum for general-purpose application, would be 
$450. Now the same memory capacity would only cost $30 for 4K bic 
dynamic RAM components. 

The net result of this fantastic price decline, besides total disorientation 
of system designers who have lived through it, is that the microcomputer 
part of a microcomputer system is now very minor indeed, cosewise. Systems 
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are routinely built with all 64K of addressable memory present, making their 
use much easier. Time-sharing software techniques are falling into disuse in 
favor of a separate microprocessor for each task to be performed. For music 
applications, it becomes practical to think about a microprocessor for every 
voice or one buried in every module of a “digital-controlled’ synthesizer. 

The Great Performance Spiral 

In spite of the price declines, the performance of microprocessors has 

steadily improved. In late 1976, Zilog, a spinoff company of Intel, intro- 
duced the Z-80, a much improved 8080 that was still compatible with nearly 

all 8080 software. The 6502 has been quadrupled in speed for premium 
devices making it by far the fastest MOS microprocessor available. In 1976 
the first single-chip 16-bit microprocessor appeared. The PACE mi- 
croprocessor essentially replaced the earlier five-chip IMP-16. Although it 
was somewhat slower, several enhancements eased programming and inter- 
rupt restrictions. Digital Equipment Corporation, a minicomputer manufac- 

turer, introduced the LSI-11, which was a microcomputer PDP-11 on one 
board at a very attractive price. Many programming purists and hardware 
designers consider the PDP-11 to be the ultimate perfection of 16-bit com- 
puter architecture, and quite a few of these people have purchased the LSI-11 
for their hobby systems. Also the LSI-11 is the only microcomputer so far to 
offer hardware floating point instructions, normally a $5,000 option on 
minicomputers! The most recently available 16-bit microprocessor is the 
9900 from Texas Instruments, another one-chip machine. In many ways its 

instruction set is similar to that of the PDP-11 but does have significant 
departures. It is the only single-chip microprocessor (the LSI-11 uses five 
chips for its microprocessor) so far to have hardware multiply and divide built 
in. It is important to note that the instruction execution speed of these 16-bit 
machines is roughly equivalent to 8-bit units, resulting in greater effective 

throughput, particularly for the type of computation required in music 
applications, Automatic multiplication and division of 16-bit quantities is a 
particularly important feature for many music-oriented calculations such as 
direct synthesis. 

In the near future, 16-bit chips are expected from Motorola, Intel, 
Zilog, and MOS Technology (recently acquired by Commodore). Lf the past 
is any indication, these new introductions will be even faster and more 
powerful than existing 16-bit units while maintaining considerable software 
compatibility with the respective company's current 8-bit products. Prices 
will probably be only slightly higher than high-performance 8-bit machines. 

Existing and future 16-bit microcomputers will blur the distinction 
between microcomputer and minicomputer to the point that there is none. In 
fact, three very popular minicomputers have been implemented as mi- 
cropracessors already: the LSI-11 previously mentioned, the Micro Nova 
from Data General, and the 6100 from Intersil, which emulates the most 
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popular minicomputer of all, the PDP-8. This means that software written 
over the years for these machines can be run on their microprocessor equiva- 
lents with only minor reconfiguration required. For music applications, this 
also means that much of the minicomputer music research already done in 
several universities can be applied to microcomputers at much lower cost. 

Mass-Merchandised Computers 

The most recent development in hobby and home computing is the 
mass-merchandised, self-contained, home computer. Although just getting 
started, it represents a significant turning point in the manufacturing and 
distribution of such machines. First, the manufacturers themselves are large, 

established companies who have been in the electronics business for some 
time. Second, mass merchandising implies millions of units sold through 
department stores and general merchandise catalogs. 

At this point, two major computers in this class have been announced. 
The PET from Commodore utilizes a 6502 microprocessor and contains a 
BASIC language interpreter and monitor program in read-only memory. A 
9-inch TV display is integral to the unit and displays alphanumerics and 
limited graphics. The announced price of $600 undoubtedly made most 
other hobby computer manufacturers gasp in mortal fear. Not much later, 
Radio Shack announced its TRS-80 unit centered around a Z-80 mi- 
croprocessor. Although less ambitious than the PET and lacking a built-in 
display (you connect it toa TV receiver), its lower price ($350) will keep it in 

the running. Also, Radio Shack has announced several peripheral add-ons for 
the system while Commodore has not. 

Heathkit has also entered the hobby computer market but with two 
more conventional component systems. The H8 is an 8080-based system 

with its own system bus design. Although criticized initially for not using 
the pseudostandard S-100 bus used by most all other 8080-based hobby 
systems, it is conceivable that Heath may outsell all of these other systems 

together and thus establish their own de facto standard. The H11 is really a 
packaged LSI-11 board. Through an agreement with Digital Equipment 
Corporation, Heath will be the primary single quantity dealer for LSI-11 
boards and software. Heath should be able to do a much better job of 
marketing this powerful computer to individuals than DEC can. 

Finally, there are numerous programmable TV game machines built 
around microprocessors that cost about $150. However “programmable” 

means that relatively inexpensive “game cartridges,” which are really read- 
only memory units, can be plugged into the machine to give it a completely 
different function. As yet, the consumer is not able to program the machine 

himself. 

Microcomputer Peripheral Devices 

Although any peripheral device that can be used with a large computer 
can theoretically be connected to a microcomputer, only a small subset is 
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commonly used in general-purpose microcomputer systems, This subset has 
been found to give the maximum convenience of system use consistent with 
performance and cost requirements. However, as we shall see later, certain 

big syste peripherals may be desirable for some musical applications. 

Main Memory 

In a microcomputer system, main memory is often considered as a 
peripheral. Usually additional memory is available from several manufactur- 
ers, and it may be freely purchased and plugged into the system when 
needed. Main memory comes in two flavors, read-only memory, usually 

abbreviated ROM, and read/write memory, usually abbreviated RAM. ROM 
is not affected by loss of operating power and cannot be overwritten; thus, it 
is generally used for unchanging system ptograms such as a monitor ot 
language translator. Pure ROM is completely unalterable, having had its bit 
pattern frozen in during manufacture. Although masked ROM is by far the 
cheapest type, most of the ROM used in general-purpose microcomputers 
today is of the erasable and reprogrammable type. This type can have its bit 
pattern erased with a strong ultraviolet lamp and a new pattern entered with 

special programming equipment. This capability is a valuable asset because 
virtually all programs are subject to some change as the system expands or 
program “bugs” are uncovered. 

RAM may be freely written into and therefore may hold different 
programs at different times. RAM is required for the storage of programs 
under development and the data they use. Large computers have always used 
RAM exclusively for main memory. However, the core memories used by 

earlier computers did not lose their contents when power was shut off so 
operating system programs loaded into them could be expected to remain 
until specifically overwritten. The RAM used in microcomputers, on the 
other hand, is highly volatile and subject to complete data loss within 
milliseconds of a power failure. Thus, operating software kept in RAM must 
be reloaded whenever the system is turned on for use. Appropriate peripheral 
equipment such as a disk can reduce this task to a few seconds duration or 
even allow its automation. Although programs frozen into ROM are conven- 
ient, there is sometimes a tendency to spend too much money on ROM when 
the more flexible RAM would be a better choice, particularly when the 
needed peripheral equipment for efficient reloading is available. 

The amount of main memory in a microcomputer varies widely. Amaz- 
ing things have been done with a 6502-based system having only 1.1K of 
user RAM and 2K of system ROM. At the other extreme, “‘fully stuffed” 
systems with all 64K of possible memory are seen occasionally, and already 
manufacturers are announcing systems with a bank-switching feature allow- 
ing a million bytes and more of memory. Within these extremes, an appro- 
priate amount of memory for two broad classes of system usage can be loosely 
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defined. For general-purpose assembly language program development, a 
ROM monitor of 1K to 4K and an 8K RAM are usually adequate. 
Additional RAM may be necessary for certain complex applications. For 

BASIC language program development, 8K to 16K of ROM containing a 
monitor and the BASIC language processor are convenient, although BASIC 
may also be loaded into RAM. Eight to 16K of additional program storage 
RAM is sufficient for the majority of applications that BASIC is suitable for. 
However, more comprehensive high-level languages are coming into use that 

may require considerably more memory to accomodate. 

Mass Storage 

Next to main memory, external mass storage is the most reliable indi- 
cator of overall system capability. Further, the type of external storage used 

has a great influence on typical system operating procedures. A system with 
no external storage at all is extremely limited in general-purpose applica- 
tions. 

Although becoming rare, paper-tape-based systems are still seen. Usu- 

ally this happens when the primary I/O device on the system is an ASR-33 
teletype. Generally, paper tape is a very limited external storage medium. 
Although programs and small amounts of data may be easily saved and 
reloaded later, paper tape cannot be edited. Any change to a program re- 
quires thar it be read into the computer, corrected in memory, and a new 

copy punched out. Also, on a per byte basis it is not really very effective to 
store data on paper tape. One-hundred-thousand bytes requires a rol] of tape 
nearly a foot in diameter costing from one to two dollars. Speed is usually in 
the 10 byres/sec range, alchough readers up to 300 bytes/sec and punches up 
to 50 bytes/sec are sometimes used. Even with these limitations, Heath has 

announced an unusually cost-effective paper tape reader/punch to go with 
their H8 system, and manual pull-through paper tape readers for under $100 
have been introduced to the hobby market. It is thus apparent that paper 

tape will be around for several years yet, particularly as a rugged, reliable 
program exchange medium. 

Tape Cassette 

One storage medium peculiar to microcomputers is the audio cassette. 
While not necessarily indicative of their inherent music synthesis and 
analysis capabilities, it is fairly easy to program a microcomputer to produce 

sounds dependent on the data to be saved and then recognize them later on 
playback. Very inexpensive cassette recorders are suitable for such use, al- 
though high-quality tape with few dropouts is necessary for acceptable data 
accuracy. Nearly two dozen different encoding schemes are in use with the 
major distinguishing factor being speed, which ranges from 10 to 540 
bytes/sec. Functionally, audio cassettes are the same as paper tape with the 
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major difference being less bulk, somewhat higher speed, and reusability of 
the medium. Editing of data on the tape ts still not possible without che 
“read-in, edit, write-out on another tape” cycle characteristic of paper tape. 
Manual intervention to load, start, stop, and switch from record to playback 
is also necessary. Besides the multiplicity of encoding techniques, accurate 
program exchange via audio cassette suffers from substantial differences in 
audio recorder head alignment and amplifier response, which adversely affect 
all but the lowest speed-encoding methods. 

Digital cassettes are also used to some extent in microcomputer sys- 
cems. Digital cassette drives generally run at speeds above 500 bytes/sec and 

are one to two orders of magnitude more accurate in the reproduction of data. 
Typically, they are controlled by the computer, allowing programmed re- 
wind, fast forward search, read, and write. A random search for data on the 

tape takes from several seconds to over a minute depending on the device and 

the amount of data on the tape. Such automatic operation allows limited 
editing on the tape in some cases. A block of data may be read, edited, and 
then rewritten in the same spot on the tape. If, however, the editing opera- 

tion includes an insertion, the resulting larger record must be written at the 
end of the tape or on another tape. Of course, this added flexibility comes at a 
cost of $300 or more—five to ten times that of the audio cassette approach. 

Floppy Disk 

The flexible or “floppy” disk is a fairly new mass storage device that 
seers custom made for microcomputer systems. Introduced by IBM in 1970 
as a fast method of loading microprograms into their big computers, the 
floppy disk is considered by most microcomputer users to be the ultimate 
mass storage device when cost is considered. A standard-sized floppy disk 
drive measures about 5 X 9 X 15 inches and costs less than $500. The disk 
itself, called a diskette, is 8 inches square by about 1/16-inch thick, is 

moderately stiff, and sells for about $5. Data on the diskette is divided into 
77 tracks with from 16 to 32 individual sectors of data on each track. Each 
sector is generally either 128 or 256 bytes. Total storage capacity ranges from 
250K to 320K bytes depending on formatting. Any sector may be randomly 
located and read or written in less than a second, making it a truly random 
access device. This and the fact that individual sectors may be very quickly 
(350 msec) updated by reading and rewriting gives the floppy disk complete 
editing capability. A data transfer rate of over 30K bytes per second means 
that RAM up to 64K in size can be completely loaded or dumped in 2 to 3 
sec. Double-data density and double-sided recording techniques being in- 
troduced now allow over 1.2 million bytes on a diskette and double-track 
density expected in the future could swell this to 2.5 million bytes. 

Although floppy disk drives are fairly inexpensive, complete and 
ready-to-go systems sell for about $1,000. The extra cost is due to controller 
logic that until recently has been very complex. However, ICs designed 
specifically for floppy disk control are now being introduced. Also a smaller 
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version of the diskette and associated drive has become available and may 
have a slight edge in actual use on microcomputer systems. The “mini- 
floppy” diskette is only 51/4 inches square and the drive is scarcely larger 
than a cigar box. Typical drive pric are $150 less than the full-sized 
counterpart. Speed and storage capacity > reduced substantially, however. 
Standard formatted capacity is about 8u% bytes, but double-density, 
double-sided recording increases this to be essentially equal to a standard 
floppy with an attendant increase in drive prices. Transfer rate is reduced to 
16K bytes/sec, and head movement speed is about one-third, although the 
reduced number of tracks keeps the maximum access time to less than 1.5 
sec. Even though the difference in drive prices is not chat much, mini-floppy 
systems are substantially cheaper, being as low as $600. 

Big System Tape and Disk 

While the mass storage peripherals just discussed ate adequate for most 
microcomputer applications including music synthesizer control, direct syn- 

thesis requires considerably more capacity. Half-inch computer tape is 

perhaps the least expensive such medium that can be installed. Moderate cost 
tape-drive units in the $3,000 to $4,000 range are capable of 60K bytes/sec 
transfer rate and nearly 40 million bytes to a 10-inch, $20 reel of tape. This 
performance is at a standard density of 1,600 bytes per inch of tape, although 
800 and 6,250 bytes/inch (BPI) are also available. The 6,250-BPI units, 

however, are considerably larger and more expensive at this time. While 
editing is no easier on these units than on digital cassettes, they are ideal for 

use in classic, completely programmed, direct synthesis applications. With 
two tape drives (one of them could be lower speed or less density), limited 
sound modification and editing could also be accomplished. 

Disk-based direct synthesis quickly points out the need for a disk 
system with larger capacity than floppies. For example, a minimum-fidelity 

direct synthesis sample rate of 10 kHz with 10-bit samples will fill up a 
standard floppy in 24 sec, while a full fidelity 50 kHz 12-bit application 
would require a double-density unit every 8 sec. Fortunately, large-capacity 
rigid disks may also be interfaced to microcomputers. As a matter of fact, one 
of the larger hobby computer suppliers has already announced such an inter- 
face product. Removable media rigid disk units with capacities of 25, 50, 

and 80 million bytes are now well established with drive costs of $4,000 to 
$8,000, although controllers up the system price substantially. Large- 
capacity fixed media disk drives are also beginning to appear. These units are 
exceptionally small, cheap, and reliable because the disks are factory installed 
and sealed from the envitonment. When used in conjunction with a fast tape 
drive for loading and dumping the disk, the combination is extremely cost 
effective in direct synthesis and digital sound modification applications. Ir is 
expected that market acceptance of these fixed media disk drives will acceler- 
ate the introduction of inexpensive, high-density tape drives. 
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Obviously, the prices listed for these high-performance, big computer 
peripherals would completely overshadow the cost of the rest of the mi- 
crocomputer system. Even then they may be a trifle optimistic because the 
necessary interface to the microcomputer system has not been included. 
Industrious individuals, however, could obtain used equipment for consid- 

erably less than the new prices listed. Also, an adequate interface may be 
considerably simplified over the full function controller normally used, since 
the data are in large blocks of thousands of samples each. For example, 
sectoring of the tracks on a disk, normally an interface function, may not be 
necessary. 

User Interface Equipment 

Most other peripherals used with microcomputer systems are quite 
ordinary but sometimes scaled-down versions of the equivalent minicompu- 
ter devices. One major difference is in interfacing technique whereby the 
interface might be considerably simplified and therefore reduced in cost by 
doing much of the work in software. A side benefit of this approach is 
increased flexibility in the operation of the device, although considerable 
software experience is often required to implement a software interface. 

Microcomputer systems frequently use a standard display terminal for 
the primary interface with the user. These typically act like teletypewriters 
but with a considerable increase in speed and reliability and reduction in 
noise. Alchough programming for teletype-like ‘“‘command—response” in- 
teraction is quite simple, most of the interaction potential of the display is 
unrealized. The teletype approach to text editing, for example, would either 
have the user retype the entire line or give a “computerese” command to 
“replace XXXXX with YYYYY,” where XXXXX is the word in error and 

YYYYY is its replacement. The computer in response searches some or all of 
the file for XXXXX and replaces it with YYYYY. 

Another approach is the use of a display interface board and a keyboard 
interface board plugged directly into the computer. The display interface 

shows the contents of a portion of main memory directly on the screen. The 
keyboard interface is completely separate, allowing software to determine the 
disposition of input keystrokes. The combination allows a superior man— 
machine interface to be implemented, in which, using the editing applica- 
tion as an example, a pointer (cursor) may be moved to a desired point and 
the correction directly entered. Advanced versions of such directly interfaced 
displays have graphic capability allowing waveforms and arbitrary shapes co 
be displayed. Thus, direct waveform and control function editing is also 
possible. This topic will be covered in greater detail in Chapter 11. 

Printing Devices 

Even with easily operated computer systems and high-speed displays 
there is no escape from the need for printed output. Standard file folders of 
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printed text and other information are always needed for effective communi- 
cation with others. As may have been guessed by now, the ubiquitous 
teletype is often used for this task. However, inexpensive impact dot matrix 
type printers are rapidly gaining acceptance. These have several advantages, 

but print quality is not one of them, since the characters are formed from 
dots, usually in a 5 wide by 7 high matrix. However, such a presentation is 
similar to that on the display screen, and some of these printers can be coaxed 

into printing arbitrary dot matrix graphics also. The ability to give an exact 
display screen image is quite valuable. Speed of these units is much higher 
than the teletype and is typically in the range of 30 to 200 characters/sec. 

So-called “daisy wheel” or “servo” printers are frequently used in which 
office typewriter print quality is desired. These machines are also capable of 
general dot or limited line graphics too. The key to their flexibility is that 
the print element may be freely positioned anywhere on the paper in incre- 
ments of 1/120 inch horizontally and 1/48 or 1/96 inch vertically under 
program control. Plots may be made by printing the period or other charac- 
ters at carefully selected locations. In fact, most of the drawings of 
waveforms, response curves, etc., in this book were produced with a printer 
of this type and then photographically reduced. 

The best device for printed graphic output is a standard X-Y plotter. 
Inexpensive units that require the host microcomputer to do all of the 
detailed plotter control such as motor speed variation and vector slope calcu- 
lation are coming on the market. 

Microcomputer Software 

Software, of course, is the key to a useful microcomputer system regard- 
less of the amount of memory or other peripheral devices available. While 
much of the software that will be discussed in succeeding chapters is 

specialized for music synthesis, a considerable amount of standard support 
sottware 1s used tn all general-purpose microcomputer systems. Although the 

term “standard” is used, there is considerable variation tn implementation 

and use details according to the individual manufacturer's philosophy. Most 
of the discussion will be centered around the support software required for 
program development in assembly language, although much of it applies 
equally well co compiler languages. 

System Monitor 

The most fundamental piece of support software is the system monitor. 
With few exceptions, microcomputers are unlike minicomputers in that the 

traditional “programmer's console” with dozens of toggle switches and lights 
is absent. Instead, a system monitor program is used to allow equivalent 

console functions to be performed through the primary interactive I/O de- 
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vice, such as a keyboard/display. All system monitors have the capability of 

reading memory, modifying memory, examining the microprocessor regis- 

ters, and controlling the loading, dumping, and execution of programs. 

More comprehensive monitors have debugging functions such as search 

memory and breakpoints or program trace. Sometimes these and other de- 

bugging functions are part of a separate debugger program. 

Systems using a floppy disk term their monitors “disk-operating sys- 

tems,” or DOS. In addition to the basic console and debugging functions 

outlined above, DOS controls the allocation of disk space, finds and creates 

files given a mnemonic name, and does other disk housekeeping chores. 

Through DOS, the user may request a disk index listing, delete an unwanted 

file, copy files from one disk to another, specify programs to be loaded by 

name, and read or write data files a character at time. DOS handles all of the 

blocking or unblocking of characters to make full disk sectors. An important 

DOS feature is the ability to do all of these tasks on command from a user 

program as well as with console commands. 

Text Editor 

Much of the actual time a user spends with a microcomputer system is 
probably spent with the text editor program. Even if he or she is a perfect 
typist and never needs to actually edit, the editor is necessary to create text 
files for the assembler or compiler or even music interpreter. However, since 

people are seldom perfect typists and are never perfect programmers, the 
editor is also used to add, delete, change, and move program text. Most 

editors, particularly those based on audio or digital cassette storage, are 
limited to editing files that are small enough to fit into main memory. Thus, 
large programs must be broken into acceptably small segments and edited 
separately. Typically, a file would be read into a text buffer in memory, 
edited as required, and a new file would be created. The old file can then be 
deleted if desired. If large insertions that might cause the file to exceed 
available memory are anticipated, a portion of the text buffer contents may 
be written as one file, deleted from memory, and the remainder along with 
the insertion would be written as another file. The assembler or compiler can 
link the segments together into a single program. 

Highly sophisticated editors supplied as part of some disk-operating 

systems are able to handle any size file by scro/ling the text through memory 
forward and backward in response to user commands. Insertions and dele- 
tions may be made in any order by scrolling the text on the screen to the 
desired point and then keying in the change. The inherent editing capability 
of the disk allows long files to be edited directly wichout creating unneces- 
sary copies. Less advanced editors may still allow unlimited file size and 
insertions but can only scroll forward, thus requiring that editing be done in 
sequence to some extent. 
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Assembler 

The purpose of an assembler is to convert program source text 
statements into binary machine language object code and a printed listing. 
Assemblers work in a variety of ways according to the size of system they 
were designed for and level of sophistication. Perhaps the least desirable but 
most common small system assembler seems to assume that one has great 

quantities of main memory and no external storage at all. It assumes that the 
entire program source text is in a text buffer in memory and also stores the 
object code directly in memory in the locations that it will occupy during 
execution. The listing, if the assembler has the capability of producing one, 
is printed during the assembly process. Obviously, such an assembler is 
limited to very small programs or a highly segmented one. 

Good assemblers found in disk-operating systems work in a much more 
general way. Before being run, the assembler is given the name of the source 
file, which already exists, and the names of two new files that it will create; 

one to hold the object code and the other to hold the listing. The assembler 
then scans the source file two or three times and produces the object and 
listing file. Before printing the listing file, the user can quickly scan it using 
the editor to see if any errors were flagged by the assembler. Assuming there 
were few or none, the editor can be commanded to print the listing if one is 
actually desired. The operating system may either load the object file into 
memory itself or a loader program may be used for that purpose. After 

loading, the user may specify the data files, if any, and execute the program. 
With such a setup, program size is limited only by the capacity of the 

diskette and the amount of memory available for the assembler’s symbol 
table. Most of the preceding comments also apply to compiler languages such 
as FORTRAN or the new structured microcomputer languages such as PL/M 

and PASCAL. 

High-Level Language 

By far the most popular high-level language for microcomputers is 

BASIC. Originally developed ae Dartmouth University for student use on a 

large time-sharing computer, it has evolved well beyond its design goals into 

a general-purpose programming language. Although its strengths and weak- 

nesses in music programming will be detailed in Chapter 18, it can be said 

here that it is an excellent one-shot problem-solving language but nor espe- 

cially suited for large or complex programs. As a matter of fact, most of the 

waveforms and plots in this book were done using simple BASIC programs. 

BASIC will also be used periodically to illustrate program algorithms. One 

unique feature present in nearly all microcomputer BASIC is the PEEK and 

POKE functions. These allow a BASIC program to directly address and read 

or write any memory location in the microcomputer. If the system utilizes 
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memory-mapped I/O?, then BASIC programs may be written to operate any 

W/O device on the system! 
On microcomputers, BASIC is almost exclusively implemented as an 

interpreter. Thus, BASIC programs exist in memory as character strings in 

the same form as they appear in print except for perhaps the substitution of 

single, normally unprintable, bytes for keywords. Part of the BASIC in- 

terpreter is a simple, line-number-oriented text editor. When the “run” 

command is given, the interpreter scans each program line, extracts the 

meaningful information from the line, acts upon it, and then goes to the next 

line. As a result, BASIC programs tend to run very slowly compared to the 

inherent capability of the microcomputer. Nevertheless, BASIC is very easy 

to learn and use and for any but highly repetitive calculations its speed is 

adequate. True compilers for BASIC are just starting to be introduced, which 
should increase the speed manyfold while detracting only slightly from its 

ease of use. 
BASIC interpreters for microcomputers are usually rated by how much 

memoty is required with certain features being expected in particular-sized 

versions. “4K BASIC” is indeed basic with only the fundamental arith- 
metic and transcendental functions being provided. Although such a version 
is unsuitable for the majority of published games and other programs, it is 

quite adequate for experimental musical calculations. “8K BASIC” is the 
most commonly used version. Generally, two-dimensional array and character 
string manipulation capability is added. Also additional mathematical 

functions and niceties such as octal and hexadecimal integer constants may 
be provided. 

The standard versions of BASIC just mentioned are completely self- 
contained with the ability to load and store program text only from or to an 
external storage device. Disk-based versions of BASIC requiring 12K or more 
of memory generally can be expected to have the capability of reading and 
writing disk data files directly. 

Example Microprocessor Descriptions 

In the past, there has been considerable variety in the architecture of 

mini- and maxicomputers, resulting in some machines being better suited to 
certain tasks chan others of equal cost and rated performance. Microprocessor 

architecture is even more diverse, and the differences in suitability to a 
particular application are accordingly greater, It is haman nature, however, 

to become attached to a particular machine and attempt to force it to handle 
the full spectrum of applications encountered. Because of the flexibility of 

?Memory-mapped I/O is peculiar to the PDP-11 line of minicomputers and most 
microprocessors, Essentially all I/O device status, control, and data registers are 
addressed like memory locations with all memory reference microprocessor instruc- 
tions available for /O register manipulation. 
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microprocessors, this is nearly always possible, but the end result is likely to 
be more complex and expensive than necessary. 

Musical applications of microprocessors cover three quite different 
types of functions. Briefly, these are synthesizer control, direct synthesis, and 
dedicated logic replacement. For use as examples in this book a different 
microprocessor has been selected for each type. Although the exact selection 
can certainly be argued, at the time of writing the author felt that these three 
are the closest to being optimum on the basis of overall popularity, design 
and use effort, performance, availability, and cost. Many other mi- 

croprocessors may be only slightly less suited and the difference is usually not 

worth fighting over. 
In the comparative discussions to follow, two areas of difference among 

microprocessors will be concentrated upon. These are its machine language 

instruction set, since that directly influences assembly language program- 

ming, and its bus structure and timing, which influences system hardware 
design, particularly in the logic replacement application. Only the most 
important points that distinguish the subject microprocessor from others will 

be covered. More detail can be found in the wealth of manufacturet’s litera- 
ture and microprocessor design books available. 

The 8080 for Synthesizer Control 

The 8080 microprocessor, originally introduced by Intel, is at this time 
the most popular microprocessor chip in use and rightly so. It was the first 

of the second generation of microprocessors to be introduced and is assembly 
language compatible with the most popular first-generation microprocessor, 
the 8008. Being the first, universities were able to incorporate it into proj- 

ects and courses, thus introducing many engineering students to its opera- 

tion. Also because it was available first and is straightforward in its applica- 
tion, it presently dominates the hobbyist market. It is one of the best 
general-purpose 8-bit devices available, since it is not aimed specifically at 
high-volume simple or complex high-performance applications. Also, it is 

the most available of all microprocessors, having no fewer than six different 
sources. Additionally, a software-compatible higher-performance third- 
generation chip is available, the Z-80 from Zilog. Finally, Intel has intro- 
duced the 8085, a completely software-compatible device with improved bus 
timing and structure. Such compatibility is important because there already 
exists a large body of software for the 8080 including several high-level 

languages. The result is that more people are using the 8080, 8085, and Z-80 

than any other or possibly all other microprocessors put together. This does 
not mean that more 8080s are in use, however. That title belongs to an 

obscure 4-bit unit. 

Bus Structure 

The bus structure presented by the 8080 is fairly simple compared to 

most minicomputers but somewhat more complex than many other mi- 
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croprocessors. Two additional support ICs are available to implement the 

latching and intricate gating otherwise necessary to provide usable system 

timing strobes. These are the 8224 clock oscillator and driver and the 8228 

system controller chips. Since use of these support chips is nearly universal, 

their presence will be assumed in the discussion to follow. 

The 8080, like most other single-chip 8-bit microprocessors, has a 

16-bit address bus and an 8-bit bidirectional data bus. In addition, there are 

power supply pins, clock input pins, and other status and control signals to 

make up the total of 40 package pins. Power supply voltages required are 

+12, +5, and —5 V, although negligible current is drawn from the —5 

supply. 
The 8080 requires a two-phase clock with an amplitude of 12 V. This 

clock waveform has a standard repetition frequency of 2 MHz and requires 

careful control of pulse timing and width. The 8224 clock generator neatly 

provides proper timing by counting down an 18 MHz crystal oscillator by 9 

and decoding the counter states. 

Figure 5-1 shows generalized read timing and Fig. 5-2 shows gener- 

alized write timing produced by the 8080 in conjunction with an 8228 

system controller. Every read or write operation performed is called a ma- 

chine cycle and requires either three, four, or five clock cycles to perform. As 

can be seen, both read and write cycles begin with the address bus and data . 

bus stabilizing in the middle of T1. The data bus at this time contains coded 

information about what kind of machine cycle is taking place, which is 

latched into the 8228 and decoded. Normally, not much happens during T2, 
but ic is possible to hold the processor in this state for additional clock cycles 
until the addressed memory or I/O device is ready to respond. T3 completes 
the actual data transfer portion of the machine cycle. At this time in a read 
cycle, the 8228 will have asserted either “memory read,” “I/O read,” or 

i a— MINIMUM MACHINE CYCLE 1,500 n see ————-__———-+» 

PHASE | 

PHASE 2 

SYNC 

STATUS STROBE. 

WEMORY READ 

DATA BUS INPUT 

aooress BUS ZAM AA AAA ALLELE 
ACCESS TIME 740 nsec———=|90 | 50]=— 

DATA BUS LLLL LL LALLA CLL LLL NLL LILLE 
READ DATA 

Fig. 5-1. 8080 bus read cycle 
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STATUS 
STROBE 

MEWORY 
WAITE 

DATA BUS 

Fig. 5-2. 8080 bus write cycle 

“interrupt read” signals according to the type of read cycle being performed. 
While the strobe is on, the addressed device is expected to gate its data onto 
the data bus. If it is a write cycle instead, the 8228 will assert either 
“memory write” or “I/O write,” and the addressed device should grab its 
data from the data bus. 

At this point, another machine cycle could start immediately, but, if it 
is an execution cycle, one or two additional clock periods may elapse with no 
bus activity. Thus, 8080 machine cycles are either 1.5, 2.0, or 2.5 pasec in 

duration. This variation in cycle time is of no consequence in many applica- 

tions, but in others involving two or more processors sharing the same bus, it 

can limit design options and performance. Required memory access time is 
from when the address bus stabilizes to when the microprocessor requires 
valid data on its data bus. At normal speed, this time is 740 nsec, although 
500 nsec memory access is usually specified to allow for other delays and 
timing margin. 

The 8080 is claimed to have a direct memory access (DMA) interfacing 
capability, although it is very rudimentary. Essentially, the microprocessor 

“disconnects” itself from the address, data, and control buses at the end of a 

machine cycle in response to the hold control line. When so suspended, the 

DMA device can take control of the buses for direct data transfer to or from 
memory but is also responsible for generating all of its own timing and bus 

control signals. 

Although the preceding describes the 8080 microprocessor bus itself, 
any substantial-sized system will require a printed circuit backplane bus with 
TTL drivers and receivers added to the 8080. The most popular system 
implementation of the 8080 uses a bus arrangement called the Altair or 
S-100 bus, since MITS first introduced it with their Altair 8800 mi- 

crocomputer. Because of its popularity, there are well over 100 different 

kinds of memory, peripheral interface, and even CPU boards (using nearly 
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any popular microprocessor) that plug into the S-100 bus. Start with a 

cabinet (there are over a dozen suppliers of these too!) containing power 

supply and S-100 bus with board connectors and add CPU, memory, and 

interface boards, and one has a very flexible hardware system. Interface 
boards cover the range from graphic display generators to speech synthesizer 
boards. Prices are low too because of intense competition among the dozens 
of small companies making S-100-compatible products. 

Even chough most users consider the S- 100 bus to be a true standard, in 

reality it is a de facto standard without a formal definition. As a result, not all 
legitimate mixes of available boards will work properly together. Neverthe- 
less, the level of compatibility that has been achieved among a very wide 
variety of boards has not been equalled in the history of computers. 

Interrupts and Registers 

Interrupts on the 8080 are very flexible, allowing the implementation 
of multilevel interrupt driven systems. Vectored interrupt of up to eight 
levels is easily done by gating a single byte “restart” instruction onto the data 
bus in response to the “interrupt read” signal from the 8228. Nearly unlim- 
ited vector levels are possible by “jamming” in three byte “call” instructions 
instead, although the control logic is more complex. The 8080 itself provides 
only one priority level of interrupt via a single interrupt enable flag. 

The 8080 has more on-chip programmer-accessible registers chan many 

microprocessors, Besides the 16-bit program counter, there is a 16-bit stack 
pointer register. Most microprocessors use a stack to save the return address 

from a subroutine call rather than the minicomputer convention of putting it 
in a register or storing it at the entry point of the subroutine. This was done 
to allow software to reside in ROM if desired without prohibiting use of the 
machine's call instruction. Also available are an 8-bit accumulator (A), six 

8-bit index registers (B, C, D, E, H, and L), and an 8-bit status register. 

Internally, these registers are linked into pairs (A-status, B-C, D-E, H-L) for 

some instructions. The H and L. registers are so named because several 
instructions assume that they contain the high and low parts of a memory 
address, respectively. 

Instruction Set 

Table 5—1 contains a brief summary of the 8080 machine language 
instruction set. Instructions are either one, two, or three bytes long and 
require from 1 to 5 machine cycles or 4 to 18 clock cycles to execute. This 
gives an average speed using a typical instruction mix of about 250,000 
instructions/sec, due in part to the slow (5 fusec) conditional branch. The 

first byte is always the operation code. The second byte in a two-byte 
instruction is either an immediate data byte or an I/O device address. The 
second and third bytes in a three-byte instruction are either a full absolute 



MICROPROCESSORS 
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Instruction 

MOV 11,12? 
MVIr 
INR r OCR r 
ADD r SUBr 
ADC r SBBr 
ADI SUI 
ACI SBI 
ANA ORA XRA r 
CMP r 
CPI 
RLC RRC 
RAL RAR 
JMP 
Jeondition 

CALL 
Ccondition 

RET 
Reondition 

RST 
IN OUT 
Xr 
PUSH r 
POP r 
LDA 
STA 
XCHG 
XTHL 
SPHL 
PCHL 
DAD r 
STAXr 
LDAX r 
INX r DCX r 
CMA 
STC CMC 
LHLD SHLD 
EI DI 
DAA 
NOP. 

OO OWA nmAoaNMHyaa aD 

ao 

Baa wen nnn WOosoNa 

2.5 
3.5 
2.5 
2.0 
2.0 
3.5 
3.5 
2.0 
2.0 
3.5 
2.0 
2.0 
5.0 
5.0 

8.5 
5.5/8.5 

5.5 
5.0 
5.0 
5.5 
5.0 
6.5 
65 
2.0 
9.0 
25 
25 
5.0 
3.5 
3.5 
25 
2.0 
2.0 
8.0 
2.0 
2.0 
2.0 

No. of Execution 
bytes time (us) Function 

Move from r2 to 1 
Move immediate to r 
Increment and decrement r 
Add r to A, subtract r from A 
Include carry with add or subtract 
Add and subtract immediate to A 
Add and subtract immediate with carry 
And, or, exclusive-or r to A 
compare r to A 
Compare immediate to A 
Rotate A left or right without carry 
Rotate A left or right with carry 
Jump unconditionally 
Jump conditionally on true or false 

state of any status flag 
Call subroutine 
Call conditionally on true or false 

state of any status flag 
Return from subroutine 
Return conditionally on true or false 

State of any flag 
Limited call to one of 8 fixed addresses 
Input or output to 1 of 256 devices 
Load immediate register pair 
Push register pair on stack 
Pop stack into register pair 
Load A from memory direct 
Store A into memory direct 
Exchange D,E and H,L register pairs 
Exchange H:L and top 2 bytes of stack 
Transfer H:L to stack pointer 
Transfer H:L to program counter 
Double add register pair to H:L 
Store A indirect through register pair 
Load A indirect through register pair 
Double increment/decrement register pair 
One's complement A 
Set and complement carry flag 
Load and store H:L direct 
Enable and disable interrupts 
Decimal adjust A 
No operation 

Notes: ' For single registers r = A, B, C, D, E, H, L, (H:L). 
For register pairs r = A:SP, B:C, DAE, H:L. 

? Z=Zero flag, S=sign flag, P=parity flag, C=carry flag. 
3 Status is not saved. 
* Flags are part of A:S register pair. 

Indi- 
cators? 

VuUVVVUUVU NNNNANNNN ANNNHANHANH 

loxekezekololorore} 

Note? 
Note? 

Note 

Note* 

ZSPC 

memory address or a two-byte immediate value, which is usually an address 
also. Note that the halves of double-byte values are flipped so that the least 
significant byte is first. 
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An exceptionally versatile set of data movement instructions are pto- 
vided. If the accumulator and the six index registers are considered as seven 
distinct registers and the memory byte addressed by the contents of the HL 
register pair is considered an eighth, then all 64 possible data transfers from 
register to register are possible in a one-byte instruction. Additionally, an 
immediate load of any register as well as the HL addressed memory byte is 
possible. Direct load and store of the A register and double load and store of 
the HL register pair is possible with a single three-byte instruction. Besides 
using HL as a full index register, instructions are provided for load and store 
of A using BC and DE as full index registcrs also. Finally, exchange of 
register pairs DE and HL may be accomplished with one of the fastest 
instructions in the machine. Note that simple data movement does vor alter 
any condition codes. 

Besides using the stack for saving return addresses during subroutine 
execution, the flexible set of stack-processing instructions available makes 
temporary storage of data on the stack an effective programming technique. 
Any of the four register pairs may be pushed onto or popped from the stack. 
The stack pointer register may be set with either two-byte immediate data or 
the HL register pair. Finally, as the slowest instruction in the machine, HL 
may be exchanged with the top of the stack, which makes some otherwise 
difficult stack operations much easier. 

Condition codes are a weak point in the 8080 design. Essentially, four 
condition flags are set when arithmetic, logical, and some increment/ 

decrement instructions are executed. These are “sign,” which is the most 

significant bit of the result, “zero,” “carry,” and “parity.” The latter is 
unique and replaces a complex parity calculation routine when needed. 

Jumps, subroutine calls, and subroutine returns may be made conditional on 
either che true or complement state of each flag individually but not combi- 
nations of flags. Thus, two conditional jumps are required for testing the 
strictly positive condition. Arithmetic overflow testing is even more dif- 
ficult. 

The 8080 has a good set of increment and decrement instructions that 
simplify loop counters and indexing through a table one byte at a time. Any 

of the seven individual registers may be incremented or decremented as well 
as the memory byte pointed to by HL, and the condition codes, except carry, 
will be set. Registcr pairs may also be incremented and decremented as 
16-bit quantities for indexing, but condition codes ate not set. 

A unique instruction characteristic of the 8080 is the “restart” instruc- 
tion. It is a one-byte instruction and its eight variations allow eight different 
subroutines in the lower 64 bytes of memory to be called. With proper 
choice of these eight routines, the effect is almost as if eight powerful 
one-byte instructions had been added to the repertoire. However, the inter- 
fupt system may also depend on these instructions so care must be taken in 
their use. 
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Arithmetic and logical instructions are fairly complete but must use 
register A-as one operand. If memory is to be the other operand, it can only 
be addressed through the contents of HL or be an immediate value. Add, add 
with carry, subtract, subtrace with borrow, and, or, and exclusive-or from 

any register or memory are possible. A similar set of compares is also im- 
plemented. In addition, HL may be used as a 16-bit accumulator, and BC, 
DE, HL, or the stack pointer is available as a 16-bit operand. However, 
only the carry flag is set. 

Only rotates by one bit ate available for scaling. The carry indicator can 
be either included or not in the rotate, although the standard mnemonic 

seems to be backward. Other special instructions are as listed. The decimal 
adjust instruction is used for direct arithmetic on two-digit-per-byte decimal 
operands and is almost never used in general-purpose programming. A single 

I/O instruction with 8-bit address field is provided, which transfers to or 
from register A. Memory-mapped I/O may be used if more I/O addresses ot 
additional flexibility is required. 

Why Synthesizer Control? 

Now that the leading hardware and software features of the 8080 have 
been summarized, what makes it so suitable for synthesizer control applica- 

tions? The answer is, basically, its large following, extensive software li- 
brary, and general-purpose instruction set. Although memory addressing is 
weak, it is general and makes no assumptions about where things are stored. 
The only exception is che eight restart subroutine addresses, and that feature 

is really a carryover from the older 8008. Many other microprocessors have a 
“base page,” which is quickly and easily accessed but definitely limited in 
size (usually to 256 bytes). A base page can make moderate-sized, self- 
contained programs quite speedy and efticient. However, modular and struc- 

tured programming techniques used to some extent in most large programs 

can easily exhaust a base page even if ample memory is available elsewhere. 
Thus, the 8080 accomodates large, modular programs without concern over 
a base page or where in memory programs and data are stored. 

Synthesizer control is an excellent application for a mederate- 

performance, general-purpose microprocessor with extensive software sup- 
port. Most control operations are relatively slow, being in the time scale of 

milliseconds. However, since a number of things may be happening at once, 

a good multilevel interrupt system is helpful. Also, since controlling even a 
moderate-sized synthesizer and manual input devices will require a lot of 
interfaces, it is important to use a system that is easy to interface to. Exten- 

sive software support means that high-level languages are available for pro- 
gramming the difficult but not overly time-sensitive functions to be per- 
formed, such as music language compilation, control function editing, or 
maintaining a musical data base. General popularity means that the results 
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obtained by an individual hobbyist or university can be understood and 
applied by numerous other 8080 system users. 

The 8080 is capable of a limited amount of direct synthesis also, but 
since there is no multiply or divide instruction and word size is only 8 bits, it 
is likely to be too slow for anything except experimentation. External 

hardware can be added for the multiply and divide functions, which would 
speed things up severalfold. However, before much time and money is spent 
on enhancing an 8080 system, a serious look at a more powerful processor 
would be wise. 

The LSI-11 for Direct Synthesis 

The LSI-11 is a microcomputer produced by Digital Equipment Corpo- 
ration that emulates the instruction set of their PDP-11 series of minicom- 
puters. Although there are at the moment three other minicomputer 
emulator microprocessors available, the LSI-11 was the first 16-bit mi- 

crocomputer to emulate an existing, popular minicomputer. The LSI-11 is of 
interest here because it has a 16-bit word size and full 16-bit integer multi- 
ply and divide as well as 32-bit floating point instructions. These and other 
features are invaluable in efficient direct synthesis work. Because it emulates 
a still growing line of minicomputers whose top end has raw performance 
rivaling that of big mainframes, building a direct synthesis system around 
the LSI-11 has considerable expansion capability without rewriting software. 

Conversely, several universities are using PDP-11 minicomputers in serious 
sound analysis and synthesis projects. Much of that software could be easily 
adapted to run on an LSI-11 with sufficient memory but at a slower speed. 
Also, the LSI-11 is available fully supported to the hobbyist from Heath as 
the H-11. Furthermore, most programmers agree that the PDP-11 instruc- 

tion set is the most nearly perfect 16-bit instruction set yet devised for 
assembly language programming. Finally, the cost of the standard LSi-11 
with the 4K words of onboard memory is significantly less chan $1,000. For 
these reasons, the coming age of single-chip 16-bit microprocessors will 
probably see this machine and its instruction set as a dominant force. 

The LSI-11 microcomputer is a fairly large (8.5 X 10.5 inches) printed 
circuit board chat uses either four or five large [Cs for its microprocessor. The 
fifth chip is optional and contains the microprogramming for multiply, 

divide, and floating point. In addition to the MOS microprocessor, there are 

a number of TTL ICs that implement a bus controller and a memory interface 
for 4K words of memory. which is included on the board. A unique system 
monitor is actually part of the mécroprogram, so the user can actually consider 
this to be built into the hardware and thus never worry about his program 
interfering with the monitor. A newer, half-size version of the board has just 
been announced and contains everything mentioned except the memory. 
Also, a five-times-as-fast “LS]-11-3" 1s rumored to be under development. 
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System Bus 

The system bus and timing presented by the LSI-11 is that of a typical 
minicomputer, although it is not quite the same as chat normally used with 
PDP-11 minicomputers. As a result, the bus is well documented and very 

flexible but not as easy to interface as most other microprocessors. Interrupt 
priority and direct memory access priority for an essentially unlimited num- 
ber of devices is provided by daisy-chained bus grant signals. When DMA is 
performed, the basic timing relationships are controlled by the DMA device 
but according to a rigid sct of rules. Also the LSI-11 has a built-in refresh 

circuit that will refresh dynamic memory (much denser, cheaper, and cooler 
than static memory) throughout the system, thus decreasing potential mem- 

ory costs significantly. 
The bus itself consists of 16 multiplexed address and bidirectional data 

tines, 17 control lines, and numerous ground and power lines for +5 V and 

+12 V. Devices connected to the bus may be masters or slaves or both but at 
different times. Bus masters are those devices that can generate addresses 
such as the processor or DMA devices. Slaves simply respond to addresses and 
read or write commands from the masters and are typically memories and 
programmed I/O interfaces. Bus arbitration logic on the LSI-11 looks at 
requests for bus mastership and insures that only one device is granted 
mastership for every bus cycle. 

Cycle Timing 

LSI-11 bus cycles are basically asynchronous, meaning that no clock is 
involved and that cycle length varies according to the speed of devices 
addressed without quantization. The overall system speed is determined by 
logic delays that vary somewhat from board to board and with temperature. 
However, the approximate maximum bus speed is 600 nsec for read, 725 

nsec for write, and 900 nsec for read-modify—write assuming a zero response 
time peripheral. Added to these times would be bus and logic delays in the 
peripheral plus any excess memory access time beyond 200 nsec. Every data 

7 STROBE la STROBE 
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REPLY 
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*YARIES WITH MEMORY ACCESS TIME 

Fig. 5-3. LSI-11 bus read cycle (practical minimum timings) 
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transfer on the bus requires a response from the addressed device. If no 
response is received within 10 msec, a bus error is signaled, which usually 
indicates that the addressed device does not exist. The result is an extremely 
reliable bus structure with positive verification of all data transfers, a feature 

not normally seen in microcomputer systems. 
Figure 5-3 shows a simplified diagram of a bus read cycle. The cycle 

starts with the master placing an address on the 16 data lines and indicating 
that a read cycle will follow. After a stabilization period, the master asserts 
“sync,” which causes all slave devices on the bus to latch the address before it 
goes away. Next the master asserts “din,” which signals that dara read by the 
addressed device should be placed on the data bus. When this is donc, the 
slave also asserts “reply,” which signals the master that data is available. 

After the master grabs the data from the bus, it releases ‘‘din,” causing the 
slave to release “reply,” and later releases “sync,” which ends the cycle. 

The address portion of the write cycle shown in Fig. 5-4 is identical to 
that of a read cycle except that a following write cycle is indicated. After the 
address sequence, the master places the data to be written on the bus and, 
after it has settled, asserts “dout,” which signals the addressed device that 

data is available on the bus. After the slave stores the data, it asserts “reply,” 

and the cycle continues to termination as before. A read—modify—write 
(RMW) cycle is also possible, although it is not shown. The RMW cycle 

starts like a read cycle but is later followed by the data transfer portion of a 
write sequence without readdressing the device. No input or output bus 

cycles are needed because the LSI-11 uses memory-mapped I/O exclusively. 

Although the LSI-11 uses a 16-bit bus, all addresses are actually byte 
addresses. When reading a single byte, the processor selects the proper byte 
from the 16-bit word read. However, when a single byte is written, a control 
signal is asserted, which prevents memories from modifying the other unad- 
dressed byte in the word. 
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Fig. 5-4. LSI-11 bus write cycle (practical minimum timings) 
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Interrupts and Registers 
An indefinite number of vectored priority interrupts are provided by 

having interrupting devices supply a vector address to the bus in response to 
an interrupt acknowledge bus. cycle. This cycle is also fully interlocked and 
the processor responds by saving its current status and fetching the address of 
a service routine from memory at the address supplied by the interrupting 
device. 

The LSI-11 CPU contains eight general-purpose registers of 16 bits 
each and a status word. Two of the general registers double as the program 
counter (R7) and stack pointer (R6). The others are absolutely equivalent and 
free in their use, although some programming conventions may dedicate the 

use of one or more additional registers. AJ] addresses are byte addresses; thus, 

word addresses are even and the 16-bit address size is capable of addressing 
32K words. The upper 4K words are normally reserved for I/O device ad- 
dresses and portions of the lower 1K are reserved for trap and interrupt vector 
addresses. 

Addressing Modes 

One of the great strengths of the LSI-11 instruction set is its many and 

varied addressing modes. With the right combination of a 3-bit mode code 
in the instruction and register specification (remember that R7 is the pro- 
gram counter), the following distinct addressing modes are available: 

. Register, specified register contains the operand. 

. Immediate, operand follows the instruction. 

. Absolute, address of operand follows the instruction. 
4, Relative, word following the instruction when added to the program 

counter is the address of the operand. 
5. Indexed, word following the instruction when added to a designated 

register is the address of the operand. 
G. Register indirect, register contains address of operand. 
7. Autoincrement, register contains address of operand. After use, the 

register is incremented to point to the next datum in sequence. 
8. Aurodecrement, register contains address of operand but before use it is 

decremented to point to the previous datum. 
9. Relative indirect, same as relative except operand is the address of the 

actual operand. 
10. Indexed indirect, indirect form of indexed. 

11. Autoincrement indirect, indirect form of autoincrement. Increment is 

always by two to point to next word 
12. Autodecrement indirect, indirect form of autodecrement. Decrement is 

always by two to point to previous word. 

Wen 

This covers every known addressing mode except absolute indirect, 
which can always be accomplished with relative indirect. In particular, the 
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autoincrement and autodecrement modes make table-scanning operations of 

both bytes and words fast and efficient. Although the LSI-11 CPU defines 

R6 as a stack pointer, the autoincrement and autodecrement modes will 

allow any register to be used as a stack pointer with equal efficiency. Thus, a 

program may have multiple stacks existing and ready for use simultaneously. 

Note that the displacement used in immediate, indexed, and relative ad- 

dressing is a full 16-bit quantity allowing ali of memory to be reached. 

Relative addresses for conditional branch instructions use an 8-bit displace- 

ment, however. 

Instruction Set 

Most LSI-11 instructions are operand oriented. An operand is defined by 
a G-bit field in the instruction word with three of these bits specifying a 
register number and the other three bits specifying a basic addressing mode. 
If the specified addressing mode requires an additional word for a constant 
(such as immediate or absolute), the word follows the operation code word. 
On double operand instructions, it is possible for two.words to follow the 
instructions; thus, instructions may be one, two, or three words in length. 

The result of full availability of all addressing modes with all operands, even 
double operands, allows unprecedented flexibility. For example, one memory 
location may be added to another without having to load either into a register 

first! 
Nearly all operand-oriented instructions can be either in word mode or 

byte mode as determined by a bit in the operation code. Word addresses 
must always be even. When autoincrement or autodecrement addressing is 
specified, the increment is by one for byte mode and by two for word mode. 
Asa result, the LSI-11 has the byte-handling power of an 8-bit machine with 
the arithmetic power and speed of a 16-bit machine. 

Table 5-2 shows an abridged list of LSI-11 instructions. Because of the 
operand-addressing structure, there are far fewer individual mnemonics than 
with other machines of similar power. Many common operations may not 
even have their own mnemonics. For example, a push onto the system stack 

is accomplished by specifying autodecrement addressing on register 6 as the 
destination operand. The mnemonics shown are for word mode; byte mode, 
when available, is specified by appending a “‘B.” 

The most powerful instructions belong to the double-operand group. 
The first operand is termed the sowrce and the second operand is termed the 
destination. Although there are only seven, they cover all of the double- 
operand operations commonly used. The “move” instruction, for example, 
replaces the typical load, store, push, pop, and register to register transfer 
instructions normally found. A special case occurs when the destination is a 
register and a byte mode instruction is used; the sign bit of the byte is 
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Table. 5-2. LSI-11 Instruction Set Listing 

Operand Byte Operation Basic Time 
Instruction type mode. DM=R__DM=M 

MOV Double Yes Move from source to destination 3.5 2.45 
ADD SUB Double No  Add/subtract source to destination 3.5 42 
BIS BIC Double Yes: Logical or/and source to destination 3.5 42 
CMP. Double Yes Compare source with destination 3.5 3.15 
BIT Double Yes Bit test; logical and and set conditions 3.5 3.15 
XOR Double’ No Logical exclusive—or source to destination 3.5 42 
CLR Single Yes’ Set destination to zero 3.85 42 
COMNEG Single Yes  Complementinegate- destination 42 4.55 
INC DEC Single Yes  Increment/decrement destination 4.2 49 
TST Single Yes Test destination and set flags 4.2 3.85 
ROLASL Single Yes. Shift/rotate destination left 1 bit 3.85 4.55 
ROR Single Yes. Rotate destination right 1 bit 5.25 5.95 
ASR Single Yes Arithmetic shift destination right 1 bit 5.6 63 
SWAB Single — Rotate destination 8 bits w/o carry 4.2 3.85 
ADC SBC _ Single Yes Add/subtract carry flag to destination 4.2 4.9 
SXT Single — Extend sign of low byte of destination 5.95 6.65 
MFPS MTPSSingle — Move from/to status register Approx. 7.0 
BR 8 Relative— Unconditional relative branch 3.5 
Bxx 8 Relative— Conditional relative branch 3.5 
JMP Single — Unconditional jump, full address 3.5 
JSR Single — Jump to subroutine 5.25 
RTS Register — Return from subroutine §.25 
SOB Register — Subtract one and branch if not zero 49 
MARK Implied = — Specialized system stack operation 11.55 
Traps Implied — Subroutine jumps to specific addresses = Approx. 17 
SEx Clix implied — Set/clear condition flags A 
MUL Double' No 16 x 16 multiply, 32-bit product 64 maximum 
DIV Double’ No 32 + 16 divide, 16-bit quotient 78 maximum 
ASH Double’ No 16-bit shift (destination) positions 10 + %shft 
ASCH Double’ No 32-bit shift (destination) positions 10 + 3/shft 
FADD FSUB Stack? — 32-bit floating add/subtract 46 average 
FMUL Stack? — 32-bit floating muttiply 75 average 
FDIV Stack? — 32-bit floating divide 151 Average 

Notes: * The destination operand can only be a general register. 
2 Any register may point to an operand “stack” containing the operands. The result re- 

places the first operand. 
3 Byte mode on instructions that allow it may be slightly slower or faster. 

extended into the upper byte of the 16-bit register. The bit test instruction is 
a form of compare except that the operands are logically anded together and 
the result, which ts discarded, sets the condition codes. The arithmetic 

instructions, “add,” “‘subtract,” and “exclusive-or,” do not have a byte 

mode. 
: All of the single-operand instructions have full address mode selection 
for their single destination; thus, memory may be operated on as easily as 
registers. One unusual operation that is frequently needed is “clear,” which 

sets the destination to zero, Test is equivalent to compare with zero. One 

weak spot is the shifts and rotates. Since they are single-operand instructions, 
only single shifts may be performed, although a “swap bytes’ instruction is 
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provided, which is similar to rotate 8-bit positions. Logical shift right is not 
provided. Double-precision arithmetic capability is provided by the “add 
carry,” “subtract carry,” and “sign extend” single-operand instructions. Tri- 
ple and higher precision is more difficult than on most other microprocessors; 
however, the 16-bit word size makes such a requirement rare. 

The condition codes and conditional jump instructions are two of the 
LSI-11’s unique features. Unique because they, along with the addressing 
modes, are patented. The processor status word contains four condition flags: 
“zero,” “negative,” “carry,” and “overflow.” Standard conditional jump in- 
structions for each condition and its complement as well as an unconditional 
jump are provided. However, additional separate sets of signed and unsigned 
conditional jump instructions are also provided. After comparison of un- 
signed quantities such as addresses, the unsigned set of conditionals is used, 
whereas the signed set is used after comparisons of signed numbers. These 
conditional jump instructions are unique because they look at the carry and 
overflow flags as well as the zero and sign flags to make the jump—no jump 
decision. Thus, common problems such as overflow in the comparison ot 
large numbers of opposite sign are never encountered with the LSI-11. This 
is in contrast to the common practice (and only in big machines at that) of 
using separate signed and unsigned compare instructions and a common set 
of conditionals. A flexible set of direct condition code modification instruc- 
tions is also provided. 

The set of jump instructions is rather ordinary except for the ‘subtract 

one and branch” instruction, which saves memory and time in common-loop 
operations. It and the “jump to subroutine” instruction are unique in that 
two operands are involved but one of them is restricted to the register- 
addressing mode. The jump to subroutine may either specify a linkage 
register to receive the return address (the register’s previous contents are 

saved on the stack) or if R7 is specified, have the return address placed 

directly onto the stack. This flexibility along wich the addressing modes 
makes all common forms of argument passing feasible. The jump instruction 
is provided because the unconditional branch is restricted to a+ 128-word 
range, the only such restriction in the instruction set. 

Additional standard instructions not shown in the list are a number of 
“traps”’ that are actually software interrupts and miscellaneous machine con- 
trol instructions. 

Extended Arithmetic Instructions 

The extended arithmetic instructions that make the LSI-11 so valuable 
for music synthesis are optional. When present, they are double-operand 
instructions, but the destination operand is always a register. Multiply and 
divide are full 16 X 16-bit signed operations. If the destination register of a 
multiply is odd, only the lower half of the 32-bit product is stored. Single- 
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and double-precision N-bit shifts in both directions are also provided. The 
shift count is a signed value, plus for left and minus for right, and is obtained 
through normal addressing procedures. Only arithmetic shifts are provided. 

Floating point instructions use a 32-bit word format containing a sign 
bit, 8-bit exponent, and 24-bit mantissa (most significant bit is hidden). 

The radix two exponent allows a range of 10738 to 1037 and consistent 
accuracy. Addressing of floating point operands is unique. A single register 
is specified, which is treated as a stack pointer. The two-operand floating 
point operation effectively pops four words from this pseudostack, performs 
the operation, and pushes the double-word result back. Although a radical 

departure from normal addressing, it is quite compatible with typical 
compiler-generated code. 

Speed 

Thus far nothing has been said about the speed of the LSI-11. Actually, 
it is difficult to make valid comparisons from normal instruction timing 
figures because the more sophisticated instructions available will likely have 
no counterpart in the machine it is being compared to. Manipulations with 

complex data structures can easily require twice as many instructions to be 
executed on a less powerful machine. 

Instruction timing is the sum of an instruction time, a destination time 
(if used) and a source time (if used). Also, in some cases, extra time is needed 

if R6 or R7 is specified along with certain addressing modes. As a resulc, 
timing calculation involves several complicated formulas. An abbreviated 
summary of source and destination mode times along with the total times 
required by selected instructions is given in Table 5—3. Although this is very 
sketchy timing information, the coup de grace is that all times can vary 
* 20% due to the asynchronous nature of the processor, and memory refresh 
operations steal another 6%. Obviously, any form of timed-loop program- 

ming is not possible on the LSI-11. Since multiply, divide, and floating 
point are microprogrammed, they are somewhat slower than encountered on 
minicomputers with dedicated hardware for these functions. However, they 

Table 5-3. Operand Fetch Times 

Addressing mode Source Destination Byte source Byte destination 

Register 0) 0) i?) Q 
Register indirect 14 2.10 1,05 1.75 
Autoincrement reg. indirect 1.4 2.10 1.05 1.75 
Autoincrement mem. indirect 3.5 4.2 3.15 4.2 
Autodecrement reg. indirect 24 28 1.75 2.45 
Autodecrement mem. indirect 42 49 3.85 49 
Indexed 4.2 4.9 3.85 4.55 
Indexed memory indirect 6.3 6.65 5.95 7.0 

Above times are accurate for most single- and double-operand instructions but may vary slightly for others. 
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are 10 to 20 times faster than equivalent software routines would be. Overall, 

the LSI-11 is a speedy machine by microprocessor standards. 

Software 

Just as important as the instruction set is the availability of sophisti- 
cated operating and program develoment systems for the LSI-11. Since these 
have been in development since 1970, they are more extensive and refined 

than similar software for other microprocessors, both 8-bit and 16-bit. These 
systems and the numerous high-level languages as well as macroassemblers 
and relocating linking loaders greatly simplify implementation of all types of 

music software systems described in the previous chapter and in Chapter 18. 
In particular, they would simplify the software needed to maintain the data 
base in a loosely structured music system. 

Of course, usage of the LSI-11 need not be limited to direct computer 

synthesis either. Its interrupt structure and programming ease make it excel- 
lent for synthesizer control applications as well. The indefinite instruction 
timing makes the use of an interval timer or other timing device mandatory, 
however. Also, since bus interfaces are more complex and expensive, an I/O 
bus adapter that presents a simpler, more restricted I/O bus to the large 
quantity of synthesizer interfaces needed would be desirable. Hybrid systems 
in which the synthesizer control method is used for experimentation and 
direct synthesis is used for final output would be particularly well served by 
the LSI-11. 

The 6502 for Logic Replacement 

The original notion behind development of microprocessors was to 

provide a standard LSI chip that, when combined with standard memories, 

could perform the functions of a custom LSI chip. The reasoning was that, 
since semiconductor cost is nearly inversely proportional to production vol- 

ume, the lower cost of standard parts would outweigh any cost advantages of 
an optimized custom chip. Although things did not quite work out like that, 
quite a lot of microprocessors are used for logic replacement instead of 
building microcomputers. 

Of all of the microprocessors now on the market, the 6502 comes 
closest to filling all logic replacement needs. Its price, although not the 
absolute lowest on the market, is low enough to replace even relatively small 
logic systems. Its raw speed, which is the highest of all MOS mi- 
croprocessors, is high enough to replace all but the most speed-sensitive logic 
systems. Its instruction set, although not a programmer's dream, is powerful 
and straightforward, unlike the obscure and convoluted sets of many other 
Jogic replacement microprocessors. [ts bus structure, which is a model of 
simplicity, is very easily interfaced while at the same time allowing some 
very sophisticated direct memory access and multiprocessor schemes to be 
implemented with a minimum of effort. Although not nearly as popular as 
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the 8080, there is a sizable core of users who swear by it for general-purpose 
computer applications also. 

Jn music, there are numerous jobs that might normally be done with 
conventional logic that can also be done by a 6502 cheaper, simpler, faster, 
smaller, or just plain better. For example, a digitally scanned music 
keyboard with velocity sensing on both press and release is one possibility. 
Another is a universal multichannel envelope generator with the envelope 
shapes programmable by the user. A supersequencer is another obvious ap- 
plication. The 6502 is fast enough to even generate tones with program- 
mable waveforms using simplified direct synthesis techniques. Many of these 
applications will be detailed in later chapters. 

The 6502 requires a single +5-V power supply, making it directly 
compatible with TTL logic systems. A 16-bit address bus, 8-bit bidirec- 
tional data bus, and numerous control signals are provided. Incredibly, there 
are three unused pins on the package! The on-chip clock oscillator/driver 
requires only a TTL inverter, a crystal (or R-C network), and a few passive 

components to generate a two-phase nonoverlapping clock. Although the 
standard frequency is only 1.0 MHz, a complete machine cycle is executed in 
just one clock cycle. 

According to the manufacturer's literature, there are no fewer than nine 

different package and pin configurations of the basic 6502. Two of these are 
the typical 40-lead dual-in-line package with all features available and the 
other seven are smaller and cheaper 28-lead packages with different mixes of 
omitted functions and intended for small configurations. The primary dif- 
ference between the two 40-lead versions is that the 6502 has a built-in clock 
oscillator and driver, whereas the 6512 requires an external two-phase clock 
oscillator and driver. The advantage of an external clock is that timing and 
waveshapes can be precisely controlled, although the oscillator pins of 6502 
can also be externally driven. Thus, the 6502 will be the model for further 

discussion. 

Bus Structure and Timing 

Figure 5-5 shows a 6502 read cycle that is about as simple as one can 
get. The l-yzsec machine cycle is divided into Phase 1, which is the first 500 

nsec, and Phase 2, which is the last 500 nsec. Actually, when using the 

on-chip oscillator, the cycle may not be split exactly 50-50, but the signal 

relationships are still valid. During Phase 1, the address bus and read/write 

line settle to valid indications, and near the end of Phase 2 the mi- 

croprocessor reads the data bus. Static read-only devices can actually be 

connected to the address and data buses without any other control signals ac 

all; if they see their address, they drive their data. Approximately 600 nsec is 

allowed for memory access, although typically greater than 850 nsec can be 

tolerated before malfunction. 
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roe CLOCK CYCLE = | psec ——————+| 

CLOCK PHASE | PHASE 2 

ADDRESS BUS 

READ/WRITE PALZZZLLLLLLA 
__—§ 600 100 

DATA IN EEL EE) ZZ 

Fig. 5-5. 6502 read cycle timing 

The write cycle in Fig. 5-6 is quite similar. The address and write 

indication settle during Phase 1, and the data to be written is put onto the 

data bus by the processor at the beginning of Phase 2 and held until the start 
of the next Phase 1. Devices written into will, therefore, have to look at 

Phase 2 and read/write to decode a valid write operation. These are the only 
cycle types; all input and output is memory mapped. 

Being so simple, there must be limitations and indeed there are a 
couple. A ready line is available for slow memories to request additional time 
for access. If the 6502 sees a low level on this line at the beginning of Phase 
2, it will delay reading the data bus until the next cycle. The catch is that 
write cycles cannot be extended with this signal. Actually, at the present 
state of the art, there is little if any cost advantage in using such slow 
memory. In fact, if only a couple hundred extra nanoseconds are needed, it 
would be better to reduce the clock frequency anyway. The other catch is that 
if “transparent latches” (level clocked) are used for output registers and the 
clock is Phase 2, then glitches at the outputs are likely when written into. 
The problem can be solved by either using edge-triggered registers (trigger 
at end of Phase 2) or by generating a delayed Phase 2 that does not become 
active until the data bus is stable. 

One unusual property of the 6502 is that the address bus cannot be 
disabled for direct memory access operations. This and the fact that there is 
no hold pin like on the 8080 and write cycles cannot be stopped would seem 
to make DMA difficult, if not impossible. Actually, a little study of the bus 
timing reveals that if three-state buffers are added to the address lines and 
400-nsec memory (or a slight clock slowdown) is used, then éransparent DMA 

[t+ ssn = CLOCK CYCLE = | usec 

clock PHASE 2 

ADORESS BUS Cat 

READ/IWRITE 277 PLN EZZZZZL. 
To 

Oats OUT MLL LLLE ELLEN L EL) 

Fig. 5-6. 6502 write cycle timing 
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becomes possible. Transparent means that the processor is unaware that 
DMA is taking place and continues to run at normal speed. This would be 
accomplished by using Phase 1 for DMA operation and allowing the proces- 
sor to use Phase 2 normally for data transfer. Since the processor never drives 
the data bus during Phase 1, only the processor's address bus would have to 
be disabled (via added three-state buffers) for DMA during Phase 1. The 
result is that a guaranteed continuous DMA rate of 1 million bytes/sec is 
available for dynamic memory refresh, DMA displays, and other uses with- 

out any effect on the microprocessor at all. Most other microprocessors would 
be stopped cold using conventional DMA techniques at this speed. Even 
another 6502 may be connected to the same bus with oppositely phased 
clocking {external clock operation would be required) for a dual-processor 
system. Clearly, then, the 6502 bus is actually one of the most flexible 
available. 

Interrupts 

Interrupts on the 6502 at first seem somewhat limited but on closer 
examination are seen to be extremely flexible. Two priority levels of interrupt 
are built in, the standard maskable (can be disabled by program instructions) 
interrupt and a nonmaskable interrupt, which has a higher priority. The 
maskable interrupt request line into the 6502 is level sensitive and will 
continue to interrupt the CPU as long as it is enabled and active. Unwanted 
multiple interrupts are prevented, however, because the CPU disables them 
after the interrupt sequence until the program enables them again. The 
nonmaskable interrupt is edge sensitive. Whenever the logic level at this 
input goes from high to low, the nonmaskable interrupt sequence is uncondi- 
tionally executed. These two different interrupt actions are very useful in 
logic replacement applications and in fact avoid a serious problem? the 8080 

has in general-purpose applications. 
The interrupt sequence itself consists of executing a “jump to sub- 

routine indirect” through dedicated addresses in high memory. These ad- 
dresses are called vectors and are FFFC-FFFD (hexadecimal notation) for mask- 

able and FFFE and FFFF for nonmaskable interrupts. Any number of vec- 
tored interrupt levels may be implemented for each interrupt type by having 
the interrupting device respond to read cycles at those addresses with the 
address of the service routine. 

Registers 

The 6502 has possibly fewer bits of on-chip registers than any other 
microprocessor. Besides the program counter, there is an 8-bit accumulator 

31f an 8080 program gets caught in a loop with the interrupt disabled, it is impossible 
to interrupt the program and return to the monitor. Reset is the only way out, which 

destroys the program counter and other registers, making straightforward isolation of 

the loop impossible. 
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and two 8-bit index registers. The stack pointer is also 8 bits and the stack is 

thus limited to 256 bytes and is always in Page 1. The status register has the 

usual negative, carry, and zero flags but also has overflow, interrupt disable, 

and decimal mode flags. When the decimal mode flag is on, the arithmetic 

instructions assume two-digit BCD data. As we will see later, what is 

lacking in register count is made up double in memory-addressing flexibil- 

ity. 
6502 instructions may be either one, two, or three bytes in length. The 

first byte is always the op code and the second and third bytes, if present, are 
either immediate operands or addresses. The first 256 bytes of memory 
(0000-00FF) are termed the dase page and can be addressed by many instruc- 
tions with a single address byte. However, the base page is indispensable for 
most programming and is not merely a convenient way to save on memory. 

The 6502 CPU is unusually efficient in executing instructions. Many 
require only as many machine cycles as memory cycles and nearly all of the 
remainder require only one extra cycle. Average execution speed may often 
exceed 350,000 instructions/sec due in part to extremely fast conditional 

jumps (2.5 ysec average) and immediate mode instructions (2 psec). For 
even higher speed, selected CPUs with clock frequencies as high as 4.0 MHz 
are available, which can approach speeds of 1.5 million instructions/sec 
(MIPS) when combined with bipolar memory. 

Addressing Modes 

Like the LSI-11, the strength of the 6502 is its memory-addressing 
modes. Easy access to memory and a number of in-memory operations reduce 
the need for registers. Although the manufacturer boasts 13 addressing 
modes, only 10 are sufficiently differentiated to be listed here: 

1. Register, the operand is the designated register. 
2. Immediate, the operand is the byte following the instruction. 
3. Relative, the operand address is formed by adding the following byte to 

the location counter (signed add). Used only by conditional branch 
instructions. 

4. Zero page, the address of the operand is contained in the single follow- 
ing byte. 

5. Absolute, the address of the operand is cuutained in the two following 
bytes. 

6. Zero page indexed, the address of the operand is formed by adding the 
following byte to the specified index register discarding the carry if 
any. 

7. Absolute indexed, the address of the operand is formed by adding the 
following two bytes to the specified index register (unsigned add). 

8. Indirect, the address of a byte pair containing the address of the 
operand is in the following two bytes. Used only by the unconditional 
branch instruction. 
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9. Indexed indirect, the zero page indexed sequence is used to locate a 
byte pair on the base page containing the address of the operand, 

10. Indirect indexed, the second byte of the instruction points to a byte 
pair on the base page, which is added to the Y index register (unsigned 
add) to form the address of the operand. 

A close examination of a detailed instruction set listing immediately 
reveals that no instruction is legal in all of these modes and that most can use 
half or fewer of chem. In particular, instructions using one index register for 
an operand cannot use the same register in forming the address of the other 

operand. Also, the unqualified indirect mode would be very useful generally, 
but the same effect can be achieved with either of the other indirect forms if 
the index register contains zero. Other than these, the selection seems to be 

well thought ouc, since the need for an unavailable combination is not 
frequent. Note that the base page mast be used to perform variable addressing 
of any possible memory location; the indexed modes only have a range of 256 
bytes due to the 8-bit size of the index registers. 

A full instruction set listing is shown in Table 5-4 along with the 
allowable addressing modes and execution time. One unique feature is that 
shift and rotate instructions can work directly in memory and with indexed 
addressing to boot! Note that the condition codes are set even when some- 
thing is merely loaded. Both the LSI-11 style bit test and compare any 
register instructions are also inchided, although the immediate form of bit 

test is mysteriously absent. 
There are some weak points too. For example, the arithmetic instruc- 

tions always include the carry in the calculation. For the more common 

single-byte add or subtract, it is necessary to first clear or set the carry flag, 
respectively (if its current state is unknown). Conditional branches are lim- 
ited to true and complement testing of individual condition flags, although 
the inclusion of an overflow indicator makes it easy to simulate all of the 
LSI-11 forms also. One perennial headache is that index registers must pass 
through the accumulator on the way to or from the stack. 

Interfacing Tricks 

Although not obvious from the foregoing description, the 6502 lends 
itself well to individual bit control functions. For individual testing of 
external conditions such as key closures, a standard digital multiplexor can 

be connected to respond to a range of addresses and gate the addressed input 

onto the most significant bit of the data bus. A shift or rotate memory left 

instruction can then copy the addressed condition into the carry flag for 

testing without disturbing any of the registers. Inexpensive addressable 

latches can be used for individual control of output bits, again without 

disturbing any registers. If the addressable latches are wired to respond to a 

group of addresses and take their data from the least significant bit of the 
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data bus, then a shift memory left will clear the addressed bit and a shift 
right will set it. Since indexed addressing is available with the shifts, very 
efficient bit testing and control loops are possible. 

Besides logic replacement, the 6502 can be used quite successfully for 
general-purpose applications. The main factor inhibiting this besides the 
course of history is its reliance on a base page and its limited indexed 
addressing range. The base page complicates a relocating linking loader 
considerably because both base page and regular memory relocation are re- 
quired. Although the 6502 is a model of efficiency when processing tables 
less than 256 byes in length, bigger lists cannot be handled using 
straightforward indexed addressing. Instead, pointers must be formed on the 
base page and address calculation done with normal arithmetic instructions. 

Direct synthesis can be done significantly faster with the 6502 than 
with other 8-bit processors. The addressing modes are quite efficient in 
handling the waveform and other tables involved provided they do not exceed 
256 bytes in length. Properly programmed, translation of a byte via table 
lookup may add as little as 4 usec to execution time. An 8 X 8 unsigned 
multiply can be performed by software in as little as 92 clock cycles average 
for a full 16-bit product. These figures make the idea of using a 6502 
microprocessor for each voice in a direct synthesis system at least worth 

considering. 





SECTION IT 

Computer Controlled 
Analog Synthesis 

As was often pointed out in Section I, computers can be involved in elec- 
tronic music synthesis in one of two distinctly different ways. A computer 
may be interfaced to either standard or specialized sound-synthesizing 
equipment and thus perform as a controller of this equipment. Or, with 
suitable programming, the computer may merely simulate such equipment 
and thus generate sound directly. Of these two means of involvement, the 
application of microprocessors to control functions seems more straightfor- 
ward. In addition, the weight of current interest seems to be toward 

computer-controlled synthesizers. Accordingly, Chapters 6 to 11 will be 

devoted to describing more fully the types of circuits and equipment that 
must be controlled, the interfacing techniques that may be used to allow 
such control, and the programming and human interface techniques needed 
to actually effect the control. In these chapters, the emphasis will be on the 
control of analog synthesizing equipment using digital techniques. Analog in 
this context refers specifically to the entire gamut of voltage-controlled 
equipment whose general function and usage was described in Chapter 3. 
Digital refers to the use of microprocessors both as general-purpose control 
computers and as special-purpose logic replacements in interface equipment. 





Ge 

Basie Analog Modules 

Probably the most important idea in the history of analog music synthesis is 
that of a modular synthesizer. Prior to the conception and implementation of 
this idea by Robert Moog, numerous special-purpose synthesizers and, ac- 
cording to their designers, “general-purpose” synthesizers were built and 

used. Music synthesis, however, is such a large and complex problem that 
even the most ambitious general-purpose machines had serious 
shortcomings. The major shortcomings were in the séructure of the machines, 

not the capability of the various oscillators, amplifiers, and filters that did 
the work. 

In a modular system, rhe structure is largely unspecified. The user 

defines the structure appropriate to the requirements at the time and inter- 
connects the available modules to realize that structure. When that require- 
ment has passed, the modules are readily reconfigured to meet the next 
requirement. The idea is roughly akin to the concept of movable type in 
printing. 

Analog System Standards 

There must be some consistency among the modules, however, in order 

to insure compatibility when they are connected. Before continuing, a few 
system-wide ‘‘standards” that typically apply to a broad range of commercial 

analog modules will be outlined. Standard power supply voltages are + 15 V, 
+5 -V, and — 15 V with respect to system ground. The 5-V supply is used by 
digital logic elements in the system and the +15 V is used by analog 
circuits, stich as operational amplifiers. All supplies are tightly regulated, 
usually to better than 1%, although some high-frequency noise can be 
expected on +5. The standard power supply voltages are generated and regu- 
lated at a central location and distributed to all of the modules in the system. 
Other voltages used by some digital and analog ICs such as +12 V, —5 V, 
and —12 V are conveniently derived from the standard voltages with IC 
voltage regulators (some of which are less than 50 cents each) or zener diodes 

or even resistive voltage dividers. 

169 
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Although the +15-V and —15-V supplies may be regulated well 

enough for use as reference voltages, it can be difficult to keep them noise 

free in large systems with many modules drawing varying load currents. 

Thus, it may be advantageous to distribute a very carefully regulated refer- 

ence voltage also. Any board that uses the reference can then buffer it with a 

simple op-amp voltage follower for load currents up to 20 mA. For 

maximum ease of use, the reference should be set equal to the standard signal 
amplitude. 

Signal and Control Voltages 

Signal and control voltage levels are customarily standardized to either 
+5 V or +10 V. Either level is comfortably below the clipping level of 
around 13 V exhibited by linear ICs operated on +15 V. With the almost 
universally accepted VCO control sensitivity of 1 octave/V, a 5-V system will 
have to use both positive and negative control voltages to cover an acceptably 
wide frequency range. Ten-volt systems, on the other hand, have adequate 
range with only positive control voltages, although negative values are often 
desirable for further increasing the low end of the frequency range. 

When used in a strictly computer-controlled system, it is attractive to 
consider “binary scaling” of signal levels and control sensitivities. One very 
nice set of numbers would be a signal amplitude of 8.192 V and a control 
sensitivity of 0.9766 octaves/V (1.024 V/octave). If potentials are expressed 
in millivolts, then these are very “round” binary numbers. Positive control 
voltages would therefore span eight octaves, which is quite adequate musi- 

cally 2 Hz to 8 kHz) but could also be extended by the use of negative 
control voltages. Furthermore, the 8-V levels would be more easily handled 
(translation: less costly) by analog-switching elements than full 10-V levels 
while still having substantially better noise immunity than 5-V levels. Using 

these round binary values in a computer-controlled analog system will con- 
siderably ease the transition to purely digital modules or direct synthesis at 
some later date. In any case, virtually any voltage-controlled module, 
whether scratch built or purchased, is readily converted (or simply read- 
justed) to any of these standards. The VCO to be described later, which is 

designed to a 10-V standard, can be converted to 8 V simply by reducing 
the system reference voltage to 8.192 V and touching up a few trim pots. 

Digital control signals such as an envelope generator trigger can be any 
amplitude but for compatibility with digital logic should swing between 
ground and +5 V. The switching threshold level of digital inputs should be 
around 1.5 V, again for compatibility with digital logic. 

Signal and control inputs of modules usually have a fixed impedance of 
100K resistive. Although output impedances are sometimes set at 1,000 
ohms to allow mixing of parallel-connected outputs, the author prefers a zero 
output impedance level. This actually provides the most flexibility, particu- 
larly in a precalibrated computer-controlled system, because the output vol- 
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tage remains constant regardless of load. Mixing of outputs is much better 
accomplished with a multiple-input voltage-controlled amplifier or mixer 
module anyway. Internal current limiting in nearly all IC op-amps prevents 
damage if two outputs should be accidently paralleled or an output is shorted 
to ground. If resistive output protection is required, the 1K output resistor 
can be placed inside the feedback loop of the output amplifier to eliminate 
loading errors. 

Mechanical Considerations 

Standard synthesizer modules are usually designed to mount into a rack 
with an attractive front panel exposed. The height of the panel is usually 
fixed at around 6 inches and the width varies upward from 114 inches 
according to the number of I/O jacks and panel controls included. The actual 
circuitry is usually contained on a small printed circuit board mounted to the 
panel and connected to the jacks and controls with hookup wire. 

Interfacing a standard modular system to a computer would probably 
involve the construction of a “computer interface box,” which would be a 
patch panel with a few up toa hundred or more jacks instalJed. The interface 
box would then be patched into the synthesizer just like any other module. 
Pinboard-patched systems would be handled in the same way conceptually 
but, of course, would be much neater in appearance. The advantages of such 
an interfacing approach are that the synthesizer can still be used in the 
conventional manner and that hybrid systems (conventional manual control 
combined with computer control) are possible (and even probable). 

However, a totally computer-controlled synthesizer need not require 
any direct manual access to the analog modules. Instead, all patching and 
operating parameters should be under the control of the computer. Further- 

more, the operating programs and procedures in an ideal system should make 

it considerably easier for the user to set up patches and operating parameters 
through the computer. In such a system, panel-mounted modules and scores 
of knobs would be superfluous. Internal calibration adjustments would still 
be necessary, however, to compensate for gradual drift of important parame- 
ters as the circuitry ages. 

A preferable packaging arrangement then would be printed circuit 
boards thar plug into a backplane; essentially the same method used for logic 
modules in microcomputer systems. These boards may either be small, each 

being a one-for-one equivalent of the typical panel-mounted module, ot they 
may be large multichannel or multifunction boards. 

The latter approach is quite feasible, since the number of parts needed 
for a single module function is typically small. Also, large boards can be 
more cost effective because some circuit elements, particularly computer 
interface elements, may be shared among the channels. Examples of such 
boards might be an eight-channel VCO or a completely general quad- 

raphonic “pan pot” consisting of a four-by-four array of VCAs. 
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Another method of partitioning functions is the “voice per board” 
concept. The modules that would typically be patched together for a musical 
voice are all present on the same board, already interconnected. Although not 
nearly as flexible as a standard functionally modular system, the voice modu- 
lar approach can be thought of as and controlled like an orchestra with a 
limited, fixed complement of instruments. Also, much of the cost and 
complexity of computer-controlled patching is eliminated because patching 

itself is minimized. 
Regardless of board construction and organization philosophy, the 

backplane and card file housing the boards should be separate from the 
computer packaging to eliminate possible pickup of digital noise. Also, it 
may be necessary to shield the boards from each other with perhaps a steel 
cover plate to minimize crosstalk. Backplane wiring of audio signals may also 
need to incorporate twisted pairs or shielded cable. 

The active analog circuits on such boards either could be built up from 
scratch using the circuits about to be described as a foundation or may be 
purchased as “epoxy modules” from several sources. The scratch method is 

becoming much easier as linear ICs designed specifically for voltage- 
controlled modules are becoming available. Either way, the per module cost 
of the computer-controlled system should be substantially less than that of 
panel-mounted commercial modules. The disadvantage of the total 
computer-oriented system is, of course, that the computer must be used to 
“get into” the system at all. 

Analog Components 

Since a significant portion of the expense of an overall computer- 
controlled analog synthesizer is in the analog modules, it is appropriate to 
become familiar with the circuitry in such modules even if the reader intends 
to use an existing commercial synthesizer. In the following material, actual 
circuitry! of the three most used analog modules will be described. These are 
tested, practical circuits using a minimum of specialized components. Their 
performance is excellent and well suited for use in computer-controlled 
analog-synthesizing systems. The circuit discussions to follow will assume a 
basic familiarity with linear transistor circuits and IC operational amplifiers. 
If the reader is unfamiliar with these topics, several excellent references are 
listed in the bibliography. 

The most common active element in these circuits is the ubiquitous 
operational amplifier. These devices have improved greatly within the last 
year with the introduction of truly low-cost field-effect transistor (FET) input 
stages. The semiconductor technology used to accomplish this goes by names 
such as “BIFET” and “BIMOS” because junction FETs and MOSFETs, re- 
spectively, are integrated with bipolar transistors on the same chip. 

'The original source of these circuits is Blectronotes Newsletter. 
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Op-amps made with these technologies possess an almost ideal combi- 
nation of desirable properties such as low cost, wide bandwidth, fast slew 
tate, and vanishingly small bias currents. It is now quite reasonable to choose 
one of these amplifiers as a personal “standard” to be used in all applications 
and forget about specialized “high-speed,” “low-bias,” or “economy” de- 
vices. Even duals and quads are available at very attractive prices in one 
manutacturer’s line. The only real shortcoming of this breed of amplifiers is 
generally poorer initial offset voltage and drift with respect to equally priced 
bipolar input types. The appendix gives a listing of the more popular FET 
input op-amps as well as several conventional bipolar types for comparison. 

In spite of the convincing arguments just given, a variety of op-amps 
will often find their way into circuit diagrams given in this book. The author 
is reluctant to specify such premium performance devices when a common 
garden variety 741 or LM301 will suffice. Also many circuits are not original 
with the author, and, therefore, the originally specified components are 
shown. The reader can freely substitute the newer types (designated as “gen- 
eral replacement” in the appendix) wherever these are used with no detrimen- 
tal effect on circuit operation. Occasionally, really high performance in one 
specification may be neeeded, which would require the use of a specialized 
device. Most likely this would be an ultra-high-speed or really low offset 
voltage or drift requirement. 

Voltage-Controlled Oscillator 

The VCO is simultaneously the most important and mose critical mod- 
ule in the system. The circuit topology chosen must, as much as possible, be 
“inherently accurate” with any practical shortcomings being due to less than 
ideal components rather than the circuit configuration. The waveform from 
the basic oscillator should be readily shaped with frequency-independent 
networks into several additional shapes with distinctly different harmonic 

spectra containing both even and odd order harmonics. Finally, of course, the 

circuit should meet rhe usual goals of low cost, minimum use of specialized 

components, and operation from standard voltages. 

Fundamental Types 

Two fundamentally similar oscillator types are popular. One type nor- 

mally produces triangle and square waveforms, while the other generates 4 

sawtooth and a narrow pulse. Either pait of waveforms can be readily shaped 

into sawtooth, triangle, rectangle, and sine waveshapes with simple, 

frequency-independent (containing no inductors or capacitors in the signal 

path) networks. 

A block diagram for either type of oscillator is shown in Fig. 6-1. Note 

that the oscillator itself is actually a current-controlled oscillator. The contro} 

voltages are combined by the input-processing block into a single, properly 

scaled control voltage but still in exponential (actually logarichmic) form. 
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Fig. 6-1. Elements of a VCO module 

The exponential converter block simultaneously takes the exponential of the 

scaled control voltage and converts it into a current, thus exponentially 

converted voltages never occur. The reasons for this are the same as those that 
forced us to go to an exponential control relationship in the first place; small 
voltages ate extremely susceptible to noise, thermoelectric voltages, and 
other errors. Small currents, on the other hand, are less readily polluced. 

Furthermore, practical, accurate exponential conversion elements are inher- 
ently voltage-to-current converters. 

The oscillator block uses the control current to charge a capacitor. The 
greater the control current, the faster the capacitor charges (or discharges for 
a negative current) from one voltage level to another. The triangle-square 
type of oscillator, for example, uses the positive control current from the 
exponential converter to charge the capacitor from lower voltage “A” to 
higher voltage “B” as shown in Fig. 6-2A. When the capacitor voltage 
reaches B, a level sensor operates a current reverser, which negates the control 
current, causing the capacitor to discharge toward A again at the same rate. 
When A is reached, the level sensor reverses the current again and the cycle 
repeats. Thus, it can be seen that the capacitor voltage assumes a triangular 
shape. The square wave available is actually the control signal for the 
current-reversing switch. 

The sawtooth-pulse oscillator is similar in that the capacitor is charged 

from A to B by the control current. The discharge cycle, however, is made as 
rapid as possible by shorting out the capacitor with a switch when B is 
reached. The capacitor voltage, then, is a sawtooth shape as in Fig. 6—2B. 
The advantage is that no current-reversing device is needed, but a very fast 
shorting switch is necessary for good high-frequency performance. Note that, 
if the current and voltage levels are the same, the sawtooth circuit will 
oscillate at twice the frequency of the triangle circuit. In either case, the 
greater the control current the faster the cycle repeats and the higher the 
frequency. This relation is theoretically linear for either type of oscillator, 

assuming that the reversing switch is perfect or the discharge switch has zero 
resistance and zero on time. 

The output-processing block converts the naturally occurring 

waveforms in either circuit into those waveforms that are customarily used in 
voltage-controlled synthesizers. Besides shaping, it scales the amplitude and 
average dc level of the waveforms to match standard signal levels in the 
system. 
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Fig. 6-2. Current-controlled oscillators. (A) Triangle-square oscillator. (B) 
Sawtooth-pulse oscillator. 

For purposes of illustration, the sawtooth type of oscillator will be 
described more fully. The author feels that the difficulties in rapidly dis- 
charging the capacitor are significantly less severe than those encountered in 
finding a “‘perfect” reversing switch. Also, a digital equivalent of the saw- 
tooth oscillator, to be described in a later chapter, is substantially simpler to 
implement than the triangle oscillator equivalent. We will start in the 
middle with the exponential converter, which is the singular most critical 
part of the circuit, and work out in both directions. 
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Fig. 6-3. Silicon junction diode characteristics 

Exponential Converter 

Before the widespread use of semiconductor technology, accurate non- 
linear transfer functions were very difficult to obtain. Those that could be 
obtained were only approximations that were imperfect even with perfect 
components. Silicon semiconductor junctions, however, are predicted by 
theory to possess a current-voltage relationship that is exponential in nature. 

The classical semiconductor diode equation relates current through the diode 
with the voltage across it as J = Al,e8T (eCVT —1), where A, B, and C are 

constants (combinations of fundamental physical constants), Is is another 
constant related to the construction of the diode, T is the absolute tempera- 
ture in degrees Kelvin, and V is the applied voltage. Thus, it can be seen that 
the current is an exponential function of voltage if eCV/l is much greater than 
unity. 

Fortunately, available real diodes are of sufficient quality to very closely 
conform to theory. The graph in Fig. 6—3 shows the current-voltage rela- 
tionship of a 1N4001 diode, a very common 10-cent item. The graph is on 
semilog coordinates to make exponential behavior readily apparent. Also 
shown is a plot of an absolutely ideal exponential response, a theoretically 

perfect diode, and a perfect diode with a fixed series resistance of 0.05 ohms, 

a typical value for the 1N4001. Note the extremely close correspondence 
between the actual diode and the ideal diode with series resistor model over a 
current range of better than 10° to 1. In fact, the range of close conformity 
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with an ideal. exponential response exceeds 10® to 1. Obviously, this diode or 
something similar is worth considering for the exponential converter. 

DIODE VOLTAGE (V) 

75°C 

wo'2 wo" jo o-oo? oF 0S t0-* =O «Oot | 
DIODE CURRENT (A) 

Fig. 6-4. Temperature dependence of diode characteristics 

All is not rosy, however, as the graph in Fig. 6-4 shows. The diode 
characteristic is adversely affected by temperature! Not only does the curve 
shift to the right with increasing temperature, its slope changes somewhat. 

This behavior, of course, was predicted by the diode equation, since both 
exponential terms are dependent on temperature. Variation of the first term 

is responsible for the right shift, and the magnitude of B is such that the diode 
current doubles for every 10°C increase in temperature, assuming every- 
thing else remains constant. Variation of the second term with temperature is 
much less, since T is alone in the denominator and is responsible for the 
change in slope. 

A voltage-controlled oscillator based on this diode would have drifted 
over five octaves upward in frequency and would respond at the rate of 1.16 

octaves/V relative to initial tuning and 1 octave/V at 25°C (equivalent to 
room temperature of 77°F). Drifts with smaller temperature changes would 
be proportionally less but still a 1°C change in temperature would cause 
nearly a half-step pitch drift. This temperature dependence is clearly unac- 
ceptable unless the diode is kept in a very precise temperature-controlled 

chamber! 
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Fig. 6-5. Temperature compensation with a second diode 

Compensating Temperature Drift 

Part of the solution to this problem lies in the use of an additional diode 
with characteristics identical to the first one and the circuit configuration of 
Fig. 6-5. A constant reference current is applied to this added diode with a 
magnitude about midway in the range of usable output currents from the 
converter. The voltage to be converted is now applied between the two 
diodes (in practice from an operational amplifier so that the reference current 
is not upset), and the current flowing in the converter diode is the exponen- 
tially converted current. Note that the input voltage must swing positive and 
negative to get the full range of currents above and below the reference 
current. This circuit completely compensates for the right shift of the diode 
characteristic with increasing temperature because a similar shift occurs for 
the voltage across the added compensation diode. The change in slope is not 
corrected, but ic is a much smaller effect than the horizontal shifting. 

In a practical application, matched transistors are used for exponential 

conversion partly because matched diodes are rare but mostly because the 
three terminals on a transistor allow the circuit paths for voltage application 
and current output to be separated. For good-quality transistors (constant, 
high current gain), the collector current is proportional to the exponential of 
the base to emitter voltage according to the equation, 
I, = Aad,eBT (e11627Ve/T —1), where I, is the collector current, a@ and J,, ate 

transistor-construction-dependent constants (common base current gain and 
emitter saturation current, respectively), and Vj, is the base-emitter voltage. 

This equation is essentially identical to the diode equation given earlier: 
Figure 6-6 shows a practical configuration with the input voltage 

referenced to ground and an op-amp-regulated reference current source. The 
op-amp maintains a constant reference current independent of changes in the 

exponential output current by adjusting its own output voltage to carry away 

the sum of the reference and output currents. The only real constraint on 
reference current magnitude is that it not be so large as to cause internal 

transistor resistances to come into play or be so small that leakages become 
significant. Therefore, the reference current is ideally set to 1 A, about 

midway in the range of useful currents (1 nA to | mA) but, due to finite 



Basic ANALOG MODULES 179 

EXPONENTIAL CONTROL 
VOLTAGE iNPUT 

Veet 

LINEAR Tout EXPONENTIAL 
CONTROL --—* —0 CURRENT 
VOLTAGE 1 OUTPUT 
FOR 1 
CONSTANT. { 
MODULATION { 
HNDEX Tret + lout 1 

i 

H 
LINEAR (A) 1 
CONTROL i 
WEUIAGE j 

| LINEAR CONSTANT ve CURRENT DEVIATION OUTPUT 

{B) 

Fig. 6-6. Practical exponential converter. (A) Exponential voltage to current 

converter. (B) Linear voltage to current converter. 

op-amp bias currents, is typically set to aroand 10 wA. When connected to 
the oscillator to be described later, a current range from about 0.25 “A to 
0.25 mA will cover the audible range. The resistor in series with the 

amplifier output serves to limit the maximum output current to a safe value. 
Like the two-diode circuit, the matched transistors cancel the major tempera- 
ture dependence of the exponential converter. The output current flows into 
this exponential converter and the voltage-compliance range is from roughly 

ground to the positive collector breakdown voltage. Note that negative-going 
input voltages result in increasing magnitudes of output current. The polar- 

ity may be reversed simply by swapping connections to the bases of the two 
transistors. This circuit performs well but still has two remaining imperfec- 
tions, which will be remedied later. 

Linear Control Input 

A linear control input for the dynamic depth frequency modulation 
described in Chapter 3 can easily be added to this exponential converter. One 
possibility is to simply modulate the reference current summing the linear 
control voltage with the reference voltage in the reference current regulator. 
The effect can be understood by noting the overall I/O relation for the 
exponential converter: Loe = Infe?¥i", Thus, the linear control voltage 

input multiplies the oscillator frequency by factors greater than unity for 
positive inputs or less than unity for negative inputs. Linear frequency mod- 

ulation implemented through this input will be such that the modulation 
index (ratio of frequency deviation to center frequency) will be constant as the 
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center frequency is varied. For musical purposes, this is generally more 
desirable than constant deviation. If the linear control input becomes suffi- 
ciently negative, the reference current may be completely shut off, giving 

zero output current and thus zero frequency. 
Another possibility for a linear input is a separate /inear voltage-to- 

current converter whose output current is summed with the exponential 
current via a direct connection. This gives constant deviation FM, which also 

has some uses. For maximum usefulness, the linear current converter should 

be able to sink current for a positive input and source current for a negative 
inpuc. A circuit configuration having these characteristics is shown in Fig. 
6-6B. The type 3080 operational transconductance amplifier gives an output 
current that is proportional to the difference in voltage at the plus and minus 
inputs. This current is positive if the plus input is more positive and negative 
if it is more negative. The sensitivity and range of the circuit are adjusted by 
changing the 3080's bias current. Although the actual control current can 
become positive (sourcing) with this circuit, the following current-controlled 
oscillator would probably stall if that were to happen. 

DO Aen =9 
t 

100 K t 2K 
CONTROL ® 
VOLTAGE 
INPUTS 

A OCTAVE S/ VOLT 
TUNE 

100K 5003———© EXPONENTIAL 
CONVERTER SENSITIVITY. 

+15 V O—n—0 - 18 V 
BASIS. 
FREQUENCY 
TUNE 

Fig. 6-7. Input voltage processor 

Input Processor 

The exponential converter transistors are driven by the input-processor 
block. Typically, several control voltages are summed together to form a 
composite control voltage with two or three of the control inputs coming 
directly from the front panel of the module. The sensitivity of one or more of 
these front-panel inputs is usually adjusted by front-panel controls. Another 
one or two voltages come from additional panel controls used to adjust the 
tuning of the module. 

The ideal circuit configuration for combining these together with com- 
plete isolation is the inverting op-amp summer as shown in Fig. 6—7. In this 
example, inputs A and B would have a fixed sensitivity, usually of 1 octave/V 
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(or 0.9766 for a binary-calibrated system) and C could be varied from zero up 
to pethaps 3 octaves/V. The “tune” control determines the basis frequency 
(frequency with all inputs at zero) by feeding a variable dc voltage directly 
into the summer. A fine-tuning control and more inputs can be added to this 
structure essentially without limit. Note that algebraic summation of the 
input voltages is inherent, thus, a negative voltage at one of the inputs will 
counteract a positive voltage at another input. 

The output voltage from the input processor is scaled by adjusting the 
value of R relative to the input resistors. Since this circuit will drive the base 
of an exponential converter transistor directly, the transistor equation must 

be solved to determine the range of output voltages needed. It turns out that 
a 0.018-V increase in base voltage will double the collector current at room 
temperature. Ir is common practice to set R to 2,000 ohms when 1LOOK 
input resistors are used which would scale a 1-V input down to 0.020 V. An 
internal trimming potentiometer between the op-amp output and the ex- 

ponential converter base is then used to adjust to the exact value needed 
around 18 mV. Note that the polarity inversion (positive-going input vol- 
tages produce negative-going outputs) precisely matches the requirements of 

the exponential converter. 
Assuming that the tuning control is set to midrange (no net effect on 

the control voltage sum) and all control inputs are zero, the output of this 
circuit would also be zero. The exponential converter would then produce a 
current equal to the reference current, which is typically set to 10 MA. 
Positive control voltage sums (more negative input to exponential converter) 
give higher currents from the exponential converter, while negative sums 

give lower currents. For normal operation, the tuning control would be set 
negative so that O V from the other inputs would produce the lowest normal 
audio frequency. Then positive control voltages from 0 V to 10 V would 
cover the audio range. Negative control inputs in addition to the negative 
contribution of the cuning control could produce even lower frequencies, 
useful as control voltages themselves. 

Sawtooth Oscillator 

The current from the exponential converter could be used to charge 
(actually discharge since it is a negative current) a capacitor directly. Greater 
accutacy is obtained, however, if the exponential converter collector remains 

at a constant voltage near ground, since then the collector-base voltage is 

near zero and leakages are minimized. This desire is satisfied by feeding the 

current directly into the summing node of an integrator as shown in Fig. 

6-8. The negative current is integrated and inverted by the op-amp and 

appears as a posicive-going ramp at its output. The op-amp used for the 

integrator must have low bias current yet high speed for optimum low- and 

high-frequency performance, respectively, which usually means a FET op- 

amp. 
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Fig. 6-8. Sawtooth oscillator 

The comparator compares the integrator output with a positive refer- 

ence voltage, Vr. As long as the integrator output is less than Vey, the 

comparator output is negative, which keeps the FET switch across the inte- 
grating capacitor off, allowing it to charge. As soon as the integrator voltage 
reaches Vref, the comparator output starts to go positive. As it does, the 
positive comparator input is forced even more positive through C2 giving 
positive feedback and causing the comparator to snap on. The comparator 
output is constrained to rise no further than ground, but this is enough to 
fully turn on the high-threshold-voltage FET switch, which discharges Cl 
and brings the integrator output back to ground potential in preparation for 
another cycle. The comparator is prevented from responding instantly to the 
drop in integrator voltage by the charge accumulated on C2 when the com- 
parator switched high. In effect, a one-shot is formed with a time constant of 
RC2, which is arranged to be long enough for the FET to completely 
discharge C1. Even though every reasonable effort is made to speed the 
discharge, the control current still loses control for a finite time each cycle. 

This will cause the higher oscillator frequencies to be flat, that is, lower than 
expected from the control current magnitude. This error can be compensated 
for as will be shown later. 

The value of Cl is chosen to provide the required range of output 
frequencies given the 0.25 @A to 0.25 mA range of current input. The 
expression for frequency is F=l/CVrf and the expression for capacitance 

is C=I/FVrf where Vref is the reference voltage in volts, F is frequency 

in hertz, C is capacitance in farads, and / is the exponential current in 
amperes. The easiest way to calculate C is to first determine the highest 
frequency of interest and then solve the second equation for J = 0.25 mA. 
The lowest frequency for really accurate response (and zero control voltage if 
the highest frequency corresponds to a +10-V control voltage ) is 1,024 

times lower. Much lower frequencies are possible with good components and 
moisture-proofed circuit boards, as much as 1,000 times lower yet for a total 

range of over a million to one. For a nominal audio range of 20 Hz co 20 kHz 
and Vrf of +5 V, Cl would be about 2,500 pF. For optimum performance 
over a 32-Hz to 8-kHz range in an 8-V system with Vref of 4.096 V, C1 
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should be increased to about 5,000 pF. C1 should be a high-quality poly- 
styrene capacitor for best accuracy and temperature stability. 

Waveshapers 

The integrator output is a low-impedance sawtooth that oscillates be- 
tween ground and Vf with very little error. The pulse output from the 
comparator is generally not useful as an audio signal because its width is only 
a few hundred nanoseconds, although it could be used to trigger digital 
circuits. Figure 6-9 shows the waveshaping circuits needed to derive the 
standard synthesizer waveforms at standard levels from the basic sawrvoth 
provided by the oscillator. 

The sawtooth is readily standardized with a simple op-amp circuit. If 

Vr is 5 V, the 5-V peak-to-peak sawtooth amplitude must be increased to 
20 V (a gain of 4) and the 2.5-V average dc level must be removed. Trimmer 
pots or precision (0.19) resistors are generally needed to do this job well. 
Although this amount of precision is not really necessary for straight audio 
use of the output, it may be desirable if the oscillator is used to generate 
control voltages. 

A rectangular waveform is easily obtained from the standardized saw- 
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Fig. 6-9. Waveshapers (cont.). (E) Triangle-to-sine conversion. (F) Triangle- 
to-sine converter, 
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tooth with an op-amp connected as a comparator. The sawtooth is fed into 
one side of the comparator and a de width control voltage is fed into the other 
side. The comparator output will be high whenever the instantaneous saw- 
tooth voltage is higher than the dc comparison voltage and low otherwise. 
Thus, the duty cycle of the output varies between 100% and 0% as the dc 
comparison voltage varies between — 10 V and +10 V. A small amount of 
positive feedback gives a Schmidt trigger action to the comparator, which 
maintains fast rise and fall times even though the sawtooth frequency may 
only be a fraction of a hertz. The amplitude of the rectangular wave is set by 
the saturation voltage of the op-amp’s output in the circuit shown, alchough 
precise standard voltage levels may be easily obtained if desired. 

Deriving a triangle waveform from a sawtooth is interesting but rela- 
tively simple. The basic idea is to full-wave rectify the sawtooth, which gives 
the required shape, and then remove the dc component and rescale it back to 

standard levels. The first step is to obtain a standardized sawtooth opposite in 
phase co the one already generated with a simple unity gain inverter. The two 
out-of-phase sawtooths are then fed into a classic two-diode full-wave 
center-tap rectifier. A resistor to the negative power supply keeps some 
current flowing through one of the diodes at all times. This simple, open- 
loop rectifier is far superior to the usual closed-loop rectifier found in op-amp 
application notes at the higher audio frequencies. Finally, the triangle output 
amplifier removes the dc (a portion of which is the rectifier diode’s forward 
voltage) and scales the triangle to standard levels. Although the shaping is 

essentially perfect, there is a small glitch in the triangle when the sawtooth is 
resetting. This may be minimized by injecting a pulse of opposing polarity at 
this time or by using a low-pass filter to smooth over the glitch. 

A good sine wave may be obtained from the triangle wave by distorting 
it with a nonlinear circuit. Figure 6-9E shows how a sine-shaped transfer 
function can round the pointed peaks of a triangle wave into an approximate 
sine shape. Although several types of nonlinear circuits can be used, the 
FET-based circuit in Fig. 6~9F works well and is inexpensive. Note that the 
amplitude of the triangle input must be very carefully matched to the non- 
linear transfer function for minimum sine wave distortion. This would nor- 
mally be accomplished with two trim adjustments, one for amplitude, and 
the other to compensate for asymmetry. Total harmonic distortion can usu- 
ally be trimmed co less than 1% with this circuit. Lower distortion is 

possible by following the sine shaper with a tracking low-pass filter. 

Practical Schematic 

A complete, practical schematic of the VCO is given in Figs. 6-10 and 
6-11. All input structures are resistive (100K) to an op-amp summing 

junction and can be expanded to fit individual needs. Trimming adjustments 
are provided so that input sensitivities and output amplitudes can be ad- 
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justed to precisely match the system standards for use in a precalibrated 
computer-controlled system. The existence of +10 and — 10 system refer- 
ence voltages is assumed. Also, several refinements beyond the basic circuit 

blocks just described have been incorporated. 
The input circuit for exponential control voltages has been refined by 
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Fig. 6-11. Practical VCO output waveshapers 

using a thermistor in the feedback network to cancel out the remaining 
exponential converter temperature coefficient. At room temperature, this 
coefficient is about —3,300 parts per million (ppm) per °C; thus, a resistor 
with a +3,300 ppm temperature coefficient is required. Note that the 
compensation is exact only at 27°C because the exponential converter tem- 

perature dependence goes as 1/T rather than as KT, which the resistor pro- 
vides. Nevertheless, temperature drift due to the exponential converter is 
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reduced to the same order of magnitude as other circuit drifts in the typical 
studio environment. 

Two other minor errors are corrected by modifying the reference cur- 
rent regulator for the exponential converter. One of these is due to the finite 
“bulk” resistance in the converter transistors. The other is due to finite 
discharge time in the sawtooth oscillator. Both effects cause high frequencies 
to be lower than they should be. The magnitude of both errors is directly 
pfoportional to the magnitude of the control current from the converter. The 
addition of D1 and R5 couples a voltage that is directly proportional to the 
contral current back into the control input summer. This voltage is de- 

veloped across the 10K protective resistor in series with the reference current 
regulator. The diode cancels a 0.6-V offset that exists at low values of control 
current. In use, R5 is adjusted for optimum high-frequency tracking. 

The sawtooth oscillator proper uses a high-speed, very-low-input- 
current op-amp as the integrator. The odd power supply hookup for A3 is 
necessary because it cannot stand total supply voltages beyond 15 V. Note 
that the type 311 comparator has an open-collector output so that when its 
pullup resistor is tied to ground its output voltage swings between —15 V 
and 0 V, the range needed by Q4. 

Figure 6-11 shows the waveform standardizers and shapers with all 
adjustments and parts values. The sawtooth output is taken from the second 
inverter rather than the first shown earlier so that a positive going ramp is 
produced. The negative ramp at the output of A4 could also be brought our 

if desired. The glitch in the triangle wave mentioned earlier is largely cancel- 
led by injecting an opposite polarity pulse derived from the rapid retrace of 
the negative ramp. The rectangular-wave amplitude is standardized by the 
saturating complementary emitter follower, Q5 and Q6. Using this circuit, 
voltage levels of the rectangle will equal the + 10-V system reference voltages 
to within a couple of millivolts. . 

Adjustment 

Adjustment of the circuit is straightforward and need not require a lot 
of test equipment, although a frequency counter, accurate digital volemeter, 
and oscilloscope are helpful. For use in a precalibrated computer-controlled 
system, the adjustments should be made to the values listed in Table 6-1. 
These values offer the most logical control relationship and widest possible 
fange in a precalibrated system. Ideally, they should be set as accurately as 
possible and then rechecked every few months of operation. This will allow 
Programming of the system to proceed with minimal concern over analog 
etrors in the system. Also shown in the calibration table are performance 
parameters obtained from a breadboard of the circuit. As can be seen, the 
performance is excellent in nearly all respects and certainly much better than 
could be obtained just a few years ago at 10 times the cost. 
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Table 6-1. Adjustment of Voltage-Controlled Oscillator 

Oscillator adjustment 
1. Set “zero input frequency” pot for 60 Hz (use power line sync on oscil- 

loscope) with no control voltages applied 
2. Apply 1.000 V to an exponential control input and adjust “oct/v adjust 

pot” for +20 Hz output 
3. Remove the control valtage and adjust the “zero input frequency” pot for 

16.3525 Hz 

4. Apply +10 V to a control input and adjust “high-frequency track” pot for 
16745 Hz 

Waveshaper adjustment 

1. Using a moderate frequency (1 kHz) adjust “triangle balance” pot for 
best triangle waveshape 

. Adjust “triangle offset” pot for equal positive and negative peaks 

. Vary the capacitance across D2 for minimum “glitch” on the positive 
peak of the triangle 

. Alternately adjust “sine shape trim” and “sine symmetry trim” for lowest 
harmonic distortion 

. Adjust sine amplitude for 20 V p-p output. Sine symmetry may have to be 
touched up for equal positive and negative peaks 

- wn 

a 

Performance of breadboarded unit 

Control voltage Frequency (Hz) Error (%) 

0.000 16.35 0 
1.000 32.71 1) 
2.000 65.44 +0.05 
3.000 131.1 +021 

4.000 261.9 +0.10 
§.000 §24.3 +0.19 
6.000 1048.0 +0.14 
7.000 2096.0 +013 
8.000 4190.0 +0.09 
9.000 8379.0 +0.08 
10.000 16745.0 0 

Average temperature coefficient at 1 kHz from +25°C to +35°C is 0.11%/ °C. 

Voltage-Controlled Amplifier 

The VCA is the second of the ‘“‘basic three” modules. For many applica- 
tions, its performance is not nearly as critical as the VCO just described. This 
1s because VCAs are normally utilized to control the amplitude of an audio 
signal, and the human ear is much less sensitive to inaccuracies in amplitude 
control than it is to imperfect frequency control. The typical VCA module 
used in a “manual” synthesis system, therefore, is seldom very precise or 
carefully calibrated. For a critical application, the user is expected to cali- 
brace the VCA using the several panel controls that are normally available. 

In the precalibrated computer-controlled system, however, the use of 
VCAs to process control signals, which may eventually control a VCO, is 
more likely. For example, the control inputs to a precalibrated VCO will 
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have a fixed but precisely known octave/volt control sensitivity. If one wishes 

a variable (by the computer) control sensitivity, then a VCA with the control 

input driven by the computer is inserted in the control path to the VCO. 

Depending on the design, a VCA may be used as a multichannel mixer with 

the gain of each channel set by an individual control voltage. When used to 

mix control voltages, its accuracy again becomes important. Thus, it is 

apparent that for maximum usefulness attention should be given to accuracy 

and temperature drift in the design of the VCA. 

Controlled Gain Block 

The heart of the VCA is che controlled gain block. Actually, a multi- 
plication of one signal (the signal voltage) by another (the control voltage or a 
function thereof) is being performed. Full four-quadrant multiplication 
where the output is the true algebraic product of the instantaneous voltages, 
either positive or negative, at the control and signal inputs is certainly 
acceptable if not desirable. Note that if this were true, there would be no 
distinction between control and signal inputs to the block. Actually four- 
quadrant circuits are fairly difficult and less accurate than two-quadrant 
circuits. The two-quadrant circuit restricts the control voltage to positive 
values, while both positive and negative signal voltages are acceptable. 

In the past, virtually any scheme that would electrically vary the gain of 
a circuit was a candidate for the controlled-gain block. Really ancient 
methods include the use of a photoresistive cell (cadmium sulfide type) 
illuminated by a neon lamp and remote cutoff pentode vacuum cubes that 
were designed for variable-gain applications. Even servo motor-driven poten- 

tiometers were used when cost was no object. More modern methods include 
the use of a junction FET as a voltage-variable resistor or recognition of the 
fact that the dynamic resistance of a diode decreases with increasing forward 
current. Variation in the gain of a-transistor amplifier with bias-current 
variation was another popular method. 

The two standards of comparison that have been used in the past for 
gain-control techniques are control-to-signal isolation and signal distortion. 
Control feedthrough into the signal generally results in high-amplitude, 
low-frequency thumping noises whenever the gain is rapidly changed. Even a 
moderate amount of such feedthrough is completely unacceptable in modern 
voltage-controlled equipment usage. Signal distortion, if present, is usually 
worst at low-gain settings where it is least likely to be noticed. Besides these, 
speed and accuracy of response are now of great importance also. 

Using the first two performance standards, the lamp-photocell ap- 
proach is essentially perfect. The FET voltage-variable resistor has no control 
feedthrough but does distort the signal some unless its amplitude is quite 
small. All other methods (except servo pots) suffer from both maladies to 
some extent. Unfortunately, a lamp-photocell variable-gain block is imprac- 
tical for an electronic music VCA because it is very slow, having time 



Basic: ANALOG MODULES 191 

constants in the tens of milliseconds range, and is very unpredictably non- 
linear in its control relationship. Response of the FET is instantaneous, but it 

too possesses a nonlinear control response, although somewhat more predict- 
able. Varying the bias in a transistor amplifier, which is the worst method 

from an inherent control isolation standpoint, is the one that is normally 
used now to build a VCA. Such a controlled-gain block is called a transcon- 
ductance two-quadrant mulcipler. 

DIFFERENTIAL OUTPUT 
CURRENT = 12 —I1 

& 
SIGNAL 
INPUT 
VOLTAGE 

£2 

Tc = CONTROL CURRENT 

Fig. 6-12. Basic transconductance gain block 

Transconductance Gain Block 

The basic transconductance gain block is the differential transistor 
amplifier stage shown in Fig. 6-12. For normal two-quadrant operation, the 
signal voltage is applied differentially between the two transistor bases, and a 
control current applied to the emitters determines the gain. The output signal 
is the difference in collector current of the transistors, which may be converted 
into a differential voltage by use of equal-value collector load resistors. 

Normally, the two transistors are assumed to be carefully matched. Impor- 
tant parameters that must be matched are current gain, which should be high 

(over 100), and the base-emitter voltage versus collector current relationship. 

Basic operation is easily understood if a few observations are made. 
First, the sum of the two collector currents is always equal to the control 

current. Regardless of the individual base voltages (within reason), the com- 
mon emitter voltage will adjust itself to make this fact true. Since the 

transistors are matched, if the differential input voltage is zero, meaning that 
the base-emitter voltages are equal, then the two collector currents are equal 

and the differential output current is zero. 
Now, recalling the transistor equation given earlier, it was learned that 

at room temperature a transistor’s collector current will double for every 
18-mV increase in base-emitter voltage. Therefore, if the differential input 

voltage became 18 mV, that is El = E2 + 0.018, then I] would be twice as 

great as 12. Since the sum of the currents must equal the control current, it 
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can be concluded that IL = 2/3Ic and 12 = 1/31c. Increasing the input to 36 
mV would shift the ratios co 4/5 and 1/5. Further increases in the input 
voltage will cause essentially all of the control current to flow through Q1. 
Reversing the polarity of the input would favor 12. 

Figure 6-13A is a plot of the collector currents as a function of dif- 
ferential input voltage for two different control currents. For the reasonably 
linear portions of the curves in the + 10 mV range, it is apparent that the 
slope of the 1-mA curve is Aa/f that of the 2-mA curve, which means that the 
gain is also half as much. In fact, the gain is directly proportional co the 
control current over a range as wide as the exponential relation between base 

current and base-emitter voltage is valid. 
Figure 6—-13B shows the differential output current under the same 

conditions. Note that although the individual collector currents show severe 
control feedthrough (the whole curve moves downward when the control 

current decreases), their difference does not show such a shift meaning that 

the feedthrough has been cancelled out. Since the input is a voltage and the 
output is a current, gain is properly called transconductance. 

Although the basic transconductance gain cell is very simple, driving it 
properly is not. Generating the differential input voltage is not difficult, but 

sensing the differential output would require one or more op-amps and 
excellent common-mode rejection in order to obtain decent control isolation. 
A variable-current sink, which is required for the control input, requires 
additional circuitry also. 

Operational Transconductance Amplifier 

Fortunately, variable-transconductance gain-controlled blocks are 
available in IC form at prices under a dollar. The 3080 type of operational 
transconductance amplifier (OTA), for example, has the diff-amp gain cell, an 
output differential amplifier, and a current-controlled current source for the 
control all-in-one package. Figure 6—14 shows the symbol for an OTA and a 
highly simplified internal schematic. The device operates on standard 
+15-V supplies and has a fairly high-impedance differential-voltage input. 
Since the common-mode voltage range is quite large (nearly equal to the 
supply voltages), in practice one of the inputs can be grounded and the signal 
applied to the other input. The control current is fed into the 1 terminal 
and is absorbed at a constant voltage of about — 14.4 when using 15-V 
supplies. The output is single-ended and is a current. Although this takes 
some getting used to, it usually proves to be an advantage. At room tempera- 

ture, the output current is equal to 19.2 X Em X Ic, where Em is the 

differential input voltage in volts, Ic is the control current in milliamperes, 

and the output is in milliamperes. Note that this relation is accurate only for 
input voltages less chan 10-mV peak and that the output current can never be 
greacer than Ic. The allowable range of Ic for accurate operation is from 



Basic ANALOG MODULES 193 

COLLECTOR CURRENT, {mA} 

CONTROL CURRENT = 2.0 
u 
ae 

CONTROL CURRENT = 1.0 

100 -90 ~80 -70-60 50-40 -30-20-10 0 10 20 30 40 50 60 70 80 90 100 i 

DIFFERENT INPUT VOLTAGE (mV) 

(a) 

175 Pan 

ust CONTROL CURRENT = 2.0 
1.25 

10 

0.75 
0.5 

0.25 

CONTROL CURRENT = 1.0 

DIFFERENTIAL CURRENT, (mA} 

100 -90 -B0 -70 -60 -50 -40 -30 -20 -10, 10 20 30 40 50 60 70 80 90 100 

—0.25  oIFFERENTIAL INPUT VOLTAGE, (mv) 
~05 
-0.75 

-1.0 

1.25 

-15 

SES 

1-20 
(B) 

Fig. 6-13. (A) Individual transistor currents for two control currents. (B) Dif- 
ferential output current for two control currents. 

0.0005 mA to 0.5 mA with range extension to even lower currents allowable 
at moderate temperatures. 

Internally the 3080 is composed entirely of transistors and current mir- 
rors (shown as citcles labeled “CM” in Fig. 6-14), which in turn ate com- 
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Fig. 6-14. Operational transconductance amplifier 

posed entirely of transistors. A current mirror is essentially a common- 
emitter transistor stage with a current gain of unity to close tolerances. A 
cutrent mirror is a very commonly used device in linear ICs but to the 
author’s knowledge has never been packaged and sold as a discrete device. 
Like transistors, current mirrors may be either npn (arrows entering) or pnp 
(arrows leaving). Since the current gain is unity, the collector current is 
exactly equal to the base current. 

The controlled-gain cell of the 3080 is a two-transistor differential 
amplifier. Tracing the simplified 3080 schematic will reveal that the dif- 
ferential gain cell emitter current is equal to Ic by virtue of CMI. Ql’s 
collector current, I1, gives a positive contribution to the output current via 
CM3, while Q2’s collector current 12, is inverted by CM4 and gives a 
negative output contribution. The net output current is therefore [1-I2, 

which means that the current mirrors have performed a differential to single- 
ended current conversion. Since the output is connected only to transistor 
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Fig. 6-15, Linear VCA using 3080 

collectors, the output impedance is very high and is typically several 
megohms for the 3080. 

Application of the 3080 OTA 

Figure 6-15 shows an application of the 3080 as a simple yet accurate 
linear VCA. The gain of the circuit is given by A = Ein/10, which means 
that unity gain is obtained for a +10-V control and zero gain for zero 

control. Signal input voltages may range between — 10 V and + 10 V, while 
the control input is operable over a range of 0 V to + 10 V. Negative control 
inputs completely shut off the signal. 

Note that the signal input is attenuated by a factor of 1,000 by R4 and 
R5 before it is applied to the 3080. This is necessary in order that the 
+ 10-mV linear range of the 3080 input not be exceeded and cause excessive 
distortion. The control current for the 3080 is generated by Al in conjunc- 

tion with Q1. If the current gain of Q1 is high, then /é is nearly equal to Ic. 
The precise value of /z is monitored by R3 to create VE and is fed back to 
Al’s input via R2. In operation, Al will adjust its output voltage to make 
Ve= — Vin, which is perfectly normal inverting amplifier operation. Ac- 
tually, the effective current-sensing resistance is R3 in parallel with R2 (Al’s 

inverting input is ae vireual ground) so the output current with a +10 

control voltage will be approximately 0.5 mA. 
The output current from the 3080 is converted into an output voltage 

by A2, which functions as a current-to-voltage converter. With the control 
current set at 0.5 mA and a 10-V input signal, evaluation of the transcon- 
ductance equation for the 3080 reveals that the output current amplitude 
will be approximately 0.1 mA. R6 therefore should be approximately 100K 

for unity gain through the entire circuit when the control voltage is + 10 V. 

The value of R3 may be trimmed to adjust the control sensitivity. For use in 



196 Musica APPLICATIONS OF MICROPROCESSORS 

100 kf 2ko ADB21 MATCHED PAIR 

EXPONENTIAL: 100 kO 
CONTROL 
INPUTS 

ZERO INPUT 
GAIN TRIM 

8 ¢B/V 
ov= 18040 5040 

+10V=0dB 

SIGNAL 
INPUTS 100 ka 

OOUTPUT 

Fig. 6-16. Voltage-controlled amplifier with exponential gain control 

a 5-V system one could either select a —5 to +5 control range or a0 to +5 
control range. In the former case, the input to Al would have to be offset by 

connecting an additional 100K resistor to the + 5 system reference voltage. 
In the latter case, the control sensitivity would have to be doubled by 
reducing R3 to about 12K. 

For maximum accuracy, the offset voltages of both op-amps should be 
oulled. Offset voltage in the 3080 should also be nulled for minimum 
control feedthrough. This may be accomplished by using an attenuator on 
the noninverting input similar to that on the inverting input and feeding it 
with a variable de voltage. The offset null will have to be a compromise 
value, however, since it changes somewhat with control current. 

Exponential Gain Control 

As outlined in Chapter 3, an exponential relation between amplifier 
gain and control voltage is quite desirable. Since the 3080 is a current- 

controlled device, it would seem that the exponential converter used in the 
voltage-controlled oscillator could be used directly. Unfortunately, a close 
look reveals that the 3080 requires a positive control current (current enters 

the 3080) and the exponential converter used earlier supplies a negative cur- 
rent. 

The most straightforward solution to the problem is to use a pnp 
matched transistor pair in the exponential converter, which reverses the 

output current polarity—and everything else. Input polarity reversal, there- 
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fore, must be cancelled with another op-amp inverter in the control-current 
input processor. A complete circuit for an exponential response VCA is 
shown in Fig. 6-16. 

Improving Linearity 

There are still several problems that limit the overall accuracy of a 
transconductance gain-control element. Probably the most serious is the 
remaining nonlinearity of the device. A related problem is the marginal 
signal-to-noise ratio created by the necessity of very small signal amplitudes 
at the gain element's input. Proper shielding can reduce coupled noise, but 
the signals are so small that semiconductor device noise is significant. With 
the 10-mV peak levels used by the preceding circuits, nonlinearity will cause 
about 1.3% harmonic distortion and give a signal-to-noise ratio of about 66 
dB. Used as a control voltage processor, nonlinearity is nearly 5% of full 
scale and rms noise is 0.05% of full scale. Tradeoffs are possible, that is, less 

distortion but more noise or vice versa, but neither parameter changes 
dramatically with input signal level. Clearly, much improvement is neces- 

sary if che VCA is to be useful in the control path to a VCO! A final problem 
is that the gain drifts with temperature according to the semiconductor 
junction equation. The magnitude of this drift is the same as the control 
voltage sensitivity drift in a VCO, about 0.33% PC. . 

Concentrating on linearity first, it is seen that the linearity error is 
independent of the control current. This means that a 10-mV input will 
produce the same percentage of distortion at a low-gain setting as it will at a 
high-gain setting. Furthermore, the effect of the nonlinearity is always a 
reduction in the actual instantaneous output below what it ideally should be. 
It should therefore be possible to predistort the input signal with an opposite 
nonlinearity to compensate for the gain cell nonlinearity and therefore im- 

prove things considerably. 
Figure 6-17 shows a simple predistorter that can be added directly to 

the 3080-based circuits given earlier. Analysis of the circuit is rather in- 

ALL DIODES IN A CA30I9 
+ MATCHED DIODE ARRAY 

Fig. 6-17. Diode bridge predistortion circuit 
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volved but a few observations can be made with little effort. D5 and D6 are 
protective diodes that normally do not conduct; thus, they can be ignored. 
Resistors R2 and R3 in conjunction with the supply voltages act like current 
sources and bias the diode bridge. Since the diodes are all matched, equal 
currents flow in each one and in turn give equal dynamic impedances of 
about 100 ohms each. The dynamic impedance of the bridge acts with R1 to 
form a voltage divider for the signal voltage. With zero signal input, the 
impedance of the overall bridge is also 100 ohms so the attenuation is about 
330, one-third that used in uncompensated circuits. 

For positive input voltages, the current through D1 decreases and 

increases through D2. Because of the constant bias current, the current 

through D4 must therefore decrease, while that through D3 increases. Since 
the dynamic impedance of the diodes is inversely proportional to their cur- 
rents, the bridge impedance will change also. For small signals, the impe- 
dance decreases are closely matched by the increases and the bridge impe- 
dance remains constant. As the signal voltage rises, the diodes with increased 
impedance dominate (since they are in series with a decreased impedance 
diode) and the bridge impedance rises. The input voltage to the 3080 is 

therefore boosted to counteract its tendency to flatten the waveform peaks. 
The ciecuit runs away when the signal current exceeds the bridge bias current 
so D5 and D6, which are in the diode array IC anyway, prevent any possible 
damage to the 3080. 

The improvement offered by this circuit is impressive. With a 50-mV 

peak voltage into the 3080, the harmonic distortion is only 0.25%. The 
increased signal amplitude also improves the signal-to-noise ratio by nearly 
14 dB toa total of 80 dB. Resistors R2 and R3 should be carefully matched 
as well as the 15-V power supplies to prevent even order harmonic distortion. 

Fig. 6-18. Gilbert multiplier 



Basic ANALOG MODULES 199 

For peak performance, it may be necessary to trim the resistors to better 

match the diode array characteristic to the 3080 input characteristic. 

Gilbert Multiplier 

Another predistortion circuit is shown in Fig. 6-18. This circuit is 

termed a Gilbert multiplier after its inventor. Diodes D1 and D2 actually do 
the predistortion and receive the input signal as currents, 11 and 12. For 
gteater convenience of use, transistors Q3 and Q4 convert a conventional 
differential input voltage to the differential current required by the rest of the 
circuit. The two resistors set the input voltage range, which can be made as 

large as standard 5-V signal levels. The output is a differential current as 
before. Performance is even better than the diode bridge predistorter, offer- 
ing an additional 6-dB improvement in noise level and distortion reduction 
to 0.1%. Last but not least, the circuit automatically temperature compen- 
sates the gain cell, making it essentially ideal. 

Unfortunately, all of the components must be carefully matched to 
obtain such good performance, normally a difficult task with discrete cir- 
cuitry. Recently, however, a linear IC having two of these circuits along with 

3080-style differential-to-single-ended converters has been introduced by a 
company appropriately named Solid State Music. Unlike the 3080, this IC 
was designed specifically for audio VCA applications. Figure 6-19 shows a 
simplified schematic of the IC, which at the time of writing is known by the 
type number SSM 2020. The inputs can accept signals up to 5-V peak 
directly, while the output is a current up to 1-mA peak. Note the inclusion 
of two pairs of exponential converter transistors and even a temperature- 

compensating resistor for them. 

VCA Using the 2020 

Rather than describe the IC itself in detail, let’s look instead at a 

complete VCA circuit using it in Fig. 6-20. The 10-V signal input is first 
attenuated to 5 V by RI and R2. Ina 5-V system, R1 may be omitted and 
R2 increased to LOOK. The input impedance of the 2020 itself is tens of 
megohms with a bias current requirement of about 500 nA. The current 

output, which at 5 V signal input will have a peak value roughly one-third of 
the control current, is converted into a 10-V peak output by Al, which is 
connected as a current to voltage converter. R3 should be adjusted for unity 
gain through the circuit with 1 mA of control current. The offset crim circuit 
at the 2020 noninverting signal input is necessary to cancel the device’s offset 
voltage and minimize control feedthrough. 

The control circuitry shown provides simultaneous linear and exponen- 
tial gain control. Study of the configuration of A2 and the transistor pair in 

the 2020 should reveal that it is exactly the same exponential conversion 
structure as used in the VCO circuit. In normal operation, one control input 
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Fig. 6-19. Simplified schematic of SSM 2020 VCA IC 

would be at zero, while the other is exercised over the full control range. 

With both inputs at zero, a reference current of 0.1 A flows into the 2020. 
This gives a gain of 0.0001 (—80 dB) relative to the 1-mA value which, 

although not precisely zero, is sufficient to audibly silence the unit. Raising 
the linear control input to +10 V while maintaining the exponential input at 
zero will increase the control current to 1 mA and provide unity gain. The 
expression for gain, therefore, is G = 0.1E1, where G is the gain and El is 

the voltage applied to the linear input. 
With the values shown, the exponential input has a sensitivity of 8 

dB/V. Thus, +10 at this input would raise the gain 80 dB above the zero 
input value and give unity gain. RE can be adjusted to provide exactly 8 

dB/V, which incidently is quite close to the increase in amplitude necessary 
for a doubling of perceived loudness. The nonstandard impedances of the 
control inputs may be easily corrected with additional op-amp buffers. Note 
that a TL-82 dual FET amplifier was used for Al and A2. The high slew rate 
is necessary at high audio frequencies and the low bias current is needed for 
predictable operation with the extremely low reference current used in the 
exponential converter transistors. 
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Fig. 6-20. Practical VCA using the SSM 2020 

Voltage-Controlled Filter 

Of the basic three modules, filters have historically been the most 

difficult to voltage control. Traditional L-C filters were tuned by changing 
reactive components, either the capacitor or the inductor. Later, with che 

widespread use of operational amplifiers and R-C active filters, the resistor 
was varied for fine tuning purposes and the capacitor was changed for dif- 
ferent ranges. With careful design, however, the tuning range available 
through variable resistance alone can be made wide enough for electronic 
music applications. Thus, the requirement for a wide-range voltage-variable 
resistance similar to that needed for a VCA is seen. As a result the FETs, 

photocells, and biased diodes that were used in early VCAs were also used in 
VCFs along with all of their attendant drawbacks. 

Unfortunately, the final solution of the VCA problem, the transcon- 

ductance variable-gain stage, does not directly involve a variable resistance. 
Therefore, application to tuning a VCF is not at all obvious. Before giving up 
and resuming the search for a wide-range accurate voltage-variable resistor, 
let’s see if a variable-gain function can be used to tune a filter. 
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Fig. 6-21. Steps toward a voltage-controlled low-pass filter. (A) Single-pole 
R-C low-pass filter. (B) Active version of A. (C) Tunable version of B 
using a VCA. (D) Improved version of C with constant gain. 

Variable Gain Tunes a Filter 

The single-pole passive R-C low-pass filter shown in Fig. 6-21A will 

be used as an example. With a high-impedance load, the circuit has unity 
gain at very low frequencies and a 6 dB/octave attenuation slope at high 
frequencies. The cutoff frequency (frequency for a gain of 0.707) is 
1/6.283RC. If the circuit is driven from a low-impedance source, the cutoff 

frequency can be tuned over a wide range by varying R alone without 

affecting the passband gain or attenuation slope. 
The active circuit shown in Fig. 6-21B has exactly the same charac- 

teristic if R1 = R2 except that its output is capable of driving a finite 
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impedance. For other cases, Fc = 1/6.283R2C and Ao = R2/R1, where Fc 

is the cutoff frequency and Ao is the dc or passband gain. As before, tuning 
can. be accomplished by varying R2 alone. Although this also affects Ao, we 
will ignore that for a moment. 

The point of this discussion is that the effect of changing R2 can be 
exactly simulated with a variable-gain amplifier and a fixed R2 as in Fig. 
6—21C. Since the inverting input of the op-amp is at virtual ground, only the 
feedback current through R2 is important. Thus, the effect of doubling R2 in 
circuit B can be obtained by setting the VCA gain to one-half and leaving R2 
alone in circuit C. Generalizing, Ref = Reu/G, where Ref is the effective 

value of the feedback resistor, Raq is its actual value, and G is the VCA gain. 

Substiruting into the cutoff frequency equation, Fc = G/6.283R2C, it is 
seen that the cutoff frequency is directly proportional to the VCA gain. 

The last step is to eliminate variation of passband gain with cutoff 
frequency. With the present setup, Ao = R2e7/R1 = R2/R1G and therefore 

as the cutoff frequency goes up, Ao decreases. Actually, the output of the 
VCA in Fig. 6-21C has a constant passband gain because the previous 
expression is multiplied by G, which then cancels the G in the denominator, 
leaving Ao = R2/R1. It would seem that the problem is solved, but closer 
analysis reveals that at low cutoff frequencies the input signal level to the 
VCA may become extremely large to offset its corresponding low gain and 
therefore be subject to severe distortion. 

In Fig. 6—21D, the same elements have been rearranged to overcome 

the signal level problem. Essentially, both the input signal and the feedback 

signal go through the VCA. The tendency for the op-amp output amplitude 
to rise at low cutoff frequencies is therefore eliminated by a proportionate 
decrease in signal amplitude reaching the op-amp. It is interesting to note 

that the circuit has degenerated into an integrator and a two-signal input 
VCA; an observation that will be very useful later. A similar configuration 

can be derived for a voltage-controlled high-pass R-C filter although not as 
easily. 

Voltage-Tunable Bandpass Filter 

The most dramatic uses of filters in electronic music require a high Q 
(hopefully voltage-controlled as well) bandpass function. Cascading low-pass 
and high-pass sections together and having them crack a common control 
voltage is not a practical solution mainly because quite a few would be 
required for any degree of sharpness. There exists, however, a very versatile 
filter structure that not only simulates exactly an R-L-C filter in the resonant 
(bandpass) mode but simudtaneously simulates the other three possible filtering 

functions that could be built with one resistor, one inductor, and one 

capacitor as shown in Fig. 6-22. The family of amplitude response curves 
represents low, medium, and high Q cases corresponding to high, medium, 
and low values of Rg. 
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Fig. 6-22. Four fundamental R-L-C filters. (A) Bandpass. (B) Low-pass. 

The circuit configuration in Fig. 6-23, which requires two integrators 
and a summing amplifier, is well known to analog computer users but only 
fairly recently has gained popularity as a cost-effective active filter circuit. This 
is called a “two-pole filter” because two energy storage elements (capacitors) 

are present in the signal path. The basic circuit is called a “state-variable” or 

“integrator-loop” filter and provides simultaneous high-pass, bandpass, and 
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Fig. 6-22. Four fundamental R-L-C filters (cont.). (C) High-pass, (D) Band- 
reject. 

low-pass filtering functions of the same input. A band-reject output is ob- 
tained by summing (they are 180° out of phase at resonance) the high-pass 
and low-pass outputs with an additional op-amp. Figure 6-24 shows the 
amplitude responses of each of the outputs for both low Q (1.5) and moder- 
ately high Q (15). Note that the low-pass and high-pass functions have 
cutoffs that are twice as sharp as the single-pole filters discussed earlier and 
that they develop a prominent peak just before the cutoff point for high Q 

settings. 
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Fig. 6-23. Two-pole tunable active filter 

Besides simultaneous filtering functions, the circuit has the advantage 

that frequency and Q factor (or bandwidth in hertz with a different configura- 
tion) are independently variable. In other words, RQ only affects the Q factor 

and RF only affects the center or cutoff frequency. Note that two resistors 
affect frequency. Actually, the frequency is inversely proportional to the 
square root of their product. If they are equal and varied together, however, 
the square root drops out and the frequency—resistance relationship is linear. 
Although the relation beeween RQ and Q is nonlinear in the circuit shown, 

the addition of another op-amp can make it perfectly linear. 
Tuning the filter with voltage-controlled amplifiers should now be 

almost self-evident but for convenience is shown in Fig. 6-25. Essentially 
each variable resistor in the circuit has been replaced with a fixed resistor 
driven by a VCA. The feedback path from the bandpass output that controls 
Q has also been simplified and the relation between VCA gain and 1/Q has 
been made linear. 

Note that a “voltage-controlled integrator” is used in two places. If the 
variable-gain element is a 3080 or other current output transconductance 
device, the voltage-controlled integrator can be simplified as in Fig. 6-26. 
The extremely high output impedance of the 3080 makes it possible to 
perform integration directly with a capacitor co ground. The unity gain 
buffer can often be a simple FET source follower, since its de offser is 

cancelled when the voltage-controlled integrator is used in a closed-loop 
configuration. Note that positive as well as negative voltage-controlled inte- 
grators are easily constructed by interchanging inputs to the 3080. 

Practical State Variable Filter 

Figure 6-27 shows a simplified but practical voltage-controlled filter 
based on the state-variable principle. The ciccuitry to generate the frequency 
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Fig. 6-24. Amplitude response of circuit in Fig. 6-23. (A) Q = 1.5. (B) Q = 15. 

control currents to the 3080s is not shown but may be the same as that used 
earlier in VCA circuits. Note that the two integrators should ideally receive 
the same magnitude of control current at all times. Use of the simple 
resistive current sharer is generally adequate and even preferable to two 
independent pairs of exponential converter transistors. The actual value of 
these resistors is not critical as long as they are matched (1% is fine) and not 



208 MUSICAL APPLICATIONS OF MICROPROCESSORS 

HIGH-PASS BANDPASS 
OUTPUT OUTPUT 

GAIN=6 3B 

o ) 
Q FREQUENCY 

CONTROL CONTROL 

Fig. 6-25. Voltage-controlled version of Fig. 6-23. 

HIGH-IMPEDANCE 
INPUT O Ps BUFFER 

‘|| 3080 oureur 
INPUT 5 L 

ATTENUATOR L. = 
4 

Fig. 6-26. Voltage-controlled integrator using 3080 

so large that che compliance range of the control current source is exceeded. 
The 3080s may, however, have to be matched somewhat by hand and held in 

good thermal contact for optimum results. Another alternative is the use of a 

matched trio of transistors for exponential conversion. The third transistor is 
connected in parallel with the usual exponential output transistor except for 
the collector, which becomes a second output terminal. The harmonic distor- 

tion introduced by the 3080 gain elements is much less than in the WCA 
application, since the filter is a closed-loop, negative-feedback network. 

Controlling Q 

Proper control of Q is an interesting problem. First, it is desirable that 
Q be an exponential function of control voltage, since it has a useful range 
from 0.5 to over 500. This 1,000-to-1 range is best handled by having a 1-V 
change in Q control voltage correspond to doubling or halving of Q. Also, it 
is probably desirable that high Q correspond to a high control voltage. Since 
high Q corresponds to low control currents in this circuit, the polarity of the 
Q control voltage will have to be inverted somewhere in the exponential 
converter circuit. Finally, there may be occasions when constant bandwidth is 

desired as the filter is tuned rather than constant Q. If the Q control is 
exponential at “1 V per double” and two Q control inputs are provided, 

constant bandwidth operation is achieved by feeding the frequency control 
voltage into one of the Q control inputs as well as a frequency input. This 
causes the Q to increase in direct proportion to center frequency and thereby 
provide constant bandwidth. 
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Fig. 6-27. Practical state-variable filter 

Figure 6~28 shows a suitable Q control circuit. Note that it is similar 
to the VCO frequency control circuit except that a pnp matched pair is 
needed to satisfy the control current needs of the 3080. The reversal in 
transistor polarity also reverses the control sense as required for Q control. 

Quad Voltage-Controlled Integrator IC 

Besides use in the state-variable filter, voltage-controlled integrators 
can actually be used in any kind of active filter circuit, even the simple 
one-pole low-pass discussed earlier. Since any filter function that can be done 
with resistors, capacitors, and inductors can also be done with combinations 

of one- and two-pole RC active filters, it follows that voltage-controlled 
integrators can be used to make any of those filters volrage controlled. As a 
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Fig. 6-28. Q control for VCF in Fig. 6-27 
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result, a quad voltage-controlled integrator IC has been developed, also by 
Solid State Music, for use in voltage-controlled filters. 

Figure 6-29 shows a block diagram of the type 2040 voltage-controlled 
fileer IC. Basically, four transconductance gain cells driving four high- 
impedance buffers are provided. The gain cells have a predistortion circuit 
and therefore can accept input signals as large as 80 mV and still generate less 
than 1% distortion. The four gain cells are fed equal control currents from a 
built-in multioutput exponential converter. The integrating capacitors are 
supplied by the user, however, and should be 1,000 pF or larger. One 
limitation to keep in mind is that the buffer amplifiers are only capable of a 
1-V peak output swing and can only supply 500 @A of load current. 

Figure 6-30 shows a voltage-controlled filter circuit using the 2040. 
This is properly termed a “four-pole low-pass filter with corner peaking” and 
is quite popular, although not as much so as the state-variable type described 

Fig. 6-30. Voltage-controlled four-pole low-pass filter with corner peaking 
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earlier. The main difference is that the low-pass cutoff of 24 dB/octave is 
much sharper than the state-variable cutoff of 12 dB/octave. A bandpass 
function is obtained by feeding a portion of the filter’s output back to its 
input to create a resonance. Enough of this feedback will cause a pure sine 
wave oscillation at the center frequency. Note that a crue bandpass response 
is not produced by the feedback because there is appreciable very-low- 
frequency gain. This resonance technique is often called corner peaking to 
distinguish it from true bandpass filtering, which has zero response at both 
frequency extremes. At moderate to high Q settings, however, the audible 
difference can be quite subtle. 

The filter is really four identical single-pole low-pass sections in cascade 
all tracking the same control voltage. Each low-pass section is functionally 
equivalent to the VCF in Fig. 6-21D discussed earlier. When cascaded as 
shown, each section contributes a cutoff slope of 6 dB/octave; thus, simulta- 

neous outputs of 6, 12, 18, and 24 dB/octave are available. When the 
feedback panel control is advanced far enough for oscillation, one will find 
that each stage contributes 45° of phase shift to the resulting sine wave and 
thac the shift is independent of center frequency. Although voltage control of 
the corner-peaking feedback is possible, its effect is very nonlinear and 
essentially unsuitable for a precalibrated computer-controlled system. 

The circuit itself is very straightforward, requiring relatively few com- 
ponents. Active circuits are limited to input, control, and output amplifiers 
and the 2040 itself. Temperature-compensating resistors for the exponential 

converter and the voltage-controlled integrators themselves are required for 
good frequency stability. The output of each low-pass stage must be at- 
tenuated by the 10K to 200 ohm combination to avoid overloading the 
transconductance amplifier of the next stage. 
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Digital-to-Analog and 
nalog-to-Digital Converters 

The primary interface element between the digital logic found in a mi- 
crocomputer system and the analog modules of a volrage-controlled system are 

digital-to-analog converters (DACs) and analog-to-digital converters 
(ADCs). For synthesizer control, only DACs are needed to convert numbers 
from che computer into control voltages. However, ADCs are used in some of 
the human interface techniques to be described later. Fortunately, the two 
devices are very closely relaced, and, in fact, most ADC circuits utilize a 

DAC as a key element. 
The purpose of these ‘‘data-conversion” devices is to translate between 

the electrical quantities of current or voltage and digital quantities. For 
analog synthesizer control with a microprocessor, voltage is the preferred 
analog representation and twos-complement fixed-point binary is the pre- 
ferred numerical representation. We can further specify that analog voltages 
in the range of —10 V to +10 V, and logic voltages compatible with TTL 
should be acceptable ro the converter. 

A number of terms are used to describe and specify data-conversion 
devices. Most all of them are equally applicable to DACs and ADCs so the 
discussion will focus on DACs. Although converters that work with binary- 
coded decimal numbers are available, their variety is extremely limiced. 
Also, since BCD arithmetic is inconsistent with maximum utilization of 

microprocessor speed, the discussion will be restricted to binary converters. 

Data Conversion Terminology 

Resolution 

The most important and most quoted converter specification is its 
resolution measured in terms of 4ts. Resolution is essentially a measure of the 
number of different voltage levels that a DAC can produce. A 3-bit DAC, tor 
example, accepes 3-bic binary numbers as input and can produce no more 
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than eight difference voltage levels as irs output. With an ideal DAC, these 

eight levels would be equally spaced across the range of output voltages. If 

the output is to span the range of ~ 10 V to + 10 V, for example, these eight 

levels might be assigned as: 

Binary Analog Binary Analog 

000 —10.00 100 + 1.42 
001 — 7.14 101 + 429 
010 — 4.29 110 + 744 
011 -— 142 111 +10.00 

Actually, since twos-complement binary inputs are usually desirable, the 
eight levels should probably be assigned instead as: 

500 + 0.00 100 —10.00 
001 + 2.50 101 - 7.50 
010 + 5.00 110 — §.00 
011 + 7.50 W1 — 2.50 

Unfortunately, neither assignment is ideal. The first has no code for 
a zero output and puts out rather odd voltages anyway. The second has a zero 
point and nice round levels but falls short of the full + 10-V range desired. 
Actually, practical DACs have considerably more resolution than this exam- 
ple so that last missing level on the positive side is generally of no conse- 

quence. Using the twos-complement assignment, the resolution of this 3-bit 

DAC would be a very coarse 2.5 V. The maximum error in converting an 
arbitrary number (with rounding) to a voltage would be only half of this or 
1.25 V. 

Moving up to an 8-bit DAC improves things considerably. The 
resolution now would be 20/(28— 1) or 0.078 V. The largest negative output 
would still be —10 V, but the positive limit would be one step short of 
+ 10.0 or +9.922 V. Even with 8 bits, the step size of 0.078 V controlling a 
voltage-controlled oscillator with a sensitivity of one octave per volt would 

yield a pitch step size of about one semitone. A 12-bit DAC would have a 
step size of 0.00488 V, which would give a nearly inaudible 1/17 semitone 

increment. Even higher resolutions are available, but the expense would 
limic extensive use. 

Usually it is convenient to consider the binary input to a DAC as being 
a signed binary fraction between —1.000 . . . and +0.9999 . . . . The 
output voltage of the DAC then is the binary fraction (rounded or truncated 
to the DAC’s resolution) times 10 V. This representation has the advantage 
that calculations leading up to the value to be converted are not affected by 
the actual resolution of the DAC used. For example, if a 16-bit computer is 
being used, ic would be convenient to perform all calculations using 16-bit 
fractional arithmetic. (Fractional arithmetic is really the same as integer 
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Fig. 7-1. DAC linearity errors 

arithmetic and is just as fast on microcomputers. This topic will be discussed 
in Chapter 18.) When a number is sent to the DAC to be converted, all 16 

bits are sent our. The DAC in turn is interfaced so that it sees the most 

significant N bits of the word, N being the DAC’s resolution. An ADC 
likewise would connect to the most significant bits of the word and supply 
zeroes for the unused low order bits. The ultimate resolution implied by 16 
bics is an astounding 305 wV. An 8-bit microcomputer would probably 
handle things in a similar manner unless converter resolutions of 8 bits or less 
are being used. 

Linearity 

Another term used in specifying DACs is /imearity. Linearity is relaced 
to accuracy but is definitely not the same thing. Although the voltage levels 
of an ideal DAC are perfectly equally spaced, real DACs have severe difficulty 
even approaching the ideal for reasonably high resolutions. The most com- 
mon linearity error is called differential linearity error. Although the physical 
reason for this will become clear later, Fig. 7—1 illustrates this error. The 
stepped plot shown represents the output that would occur if the DAC were 
driven by a binary counter. Differential linearity refers to the actual dif- 
ference in step position between any two adjacent steps compared to the ideal 
difference. When a differential linearity error occurs, it is because one step is 
either higher or lower than it should be. The diagram shows a differential 
linearity error of one-half of the ideal step size, which is equivalent to 
one-half of the least significant bit (LSB) of the digital input. If the error 
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exceeds a full step in size, the staircase can actually reverse resulting in a 

nonmonotonic (not constantly rising) DAC output, a very undesirable error. 

Another, less severe linearity error is ‘ztegral nonlinearity. Unlike the 

previous error, it is usually caused by the converter’s output amplifier rather 

than the conversion circuit itself. In the diagram, it is represented by a 

gradual bending of the staircase away from the ideal straight line connecting 

the first and last steps. Usually this error is negligible compared to the 

differential error. 
Often both errors are lumped together and simply called nonlinearity. 

This is defined as the maximum deviation of a step from its ideal position. 

For Jinearity measurement, the ideal positions are calculated by dividing the 
analog range between the actval minimum and maximum analog outputs 
into N—1 equal intervals, where N is the total number of steps. Non- 
linearities less than one-half of the least significant bit will guarantee 
monotonic performance. 

Accuracy 

Accuracy is very similar to lumped linearity but uses the ideal end- 
points instead of the actual endpoints of the convertet’s range. Thus, for a 
—10V to +10 V 12-bit converter, the ideal endpoints would be — 10 V and 
+9.99512 V (+10 less one LSB). Accuracy may be specified as either 
percent of full scale or in terms of the least significant bit. A converter with 
accuracy better than one-half LSB would not only be monotonic but also as 
accurate as the resolution and linearity characteristics allow. 

Assuming perfect linearity, inaccuracy can be due to gain and offset 
errors as illustrated in Fig. 7-2. A 5% pure gain error would cause the 
converter output to range between, for example, —9.5 V and +9.495 V 
rather than the intended —10-V to +9.995-V endpoints. A 0.5-V pure 
offset error might result in an output between —10.5 V and +9.495 V. 
Fortunately, both of these errors ate easily trimmed out, leaving ultimate 
accuracy a function of the linearity. Some applications of converters, such as 
direct audio signal conversion, are little affected by inaccuracy as long as the 
linearity is adequate. When purchasing a converter, one can usually expect 
the accuracy, after trimming, as well as the linearity to be better than 

one-half LSB unless it is an unusually high resolution (16 bits) unit or it is 
clearly marked as being a gradeout from a more expensive line. 

Settling Time 

_ When the digital input to a DAC changes, the analog output does not 
instantly move to the new value but instead wanders toward it and oscillates 
around it for awhile. The time required from when the digital input changes 
until the output has stabilized within a specified tolerance of the new value is 
called the settling time. The specified tolerance is usually one-half LSB, which is 
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the only tolerance that really makes sense. The settling time is nearly always 
much longer for a big change in output voltage than for a small one. Typical 
values are 30 psec for a full scale (— 10 V to +10 V) change and 2 to 5 psec 
for a 0.1 V or less change, which is quite adequate for any synthesizer control 
application. Five to ten times greater speed is available without a great price 
increase for direct conversion of audio. 

Unfortunately, the DAC output does not always make the transition 

smoothly from one level to another. Even when counting up one level at a 

time, the output can be seen to glitch by a large fraction of a volt between 
certain adjacent levels. Besides extending the settling time between these 
particular levels, the momentary incorrect output may create an improper 

response or excessive noise in the controlled circuit. Although some 
specialized DACs may be designed for minimum glitch energy (voltage spike 
height squared times its duration), in most cases the user must suppress the 
glitches if they cause problems. This is generally accomplished with a low- 

pass filter when speed is unimportant or with a sample-and-hold circuit. 

DAC Techniques 

Over the years, dozens of methods of digital-to-analog conversion have 
been conceived and utilized. What we are interested in for synthesizer con- 
trol are methods suitable for 8 to 16 bits of resolution having good inherent 
accuracy and stability and a speed in the low millisecond range. Actually, 
higher speed can be a great benefit because it allows mu/tiplexing of one 
converter among several tasks. 
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Duty-Cycle Modulation 

Probably the simplest and inherently most accurate conversion method 
is based on pulse-width or duty-cycle modulation. The fundamental concept 
is to generate a rectangular waveform with very precisely controlled voltage 
levels and transition points. This waveform is then sent through a low-pass 
filter, which effectively takes the long-term average voltage level of the wave 
and outputs it as a de voltage level. Actually, the beauty of the technique is 
that the voltage levels are fixed so the on-off times are the only variable. 
Thus, the scheme is really one of digital-to-time conversion followed by 
time-to-analog conversion. 

Figure 7-3 illustrates the operation of a duty-cycle DAC. At integral 
multiples of T, the analog switch is flipped upward, which connects the 

low-pass filter to the reference voltage source. A variable time (less than T) 
later, the switch is flipped back down, which sends zero to the filter. In the 
example, the filter sees Vref for 25% of the time and zero for the remaining 

75%. The time average then is 0.25Vzef, which is output by the filter and 
load isolating unity gain buffer. This method (and most of the others that 
will be studied) gives a multiplying DAC because the output voltage is pro- 
portional to the product of a reference voltage and the digital input expressed 
as a binary fraction. 

A simple digital counter can be used to control the analog switch in 
response to a digital input. At the beginning of a T interval, the counter 
would be preset to the digital value to be converted. A stable, high- 
frequency clock causes the counter to count down toward zero. As long as the 
counter is nonzero, the switch would be up, but as soon as it reaches zero, the 
switch would be thrown down until the next cycle. 

For high conversion speed, the frequency of the clock should be as high 
as possible but not so high that analog switching time becomes a major 
portion of a clock cycle. A realistic figure might be 10 MHz. The frequency 
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Fig. 7-3. Digital-to-analog conversion via pulse-width modulation 
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of the rectangular wave into the filter is the clock frequency divided by the 
number of counter states, which is equivalent to the resolution of the DAC. 

Thus, a 4096 level (12-bit) resolution would give a frequency of 10 MHz/ 
4096 or 2,441 Hz, which is a period of about 410 psec. 

The output of che low-pass fileer will have some ripple superimposed on 

top of the average dc level, since its cutoff is not infinitely sharp. It would be 
reasonable to desire a ripple amplitude of less than one-half the least signifi- 
cant bit, With the simple RC filter shown, the cutoff frequency would have 
to be roughly 1/8000 of the rectangular wave input frequency to have an 
acceptable ripple. The curoff frequency in this example then would have to 

be around 0.3 Hz, which is equivalent to an RC time constant of over 0.5 
sec. Even though this sounds slow, the worst-case settling time of the filter 
to one-half LSB would be roughly nine times the time constant or nearly 5 
sec! Adding a bit of resolution to this DAC would multiply the settling time 
by slightly greater than four. Although more complex filters and switching 
sequences may reduce the response time to tens of milliseconds, this clearly is 
not a high-speed technique. Differential linearity, however, is essentially 
independent of resolution, and integral linearity is limited only by the 
regulation of the reference voltage under a varying load. Accuracy can also be 
excellent, limited primarily by the reference and the difference between 
switch turn-on and turn-off times. 

Resistive Divider 

The most common technique and the one on which nearly all commer- 
cial DACs are based is the resistive divider technique. Figure 7-4 shows a 
simple 2-bit resistive divider type of DAC. Each switch is controlled by a bit 
of the digital input. If a bit is a one, the switch is up connecting its resistor 
to the reference voltage; for zero bits it is down and the resistor is grounded. 
It is instructive to calculate the output voltage for each of the four possible 
combinations of 2 bits. Clearly, 00 would give zero output and 11 would 
give Vref. The case of 10 gives an R-2R voltage divider, which results in 
2/3 Ve output, while OL gives a 2R-R divider and 1/3Vr. Once again the 
circuit is a multiplying DAC with an output proportional to the product of a 
reference voltage and a binary fraction input. 

The scheme is readily expanded to more bits by adding one switch and 
resistor for each new bir. The chird bit, for example, would use a resiscor 

value of 4R and the new voltage levels would be from 0/7 Vref to 7/7 Vref in 

steps of 1/7Vre. Each new bit would use a resistor twice as large as the 
previous bit. Note that the output range stays the same (0 to Ve) buc that 

each added bit halves the size of the steps. 
This network is often called a weighted resistor voltage output network 

because the value of each resistor is weighted in inverse proportion to the 
significance of the bit controlling it, and the output is inherently a voltage 
level. The performance of the circuit is, in general, good. Differential linear- 
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Fig. 7-4. Weighted resistor DAC 

ity is determined largely by the accuracy of the resistors used. If the resistors 
are not in the proper ratio and the resolution is high, grossly unequal step 
sizes or even nonmonotonic behavior is possible. As an example, assume an 

8-bit converter with perfect IR, 2R, . . . 128R resistors but the 1R resistor 

is 1% too large, that is, 1.01R. The table below shows the voltage output of 
the network for some possible digital inputs: 

Digital Analog x Vref 

00000000 0.000000 
00000001 0.003941 
00000010 0.007882 

01111110  30.496586 
01111111 © 30.500527 
10000000 30.499473 

10000001 0.503414 

11111110 —30.996059 
41111111 -31.000000 

As can be seen, an increase in the digital input from 01111111 to 

10000000 results in a slight decrease in analog output, a classic manifestation 
of nonmonotonicity. Except for this step, the rest are 0.00394 1V ref high. 
Some additional calculation will reveal that the maximum allowable value of 
IR for monotonic performance is (1+ 1/128)R, at which point the voltage 

levels for 01111111 and 10000000 are the same. If 1R were too small by the 
same amount, this step would be twice the size of the others, which still 

gives a ILSB differential linearity error but preserves monotonicity. It can 
also be easily determined that the allowable percentage error for less signifi- 
cant resistors doubles for each bit toward the least significant end. In general, 
though, all of the resistors will have some error, so individual resistors will 

have to be more precise to guarantee differential linearity better than 1LSB. 
A rule of thumb that will always work is that the resistor corresponding to 
bit N should have a tolerance better than 1/2N+!. Thus, the most significant 
resistor of a 12-bit DAC should have a tolerance of 0.024% or better. 
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Even if the resistors were perfect, the analog switches used have a finite 
on resistance, which adds to the effective resistance of each bit. If all switches 
have the same internal resistance, proper ratios are destroyed and linearity 
suffers again. The effect of switch resistance can be minimized by making the 
weighted resistors very large but then speed suffers. Also, stable, tight 
tolerance resistors in the megohm range are difficult to find. Sometimes the 
switches are scaled in size, and therefore resistance in proportion to the bit 
significance to maintain proper ratios in spite of high switch resistance. 
Generally, this is practical only for the most significant few bits because of 
the wide range in resistor values. In any case, it is usually necessary to trim 

the most significant few bits with a potentiometer or high-value parallel 
“trimming” resistors. 

Note that a finite output load has no effect on the linearity of the 
circuit. If a load of value R was connected from the output to ground in the 
example in Fig. 7-4, the four voltage levels would be altered to 0, 0.2Vr/, 

O.4Veef, and 0.6Vrf. Even a short circuit load would provide output currents 

of 0, O.5VreffR, 1.0VrefR, and 1.5Vg/R. Thus, the equivalent circuit of the 

converter can be represented as a variable-voltage generator in series with a 
resistor equal to the parallel combination of all of the weighted resistors. For 
reasonably high-resolution converters, this equivalent resistance is essentially 
Ri2. 

Speed 

Unlike the previous scheme, the speed of this circuit is quite good. The 
only Jimitation on speed is the switching time of the switches and the load 
capacitance at the output node where all of the resistors are tied together. 
Even with a slow switching time of 1 jtsec, a node capacitance of 10 pF, and 
an R value of 50K, the settling time for 12 bits of resolution would be 1 
psec + 9(25K X 10 pF) = 3.25 psec. With this kind of speed, the limit- 
ing factor is often the buffer amplifier usually connected to the output. For 
even higher speeds, the current output configuration (output “shorted” to 
the input of a current-to-voltage converter op-amp circuit) can be used to 
eliminate the 2.25-jtsec contribution of output capacitance. 
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Fig. 7-5. Resistor ladder DAC 
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Although the speed is high, this circuit (in fact all resistive divider 

networks) is subject to glitches when moving from one level to another. The 
root cause of large glitches is nonsymmetrical switching time of the analog 
switches. Assume for the moment that a 3-bit DAC is moving up one step 
from 011 to 100 and that the switches go from 1 to 0 faster than from 0 to 1. 
The resistor network will actually see a switch state of 000 during the time 
between 1-0 switching and 0-1 switching. This momentary zero state creates 
a large negative glitch until the most significant switch turns on. Even if 

switching times are identical, the less significant bits may be slower than the 
more significant ones because they handle much lower signal currents. Un- 
equal switching may be largely overcome in some circuit configurations, but 
small glitches can still be generated during finite switching times when a 
fraction of the reference voltage is still passing through a partially off switch. 
Thus, although some DAC glitching is a fact of life, a simple low-pass filter 
that may even be above the audio range is usually sufficient to eliminate the 
effect of glitches in synthesizer control applications. 

R-2R Ladder 

Figure 7—5 shows a different resistance divider network that is the basis 
for most modern DACs. Although somewhat more difficult to analyze than 
the weighted resistor network, the output voltages are 0.0, 0.25, 0.5, and 

0.75 times Vref corresponding to codes of 00, 01, 10, and 11. Bits are added 

by inserting a switch, series 2R resistor, and 1R resistor to the next lower bit 

between the MSB and LSB. Note that the resistor to ground from the LSB is 
2R rather than IR. This is called a terminating resistor because it simulates 
the equivalent impedance of an infinite string of less significant bits all in the 
zero state. 

The advantages of this configuration are numerous. One is that only 

two different values of precision resistors are needed. Although about twice 
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Fig. 7-7. Exponential DAC 

as many resistors are used, the ease of matching their characteristics (re- 

member only the ratio accuracy is important) leads to better DAC perfor- 
mance with varying temperature. In fact, all resistors could be of the same 
value if 2R is actually two 1R resistors in series. Another advantage is that 

the load impedance of all of the switches is about the same. This eliminates 
the need for scaling switch size; instead the switch resistance can simply be 
subtracted from the 2R series resistor (or a large resistor placed in parallel 
with 2R). Speed can be better because the node capacitances are spread out 
rather than concentrated into one node as with the weighted resistor circuit. 
Analysis of the effect of an error in a single resistor is considerably more 

complicated, although the same resistor accuracy rule for guaranteed 
monotonic performance still holds. Also, the linearity of this circuit is not 
affected by load resistance or a direct short either. The equivalent output 
impedance is essentially R. 

Other variations of the resistance ladder are also used. The most popu- 
lar is the current-switching structure shown in Fig. 7—6. Essentially the 

circuit has been turned upside down with Vee driving the ladder at what was 
the output point and an op-amp current to voltage converter connected to 
what was Vf. Speedwise, this circuit is probably the best. The reason is that 
voltage levels on the resistor network nodes do not change, since the ladder 
current is simply switched between true ground and “virtual ground” at the 
op-amp summing junction. Likewise, voltage levels at the switches do not 
change. When voltage levels arc constant, stray capacitances are not charged 

so there is no RC time constant slowdown. The result is inherently high 
overall speed nearly equivalent to the individual switch speed. Settling times 
of less than 0.5 usec (neglecting the effect of the output amplifier) are 
routine, and 20 nsec is possible in low-resolution designs. 

Exponential DAC Circuits 

The preceding DAC circuits were all linear, that is, the output voltage 

was a linear function of the input digital word. Nonlinear DACs are also 
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possible using only resistors, switches, and op-amps. In sound synthesis, an 
exponential DAC would be of particular interest. Using such a device, an 
exponential response to a digital word could be obtained from a linear analog 
circuit without a separate analog exponential converter. Figure 7—7 shows a 
conceptual circuit for an exponential DAC. Essentially the circuit is a chain 
of switchable attenuators that may have a gain of either 1.0 (switch on, 
bit = 0) or a specific gain of less than 1.0, The output voltage is equal to the 
product of the individual stage gains rather than the sum as with linear 
converters. The buffer amplifiers prevent switching of succeeding stages from 
affecting the attenuation ratios. For the values shown, the output is 
VrefX2-NA, where N is the input expressed as a binary integer. Thus, the 

V/O table would be as follows: 

Binary N Output x Vos 

000 0 1.000 
001 1 0.841 
010 2 0.707 
011 3 0.594 
100 4 0.500 
101 § 0.421 
410 6 0.353 
aw 7 0.296 

Bits may be added ac the left end of the circuit for increased range 
(toward zero) or at the right end for increased resolution. The accuracy of 
exponential conversion is limited only by resistor accuracy and the charac- 
teristics of the op-amps. Other circuit configurations are possible using an 
amplifier per 2 bits or even fewer at the expense of more switches. Since the 
network is a multiplying DAC, one obvious application is an audio at- 
tenuator with response directly in decibels, where the audio signal replaces 
the reference voltage source. Or with some rescaling of resistor values, the 
transfer function, Vow = Vrf X 2-N/I2, can be realized, which would give 

the 12-tone equally tempered musical scale directly with a linear VCO. 

Analog Switches for DACs 

Several different kinds of semiconductor switches are typically used in 
DACs as well as general analog signal switching. The latter application will 
be of great interest later when computer-controlled patching of synthesizer 
modules is considered. The ideal switch, of course, would act like a relay 
with nearly zero contact resistance, complete isolation between control and 
signal circuits, and high-signal-voltage capability but with submicrosecond 
switching times and essentially unlimited life. Practical semiconductor 
switches fall rather short on the first three points but are still quite usable if 
the limitations are understood. 
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Switch “‘on” resistance, for example, is certainly more than ideal. De- 
pending on the switch type, it may range from just a few ohms to well over a 
thousand ohms with typical values in the 50-ohm to 500-ohm range. Some 

switch types have an on resistance that varies with the signal amplitude, 
which can create signal distortion. Off resistance or leakage current, how- 
ever, is usually small enough to be completely ignored. This combination of 
characteristics makes current switching a commonly used circuit technique for 
reducing or eliminating the effects of finite on resistance. 

Inherent isolation of the control signal from the switched signal is not 
passible in a fast, precision analog switch. Bipolar transistor switches, for 

example, generally require the analog signal source to absorb a control cur- 
rent. Field-effect-transistor switches use a control voltage that must be of the 

correct polarity and magnitude with respect to the signal voltage. Although 
lictle or no control current mixes with the signal, the control is affected by 

the signal. Internal capacitances often cause significant spikes to be coupled 
from the control circuit into the signal circuit. Feedthrough capacitance also 
reduces the off isolation of high-frequency signals or lets input spikes that are 
intended to be gated off by the switch through to the output anyway. Limits 
on signal amplitude that can be switched are imposed by breakdown voltages 
of the switch itself and, in the case of FET switches, the power supply 
voltages available for switch control. These limitations are such that + 10-V 
analog signals are not always easily handled. 

Bipolar Transistor Switch 

The bipolar transistor is one of the oldest analog switches in use. 
Presently it is used in discrete form whenever low-voltage, moderately accu- 
rate, very inexpensive switching is to be performed. Bipolar transistors are 
also used extensively in monolithic DACs, where their errors are easily 
cancelled through the use of matched transistors. 

The basic bipolar transistor switch is shown in Fig. 7-8. Note that the 
role of the collector and the emitter have been reversed. This reduces greatly 
the inherent offset voltage of the transistor switch. For small signal currents 
(less than 1 mA), the inverced connection provides saturation voltages in the 
low-millivolt range as opposed to 60 mV or more for the normal common- 
emitter connection. The required control current is the same order of mag- 
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Fig. 7-8. Basic bipolar transistor ana‘og switch 
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Fig. 7-9. Bipolar transistor switches for DACs. (A) Voltage switch. (B) Current 
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nitude as the signal current due to the very low current gain of the inverted 

connection. 
Note that the control current flows through the signal source. This 

need not cause much of a problem if the source has a low impedance such as 
an op-amp output. Note also that, although the switch can actually pass 
small amounts of negative current when on, it cannot block a signal voltage 
more negative than half a volt when off. Positive signal voltage blocking is 
limited to about 5 V because of the 6-V base-co-emitter breakdown of nearly 
all silicon transistors. Greater breakdowns up to 25 V are available in transis- 
tors designed for analog switching, however. 

One advantage of this switch is low control glitch feedthrough to the 
output. All analog switches have capacitance between the control element 
and the signal elements. Charging and discharging of these capacitances 
during switching can create sizable glitches at the load. Since a bipolar 
transistor switch is current activated, the voltage swing at the base is very 
small and therefore the glitch is small. 

Figure 7—9 shows two possible configurations of transistor switches in 
DACs. The first circuit is a double-throw voltage switch that switches its 
output between Vref and ground with very little error. With the simple 
tesistive-voltage-to-control-current converter shown, the control logic swing 
for this switch must be from a negative voltage to a positive voltage greater 
than Vr. An inherently bipolar (+ and — output voltages) DAC may be 
made if the bottom transistor is connected to — Vr instead of ground and the 
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control swing is increased. Note that the Vrs can change over a wide range 

as long as the drive is sufficiently greater than either and that they do not 
cross (Vaf Gn npn more negative than Vey on pnp). Total voltages (Vas+ 
— Veref-) up to the collector breakdown can be accommodated with this circuit. 

The second circuit is often used in monolithic DACs. Weighted resis- 
tors are used to establish binary-weighted currents, The current either flows 
through the common-base-connected switching transistor into the output 
line or through the steering diode into the switch driver. If the current gain 
of the transistors is high, very little signal current is lost through the base. 
Note that this is strictly a current output DAC and that che current must be 

sunk at ground or negative potentials. The temperature dependence of out- 
put current caused by changing emitter-base drop in the switching transis- 
tors may be cancelled by a matched transistor in the Vref source. 

Junction FET Switch 

The field effect transistor is the most commonly used analog switch for 
general-purpose applications. FETs have the desirable characteristic that lit- 
tle or no control current flows in the signal circuit. They are also blessed with 
a zero offset voltage (for zero load current), which contributes greatly to 

accuracy with low-level signals. The on resistance is higher than bipolar 
transistors, but proper circuit design can generally overcome that difficulty. 

Junction field-effect transistors (JFET) are well suited for general 
switching in music synthesis systems because their on resistance is constant 
regardless of signal level. An N-channel FET, for example, behaves essen- 

tially as a pure resistance between source and drain when the gate-to-source 

voltage is zero. The switch is off when the gate is more negative with respect 
to the source than the pinchoff voltage. Most JFETs are symmetrical (source 
and drain interchangable), so if there is a voltage drop across the switch when 
it is off, the gate must be more negative than the most negative source/drain 
terminal. The gate must never be allowed to become positive with respect to 
the source or drain because the gate-channel diode will become forward 
biased and control current will flow into the signal path. P-channel JFETs 

work similarly, but all voltage polarities are reversed. 
Figure 7-10 shows a basic JFET analog switching circuit. A large 

resistor (100K to 1M in practice) between the gate and source keeps the JFET 
normally on. The control voltage is applied to the gate through a blocking 
diode. When the control is more positive than the positive peaks of the 
signal, this diode is reverse biased (preventing positive gate-channel poten- 
tial) and the conducting JFET is essentially isolated from the control. To 
turn the JFET off, the control voltage must be made Vpiecu/f more negative 
than the negative peaks of the signal. The signal voltage range thus is 
determined by the control voltage swing and the pinchoff voltage. With 
+ 15-V power supplies and + 10-V signals, the pinchoff cannot exceed 5 V. 
Note that a small current flows through the now forward-biased blocking 
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diode and the gate-source resistor into the signal source. Fortunately, this 
current can usually be ignored if the signal source is a low impedance. 

The P-channel switch is essentially the same except that the positive 
swing of the control voltage must exceed the positive signal peak by the 
pinchoff potential. P-channel FETs are generally slower and have higher on 
resistance than N-channel FETs by a factor of two to three. One fact of life is 
that really low on resistance is incompatible with low pinchoff voltages. The 
best switching JFETs have on resistances in the range of 20 ohms and 
pinchoff voltages close to 10 V. Thus, standard +15-V power supplies 
would not be able to switch +10-V signals when using such high- 
performance devices. 

MOSFET Switch 

Metal-oxide gate FETs (MOSFET) are also frequently used for switch- 
ing. The MOSFET is the most nearly perfect switching transistor available 
from the standpoint of control-to-signal isolation. Basic operation is the same 
as with a JFET except that the gate is insulated from the channel and all 
voltages are shifted up somewhat. An N-channel MOSFET, for example, is 

normaily off with a zero gate-to-source voltage. The gate must become more 
positive than a threshold voltage before the switch turns on. The gate may also 
swing negative with no effect other than driving the device deeper into 
cutoff. In fact, the gate voltage swing is limited only by internal breakdown 
voltages; it is otherwise isolated (except for a small capacitance) from the 
channel. 

One difficulty with MOSFETs is that the on resistance is indefinite; the 
more positive the gate the lower the resistance. If the MOSFET is carrying an 

audio signal into a finite load resistance, the channel resistance will be 

modulated by the signal itself, causing nonlinear distortion. This happens 
because the gate- (fixed drive voltage) to-source (varying audio signal) vol- 

tage will be changing. Since there is a saturation effect at large gate-to-source 
voltages, distortion will be minimized by suitable control overdrive. Distor- 
tion is also reduced by using larger load resistances. A typical switching 
N-channel MOSFET might have a nominal on resistance of 100 chms that 

may vary from 75 ohms to 150 ohms with + 15-V drive and + 10-V signals. 
Newer MOS technologies such as DMOS and VMOS can actually attain on 
resistances as low as 1 ohm and carry ampere level currents! 

A very nice analog switch may be constructed from two MOSFETs of 
opposite polarity connected in parallel. To turn on, both switches must be 
driven on by opposite polarity control voltages, which can reverse to drive 
both switches off. The major advantage of this circuit is that signal voltage 
levels as large as the drive voltages may be handled. Although each indi- 
vidual switch is highly nonlinear and even cuts off for part of the signal cycle, 
the parallel combination is always on. In fact, when the on resistance of the 
N-channel unit is increasing with positive-going signals, the P-channel resis- 
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tance is decreasing to compensate. The result is considerably less signal 
distortion. This structure is called a CMOS (complementary MOS) transmis- 

sion gate and is available in integrated form as quad switches and eight- 
channel analog multiplexors at very low cost. The disadvantage of most 
integrated transmission gates is a +7.5-V signal and drive-voltage limita- 
tion. Recently, “B-series” CMOS has become available and can handle up to 
+9-V signals, adequate for an 8-V standard system, although some care in 
use will have to be exercised. Specialized units with even higher voltage 
ratings are available but at a much higher cost. 

Figure 7-11 shows a good general-purpose driver for hoth JFETs and 

MOSFETs that can in turn be driven by TTL logic. The driver output swings 
between whatever positive and negative supply voltages are connected. The 
output is negative for a logic high input, which would drive N-channel FET 
switches off. In operation, Q1 performs as a level shifter by feeding the 

approximately 3-mA logic input current through to the base of Q2. The 
220-pF capacitor speeds up the turnoff of Q2 (turnon of N-channel FETs) by 
removing its stored base charge. As shown, the circuit will provide switching 
times of around 200 N sec. Without C1 this deteriorates to around I psec. 

Recently, completely integrated analog switches have appeared on the 
market. These “BIFET” devices accept normal logic levels and analog supply 
voltages of +15 V and provide several NFET switching functions per pack- 
age. Each switch in a typical array of four can handle + 10-V analog signals 
and switching time is about 0.5 fusec. These ate perfect for most applications 

not requiring really high speed or exceptionally low on resistances. 

Current-to-Voltage Conversion 

Returning to DACs, it is often the case that the output amplifier limits 
many performance parameters, particularly settling time. The purpose of the 

amplifier, of course, is to isolate the DAC resistor network from load varia- 

tions so that accuracy is maintained. By far the simplest output buffer is 
simply a voltage follower op-amp connected to a voltage output DAC net- 
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work. Although simple, it is relatively slow when general-purpose op-amps 
are connected as voltage followers because of the heavy frequency compensa- 
tion required. Specialized voltage-follower amplifiers such as the LM310 are 
so fast, however, that overall speed may be dominated by the DAC output 
capacitance. 

Nearly all commercial DACs are inherently current-output devices. 
Many of these can actually generate small voltages across small load resistors 

with no loss of linearity. A non-inverting amplifier with gain can amplify the 
resulting fractional volt signal to standard levels with good speed, since less 
frequency compensation is needed, Noise pickup could be a problem, 
though, if this technique is used with high-resolution DACs. 

The current-to-voltage converter configuration shown in Fig. 7-12 is 

probably the best, really inexpensive circuit available for most applications of 
cutrent-output DACs. The “three-for-a-dollar” LM301 op-amp using feed- 
forward compensation easily gives under 3-fsec settling times, normally 
obtainable only with more costly “high-speed” op-amps. Although the effec- 

tive zero impedance of the amplifier summing node eliminates output capaci- 
tance slowdown, in practice Cl is usually needed to keep the DAC output 
capacitance from making the op-amp unstable. Gain and offset errors are also 
easily trimmed out in this circuit because the adjustments do not interact. 

Number Coding 

Several different binary codes are in common use with DACs. All of the 

example circuits given previously were unipolar, that is, gave output vol- 

tages between zero and a Vref or output currents between zero and Irn. One 

way to obtain a bipolar voltage output would be to use the dual emitter- 
follower bipolar transistor switch shown in Fig. 7-9 with a bipolar reference 
supply. The result would be a voltage output DAC that would swing be- 

tween —Vref and +Vrf—1LSB (switches connected to R-2R ladder). For 

example, all zeroes would give — Vref, 10000 . . . would give zero volts, and 

11111. . . would give one step less than + Vr. Such a code is called offsee 
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binary because it is equivalent to a plain unsigned binary (positive output 
only) DAC output berween zero and +2Vr/f shifted down by Vn as in Fig. 
7-13. In fact, inherently bipolar output DAC networks are not usually builc. 
Instead, a unpiolar DAC is used and half of the reference voltage is swbtracted 

from the DAC output in the output amplifier. With a current output DAC 
connected to a current-to-voltage converter, the offset can be accomplished 
by drawing a current equal to one-half the full-scale DAC current out of the 
amplifier summing node. 

Most computers use twos-complement representation for bipolar num- 
bers, however. Fortunately, conversion of twos-complement binary to offset 
binary is very simple; the most significant bit (the “sign” bit) is simply 
inverted! No other logic or corrections are needed. This, of course, is 

extremely simple to do in the computer program, the DAC interface, or the 
most significant DAC switch itself. 

There is a practical disadvantage to offset binary coding for bipolar 
output. Recall that the effect of a slight error in the weight of the most 
significant bit showed up as an odd-sized step in the exact middle of the 

output range and nowhere else. Also, since the most significant bit has the 
most stringent accuracy requirement, this type of error would be the most 
difficult to avoid. With offset binary, this midscale error would show up at 
the zero output level, precisely where it would be most noticed. 
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Fig. 7-14. Sign-bit amplifier 
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Sign magnitude is another coding scheme that eliminates this error. An 
N-bit sign-magnitude number has a sign bit and N—1 magnitude bits, 
which form an unsigned binary fraction. A sign-magnitude DAC would send 
the magnitude value to a conventional unipolar DAC and then use the sign 
bit to control the output amplifier. When the sign bit is zero, the amplifier 
would pass the DAC output unaltered. When it is one, the amplifier would 

become an inverter an give negative outputs for positive inputs. Such a 
“sign-bit amplifier” is shown in Fig. 7-14. Although this circuit can have a 
gain error if the two resistors are not equal, any error around zero is small and 

can be easily trimmed out by zeroing the op-amp’s offset voltage. Another 
advantage is that this circuit effectively adds a bit of resolution to the overall 
DAC without doubling the resistor network accuracy requirement. 

Conversion of twos complement, which would still be the preferred 

internal computer code, to sign magnitude is fairly simple. The function 
needed would pass che twos-complement value bits unaltered if the sign bit 

were zero and invert them if it were one. The conditional inversion is easily 
accomplished with exclusive-or gates in the interface or can be done by 

software. 

Some Commercial DACs 

For most applications requiring resolutions greater than 5 or 6 bits, the 
expense and difficulty of finding precision resistors outweighs the cost of a 
commercial prepackaged DAC. Most modern 8- and 10-bit units are 

monolithic and packaged in standard 16-pin IC packages. Twelve-bit and 
higher resolutions until recently were invariably hybrid devices usually pack- 
aged in small epoxy modules. At least one monolithic 12-bit DAC is now on 
the market despite claims by its competition that true 12-bit accuracy is not 
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possible with present monolithic technology. In this section, the most 

widely used inexpensive devices in the 8-, 10-, and 12-bit resolution range 

will be briefly described. There are, of course, a large number of similar 

devices on the market that will perform just as well in computer-controlled 

synthesizer applications. 

1408 Type for & Bits 

One of the earliest 8-bit monolithic DACs was developed by Motorola 
and bears the generic type number 1408/1508. The 1508 is an expensive 
milicary temperature range device, but the 1408 performs nearly as well in 
room temperature environments and costs less than $5. The 1408 is offered 

in 6-, 7-, and 8-bit /inearity grades, although all have 8 bits of resolution. 
The linearity grade is indicated by an “-X” following the type number. For 
this discussion, use of the 8-bit grade is assumed. 

Like most inexpensive monolithic DACs, the 1408 is a bare-bones 
device incorporating little more than the analog switches and R-2R ladder 
network. An external reference source and output amplifier are required for a 
complete DAC. The 1408 is basically a current-activated device; the refer- 
ence is a current and the oucput is a current. It is also a multiplying DAC. 
The output current, Joe, is equal to the reference current, Ir, times the 

binary input expressed as an unsigned binary fraction between 0 and 0.994. 
The reference current may range from 0 to about 4 mA, although below 0.5 
mA linearity errors increase such that monotonicity cannot be guaranteed. 
The reference current must always be positive and the output current is 
actually negative, meaning that the DAC output sévés current. Standard 
power supply voltages of +5 V and —15 V are used. 

Figure 7-15 shows a typical hookup for the 1408. Although other 
methods of supplying the reference current exist, the one shown is the 
simplest. The J+ input sinks the reference current at a voltage equal to the 
voltage at Irf-. For a reference voltage of + 10 V with respect to ground, /ref— 

is tied co ground and Jnf+ receives a reference current of 2 mA (the optimum 

value) through a 5K resistor (R 1) tied to the reference voltage. A compensa- 
tion capacitor of 100 pF is required to frequency compensate the internal 
reference current circuitry. 

An output voltage range of — 10 to | 10 is developed from the 0 to —2 

mA output current with a current-to-voltage converter. A +1.0 mA current 
from the reference voltage source through R2 offsets — 1.0 mA of the DAC 
output, giving a net current swing into the amplifier of — 1.0 to +1.0 mA. 
This current is then converted into a —10-V to +10-V swing as a 
function of R3. The current output settling time is about 0.3 fesec, which is 
extended to approximately 3 fusec by the amplifier. R2 and R3 may be made 
adjustable over a small range (low value trim pot in series with a slightly 
reduced resistor) to precisely calibrate the scale factor and offset. 
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Fig. 7-16. 7530-type 10-bit IC DAC 

The digital input is offset binary coded but may be converted to twos 
complement by placing an inverter in the path to B7. Standard TTL logic 
levels are acceptable and the loading is less than one-half unit load. 

7530 Type for 10 Bits 

For several years, 8-bit linearity was the best that could be done with 
bipolar monolithic circuitry. However, ion implantation coupled with 
CMOS switch technology has made possible an inexpensive ($20) 10-bit 
DAC with an unusual but very flexible structure. The generic number is 
7530 and the originator is Analog Devices, although it is available from 
other manufacturers. Like the 1408, reduced linearity devices are available so 
check carefully that the grade being ordered is rated for 10-bit linearity. An 
identical 12-bit resolution unit, the 7531, is also available, but the best 

linearity currently available is still 10 bits. This could be expected to im- 
prove in the future, making it a recommended device for 12-bit applications. 

As can be seen in Fig. 7-16, the 7530 consists of nothing except 

precision resistors and CMOS analog switches! The reference is a voltage that 
can range anywhere between —10 V and +10 V. The reference is applied 
directly to the R-2R ladder network, which provides an equivalent 10K pure 
resistive load to ground. The analog switches steer weighted current from the 
ladder into the two output buses, which must be held at near ground poten- 
tial. A single supply voltage is required, which may range between +5 V 
and + 15 V. Since the power supply operates only the switches, its value and 
regulation has virtually no effect on the analog output. A clever feature of 

this design is that all parts of the analog switches are always at ground 

potential considerably simplifying the internal switch drivers and allowing 
the single low-voltage power supply. The logic inputs are TTL level compat- 
ible regardless of supply voltage and draw essentially zero input current. A 
precision feedback resistor is provided for an external current-to-voltage 
converter. 

By far the most important feature of this circuit is its ability to handle 
bipolar reference inputs. In fact, there is nothing to prevent audio signals up 
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Fig. 7-17. Applications of the 7530 10-bit DAC IC. (A) Digital potentiometer. 
(B) Four-quadrant multiplying DAC. 

to 10 V in amplitude from being applied to the reference input. The two 
output buses are complements of each other. With all switches in the zero 

state (shown), the entire reference current (less 1LSB) is directed to the Iow2 

bus and none goes to Jow!. The converse is true for all switches in the one 
state. In the intermediate states, the sum of the two currents equals the 
reference current less 1LSB. Thus, if the input, D, is considered to be an 

unsigned binary fraction, then Tout = (Vrefl/10,000)D and Tou2 = 
(Vr! 10,000) (0.999 — D). 

Figure 7—17 shows two typical connections of the 7530. The first is a 
digital potentiometer, which is useful as an audio gain control as well as a 
general-purpose fixed-reference DAC. The output is simply the digital input 

expressed as an unsigned binary fraction times the reference. If the reference 
is an audio signal, then the circuit acts as a standard audio potentiometer with 
a gain between zero and very nearly unity. Distortion should be zero, since 
the CMOS analog switches are operating at a constant ground potential. Such 
a citcuit has obvious application in the computer-controlled synthesizer. 

The second circuit is a full fowr-quadrant multiplying DAC. Four quad- 
tant means that the final output voltage is the correct algebraic product of a 
Signed reference voltage and a signed digital input. This normally highly 
complex function is obtained with the addition of nothing more than one 
op-amp and two matched resistors. The extra op-amp negates the current 
from [ow2 and combines it with the current from Jowi in the output amplifier. 
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The effect is that the rwo currents are subtracted, giving a result that can be 
either positive or negative. An inherent offset of 1/2LSB exists, however, 

which can be cancelled by connecting a 10M resistor between the reference 
input and the Jox2 terminal of the 7530. The digital input is offset binary, 
which can be converted to twos complement with a logic inverter. 

Higher-Resolution Units 

At the 12-bit level and beyond, hybrid circuitry is presently the lowest 
costing method of constructing DACs. This does not always mean a large 
epoxy module, however. The DAC349 from Hybrid Systems is packaged in a 
standard 24-pin ceramic DIP and looks like any other IC. For less than $30 it 
offers features not normally available in an economy device. It is a complete 
DAC including a precision-regulated voltage reference and an output 
amplifier. However, these elements are brought out to package pins rather 
than being connected internally allowing the user to supply a variable (unipo- 

lar) reference or his own output amplifier if desired. Several precision scaling 
and offset resistors are also included in the package, allowing simple pin 

connections to select 0 to 10, —5 to +5, and —10 to +10 ourput ranges. 
Perhaps the only disadvantage of this unit is the slow internal amplifier, 
which can take as long as 20 msec to settle after a full-scale output change. 
An external amplifier can boost the speed substantially and still utilize the 
internal scaling resistors, however. 

Even higher resolution is available at a proportionate increase in cost. 
Fourteen-bit linearity (16-bit resolution) costs about $100, true 16-bit 

linearity is around $350, and an unbelievable 18-bit (J part in a quarter 
million) unit goes for nearly $1,000. With this kind of precision, one no 
longer casually connects ordinary op-amps with solder on ordinary circuit 
boards. The various gain and offset errors of the amplifiers and thermocouple 
voltages in the wiring can easily wipe out the advantage of 16- and 18-bit 
accuracy. Fortunately, 12-bit accuracy is generally sufficienc for producing 
control voltages in a computer-controlled analog synthesizer system. 

Multiplexing DACs 

Even though DACs have decreased dramatically in size and cost from 
earlier units, it is still far too expensive to use a 12-bit DAC every time a 

computer-generated control voltage is needed. Fortunately, it is possible to 
multiplex che output of a single fast converter and make it look like several 
identical but slower converters. 

Figure 7-18 shows the fundamental concept of DAC multiplexing. 
Each multiplexed output consists of an analog switch, storage capacitor, and 
a voltage-follower op-amp. The idea is to store the output voltage for each 
channel in the capacitor rather than a separate register--DAC combination. 
For example, when output 1 must be updated the single DAC is given the 
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corresponding digital input, a delay for DAC settling is taken, and $1 is 
closed momentarily to update the charge on C1. Following this, other chan- 
nels could be updated with no effect on output 1. If the switch, capacitor, 
and voltage follower have no leakage, the new voltage level would persist 
indefinitely until a further update was required. Thus, one could visualize a 
multiple-channel DAC board for a microcomputer in which the program 
would supply a channel number and corresponding voltage level whenever an 
output voltage needs to be changed. The board would have only one DAC 
and numerous sample-and-hold (SAIT) channels of the type just described, 
but it would look like a board with possibly dozens of individual 12-bit 
DACs. 

Of course, in the real world several factors combine to give less than 
ideal performance. Since there are finite leakages, it is necessary to refresh the 
storage capacitors periodically to prevent output drift, not unlike refreshing a 
dynamic microcomputer memory. The main limitation of the number of 
channels that can be driven from one DAC is the ratio of channel-drift time 
to channel-update time. With constant-leakage currents, the holding 
capacitor should be large to minimize the drift rate. However, it should be 
small to minimize the update time. In a practical music application, update 
times beyond 50 jasec could limit the speed with which the channels could 
be manipulated. As a result, the requirement for adequate speed places an 
upper limit on the capacitor size and consequently refresh interval. 

When developing a practical circuit for DAC multiplexing, several 
factors must be considered. The main DAC is an important contributor to 
overal] performance and, of course, determines the resolution of the system. 
Since this one DAC will contro! a large number of channels, its cost will be 
divided N ways. A good-quality, stable unit carefully trimmed for minimum 
error should be used, since any errors here will affect all channels. High speed 
is definitely a benefit so a couple of extra bucks spent on a high-speed output 
amplifier for the DAC would be worthwhile. 
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Several analog switch characteristics are important in DAC output 
multiplexing applications. “On” resistance, for example, greatly affects the 
time necessary for updating but does not contribute to inaccuracy. This is 
because the capacitive load acts as an infinite load resistance after it has 

charged to the DAC voltage through the switch. Likewise, signal-dependent 
on resistance would not be expected to distort the signal. A very important 
parameter is the “feedthrough glitch” from the switch when it turns off. This 
glitch will cause an output error because it slightly alters the capacitor 
voltage ac the moment of turnoff. This error may be made as small as desired 
by increasing the hold capacitor but then update time is increased. A good 

switch then would have low on resistance and low glitch energy, normally 
conflicting requirements. 

Since a large number of analog switches will be used, the required drive 
circuitry becomes important. With individual FET switches, the digital- 
decoding and level-shifting circuits would probably dominate a board with 
more than a few channels. A 16-channel unit using individual JFETs, for 

example, would require a 1-of-16 TTL decoder and 16 driver circuits like the 
one in Fig. 7-11. Integrated switch-driver circuits would still require the 
decoder. 

Analog Multiplexors 

Integrated circuit analog multiplexors, however, are ideal for the applica- 
tion. An eight-channel multiplexor, for example, contains a 1-of-8 decoder, 
eight switch drivers, and eight analog switches. One side of each switch is 
connected to eight individual package pins and the other sides all connect to 
a ninth pin. Three address inputs select the desired switch and a fourth 
chip-enable input controls operation of the selected switch. Although these 
circuits were intended to select one of eight ‘nputs and connect it to a single 
output, they work just as well in reverse for output multiplexing a DAC. Two 

eight-channel multiplexors are easily combined into a 16-channel equivalent 
as shown in Fig. 7-19. The scheme can be readily expanded to additional 
channels not unlike expanding a microcomputer memory. 

The 4051 is a very inexpensive CMOS eight-channel analog multiplex- 
or that can be had for less than $1.50. Its main limitation, as with all 

low-cost CMOS, is a restricted signal-voltage capability of 15 V peak to 
peak. One application that could use the 4051 directly is a multichannel 0 to 
+10 DAC for generating unipolar control voltages. Since the voltages being 
switched are between 0 V and +10 V, the 4051 could be powered from the 

+15-V system supply. Logic inputs to the 4051 must swing between Vs 
(connected to ground along with Vee in this case) and Vdd (+15), which is 

easily accomplished with high-voltage open-collector TTL drivers such as 
7406, 7407, 7426, 7445, etc., and a pullup resistor to +15. The 4051 

could also be used to switch +5-V analog levels if it were connected to +5-V 
and ~5-V power supplies. An internal level shifter allows the digital inputs 
to retain a positive only swing of 0 V to +5 V. The resulting +5-V signal on 
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Fig. 7-19. 16-channel multiplexed DAC using CD4051 

the hold capacitor could be boosted to + 10-V standard levels in the buffer 
amplifier or used directly in a 5-V system. 

A “B-series” 4051 405 1B) can be used in the bipolar configuration to 
switch *+8-V signals and thus directly handle the full voltage range of an 

8-V system. In order to do this, well-regulated supply voltages of +8 V and 
—8 V (buffered system reference voltage is ideal) must be used to power the 

CMOS. Logic swings between ground and +8 V are required. Although 
often no more expensive, the 4051B is likely to be harder to purchase than 
the standard 4051. 

BIFET analog multiplexors handling a +10-V signal range without 
strain are also available. These are easier to use, require standard + 15-V 
power, utilize TTL logic levels but have a higher on resistance (350 ohms as 

compared to 100 ohms for the 4051), and are much more expensive. Another 
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advantage of these circuits is their immunity to static discharge, since JFETs 
rather than MOSFETs are used internally. 

Hold Capacitors 

The hold capacitor also influences performance greatly. Not only does 
its value determine the update speed and required refresh interval, its dielec- 
tric material determines the accuracy of the held voltage. All capacitors have 
a “memory” effect to some degree, which becomes apparent when the 
voltage on the capacitor is suddenly changed after having been constant for a 
Jong time. The result is that the new voltage level gradually creeps toward 
the old level with a time constant on the order of 20 msec. The final amount 
of creep may range from over 1% for ceramic disk capacitors to less than 
0.01% for polystyrene or polypropylene capacitors. Although a decreased 

refresh interval can minimize the effect, polystyrene should always be used 
for the hold capacitor dielectric. 

The capacitor size is largely determined by the required update time 
and the on resistance of the analog switch. Note that some switches with an 

otherwise low resistance may require external series resistance to limit the 

current when large changes in output voltage occur such as from —10 to 
+10 V. Without limiting resistance, a 50-ohm switch would try to conduct 
nearly half an amp (if the DAC output amplifier could deliver it) when 
switched on. For purposes of calculation, a total switch and limiting resis- 
tance of 400 ohms will be assumed. 

Part of the update time is spent waiting for the DAC to settle. With a 
decent output amplifier on the DAC, this can be around 5 usec. Thus, if the 

total update time is to be 50 pusec, then 45 are available for capacitor 
charging. Assuming a worst-case transition of the full 20-V range, a worst- 
case error of one-half che resolution of a 12-bit main DAC would require the 
capacitor to charge within 2.4 mV or about 0.012% of its final value. With a 
normal negative exponential charging curve at least ORC time, constants will 
be required to update the capacitor that accurately. The RC time constant 
therefore should be 5 jsec or less, meaning that C can be no larger than 
0.016 “PF. Unfortunately, this is not always large enough to swamp out the 

effect of feedthrough glitch in the analog switch. Larger capacitors up to 
perhaps 0.1 «F (about the largest polystyrene value available) may be usable, 
however, if large voltage steps are avoided or several refresh periods for final 
channel settling is acceptable. 

Channel Output Amplifier 

The channel output amplifier to a large degree determines the refresh 
period, since its input bias current is normally the largest contribution co 
leakage from the storage capacitor. This problem may be easily circumvented 

by using one of the newer FET input op-amps that have vanishingly small 
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bias currents. However, these are normally single devices and tend to have 

larger offset voltages than bipolar input stage devices. So, as an exercise, let 

us determine just how bad the situation would be with a standard bipolar 

op-amp. 

The LM324A is a popular quad op-amp with an unusually low bias 
current of 45 nA and a typical offset voltage of 2 mV, a little less than 
one-half the step size of a 12-bic, +10-V DAC. With a hold capacitor of 
0.016 pF calculated previously, the drift rate due to bias current will be 2.8 
Visec. Thus, if drift is to be held to less than one-half the DAC step size (2.5 

mV) between refreshes, the refresh interval should be less than 880 psec. A 

refresh operation could be expected to take considerably less time than a full 
update operation, since the capacitor voltage change is normally very small. 
A 20-psec refresh time, for example, would allow 5 sec for DAC settling 

and a liberal three time constants for capacitor recharge. With these num- 

bers, it should be possible to keep 880 jasec/20 sec=44 channels refreshed, 
and it would be realistic to support as many as 64 with a 2-time constant 
recharge period. Larger capacitors (to minimize switch glitch error) yield a 
slightly increased channel capacity because, although the longer drift time is 
cancelled by longer recharge time, the DAC settling time becomes less of a 
factor. Thus, it would be worth considering the LM324 as the channel 
output amplifier in a system with 64 or fewer channels. 

Refresh Logic 

As with dynamic memory in a microcomputer system, refreshing the 
multiplexed DAC presents some problems that partially offset the lower cost. 
One method of handling the refresh requirement would use the mi- 
crocomputer system’s interval timer to interrupt the program periodically. 
The interrupt service routine would then update all of the DAC channels 
from a table in memory and return. Whenever the main program actually 
wanted to change a DAC channel output, it would directly update both the 
output and the corresponding table location. 

Although easily implemented, this scheme has two serious difficulties. 
One is the time stolen from the main program for the refresh operation. 
With 64 channels and bipolar channel amplifiers, all available time would be 
used to refresh the DAC. Even with FET amplifiers, a substantial amount of 
time may be stolen. Also, if the microcomputer is stopped or a nonmusic- 
playing program is executed, such as the system monitor, the DAC refresh- 
ing stops and the channel output voltages drift away to undefined levels. If 
the synthesizer were not shut down, the drifting voltages could produce a 
teally raucous racket! Thus, it is advantageous to perform the refresh au- 
tomatically with some scanning logic—or a logic replacement mi- 
croprocessor dedicated to the refreshing operation. 
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An Intelligent DAC? 

A 6502 and three additional support chips would make a superb mul- 
tiplexed DAC controller. Figure 7—20 outlines such a unit that could support 
up to 128 channels. The 6532 interface chips simultaneously provide two 

8-bit I/O ports, 128 bytes of read/write memory, and one interval timer 
each. These provide all of the interfacing needed between the control proces- 
sor and the using system, DAC, and analog multiplexor. The 2708 PROM 
provides nonvolatile program storage for up to 1,024 bytes, ample for a very 
sophisticated refresh routine indeed. These four ICs could be expected to cost 
less than $50 total, which is less than 40 cents per channel. 

Using a microprocessor for refresh control offers a lot more advantages 
than a low package count, however. The using system, for example, can 
communicate the 12 bits of data and 7-bit channel address on a byte basis 
with full request/acknowledge handshaking. After the data is transferred, it 
can go on about its business, while the DAC micro goes through the gyra- 
tions of updating the channel. With proper programming of the DAC micro, 
burst rate updating much faster than is directly possible could be accommo- 
dated by storing the data away for later action. The micro could be cognizant 
of the magnitude of voltage change on the storage capacitors and decrease the 
“wait for settle” delays when the change was small. Average throughput 

could be further increased by shorting out the 300-ohm protective resistor 
except when a large voltage step occurred. With the timers available on the 
6532 chips, some higher-level commands such as “linearly ramp channel 43 
from —2.5 V to +1.6 V over the next 700 msec” could be implemented 
right in the DAC, relieving the host system of that sort of task. 
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Analog-to-Digital Converters 

In a computet-controlled analog synthesis system, ADCs are used 
mostly for the input of manual data. Control knobs, slide pots, joysticks, and 
existing synthesizer keyboards are all sources of voltage that need to be 
converted into numbers for use by the system. In some cases, the output of 

analysis devices such as envelope followers, pitch trackers, filter banks, or 
even a raw audio signal must also be converted into digital form at medium 
(100 samples/sec) to high (10K to 50K samples/sec) speeds. 

Single-Shot Method 

The simplest ADC method, which is often used in microprocessor- 

based games, utilizes a sémg/e-shot or monostable multivibrator. Effectively, 
the quantity to be digitized, which must usually be a resistance but can be a 
de voltage, is made to vary the pulse duration of a single-shot circuit. The 
variable to be digitized is now time, which can be easily measured by a 
counting loop in the microprocessor or an external hardware counter. 

Figure 7—2 1 shows how a variable resistance such as a rotary or slide pot 
can be digitized directly by the microcomputer. To perform a measurement, 
the digitizing routine would first pulse an output bit connected to the 
trigger input of the single-shot IC. Following application of the trigger, the 
microcomputer would enter a routine that looks at the state of the single-shot 
via an input-port bit and counts a register up from zero every loop that it 

remains on. When the single-shot times out, an exit is taken from the loop 

and the content of the register is the converted value. 

The shortest loop possible in 8080 machine code to do this is 13.5 jusec 
and with the 6502 it is 8 asec. (The LSI-11 is not suited for software timing 

because of its highly variable cycle time.) For 8-bit equivalent resolution (1 
part in 256) using an 8080, the single-shot time would have to be 256 times 
13.5 psec or about 3.45 mSec for maximum resistance. In a 6502-based 
system, this time is reduced to 2.05 msec for the same resolution. Unfortu- 
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Fig. 7-21. Single-shot method of analog-to-digital conversion 
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nately, the time cannot go to zero for minimum resistance so before the 
converted value is used, the time corresponding to minimum resistance 

(one-tenth the maximum time in the example) will have to be subtracted 

out. This method is capable of higher resolutions by further extending the 
maximum single-shot period; however, 8 bits is usually quite sufficient for 
digitizing single-turn or short travel slide potentiometers. 

This technique is also readily extended to measuring voltages with the 
circuit in Fig. 7-22. Normally, the analog switch is closed and the inte- 
grator output voltage is therefore zero. To make a measurement, the mi- 
crocomputer opens the switch and monitors the output of the comparator as 
before. The integrator output now starts going positive at a constant rate 

determined by the reference voltage magnitude. When it finally becomes 
more positive than the unknown voltage, the comparator switches low and 

the accumulated count is the converted value. As before, the resolution 
attainable is dependent on the speed of the microcomputer and the time 
available for conversion. 

Dual-Slope Method 

One problem with both of the preceding circuits is that accuracy and 
stability depend on the quality of a capacitor. The circuit in Fig. 7-23 
overcomes this difficulty by comparing the input voltage with a reference 
voltage, using the capacitor only as a comparison medium. A measurement 

cycle consists of two phases. Normally S2 is on, forcing the integrator output 
to zero. During phase 1, S1 selects the unknown voltage for the integrator 
input, and $2 is opened to allow the integrator to charge negative at a rate 
dependent on the unknown voltage. The amount of time spent in phase 1 is 
constant and carefully controlled by a counting loop similar to that used for 
measurement. At the beginning of phase 2, S1 is flipped so that the negative 
reference voltage is connected to the integrator. Being of opposite polarity, 
the integrator starts to recharge toward zero again. The time necessary to 
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Fig. 7-23. Dual-slope integration method 

reach and cross zero is monitored by the microcomputer as before. If a similar 

loop is used in each phase, the converted value will be in fractional terms of 
the reference voltage and the value of the capacitor is no longer critical. 

Accuracy in excess of 12 bits is readily obtained with this dual-slope 
circuit, although long conversion times would still be necessary with the 
microcomputer doing the timing and control. Every additional bit of resolu- 
tion would double the time required for conversion. Dual slope takes about 
twice as long as the single-slope or single-shot method because both the 
reference and the unknown are, in effect, digitized. A hardware counter 

could be used instead to increase the speed, but these techniques still remain 
relatively slow. 

Integrated circuit dual-slope ADCs are available with resolutions as 
high as 20,000 steps. Unfortunately, most of these are intended for digital 
panel meters and therefore have decimal outputs. The MM5863 from Na- 

tional Semiconductor, however, provides 12-bit binary output and conver- 
sion times as short as 20 msec when used with an LF11300 “analog front 
end” circuit. This is adequately fast for digitizing most slowly changing 
voltages. 

Linear Search and Tracking ADC 

The better techniques for analog-to-digital conversion work by compar- 
ing che unknown analog voltage with the output of a DAC using the basic 
configuration in Fig. 7-24, In practice, the DAC output is systematically 
varied until it matches the unknown as closely as possible as determined by 
the comparator. When this is accomplished, the input to the DAC is the 
digital equivalent of the unknown voltage. The key to high speed is an 
efficient search algorithm and a fast DAC and comparator. 

The simplest search method is the linear search. The DAC is set to zero 
(or negative full scale if it is bipolar) and then incremented one step at a time 
until the comparator switches from high to low, indicating that the un- 
known input voltage has just been crossed. Of course, this is not likely to be 
any faster than the voltage-to-time methods described earlier. However, if 
the unknown voltage has not changed much since the last reading, the search 
could be started at the last value rather than zero. 
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Fig. 7-24. Analog-to-digital conversion using a DAC 

A refinement of the linear search is the tracking ADC. In operation, the 
comparator output is constantly monitored. If the comparator output is 
high, the DAC ouput is increased one step. If it is low, the DAC is backed 

off one step. The result is that the DAC always contains the digital equiva- 
lent of the input voltage within one step, provided the unknown voltage 
changes slowly. The inherent one-step oscillation around the correct value 

may be suppressed by use of a window comparator, which has an “equals” 
output as well as a greater-than and less-than output. If the equals window is 
set to be a little over one step wide, the oscillation is stopped. A window 
comparator is simply two ordinary comparators with different reference 
voltages—the difference being the window width. 

The control circuit for a tracking ADC is exceptionally simple, just a 
high-frequency oscillator and an up—down counter. The comparator output is 
connected to the direction control input of the counter and the clock makes 
the counter count in the indicated direction. The clock period must be longer 
than the settling time of the DAC. Usually in a microcomputer system, the 

clock can be a microprocessor clock phase chosen such that the counter never 
changes when it might be read by the microprocessor. As long as the rate of 
input voltage change does not exceed the counting speed, the tracking ADC 
has a “zero” conversion time. The slew rate limitation can be very real, 
however. For example, a 12-bit tracking ADC with 1-MHz clock would 

require over 4 msec to slew from one end of the range ro the other. If used for 
direct digitizing of audio, such a converter could not handle full-scale sine 

waves higher than 77 Hz without serious efrors. 

Successive Approximation Search 

The most efficient search algorithm and the one used by all high-speed 
ADCs is termed successive approximation. The same algorithm is called a d:nary 

search by computer scientists. It works by progressively narrowing in on the 
unknown voltage level by testing a series of carefully chosen “trial’’ voltages 
and looking at the comparator output for a high—low indication. (This sarne 
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Fig. 7-25. Successive approximation search method 

problem is the basis of a popular computer game in which the computer 
“thinks” of a random number and responds to the player’s guesses with a “too 
high” or “too low” verdict.) It is easily proven that no more efficient search 
algorithm exists when only a high-low comparison decision is available for 

each trial. 
Referring to Fig. 7-25, it is easy to see how the algorithm works. The 

example is one of homing in on an unknown voltage of +3.253 V using a 

DAC with a range of — 10 V to +10 V in the ADC system. The first trial is 
used to determine the polarity of the unknown voltage. The DAC is set to 0 
V output and the comparator is read after sufficient delay for settling. In this 
case, the comparator output would be high, indicating that the unknown is 
higher than the trial, which is indeed the case. The next trial value should be 
+5 V. This time the comparator output would be low, indicating that the 
trial was too high. 

At this point it is known that the unknown is somewhere between 0 V 

and +5 V. The rule is that the next trial value should always be set midway 
in the range that the unknown is known to occupy. The result of the trial 
will be a new range, half the size of the previous one, that is also known to 
surround the unknown. Proceeding, the next trial would be midway between 
O and +5, namely +2.5, The sequence would continue: low, try 3.75; high, 

try 3.125; low, try 3.437; high, try 3.281; high, etc. Note that after only 
seven trials the unknown has been pinned down to within 30 mV, better 
than 0.15% of full-scale accuracy. Eventually the voltage range surrounding 
the unknown becomes as small as the step size of the DAC used to generate 
the trial voltages, and the conversion is declared to be complete. The last 
trial value is the converted result. 

Now if the reader is observant he may have noted that the trial values 
are nice round numbers—in the binary sense. Assuming the use of an 8-bic 
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offset binary DAC, the sequence of trials expressed in binary would be: 
10000000 (0), 11000000 (5), 10100000 (2.5), 10110000 (3.75), 10101000 

(3.125), 10101100 (3.437), 10101010 (3.281), etc. 

It curns out that computation of the next trial value is really no compu- 
tation at all. It is simply a bit manipulation that any microprocessor is quite 

adept ac. If the binary input to the DAC is treated as a register, the manipu- 
lation is as follows: 

1 

Note 

. Start by clearing the DAC to all zero bits and begin the procedure at 
the leftmost (most significant) bit. 

. Set the current bit to a one to generate the nexe trial value. 

Wait for settling of the DAC (not usually necessary as a separate step 
unless the DAC is slow or the microprocessor is exceptionally fast). 

. Look at the comparator output: if the unknown is higher than the trial, 
g0 to step 6, otherwise continue to step 5. 

. Reset the current bit back to a zero. 
- Move one bit position right and go to step 2 for the next trial. If all of 
the bits have been exhausted, the conversion is finished, and the DAC 

register contains the converted value. 

that the number of trials will be constant and exactly equal to the 
resolution of the DAC being used. This means that doubling the resolution 
by adding a bit will only lengthen the conversion time slightly, unlike 
previous methods in which conversion time would also be doubled. 

* "DAC" IS DAC OUTPUT PORT ADDRESS 
* MOST SIGNIFICANT BIT OF “CMP" IS COMPARATOR, 1 IF INPUT IS 
* GREATER THAN DAC OUTPUT, 0 OTHERWISE 
+ RETURNS WITH CONVERTED VALUE IN A, TWO'S COMPLEMENT NOTATION 
* USES REGISTERS B AND C 
* 27 BYTES, AVERAGE OF 348 MICROSECONDS EXECUTION TIME 

0000 0680 ADC = MVI_—s&B 80H INITIALIZE TRIAL BIT REGISTER 
0002 3£00 MVIA,O INITIALIZE TRIAL VALUE 
0004 80 ADC1] ORA 8B SET TRIAL BIT INA 
0005 D300 OUT DAC SEND TRIAL VALUE TO DAC 
0007 48 MOV C,A SAVE A IN C 
0008 DB02 IN CHP TEST COMPARATOR OUTPUT 
OO0A B7 ORA A 
0008 79 MOV A,C RESTORE A FROM C 
000C FALOOO JM ADC2 LEAVE TRIAL BIT ON IF INPUT .GT. DAC 
OOOF AB XRA 8 TURN TRIAL BIT OFF IF INPUT .LT. OAC 
0010 4F ADc2 MOV C,A SHIFT TRIAL BIT RIGHT 1 POSITION 
0011 78 MOV A,B 
0012 OF RRC 
0013 47 MOV B,A 
0014 79 MOV. AAC 
0015 020400 JNC  ADCL LOOP IF BIT NOT SHIFTED OUT OF B 
0018 £80 XR1 80H FLIP SIGN BIT TO GET TWO'S COMPLEMENT 
001A C9 RET RETURN WITH RESULT IN A 

Fig. 7-26. Successive approximation analog-to-digital conversion routine for 
the 8080 
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: "DAC" IS DAC OUTPUT PORT ADDRESS 
‘i MOST SIGNIFICANT BIT OF "CMP" IS COMPARATOR, 1 IF INPUT IS 
; GREATER THAN DAC OUTPUT, 0 OTHERWISE 
i RETURNS WITH CONVERTED VALUE IN A, TWO'S COMPLEMENT NOTATION 
a USES INDEX REGISTER X AND ONE TEMPORARY MEMORY LOCATION 
; 25 BYTES, AVERAGE OF 199 MICROSECONDS EXECUTION TIME 

0000 A980 ADC: LDA #X'80 3; INITIALIZE TRIAL BIT REGISTER 
0002 8580 STA TRLBIT ; LOCATION TRLBIT ASSUMED TO BE LN PAGE 0 
0004 A900 LOA #0 3; INITIALIZE TRIAL’ VALUE 
0006 0580 ADCL: ORA TRLBIT ; SET TRIAL BIT INA 
0008 800017 STA DAC 3; SEND TRIAL VALUE TO DAC 
0008 AEO217 LOX CMP 3 TEST COMPARATOR OUTPUT 
OO0E 3002 BMI ADC2 ; LEAVE TRIAL BIT ON IF INPUT .GT. DAC 
0010 4580 EOR  TRLBIT ; TURN TRIAL BIT OFF IUF INPUT .LT. DAC 
0012 4680 ADC2: LSR  TRLBIT 3; SHIFT TRIAL BIT RIGHT ONE POSITION 
0014 90FO BCC ADC1 ; LOOP IF BIT NOT SHIFTED OUT OF TRLBIT 
a016 4980 EOR #X'80 3 FLIP SIGN BIT TO GET TWO'S COMPLEMENT 
0018 60 RTS 3 RETURN 

Fig. 7-27. Successive approximation analog-to-digital conversion routine for 
the 6502 

Successive Approximation Logic 

Just to show how efficient this algorithm is and how practical it is to 
execute on a microcomputer, it has been coded into assembly language 
subroutines for both the 8080 and the 6502 microprocessors in Figs. 7-26 
and 7-27. In both subroutines, the DAC is considered to be an 8-bit offset 

binary-coded unit at the symbolic address DAC, and the comparator is 
assumed to be connected to the most significant bit (sign bit) of the input 
port addressed symbolically by CMP. A one from the comparator indicates 
that the unknown is Aigher than the trial. The output from each subroutine is 
an 8-bit signed twos-complement number; however, removing one instruc- 

tion will preserve the natural binary coding when a unipolar ADC is being 
implemented. 

First, the programs are exceptionally short; only 27 bytes for the 8080 

and 25 bytes for the 6502. They are also very fast (348 usec for the 8080 and 
199 psec for the 6502) compared to the figures that were discussed earlier. 
With this kind of inherent speed, the microcomputer system could easily 
digitize several manual controls 100 times/sec with little impact on the time 
available for other tasks. 

Resolutions beyond 8 bits are readily handled by 8-bit microprocessors, 
but the program size and conversion time increase substantially because of 
the double precision operations now required. A 12-bit subroutine coded for 
the LSI-11 (Fig. 7-28) reveals the power and speed of this processor as well as 
some of the advantages of memory-mapped I/O. 

A hardware successive approximation controller is also easy to build 
and, in fact, now can be purchased as a single IC good for up to 12 bits. 
With a hardware controller, the final limit on conversion speed is the settling 
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"DAC" IS DAC OUTPUT PORT ADDRESS, 12 BITS LEFT JUSTIFIED 
"BAC" IS ASSUMED TO BE A READ/WRITE REGISTER 
MOST SIGNIFICANT BIT OF "CMP" IS COMPARATOR, 1 IF INPUT IS 
GREATER THAN DAC OUTPUT, O OTHERWISE 

USES ONLY RO 
40 BYTES, AVERAGE OF 480 MICROSECONDS EXECUTION TIME 

012700 000000 ADC: MOV = #0,RO 3 INITIALIZE TRIAL BIT REGISTER 
010037 177000 MOV RO, @#DAC 3 INITIALIZE TRIAL VALUE IN DAC 
050037 177000 ADC1: BIS RO, @#DAC 3 TURN ON TRIAL BIT IN DAC 
005737 177002 TST @#CMP 3 TEST COMPARATOR 
100402 BMI ADC2 ; LEAVE TRIAL BIT ON IF INPUT .GT. DAC 
074037 177000 XOR RO, GHDAC 3 TURN TRIAL BIT OFF IF INPUT .LT. DAC 

006000 ADC2: ROR = R0 3 SHIFT TRIAL BIT RIGHT 1 
032700 000010 BIT #000010,R0 3 TEST If ALL TRIALS DONE 
001365 BNE ADC1 3 LOOP IF NOT 
013700 177000 MOV = @#DAC ,RO 3 PUT RESULT INTO RO AND CONVERT TO TWO'S 
062700 100000 ADD #100000,R0 3 COMPLEMENT 
000207 RTS PC 3 RETURN 

Fig. 7-28. Successive approximation analog-to-digital conversion routine for 
the LSt-11 

time of the DAC and the delay of the comparator. Since even a mediocre 
75-cent comparator responds in 200 nsec (LM311 type), the challenge is 
presented by the DAC. Because the speed of most DACs is determined by the 
output amplifier, it would be nice if it could be eliminated. This, in fact, can 

be done easily if the connection to the comparator is slightly altered. Rather 
than using a vo/iage comparator with a voltage output DAC and an unknown 
input voltage, what is desired is a current comparator that can be connected 
directly to a current-output DAC. The unknown voltage can be converted to 
a current by use of an accurate series resistor. 

True current comparators with sufficient accuracy are not generally 
available but the configuration shown in Fig. 7-29 is virtually as good and 
uses the same LM311-type voltage comparator. A mismatch between the 

DAC current output and the unknown current will tend to pull the 311 
inverting input away from ground, thus switching the comparator according 
to the direction of the mismatch. The two diodes across the comparator 
inputs limit the voltage swing for large mismatches, thereby maintaining 

high speed (small voltage swing minimizes effect of stray capacitances) and 
keeping the current output DAC happy. With this circuit configuration and 
a hardware successive approximation unit, conversion times of less than 20 
sec regardless of the input voltage level or rate of change are routine for 12 

bits of resolution. 

Sample and Hold 

There is one practical difficulty, however, with the successive approxi- 
mation algorithm; it assumes that the unknown voltage input does not 
change during the course of the conversion. If it does change, significant 

RETURNS WITH CONVERTED 12 BIT VALUE IN RO, TWO'S COMPLEMENT 
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Fig. 7-29. Analog circuitry for a high-speed ADC 

conversion errors can occur, although their magnitude will not exceed the 
total amount of change over the conversion interval. Even though successive 
approximation ADCs are quite fast, signals one might think are slow moving 
can still change enough in a few microseconds to create an error of several 
resolution steps in a high-resolution converter. A 20-Hz full-scale sine wave 
“moves” at rates above one step (12-bit ADC) every 4 msec. If the conversion 
time was a speedy 16 usec, random errors as large as four steps would result, 

giving an effective resolution of only 10 bits. Such a “raw” ADC would be 
worthless for converting audio signals. 

The same sample-and-hold setup that was used to multiplex a DAC can 
also be used to sample a fast-moving signal and then hold its instantaneous 
value at a predictable point in time for accurate conversion. The performance 
requirements of the sample and hold can be substantially greater than for 
DAC multiplexing, however. When in the sample mode (switch closed), the 

on resistance and holding capacitor size must be small enough so that a large 
difference between input voltage and capacitor voltage does not develop due 
to the rapidly changing input. Ideally, this difference amounts to a slight 
low-pass filtering of the signal, but if the multiplexor on resistance is non- 
linear, it can also introduce distortion. Of course, low on resistance and small 

hold capacitors contribute to larger switching transient errors. With a good 
sample and hold, full-range audio signals can be converted with ADCs as 
slow as 25 usec. This topic will be discussed more fully in Chapter 12. 

Multiplexing ADCs 

Like DACs, ADCs are generally too expensive to use for each signal to 
be digitized. Again, however, mu/tiplexing can be used to make one fast ADC 
look like scveral slower ones. Even the speed tradeoff is not really necessary 
with techniques such as the single-slope integrator in Fig. 7-22. To add 

more channels, one simply adds more comparators (type 339 quad com- 
parators work well) with che plus inputs all connected to the single integrator 
and the minus inputs connecting to individual unknown voltages. The com- 
parator outputs go to individual input-port bits of the microcomputer. The 

microprocessor counting loop can be modified to actually perform eight 
analog-to-digital conversions simultaneously! Although the simultaneous 
conversion loop will be slower than a single-channel loop, it will not be eight 
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times slower, which results in increased pet channel conversion speed as well 
as hardware savings. A similar parallel conversion approach could also be 
used with the linear-search ADC method in which a DAC replaces the 
integrator. 

Although simultaneous conversion is not possible with the successive 
approximation search method, multiplexing by adding comparators is a very 
simple and effective method. A digital multiplexor such as a 74150 16- 
channel unit can accept a binary channel number and effectively connect the 
addressed comparator to the successive approximation logic or input-port 
bit. Thus, duplication of the expensive trial DAC is avoided. Note that this 
is restricted to slowly moving signals unless a sample-and-hold circuit is 
added to each channel. 

Analog multiplexing several inputs into one sample-and-hold/ADC 
combination is probably the most used ADC multiplexing technique. The 
same analog multiplexors that were suitable for DACs are equally good for 
ADCs; the roles of input and output are simply interchanged. A dedicated 
microprocessor makes an excellent ADC multiplex controller as well. For 
continuous sampling of several changing signals, the dedicated micto allows 
each channel to have its own sample rate matched to the signal to be dig- 
itized. Even compensation for known errors in the signal source could be 
handled on a per-channel basis by the micro. 
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Signal Routing 

In the previous two chapters, the sound-synthesizing elements that are part 
of a computer-controlled analog synthesizer were studied in detail. First, 
voltage-controlled circuits such as oscillators, amplifiers, and filters that do 

the actual sound waveform generation and modification were discussed. This 
was followed in Chapter 7 by a discussion of interface elements such as DACs 
and analog switches that allow the computer to control the analog synthesis 
circuits. The final step in the synthesis portion of the system is interconnec- 
tion of these synthesis and interface elements into a useful system. Of course, 
there are almost as many ways to do this as there are system designers, but an 

attempt will be made to group these into three different organizational 
philosophies, all of which have been hinted at in previous discussion. 

The first organization, which we shall call “Type 1,” is really no 

organization at all. The analog elements are simply mounted in rows on a 
front panel, each independent of the others except for power. The computer 
interface elements are likewise grouped together and are also logically inde- 
pendent. Interconnection is done manually by means of patch cords or pin- 
boards, just as on a conventional synthesizer. In fact, most systems of this 
type incorporate a standard analog synthesizer or a collection of standard 
synthesizer modules. Interface elements may be standard multichannel DACs 
with nothing more added than a jack panel to accept standard patch cords. In 
such a system, the computer automates such tasks as sequencing, generation 
of arbitrary envelope shapes, smooth manipulation of several parameters 

simultaneously, and controlling polyphony. Note that these are the most 

difficult tasks to perform on a classic manual synthesizer system. Since 
off-the-shelf components can be utilized and the overall organization does not 
differ greatly from conventional systerns, this approach would be expected to 
be the most popular, at least for the near future. 

The Type 2 organization is like Type 1 except that the computer is in 
complete control of the interconnections among elements as well. [In its most 

elementary form, it is a Type | system with a computer-controlled switching 
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matrix added to replace the manual patch cords. A completely general 
switching matrix very quickly becomes prohibitive in size, but fortunately 
there are ways to reduce it without undue sacrifice in flexibility. If the analog 
modules are precalibrated, the synthesizer may be packaged as a black box 
with perhaps four signal outputs representing final quadraphonic sound. 
Essentially, such a system is a low-cost analog approach to the capabilities of 
totally digital synthesizers, which will be described in Section III. The 
advantage of this organization, of course, is that every aspect of sound 
pfoduction can be specified, edited, stored, and retrieved automatically by 
the computer. A side benefit is more efficient module use because the inrer- 

connection patterns can be dynamically changed. 
The Type 3 approach is a ‘‘voice-oriented” or “instrument-oriented” 

organization. The fundamental idea here is that extreme interconnection 
flexibility is not required because most synthesis work utilizes a small 
number of standard patches for most sounds. Thus, these standard configura- 
tions can be prepatched as part of the design of an instrument module. Several 
different kinds of instrument modules would be used in a typical setup, each 
corresponding, more or less, to a traditional orchestral instrument. All in- 

puts to the modules would be digital from the control computer's I/O bus, 
while the module’s output is mixed onto an analog “channel bus” corre- 

sponding toa channel in the final sound. Such a setup is extremely modular 
because of the parallel buses. To add a voice module, one simply plugs it in. 
When all sackets are filled, additional ones ate simply connected in parallel 
with the same buses. Another advantage is that this organization is concep- 
tually simple, since interconnection is not a variable to be considered. The 
user composes for and controls the system much like a typical orchestra but 
with a wider range of timbres to choose from and freedom from human player 
umitations. 

Of course, any real system is unlikely to be a pure case of any of these 
three organizations. A fundamentally Type 1 system, for example, is quite 
likely to have some kind of rudimentary interconnection control. One tech- 
nique is the use of additional VCAs in some signal paths to enable and 
disable control signals at various times. In addition, Type 3 concepts may be 
used to reduce the number of computer control channels needed. A pure 
Type 2 system can become too large to be practical unless some Type | and 
Type 3 concepts are incorporated as well. A Type 3 system might have a 

small portion devoted to uncommitted elementary modules for special effects 
use. Thus, an actual system is likely to incorporate some aspects of all three 
organizational types. Nevertheless, it is seldom difficult to classify a 
computer-controlled analog system into one of these three categories. 

The remainder of this chapter will be devoted to a more detailed look at 
some of the techniques that can be used in each organizational philosophy. 
An understanding of this material should enable the reader to evaluate the 
various approaches and develop his own personal bias. 
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Fig. 8-1. Type 1 manually patched system 

Manually Patched Computer-Controlled System 

As mentioned previously, the manually patched system is really noth- 
ing more than a box of DACs added to an otherwise conventional synthesizer 
as shown in Fig. 8—1. Since use of standard off-the-shelf components (includ- 
ing the computer system) is one of the attractions of this organization, most 
comments will be made with this in mind. This, of course, should not 

discourage home construction of the needed modules (which can easily cost 
one-quarter as much as purchased modules), but most hobbyists would prob- 
ably be interested in one of the more sophisticated organizations. 

The synthesizer is obviously an important part of the system. In many 
cases, one must make do with an existing available synthesizer. If a synthe- 

sizer or a collection of modules is being purchased for the system, however, 

attention cto a few key characteristics will insure success with a minimum of 

effort. 

Synthesizer Requirements 

Overall quality of the modules should be moderate to high. One should 
not.accept poorer performance from a synthesizer that is to be computer 
controlled than would be acceptable for manual control. In fact, the com- 
puter is usually much ées able to correct for deficiencies in the analog 
modules than a human player is. For example, a person using a ribbon 
controller or other proportional control device hears the sounds as they are 
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produced and can instantly (and unconsciously) correct for tuning errors. The 

computer, on the other hand, would typically run through a stored or 

preprogrammed control sequence with no knowledge of the sound coming 

out. If the tuning drifted, it would be necessary to reject the recording and 
either retune the module (usually with a slight twist of a panel control) or 
edit the computer's control sequence to compensate. Predictable response to 
control voltages is also desirable particularly with preprogrammed computer 
control (as opposed to storage and retrieval of manually generated control 
functions). Without clearly predictable response, many of the advantages of 
programmed performance are lost. Clearly, a stable and predictable synthe- 

sizer is desirable. 
Another important feature is total voltage control of all parameters that 

are variable. Every panel control that performs a function that cannot also be 
voltage controlled is a function over which the computer has no control. 
Consequently, that function must remain static throughout a computer- 
controlled sequence. For example, many voltage-controlled filters have panel 
controls for Q (bandpass sharpness) and no other provision for varying Q. 
Thus, Q must be initially set and left alone during the performance or a 
cueing system devised whereby the computer can signal the operator to twist 
the control! Another example would be the duty-cycle control for the 
rectangular-wave output on many voltage-controlled oscillators. Rotary 
switches used to select one of several operating modes rather than simulta- 
neous output of all modes such as with state-variable filters is another “‘fea- 

ture” of some modules that limits their usefulness in a computer-controlled 
system. 

A final requirement is consistent control characteristics. This is not 
normally a problem with prepackaged synthesizers or modules from a single 
manufacturer but can become a real problem in a mixed system. For exam- 
ple, if some modules work on a 10-V standard and others work with 5 V, it is 

necessary to keep track of which modules are patched to what computer 
interface channels. This is normally a greater problem than mixing modules 
in a purely manual system, since in the latter case panel controls can often be 
set for acceptable performance and the operator can adapt to the somewhat 
changed characteristics. Likewise, signal level differences may cause gross 
errors in tonal balance unless the computer is informed or the necessary 
adjusumenis are made when che patch is set up. 

Control Computer Requirements 

The control computer, of course, is the heart of the system and should 
also be selected with some care. Again, however, one may be forced to use an 
existing computer. Fortunately, virtually any computer can be made to work 
well given sufficient programming effort, but a couple of computer charac- 
teristics greatly simplify the implementation of a Type 1 system, particularly 
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if all subsystems. are purchased. The first question to ask is: What -digital/ 
analog interface boards are available to plug into my computer and are they 
cost effective? Probably the best system from this standpoint is the S-100 
type closely followed by the PDP-8 and other popular minicomputers. Un- 
fortunately, many analog interface boards emphasize analog-to-digital con- 
version more than the digital-to-analog, which is needed for synthesis work. 
At the time of writing, there was at least one cost effective 16-channel DAC 

board available for S-100. systems. As microcomputer-controlled synthesis 
gains momentum, boards with more channels at a much lower cost per 
channel are sure to become available. 

Another feature that is virtually mandatory in a control computer is a 

so-called real-time clock or interval timer. This hardware feature allows the 

computer to be cognizant of the passage of time without regard for the 
execution time of the software. This capability is necessary for accurate and, 
above all, repeatable timing of the music performance. If multitrack re- 
cordings of the music are being made, it may be desirable to have a real-time 
clock that can be externally driven or synchronized. Since many systems use 
the ac power line as the timing reference, it is not difficult to record power 

line hum when the first music track is recorded and then use playback of that 
track to synchronize subsequent recordings. The real-time clock on the 
LSI-11 microcomputer is an example of a line-frequency-referenced clock. 

As anybody who has done real-time control programming knows, it is 
not possible to have too much speed. An adequately fast computer simplifies 

programming and allows many otherwise important time factors to be ig- 
nored. An amply fast machine allows normally inefficient but convenient 
programming techniques such as high-level languages to be used for many of 

the control functions. As was described in Chapter 5, there is currently not a 
great spread in modern microprocessor speeds, but one should avoid the 
exceptionally slow early ones such as the 8008 for music synthesizer control. 

Computer Interface Box 

The biggest variable in the system, however, is the computer interface 
box itself. This would be expected to consist of a number of DAC channels, 
each connected to a standard jack. 

The first question that arises naturally is: How many DAC channels are 
required? A maximum number is easily arrived at by totaling the control 

inputs on all of the modules in the synthesizer. Thus, it would be possible tor 

the computer to manipulate every control input in the system, which would 
be the ultimate in flexibility. Of course, many modules have two or more 

control inputs connected essentially in parallel so computer control of multi- 
ple parallel inputs would be redundant. For example, many VCOs have three 
control inputs: a primary frequency control input, a secondary one for injec- 
tion of vibrato, and a third normally used for a constant transposition vol- 
tage. Typically, the computer would supply the primary and transposition 
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controls and another oscillator would supply the vibrato signal. However, 
rather than using two DAC channels and doing the combining (addition) in 
the VCO, one channel can be used and the addition done in the computer. 

Thus, a practical maximum channel count would be the total number of 

volcage-controlled functions available in the synthesizer. 
Next, it is necessary to decide what the resolution and accuracy of the 

DACs should be. If 16-bit DACs were cheap, they would probably be used 
exclusively and the question of resolution could be ignored. However, the 
cost of the DAC is important in nearly all cases except very large multiplexed 
systems where one DAC (and its cost) might serve over 100 oucput channels. 

As was mentioned many times in the previous chapter, 12 bits fora DAC is a 
good compromise between resolution and cost. The 4096 output levels of 
such a DAC are close enough together so that any stepping effect, such as 

when the DAC is controlling the frequency of a VCO, is virtually inaudible. 
Although 12-bitters are relatively cheap ($30), output multiplexing is 

still necessary to obtain an acceptable per-channel cost figure. Commercial 
analog output subsystems seldom multiplex more than 16 outputs from a 

single DAC and therefore cost in the neighborhood of $10 to $25 per 

channel. The main reason for small multiplex factors in these units is the 

manufacturer's desire to retain high update speeds, much higher than neces- 
sary to control a synthesizer. Sticking with off-the-shelf modules, it may be 
possible to purchase collections of sample-and-hold amplifiers at less cost and 
further expand a 16-channel board. The home builder, on the other hand, 

can utilize the techniques already discussed and add over 100 channels to a 
single inexpensive DAC at a parts cost of little more than a dollar per 
channel. 

Another factor to consider is the update (sample) rates to be used in 
controlling the synthesizer. Required update rates are highly application 
dependent. For example, in synthesizing speech, 100 updates of the 
parameters per second are usually ample for producing speech of high qual- 
ity. In music synthesis, one of the key questions is whether the computer will 
generate envelope shapes through the analog interface or whether envelope 
generator modules will be used with the computer controlling just the 
parameters of the envelopes. If the computer generates envelopes directly, 

update rates up to 500/sec may be necessary for accurate rendition of fast 

envelopes. Most other control functions get along nicely on 100 updates/sec. 

Finally, it may be desirable to incorporate a low-pass filter in the DAC 
outputs, particularly if a dedicated DAC is used for each channel. The filter 
prevents the control voltages from changing at an excessively high rate when 
an update is performed. This can be important because fast transients on 
control inputs may couple audibly into the controlled signal path as clicks. 
The cutoff frequency of the filter is best determined by experiment but a 
good starting value is the reciprocal of the shortest update interval to be 
used. This is usually low enough to be effective, yet high enough to avoid 
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distortion of the control voltage contours. Most multiplexed DACs, how- 

ever, provide sufficient filtering in the channel sample-and-holds themselves. 

Automatically Patched 
Computer-Controlled System 

An automatically patched system in its elementary form is a Type | 
system with the jacks and patch cords replaced by an electronic switching 
matrix thac is under che computer's control. Such a system is represented in 
Fig. 8-2 but in practice the switching matrix may be organized differently 

from the two-dimensional matrix shown. Comments about the synthesizer 
and the computer made earlier are just as valid in a Type 2 system. There- 
fore, let us proceed directly to a discussion of the switching matrix. 

The simplest type of patching matrix, at least conceptually, is the 
straight rectangular array of single-pole switches as in the drawing. All 
subsystem outputs, including the DACs, drive the columns, and all of the 

subsystem inputs are connected to rows. The final synthesizer output is 

considered as an input to a speaker subsystem. The number of switches in the 
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matrix then is simply the product of the rows and columns. This number 

increases approximately as the sqvare of system size and can obviously become 

very large. The flexibility, however, is perfect, since any ourput can be 

connected to any input. Note though the restriction that two ovtpxts cannot 

be tied together (to the same input); in this case, only one switch on any 

given row can be closed. This may lead to simplification of the switching 

arrangement. 

Matrix Reduction by Point Elimination 

Since the pure matrix approach is impractical for all but the smallest 
systems, ways of reducing its size must be found if Type 2 systems are to be 
practical at all. One obvious saving results from the realization that some 
output-to-input connections are not useful or just plain illogical. For exam- 
ple, a voltage-controlled filter signal output driving a control input on the 
same filter is not likely to be a useful or even predictable connection. In fact, 

virtually all self-driving connections can be eliminated. The one case in 
which self-driving might be useful is a VCO driving its own frequency 
control input. This is really a case of frequency modulation, in which the 
modulating and modulated signal frequencies are the same and has the effect 
of distorting the waveforms in strange ways. 

Since the multichannel DAC is typically the largest single contributor 
of outputs, substantial savings can be made here. For example, the DACs 
will normally only drive control inputs, not signal inputs; thus, those 

switches can be removed. Actually, a few should be retained in the event that 

a signal input does need to be driven. Savings can also be made by dedicating 
DAC outputs to narrow ranges of control inputs. This can be done with little 
if any flexibility loss because all DAC outputs are normally equal; thus, it 
makes no difference which one is used to drive a particular input. If two 
widely separated control inputs must be driven by the same DAC, two DAC 

channels may be utilized and the computer can be responsible for giving both 
the same data. 

Other connection restrictions can be built in to further reduce the 
switch count. Flexibilicty may be retained for special cases by adding extra 
rows and columns with each added row connected to a column. Then, if a 

special case requires a connection for which there is no path because of 
omitted switches, the signal may be routed through one of the extra rows and 

columns to make the connection. There is a clear tradeoff between intercon- 
nection restriction and extra circuits to retain flexibility. If too many 
switches are omitted, it may require more added circuits to maintain flexibil- 
ity than were saved by the omissions. 

Reduction by Subgroup Organization 

One way to organize and formalize interconnection restrictions is to 
consider the overall patching matrix as a set of independent submatrices. 
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First, the set of modules in the system, including outputs from the interface 

DACs, are divided into groups. The modules chosen to form a group should 
form a compatible ser, that is, in a real patching situation the interconnec- 

tions among elements of the group would be a maximum and “outside” 
connections to other groups would be a minimum. Since the matrix size is 

proportional to the square of the number of modules in the group, the size of 
the individual submatrices can be dramatically reduced. In fact, it is easy to 
show that the theoretical reduction in overall matrix size is proportional to 

the number of subgroups it is broken into if the subgroups are equal in size. 
For example, if a matrix were broken into five equal-sized subgroups, then 

the total number of switches would be one-fifth as large. 
Of course, in a practical system one subgroup must be able to connect 

to another. Therefore, “communications” input columns and output rows for 

the subgroup must be added as in Fig. 8-3. The limit on subdivision is 
reached when the quantity of switches devoted to communications exceeds 
that saved by the subdivision. 

Other methods are available for reducing switch count and are, of 
course, widely used in very large switching matrices such as a telephone 
central office. The basic idea in all of these is to concentrate the myriad of 
inputs into a few “‘buses” with one set of switches and then distribute the 
buses to the desired outputs with another set of switches. If the number of 
buses remains constant, then the number of switches increases /inearly with 

increases in input and output count rather than exponentially. The difficulty 

with such schemes in patching a synthesizer is that their fundamental as- 
sumption, that a smad/ number of inputs are connected to outputs, is not 
valid. One will generally find that a large fraction of available inputs, out- 
puts, and modules are used in a significant number of patches. 

SUBGROUP | MODULES: SUBGROUP 2 MODULES. 
A ra 

| 
ala 

COMMUNICATION | 
SUBGROUP | MATRIX CONNECTIONS: SUBGROLP 2 MATRIX 

Fig. 8-3. Subgroup organization of switching matrix 
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Assuming that a suitable submatrix organization and set of intercon- 
nection restrictions has been established, it becomes apparent that going 
from a block diagram of a patch to a pattern of matrix switch closings is no 
longer straightforward. Things can become so complex that a given patch 

might not seem possible when in fact it is. Of course, this is an excellent job 

for the control computer, which can be programmed to accept the patching 
specification directly and chen search for an interconnection pattern that 
implements it. 

Reduction Example 

A concrete example should serve to illustrate these points. Let’s assume 
that a moderately large system is to be automatically patched and that the 
maximum practical amount of flexibility is desired. The system to be 
patched is as follows: 

1. 8 VCO 3 control in, 4 signal out 

2. 16 VCA | control in, 2 signal in, 1 signal out 
3.4 VCF 2 control in, 1 signal in, 3 signal out 

4.4 special modules, 1 signal in, 1 control in, 1 signal out 

5. 32-channel DAC 

A little arithmetic will reveal that there is a total of 92 inputs and 96 
outputs, giving no fewer than 8,832 crosspoints in the matrix. 

If the system is to be organized as one large matrix, the first reduction 
step is to eliminate self-patching paths, which amounts to a 184-switch 
reduction. If DAC outputs are only allowed to drive the 52 control inputs, 
then 32(92—52) = 1,280 more switches are eliminated. Finally, if each 

individual DAC is only allowed to drive one of two control inputs, then 
30 X 52 = 1,664 switches can be removed. There are now only 5,704 
switches in the matrix and virtually no flexibility has been lost. Other 
interconnection restrictions can be made to reduce the number even more. 

Now let’s divide the system into four subsystems with four subma- 
trices. Each subsystem will be identical and consist simply of one-quarter of 
the cotal for each type of module. Taken straight, each submatrix will have 
24 columns of inputs and 23 rows of outputs for a total of 552 switches. This 
times four submatrices gives 2,208 switches, which is one-quarter of the 
original total. However, provisions must be made for communication be- 
tween submatrices. If four submatrix inputs and outputs are added for com- 
munication, the submatrix grows to 756 switches or a system total of 3,024, 

still about one-third of the straight full matrix size. 
For a final estimate, the interconnections within the submatrix can be 

restricted as before. Self-patching removes 46 switches, DAC to control 
inputs only eliminates 80 more, and DAC to only two inputs cuts another 
104 off. Thus, the final submatrix size is 526 switches and a total system size 
of a little over 2,000 switching points. This is obviously large but not 
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completely impractical. The only real sacrifice in flexibility so far has been 
the limic of four signals connecting one subsystem with the others. Further 
reductions can be made by further restricting interconnections, requiring 
some manual patching, such as among subsystems, or permanent patching of 

those connections that are nearly always made. Properly planned and backed 
by an automatic signal routing program, these additional restrictions can 
have a minimal effect on the utility of the system. 

Mechanical Relays 

In actually implementing a switching matrix, a number of switching 

methods can be used. The primary split is between mechanical switches, 
such as relays, and solid-state analog switches. The main advantage of relay 

switching is the essentially zero contact resistance and total immunity to 
signal overload conditions. Disadvantages besides. bulk and cost are slow 
response times and excessive noise if a circuit is switched live. 

One type of relay specifically made for matrix switching is the tele- 
phone crossbar switch. These consist of contact assemblies arranged into rows 
and columns. A relay coil is needed for every row and column rather than 
every crosspoint, making the device very cost effective in the larger sizes such 
as 50 X 50 or 100 X 100. Unfortunately, they are highly specialized de- 
vices, generally only available to telephone equipment manufacturers. The 
true hobbyist experimenter may be able to occasionally find them in scrap 
yards, however. 

A related device, also used in telephone switching systems, is the 
stepping relay. The simplest type functions as a 10- or 20-position 
solenoid-driven rotary switch that may be stepped into any position by 
pulsing the coil. Another type has two coils and two-dimensional movement. 
With proper pulsing of the coils, the armature may be connected to any of 

100 points. One advantage of stepping relays is their inherent memory; they 
will stay put until moved to a different position. The disadvantages are very 

slow speed (1 to 2 sec to step to the desired position) and extremely noisy 
operation. 

One type of relay that is practical is the magnetically latched reed relay. 
The contacts are sealed in glass, operation takes 1 to 2 msec, and they are 

essentially inaudible. A permanent bias magnet (or separate bias winding) 
gives a latching action. The bias field is insufficient to cause closure of the 

relay but can hold it closed. A current pulse that aids the bias field will close 
the relay, while one that opposes it will open the relay. The coils can be 

wired in a matrix array just like the contacts. Thus, to establish a connection 
between, say, column 31 and row 17, one would pulse coil column 31 
positive and coil row 17 negative for a millisecond to turn that relay on. Reed 
relays designed for matrix operation may even have two coils in addition to 
the bias coil, which eliminates the need for diodes when connected in a 

matrix. 
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Semiconductor Analog Switches 

Semiconductor switches are likely to be of more interest. The “contact” 
resistance of the switch can become a problem, however, because the voltage 
drop across this resistance will have an effect on the apparent sensitivity of 
control inputs. For example, a 300-ohm switch resistance and 100K control 
inpuc impedance will cause an error of 30 mV on a 10-V control signal or 
nearly half a semitone. Op-amp buffers at some outputs of the switching 
matrix can easily eliminate this error. Signal overload may be a problem with 
analog switches. The most inexpensive CMOS switches are limited to 8 V 
peak and severely distort any signals beyond that. 

At this time, the best low-cost semiconductor switch for matrices is the 

Type 4051 8-channel multiplexor. These cost less than 20 cents per switch 
and function as a nine-position rotary switch with the ninth position being 
“off.” A 3-bit address selects one of eight “on” positions, while a fourth bit 
unconditionally turns the switch off. Unfortunately, the address bits are not 
latched, so a 4-bit register must supplement each eight-channel switch. 
Another drawback is that, when switching analog voltages in excess of 5 V 
peak, the control inputs of the 4051 are not TTL compatible. The switch on 
resistance is about 50 ohms; therefore, buffering of the matrix output would 
not normally be required. 

Figure 8-4 shows an 8 X 8 switching matrix using the 4051. Address 
latching is provided by Type 4724 8-bit addressable latches, which provide 
eight latches in a 16-pin package. One set of voltage level shifters converts 
standard TTL level array inputs to CMOS levels to drive the addressable 
latches, which can then be connected directly to the 4051s. Connected as 
shown, the 32 bits required to control the eight 405 ls are directly addressed 
by the computer as eight 4-bit words. Each 4-bic word controls a row. If the 
row is not to be connected to anything, then the most significant bit is on. If 
a column is to be selected, this bit is turned off and the binary address of the 

desired column is placed in the three lower bits. The circuit is readily 
expanded to larger matrices. Sparse matrices, however, must have a multiple 
of eight columns that can connect to each row. 

The example system mentioned earlier could be quite effectively 
patched using such a switching matrix. Each of the four submatrices could fit 
on a single board with about 60 pins needed for analog I/O connections and 
pethaps 16 digital signal pins for control. The 526 switching points would 
be handled by approximately 70 of the 4051 analog multiplexors driven by 
half as many addressable latches. The resulting count of roughly 120 IC 
packages, which would be arranged in a highly structured array, is the same 

order of complexity as many memory boards and would cost less than $200 
for parts. Smaller submatrices would, of course, require much smaller 
switching arrays. While not a one-evening project or an impulse purchase, an 
automatic patching system is certainly practical when compared with the rest 
of the system. 
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One brand new (and consequently expensive at the moment) analog 
switch IC that promises to simplify such matrices even further is the Fair- 

child Type 4741 or RCA CD22100 4 X 4 crosspoint switch. Besides having 
twice as many switching elements in a package as the 4051, this CMOS 
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Fig. 8-5. Fixed-patched system 

device has an on-chip 16-bit addressable latch. Each bit of the latch controls 
a switch in the 4 X 4 array; thus, the digital interface is identical to the 
405 1/4724 setup. With this device, the submatrix example could be im- 
plemented with about 40 IC packages, well within the range of S-100 size 
boards (5 X 10 inches). 

Fixed-Patched Computer-Controlled System 

An instrument-oriented synthesizer is really a radical departure from 
the function-oriented synthesizer discussed up to this point. The system 
“building blocks” are now entire sounds or “voices” rather than low-level 
signal-processing functions. Thus, a typical synthesis setup should require 
fewer modules and interconnections as well as being easier to understand. 
The price paid for this simplicity is flexibility, since many decisions have 
been made by the module designer rather than the user. For clarity we will 
refer to the usual voltage-controlled functions such as VCOs, VCAs, etc., as 

“function modules” and the others as “voice modules.” 
An analogy to logic ICs is easily drawn. The typical function modules 

are like fundamental logic elements such as gates, flip-flops, and single- 
shots. Voice modules, on the other hand, are more like MSI circuits such as 
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decoders, counters, multiplexors, and read-only memories. In modern logic 
design, one often uses these sophisticated MSI functions to perform mundane 
functions that earlier might have been done with discrete gates merely be- 
cause the interconnections are simpler. Likewise, since computer-controlled 

interconnection between synthesizer function modules can become complex, 
a higher-level building block can be used to reduce the complexity. 

Figure 8-5 gives an idea of how a fixed-patched system might be put 
together. Although a single-voice module configuration is shown, both less 
flexible and more flexible modules can be imagined. As in a Type 2 system, 
the computer can be in complete control of the system with all user inputs 
passing through ir. A digital bus connecting all of the module inputs to- 
gether is driven by the computer. Each module has a unique set of addresses 
and each control function in the module is a member of the set. The module 
outputs are mixed onto one or more analog channel buses, which correspond 
to stereo or quad audio channels. With proper design of the digital and 
analog buses, an essentially unlimited number of modules may be added to 
form very large systems. 

Voice Module Design 

Since the user is forced to live with them, the design of the voice 
modules is very important. The major design variables are flexibility and 
sophistication. At one extreme of flexibility we have very specific modules 
that are not unlike a rank of organ pipes. At the other extreme is flexibility 
equivalent to a small submatrix of function modules discussed earlier. A 
simplistic module may be little more than a simple tone source combined 
with a gain control amplifier (an IC sound generator chip for electronic 
games has been announced and falls into this category), while a sophisticated 
one may go to great lengths co duplicate the sound of a particular instru- 

ment. 
Specific function modules are probably the most difficult to design but 

are the easiest to use. Typically, the goal might be to emulate a particular 

instrument at least well enough to be convincing when played in combina- 
tion with other instruments. Figure 8-6 gives a general structure for such a 
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Fig. 8-6. Fixed-instrument voice module 
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module. The initial signal is generated by a VCO driven by a DAC. If the 
instrument to be emulated has fixed tuning (such as a piano or organ), the 
DAC may have as few as 6 bits of resolution. The combination of nonlinear 
waveshaper and fixed filter produces the characteristic timbre of the instru- 
ment. The shaper provides spectral characteristics that track the frequency of 
the VCO, whereas the filter provides formants (peaks in the spectrum) that 
remain constant. The VCA, its DAC, and envelope generator complete the 

sound processing and produce the final oucput at the desired amplitude. 
Additional circuitry may be added to enhance realism. One example 

would be the use of a noise generator to introduce small random variations in 
frequency and amplitude. Another refinement would be interaction between 
amplitude and the waveshaper/filter to simulate muted and blaring timbres 
of the instrument. 

A percussive sound module might take the form of Fig. 8-7. The first 
case covers resonant sources such as wood blocks and many types of pitched 
drums. Basically, a sharp pulse excites one or more high Q bandpass filters to 
produce damped sine waves. The second case covers instruments such as 
cymbals, which consist largely of enveloped, filtered noise. A snare drum 
generator would require both generator types. 
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Increasing Flexibility 

A synthesizer based on such specific fixed function modules is little 
more than a computer-controlled organ with a wider than normal selection of 
stops. More flexibility can be had by making the previously fixed elements 
variable under computer control. For example, the fixed filter could be made 
variable as could the waveshaper. Some or all of the envelope parameters 
could also be made variable. With these changes, a single module type could 
cover a range of instrument types with appropriate control from the com- 
puter. 

An even more generalized module could be imagined. A selector might 

be added to the VCO so that any of the standard VCO waveshapes could be 
selected. Ultimately, a programmable waveform generator (in which a small 
memory loaded by the computer contains the waveform) driven by the VCO 
would be used. The filter could be expanded to a full VCF with selection of 
the filtering function as well as the cutoff frequency and Q factor. The 
envelope generator could also have a programmable envelope shape like the 
waveform generator. 

Even with voice modules in which every parameter can be controlled, 
there are still serious flexibility limitations. For example, a sound may 
require two independently tunable formants, which require cwo bandpass 
filters, while our voice module only has one. FM synthesis is not possible 
because only one VCO is present. In fact, the majority of special effects are 
just not available on fixed-patched voice modules. Thus, a few function 
modules are needed to supplement the voice modules if a flexible, compre- 

hensive system is the goal. 

Direct Digital Interface 

The interface between digital signals from the computer and control 
inputs of the signal-processing components can often be simplified. The 
reason is that standard voltage levels and response functions are not needed, 
since all control paths are /ocal to the module. Thus, a current output DAC 

might feed directly into a current-controlled oscillator without conversion to 
standard voltage levels, exponential conversion, etc. A multiplying DAC 
could be used to directly control gain without transconductance gain cells 
and so forth. The result is that a voice module will cost considerably less than 
the equivalence collection of standard voltage-controlled modules and com- 

panion multichannel DAC. 
As mentioned earlier one strength of the fixed-patched approach is the 

possibility of easy, nearly infinite expandability. This is made possible by 
totally parallel buses, both digital and analog, connecting the modules to- 
gether. Proper design of the buses, however, is necessary to realize this 

potential. 
The usual microcomputer bus is not at all acceptable for the digital 

control bus of the synthesizer. For one, its speed requirement severely limits 
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the length and load allowable on the bus. Also, its high-speed signals, which 
flip around wildly all the time, are a source of noise that can easily get into 
the audio citcuitry. The solution is a bus used only for transmitting data to 
the voice modules. Since the microcomputer program that will be sending 
data to the modules over the bus cannot go much faster than a word every 10 
to 20 yisec, the bus can be slowed considerably, thus allowing long lengths 
and minimizing noise generation. One technique that works well for control- 
ling rise times is to use op-amp voltage followers for bus drivers! An LM324 
quad op-amp, for example, provides nice clean ramps with a 6- to 10-psec 
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Fig. 8-9. Voice modular synthesizer audio bus 

transition time for TTL levels. Slow switching CMOS logic on the modules 
themselves provides virtually no load to the bus and tolerates slow rise times 
without oscillation. 

Figure 8-8 shows the implementation of an example synthesizer bus. 
For simplicity, the bus is capable of output only, that is, data cannot be read 
back from the synthesizer modules. Kor maximum flexfbility and expandabil- 
ity, 16 address lines and 16 data lines are defined. ‘The interface between the 
bus and the computer consists simply of four 8-bit output ports, or if a 

16-bic processor is used, two 16-bit ports. With up to 65,536 addresses 
available, an addressing standard can be defined whereby the most significant 
8 bits define a particular module and the least significant 8 bits address a 

function within thac module allowing up to 256 modules and 256 functions 
per module to be addressed. 

To perform a data transfer, one merely sets up the address and data 
output ports. When the last port has been written into by the mi- 
crocomputer, a pair of single-shots times out the data transfer to the synthe- 
sizer over the next 20 psec. A CMOS gate and latches on the module board 
decode the register address and latch the data in response to data on the bus. 
Series resistors on the CMOS inputs protect against mishaps on the bus. 
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Because of the slow speed of the bus and inherent noise immunity of 
CMOS, several feet of open backplane wiring can be easily driven without 
perceptible signal degradation. If the bus must be run some distance in a 
cable, the 32 data and address lines can be individual conductors with no 

special shielding. The write-enable signal, however, should be run as a 

twisted pair with ground to minimize noise pickup from the other signal 
lines. Combined with an overall shield, cable lengths up to 50 feet can be 
easily accommodated. 

Audio Bus 

The audio bus in Fig. 8-9 is a bit unusual. One line is used for each 
audio channel in the final synthesizer output; therefore, from one to four 

would be typical. Analog switches and/or programmable gain amplifiers 
determine which audio channel a particular module drives, thus setting the 
voice’s position in acoustic space. To minimize noise pickup from the 
backplane and allow a virtually unlimited number of modules to combine 
their outputs, the audio lines are current sensitive. This means that each audio 
bus line is terminated with an amplifier with near-zero input impedance. 
The modules pump audio cxrrent up to 1 mA peak into the bus lines either 
from a voltage source with series resistor or directly from current output 
devices such as transconductance gain cells or multiplying DACs. The zero 
impedance amplifier is simply an op-amp current-to-voltage converter. The 
capacitor across the feedback resistor is chosen to cancel the bus capacitance. 
Even though the digital bus is optimized for minimum noise generation and 
the audio bus is relatively immune to noise pickup, it should be kept away 
from the digital bus and run as a twisted pair with ground around the 
backplane. When outside the backplane area, the audio signals should be run 
in low-capacitance (93 ohms) coax cable. 
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Organ Keyboard Interface 

After a suitable synthesizer for output and a computer for control have been 
found, the final and ultimately most important subsystems are the devices 
used to communicate musical ideas to the system. The next three chapters 
will discuss devices for original input of musical material as well as equip- 
ment useful for displaying and editing the material. These input techniques 
are equally valid for real-time computer-controlled synthesizers and direct 

computer synthesis, which will be discussed at length in Section III. Most of 
chem are fairly standard and were originally developed for computer applica- 
tions other than music. One exception is the music keyboard, which is the 

subject of this chapter. 

Undoubtedly the most popular musical input device will be a standard 
organ keyboard. Most new users will prefer it, at least initially, because of 
familiarity and because for most reasonably conventional music it is simply 
the most efficient method for getting musical data into the computer. Also, 
being a mass-produced item, the typical purchase price for a keyboard 
mechanism is quite reasonable compared with construction from scratch. 

Even so, the usual organ keyboard leaves a lot to be desired. For 
example, the only “information” available about a key closure is which key 
was struck and for how long. This is just as well, since the typical organ 
would not be able to utilize additional information anyway. However, a 
music synthesizer, particularly a computer-controlled one, can and should 

utilize every bit of information available. To this end, special keyboards that 
also sense the speed of key depression, variations in pressure while it is down, 

and other variables have been constructed. Fortunately, some of these fea- 
tures are easily retrofitted to standard keyboards or in some cases may be 
merely a function of the interface circuitry used to connect the keyboard co 

the system. 
One final keyboard characteristic, which piano and organ players usu- 

ally take for granted, is polyphony, i.e., simultaneous sounds in response to 
simultaneous key closures. Whereas in an organ or piano there is one tone 
generator per key, such is not the case in a synthesizer. Furthermore, the 
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multiple synthesizer voices may be quite different from each other. Thus, the 
major tasks for a polyphonic synthesizer keyboard are not only orderly con- 
nection of a voice to a depressed key but assignment of the “correct” voice to 
the key. 

Adapting a Standard Synthesizer 
Keyboard for Computer Input 

Since most standard synthesizers contain one or more keyboards al- 
ready, it might be useful to consider interfacing such a keyboard to a mi- 
crocomputer. The standard synthesizer keyboard usually provides three out- 
puts; digital trigger and gate and an analog control voltage proportional to 
the key last depressed. The gate output is high (logic 1) whenever any key is 
depressed. The trigger output is a short pulse that signals the exact instant 
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that a key is pressed. Typically, these two outputs would go to an envelope 
generator, which in turn controls a VCA to shape the amplitude envelope of 
the notes. 

Figure 9—1 is a simplified schematic diagram of such a keyboard. The 
heart of the unit is the keyboard itself. Organ keyboards are usually con- 
structed with a straight gold-plated spring wire attached to each key. When 
a key is pressed, this wire contacts a stationary gold-plated rod running the 
length of the keyboard. This rod is called a “keyboard bus” in organ-builder’s 
terms. For the synthesizer interface, the spring wire on each key connects toa 
tap point on a series string of resistors designated R in the diagram. A 
current source sends a constant current through the string, creating an equal 

voltage drop across each resistor. For 100-ohm resistors (a common value) 
and '/12 V/resistor (12-tone scale and 1 V/octave output) the current would 

be 0.83 mA. Thus, the keyboard bus picks up a definite voltage when a key 
is pressed against it. If two or more keys simultaneously contact the bus, the 
voltage corresponding to the /awest key pressed appears on the bus due to the 
action of the constant current source. The remainder of the interface circuit 
essentially looks at the bus voltage and produces proper gate, trigger, and 
control voltage outputs. 

Gate and Trigger 

The gate ourput is the easiest to generate. If no keys are pressed, R1 (in 
the megohm range) tends to pull che bus down toward — 15 V. D1, however, 

limits the fall co about —0.5 V. When any key is pressed, the bus is 
immediately pulled up to a positive voltage dependent on the key pressed. 
The gate voltage then may be taken from a comparator referenced to ground, 
which will produce a logic one for positive bus voltage and a zero for negative 
bus voltage. C1 is a noise filter in the range of 200 pF, while Al is a unity 
gain buffer, which prevents loading of the keyboard bus. 

The trigger circuit must provide a short (1 to 10 msec) pulse at the 

beginning of each key closure. In all cases but one, this occurs when there is a 
sudden change in keyboard bus voltage. In the circuit shown, a transition 
detector generates a pulse whenever such a sudden change happens. This 
pulse would be the trigger output if it were not for the case that occurs when 
a single contacting key is lifted. In this case, the trigger pulse should be 
suppressed. To solve the problem, the wansition detector output is delayed 

slightly and logically anded with the gate signal. The result triggers a 
one-shot, which provides the actual trigger output. Thus, when the transi- 

tion to no keys is detected it is blocked from producing a trigger. The delay 
need only be long enough for the gate comparator to respond. 

The control voltage output from the keyboard normally follows the bus 
voltage. However, when no keys are pressed, it should reflect the voltage 
level of the last key released. This is necessary because most envelope 
generators do not begin their decay until the gate voltage has gone away. In 
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effect, a sample-and-hold function is needed. $1 and C2 form the sample- 

and-hold, which is updated whenever a trigger is generated. C2 should be a 
low-leakage low-dielectric absorption type (polystyrene) and A3 should be a 
low-bias type so that the control voltage output does not audibly drift during 
long decays. R2 and C3 provide adjustable portamento, which is a gliding 
effect between notes. 

The timing diagram illustrates a typical playing sequence on the 
keyboard. For an isolated key closure, the gate goes high during the closure 
time and the trigger is coincident with the rising edge of the gate. The 
control voltage ourpur goes from whatever it was to the level corresponding 
to note G5. The next case is a three-note sequence in which the key closures 
overlap somewhat. The first note (A5) starts the gate and trigger as before. 
When B5 is initially struck, nothing happens because A5, being lower than 
B5, takes precedence and no voltage change occurs on the keyboard bus. 
When AS5 is finally released, the change in bus voltage is detected and 
another trigger is generated and updates the control voltage output. Re- 
sponse to the following G5 is immediate, however, since it is lower than BS. 

At the end of the sequence, when G5 is released, the trigger is suppressed 
and the control voltage output remains at the G5 level. Also shown is a 
typical ADSR envelope that might be generated in response to the illustrated 
gate and trigger sequence. 

Computer Interface 

Interfacing such a keyboard to a computer is fairly simple. Basically, all 
that is needed is an ADC connected to the control voltage output and two 
input port bits connected to the trigger and gate signals. Whenever a trigger 

occurs, an analog-to-digital conversion would be initiated. If keyboard oper- 
ation is restricted to the 12-tone equally tempered scale, then the ADC need 
only be accurate enough to determine which key is pressed. Thus, a 6-bit 
ADC is sufficient for a five-octave keyboard provided that the voltage step 
from key to key is matched to the ADC step size. 

Once interfaced, it is a simple matter to write a program loop that 
looks at these inputs and controls the synthesizer in response to them. If 

keyboard activity is to be stored for later editing and recall, a real-time clock 
is needed. The program would then note the time and the keyboard voltage 
whenever a trigger occurred or the gate changed. Maximum program flexi- 
bilicy is attained if triggers and gate changes are connected to the interrupt 
structure on the computer. Then the program may do other tasks and still 
respond co the keyboard quickly when necessary. 

Figure 9-2 is a simplified diagram of a suitable interface. The gate, 
trigger, and ADC output data enter through an input port. The flip-flop is 
set whenever a trigger pulse or trailing gate edge occurs, which signifies a 
significant keyboard event. When set, this flip-flop may request an interrupt 
via the 7405 open-collector inverter. The interrupt service routine can de- 
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termine if the keyboard is requesting by examining the trigger and gate 
signals. After reading the ADC output, the request flip-flop can be reset 
through an output port bit. If a 6-bit ADC is used, the entire interface only 
requires 8 input port bits and 1 output port bit. The interface is equally 
applicable to software ADC methods. Once the interrupt service routine 
determines that the keyboard caused the interrupt, the ADC subroutine can 
be entered to read the keyboard voltage. 

Polyphonic Keyboards 

In spite of its vast audio-processing power, most analog synthesizers are 
inherently monophonic (one note at a time) instruments. In fact it is usually 

the keyboard that causes this limitation. One can always use multiple 
keyboards with a voice for each but an increasingly popular musical applica- 
tion of microprocessors is as polyphonic keyboard controllers that allow a 
synthesizer player to become a real-time one-man band. Before discussing 
such a keyboard controller, let’s examine a fairly common analog technique 

used to obtain two simultaneous independent notes from a single keyboard. 

Two-Note Keyboard 

Figure 9-3 shows the idea behind a two-note analog keyboard using a 
single-keyboard bus. As mentioned in the single-note interface, when more 
than one key is pressed, the bus voltage will correspond to the /oweit key 
pressed. What is needed is an additional circuit to generate a voltage propor- 
tional to the Aighest key pressed as well. Examining the situation with two 
keys down, it is seen that all of the resistors between the two keys are shorted 
out (three resistors in the example). Since the string is driven by a constant- 
current source, the voltage at the top of the string, E2, will decrease by an 

amount equal to the voltage that would normally appear across the shorted 
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resistors. This decrease, when added to the low-note voltage that is already 
available, will yield a voltage proportional to the highest key pressed. The 
voltage decrease may be determined by subtracting E2 from a reference 
voltage, E3, which has been adjusted to be equal to the normal top-of-string 
voltage with no keys depressed. Thus, the highest note output is equal to El 
+ (E3 — E2), where E1 is the low-note output. Op-amp A3 in conjunction 
with four matched R1 resistors performs this calculation, while Al and A2 
buffer the bus and top point from loading. 

Before discussing trigger and gate circuitry, let's think a little about 
how the keyboard shou/d respond to various playing situations. For conven- 

ience, the low note will be called Voice 1 and the high note will be called 

Voice 2. With no keys pressed, the two gates should be down, and the two 
voltage outputs should be held at their previous values. If two keys are 
pressed simultaneously, then both gates should rise, both triggers should 
fire, and the control voltages should move to their respective values. So far no 
problem, but what happens if only one key is pressed? Ideally, only one voice 
would respond while the other remains idle. If one does remain idle, which 

should it be? Likewise, if two keys are down initially and one is lifted, ideally 
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one of the gates would go away and the corresponding voltage output would 
not change. Which one should it be? These problems would be particularly 
important if the voices were different, such as a rich timbre for the low notes 
and a thin timbre for the high notes. If the answer ts consistent such that the 
high note always takes precedence when only one key is down, the circuitry 
can be designed easily enough. But then the question becomes whether that 
choice is appropriate for all music that will be played. In a nutshell, this 
defines the assignment problem that is difficult for two voices and purely a 
matter of compromise for more than two. 

Ultimate Limitations 

If the trigger and gate circuitry used on the one-voice keyboard is 
applied to each channel of the two-voice case, the behavior will be far from 
ideal. First, the two gates would be identical because both would be looking 

for a positive bus voltage. In addition, if only one key is pressed, both voices 
would trigger and both would output the same control voltage. If a second 
key is struck, one voice will retrigger and update its output depending on 
whether the second note is lower or higher than the first. 

So far the problems are not particularly bad if both voices have the same 
timbre. The real difficulty occurs when two keys are down and the player 
attempts to release them simultaneously, expecting the two-note chord to die 
out during the envelope decay. What will almost surely happen instead is 
that one of the keys will release first, and the voice that was assigned to that 
key will trigger and update itself to the other key. The end result will be that 
the two voices will decay while playing the same note and it is not even 
predictable which note it will be! 

Obviously, logic and delay circuits can be added to obtain performance 
closer to the ideal. The most important element would be a circuit to 
specifically detect when only one key is down and modify the gate and 
trigger action according to the chosen set of rules. Since one set of rules may 
not be appropriate for all playing situations, a selector switch might be added 
to allow changing the rules. Even with its limitations, the two-voice analog 
keyboard is an inexpensive feature often found in prepackaged synthesizers 
and used primarily as a selling point. 

Beyond two voices, it is necessary to return to the digital domain. 

Actually, an all-digital keyboard interface would make the most sense for 
musical input to a computer, since a digital-to-analog operation (series resis- 
tor string and keyswitches) and an analog-to-digital operation can both be 
bypassed. It should be intuitively obvious that a suitable digital circuit can 
constantly scan all of the keyswitch contacts, track the state of each one, and 

report significant events to the computer. Assignment of keys to voices would 
then be done in the control computer, where as little or as much intelligence 
as necessary can be applied to the task. 
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A Microprocessor-Based Keyboard Interface 

Not only can digital logic solve the polyphonic keyboard problem and 

thereby effect an efficient, completely general interface to a microcomputer, 

but also a dedicated microprocessor can replace the logic. In this section, a 

five-octave velocity-sensitive keyboard interface will be described, which uses a 

6502 microprocessor to perform all of the needed logic functions. Using a 

dedicated microprocessor results in an interface that uses a minimum of 

parts, is easy to build, is flexible in that the operational characteristics may 

be altered by reprogramming, and is actually inexpensive. 

Velocity Sensing 

Before delving into the actual circuitry and programming, let’s develop 

a set of specifications for the unit. First, what is velocity sensing and how is it 

implemented? Basically, velocity sensing is a very inexpensive way to obtain 

additional information about keystrokes beyond simple duration. The keys 
on a piano, for example, are velocity sensitive. The actual speed of key travel 
downward at the exact instant of key “bottoming” solely determines the force 
with which the hammer strikes the string. In fact, the hammer “coasts” a 

finite discance from the point of key bottoming to actual contact with the 
string. Thus, variations in velocity or pressure while the key is going down do 
not affect the sound! Unfortunately, a velocity-sensitive organ keyboard will 
not feel at all like a piano keyboard because the inertia of the hammer is 
absent, but the same kind of information will be available. Note that since 

we are using a synthesizer the velocity information need not necessarily 

control the amplitude of the note. It could just as well control timbre, 
vibrato, or the envelope. 

The mechanical modification necessary to allow velocity sensing on an 
organ keyboard is really quite simple. All that is required is a second 
keyboard bus spaced a fixed distance above the standard bus and positioned 
such that the keys’ spring wires make contact with it when in the #p position. 
Now, when a key travels down, the wire will first break contact with the 

upper bus after a short distance, float freely between the buses for the 
majority of the travel, and then finally contact the lower bus just before the 
key bottoms. The average downward velocity of the wire and thus the key 
may be determined by measuring the time interval between breaking the 
upper contact and making the lower one! If desired, the speed of release at 
the end of a note may also be determined, which might indeed be used to 

vary envelope decay. For monophonic keyboards, it is relatively easy to 
design analog timing circuits that will produce a control voltage output 
proportional to velocity. For polyphonic keyboards, however, only digital 
scanning logic can cope with the problem. 

The actual characteristics of standard two-bus commercial keyboards 
are not quite ideal but can be lived with. Contact resistance, for example, is 
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quite low and perfectly suitable for carrying any kind of logic signal. The 
contact time differential used for velocity sensing varies from a minimum of 
around 5 msec co a reasonable maximum of 50 msec. Attempting to pound 
the key for shorter times results in severe bounce of the key itself as well as 
possible damage. Gently easing the key down for longer times requires so 
much care that it is unlikely to be done. Variations in the differential from 
key to key and even the same key from stroke to stroke are in the range of 
20% up or down. The very light touch characteristic of organ keyboards is 
probably responsible for much of the variation. 

Contact bounce is a problem that must be dealt with if spurious out- 

purs are to be prevented. Bounce on contact make is generally 1 msec, 
although ic can be as long as 3 msec. Bounce on break, however, can be as 
long as 5 msec which normally occurs for the slower velocities. Thus, to 
retain any degree of accuracy in velocity timing the keyboard controller logic 
must define the time differential as being between the /ast bounce of contact 
break on one bus to the first bounce of contact make on the other bus. With a 
microprocessor doing the work, such sophistication is relatively simple. 

Keyboard Evenis 

The real purpose of the keyboard interface is to report all ségnificant 
keyboard activity to the using system. With velocity sensing, this requires 
five pieces of information about each keystroke: 

1. A number defining the key 
2, When it was pressed 
3. A number defining the depression velocity 
4, When it was released 
5. A number defining the release velocity 

If the cime of depression and release are defined as elapsed time from an 
arbitrary point such as the beginning of the song, then the time relationship 
among all keystrokes is retained and the keyboard activity can be stored and 
reproduced exactly or edited. 

For a real-time playing situation, each piece of information should be 
reported as soon as it is available. It is possible to break each keystroke into 
two parts, which will be called events. A depression event would therefore 

consist of a key identification, its depression velocity, and the “time of day” 
that it was depressed. Similarly, a release event would specify which key, its 
release speed, and when it was released. With information in this form, it 

becomes easy for the system control computer to operate the synthesizer in 
immediate response to the keyboard and/or record the playing sequence. 

For convenience in this design example, each keyboard event will con- 

sist of four 8-bit bytes. The first byte will be the key identification, which 
will be a binary number between 0 and 60 with 0 corresponding to C1 and 
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60 corresponding to C6 on the five-octave 61-note keyboard. The most 
significant bit of this byte will distinguish press events from release events 
with a 1 signifying depression. The second byte will be a velocity value in 
which small numbers correspond to high velocities (short “float” times). The 
third and fourth bytes will be the time of day in 1-msec increments. Al- 
though this only pins down the time to within 65 sec, that should be quite 
close enough to avoid confusion. If desired, a fifth byte could extend unique 
timing information to over 4 hr. 

The keyboard interface will present these four bytes as 32 parallel bits 
that can be read by the using system in any way it sees fic. However, it is 
extremely important that a handshake protocol be defined so that there is no 
risk of an event becoming lost because another event occurred before the 
using system could read the first one. This can be accomplished with a 
request/response flip-flop similar to the one used with the analog keyboard. 
When the keyboard has an event ready, it updates the 32-bit parallel output 
and sets the request flip-flop. The using system seeing the request on, reads 
the 32 bits and resets the request flip-flop. The keyboard is prevented from 
outputting new data while the flip-flop is on. If another event does occur 
before the using system reads the previous one, the keyboard can save it in a 
first-in-first-out queue. In hard-wired logic, such queues are expensive, burt 
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AUX RESET 
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100 uF = 

Fig. 9-4. Keyboard interface microprocessor 
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Fig. 9-5. Keyboard multiplexor 

with a microprocessor-based interface, they are virtually free. If the time of 
the event is ascertained when it occurs rather than when it is read by the 
using system, such queuing has no effect on keystroke timing accuracy. As 
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with the analog keyboard, it is best to connect the digital keyboard to the 
host computer’s interrupt system so that fast response is retained without 
tying up the music-synthesis program by constantly looking for keyboard 
events. 

Hardware Configuration 

The hardware configuration of the interface is relatively simple as can 
be seen in the simplified schematic of Fig. 9-4. First, of course, is the 6502 
microprocessor, which could be easily replaced with a 6503 (28 pins and 4K 
addressing range) for absolute minimum space and cost tequirements. Pro- 
gram storage is provided by a single type 2708 erasable programmable 
read-only memory (EPROM), which holds 1K bytes. A type 6532 “combina- 

tion” chip supplies 128 bytes of RAM, 16 bits of I/O, and an interval timer 
that will be used to determine the “time of day” that keys are pressed. The 
RAM will be used to hold information about the state of each key, as a queue 
for events waiting to be accepted by the host, and for general temporary 
storage. 

Auxillary logic will be required to decode addresses, latch the 32-bit 
output, and to actually connect to the 61 keys on the keyboard. The latter is 
accomplished with a 6l-input digital multiplexor as in Fig. 9-5. The 

keyboard appears to the microprocessor as 128 memory locations at addresses 
0400-047Fig. The first 64 addresses, 0400-043F, select a key and the upper 
keyboard bus, while 0440-047F select the same keys but the lower keyboard 
bus. The data read from this pseudomemory have bit 7 (the sign bit) off if the 
selected key is contacting the selected bus and on otherwise. The other bits are 
forced to be zero, which is required for proper operation of the keyboard 
program to be described. Addressing the keyboard like memory makes key 
scanning much faster than it would otherwise be. A complete memory map is 
shown below: 

Hex address range Device addressed 

0000—-007F 128 bytes RAM in 6532 

0080—-O00FE V/O ports and timer in 6532 
0100—-03FF 0000-)0FF repeated three times 
0400-043F Music keyboard upper bus 
0440-047F Music keyboard lower bus 
0480-07FF 0400-047F repeated seven times 
0800-OBFF Unassigned, available for expansion 
OCOO—OFFF 1K bytes EPROM 2708 type 
1000-FFFF OO0—OFFF repeated 15 times 

Nore that since address decoding is incomplete a variety of addresses 
will refer to the same device. In particular, the EPROM can be reached by 
addresses between FCOO and FEFF, which include the interrupt vectors. The 
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Fig. 9-6. Using system interface 

128 bytes of RAM in the 6532 can be reached by both page zero and page 
one addresses, which allows both stack usage and convenient page zero 
addressing. 

The remaining logic is shown in Fig. 9-6. The four-latch ICs are wired 
to 12 of the port bits on the 6532 as a sirmple output expansion (12 bits to 32 
bits). The keyboard program can manipulate the data and clock inputs to the 
latches and thus exert complete control over their contents. The four groups 
of three-state outputs from the latches allow flexible and convenient interfac- 
ing to the using system. Two more of the port bits are used to control and 
sense the handshake flip-flop. The remaining 2 bits are available for expan- 
sion. 
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Software Functions 

Of course, with a microprocessor-based interface, hardware is only half 

the battle. The fundamental software job is to scan the 61 keys as fast as 

possible and handle any that are not contacting the upper bus (i.e., de- 

pressed) in an appropriate manner. In the fundamental program structure, 

time is broken into fixed length segments, and an attempt is made to do 

everything necessary in each time period. The most important housekeeping 

functions are done first and then the keyboard is scanned starting at the low 

end. In the rare event that keyboard activity is such that processing takes 

longer than a time segment, an interrupt from the timer will abort scanning 

and start the next cycle. Thus, the highest few keys might experience an 

occasional one count error in event or velocity timing under very heavy 

keyboard activity conditions. 
One of the first software design steps (and in fact the first feasibility 

study step) is to determine how fast the scanning can be done and therefore 
the length of a time segment. If a straightforward scanning loop is not fast 
enough for adequate velocity timing resolution, then something less 
straightforward will be necessary. 

As it turns out, a simple scanning loop can test a key and go to the next 
if it is up in 12 jesec, which means that a scan of the entire keyboard would 
take 732 psec. Allowing 70 usec of additional overhead for handling the 
timer and setting up for a scan, it would seem to be possible to complete a 
scan every millisecond, which is che desired resolution of key timing. How- 
ever, if a key is found to’ be down or was down in the previous scan, then 
additional processing is necessary. Further study of key-down processing 
reveals that the time used varies from a minimum of 37 wsec when the key 
is fully depressed and held to a maximum of 100 asec when an event is 

queued. Thus, a time allotment of a millisecond would only cover a 
maximum of five fully down keys and less than that when events are queued, 
which is not really satisfactory. Although several courses of action are possi- 
ble (2-MHz version of 6502 or external hardware to make key scanning 
faster), for this example the scan period will be increased to 1.28 msec. 
Velocity timing will therefore have a resolution of 1.28 msec, which is 
adequate when compared with normal variation in the velocity time dif- 
ferential. 

Software Flowchart 

An overall program flowchart is given in Fig. 9-7. When power is first 
applied or after a reset, all of the important program variables are initialized 
and then the main loop is entered. In the loop, the “time of day” is updated 
first taking into account the 1.28-msec update interval and 1.0-msec time of 

day units. Next the queue of events is checked. If an event is in the queue, 

then a check is made to determine if the previous event is still awaiting 
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Fig. 8-7. Overall program flow 

action by the host system. If so, the event is left in the queue and the 
program continues. Otherwise, the event is removed from the queue, put 
into the output ports, and deleted from the queue. 

Key scanning is next. Each key is tested to determine if it is contacting 
the upper bus and had been previously as well. If not, an exit from the 
scanning loop is taken to process the active key. Key-down processing looks 
at the previous “‘state’’ of the key and decides whether to start or continue a 
velocity count, queue an event, or just do nothing. After key-down process- 
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Fig. 9-8. Keyboard state diagram 

ing, the scanning loop is reentered at the point of exit and scanning con- 
tinues. If the entire keyboard is scanned before the 1.28-msec time slot 
elapses, a “‘do-nothing” loop is entered, which waits for a timer interrupt 
signifying the end of the slot. 

Let us look more closely at the key-down processing. A key actually 

goes through four “phases” as it is pressed and released. These are up, going 
down, fully down, and going up, which will be assigned phase or “‘state”’ 
numbers 0, 1, 2, and 3. If it were not for contact bounce or possible sloppy 
playing style, the key would always go through these states in strict se- 
quence, and velocity timing could be accomplished by noting the number of 
scan periods spent in phases 1 and 3. Bounce, however, is quite real, so it is 

not uncommon for the state sequence to “backtrack” and complicate matters. 
The solution is to simulate a “finite state machine’ for each key as in Fig. 
9-8. In this diagram, each circle represents the previous state of the key. Each 
arrow leaving a circle represents a particular combination of bus contacts for 

the key. Every possible combination of previous state and bus contact has 
such an arrow, which points to what the wext state of the key will be. Some 

arrows also specify an action to be performed. For example, State 1 has three 

outgoing arrows even though one of them reenters the same state. If the 

previous state was 1 and the lower bus is contacted by the key under consid- 
eration, then the next state is 2 and a press event is generated, Likewise, if 

neither bus is contacted, then the next state is also 1 and the velocity count is 
incremented. 

It is easy to see how contact bounce is taken care of by studying the 
diagram. Bounce while the upper contact is opening on the downstroke may 

cause the traversal from 0 to 1 and back to 0 several times. Each time contact 
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with the upper bus is remade the velocity count is reset. Finally, however, 
the bouncing stops and the State 1 looparound increments the velocity 
counter on each sean cycle. The very first time contact with the lower bus is 
seen, a press event is generated using the accumulated velocity count. Thus, 

the desired timing from /ast upper bounce to first lower bounce is im- 
plemented. An exactly analogous sequence occurs when the key is released. 
Note that simultaneous contact with both upper and lower buses is physi- 
cally impossible and therefore not accounted for in the diagram. 

Program Description 

A complete, assembled program listing for the keyboard is given in 
Fig. 9-9. Looking at RAM memory allocation first, it is seen that nearly half 
of it is devoted to saving information about the state of each key. The low 2 
bits of each byte are used co hold the state number, while the upper 6 bits are 
used as a velocity counter. The entire state byte is 0 if a key is inactive. 
Thirty-two more bytes are used to implement an event queue, which allows 
up to seven events to be stacked up before overflow. Five bytes are used to 

MKBCP MUSIC KEYBOARD CONTROL PROGRAM 
OOCUMENTATION, EQUATES, DATA STORAGE 

«PAGE "DOCUMENTATION, EQUATES, DATA STORAGE‘ 
3 5 THIS EXAMPLE PROGRAM SCANS A 61 NOTE VELOCITY SENSITIVE MUSIC 
4 : KEYBOARD AND FORMATS THE SIGNIFICANT EVENTS INTO 4 BYTE GROUPS 
$ " FOR USE BY A HOST MICROCOMPUTER SYSTEM, 
6 
7 : DEVICE AND MEMORY ADDRESSES 
8 
9 0000 PORAM X*0000 ; FIRST PAGE 0 RAM LOCATION 

16 0080 PAREG X'0080 3 6532 1/0 PORT A DATA REGISTER 
11 0081 PADIR x'0081 6532 1/0 PORT A DIRECTION REGISTER 
NS o iss ~ 2 3S m a 

eC 

K'0082 3 §532 1/0 PORT B DATA REGISTER 
13 0083 PBDIR x*0083 ; 6532 1/0 PORT B DIRECTION REGISTER 
14 009C TMWR I X'009C 3 6532 TIMER WRITE, ENABLE TIMER INTERRUPT 
1§ 0100 P1RAM x'0100 3 FIRST PAGE 1 RAM LOCATION (IS SAME 128 
16 ; BYTES AS PORAM 
17 0400 MYBU = x'0400 ; BASE ADDRESS OF MUSIC KEYBOARD UPPER BUS 
18 0440 MKYBL = x'0440 ; BASE ADDRESS OF MUSIC KEYBOARD LOWER BUS 
19 FCOO ROM = X'FCOO 3 FIRST LOCATION IN 1k EPROM 
20 
2l 3 RAM MEMORY ALLOCATION 
22 
23 0000 
24 0000 3 SPACE FOR THE CURRENT STATE OF 61 KEYS 
25 0030 3 EVENT QUEUE INPUT POINTER 
26 O03E 3 EVENT QUEUE OUTPUT POINTER 
27 003F 3 SPACE TO QUEUE UP TO 7 EVENTS 
28 OOSF ; ELAPSED TIME IN MILLISECONDS SINCE TURNON 
29 0062 3 FRACTIONAL PART OF ELAPSED TIME 
30 0064 3 5 COUNTER FOR TIMER INTERRUPTS 
31 0065 ; INDIRECT POINTER FOR VECTOR JUMP 
32 

Fig. 9-9. Listing of keyboard control program 
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MKBCP MUSIC KEYBOARD CONTROL PROGRAM 
INITIALIZATION AND MAIN LOOP 

PAGE "INITIALIZATION AND MAIN LOOP* 
33 5 INITIALIZATION 
34 
35 0067 = ROM 3 START AT BEGINNING OF ROM 
36 FCOO D8 INIT: CLD 3 SET BINARY ARITHMETIC MODE 
37 FCOl A250 LOX #80 3 INITIALIZE STACK POINTER TO END OF PAGE 1 
38 FCO3 9A TXS 3 RAM 
39 FCO4 ASFF LDA #X'FF 3 SET DATA DIRECTION REGISTERS ON 6532 
40 FCO6 8581 STA PADIR 3 PORT A TO ALL OUTPUTS 
41 FCO8 ASIF LDA #X'1F 3 PORT B BITS 0-4 TO OUTPUTS, REMAINDER TO 
42 FCOA 8583 STA PBDIR 3 INPUTS 
43 FCOC A900 LDA #V¥CJPTB 3 INITIALIZE UPPER BYTE OF VECTOR JUMP 
44 FCOE 8565 STA VCJPPT 3 POINTER 
45 FC10 A905 LOA #5 3 INITIALIZE TIMER INTERRUPT COUNT 
46 FC12 8564 STA TIMCNT 
47 FC14 AFF LOA #255 3 START TIMER, SET FOR 255 MICROSECONDS 
48 FC16 859C STA TMWRI 3 AND ENABLE TIMER INTERRUPT 
49 FC18 58 CLI 3 ENABLE INTERRUPT SYSTEM 
50 
$1 H MAIN PROGRAM LOOP 
52 
53 FC19 A562 MLOOP: LDA TIMEF 3 ADD 1+18350/65536 MILLISECONDS TO ELAPSED 
54 FC1B 18 CLC 3 TIME 
55 FC1C 69AE ADC #183508X'FF 3 FIRST DO FRACTIONAL PART 
56 FC1E 8562 STA TIMEF 
57 FC20 A563 LDA TIMEF+1 
58 FC22 6947 ADC #18350/256 
59 FC24 8563 STA TIMEF+] 
60 FC26 ASSF LDA TIME 3 THEN INTEGER PART 
61 FC28 6901 AOC #1 
62 FC2A 855F STA TIME 
63 FC2C 9006 BCC QUCK 
64 FC2E E660 INC TIME+1 3 CARRY THROUGH HIGH TWO BYTES 
65 FC30 D002 BNE QUCK 
66 FC32 E661 INC TIME+2 
67 FC34 AG3E QuckK: ==LDX QuOP 5 TEST IF ANYTHING IN THE EVENT QUEUE 
68 FC36 £430 CPX QuIP 
69 FC38 FO3E BEQ KYSCN 3 GO TO KEY SCAN IF NOT 
70 FC3A A582 LDA PBREG 3 TEST IF I/O WAITING ON HOST 
71 FC3C 2920 AND #X'20 
72 FC3E D038 BNE KYSCN 3 GO TO KEY SCAN IF SO 
73 FC40 A000 Lby #0 3 DEQUEUE AN EVENT AND OUTPUT IT IF NOT 
74 FC42 B53F LDA EVQU,x 3 KEY ID 
75 FC44 8580 STA PAREG 
76 FC46 A908 LDA #X'08 3 STROBE IT INTO 1/0 REGISTER 
77 FC48 8582 STA PBREG 
78 FC4A 8482 STY PBREG 
79 FCAC B5S40 LDA EVQU+1,x 3 VELOCITY 
80 FC4E 8580 STA PAREG 
81 FCSO A904 LDA #X'04 
82 FC52 8582 STA PBREG 
83 FC54 8462 STY PBREG 
84 FCS6 B54] LDA EvQu+2,x 3 TIME OF EVENT LOW 
85 FCS8 8580 STA PAREG 
86 FC5A A902 LDA #X'02 

Fig. 9-9. Listing of keyboard control program (cont.) 
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MKBCP MUSIC KEYBOARD CONTROL PROGRAM 
INTTIALIZATION AND MAIN LOOP 

87 FCSC 8582 STA PBREG 
88 FCSE B48? STY PBREG 
89 FC60 BS42 LDA EVQU+3,X 5 TIME OF EVENT HIGH 
90 FC62 8580 STA PAREG 
91 FC6& ASO] LDA #x'O1 
92 FC66 8582 STA PBREG 
93 FC68 8482 STY PBREG 
94 FC6A A910 LDA #X'10 3 SET THE REQUEST FLIP-FLOP 
95 FC6C 8582 STA PBREG 
96 FCBE 8482 STY PBREG 
97 FC70 BA TXA 3 MOVE QUEUE OUTPUT POINTER UP 1 NOTCH 
98 FC71 18 cic 
99 FC72 6904 ADC #4 

100 FC74 2951F AND #X'1F 3 WITH WRAPAROUND FOR 32 BYTES OF QUEUE 
re FC76 &853E STA QuaP 
02 
an 3 SCAN THE KEYBOARD. SCAN LOOP IS EXPANDED BY 4 FOR GREATER SPEED 

105 FC78 AO3C KYSCN: LOY #60 ; INITIALIZE KEY ADDRESS 
106 FC7A 001B BNE KYSCN4 3 ENTER EXPANDED LOOP AT PROPER PLACE 
107 FC7C 890004 KYSCNI: LDA MKYBL,Y 3 GET UPPER BUS CONTACT INDICATION 
108 FC7F 190900 ORA MKYBST,Y 3 COMBINE WITH PREVIOUS KEY STATE 
1o9 Fc82 BOZO BNE KYPROC 3 BRANCH IF ACTION REQUIRED 
110 FC84 88 KYSCNA: DEY 3 DECREMENT KEY ADDRESS 
111 FC8s geod KYSCN2: LOA MKYBU,Y 3 REPEAT FOR NEXT KEY 
112 Fess 190000 ORA MKYBST,Y 
113 FC8B BO17 BNE KYPROC 
114 FC8D 88 KYSCNB: DEY 
115 FC8E B90004 KYSCN3: LDA MKYBU,Y 3 REPEAT FOR NEXT KEY 
116 FC91 190090 ORA MKYBST,Y 
117 FC94 DOOE BNE KYPROC 
118 FC96 88 KYSCNC: DEY 
119 FC97 890004 KYSCN4: LDA MKYBU,Y 3 REPEAT FOR NEXT KEY 
120 FC9A 190000 ORA MKYBST,Y 
121 FC9D DOOS BNE KYPROC 
122 FCOF 88 KYSCND: DEY 3 DECREMENT KEY ADDRESS AND TEST IF DONE 
123 FCAO 10DA BPL KYSCN1 3 GO SCAN MORE KEYS IF NOT FINISHED 
124 FCA2 30FE KYSCNS: BMI KkYSCNS 3 WAIT FOR TIMER INTERRUPT 
125 
126 ; BASED ON PREVIOUS KEY STATE DISPATCH TO CORRECT KEY PROCESSING 
127 
128 FCA4 2903 KYPROC: AND #xX'03 3 ISOLATE STATE NUMBER 
129 FCA6 0A ASLA 3 SET UP VECTOR JUMP 
130 FCA7 OA ASLA 
131 FCA8 8565 STA VCJPPT 
132 FCAA 6C6500 UMP (VCJPPT) ; 00 THE VECTOR JUMP 
133 
134 : RE-ENTER THE SCAN LOOP AT THE PROPER PLACE BASED ON KEY ADORESS 
135 
136 FCAD 98 SCNREN: TYA 3 GET LOW 2 BITS OF KEY ADDRESS IN CARRY 
137 FCAE 6A RORA 3 AND SIGN FLAGS 
138 FCAF 6A RORA 
139 FCBO 1004 BPL SCNREI 3 REMAINDER OF (KEY ADORESS)/4 
140 FCB2 BOEB BCS KYSCND 3 
141 FCB4 9007 BCC KYSCNB 1 

Fig. 9-9. Listing of keyboard control program (cont.) 
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MKBCP MUSIC KEYBOARD CONTROL PROGRAM 
INITIALIZATION AND MAIN LOOP 

142 FCB6 BODE SCNRE1: BCS KYSCNC #2 
143 FCB8 90CA BCC KYSCNA 30 
144 
145 3 KEY STATE PROCESSING ROUTINES 
146 
147 FCBA A901 STATO: LOA #1 3 SET THE STATE TO 1 AND ZERO THE VELOCITY 
148 FCBC 990000 STA MKYBST,Y 3 COUNT 
tee FCBF DOEC BNE SCNREN 3 RE-ENTER SCANNING LOOP 
50 
11 
152 FCC1 B90004 STAT1: LDA MKYBU,Y 3 TEST KEY CONTACT WITH UPPER BUS 
153 FCC4 3005 BMI STATIA 3 JUMP IF NOT CONTACTING IT 
154 FCC6 990000 STA MKYBST,Y 3; CLEAR KEY STATE TO 0 (INACTIVE) IF 
158 FCC9 FOE2 BEQ SCNREN 3 CONTACTING IT AND RE-ENTER SCAN LOOP 
156 FCCB B94004 STATIA: LDA MKYBL,Y 3 TEST KEY CONTACT WITH LOWER BUS 
157 FCCE 100F BPL STATIC 3 JUMP IF CONTACTING IT 
158 FCDO B90000 LOA MKYBST,Y 3 IF NOT, GET KEY STATE AND INCREMENT THE 
159 FCD3 18 cLe 3 VELOCITY COUNT 
160 FCO4 6904 ADC #4 
161 FCD6 9002 BCC STATIB 3 SKIP IF NO OVERFLOW 
162 FCD8 £904 SBC #4 3 RESTORE MAX VELOCITY COUNT IF OVERFLOW 
163 FCDA 990000 STATIB: STA MKYBST,Y 
164 FCDD DOCE BNE SCNREN 3 RE-ENTER SCAN LOOP 
165 FCDF A630 STATIC: LDX QUIP 3 OUTPUT AN EVENT, GET QUEUE INPUT POINTER 
166 FCE1 0980 ORA #Xx'80 3 FIRST BYTE = KEY 10 NUMBER, DEPRESS 
167 FCE3 78 SEI 3 DISABLE TIMER INTERRUPT WHILE QUEUEING 
168 FCE4 943F STY EVQU,X 3 STORE IT 
169 FCE6 B90000 LDA MKYBST,Y 3 GET KEY STATE 
170 FCE9 4A LSRA 3 ISOLATE AND RIGHT JUSTIFY VELOCITY COUNT 
171 FCEA 4A LSRA 
172 FCEB 9540 STA EVQU+1,Xx 3 OUTPUT AS SECOND BYTE OF EVENT 
173 FCED ASSF LDA TIME 3 GET LOW BYTE OF TIME 
174 FCEF 9541 STA- EVQU+2,x 3 OUTPUT AS THIRD BYTE 
175 FCF1 A560 LDA TIME+1 ; GET HIGH BYTE OF TIME 
176 FCF3 9542 STA EVQU+3,xX 3 OUTPUT AS FOURTH BYTE 
177 FCF5 8A TXA 3 MOVE QUEUE INPUT POINTER UP 1 NOTCH 
178 FCF6 18 cLe 
179 FCF7 6904 ADC #4 
180 FCF9 291F AND #X'1F ; WITH WRAPAROUND 
181 FCFB 853D STA QUIP 
182 FCFD A902 LOA #2 3 SET KEY STATE TO 2 
183 FCFF 990000 STA MKYBST,Y 
184 FDO2 58 CLI 3 RE-ENABLE INTERRUPTS 
a FO03 DOA8 BNE SCNREN 3 RESUME SCANNING 

187 
188 FD0S 894004 STAT2: LDA MKYBL,Y 3 TEST KEY CONTACT WITH LOWER BUS 
189 FDOB 10A3 BPL SCNREN 3 RESUME SCANNING IF IN CONTACT 
190 FDOA A903 LDA #3 3 SET THE STATE TO 3 AND ZERO VELOCITY 
191 FDOC 990000 STA MKYBST,Y 3 COUNT IF NO CONTACT 
ie FOOF DOSC BNE SCNREN 3 AND RESUME SCANNING 
93 

{2 FOll 894004 STAT3: LDA MKYBL,Y 3 TEST KEY CONTACT WITH LOWER BUS 
196 FD14 3007 BMI STAT3A 3 JUMP IF NOT CONTACTING IT 

Fig. 9-9. Listing of keyboard contro! program (cont.) 
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MKBCP MUSIC KEYBOARD CONTROL PROGRAM 
INITIALIZATION AND MAIN LOOP 

197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
2ll 
212 
213 
214 
215 
216 
217 
218 

FO16 
FO18 
FOB 
FO1D 
F020 
F022 
F024 
Foes 
FO27 
F029 
FD2B 
FO2ZE 
FO31 
F033 
F034 
F036 
FD39 
FDA 
FO3B 
Fo30 
FO3F 
F041 
F043 
FOa5 
FD46 
FD7 
Fpa9 
FO4B 
FD4D 
FO4F 
Fos2 
FD53 

FOS6 
FDS 
FO5A 
FDSB 
FDS) 
FDSF 
FD60 
FD61 
FOG2 

F065 
FFOO 
FFO3 

FFO4 
FFO7 
FFOS 
FFOB 

1080 

4CADFC 

4C19FC 

4CBAFC 
00 

A4CC1FC 

STAT3A: 

STAT3B: 

STAT3C: 

TIMINT: 

TIMIN]: 

VCUPTB: 

Fig. 9-9. 

LOA #2 ; SET STATE TO 2 AND CLEAR VELOCITY COUNT 
STA MKYBST,Y IF CONTACTING LOWER BUS 3 
BNE SCNREN ; RE-ENTER SCAN LOOP 
LDA MKYBU,Y 3 TEST KEY CONTACT WITH UPPER BUS 
BPL STATIC 3 JUMP IF CONTACTING IT 
LOA MKYBST ; IF NOT, GET KEY STATE AND INCREMENT THE 
cle 3 VELOCITY COUNT 
ADC #4 
BCC STAT3B 3 SKIP IF NO OVERFLOW 
SBC #4 3 RESTORE MAX VELOCITY COUNT IF OVERFLOW 
STA MKYBST,Y 
UMP SCNREN ; RE-ENTER SCAN LOOP 
Lox QuiP 3 OUTPUT AN EVENT, GET QUEUE INPUT POINTER 
SEI ; DISABLE TIMER INPURRUPT WHILE QUEUEING 
STY EVQU,xX 3 STORE FIRST BYTE = KEY ID NUMBER, RELEASE 
LDA MKYBST,Y 3 GET KEY STATE 
LSRA 3 ISOLATE AND RIGHT JUSTIFY VELOCITY COUNT 
LSRA 
STA EVQU+1,X% 3 OUTPUT AS SECOND BYTE OF EVENT 
LDA TIME 3 GET LOW BYTE OF TIME 
STA EVQU+2,X 3 OUTPUT AS THIRD BYTE 
LDA TIME+1] 3 GET HIGH BYTE OF TIME 
STA EVQU+3,X 3 OUTPUT AS FOURTH BYTE 
TXA 3 MOVE QUEUE INPUT POINTER UP 1 NOTCH 
cLe 
ADC #4 
AND #X'1F 3 WITH WRAPAROUND 
STA QUIP 
LDA #0 3 SET KEY STATE TO O (INACTIVE) 
STA MKYBST,Y 
CLI 3 RE-ENABLE INTERRUPTS 
UMP = SCNREN 3 RESUME SCANNING 

PROCESS TIMER INTERRUPT 

DEC TIMCNT 3 TEST IF FIFTH TIMER INTERRUPT 
BEQ TIMIN] 3 SKIP AHEAD IF SO 
RTI 3 IF NOT, RETURN FROM INTERRUPT 
LDA #5 3 RESET 5 INTERRUPT COUNTER 
STA TIMCNT 
PLA ; CLEAN OFF STACK FROM INTERRUPT SEQUENCE 
PLA 
PLA 
uMP = MLOOP 3 GO TO MAIN LOOP FOR ANOTHER TIME PERIOD 

INDIRECT JUMP TABLE FOR STATE PROCESSING 

-=  X'FFOO ; TABLE MUST START ON A PAGE BOUNDARY 
UMP STATO 3 GO TO STATE O PROCESSING 
BYTE 0 3 1 BYTE PAD SO THAT VECTOR ENTRY ADDRESSES 

; ARE DIVISIBLE BY 4 
UMP STATI ; GO TO STATE 1 
-BYTE 0 
dMP = STAT2 ; GO TO STATE 2 
«BYTE 0 

Listing of keyboard control program (cont.) 
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MKBCP MUSIC KEYBOARD CONTROL PROGRAM 
INITIALIZATION AND MAIN LOOP 

252 FFOC 4C11FD IMP © STAT3 3 GO TO STATE 3 
253 
254 ; MACHINE INTERRUPT AND RESET VECTORS 
255 
256 FFOF «= X'FFFA 
257 FFFA 0000 «WORD O ; NON-MASKABLE INTERRUPT, NOT USED 
258 FFFC OOFC ~WORD INIT ; RESET, GO TO INITIALIZATION ROUTINE 
259 FFFE S6FD «WORD TIMINT ; MASKABLE INTERRUPT, GO TO TIMER SERVICE 
260 3 ROUTINE 
261 0000 «END 

NO ERROR LINES 

Fig. 9-9. Listing of keyboard control program (cont.) 

store the time of day in such a format that the most significant three bytes 
give it in units of milliseconds. The remainder is used for miscellaneous 
temporary storage and the processor stack. 

A word should be said about how the timer is actually handled in the 
program. The timer in the 6532 is really intended for use as an znéerval timer 
and what is needed for the keyboard program is an interrupting osc#//ator with 
a 1.28-msec period. Fortunately, the timer can be set up as an oscillator, but 

the only period available in that mode is 256 usec. Thus, the timer service 
routine maintains a counter and on every /i/th interrupt a new scan starts and 
the time of day is updated. In order for the time of day to be in exact 
millisecond units when the update interval is 1.28 msec, binary fractional 
arithmetic is utilized to add 1.47GE16 to the time of day, which is equal to 
1.2810 to an accuracy of 0.0005%. Thus, timing is as accurate as the crystal 
used to clock the 6502. 

The event queue is a classic circular queue, which is quite simple to 
handle. An input pointer always points to the first available queue slot, while 
an output pointer designates the first slot that contains valid data. If both 
pointers point to the same slot, the queue is empty and no data is available. 

After a deposit or withdrawal from the queue, the pointers are incremented 
by four, since each event requires four bytes. Wraparound of the circular 
queue from end to beginning is implemented by masking the queue pointers 
so that they can never contain a value larger than 31. No test is made for a 
full queue so if more than seven events are stacked up due to nonresponse 
from the host, they will be lost. Timer interrupts are disabled during quene 
operations, but since the timer is an oscillator, no timing errors accumulate. 

Actual scanning of the keyboard is slightly unconventional due to the 
need for high speed. Since the vast majority of keys will be inactive, the scan 
loop ts made as efficient as possible for that case. Also the scanning loop is 
expanded by a factor of four to decrease the time per key from 15 jssec to an 
average of 12.25 sec for a total savings of 167 gsec. Any key that is not 
both in State 0 and contacting the upper bus causes a vector jump to the 
appropriate processing routine, which is based on the 2-bit state code kept 
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for each key. Since a vector jump is used to get to the processing routine, 
returning to the proper paint in the expanded scan loop is a little ricky but 
quite fast. The state processing routines themselves simply implement the 
state diagram of Fig. 9-8. Note the convenience of indexed addressing where 
the key number currently being considered is always kept in the Y register 
and can be used to direct/y access contact status as well as the state byte for the 
current key. 

Improvements 

The keyboard just described is not the last word by any means. Another 

fairly easily obtainable contact arrangement is called a “second-touch” 
keyboard. With normal playing pressure, it behaves just like a conventional 
keyboard. However, additional pressure at the end of the stroke causes the 
key to travel a bit more and make contact with a second bus. It should even 
be possible to couple the second-touch mechanism with the velocity-sensing 
mechanism just discussed and end up with a very versatile keyboard indeed. 

For a true pressure-sensitive keyboard, one needs an inexpensive /inear 
transducer instead of contacts. One such transducer that is environment proof 

and free of wear problems is a saturating magnetic core. These in fact are so 
cheap (less than 40 cents) and reliable that they are commonly used for 
computer keyboards. The device consists of a ferrite torroid core about 1/10 
inch outside diameter and a small magnet. Two single-turn windings pass 
through the core. When the magnet is far ftom the core, it behaves as a 
transformer with good coupling between primary and secondary. As the 
magnet approaches, the coupling decreases linearly to near zero when the 

magnet is close enough to fully saturate the core. The linear range is about 

0.1 inch. All that is required to determine the degree of coupling is a 
controlled pulse of current through the primary coil. The height of the 
secondary pulse, which occurs within 200 nsec of the primary pulse, is 

proportional to the coupling and thus magnet position. 



10 
Other Input Methods 

Quite a number of other input methods are useful in che computer-controlled 
synthesis system. These can be broken down into four major categories. The 
first is manual real-time input such as the keyboard just discussed. This 
method is characterized by the user physically manipulating a mechanical 
device of some sort that is directly interfaced to the system. The second is 
source-signal analysis, which has already been discussed somewhat. Depend- 
ing on the circumstances, it may be simply an extension of manual input 

methods such as using the sound of a conventiona! musical instrament (which 
the user is physically manipulating) as input to the system. In other cases, it 
may involve analysis of some signal that the user did not generate and over 
which direct control is not exercised. The third method, which may not be 

considered to be a valid input method by some, involves the evaluation of 
mathematical equations or simple random chance to control some or all 

aspects of a piece. Finally, we have music languages, which might be consid- 

ered as the physical manipulation of a typewriter keyboard. The difference, 
however, is that the manipulation is not in real time so the user has an 

unlimited amount of time to consider what the input will be. 
In this chapter methods one and three will be emphasized. Source- 

signal analysis will be covered in Chapter 17, while music languages will be 
detailed in Chapter 18. 

Manual Input Devices 

Just about anything that can be moved, bent, twisted, or banged on 

and can accommodate contacts or a transducer has probably been used as an 
input source to a synthesizer. Of course, if a device can generate a control 
voltage for a synthesizer, then an ADC can interface the device to a com- 

puter. 

Ribbon Controller 

One of the more unique and interesting devices is the ribbon controller. 
In many ways, the ribbon controller resembles the resistor string analog 

299 
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STRETCHED CURRENT 
RIBBON 

CONDUCTIVE 
TRACK 

VOLTAGE 
OUTPUT 

Fig. 10-1. Ribbon controller 

keyboard described earlier. The device is constructed from a conductive 
(resistive) strip of material placed under a length of stretched wire or metal 
ribbon as in Fig. 10~1. Typical lengths of the conductive track may be as 
much as 3 feet, while the spacing between the wire and the track when not in 
use is on the order of 1/4 inch. 

In operation, a constant current is passed through the resistive track, 
and the output of the device is taken from the ribbon itself. To use, the 
player merely presses the ribbon against the track wherever desired and an 
output voltage proportional to distance from the point of contact to the 

ground end of the track is produced. Proper selection of ribbon and track 
materials allows the user to easily slide a finger along the ribbon to create 
smoothly varying output voltages. An interface circuit similar to that for the 
resistor string keyboard can be used to generate trigger and gate signals from 
the raw voltage output. Even the dual voice analog keyboard scheme is 
applicable for controlling two nearly independent voices (they cannot cross 
each other) from a single ribbon controller. 

Although most often used as a “free-form” controller, it is easy to add 

calibration markings so that the general location of the various notes can be 
instantly determined. ‘The player's ear, however, is the final judge of proper 
playing position. This brings up an important point about this and most 
other manual controllers. Immediate audible feedback is necessary to use 
these devices at all even if the application is strictly input to the computer for 
later use. 

It is also possible to add “frets” to the resistive track simply by affixing 
pieces of fairly large wire at desired locations along the track. For a dedicated 
fretted controller, the track itself may be replaced with a string of equal- 
valued resistors with each junction terminating at a fret wire glued to a 

nonconductive backing. At this point, the ribbon controller becomes a 
keyboard without the keys. It would not be difficult co set up devices with 
multiple ribbons that would resemble the fingerboard of a guitar. 
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Related direct input devices are rotary and linear slide potentiome- 
ters. The slide pot, which is a fairly recent development, is of particular 

interest, since it is actually a mimature ribbon controller with the ribbon in 
constant contact with the track and a handle to simplify the sliding. Their 
most common application is in fancy consumer audio equipment and sound 
studio control boards but iong travel units (3 1/2 inches) also make good 
direct input devices. Their low cost (as little as 50 cents each) means that 
quite a number can be provided and used simultaneously. Rotary pots, 
especially if fitted with a large knob and calibrated scale, have also been 
shown to be effective direct input devices. 

Joysticks 

One limitation of ribbon controllers and various types of potentiome- 
ters is that essentially only one degree of movement freedom is available, 
which in turn implies that only one output from the device is present. The 
human hand, on the other hand, is capable of several degrees of freedom in its 

movement. Devices for direct hand manipulation are called joysticks, a name 
derived from a similar, but much larger, device used as an aircraft control. 
Joysticks may have only one or several degrees of freedom but the term 
usually applies to a two-axis (two degrees of freedom) device. 

A joystick usually takes the form of a handle poking through a hole in 
the top of the joystick cover. The handle may be 2 to 5 inches long and can 
be moved forward and back or sideways or any combination of these motions 
always pivoting about the hole in the cover. The joystick produces two 
outputs, one proportional to the X component (sideways) of the handle 

position and the other proportional to Y (forward or back). Ideally, the unit 
should offer the same resistance to motion in any direction but some inexpen- 

sive ones may favor motion along the principal axes. For some applications it 
is desirable for the handle to remain in its last position when released, while 
for others a spring return to center (X=O,Y = O) is appropriate. 

A variety of mechanical arrangements is used to separate lever move- 
ment into X and Y components, but the most ingenious is shown in Fig. 
10-2. The arrangement of brackets does the separation, while two standard 

rotary pots are used to convert the motion into output voltages. Note that 

only a fraction of the pots’ rotary range is utilized so some postprocessing of 
the output voltage will probably be necessary. 

Joysticks of reasonable quality are commonly available for abouc $5.00. 
Although these may not be quite as smooth acting as one constructed accord- 

ing to the figure, they are small and convenient. One nice feature is that each 

axis consists of two pots ganged together. Connecting the two pots dif- 

ferentially can provide a bipolar output voltage that may not require 

additional processing to utilize. 
Joysticks can be readily extended to three or more degrees of freedom. 

The third axis can simply be twisting of the handle as it is moved left and 

right, forward and back. To add such a capability to Fig. 10-2, plan one 
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Fig. 10-2. Two-axis joystick construction. Source: Electronotes Musical En- 
gineers Handbook, 1975. 

merely replaces the handle with a third pot whose shaft becomes the handle. 
The fourth axis could be a mechanism for sensing up and down motion of the 
handle. One might even conceive of a fifth output that would be proportional 
to squeezing pressure on the handle! 

Graphic Digitizer 

Although not a new input device, graphic digitizers have recently been 

reduced in cost sufficiently to suggest their use as a dynamic input device. 
The digitizer acts somewhat like a two-dimensional ribbon controller and 
typically consists of a flat padlike surface perhaps a foot square and a special 
stylus that the user holds like a pen. When near the surface, the device 
outputs the X and Y coordinates of the pen tip position to an accuracy of 
0.01 inch or better. In one mode of operation, X and Y are sent out 50 or 

more times/sec, allowing the host system to determine not only the pen 

position but its velocity. In another mode, outputs are only generated when 

the user presses the pen on the pad, thus allowing precise coordinates to be 
entered. A sheet of paper may be placed on the pad surface and anything 
princed on it entered into the system. The possibilities in a music system are 
endless, ranging from a two-dimensional keyboard to a quick method of 
inputing sheet music. Even three-dimensional digitizers are available. The 

position of a pen point in three-dimensional space (as large as 36 inches on 
a side) is output as X, Y, and Z coordinates! 

Another novel input method is the breath control transducer. Essentially 
these are nothing more than pressure transducers with a tube that can be 
inserted into the user's mouth. Variations in breath pressure, which may be 
positive or negative, are converted into output variations. Such devices are 

most useful when the user's hands and feet are already tied up manipulating 
other input devices. 
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Modified Musical Instruments 

Many potential users of a computer-based synthesis system may have 
spent years perfecting playing techniques on various instruments such‘as the 
guitar or clarinet. Accordingly, it has become common to fit contacts and 
other sensors co these instruments for easy input into a synthesizer or com- 

puter. For example, it is relatively simple to install contacts under the keys of 
a clarinet. This coupled with a rough amplitude analysis of the actual clarinet 
sound gives the functional equivalent of a keyboard. Translating key closure 
patterns into equivalent notes is not so simple because it is the pattern of keys 
that are pressed that is important. When going from one pattern to another, 

it is unlikely chat all of the keys will make or break simultaneously so some 
intelligence is required to prevent spurious note outputs. Also many notes 
have “alternate fingerings.” Thus, even if the clarinet is to be used to control 

a synthesizer directly, a microprocessor would be useful as part of the inter- 
face. 

Guitar controllers are another popular item. These are actually an 
application of source-signal analysis, but the guitar and associated pickups 
are usually modified to simplify the analysis task. For example, since simul- 
taneous tones are very difficult to separate, an independent magnetic pickup 
is provided for each string. Also, since strong harmonics can lead to pitch 
errors when the signal is analyzed, the pickups are placed near the center of 
the string length. If such a guitar were simply connected to a conventional 
amplifier, the sound would be quite dull and lifeless. 

Typically, the guitar’s audio signal is analyzed into amplitude and 
frequency parameters for each of the six strings. Often the amplitude channel 
is used merely as a trigger source for an envelope generator, thus, the synthe- 

sized sound may have any amplitude envelope desired. One of the attractions 
of guitar controllers is the fact that they are inherently polyphonic. Not only 
can up to six nearly independent tones (each string has a somewhat different 
frequency range) be simultaneously controlled, there is no problem in the 
assignment of notes to voices; the string corresponds to the voice. 

Algorithmic Input 

Certainly everyone has been exposed in one way or another to the often 
beautiful images created from mathematical equations. The spiragraph, 

which is a machine for drawing cycloids, and its output is such an example. 
In fact, much computer art is done by evaluating various equations. Often 
“random-number generators” are used to set the parameters of the equations 
and chen the computer takes off and generates an image. The “artistic” part 
of the process is the knowledge of what equations make good “material” and 
the judgment to modify or reject unsuitable results. 

The same concepts can be applied to sounds and music. In fact, many 

purely analog synthesizers have the means for automatically generating se- 
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quences of control voltages that may be highly ordered, totally random, or 

anything in between. Likewise, a computer user has at his disposal the ability 
to evaluate equations of any complexity for ordered sequences and a 
random-number generator for disordered sequences. Algorithms for averag- 
ing and selecting random data can also be easily set up. Since this whole 

discussion crosses the line between music performance and music composi- 
tion, it will be kept brief and no value judgments will be made about the 
various techniques. 

A complete electronic music performance involves many sequences of 
events and dozens of time-varying parameters. On the other hand, a simple 
melody really only requires two parameters, the pitches and durations of the 
notes. Since conventional music starts with a melody and adds accompani- 
ment, algorithmic composition efforts usually concentrate on generating 
melodies. Depending on the application, the “melody” may be as simple as a 

repeating sequence of notes or a genuine attempt at automatically composing 

a true melody. 

Sample-and-Hold Module 

One very useful device for sequence generation that is present on many 
analog synthesizers is a sample-and-hold (SAH) module. Functionally, it is 
the same device that was discussed in the section on analog-to-digital conver- 
sion. For synthesizer use, it has a signal input, a trigger input, and a signal 
output. When a trigger occurs, the output is immediately updated to match 
the input. Between triggers, the output remains constant at its last value. 

The trigger input is usually designed so that any kind of waveform can drive 
it with perhaps the positive-going zero crossings of the wave being the 
trigger points. In essence, the SAH module accepts a continuously varying 

input and produces a stepwise output where the trigger initiates each step. 
Thus, if the SAH outpuc drives a VCO and the trigger also drives an 
envelope generator, then a distinct “note” is produced for each trigger. 

SIGNAL 
INPUT 

4 
TRIGGER 
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ry 
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Fig. 10-3. Sampling a low-frequency sawtooth wave 
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Fig. 10-4. Sampling a high-frequency sawtooth wave 

One of the simplest applications of the SAH module is in producing 
arpeggios. If a very-low-frequency (0.2 Hz) sawtooth wave is fed into the 
signal input and a 2 Hz pulse is fed into the trigger input, the output will be 
a staircase wave as in Fig. 10-3. When controlling a VCO, the staircase will 
produce an ascending sequence of 10 notes that repeats indefinitely. The 
actual notes depend on the amplitude of the sawtooth and the VCO settings. 

If the pulse and sawtooth frequencies are not in a precise integral ratio, 
then each repetition of the sequence will be different. It is not difficult to 
adjust things to produce a scale of fifths that increases (or decreases) a 
half-step each iteration for six iterations and then repeats. If the sawtooth 
frequency is increased so that it is slightly higher than the trigger frequency, 
a descending series of notes is produced as illustrated in Fig. 10-4. Note that a 
slight change in the relative frequencies of the two waves can have a profound 
effect on the output sequence. This sensitivity increases as the sawtooth 

frequency increases. In the kilohertz range, interesting patterns of sequence 
evolution are produced as the sawtooth frequency drifts slightly due to 
imperfections in the VCO generating it. One can become completely ab- 
sorbed in knob twiddling using a such a setup. 

For truly random sequences, the SAH module can be set up to sample 
white noise. One would feed white noise into the signal input and a constant 
frequency into the trigger input. The output then would be a random series 
of steps. When using a typical analog white noise generator (diode junction 
noise), the steps are completely random and will never repeat. When this 
signal drives a VCO (use the sine wave output), the resulting series of 

random pitches of identical duration is the typical Hollywood conception of a 
computer hard at work. 

Two SAH modules set up according to Fig. 10-5 will produce a 
random pitch sequence with random durations. Essentially, the first SAH 

determines the pitches, while the second determines the durations by con- 
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Fig. 10-5. Generator for random notes of random duration 

trolling the VCO that provides the trigger pulses. The result is more in- 
teresting but sill completely disordered. 

Statistics 

Although random sequences are unpredictable, they do have definite 
statistical properties. The most important ones are the mean or average 

value, the standard deviation, and the probability density function. The 
output of virtually any noise generator will have an avetage value of zero. If a 

mean of +5 V is desired, all that is necessary is to add a dc voltage of that 
magnitude. The standard deviation is equivalent to the rms voltage of the 
noise; thus, it may be changed with a simple gain control. Most noise sources 
also have a gaussian (bell-shaped normal curve) density function, which is not 

quite as easy to change. Even though a SAH module converts white noise 
into a random series of steps, the sampling process does not change any of 
these statistical properties. 

The probability density function can be changed by using the SAH 
module differently. The idea is to randomly sample a periodic waveform. The 
resulting probability density function depends only on the shape of the 
sampled waveform, not on the properties of the noise source. Figure 10-6 

shows a setup to do this. If the waveform to be sampled is in the kilohertz 
range, then only slight random variations in the sampling interval are 
needed. Thus, for practical purposes the step durations can still be controlled 
as desired. 

Fortunately, the standard synthesizer waveforms give desirable density 
functions. Both the sawtooth and the triangular wave give a uniform (flat- 
topped) distribution. A sine wave gives a reasonable likeness of a normal 

distribution, which might be useful for cleaning up the output of an other- 
wise poor noise source. Note that unlike a true normal distribution, there is 
an upper limit on peak deviation from the mean. A square wave gives two 
spikes, which means that only two different output voltages are possible and 
there is a random selection between them. (Actually this only applies to 
perfect square waves and SAHs; in a real situation one would occasionally get 
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Fig. 10-6. Altering the probability density function 

an intermediate output.) A rectangular wave gives similar results, but one 
value will be more probable than the other according to the duty cycle of the 
wave. 

So far the SAH module was assumed to be perfect, that is, the input 

was instantly sampled and held. In a real SAH module, each occurrence of 
the trigger fires a single shot, which closes the sampling switch long enough 

for the hold capacitor to charge up to the instantaneous input signal voltage. 

Typically, this time is in the low microsecond range and is constant. If a 
resistance is inserted in serics with the analog switch then the output will 
move toward the input during the sample interval but will not reach it. The 
effect is sometimes called “slew limiting” of the SAH. 

Figure 10—7 shows the effect of sampling a low-frequency square wave 
with such a degraded SAH. The output is a series of tising and falling 
arpeggios, but the pitch intervals start large and then decrease after each 
direction reversal. Altering the series resistor changes the step size and rate of 
interval decrease considerably. The effect on sampled white noise is also 
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Fig. 10-7. Slew-limited sampling of square wave 
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interesting. As the resistor is increased, the random output changes from 

total disorder toward a more correlated result. Unfortunately, the standard 

deviation also decreases, which would have to be counteracted with a VCA in 

a practical application. Obviously, voltage control of slew limiting would be 

a useful SAH feature. 

Controlling Randomness 

As was mentioned, a slew-limited SAH module is capable of imparting 
a degree of order in random sequences. Actually, it is possible to get exactly 
the same results by passing the signal to be sampled through a single-pole 

R-C low-pass filter first. If white noise is to be sampled, then this amounts to 
filtering the noise. The slew-limited SAH module is actually a discrete-time 
low-pass filter, which is the first step toward a digital filter! 

A sequence of random numbers is actually sampled whice noise. Thus, 
one can easily write a program to simulate analog sampling of white noise by 

using the RND (random number) function available in the BASIC pro- 
gramming language. If a synthesizer is interfaced to the computer, then 
random numbers can be fed to an oscillator to produce the same kinds of note 
sequences available with analog setups. One point to be aware of is that most 
random number generators have a uniform probability distribution, generally 
between 0.0 and 1.0. A good approximation to a gaussian distribution may 
be had by adding up 12 random numbers (distributed uniformly between 0.0 
and 1.0) and subtracting 6.0 from the sam. The mean of the result will be 0 

and the standard deviation will be 1.0. 
The name “stochastic music” refers to music (melodies) that orginates 

from sequences of random numbers. It should be apparent that raw random 
numbers, regardless of the probability distribution function, would create 
rather uninteresting music. Each note is an independent entity, with no 
relation to what came before and no influence on what follows. 

A very simple algorithm can be applied to a random sequence, how- 
ever, to produce a highly correlated sequence that might be more interesting. 
The basic idea is to use random numbers to determine the direction and 
magnitude of pitch movement rather than the pitches themselves. As a simple 
example, let’s say that the pitches are ta be notes on the chromatic equal- 

tempered scale and that the maximum allowable interval between successive 
notes is an octave. Thus, a sequence of random integers falling becween —12 
and +12 inclusive is needed. The BASIC expression INT(25*RND(1)) 

—12 will produce such a sequence. To produce a note sequence, numbers 

would first be assigned ro the notes on the scale. Next, a starting point, 

such as middle C, must be selected. To determine what the next note should 

be, one simply evaluates the above expression and adds the random number 
to the numerical equivalent of the previous note. 

One undesirable side effect of this process is that the notes can run off 

the ends of the scale. One solution is to treat the ends of the keyboard as 
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“reflecting barriers,” which would “bounce” the sequence back toward mid- 
dle C. For a gentle reflecting action, one might alter the split of up/down 
probabilities to favor down when the current note is high and vice versa. 

In any case, the resulting “melody” is highly correlated because the 
pitch of the current note depends on a// of the preceding notes as well as a 
random input. Likewise, the current note will influence all future notes. The 
audible effece of such a sequence (particularly if the maximum allowed inter- 
val is small) can be described as an aimless wandering with few surprises. 
Most listeners would say that the sequence is too correlated to be really 
interesting. 

Various schemes have been tried to produce sequences that are more 
correlated than raw random numbers but less correlated than the method just 
described provides. Just as white noise has a flat spectrum, the sampled 
white noise associated with raw random numbers also has a flat spectrum. 
The algorithm just discussed is actually a simple digital filrer; an integrator 
to be exact. An integrator is simply a low-pass filter with a 6-dB/octave 
cutoff slope. Unlike the typical low-pass filter, however, the response curve 
continues to increase as frequency decreases without limit. The random 
numbers emerging from the process then have a filtered spectrum that in- 
creases by 6 dB for each octave of frequency decrease. Thus, it would seem 
that other digital filters would be useful for modifying random sequences. 

More Sophisticated Techniques 

One such filter that has been studied is a so-called “pink noise” or 
“I/F” filter, which has a slope that rises 3 dB/octave as frequency decreases. 
The 1/F designation is used because the spectral power per hertz of bandwidth 
is inversely proportional to frequency. Since this is midway between 0 dB 

and 6 dB, the degree of correlation should also be intermediate. Listening 

tests bear this out; most people rate 1/F sequences as more pleasing than raw 
or integrated sequences. Unfortunately, a good 1/F digital filter is quite 
complex. 

Another idea is to provide a mechanism whereby the influence of past 
events either ceases or diminishes as the sequence continues. For example, 
one might specify that the next note wil! depend on the previous three notes 
and a random input. One implementation method involves a large table that 

lists every possible combination of the three previous notes. Each entry in the 
table specifies a percentage probability for the next note. The random- 
number generator is used to select the next note based on the specified 
probabilities. The character of the music generated thus depends on the table 
entries and the number of prior notes considered. 

One method for filling the table is analysis of existing music. For 
example, one might perform a statistical analysis of all four note sequences in 

the most popular Bach organ fugues. The data obtained could be compiled 
inco a table like che one just described. There would probably be numerous 
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combinations that did not occur in the music analyzed, so one might have to 
add a “back-tracking” capability to the program. One problem with extend- 
ing the technique to consider longer sequences of notes is the tremendous 
increase in table size. The analysis of most conventional music, however, 

would result in a large proportion of empty (zero probability) table entries. 

Thus, it may be more compact to formulate the data into a set of rules. 
Besides memory savings, it is usually easier to experiment with the rules than 
thousands of probability table entries. 

The results of such efforts have been: mildly successful in producing 
interesting sequences. Pieces produced by analyzing Bach's music, for exam- 
ple, may sound Bach-like for a short run of a few notes. However, after 
listening for awhile, it becomes apparent that the music is just drifting 
aimlessly and getting nowhere. Overanalysis is likely to result in whole 
phrases from the analyzed material appearing in the output. 

Analog Feedback Techniques 

Another method of producing sequences is to use the principle of 
feedback. The sequences produced, while definitely not random, are complex 
and often unpredictab The basic idea is to set up a collection of devices or 
modules, each of whic nas an input, an output, and performs some process- 
ing function. The modules are strung together and the output of the last 
module is fed back into the input of the first. Multiple-feedback paths can 

also exist. A simple sequence, even a single event, is then fed into the chain 
and gets processed over and over changing some on each trip. With multiple 

feedback paths, the sequence may be split and duplicated on each evolution. 
One of the simplest setups is a series of SAH modules, alJ driven by the 

same trigger as in Fig. 10-8. A multiple-input VCA is used to selectively 
mix an input from outside and one or more feedback loops. With only the 
input enabled, the final output from the system is simply a delayed, sampled 
version of the input. Outputs taken from intermediate states would be 
identical but with differing delays. This might be useful in creating sequence 
echo effects or even have a sequence play a “round” with itself. 

With the end-around feedback path enabled, many possibilities exist. 
One could, for example, fill the SAH chain with a short sequence of notes 
(five SAHs could hold a five-note sequence), disable the input, and recircu- 

late the same sequence. If the SAH modules were perfect, the sequence 
would repeat indefinitely, but in reality analog errors would accumulate and 
the sequence would evolve in perhaps interesting ways. If, instead of remov- 
ing the external input, it were fed a constant 1/12 V, the sequence would 

shift upward a half step on each interaction. If the feedback gain were greater 
or lesser than unity, the pitch intervals in the sequence would progressively 
increase or decrease, respectively. Enabling a second feedback path would 
create such complex patterns that they may be difficult to predict beyond the 
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Fig. 10-8. SAH module feedback sequence generator 

first repetition. The use of slew-limited SAH modules adds yet another 
dimension of possibilities. 

Digital Feedback Techniques 

A digital feedback system can be set up using flip-flops connected as a 
shift register. Figure 10—9 shows such a system. The input summer that 
drives che register is a parity generator that actually computes the “modulus 
2 sum” of all its inputs. The switches enable a particular feedback path if 
closed. A low-frequency VCO provides trigger pulses to drive the system. 
The output, of course, is simply a two-level digital signal that may change 
only in conjunction with a trigger pulse. As such, it is useful for rhythm 
generation, but there are methods for controlling multiple-frequency tones 
also. 

The sequence generated depends entirely on the configuration of open 
and closed switches. Since there are 2N possible switch combinations, a fairly 

small number of stages can create a nearly infinite number of different 
patterns ranging from highly structured to virtually random. The sequence 
length (number of clock cycles necessary to cause the sequence to repeat) 

varies from just 2 to 2N —1, where N is the number of shift register stages. 

OUTPUT SEQUENCE 

PARITY GENERATOR 

LOW- FREQUENCY 
vco 

Fig. 10-9. Feedback shift register sequence generator 
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(a) 

(B) 

(c) 

Fig. 10-10. Some 8-bit feedback shift register sequences. Note: Switch states 
read left ta right as in Fig. 10-9. One cycle of the output sequence 
from the parity generator is shown, (A) Switches = 00000011. (B) 
Switches = 00000111. (C) Switches = 00001001. 

From this vast array of sequences, Fig. 10-10 shows a few of those possible 
with an 8-bit register. 

The Muse 

At least one interesting device has been marketed that is based on the 
feedback shift register principle. It is called the “Muse” and is advertised as a 
music composition machine with which the user, by setting several levers 
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(0) 

Fig. 10-10. Some 8-bit feedback shift register sequences (cont.) (D) Switches = 
10000001. (E) Switches = 00011101. This is the longest possible 
sequence using an 8-bit register (255 bits). 

and switches, controls a sequence generator, which in turn controls a single 
oscillator to produce notes. 

A simplified block diagram of the device is shown in Fig. 10-11. 
Thirty-eight different digital signals are generated by several counter stages 
and a 31-stage shift register. These signals along with constant 0 and 1 are 
connected to 40 signal rows. Eight 40-position slide switches divided into 
two groups of four switches act as columns and can select any individual row 
signal. Four of the switches, which are called ‘‘theme” controls, feed a parity 
generator whose output feeds the 31-position shift register. The other four 
switches, designated “interval” controls, are connected through some trans- 

lation logic to a 5-bit DAC, which drives a VCO tone generator and output 
speaker. The VCO and DAC are adjusted so that the step size is a semitone 
on the equally tempered scale and the translation logic converts its 4-bit 
input into a 5-bit output according to the conventions of the major musical 

scale. An adjustable low-frequency oscillator clocks the counters and shift 
register. 
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Fig. 10-11. Block diagram of Muse 
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In the Muse, the rows driven by the counters and constant 0 and 1 are 

designated as the “C’” (counter) region. Five of these rows are connected to a 
simple 5-bit counter, while two more connect to a divide-by-6 and divide- 
by-12 counter. The outputs of the various counters are normally used for 
short, highly ordered sequences. For example, if the “A” switch is set to row 
“CL”, B co C2, C to C4, etc., the device will generate an ascending major 

scale. Essentially, a binary counter has been connected to the DAC, which 

would be expected to generate an ascending staircase waveform. If switch A 
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is moved to the C1/2 position, the scale will still ascend but by alternate 

intervals of one note and three notes. Moving B and D back to the off 
position (constant 0 row), results in a pair of trills: C- 

D-C-D-G-A-G-A-C-D . . .. Many other combinations, of course, are possi- 

ble, but the sequence length will never be more than 64 notes using the C6 
row or 32 notes otherwise. 

The 31 rows in the “B” (binary) region are driven by the 31 stage shift 
register, which shifts downward from row 1 to 2 to 3, etc. The four “theme” 
switches are used to control the shift register by determining what will be 
shifted into the register’s first stage input. If they are set in the C region, 
then the register acts merely as a delay line. This can be useful in creating 
cannon effects. However, if one or more are set in the B region, then a 

feedback path into the shift register is created and some complex sequences 
indeed can result. One possibility is to set the cheme switches for a complex 
sequence, set three of the interval switches in the C region for a repetitive 
tone pattern, and set the fourth somewhere in the B region. The result is that 
the repetitive pattern is modified according to the shift register pattern. 
Although one can think through what the effects of a particular switch 
setting might be, there are so many degrees of freedom that one usually 
succumbs to random tinkering. The number of unique combinations is for all 
practical purposes infinite. 

Obviously, the concept can be easily expanded to more stages, more 
notes, more voices, rhythm control, and even scale changes. Of all the 

algorithmic “composition” methods discussed thus far, the author feels that 
this one holds the most promise and is the most fun to use. It is obvious that 
the Muse can be easily simulated on any microcomputer system using any 
language desired. Although user interaction may not be as convenient as the 

many slide bars and switches on the real thing, it becomes easy to expand or 
restructure the device with minor program changes. Also, with the user 

interaction techniques discussed in the next chapter, even the user interface 
can be improved upon. 
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Control Sequence 

Display and Editing 

One of the unique capabilities of a computer-controlled synthesizer is mean- 
ingful graphic communication with the user. Many of the normally abstract 
ideas about sound parameter variation become concrete objects when vi- 
sualized through a computer-driven graphic display. As such, they become 
much easier to manipulate as well as comprehend. Imagine for a moment 

reading the text of this book without the benefit of illustrations. The no- 

tions of waveshape, spectrum shape, parameter variation contours, etc., 

would be difficult to visualize regardless of the quality of exposition. With 
figures to illustrate ideas, understanding of the point being illustraced as well 
as its relation to other points is made easy, almost natural. “Dynamic” 
illustrations in which variables actually move is better yet for understanding 
relationships. A graphic display device provides these aids to the music 
system user who must constantly conceptualize a myriad of interrelated 
parameters and effects in the evolving composition. 

Not very long ago one interacted with a computer music system solely 

through punched cards. The keypunch machine in the computer center was 

the only means available for editing the sound material, which consisted of 
music language statements and an occasional tabulated curve. Alphanumeric 
display terminals for on-line editing of text were rare, while graphic display 
consoles were exceedingly expensive luxuries. Now an interactive al- 

phanumeric display is expected even on small, inexpensive home systems and 
reasonably adequate graphic capability costs less than $500. 

Whereas the previously discussed musical input methods concentrated 
on getting data into the system in an initial good form, this chapter will 

discuss methods for building up a composition from little or nothing 
through editing. Editing is a process whereby a body of initial material is 
modified or rearranged in response to commands by the user. It also covers 
the addition of new material and the deletion of old or unwanted material. 
An ideal computer music-editing system should be able to accept input in a 
variety of forms, such as keyboard activity, source signal analysis, al- 
gorithmic sequence generation, and music language statements. It should be 
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able to “show” the material to the user in several ways, such as music 

language statements, standard or specialized music notation, graphs of 

parameter variation, and actual synthesized sound. The editing commands 

should be simple yet powerful and correspond to the method chosen for 

showing the material to be edited. Composition by editing is a uniquely 

interactive method for producing the kind of music the user really has in 

mind rather than the best approximation that human dexterity or music 

language restrictions allow. 

Types of Display Devices 

Historically, computer data displays have been divided into two types, 
alphanumeric and graphic. The former is so named because it is designed to 
display strictly letters and numbers, whereas the latter is more generalized, 
being capable of displaying line drawings or in some cases gray scale images. 

Theoretically, the alphanumeric display is a proper subset of graphic displays 
because, after all, characters are nothing more than graphic shapes. However, 
the very generality of graphic display means that character display quality or 

quantity is likely to be less for equivalently priced devices. Because of this, 
many computer users have the mistaken idea that a graphic display can never 

do as good a job on text as can the alphanumeric type. A good-quality 
graphic display, however, can certainly equal the performance of commonly 
used, less expensive text-only displays with the added convenience of a 

single-display device for both types of information. 
Many display technologies have been used to display characters and 

graphics. Although other methods have claimed to be superior to the cathode 
ray tube in one way or another, the CRT remains the undisputed leader and 
likely will continue to be until the late 1980s. CRT hardware is cheap 
because of heavy usage in television, radar, and oscilloscopes. Display resolu- 
tion can be very high; a million resolvable points is routine and upward of 20 
million can be done. The most commonly used CRT displays are fast, 
capable of being completely updated in milliseconds. Although other 
capabilities such as gray scale and color presentations are important for some 

applications, the following discussion will focus on monochrome displays 
capable of line drawings and alphanumerics. 

A graphic CRT display can be thought of as a two-dimensional rectan- 
gular surface. Any point on the surface can be specified by giving X and Y 
coordinates. However, since digital logic drives the display, there is a limit 
to the number of discrete X and Y coordinate values. The smallest increment 
possible in either direction is commonly called a raster unit. A low-resolution 
display may have as few as 200 raster units in each direction, whereas a 
high-resolution display might have 4,000 or more. The electron beam that 
creates the spot of light on the screen does have a finite size, however. In fact, 
it is often larger than the raster unit size in a high-resolution display. Herein 
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(ay (8) 

Fig. 11-1. Methods of displaying a line. (A) Line-plotting display. (B) Point- 
plotting display. 

lies the difference between addressable points, which are the product of X and 
Y raster unit counts, and resolvable points, which refer to the quantity that 
can theoretically be displayed without merging into a continuous sheet of 
light. 

Graphic Display Classifications 

Graphic displays are classified by whether the fundamental display 

element is a /ine or a dot (point). A line drawing display is capable of drawing 
a smooth continuous line from any X,Y coordinate (X and Y are integers in 

terms of raster units) to any other on command. A point display is capable of 
illuminating any combination of dots at X and Y raster unit intersections. 
Figure 1]—1 shows the difference in appearance between the two presenta- 
tions in which all other factors such as number of raster units and beam size 
are equal. Clearly, the line display provides a superior image. This is because 
only the endpoints are constrained to be at grid points in the line display. 

Line drawing displays are usually called vector displays because the lines 
satisfy the mathematical definition of a vector. Such displays have a number 
of important advantages besides better-looking images. The most important 
is that they are easy to program. The display accepts data in essentially the 
same form that it is likely to be manipulated and stored in. Another advan- 

tage is that interactive editing of the image is fairly easy co implement and 
large data buffers in memory are generally not required. Resolution of the 
image (number of horizontal and vertical raster units) can be made quite high 
for a moderate increase in cost and memory usage. 

There arc, however, disadvantages that prevent vector from being the 
dominant CRT display technology. Perhaps most serious is the required 
CRT monitor, which consists of the tube, high-voltage power supply, and X 
and Y deflection amplifiers. It must be capable of raxdom (on command) X 
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and Y deflection of the beam. Unfortunately, home TV sets or standard video 
monitors do not fall into this category. Oscilloscopes, however, do provide 
random positioning capability, but the screen size is fairly small. A large 
screen random deflection display monitor is currently a specialized, expensive 
device. Another problem is that without an adjunct character generator 
circuit and small-angle deflection circuit the amount of text that can be 
displayed is limited. 

A Simple Vector Display 

Perhaps the best way to become acquainted with the characteristics of 
vector displays is to describe a simple unit that is easily built, is inexpensive, 
and gives surprisingly good performance. It may be interfaced to any com- 
puter that has two 8-bit output ports. The output consists of X, Y, and Z 
(beam on-off control) voltages that can use any oscilloscope having dc- 
coupled amplifiers as a display monitor. The resolution is 256% 256 raster 
units, but the quality is equivalent to much larger dot-type displays. 

One fact of life is that the image on the tube must be rewritten 
continuously. This is called refreshing the display and is necessary to prevent 
it from fading away within a fraction of a second. For most display monitors, 
the image must be refreshed at least 40 times/sec to avoid flicker. Maximum 
image complexity is directly proportional to the number of lines that may be 
drawn in one refresh interval. Very detailed, complex drawings are possible, 
however, if some flicker is allowed. It is also sometimes possible to obtain an 
oscilloscope with a /ong-persistence phosphor in which the image does not fade 
so quickly. These are usually yellow or orange in color as opposed to green 
and are commonly used in medical applications. The display to be described 

requires about 50 sec to draw a line. Thus, about 500 lines may be drawn in 
the 25-msec interval allowed for a 40-Hz refresh rate. 

Two 8-bit output ports are used to control the display. Port one is used 
for specifying X and Y coordinates. The coordinates are unsigned numbers in 
the range of 0 to 255 with zero corresponding to the bottom and left edges of 
the screen. Only 4 bits of the other port are used. The “save X” bit when a 
logic one causes the content of port one to be interpreted as an X coordinate 
and stored in an internal register. The “move X” bit causes the previously 
saved X to be sent to the X DAC, which then immediately moves the CRT 
beam to the new X position. “Move Y” immediately transfers port 1 to the Y 
DAC and moves the beam. The fourth bit is called “draw,” which turns the 

beam on for 50 psec and sets up for controlled movement so that straight lines 
are drawn. For proper operation of draw, move X and move Y should be set 
simultaneously with draw. 

A typical sequence for drawing a line between two arbitrary endpoints, 
Xi,Y1 and X2,Y2 would be as follows: 

1. Initially port 2 (the control port) is zeros. 
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nN . Store X1 into port 1 (the coordinate port). 
- Set “store X” and “move X” bits co ones and then zeros to cause an 
immediate move to X1. 

4. Store Y1 into port 1. 
5. Set “move Y” bit to a one then a zero to cause an immediate move to 

Yi. 

. Store X2 into port 1. 
7. Set “store X” bit on then off to store Xz in the display generator 

without affecting the X DAC. 
8. Store Y2 into port 1. 
9. Set “move X,” “move Y,” and “draw” bits on. 

10. Wait 50 psec for the line to be drawn, 
11. Clear the contro) port to zeros, 

we 

Dn 

Usually the majority of an image is formed by line segments joined end-to- 
end. In this case, each additional segment after the first only requires Steps 6 
to 11 to be executed. 

Display List Interpreter 

In actual use, a display subroutine would be written that would display 
all of the line segments needed for the desired image once and then return. A 
display list in memory can specify the line segments in a form that allows 
rapid retrieval and display yet easy manipulation of the list for editing. The 
display subroutine then becomes a display list interpreter executing commands 
from the list not unlike a BASIC interpreter. Although considerably more 
sophisticated list formats are possible, let us describe one that is simple yet 
well suited for this display. 

The display list consists of individual “list elements’ strung end to 
end. Each element contains an “operation code” byte followed by “operand” 
bytes. Code Ulis, for example, will specify a move with the beam off; 
therefore, it will be followed by two bytes specifying X,Y coordinates of the 
destination. Code 02 specifies an isolated line segment; thus, X1,Y1 and 

X2,Y2 will follow as four bytes. For drawing connected line segments, it is 
most efficient if they are drawn consecutively. Accordingly, code 03 indi- 
cates that a count byte and a series of coordinates follows. A move will be 
done to the first coordinate of the series and thereafter lines will be drawn 
from point to point through the series. The count byte specifies up to 255 
lines in the series. 

In music synthesis applications, it is common to display graphs in 
which one axis, usually X, simply increments for each line in the graph. 
Considerable space saving is therefore possible by defining a “graph” seg- 
ment type. Code 04 is used to specify a graph. It is followed by a count byte, 
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an increment byte, the initial X coordinate, and then a series of Y coordinate 

bytes. The count byte is as before, while the increment byte specifies the 
amount that X is incremented for each graph point. The initial X byte is 
needed to specify where the graph begins horizontally. For completeness, one 
could specify code 05 as being a graph with Y being automatically in- 
cremented. The end of the entire display list is specified by a code of 00. 

Many other element types can be defined to make image editing easier 
and faster. If one desired to move a set of lines vertically by 10 raster units it 
would be necessary to alter the Y coordinates of every one of the lines 
individually. The idea of relative coordinates overcomes this problem. With 
relative coordinates, the position of all line endpoints are relative to a 

specified point. By changing the coordinates of the specified point (origin), 
one can change the position of all lines that are relative to that point. To 
implement this, code 06 will specify an origin segment and will be followed 
by X,Y of the new origin. Codes 07 to OB correspond to 01 to 05 except that 
all coordinates are relative. 

It is also useful to be able to skip portions of a display list or reuse parts 
of it for similar subimages. Code OC is used to specify an unconditional 
jump. It is followed by two bytes that specify where in memory the remain- 
der of the list is located. The jump simplifies editing because a deletion, for 
example, can simply insert a jump that skips around the unwanted list 
elements. Code OD is similar except it specifies “jump to subroutine.” The 
address of the next list element is saved and a jump to another display list is 
taken. When a “return” (code OE) is seen in the secondary list, a jump back 
to the saved address is taken. If the display list interpreter is written so that 
return addresses are saved on the processor's stack, the sublists may be 

nested. 

Relative coordinates make such “image subroutines” very useful. A 
common subroutine, such as the shape of an object, can be used to draw the 

object at different positions on the screen. One would have a “‘set relative 
origin” element followed by a “jump to subroutine” element for each copy of 
the object desired. This technique would also be useful for displaying charac- 
ters. 

To facilitate compact storage of text, code OF will specify an ASCII 
mode. It is followed by the X,Y coordinate of the first character and then the 
text itself as normal ASCII character codes. The ASCH “ETX” character is 
used co indicate end of text and a return to graphics mode. One could define 
a variety of control characters in the text co allow formating without going to 
graphic mode and changing coordinates for each line of text. Note that 
graphic text display is quite capable of proportional spacing (different letters 
are different widths such as the text of this book) and superscripts or sub- 
scripts or even varying point (character) size. Unfortunately, with this simple 
display example only a few dozen characters can be drawn in a 25-msec 
refresh interval. 
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Keeping the Image Refreshed 

To maintain the image on the screen without flicker, the list interpret- 
er would have to be called at lease 40 times/sec. An easy way to keep the 
display refreshed and do other work as well is to have an interval timer 
interrupt 40 times/sec. The interrupt service routine would refresh the dis- 
play once and return. If priority interrupts are available, the display should 

probably be the lowest priority. If more than 25 msec is required to display 
the list, the system woutd revert to a state in which the list size determines 
the refresh rate, which would be less than 40 Hz. 

Obviously, the system can become completely tied up refreshing the 
display if the image is complex. Often this is not a problem if the application 
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Fig. 11-2. (A) Simple vector graphic display intertace—digital portion. 
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Fig. 11-2 (Cont.). (B) Analog portion. 

is simply editing curves or text where the system is waiting on the user 
virtually 100% of the time anyway. For other applications, it would be nice 
if the display automatically refreshed itself from the display list. One possi- 
bility is to utilize a small “trainer” microcomputer as a dedicated display 
processor. The main system would transfer display list data to it through a 
serial or parallel port. A display program in the dedicated micro would 
continuously interpret the list and keep the display refreshed. Small one- 
board systems based on the 6502 such as the Synertek SYM are ideal because 

the overall high speed of the 6502 allows complex list structures to be 
processed as fast as the display generator can accept data. Although small, 
such microcomputer boards have sufficient memory capacity to hold exten- 
sive display lists and even list-editing software. 

Vector Generator Circuit 

Figures 11-2A and B show a schematic of the vector display generator. 
The digital portion of the interface is quite simple, consisting mostly of type 
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Fig. 11-3. Step response of vector generator 

7ALS75 quad transparent latches. The latches are necessary because the same 
port is used for both X and Y coordinates and to insure that the X and Y 
DACs are updated simultaneously when a line is to be drawn. The term 
transparent means that as long as the clock input is high, the input data 
passes straighc through to the output. Thus, a move X operation, which calls 
for setting both “save X" and “move X” control bits high, enables che clocks 
on both sets of X latches allowing data to pass through che leftmost set and 
be latched into the rightmost set. The single shot is used to carefully control 

the beam on time independent of program timing when a draw is executed. 
This prevents bright dots at the ends of lines. The Z axis output is boosted to 
15 V by a transistor, since most oscilloscopes require high-level drive to 
control the beam. 

The heart of the analog section is the X and Y DACs. Type MC1408L8 
DACs are used in a circuit similar to that in Fig. 7-15. The offset circuit has 
been modified, however, to provide a voltage output (from current-to- 
voltage converter op-amp) of +2.5 fora digital input of 0 and +7.5 for an 
input of 255. The type TLO084 is a very convenient quad FET input op-amp 
selected here for its speed. 

Unfortunately, generating the X and Y voltage contours necessary for 
drawing a smooth, uniformly bright line between arbitrary endpoints on a 
CRT is not as simple as it sounds. The task is called vector generation and 
circuits that do it are called vector generators. An ideal vector generator would 
move the beam at a constant, uniform velocity regardless of the line length or 
orientation, would be free of wiggles and other distortions at the endpoints, 

and would have good matching of lines sharing the same endpoint. To make 
matters worse, the necessary analog computations must be done accurately at 
high speeds. The vector generator used in this simple display sacrifices 
constant velocity in the interest of simplicity. The effect of varying beam 
velocity is that short lines will appear to be brighter than long lines and the 
portion toward the endpoints may also be brighter than the middle. To the 
eye, the effect is not objectionable buc it does create difficulty if one wishes to 
photograph the screen. 
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Fig. 11-4. Adjustment of vector generator 

Vector generation is accomplished by using a portion of the step re- 
sponse of a tesonant low-pass filter. Figure 11-3 shows the step response of 
the filter used. Note that the filter output rises from its previous value fairly 
linearly, overshoots the final value, and then oscillates around it for a time 

before settling. Since the time from the input step to the output first crossing 
the final value is constant and the curve during this time is reasonably linear, 

it is suitable for use as a vector generator. Note that line straightness on the 

screen depends on matching the X and Y curves, not on the straightness of the 
curves themselves. S1 and S2 have been added to quickly damp out the 
oscillation around the final value after the line has been drawn and to allow 
fast moving with the beam off. Their effect is to raise the cutoff frequency of 
the filter about 20-fold. The switches themselves are inexpensive CMOS 
transmission gates. Since the voltages being switched are between +2.5 V 
and +7.5 V plus some margin for overshoot, the CMOS is powered between 
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+10 V and ground. This also allows simple open-collector TTL gates to 
drive the switches. 

Adjustment of the circuit is fairly simple. First the gain and offset pots 
on each DAC must be adjusred so that 00 gives +2.5 V output and FF gives 

+7.5 V. Next, using an oscilloscope, the low-pass filters in the vector 

generator should be adjusted for identical step response shape and time to 
first final value crossing. If the capacitors are initially matched to within 1% 
or so, then shape matching should not be a problem and the two pots in the 
X axis circuit can be adjusted for time matching. Finally, using a test pattern 
consisting of a diamand (all lines at 45°), the end match pot should be 

adjusted so that the lines just meet. If one line passes the other before 
meeting, then the step response balance should be touched up a bit. Any 
curvature of the lines due co the vector generator can be ascertained by 
displaying a 45° angle line and then a series of points (lines with zero 
length) along the path that should have been traversed by the line. 

Note that very little additional expense is involved in improving the 
resolution of the display. For example, the number of addressable points may 
be increased 16-fold merely by using 10-bit DACs and a couple of extra latch 
packages. With 12-bic DACs, the raster unit size becomes so small that X 
and Y coordinates become essentially “continuous” quantities. The signifi- 
cance of this is seen by considering the display of, say, an arbitrary number of 
equally spaced lines in a fixed area of, say, one-half the screen width. With 
256 raster units, one-half of the screen would be 128 raster units. If 47 lines 

need to be displayed, the space between lines should be 128/47 = 2.723 
raster units. On the screen some lines would actually be three units apart 
while others are only two, obviously not equally spaced. With a 4096 
raster-unit display, however, the lines would be 43 and 44 units apart and 
thus appear quite equally spaced on the screen. 

Raster Scan Displays 

The other major CRT display type is commonly called a raster scan 
display. This is because the deflection circuits in the CRT monitor constantly 
scan a rectangular area in a set pattern consisting of numerous parallel 
horizontal lines. As the beam scans, it may be turned on and off at controlled 

times to show a dot pattern representing the desired image. Since the deflec- 
tion amplifiers always handle the same waveform (normally a sawtooth) at a 
constant frequency, they may be made quite inexpensively even for the high 
power levels required for large-screen magnetic deflection tubes. This and 
the fact that our national television system works on the same principle are 
key advantages of raster scan displays. Note that since time is the only 

variable required to control dot position, the raster scan display is inherently 

a digital device. 
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(B) 

Fig. 11-5. Simple (A) and interlaced (B) raster scanning 

The maximum resolution of a raster scan display is fairly well defined 
by the scanning frequencies used. Since television receivers and TV standard 
video monitors are so common, the low-cost raster display maker is essen- 
tially locked into standard TV frequencies, which are 15,750 Hz horizontal 
and 60 Hz vertical. For a normal scanning pattern, this yields 262 horizontal 
scan lines of which roughly 240 are usable (the others are wasted during 
vertical retrace). There is no hard limit on horizontal resolution, but there is 
little reason to have more points per inch than the vertical axis. With a 4:3 
aspect ratio (screen width:height), this gives a horizontal resolution of 320 
points. 

A technique called interlacing effectively doubles the vertical resolution 
to 480 lines. It does this by vertically shifting odd-numbered screen scans 
one-half the scan line spacing with respect to even-numbered scans. Al- 
though effective for moving pictures viewed at a distance which is typical of 
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television, an expensive precision monitor is required for an acceptable sta- 
tionary image when viewed at close range, which is more typical of computer 
displays. Higher horizontal rates of 30 kHz or 60 kHz and/or slower vertical 
rates of 30 Hz are other methods of achieving up to 2,000 scan lines per 
frame, which is the practical limit of real-time raster display technology. 

Nevertheless, 240 X 320 resolution is quite usable for music applica- 
tions. Alchough the image appears much coarser, a 256 X 256 raster display 
gives just as accurate a picture as a 256 X 256 vector display would for 
waveform plots. The difference would really show up, however, if a number 
of lines at different angles pass through a small portion of the screen. With a 

taster display, the lines may just merge into a patch of light making it 
difficult co trace an individual line through the maze. A vector display, on 
the other hand, would retain good line identity in such a situation. 

Unlike the vector display just described, automatic screen refresh by 
external hardware is inherent in raster displays. The overwhelming reason for 

this is the blazing speed with which data must be read from the display list 
and sent to the display to keep up with the scanning. As an example, 
consider that the horizontal sweep period of standard TV is roughly 64 
msec. In practice, at least 15 jesec must be subtracted co allow for horizon- 
tal retrace, leaving about 50 ysec for the image. For a horizontal resolution 

of 320 points, no fewer than 320 bits must be sent to the display during this 
time. This gives a bit rate of 6.4 MHz or a byte every 1.25 fusec, much too 
fast for directly programmed output. Thus, in practice an exact screen image 
is stored in a display buffer that may either be part of the display interface or 
may be main microcomputer memory with direct memory access (DMA) 

used to rapidly read the data for display. 

Display Buffer 

The display buffer required for a raster display can become quite large 
indeed. A full 320 x 240 display would be 76,800 bits or 9.6K bytes, 
which is comparable to the total memory capacity of many microcomputer 

systems. Note that even if scanning frequency limitations did not exist 
doubling the resolution would increase the display buffer size (and therefore 

cost) four times. Commercial display designers have devised numerous ways 
to reduce this, but all of them involve trading off either display generality or 

programming ease or both. The two most common schemes also attempt to 
combine text display and graphic display functions by adding special graphic 
symbols to the character set of an otherwise normal text display. One method 
divides the character cell into three rows of two squares each and assigns 64 
character codes to cover all of the possible combinations of light and dark 
squares. The resulting graphic resolution ranges from 128 X 48 for 
hobbyist-level 16-line 64-character displays to 160 X 72 for commercial 
24-line 80-character units. This is obviously quite coarse but is at lease 
completely general within the limited resolution. 
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The other method adds various graphic character shapes such as hori- 
zontal, vertical, and diagonal lines and corners, junctions, arcs, etc., to the 

character set. The user can then select line segments from this set and piece 
images together that appear to be of high resolution. While excellent for 
images such as game boards, bar charts, and other highly structured mate- 
rial, the technique is quite limited on arbitrary lines and curves such as 

music-control functions and waveforms. 

Bit-Mapped Display Interfaces 

Thus, for any kind of serious graphics work a true b/t-mapped or pixel 
display is a necessity. The term bit-mapped means that every point on the 
display literally corresponds to a bit in the display memory, whereas pixel 
refers to the fact that individual picture e/ements can be manipulated. 

At the time of writing, two suitable bit-mapped graphics interfaces 
were on the market at prices of $400 or less. One, made by Matrox, comes in 
two versions and produces 256 X 256 resolution on a standard TV monitor. 
One version is self-contained on a printed circuit board and plugs directly 
into an S-100 bus. The other version is in a potted module with universal 
interface that can be connected to the I/O ports of any microcomputer. 
Operation is quite simple. To address a point, one sets 8-bit X and 8-bit Y 
tegisters and then issues either a set bit or clear bit command. A command 
for clearing the screen is also available as a convenience. Incidently, Matrox 
also has units up to 512 * 1024 resolution for the LSI-11 microcomputer 
bur at considerably higher cost (that’s a half-million bits or 64K bytes!). 

Another unit made by Micro Technology Unlimited works with 6502- 
and 6800-based micrcomputers and is termed the “Visible Memory.” This is 
literally true as the device appears to the host as a simple 8K memory 
expansion. The content of the memory, however, is displayed as a 320 wide 
X 200 high dot pattern with the bits on the display corresponding to bits in 
the memory. Addressing an individual bit is somewhat more cumbersome 
than with the Matrox unit, since X and Y coordinates must be translated into 

an equivalent memory address and bit number. A simple “plot point” sub- 
routine, however, can easily solve the problem. One advantage of the device 
besides the under $250 price is the fact that the user has 8K of additional 
memory available when the display is not needed. 

Unfortunately, a pixel display is difficule and space consuming to 
program. Whereas one can simply specify the coordinates of the endpoints of 
a line with a vector display, all of the points in between must be specified 
with the pixel display. This in itself is an interesting problem: define an 
algorithm that illuminates the det set of points possible on a fixed grid 
between two endpoints, also on the grid. In any case, a graphic subroutine 
package is a necessity when using a pixel display. Routines for point plot- 
ting, line drawing, and character generation are all necessary. 
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Editing the Display List 

The real problem with pixel displays, however, lies in the fact that the 
display buffer does not contain data in a format that can be edited in genetal; 
it is just a mass of bits. As was mentioned earlier, a vector display list can be 
organized by objects, making it easy to locate an object, move it, delete it, or 
add a new one without regard to other objeces on the screen. In contrast, the 

data in a pixel display buffer is organized by position in the display field. From 
looking at the data itself it is practically impossible to delineate objects and 
determine their exact size and orientation. 

Direct editing of a pixel list is of necessity very limited. As an example, 

consider a pixel display showing a number of lines in which some of the lines 
may cross. If the user wants co delete a line it would not be difficult for him 
(using human eyes) to recognize the line on the display and supply its 

endpoints to the editing program. The program would then simply trace 
through the line and turn the pixels off, thus erasing it. Adding a new line 
would be simply a matter of specifying it and setting the appropriate pixels 
on. Thus, one would think that moving a line could be accomplished by first 
deleting it and redrawing it elsewhere. A very serious problem occurs, how- 
ever, if the line of interest crosses another because a little gap will be left in 
the second line when the first is deleted. If interactive line movement using 
perhaps a joystick is to be implemented, large portions of the second line 
may be erased as the first moves around. 

The only way to overcome the editing problem in general is to maintain 
two display lists, one in pixel format for the display and the other in vector 
format for editing and saving results. The easiest way to handle the two lists 
is to execute all editing operations on the vector list and then call a routine to 
interpret the vector list and create an updated pixel list whenever anything 
has changed. In many cases, this would call for erasing the pixel list and 
regenerating it completely from the vector lise. In other cases, it may be 
possible to regenerate only a portion of the pixel list, or in the case of 
additions, simply do similar operations to both lists. When editing is com- 
plete, it is the vector list that should be stored. 

Applications of Graphic Displays in Music 

The term “interactive graphics” is commonly used to refer to the 
activities about to be described. Three fundamental subsystems are required 
in an interactive graphics application. First, of course, is the computer and 
graphic display device. Second is the array of input devices used by the 
operator to communicate with the system. Last is the software necessaty to 

tie it all together. In a well-implemented interactive graphics application, 
the user sits with eyes glued to the screen, hands manipulating input devices, 
and mind closing the feedback loop. The effect is as if the image on the 
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screen is an extension of the user’s consciousness. To meet this goal, a highly 

effective human interface, both input devices and software, is required. 

Many of the music input devices described previously are suitable for 
and in fact some were otginally developed for interactive graphics work. A 
joystick, for example, is typically a two-dimensional device, thus mating 
perfectly with a two-dimensional display. When connected to the computer 
through an ADC and suitable programming, one can point to objects or 
literally draw curves on the face of the display. As a practical matter, how- 
ever, it is fairly difficult to control a joystick precisely; thus, intended 
straight lines are crooked and pointing is somewhat of a trial-and-error 
procedure. 

Graphic Input Techniques 

A mouse is a related device that overcomes the awkwardness of a joy- 
stick. Typically, ic is about the size and shape of an orange half and is 
equipped with orthogonal wheels that allow it to roll around easily on a table 
top. The wheels are connected to transducers and provide X and Y outputs. 
Essentially, the position of the mouse corresponds to the joystick’s handle, 
but a much larger movement range allows more precise control. Another 

device called a trackball consists of a smooth ball about the size of a baseball 
sitting nearly frictionless in a stationary socket. The user can roll the ball in 
any direction and thus provide X and Y outputs. Since the range may 
encompass one of more complete revolutions, control is more precise. Its 

major advantage is conservation of table space. 
The graphic digitizer mentioned earlier is the most precise of all. Since 

the pen or stylus is completely frictionless, one may input to the system as 
accurately as drawing on paper can be done. In fact, because of their precision 
and repeatabilicy, a screen outline may be taped to the digitizer surface and 
used as a guide in the interaction process. If real ink is used in the digitizer 
pen, then a permanent record of the input is produced as a by-product. 

It would seem though that the ideal situation would be drawing di- 
tectly on the display screen itself and in fact devices called /ight pens actually 
accomplish this—almost. A light pen consists of a high-speed photocell and 
a lens system that makes its angle of acceptance very small and localized. If 
placed on the surface of the CRT directly above an il/uminated portion of the 
image, a pulsc is generated whenever the beam refreshes that part of the 

image. With che software-refreshed vector display described previously, the 
pulse can be connected to interrupt the CPU while the line “seen” by the pen 
is drawn. With a pixel display, additional hardware is generally necessary to 
determine the X and Y positions of the beam when the pulse occurs. In either 
case, one can easily point to an object on the screen and the program can 
ascertain which object it is or its location. 

Drawing on the screen where nothing currently exists is a little more 
difficult. In practice, a tracking pattern is displayed, which the user can point 
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to and move around. The path. followed by the pattern then becomes the 
drawn line. Vatious types of tracking patterns are used, but the circle type is 

easiest to understand. A circle of dots is displayed that has a diameter slightly 
larger than the acceptance area of the light pen. As long as the pen points to 
the center region, no light is seen and the pattern remains stationary. Pen 
movement in any direction, however, will put one of the dots in sight of the 
pen. The cracking program in the computer will respond by moving the 
entire pattern such that the new pen position is in the center. Besides 

drawing lines, interactive graphics software can provide for “attaching” the 
tracking pattern to an object, which can then be positioned as desired. 

Unfortunately, a vector display or extremely fast computer is just about 
mandatory for this degree of interaction. 

Light pens do have their problems, however. In general, they must be 
carefully tuned to the display used such as by adjusting the focus length to 
match CRT faceplate thickness. For tracking applications, the CRT bright- 
ness needs to be tightly controlled to avoid the effects of light scattering 
within the CRT faceplate and ambient light. Short persistence phosphors are 
necessary for good pulse resolution, although long persistence visible short 
persistence infrared types exist. Obtaining the necessary speed at low light 
levels is a design problem that increases cost. Nevertheless, a properly func- 
tioning light pen is a joy to use and probably the best interactive graphics 
input device available short of mind reading. 

Finally, most interactive graphics setups use a standard typewriter 

keyboard and a special function keyboard. Each function key is set up to 
instruct the interactive program to perform a specific function each time the 
key is pressed. The actual function of a particular key is entirely dependent 
on the particular interactive software in use at the time. For example, six 
keys may be reserved to control the display. One might expand the image 
5% when pressed and a second could shrink it 5%. Four more could move 
the entire display left, right, up, or down. Other often-used interactive 

functions may be assigned to other keys. A function keyboard works just like 
an alphanumeric keyboard but is usually limited to 16 to 32 keys and 
constructed so that the key legends may be easily changed. In fact, legend 
overlay sheets are commonly used and one would typically have a sheet for 
each interactive program available. In sophisticated systems the sheets may 
actually be punched or otherwise coded so that the program can verify that 

the operator has actually inserted the correct one! 

Composition by Editing 

Now that the tools used in interactive graphics have been described, 
let's look at how these can be used to communicate musical and acoustical 
ideas to a computer-based synthesis system. 

First, consider a case in which direct control of several sound parame- 

ters simultaneously is desired. Further assume that the exact shape of the 
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variation contours and their interrelation is critically important in creating 

the desired audible result. To make matters more difficult, the shape of the 
tequired contours is only roughly known. Finally, the rapidity of the varia- 
tions is such that real-time manual control is out of the question. What has 
been described is a perfect example of synthesizing a realistic singing voice, 
although the concepts apply to any complex, rapidly changing sound. 

Composition by editing is best done if one starts with some approxi- 

mation, no matter how coarse, of the desired results. In realistic speech 

synthesis one might start by analyzing natural speech into the parameters of 
interest. Even if the goal is a female siuging voice and the input is a 

gravel-throated male voice, the set of parameter variations that results is close 

enough to the final result so that the necessary editing changes are somewhat 
apparent. One might also use a “speech synthesis by rule” program, which 
accepts a phonetic spelling and produces a first cut at the values needed. 
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Fig. 11-6. Singing voice synthesis patch 
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Again, even though the initial values are crude, a starting point is estab- 
lished from which improvements may be made. 

With an interactive graphics editing system, the task of determining 
magnitude and direction of necessary changes and then actually accomplish- 
ing the changes is considerably simplified. An editing function is distin- 
guished from an input function by the fact that its action depends on what is 
already there. Some editing functions may be reversible. This means that two 
functions with opposite effect are available and that anything done by one can 
be undone by applying the other. Nonreversible functions can only be un- 
done by retrieving a copy of the data made prior to execution of the nonrever- 
sible function. Examples of both types of functions will be given later in this 
discussion. 

Figure 11—G shows the configuration of analog-synthesizing equipment 
used in this example. The application is speech (singing) synthesis, and seven 
independent parameters are to be controlled. Four of these are the center 
frequencies of the four bandpass filters used to simulate the first four for- 
mants of speech. Two more are used to control the amplitude of the voice 
(buzz) and noise (hiss) sources. The last determines the pitch of the voice. It 
is assumed that a multiple-channel DAC has been connected to the computer 
so that the synthesizer modules can be controlled. For an application such as 
this, 50 to 100 updates of the parameters per second should be sufficient. 

While experts in the field might argue the completeness of this model 
for producing a convincing singing voice, it is the author's belief that precise 

control of the parameters available is often more important than the number 

of parameters being controlled. The purpose here is to understand how 
interactive graphics can be utilized to quickly determine how these seven 
parameters should be varied to obtain the desired result. Further details 
concerning speech synthesis theory and practice are abundantly available in 

the references. 
Figure 11—7 shows what a graphic display representation of a portion of 

these seven control functions might look like. The horizontal axis is time and 
the vertical axes depend on the particular curve. With all seven functions 
shown at once, it is easy to see the relationships that exist among the 

functions. When more detail is required, such as when actually editing one 
of the curves, a command or function key would be available to suppress 
display of all but one or two of the curves. 

Also shown is a cursor that can be used to designate a specific point in 
time on the functions. The cursor can be easily moved back and forth to find 
the area of interest. Any of the input devices mentioned earlier could be used 

to move the cursor, even the function keyboard. To aid the user in finding 
the audible area of interest, the program could be set up to actually send the 
corresponding data to the synthesizer as the cursor is moved. 

Each of the seven parameter values, of course, has some kind of physical 
units, such as hertz for the formant and pitch frequencies. While the exact 
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Fig. 11-7. Typical display of portion of speech synthesis sequence 

value of a parameter may not be as important as its relationship to other 

parameters, it is often necessary to know the value more precisely than the 
display shows it. Accordingly, the values of each parameter at the current 
cursor position is displayed at the bottom of the screen. 

For critically comparing two parameters, it ts useful to be able to plot 
one against another as is done in the bottom right corner. Commands, of 
course, would be available to select the parameters being compared. The 
curve shown represents the time interval spanning the screen and the empha- 

sized point represents the current cursor position. One ching the curve does 
not show is the time scale, but the user can get a good feel for it by moving 
the cursor and noting the corresponding movement of the emphasized point. 
It is even possible to have editing functions that operate on this curve (often 
called a trajectory) directly. 

Editing Functions 

Now, how might these curves be edited? Simple sample-by-sample 
alteration of a curve should be available but would certainly not be very 
productive. Let’s first look at the kinds of curve editing that might be 

needed and then define editing functions that would make the task easier for 
the user. For example, the user might decide that a certain segment of the 
sequence moves too fast. A corresponding editing function should therefore 
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Fig. 11-8. Interpolation window 

allow the user to point out the time interval to be changed with the graphic 
cursor and then stretch it by 10%. At this point, the sequence can be played 
for evaluation. This can be made a reversible function by including a corre- 
sponding shrink by 10% command. The user can experiment until satisfied 
chat any remaining imperfections in the sound sequence are due to other 
causes. 

Other operations could be defined that act on only one curve. For 
example, the amplitude of the white noise may need to be generally increased 
in a certain area. Again the interval could be pointed out and a command to 
taise all hiss amplitudes in the region by | dB might be invoked. A com- 
plementary decrease by 1-dB function makes this a reversible function. A 

copy function might be imagined whereby the contour of one curve could be 
copied to another curve over a specified interval. Contours could also be 
swapped or even called up from a library of contours that had been success- 
fully used earlier. Note that these are nonreversible functions. The editing 
software should have provisions for saving the status of things before a 
nonreversible function is performed. 

At this point, a potential problem ts seen. These editing changes can 
result in a discontinuity at the boundary between edited and unedited por- 
tions of the curves. What is needed is a method of znterpolation so that the 
boundary transitions are smooth. Figure 11-8 should be helpful in visualiz- 
ing how such interpolation might be done. A key concept is the idea of an 
interpolation window. An interpolation window is itself a curve that varies 
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Fig. 11-9. Interpolation between two different curves 

between 0% and 100%. In use, it is applied to two curves; the original 
unedited curve and the edited but not interpolated curve. The result is a 
third, interpolated curve that actually consists of a weighted sum of the first 
two curves. In effect, the interpolation window specifies how to weight the 
sum, At the 0% points, the result is equal to the unedited curve. At the 50% 
points, the result lies midway between unedited and edited curves. At the 
100% point, it is all edited curve. As can be seen, interpolation considerably 

smooths the transition between unedited and edited segments. 
In use, no single interpolation window shape is ideal for all situations. 

One variable is the width of the transition interval relative to the edit 
interval. Another is the shape of the transition interval itself. Although the 
window is continuous at the beginning and end of the transition interval, its 
slope is not. A smooth fillet at these points might be more desirable for many 
applications. 

The concept of interpolation and variable interpolation windows can be 
useful for other functions as well. For example, rather than interpolating 
unedited and edited curves, one might want to interpolate between two 
completely different curves. Figure 11-9 shows how two curves, A and B, 

are combined using an interpolation curve. The result starts out the same as 
A but then gradually acquires an increasing proportion of B’s characteristics. 
Eventually, it is all B. Like the interpolation windows, various shapes and 
durations for the interpolation curve are possible. 

Another possibility is interpolation between a varying curve and a 
constant. The effect is a “pulling” of the varying curve toward the constant 
and a reduction in the degree of variation. From these examples, it should be 
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Fig. 11-10. Typical display of portion of rhythm sequence 

obvious that interpolation is a very powerful technique not only for editing 
but for building up control functions from nothing. 

Noncontinuous Curves 

Not all synthesis control functions are continuous curves; some are 

discrete on—off functions. A good example would be rhythm instruments. 
Some of these, such as drums, have no “duration” per se, so the only variable 

to represent on the screen is discrete points in time. Others may have a 

controllable duration, so initiation and conclusion points are needed. Figure 
11-10 shows how a complex rhythm might be represented on a graphic 
display screen. Each line of symbols represents a different percussion instru- 
ment. For those with initiation points only, a simple point is plotted when 

the sound starts. For those with duration, a line connecting initiation and 

conclusion points is drawn. In the general case, percussion sounds are com- 
bined with notes of a definite pitch, which themselves have a duration and 
can be represented by lines as well but with an identifier, perhaps a small 
letter or number over the line, to specify the note’s pitch, amplitude, or 
other information. Parameter curves for complex sounds could be mixed in as 

well. 
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Editing functions for on—off controls are much simpler than for parame- 
ter curves, since time is the only significant variable. Essentially, all that can 
be done is to move initiation and conclusion points forward and back, delete 
events, and add events. In the case of identified events, the identification can 

be changed. It would also be desirable to be able to reassign a string of events 
to a different instrument. 

Note that all of this is starting to approach a method of computer music 
notation but with a heavy graphic orientation. Actually, standard music 
notation is somewhat graphic, at least in the representation of note pitches 
and to some extent nore sequencing, but beyond that it is strictly symbolic. 

A system could certainly be set up to conveniently enter and edit music 
notation using a graphic display, but its usefulness would be limited primar- 
ily to conventional music and ordinary musical sounds. For the more imag- 
inative works that a computer music system allows, specialized notation 
methods optimized for ease in manipulation, not ease of writing, should be 
used. Manipulation is important because, with a graphic editor, it is far 
easier to modify a faulty score than to rewrite it. 



SECTION UI 

Digital Synthesis 
and 

Sound Modification 

In the previous section, the application of microcomputers to the control of 
external synthesis equipment was examined in detail. In the remaining chap- 
ters, we will discuss methods of having digital logic or the computer itself 
merely simudate such equipment. As was mentioned briefly in Chapter 4, this 
is by far the most powerful synthesis technique known because amy computer 
can simulate gy quantity of conventional or special-purpose synthesis 

equipment. Although the full benefit of such flexibility usually requires 
operation outside of real time, the concepts are useful in designing real-time 
digital synthesis systems as well 



12 

Digital-to-Analog 
and Analog-to-Digital 

Conversion of Audio 

One of the most important components of a digital sound synthesis system is 
the DAC used to convert digital data into an analog audio signal. Converse- 
ly, sound modification by digital methods requires an ADC of high quality. 
Unfortunately, one cannot simply buy a DAC or ADC module from a conver- 
ter company, interface it to a computer or other digital device, connect it to 
an audio system, and expect good results. Although the modules do indeed 
convert between analog and digital domains, additional hardware and signal 
processing is necessary before they can handle audio well. Since synthesis is of 
greatest interest here, this discussion will be concerned primarily with 
digital-to-analog conversion of audio signals. 

In Chapter 4, it was learned that ar least in theory the audio quality 
possible with a DAC is dependent on only two factors. The sample rate, which 
is the speed at which numbers are fed co the DAC, determines the upper 
frequency response limit of che system, while the reso/wtion, which is related 
to the number of possible output voltage steps, determines the signal-to- 
noise ratio. Unfortunately, however, there are other sources of error that tend 
to degrade the signal-to-noise ratio. In Chapter 7, it was noted that when the 
digital input toa DAC is changed the output may not move smoothly to the 

the new value. Instead, it can glitch momentarily to a voltage far removed 

from either the previous or the new voltage. Such glitching produces distor- 
tion that may be severe. Even if glitching was absent, the DAC’s output 
amplifier will contribute to distortion if it ever séews between voltage levels. 
Inexpensive, slow amplifiers can generate a large ammount of high-frequency 
distortion this way. 

Figure 12-1 shows what a practical, high-performance audio DAC 
system would consist of. First, a rock-steady sample rate is essential, since 
any variation increases noise and distortion. For exarnple, even a 10-nsec 
random jitter in the sample-co-sample time can create a noise floor just 66 dB 
below the signal level at a 50-kHz sample rate. This in effect negates the 
benefit of using DACs with more than 11 bits of resolution. Generally, a 
fixed-frequency crystal oscillator driving a programmable (or fixed) modulus 

343 
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Fig. 12-1 High-quality audio DAC system 

counter is used for the time base. Such a setup can be expected to exhibit a 
jitter of less than 1 nsec if the oscillator is shielded from electrical noise. 
Also, the higher crystal frequencies such as 10 MHz tend to reduce jitter 
even further. 

Because of the stabiliry requirement, connecting the DAC directly to 
an output port and then using the computer's interrupt system to time the 

samples is unsuitable for anything other than initial experimentation. The 

same applies to the direct memory access facility of most computers. Instead, 
a first-in, first-out buffer is inserted between the computer and the DAC. 
With the buffer, sample pulses from the time base cause an immediate (or 
with constant delay) transfer of data to the DAC while the computer has 
additional time to provide the next sample to the buffer. Often only one 
stage of buffering, which makes it a simple register, is sufficient. In other 
cases, FIFO IC chips containing 40 or so stages can bridge gaps in the data 
flow up to nearly a millisecond at 50 kHz. In fact, the computer itself will 
typically be acting as a large FIFO if the data is coming from a mass storage 
device. 

Ocher elements in the chain are the high-resolution DAC, low-pass 
fileer, and combination deglitcher/antislew device. Each of these will be 

described in detail in the following sections. 

Increasing Dynamic Range 

The most difficult and hence most expensive requirement of a high- 
fidelty audio DAC is the high-resolution DAC module. Earlier it was shown 
that the maximum signal-to-noise ratio that can be expected from an N bit 
DAC is 6N dB. Note the importance of the word maximum. This refers to the 

ideal condition in which the signal exactly fills the full-scale range of the 
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DAC. A signal level higher than this will inctease distortion (which is the 
same as noise if the signal is a complex waveform) due to clipping, while a 
lower-level signal will reduce the S/N ratio because the noise level is inde- 
pendent of the signal level. The graph in Fig. 12-2 shows this effect. Also 
shown is the S/N ratio characteristic of a typical professional audio tape 
recorder rated at 60 dB S/N. Note that these curves represent unweighted, 
wideband signal/noise + distortion) and do not take into account the fact 

that the tape recorder’s mostly high-frequency noise may be less audible than 
the white noise typical of DACs. 

The most obvious feature of the graph is the very sudden onset of 

overload (clipping) distortion in the DAC curves. The tape recorder, on the 
other hand, has a more gradual overload characteristic. At the 40-dB point, 
which represents 1% overload distortion (the minimum amount audible to 
most people), the tape recorder is handling about 10 dB more signal than a 
10-bit DAC can. This is called “headroom” and is valuable for handling 
momentary peaks and overloads without excessive distortion. For the 10-bit 
DAC to have the same amount of headroom, the average signal it handles 
must be reduced by 10 dB. Thus, a 12-bit DAC would probably be needed 
to equal the tape recorder’s noise performance with any real signal containing 
momentary peaks. 

In the following discussion, it is assumed that 16-bit sample words are 
available from the synthesis process. This level of precision fits the word size 
of 8- and 16-bit computers and is generally regarded as the ultimate in an 
audio DAC system. However, the discussion applies equally well to other 

sample sizes both more and less than 16 bits. 

Brute Force 

It is clear from the foregoing that a high-resolution DAC will be 

needed in a high-fidelity DAC system. Even with a 12-bit DAC and 10 dB of 
headroom, signal levels must be carefully monitored to maintain an overall 
high S/N while at the same time avoiding overload. The additional dynamic 
range afforded by 14- and 16-bit DACs not only improves the sound (in live 
performance anyway) but reduces the effort required to control signal levels. 

Whereas a suitable 12-bit DAC module can be purchased for about 
$30, additional resoluuion comes at a high price. Fourteen bits, for example, 

command $150 or more while 16 bits go for about $300. These prices are for 
units with guaranteed monotonicity and linearity errors of less than one-half 
of the least significant bit over a reasonably wide temperature range. 

The price also pays for a super precise and stable reference voltage 
source so that the full-scale accuracy is comparable to the linearity. In audio 
work, full-scale accuracy is of little concern, since its only effect is a shift in 

signal amplitude. For example, a 1% shift in reference voltage, which would 

be intolerable in normal applications of these DACs, would amount to only a 
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Fig. 12-2. Noise performance of several DACs and a professional tape re- 
corder 

0.08-dB shift in level. Perhaps someday lower costing DAC modules with- 
our such stable references will be designed for audio applications. 

Another potential complication is that the manufacturers of these units 
recommend periodic (monthly) “recalibration” in order to continuously meet 
their specifications. This should not be surprising, since one-half of the least 
significant bit on a 16-bitter is a mere 0.0008% or 8 parts per million. Any 
ordinary resistor or zener diode would drift that much from the heat of a 
cigarette 3 feet away! Even the precision, low-drift components used in these 
DACs can experience a small but permanent shift if exposed to extremes in 
temperature. 

Fortunately, though, nearly all of the long-term drift is due to the 
zener reference source having no audible effect. Amplifier offset shifts may 
also contribute but again there is no audible effect. The ladder resistors that 
determine the linearity and therefore the noise level are matched and nor- 
mally drife together. Thus, a yearly check is probably all that is required if 
temperature extremes are avoided. 

In the final analysis, if one wants better than 12-bit performance and a 

minimum of trouble, and an extra couple of hundred dollars is not really 

significant, then a true 14- or 16-bit DAC is probably the best choice. Note 
also that this is the only way to attain the noise performance suggested by the 
curves in Fig. 12-2 without compromise. The cost-cutting techniques that 
will be studied next all sacrifice something in order to avoid using a crue 
high-resolution DAC. 
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Sign-Magnitude Coding 

Looking again at the curves in Fig. 12-2, it is seen that the maximum 
S/N ratio of 96 dB for a 16-bit DAC occurs right at the point of overload. In 
a real listening situation, this would correspond to the peak of the loudest 
crescendo in the piece. At the ear-shattering volume chis might represent, 

one is highly unlikely to notice a noise level scarcely louder than a heartbeat. 
On the other hand, during extremely quiet passages when the noise would be 
noticed most, the noise level remains unchanged meaning that the S/N ratio 
has degraded. 

It would be nice if some of the excess S/N at high signal levels could be 
traded off for a cheaper DAC without affecting or even improving the S/N at 
lower signal levels. This, in fact, is possible and can be accomplished in at 
least three different ways. 

Although not specifically mentioned previously, an audio DAC must 
be connected so that both positive and negative voltages can be produced. 
Normally, this is accomplished by offset binary coding and shifting the 
normally unipolar DAC output down by exactly one-half of full scale. In 
audio applications, a de blocking capacitor is sufficient for the level shifting. 

Low signal levels imply that the zet DAC output hovers around zero. 

An offset binary DAC, however, sces this as one-half scale. In Chapter 7, it 

was determined that the most significant bit of the DAC had the greatest 
accuracy requirement; therefore, it is logical to assume that the greatest 
linearity error would occur when the MSB switches. Unfortunately, this 

occurs at half scale also so this kind of DAC imperfection would directly 
subtract from the S/N ratio at /ow signal levels as well as high. Thus, with 
offset binary coding, one must use a highly linear DAC. 

The sign-magnitude method of obtaining a bipolar DAC output does 
not suffer from this problem. Using the basic circuit configuration that was 
shown in Fig. 7-14, small signal levels will only exercise the lesser signifi- 
cant DAC bits, thus eliminating the noise caused by errors in the most 
significant bits. As a side effect, the sign-bit amplifier provides the equiva- 
lent of one additional bit of resolution making a 16-bit DAC act like a 
17-bitter! 

The significance of all this is that inexpensive DACs with 16 bits of 
resolution but only 13 or so bits of dinearity are available. When linearity is 
less than resolution it means that the mosc significant bits are off enough to 
raake the DAC nonlinear at the points where the affected bits change. A 
16-bit DAC with 13-bit linearity could have nearly an eight-step gap or 
backtrack right at 1/2 scale, lesser errors at 1/4 and 3/4 scale, and an even 

smaller error at 1/8, 3/8, 5/8, and 7/8 scale. If connected in an offset binary 

circuit, it would perform no better than a 13-bit DAC. But when connected 
in a sign-magnitude circuit, we have just the tradeoff that we have been 
looking for as the curve in Fig. 12-3 shows. 
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Fig, 12-3. Performance of degraded linearity sign-magnitude DAC 

At low levels, the signal has insufficient amplitude to even reach the 
nonlinearities at 1/8 scale. Thus, at these levels the S/N ratio is what would 

be expected from a true 16-bit DAC. At higher levels, the little glitches at 
1/8, V/A, etc., tend to raise the noise level to what a 13-bit DAC would 
provide. But since the sound is so loud at this point anyway the increased 
noise will be totally inaudible. In effect, the shaded area is what is given up 
when a $100 pseudo-16-bit DAC is substituted for the $300 true 16-bit 

unit. 

In using the sign-magnitude circuit, it is mandatory that the two 
resistors be accurately matched. If they are not, an unpleasant even order 
harmonic distortion is generated. The two analog switches required to switch 

between normal and inverted DAC output are not much of a problem, since 
one of them would be used anyway in the deglitcher to be described. 

Some logic is required to convert normal twos-complement integers to 
sign-magnitude integers. This consists of a set of N-1 exclusive-or gates 
inserted in series with the 15 low order bits to the DAC. When the input is 
negative, the gates invert the twos-complement negative number back into a 
positive magnitude. The DAC output should be offset by +1/2 the step size 
to retain a distinction between 0 and —1, which is translated to —0O. 

Note that this method could be extended to additional bits, since the 

most significant bits no longer must be precisely calibrated. As a practical 
matter, though, personal computers are unlikely to have words longer than 
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16 bits for quite some time, and the difference would probably be inaudible 
anyway. 

Floating-Point DACs 

A method commonly used in analog audio equipment to improve 
apparent S/N ratio is to “ride che gain.” Strong signals are made stronger by 
increasing the gain, while weak signals are made even weaker by reducing 
the gain. Since the noise is most audible at low signal levels, the act of 

reducing the gain also reduces the noise and so improves the $/N ratio. The 
main problem encountered in this scheme is knowing when and how much to 
change the gain setting. 

In an audio DAC application, it should be possible to apply the same 
concept to a 12-bit DAC to improve its S/N ratio at low signal levels. 
Consider the setup in Fig. 12-4. Twelve-bit samples operate the 12-bit DAC 
in the normal way. However, three additional bits control a variable-gain 

amplifier, which the DAC drives. Low signal levels are created by pro- 
gramming the amplifier for a low gain rather than reducing the digital 
sample values going to the DAC. Thus, the DAC’s noise is also reduced and 
the resulting S/N ratio tends to be constant at low signal levels. 

Let us assume for a moment that the programmable gain amplifier has 

eight possible gain settings, each a factor of two apart. Thus, gains of 1.0, 
0.5, 0.25,. . . , 0.0078 are possible. The corresponding S/N ratio graph for 
the system is shown in Fig. 12-5. The maximum S/N ratio is no more than 
that of an ordinary 12-bit DAC, but at low signal levels it is actually better 
than a true 16-bit unit! Furthermore, only 15 bits are used for the samples. 
Note that these are theoretical figures, since retaining a noise level 115 dB 
below the overload point in subsequent circuitry is quite a feat indeed. 

Since the gain data are carried along with the signal data in each 

sample, there is no problem in handling transients as there is in an analog 
audio system. The data format is actually very much like the floating point 
number format in computer arithmetic. The 12 bits going to the DAC are 
the “fraction” part, while the 3 bits going to the gain control circuit are the 
“exponent.” The base of 2 is set by the design of the gain control circuit. 

A floating-point DAC can also be viewed as having a variable step size. 
In the region close to zero, the step size is quite small, which minimizes 
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Fig. 12-5. Floating-point DAC performance 

quantization noise. As the signal level increases, the step size becomes twice 
as large, four times, etc., until at levels near overload the steps are 128 times 

larger than at low levels. Of course, every time the step size is doubled the 
quantization noise increases by 6 dB, but the signal has also increased by 6 
dB; thus, the S/N ratio is nearly constant. 

One problem in using this setup is that the sample data must be 
converted from their typical 16-bit signed integer format into the floating 
point format, which can be time consuming. A relatively simple hardware 
translator, however, can be placed between the computer and the DAC to 
accomplish this on the fly. Essentially, the translator must determine which 
of several “ranges” each sample lies in. The range determination then con- 
trols the amplifier and a parallel shifter, which insures that the most signifi- 
cant 12 bits in the particular sample are sent to the DAC. Operation would 
be as follows: 

Digital sample values Bits to DAC Gain selection 

0000—07FF O-11 0.0625 

0800—OFFF 1-12 0.125 

1000-1 FFF 2-13 0.25 
200083FFF 3-14 0.5 
4000—7 FFE 4-15 1.0 
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A similar table can be constructed for negative sample values. Note 
that the lowest gain used is 0.0625. If the input samples are normal 16-bit 
integers, it is not possible to get the extra dynamic range that floating-point 
format allows. 

Aside from the parallel shifter, constructing a floating-point DAC is 
fairly simple. For the DAC part, one would use a standard 12-bit DAC 

module set up for offset binary coding with an inverter in the most signifi- 
cant bit to make it twos complement. The gain-controlled amplifier must be 
accurate, at least to the 0.012% level to retain 12-bit performance. If the 

gains are not accurate, there can be a nonlinearity at points where the gain 

switches such as in Fig. 12-6. Simple analog switches with precision gain- 
setting resistors can be used for the amplifier. A multiplying DAC could also 
be used if it can accept a bipolar reference. The main DAC output would be 
connected to the reference input of the multiplying DAC. The 3-bit “‘expo- 
nent’ would be sent to a 1-of-8 decoder whose outputs would be connected 
to the most significant 8 bits of the MDAC. The MDAC output then 
becomes the final system output. 

Exponential DACs 

Just as exponential control voltages in analog synthesizers allow accu- 
rate, noise-free representation of parameters having a wide range, exponential 
DACs, which are also called companding DACs, can increase audio dynamic 
range with a limited number of sample bits. For use with audio signals, which 

are inherently linear, one would first take the logarithm of the sample value. 
When fed to an exponential DAC, the output becomes a linear function 
again. One could also view an exponential DAC as having a continuously 

increasing step size as the output voltage increases. Thus, the step size is a 
constant percentage of the oxtput voltage rather than just a constant voltage. 

QUTPUT VOLTAGE 

Yo 
DIGITAL INPUT 

Fig. 12-6. Effect of gain accuracy 
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Exponential DACs are ideal for absolutely minimizing the number of 
bits in each sample without unduly sacrificing dynamic range. An 8-bit 
scheme used extensively in long-distance telephone circuits, for example, 
maintains a nearly constant S/N ratio of 35 dB over a 35-dB signal level 
range, a feat that would otherwise require a 12-bir DAC. 

Actually, a floating-point DAC is the first step toward an exponential 
DAC. Their drawback is the 6-dB ripple in S/N ratio that is apparent in Fig. 
12-5. A true exponential DAC would have no ripple in the S/N curve at all. 

One possibility for an exponential DAC circuit was shown in Fig. 7-7. 
For use as a DAC rather than an attenuator, one would simply apply a 

constant de input voltage. A nice property of this circuit is that dynamic 
range and maximum S/N ratio can be independently adjusted. Each added 
bit on the left dowbles the dynamic range measured in decibels. Each added bit 
on the right increases the S/N ratio by about 6 dB. Note, however, that there 

is no escaping resistor accuracy requirements; they still must be as accurate as 
a conventional DAC with an equivalent S/N rating. One problem with the 
circuit is the large number of amplifiers required, one per bit. Besides the 
possible accumulation of offset errors and amplifier noise, such a cascade 
tends to have a long settling time. 

Another approach to the construction of an exponential DAC is essen- 

tially an extension of the floating-point approach using a smaller conven- 
tional DAC and greater-resolution gain-controlled amplifier. Rather than the 
base being 2.0, it could be V2. The gains available would therefore be 1.0, 

0.707, 0.5, 0.353, 0.25, etc. The S/N ripple then would be about 3 dB. 

Smaller bases such as #2 or 8/2 would cut the ripple to 1.5 dB and 0.75 
dB, respectively. What this actually amounts to is a piecewise linear approx- 
imation of a true exponential curve. 

Which Is Best? 

The logical question, then, is: Which technique is best for high- 
fidelity audio? Using a true 16-bit DAC is unmatched for convenience and 
does the best job possible on 16-bit sample data. It is expensive, however, 
and may require maintenance. Actually, the other techniques were developed 
years ago when a true 16-bit DAC was considered an “impossible dream.” 

Next in convenience is the use of a pseudo-16-bit DAC and sign- 
magnitude coding. In exchange for the minor problem of designing a suit- 
able sign-bit amplifier, one can save a couple of hundred dollars and achieve 
performance audibly identical to a true 16-bit DAC. 

Floating-point and exponential DACs have the lowest potential cost for 
a wide-dynamic-range audio DAC. They are also suitable for expansion 
beyond the dynamic range of a true 16-bit unit if other audio components 
can be improved enough to make it worthwhile. However, the gain- 
controlled amplifier settling time and overall coding complexity make it a 
difficult technique to implement with discrete logic. 
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Thus, the sign-magnitude coding method is probably preferred, at 
least for use by individual experimenters. 

Reducing Distortion 

As was mentioned earlier, glitching of the DAC can contribute to 

distortion that is unrelated to the resolution of the DAC itself. Actually, 

there would be no problem if the glitch magnitude and polarity were inde- 
pendent of the DAC output. Unfortunately, however, the glitch magnitude 
depends heavily on both the individual DAC steps involved and their combi- 

nation. Typically, the largest glitch is experienced when the most significant 
bit of the DAC changes during the transition. Proportionally smaller glitches 
are associated with the lesser significant bits because, after all, their influence 

on the output is less. 

If the DAC is offset binary encoded, the largest glitch, therefore, occurs 
right at zero crossing. Unfortunately, even low-amplitude signals are going 
to cross zero so the distortion due to glitching can become absolutely intoler- 
able at low signal levels. The distortion also becomes worse at higher fre- 
quencies, since more glitch energy per unit time (power) is being released. 

Sign-magnitude coding can have the same problem because of switching 
transients from the sign-bit amplifier. Floating-point DACs, however, at- 
tenuate the zero-crossing glitch along with the signal at low levels. 

Glitch magnitude and duration are not often specified on a DAC data 

sheet. When they are, the units are very likely to be volt-seconds because of 
the unpredictable nature of DAC glitches. Unfortunately, this alone is insuf- 
ficient information to even estimate the distortion that might be produced in 
an audio application. What is needed is the rms voltage of the glitch and its 
duration so that the energy content can be determined. 

Low-Glitch DAC Circuits 

The two primary causes of glitching in DAC circuits are differences in 
the switching time of the various bits (skew) and differences between the bit 
turn-on and turn-off times. In some DAC circuits, the most significant bit 
switches carry considerably more current than the least significant bits, thus 
contributing to differences in switching times. Some R-2R designs, how- 
ever, pass the same current through all of the bit switches, thus eliminating 

this cause of skew. Even the digital input register can contribute to skew, 
since it will undoubtedly span two or more iCs that may have different 
propagation times. The use of high-speed Schottky registers, which are 
verified to have equal delay times, will minimize this source of skew. Any 
sign-magnitude or floating-point translation logic should be in front of the 

input register as well. 
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Nonsymmetrical turn-on/turn-off time is an accepted fact of life among 
TIL logic designers. The reason is storage time in the saturated bipolar 
transistor switches, which also applies to many DAC analog switch designs. 
The digital input registers often accentuate the problem for the same reason. 
There are, however, low-glitch DACs on the market that use emitter- 

coupled logic internally for the register and nonsaturating current steering 
analog switches. 

Typically, these are only available in 12-bit versions, since they are 
designed primarily for CRT deflection circuits. One type that is available has 
a maximum glitch amplitude of 40 mV, a duration of 60 nsec, and a 

full-scale output of +5 V. With a 1-kHz full amplitude output, the glitch 
distortion would be about—78 dB with respect to the signal, about 6 dB 
below its 12-bit quantization noise. At 10 kHz, however, the glitch distor- 
tion rises by 10 dB, making it the dominant noise source. 

Sample-and-Hold Deglitcher 

The usual solution to DAC glitching at the sample rates used in audio 
applications is the incorporation of a sample-and-hold module at the output 

of the DAC. In operation, it would be switched to the hold state just prior to 
loading the next sample into the DAC and would not be switched back into 
the track mode until the DAC has settled at the new level. In this way, 
glitches from the DAC are not allowed to reach the output. 

As a practical matter, however, even SAH modules glitch when 

switched from one state to another. This is alright, however, #f the mag- 

nitude and polarity of the glitches are constant and independent of the signal 
level. In that case, the glitches contain energy only at the sample rate and its 
harmonics, which will eventually be filtered out. Most commercial SAH 

modules are fairly good in this respect. A linear variation of glitch magnitude 
with the signal level can also be acceptable, since the only effect then would 
be a slight shift in the de level of the output. 

Another SAH parameter that must be constant for low distortion is the 
switching time from hold to sample mode. If this varies nonlinearly with 
signal voltage level, then harmonic distortion is produced. Unfortunately, 
the switching time of most analog switches is signal voltage dependent. The 
reason is that they cannot turn on (or off) until the switch driver voltage 
crosses the switch threshold voltage which, as was discussed in Chapter 7, is 
relative to the signal voltage. Since the driver voltage does not have a zero 
tise time, the time to cross the threshold voltage will vary with the signal 
level. A linear variation would be alright, but a perfectly linear drive voltage 
ramp is unlikely. However, if the drive voltage is of sufficiently large 
amplitude and centered with respect to the signal, reasonably linear variation 
can be obtained. 
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Slew-Limiting Distortion 

There still exists a subtle yet quite significant distortion mechanism in 
the typical SAH module that is unrelated to glitching or switching time 

Fig. 12-7. Typicat feedback SAH circuit 

variation. The mechanism is slew limiting of the amplifiers in the SAH 
module when switching from hold mode to sample mode. Figure 12—7 shows 
a typical SAH module. When the sampling switch is closed, the circuit acts 
as a simple voltage follower. When open, A2 buffers the capacitor voltage 
and produces the output voltage. The effective offset voltage is dependent 
only on the characteristics of Al. This is normally important, since A2 is 

optimized for low-bias current and typically has a high offset voltage (A2 
could even be a simple FET source follower, which, in fact, is often done). 

The problem occurs when the input voltage changes while the circuit is 
in hold mode. When this occurs, Al goes into saturation, since its feedback 

is from the previous input voltage. When S recloses, the capacitor is charged 

at a nearly constant rate from the saturated output of Al through the switch 

resistance until its voltage essentially matches the new input voltage. At this 

point, Al comes out of saturation and the output settles. 

Figure 12-8 shows how linear charging of the hold capacitor contrib- 
utes to distortion. For a one-unit change from one sample to the next, the 
shaded error is one-half square unit. But for a two-unit change, the error is 
two square units. Thus, the error is proportional to the square of the dif- 
ference between successive samples. It’s not difficult to see how this can 
generate a great deal of distortion, especially since slew times can easily reach 

20% of the sample interval with this type of circuit. 

If the step response is a normal inverse exponential instead of a linear 

ramp, the error is directly proportional to the step size. This situation does 
not cause any distortion, although it can affect the apparent overall signal 
amplitude from the DAC when the steps are large (high signal frequency). 

Figure 12-9 shows a simple SAH that can be designed not to slew 
under any circumstances. If che values of R and C are properly chosen, then 
the voltage change across C will never exceed (or even approach) the slew rate 
of the amplifier. For example, if the DAC produces + 10 V and the R-C 

time constant is 1.0 psec, then the maximum rate of change of capacitor 

voltage (for a step of-10 V to +10 V or vice versa) would be 20 V/sec. 
A standard high-speed op-amp such as an LM318, which is rated at 50 
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Fig. 12-8. Mechanism of slew-limiting distortion 

Vipsec, would do nicely. One must be careful to limit the peak current 
through the analog switch to a value less chan its saturation current or a 
secondary slewing effect may be introduced. The offset cancellation and low 
drift of the previous SAH circuit are simply not needed in audio applications 
where dc cannot be heard and maximum hold times are around 10 psec. 

Track-and-Ground Circuit 

Another type of deglitcher that is suitable for audio DACs is called a 

track-and-ground circuit. Essentially, it uses one or possibly two analog 
switches co disconnect from the DAC and ground the filter input during the 

period that the DAC is glitching. In doing so, problems with SAH slewing, 
hold capacitor nonlinearity, and even part of the switching transient are 

neatly bypassed. 
Figure 12—10 shows a simplified schematic of a two-switch track-and- 

ground circuit integrated with a sign-bit switch for a sign-magnitude DAC. 
The A and B switches select between straight DAC output and inverted DAC 
output according to the desired polarity. However, both are open while the 
DAC is settling at a new voltage level. Switch C grounds the filter input 
during the turn-off transient of A or B, the DAC settling time, and the 
turnon of A or B. Although the grounding is not perfect due to on resistance 
of C, it substantially attenuates feedthrough of DAC glitches and transients 
from A and B. The only transient seen by the filter is from switch C itself and 
most of that is shunted to ground. Finally, since there are no amplifiers in 

the switching signal path, there is nothing to slew. 
There does appear to be a drawback with the circuit, however. Rather 

than getting a stairstep approximation of the audio waveform, the filter gets 
pulses of constant width and variable height. Actually, the mathematics of 
sampled waveform reconstruction are derived on the assumption that the 
samples entering the filter are of zero width and varying but infinite height. 
Fortunately, the only effect of finite width pulses is a slight reduction in the 
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Fig. 12-9. Simple nonslewing SAH 

amplitude of high-frequency reconstructed waves, or simply a loss of treble. 
A pure stairstep approximation such as from an ideal DAC or SAH deglitcher 
is actually a train of pulses with width equal to the sample period. 

The graph in Fig. 12-11 shows that even this is a relatively minor 

effect. The stairstep approximation is down nearly 4 dB at the Nyquist 
frequency but only about 1.32 dB down at 60% of the Nyquist frequency, 
which represents a 15-kHz signal at a 50-kHz sample rate. With pulses half 
as long as the sample period, a reasonable value for the previous track-and- 
ground circuit, the corresponding figures are 0.912 dB and 0.323 dB. In any 
case, the high-frequency droop can be compensated for in the low-pass filter. 
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Fig. 12-10. Track-and-ground circuit 
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Low-Pass Filter 

The final component of the audio DAC system is the low-pass filter, 

which removes the sampling frequency and unwanted copies of the signal 

spectrum. Not all audio DAC/ADC applications require the same degree of 

filter sophistication, however. A DAC application at a 50-kHz sample rate, 
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Fig. 12-11. Effect of finite DAC pulse width on high-frequency amplitude 

for example, really needs a filter only to avoid burning out tweeters and 
interfering with the bias frequency of tape recorders. The ear itself is quite 
capable of filtering everything above 25 kHz. DAC applications at substan- 
tially lower sample rates need a reasonably good filter because the alias 
frequencies are audible. A sample rate of 15 kHz, which would give good 
AM radio quality, would produce quite a harsh sound if frequencies above 
7.5 kHz were not attenuated at Jeast 30 dB to 40 dB. Audio-to-digital 

conversion at low to medium (10 kHz to 30 kHz) sample rates requires the 
best filters’ because high-frequency program content, which usually cannot be 
controlled, may transform into quite audible lower frequencies upon digitiz- 
ing. 

Low-Pass Filter Model 

Figure 12-12 shows a model low-pass filter shape that all real low-pass 
fileers resemble to some extent. The passband is the set of frequencies that 
the filter passes with little or no atrenuation and extends from dc to the cutoff 
frequency. The stopband extends from the cutoff frequency to infinity and is 
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the set of frequencies that the filter attenuates substantially. The cutoff slope 
is a measure of how shatply the filter distinguishes between passband and 
stopband regions. An ideal low-pass filter would exhibit a perfectly flat 
passband, an infinite cutoff slope, and complete signal attenuation in the 
stopband. 

Cutoff frequency is not always a consistently defined term. For simple 
filters, it is usually given as the frequency at which the signal is attenuated 

(a8) 

OUTPUT 

CUTOFF FREQUENCY 

PASSBAND STOPBAND 

FREQUENCY LOG SCALE 

Fig. 12-12. Model low-pass filter shape 

by 3 dB or co about 70% of its low-frequency amplitude. For more sophisti- 
cated filters, it is the lowest frequency at which cutoff becomes evident. In 
either case, the cutoff frequency merely marks the beginning of noticeable 
attenuation and certainly should not be set equal to one-half the sample rate 
in audio DAC applications. 

In many cases, the cutoff slope of the filter is reasonably linear when 
frequency is plorted on a log scale and the filter attenuation is plotted in 

decibels (as is done in Fig. 12-12). On such a scale, frequency decades, which 

are tenfold increases, and octaves, which are frequency doublings, are of 
consistent length anywhere on the scale. Since the cutoff slope is approxi- 

mately linear, it is convenient to specify it in terms of “decibels per decade” 
or “decibels per octave” with the latter being the more common term. In 
cases in which the cutoff slope is not constant, it is almost always steeper 
close to the cutoff frequency than further out. In these cases, either the 
maximum and ultimate slopes are both given or a composite figure, which is 
the average slope over the first octave beyond cutoff, is given. 

Sometimes che pole count is used to characterize the steepness of the 
cutoff slope. In simple filters, the ultimate cutoff slope is always equal to the 
number of effective reactive elements in the filter circuit times 6 dB/octave. A 
reactive element is either a capacitor or inductor directly in the signal path 

that is not performing a coupling, bypass, or suppression function. More 
complex filrers may have an initial cutoff steepness greater than this but will 

always end up with GN slopes well beyond cutoff. 
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Actual Filter Requirements 

In designing or experimenting with digital synthesis, one must make 
an intelligent tradeoff among three key variables: desired audio bandwidth, 

sample rate, and required filter performance. In general, the sharper the filter 
cutoff, the lower the sampling frequency can be with respect to the highest 
signal frequency. 

As an example, consider a requirement for an audio frequency response 
flat to 5 kHz and an alias distortion level of at least 50 dB below the signal 
level. For an infinite cutoff slope filter, the sample rate could be as low as 10 
kHz. Since that is out of the question, let us try a sample race of 12 kHz and 

see how sharp the cutoff slope must be. The easiest way to determine this is 
to consider the worst case, which is the synthesis of a single tone right at the 
top of the frequency range, which in this case is 5 kHz. The lowest alias 
frequency with the 12-kHz sample rate is 12-5 or 7 kHz and the filter 
must atcenuate this by at least 50 dB, Assuming the cutoff frequency is 5 
kHz, the interval from 5 kHz to 7 kHz is just short of one-half an octave 
using the formula: Octaves = 1.443LN(FA/F/), where Fh and F/ are the 

upper and lower frequencies, respectively. Thus, the cutoff slope would have 
to be 95 dB to 100 dB/octave, a very high figure indeed. If the sample rate 
were raised 25% to 15 kHz, the filter could go all the way to 10 kHz before 
it must attenuate 50 dB. This gives a cutoff slope of only 50 dB/octave, a 
much, much easier filter to implement. In most cases, these requirements 

could be relaxed somewhat. It is unlikely that one would want to shatter 
glass with a maximum-amplitude, maximum-frequency tone and then worry 
about small fractions of a percent of alias distortion. 

Both of the preceding examples assumed that the digital synthesis 
system never tried to generate frequencies higher than 5 kHz. As will be seen 
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Fig. 12-13. Methods of filter section combination. (A) Parallel method. (B) 
Cascade method. 
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later, it may be difficult to meet that constraint and still make good use of 
frequencies close to 5 kHz. If a 6-kHz tone was actually synthesized in the 
15-kHz system, the simple filter would pass its a/ias at 8 kHz with an 
attenuation of only 33 dB. On the other hand, if one used the filrer designed 
for a 12-kHz system with a 15-kHz sample rate, it would be permissible to 
synthesize frequencies as high as 8 AHz without exceeding the -50-dB alias 
rejection requirement. Note that 8 kHz is actually above one-half the sample 
rate. Its alias frequency is therefore /ower than the signal frequency, but since 

that is 7 kHz, the filter attenuates it adequately. The conclusion, then, is 
that a yood filrer can either reduce the requited sample rate, simplify the 
synthesis computations, or some of both. 

Sharp Low-Pass Filter Design 

Sharp low-pass filter design is itself an interesting topic that has filled 
many books, usually with quite a bit of mathematics. Here we will just 
discuss the general characteristics of various filter types so that the reader can 
make an intelligent decision in choosing one. 

The simplest type of low-pass filter is the single-pole R-C. Unfortu- 
nately, its gentle cutoff slope of 6 dB/octave is totally inadequate for an audio 
DAC, Also its passband flatness is not very good. 

In order to get sharper slopes and flatter passbands, several filter sections 
may be combined together. There are two methods of combination called 
parallel and cascade, which are shown in Fig. 12—13. In the parallel setup, the 
same raw input signal is filtered by each of the sections and then their 
outputs are combined together, not necessarily equally, in the mixer. In the 
cascade arrangement, the signal passes through filter sections one after 
another. Thus, any filtering action of the second stage is in addition to that 
of the first stage and so forth. 

With the cascade arrangement, it is easy to determine the total 

amplitude response if the amplitude response of each section is known. The 
filter gain at any given frequency is simply the product of the section gains at 
that frequency. If gains are expressed in decibels (usually negative, since a 
filter is designed to attenuate certain frequencies), then the overall decibel gain 
is simply the swm of the section decibel gains. 

The overall response of the parallel arrangement is considerably more 
difficule to determine, since the phase response of the sections must also be 

known. If the section outputs are out of phase, which is the usual case, then 

their sum in the mixer will be /ess than the sum of their gains. Nevertheless, 

there are certain advantages of the parallel arrangement. Also, for the types of 
filters that will be discussed, any response curve chat can be obtained with 
one arrangement can be precisely duplicated using the same number of 
sections of the same complexity wired in the other arrangement, alchough 
the individual section responses will be different. Thus, for convenience, the 

examples will use the cascade arrangement. 
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Fig. 12-14. Iterative R-C filter performance 

Iterative R-C Low-Pass Filter 

Returning to the simple R-C filter, Fig. 12-14 shows what can be done 
by cascading these simple sections using a unity-gain buffer amplifier be- 
tween each section for isolation. The curves are all normalized so that the 

—3-dB frequency is the same for each curve. For any individual curve, all of 
the sections are identical. However, each curve requires sections with a 
different cutoff frequency. As can be seen, adding more sections improves 
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Fig. 12-15. Two-pole R-L-C filter section performance 
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Fig. 12-16. Cascaded two-pole R-L-C filter performance. Q = 0.707. 

cutoff slope, although passband flatness is affected only slightly. However, 
even 32 sections does not give a very sharp cutoff for the first 50 dB, which is 
the most important region for sample filtering. Using the 32-section filter, 
the sample rare must be 5.45 times the —3-dB frequency to be assured of 
—50-dB alias distortion. This type of filter is termed “iterative R-C” and is 
used primarily where overshoot and ringing cannot be tolerated in the step 
response. 

R-L-C Filters 
Another basic type of low-pass filter section is the two-pole R-L-C 

resonant type. This filter has an ultimate slope of 12 dB/octave/section. 
What makes it interesting is that a response shaping parameter, Q, is avail- 
able. Figure 12—15 shows the response of this type of filter section with 

different values of @. When Q = 1/2, the response degrades to that of a two 
section R-C. Higher Qs tend to “pump up” the gain just below cutoff and 

increase the slope just after cutoff. Unfortunately, @s much above 1 create an 
undesirable peak in the response. 

Now, how about cascading these improved sections? Figure 12-16 

shows the result when various numbers of @ = 0.707 section are cascaded. 
Note that just 8 sections, which is only 16 reactive elements, gives a better 
response than 32 R-C sections. Since there was no response peak in any of the 
sections, the overall response is also peak-free. With the 8-section filter, a 

sample rate 3.44 times the cutoff frequency would be suitable for an audio 
DAC. 

Butterworth Response 
Even this level of performance leaves a lot to be desired. Fortunately, it 

is possible to merely adjust the Q factors of the sections and obtain better 
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Fig. 12-17. Individual section response of two-section Butterworth 

performance yet. Using a two-section filter as an example, the trick is to 
increase the Q of the second section so that the resulting peak in the section 
response tends to fill in the rounded area just beyond cutoff of the first 
section response. The result in Fig. 12-17 shows that this scheme is indeed 
successful in improving the passband flatness just short of cutoff as well as 
reaching the ultimate slope of 24 dB/octave soon after cutoff. Shown in Fig. 
12-18 is the response of three-, four-, six-, and eight-section cascades. With 

this level of performance, an eight-section filter allows a sample rate just 
2.43 times the cutoff frequency. 

One little detail that was not mentioned is how to calculate what the 
section Qs should be to get the optimum benefit of this technique. First, 
however, one must define rigorously what is meant by optimum. For the 
curves in Fig. 12-17, optimum was taken to mean the flattest response possible 
before cutoff and the steepest s/gpe as soon after cutoff as possible. The job is to 
take the set of realizable response curves for the R-L-C section and approxi- 
mate the shape of an ideal low-pass filter with the sum of a specified number 
of them. The problem is not unlike finding the Fourier series for a square 
wave in which the best combination of curvy sine waves to approximate the 
square shape is determined. 

The solution to the problem lies in evaluating what mathematicians 
call Butterworth polynomials, named after the person who discovered them. 
A filter based on these polynomials is called a Butterworth filter and gives 
the sharpest cutoff possible when no peaks in the passband can be tolerated. 
As such, it is often called a maximally flat filter. A Butterworth filter is 

completely specified by giving the number of poles which is twice the section 
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Fig. 12-18, Butterworth filter performance 

count. Although an odd number of poles is possible (one of the sections is a 
simple R-C instead of R-L-C), it is rare. Four-pole Butterworth filters are 

common, eight-pole units are considered fairly sophisticated, and 12- to 16- 
polers are really super! 

Chebyshev Response 

In some applications, such as audio DACs, sharp cutoff may be more 
important than absolutely flat passband response. After all, even the best 
speaker systems have frequency response unevenness that can reach several 

decibels, particularly in the upper treble range. With the technique of using 

resonant peaks to fill in holes for better response, it is possible to get an even 

sharper initial cutoff slope in exchange for a somewhat uneven passband. 
Initial slope was emphasized because these, like all other poles-only filters, 
have an ultimate slope of GN decibels/octave, where N is the number of 

poles. 
The basic idea is to adjust the resonant frequencies and slightly over- 

peak the individual sections so that the drop just before cutoff is somewhat 
overfilled. When this is done to a multisection filter, the Q of the highest Q 
section can become quite large. Looking back to Fig. 12-15, it is seen that 
the downslope of the @ = 8 response reaches a maximum value of nearly 54 
dBfoctave just beyond the peak, although further out it settles back to a 
normal 12 dB/octave. Likewise, the Qs of che overpeaked sections contribute 

to an initial cutoff slope substantially greater than 6N dB/octave. Even 
further out when the slope settles back co GN, the ground gained is retained, 
resulting in greater attenuation at any stopband frequency. 
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Fig. 12-19. Five-section Chebyshev filter response 

The section cutoff frequencies and Q factors for an overcompensated 
filter can be determined using Chebyshev polynomials. Whereas the Butter- 
worth filter has only one shape parameter, the Chebyshev filter has two: the 
number of poles and the passband ripple. The ripple figure specifies how 

uneven the passband is allowed to be in terms of decibels. Thus, a 0.5-dB 

Chebyshev filter has a maximum peak just 0.5 dB above the minimum valley 
in the passband. As it turns out, the optimum arrangement of peaks and 
valleys results in all of them being equal in amplitude; thus, the filter is said 
to have equiripple in the passband. 

Figure 12-19 shows two five-section Chebyshev filters with differing 
amounts of ripple allowed plus a Butterworth, which can be considered to be 
a Chebyshev with zero ripple, for comparison. Note that by merely allowing 
0.25 dB of ripple, a reasonable amount for high-fidelity audio, that a 50-dB 
attenuation is achieved at 1.30 times the cutoff frequency rather than 1.62. 
This in turn would allow a sample rate as low as 2.3 times the cutoff 
frequency. 

Elliptical Response 

Believe it or not, there is still something that can be done to improve 
cutoff slope. The idea is to follow the basic low-pass filter with a band-reject 
(notch) filter tuned just a little beyond the cutoff frequency in an attempt to 
make the cutoff sharper. Essentially, the notch depresses the response just 

after cutoff in much the same way that peaks improve the flatness just before 
cutoff. 

Unfortunately, to be effective the notch must be narrow. Thus, on the 
other side of the notch, the response curve starts back up toward what it 
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Fig. 12-20. Performance of 10-element elliptical filter 

would have been without the notch filcer. At this point, another notch can be 
inserted to press the curve back down again. This is continued until the 
original filter curve has dropped low enough to be satisfactory without 
further help. Figure 12-20 shows the response curve of a 10-¢element (it is no 
longer meaningful to give section or pole counts) elliptical filter. With such 
a filter, the sample rate could be a mere 2.19 times the cutoff frequency, the 
best yet. 

Such filters are called elliptical (also Cauer) filters after the mathemati- 
cal functions that describe them. Three parameters are necessary to specify an 
elliptical filter: the order, which is equivalent to the number of reactive 

components, the allowable passband tipple, and the minimum allowable 
stopband attenuation, also called stopband ripple. The latter figure is needed 
in order to determine how closely the notches must be spaced. With such a 
large number of variables, design tables for elliptical filters are almost impos- 
sible to find and their design procedure is quite complex. So, although the 
elliptical response provides the sharpest cutoff with the fewest number of 
reactive elements, it is probably better for the home designer/experimenter to 
stick with Butterworth or Chebyshev types. 

Phase Shift 

So far in this discussion the phase response of the low-pass filters has 

been ignored. Regretfully, ic is a fact of life that the sharper a filter cuts off, 
the worse its phase shift will be right before cutoff (the phase after cutoff is 
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Fig. 12-21. Step response of five-section 0.25-dB Chebyshev filter (1 kHz 
cutoff) 

not important, since the signal is greatly attenuated). Poor phase response in 
a filter also means poor transient response, which is evident in Fig. 12-21, 

which shows the response of the five-section 0.25-dB Chebyshev to the 
leading edge of a square wave. 

The ringing waveform is due to the four peaked low-pass sections that 
make up the filter. Since they are sharper, elliptical filters are even worse, 
while Butterworth types, although much better, are still far from perfect. It 

is important to realize, however, that, while this might be characterized as 

poor transient response for a filter, it is quite good compared to normal audio 
standards, particularly for speakers. The majority of the ringing is right at 
the top edge of the passband, and, while it appears to imply a large peak in 
the response, we have seen that it only amounts to 0.25 dB. Also note that 
such an isolated step function should never come from the DAC, since it 

implies the synthesis of frequencies far beyond one-half the sample rate. 
Thus, this filter characteristic should not be confused with what hi-fi 

critics term poor transient response, which is usually a mid- and low- 

frequency phenomenon. In any case, a decision must be made between a 
sophisticated filter and low sample rate or a simpler fileer with better tran- 
sient response and a higher sample rate. 

Finite Sample Width Compensation 

Earlier it was mentioned that if the DAC output was actual steps or 
pulses of finite width a slight high-frequency rolloff was inevitable. Figure 
12-11 showed that the rolloff is about 3 dB for 100% width and less than 1 
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dB for 50% width at one-half the sample frequency. With reasonably good 
filters, this would amount to no more than 2 dB of loss at the top of the 

frequency range. For the utmost in fidelity, it may be desirable to compen- 
sate for the rolloff, particularly if the pulse width is equal to the sample 
period (stairstep DAC output). Correction for this effect can best be accom- 
plished in the low-pass filter. Although it is mathematically possible to 
design a filter with other than flat passbands, it is a very involved process. 

If a Butterworth filter is being used, a slight rise in response just before 
cutoff can be effected by raising the Qs of the lowest Q stages. This action 
does not have much effect on the cutoff characteristics and in fact can be 

expected to raise the 50-dB cutoff point no more than a couple of decibels. 
Correcting a Chebyshev or elliptical filter is best accomplished by adding 
another resonant low-pass section with a resonant frequency somewhat be- 
yond the main filter cutoff frequency. Q factors in the range of 1 to 2 for the 
added section will provide a gentle but accelerating rise in the otherwise flat 
passband, which then abruptly cuts off as before. Any resonant peak in the 
extra section will occur so far into the main filter stopband that its effect will 
be completely insignificant. 

Checking for proper compensation is really quite simple. The computer 
is simply programmed to provide a sine wave frequency sweep over the useful 
audio range. An oscilloscope connected to the filter output can then be 
observed for maximum overall flatness as the compensation Q control is 
adjusted. 

Building a Filter 

The first decision to be made in building a filter for an aduio DAC is 
whether it is to be passive, that is, use real inductors, or active, using only 

resistors, capacitors, and amplifiers. Nowadays, an active implementation is 

chosen almost automatically for any audio-frequency filter. The lise of appar- 

= ie) 
R 

INPUT Oh © OUTPUT 

Ga. F, and Q are known, then 
 » 60r c2 

1 
Ro oe aie 

Fig. 12-22. Sallen and Key resonant low-pass section 
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Ri 

ca 
(PF) 

4.200 

19,360 
16,133 
12,910 

9,680 

9,680 
9,680 

Sample 3-dB A1 C1 c2  A2 

Rate’ Cutoff (k2) (pF) (PF) (2) 

(kHz) (kHz) 
3 2.67 15.2 17,360 7,500 14.9 

10 3.33 16.2 13.900 6000 14.9 
12 4.0 15.2 11,590 5,000 14.9 
15 60 122 11590 5,000 14.9 
20 667 9.14 11,590 5,000 14.9 

25 833 7.311190 5,000 11.9 
30 10.0 6.09 11,590 5,000 9.93 
40 19.34.57 11,590 5,000 7.45 9,680 

C4 

(PF) (kM) (PF 

64.190 

51.353 

51,353 

$1,353 

51,353 

51,353 

51,353 

51,353, 

1,250 
4,000 

833 

667 

500 

500 

500 

500 

15.4 
15.4 
12.8 

10.3 

7.70 

616 

5.13 
3.85 

‘Filter response is down 40 dB at 1/2 sampling frequency 

(ay 

(pF) 

200 

> 
NH 

Sample 
Rate” 
(kHz) 

co 
(pr 

308 RY 
Cute (KO) 
{He} 

3.08 1274 
985 1274 
4.82 1274 
S77 1274 
789 1274 
9.82 1019 
15 Bao 
164 637 

a 
(pF) 

ce 
(pF) 

Re 
(ka) 

C4 
(pF) 

Ra 
ky 

19,700 
15,780 
13.130 
10,500 
7.880 
7,880 
7,880 
7,980 

1.250 
10,008 
8.336 
6.987 
5.000 
5.000 
5.000 
5,000 

19.99 17,400 2,500 15.61 
15.99 13,918 2,000 18.61 
15.99 11,600 1,867 15.61 
15.99 9,280 1,933 15.61 
1599 6,959 1,000 117% 
12.79 6,989 1,000 9.37 
10.66 6,959 1.000 7.81 
8.00 6,959 1,000 Ses 

“Filter response is dawn 50 dB al 7:2 sampling trequency 

(8) 

cs 
(FY 

22,450 
17,980 
14,970 

11,975 
11,975 
11.975 
11,975 

cs Ra 
(pFy (kay 

o7 
(pF) 

cA RB 
(oF) (kn) 

937 13.97 a0,250 450 15.84 
750 1857 30,200 360 13.82 
625 13.57 26,896 300 17,52 
300 19.85 26.896 300 9.27 

B14 26,696 300 691 
65) 26,806 300 5.68 
5.43 26.896 300 461 
4.07 26,836 300 3.45 

OOUTPUT 

=e OFtaMPs 
= Male 

ca oto 
(oF) (pF) 

100,000 109 
91.680 100 
91689 100 
91,680 100 
91,680 100 
91,880 100 
91.680 100 
31,690 100 

Fig. 12-23. Design data for active Chebyshev filters. (A) Three-section 1-dB 
tipple. (B) Five-section 0.25-dB ripple. 
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ent advantages is long, but most of them are the result of eliminating induc- 
tors. 

Two possible picfalls must be avoided when designing a sharp active 
low-pass filter for use with a DAC, particularly 16-bit units. One is noise in 
the amplifiers, especially since several will be in the signal path. The other is 
distortion and possible overload. Remember that a 16-bit DAC is capable of 
distortions on the order of 0.0015%, so just about any amount of amplifier 
distortion is going to be excessive. Active filter configurations that require 
high-gain wide bandwidth amplifiers should therefore be avoided. 

Of the three best-known configurations for a resonant low-pass section 
(Sallen and Key, multiple feedback, and state variable), the Sallen and Key 

circuit shown in Fig. 12-22 has many important advantages. First, it is hard 
to imagine a circuit using fewer components. Also, the filter characteristics 
are relatively insensitive to component variations. Most important, however, 
is the amplifier requirement, a simple unity-gain buffer with ideally infinite 
input impedance and zero output impedance. Such an amplifier is very easily 
constructed with an ordinary op-amp, special voltage-follower op-amp, or 
discrete components. Since the gain is unity, the output noise amplitude is 
nearly the same as the input referred noise level, which is what appears on the 
amplifier spec sheet. Also, the frequency-independent 100% feedback 
minimizes the amplifier distortion. About the only negative aspect of the 
circuit is chat high Q factors require a large spread in capacitor values. 
Therefore, one must be careful not to let C2 get so small that amplifier input 
capacitance becomes a significant factor. 

Figure 12-23 and Table 12-1 give design data for Butterworth and 
Chebyshev filters using Sallen and Key sections. In Fig, 12-23, complete 
data including component values is found for a five-section 0.25-dB and a 

three-section 1-dB Chebyshev. The former is recommended for ultra-high- 
fidelity applications, while the latter is quite suitable for experimentation. In 
fact, it is common practice to utilize two different sample rates in computer 
music applications. The lower rate would be used for experimentation and 
fast turnaround where quality is not overly important, while the higher rate 

would be used for the final performance. Thus, one good filter would be 
constructed for the higher rate and one or more of the simpler types would 
satisfy experimental needs. Table 12-1 provides data that can be used to 
design a filter with nearly any number of sections, ripple amplitude, and 
cutoff frequency. When selecting components for the filter, be sure to use 
5% or better polystyrene capacitors and 1% metal film resistors, particularly 
with four or more sections. A good amplifier to use is, believe it or not, an 
LM318 high-speed op-amp, which gives acceptably low noise and total 
freedom from slewing distortion. 
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The last concern is the order of the sections in the cascade. Mathemati- 
cally, the order is not significant but in real life it can make a substantial 
difference. The problems are most acute with the highest Q section. The high 
Q means that internal amplifier noise frequencies in the vicinity of the 
resonant peak will be amplified. It also means that large-amplitude signals 
tight at the peak frequency can be amplified to the point of overload. To 
minimize noise, the highest Q section should be placed first, right after the 
DAC. Here, noise at the resonant frequency will be considerably attenuated 
by subsequent stages. Unfortunately, since it sees raw DAC output, certain 
data patterns could severely overload it. Thus, if an op-amp buffer is used in 
the filter sections, the fowest Q section should connect to the DAC with 
successively higher @ sections following toward the output. 

Passive Implementation 

Even considering the advantages of small size, inexpensive compo- 
nents, etc., passive implementation of the filter does have some advantages. 

For one, it is possible (but quite difficult) to design the filter using no 
amplifiers at all, thus eliminating amplifier noise and distortion concerns. 
Even when amplifiers are used to isolate the sections in order to simplify the 
design, they must only transform impedances (high input impedance and 
low output impedance) with unity gain, which does not even have to be 
exactly unity. The L-C networks are very easy to tune, which is necessary 

with the higher order filters. Finally the notch sections, if used, are easier to 
implement and tune. 

INPUT 

“DRIVE FROM AN OP-AMP OUTPUT OR SUBTRACT THE SOURCE IMPEDANCE FROM Ry 

Sample 3-08 ct ca c3 food cs cé C7 at L2 3 

fates cutoth PF) EF) PF) F) (mH) (mH) (mH) 
(kite) teeta) 
a 336 17,700 22.950 18.875 12.575 1,625 5,000 9925 267.5 2U93 1648 

10 420 14,960 18.380 15,100 19.080 1.300 4.000 7480 2148341318 
12 504 11,860 15,900 12,582 9.983 1,083 3,933 8.217 «1783 1828 108.7 
18 830 9440 12240 10.007 6,707 BHT 2OG7 4973 HR TRAST. 
20 40 7.080 9.183 7.850 5.030650 «2,000 3,750 107 nt es 
25 1050 $664 7,344 6,040 4,00 © 520 1,600 Bese 56734 SS 
20 1261 4.720 6120 5.033 3353 43319932487 719.43. 
40 1681 3.640 4.590 9,775 2815 92510001865 83H ASA aR 
“Filter response 1s down 50 48 at 1/2 sampling frequency 

Fig. 12-24. Passive implementation of 10-element elliptical filter. Source: The 
Technology of Computer Music. MIT Press, 1969. 
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STROBE 
f—* DAC 

REGISTER 

+5V 

SWITCH C 
CONTROL 

+5 

SWITCH 
}—> AAND 8 

CONTROL 

(A) 

Fig. 12-25. (A) Timing generator. 

On the minus side, the inductors are susceptible to hum pickup from 
stray magnetic fields and therefore should be of torroid or pot core construc- 
tion and kept away from power transformers. Also, it is conceivable that 
nonlinearities in the magnetic core could contribute a slight amount of 
distortion so relatively wide air gaps within the core should be used. Inductor 
size and Q are not much of a problem because the section resonant frequencies 
are typically in the high audio range. 

Figure 12—24 shows a passive implementation of the 10-element ellip- 
tical filcer whose amplitude response was shown in Fig. 12-20. ‘Vables of 
element values are given for common sample rates. For a filter this sharp, the 
elements must be accurate, at least to 1%. This is normally accomplished 
with an impedance bridge, a bunch of polystyrene capacitors, and a supply of 
ferrite pot cores and magnet wire. The pot cores usually have tuning slugs, 
which simplify the task of getting exactly the right inductance. The source 

driving the filter should have a 5K resistive impedance, while the amplifier 
shown at the output provides a 5K load. These values are not especially 
critical but should be held within 20% for best performance. 
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ae NEGATIVE 

16 BIT TWOS 8) BIO 
COMPLEMENT| 
DATA FROM § 83 
USING 88 
SYST! SYSTEMS 

36 
a5 

DAC 169-168 
DATEL SYSTEMS: 

83 84 
i 82 83 
a 82 

| 38 81 
80 

GNO +5V 

+15 V 

OiGiTAL = “ANALOG. 
GROUND GROUND 

REQUEST i 
DATA - 

STROBE 
FROM Bae al 
using “PreK 8 
SYSTEM 

47kO 7 47ko 
+5¥ 

STROBE 100 pF = 
——————— ease 
REGISTER 

(B) 

Fig. 12-25. (Cont.) (B) DAC registers and DAC (digital side). 

A Complete Audio DAC 

Figure 12-25 shows a reasonably complete schematic of an inexpensive 
yet high-quality audio DAC using the concepts developed in the preceding 
sections. Ir is a 16-bit unit having 14-bit linearity at high signal levels and 
uses the sign-magnitude method of coding internally. Maximum sample rate 
is 50 kHz, although the filter shown is set up for a 25-kHz sample rate, 

which corresponds to a 9.5-kHz audio bandwidth. Timing for the DAC and 
analog switches is derived from a built-in crystal oscillator and counter 
combination. Other sample rates can be accommodated by changing the filter 
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5 pF 

$0500! 
IMO, 5% 2001, 1% (SIGNETICS) 

20 oF hs 
al sp 

25kN, 1% 
DAC 

3 
1200 
(% 4 2 Sok 8 

2 
BALANCE toed] $2? 

“ai ul ashe ate ou 
FI rl ‘6 
ta] GND — 

REF OUT J 

ry 
REF IN =15V 

= ANALOG + 
° '$05200 

(SIGNETICS) 

ina SWITCH C Nse , 
CONTROL Le do 

SWITCH A,B g : Wet 
CONTROL {>< + + 

he a} 1ko 
NEGATIVE 

> +15 

mat 7 631 6.1 a 

5,000 

tae 
GROUND RESISTANCE IN RAL 

CAPACITANCE IN pF 
(0) 

Fig. 12-25. (Cont.). (C) DAC (analog side) and sign-bit amplifier. (D) Output 
filter. 

components and crystal. Total cost of parts using the indicated DAC module 
should be considerably less than $200. 

For best performance, the circuitry should be constructed over a ground 
plane such as a piece of copper-clad vector board. There can never be too 
many power-supply bypass capacitors. The digital circuitry should be kept 
away from the analog elements as much as possible. In particular, the hold- 
ing register should be right at the edge of the board, and its input data lines 
should go immediately offboard to the host. Finally, the entire unit should 
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Fig. 12-26. Audio DAC timing diagram 

be shielded, at least by steel front and back plates, and mounted in a separate 
enclosure. 

The timing diagram in Fig. 12-26 should be self-explanatory. The 
strobe output from the DAC informs the host system that a new sample has 
been latched from the data in lines and that the next sample should be made 
available. The audio output signal is 10 V peak-to-peak in amplitude, which 

should be enough to overcome minor ground-loop noise. Ground-loop con- 
cerns may be completely eliminated in exchange for dc response by incor- 
porating a standard 600-ohm line transformer into the unit. The ourput 
amplifier can drive a primary impedance as low as 600 ohms. 

Only two adjustments are necessary and both affect the sign-bit 
amplifier. First, the offset pot should be adjusted so that the sample sequence 
—1, 0, +1, —1, etc., produces a three-step staircase with all steps equal in 

height (at 157 wl’ per step, a sensitive scope will be needed to see it at all). 
Then the gain pot should be adjusted so that positive and negative full-scale 
voltages are identical in magnitude. Again, this requires a highly accurate 

differential or digital voltmeter co accomplish perfectly. The alternative is to 
use ultramatched (0.005% to equal the DAC) resistors in the sign-bit 
amplitier. 

Audio Digitizing 

At this time, let us take a brief look at analog-to-digital conversion of 
audio. In a synthesis application, the major reason for digitizing audio is for 

modification or source-signal analysis. Consequently, there is not as much 
need for superdynamic range and distortion figures as with the audio DAC. 

Like the DAC, an off-the-shelf ADC alone is not suitable for audio. A 

block diagram of an audio ADC is shown in Fig. 12-27. The low-pass filter 
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considerations are the same as those with the DAC except that high sample 
tates do wot eliminate the need for a filter. The DAC used for successive 
approximation must be reasonably fast in order to attain the higher audio 
sample rates. For example, the settling time of the DAC plus the response 
time of the comparator must be less than 2 msec if 12-bit conversions are to 
be done at 40 kHz. This can be a very strict requirement if a fast sample rate 
and high resolution for audio recording/playback is desired. The successive 
approximation logic is as described in Chapter 7. The FIFO buffer holds the 

last sample value converted until the host can accept it. As with the DAC, 
the buffer may be as simple as a single register or a true multilevel hardware 
FIFO. Uniformity of sample rate is just as important as before and therefore 
should come from a crystal-controlled timing generator. 

The sample-and-hold, however, performs a completely different func- 
tion. Rather than gating out glitches, its job is to capture the input signal at 
an instant in time and hold it long enough to be digitized. Slewing and 
glitching are not important, but aperture time and aperture uncertainty are 
critical for low noise and distortion in the converted results. 

Figure 12-28 illustrates the job to be done by the SAH module. Acqui- 
sition time specifies the interval between the sample command and the time 
when the SAH is adequately following the signal. This time usually varies 
with signal level but need not cause concern unless ic becomes longer than 

the sample period minus the ADC conversion time. Even when the signal is 
being followed, there is a finite lag in the tracking called tracking error. As 

long as the lag time is constant, its only effect is a very slight reduction in 
high-frequency response, but if it varies with signal amplitude, distortion 
can be introduced. 

When the hold command is given, there is a finite delay before the 
sampling switch sterts to turn off, which is called aperture delay. Once the 
switch begins to turn off, there is an additional delay before it is completely 
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turned off, which is called aperture time, and is a critical audio SAH parame- 
ter. It is critical because the partially off switch is highly nonlinear and 
contributes to distortion. Aperture uncertainty is a variation in aperture delay 
usually caused by variations in signal amplitude. It has the same distortion- 
causing effect as variation in the sample rate. Both of these aperture errors 
create distortion proportional to frequency and amplitude. Essentially, then, 
the aperture is the effective time width over which the signal voltage is 
measured and, much like a camera lens, a small aperture gives sharper focus 
over a wider range of conditions. 

Hold step usually is not important unless it varies with signal level. 

One must wait until the turn-off transient decays before starting the conver- 
sion cycle, however. Hold droop is almost never a problem, since the hold 

time is a few dozen microseconds at most. 
Often, it is helpful to have an automatic gain-control (AGC) circuit in 

the signal path before the SAH and ADC to keep signal levels consistently 
high. In order to retain information about the dynamics of the input, it 

would be a simple matter to digitize the gain-control voltage in the AGC 
circuit with an inexpensive 8-bit ADC module. Since this voltage changes 
slowly, its sample rate could be as low as tens of hertz. Internally, the AGC 
information could multiply the samples from, say, a 12-bit ADC into full 

16-bit samples and restore the dynamic range. Note that the response speed 
of the AGC circuit has no bearing on the accuracy of reconstruction provided 
it is fast enough to suppress sudden, high-amplitude transients below the 
ADC clipping point. 



13 
Digital Tone 

Generation 
Techniques 

Because of its total generality, there can be difficulty in knowing where to 
start in designing a direct digital synthesis system. Most often, though, the 
fundamental concepts of analog synthesis, which have been proven through 
years of use, form the basis for a digital synthesis system. Thus, digital 
equivalents of tone generators, sound modifiers, and control mechanisms are 
incorporated into the system, hopefully with improved characteristics and 
flexibility. In fact, some direct synthesis software systems simulate a com- 
plete “voltage’-controlled synthesizer along with provisions for simulated 

patch cords! In this chapter, the digital equivalents of analog tone generators 
will be described followed later by other tone-generation techniques that are 
practical only in the digital domain. 

One of the many strengths of digital tone generation is that the fre- 
quency and amplitude of the resulting waveforms are extremely accurate and 
stable with time. The user need have no concern whatever about the unpre- 
dictable results that frequency and amplitude errors can create. Also, the 
exact phase between two or more digitally generated tones can be controlled 
to an equal degree of precision. Of course, tf slight relative errors are desired 
for, say, an ensemble effect, they will actually have to be added in. 

Although the previous chapter may have seemed to be preoccupied 
with vanishingly low noise and distortion figures for the overall sound, 
individual tones need not be of such high quality. For example, a slight 

amount of harmonic distortion on a single tone is completely inaudible, 
while even the effece of a larger amount is simply a slight change in timbre. 
The equivalent amount of distortion in an ensemble of sounds would be very 
objectionable because of the accompanying intermodulation distortion. Also, 
super-signal-to-noise ratios for a single tone are not needed because sub- 
sequent signal processing, which is what would change the amplitude, also 

processes the noise, thus retaining whatever the tone’s S/N ratio is independent 
of signal level. These are important points because, as will be shown later, 
extra effort and computation time are necessary for ultra-low-distortion tone 
generation. 

383 
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One of the big problems with the generation of tones of arbitrary 

frequency and waveform is the avoidance of alias distortion. As it turns out, 
it is quite possible, sometimes unavoidable, to digitally generate a tone 
having frequency components above one-half the sample rate. When this 
occurs, the higher frequencies are reflected down as lower frequencies that 
then sail right through the DAC’s low-pass filter, no matter how sophisti- 
cated. The audible effect is usually harsh distortion or excessive noise, and it 

occurs even with single tones. The only way to positively avoid this source of 

alias distortion is to avoid generating significant amounts of excessively high 
frequencies. 

Direct Waveform Computation 

One of the easiest ways to generate tones digitally is to simulate the 
opetation of an analog voltage-controlled oscillator. In an actual synthesis 
program, the “oscillator” would probably be a subroutine that accepts some 
arguments (control “voltages’’) such as one or more frequency parameters and 

retufns one or more results representing samples on one or more output 

waveforms. The subroutine would probably also require some carryover stor- 
age from one sample to the next. 

The analog VCO that was described in Chapter 6 consisted of three 
major parts: control input acquisition, the sawtooth oscillator proper, and 

waveshaping circuits. A digital equivalent will require the same setup. Con- 
centrating on che oscillator part, it was seen to consist of a current source, an 

integrator, a comparator, and a discharge (reset) circuit. Fortunately, the 

digital equivalents to all of these are exceptionally simple and, most impor- 
tant, require very little computation time. 

Digital Sawtooth Oscillator 

An integrator is an accumulator, somewhat like a bucket that inte- 
grates the flow rate of water entering it. A computer accumulator is also an 
integrator; ,it accumulates discrete-sized “pieces” represented by numbers 
added to it via the “add’’ instruction. When a bucket overflows, it remains 
full and only the excess water is lost. When an accumulator overflows, its 

entire contents are dumped and integration starts anew. Thus, it should be 
apparent that if one considers a number that is repeatedly added to a comput- 
er’s accumulator to be a “‘current,’’ the accumulator contents to be the 

integrator’s output, and the overflow phenomenon of binary arithmetic to be 
a combination comparator/discharge circuit, one has a sawtooth oscillator 
just like the analog one. 

This can be clarified by examining the program segment below, writ- 
ten in 8080 assembly language: 
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LOOP ADD B ADD B REGISTER TO ACCUMULATOR 
OUT DAC WRITE ACCUMULATOR OUT TO DAC 
NOP WAIT 16 STATES FOR A TOTAL 
NOP LOOP TIME OF 20US WHICH GIVES 
NOP A 50 KHZ SAMPLE RATE 
NOP 
JMP LOOP ~ REPEAT 

Assuming that the A register was initially O and that the B register 
contains 1, the sequence of numbers that would be sent to the DAC would be 
1, 2,3,4,.. . 125, 126, 127. Now, assuming twos-complement arithme- 

tic, the next addition would try to produce 128, which, of course, overflows 

the 8080's 8-bic accumulator, producing instead a result of —128. The 
sequence would continue —127, —126,..., —2, —1, 0, I, etc., anda 

full sawtooth cycle has been completed. The overflow from +127 to — 128 
is simply the sawtooth flyback. 

In a typical 8080, this loop would execute in 20 asec, giving a sample 
rate of 50 kHz. Since 256 times around the loop are required for a single 
sawtooth cycle, the sawtooth frequency will be 50 kHz/256 =195.3 Hz, 
essentially G below middle C. Now, what if register B has the value 2 in it? 
Register A, starting at zero would be 0, 2, 4,..., 124, 126, —128, 
-126,..., —2, 0, 2, ete. It would take only 128 iterations for a 

complete cycle, so the tone frequency would be 390.6 Hz, precisely twice 
what it was. Other frequencies can be had by setting B to other values. Thus, 
continuing the analog sawtooth analogy, the content of register B represents 
the current into the integrator, although it will be called the /ncrement in the 
discussion to follow. 

Improving Frequency Resolution 

Obviously, only a very limited number of frequencies is available with 
this basic loop. Another way to change the sawtooth frequency is to change 

the loop time and thus the sample rate. However, this would violate the holy 

dogma of direct computer synthesis, which decrees that the sample rate shall 
remain constant throughout the system. 

Actually, the numbers in the accumulator and the B register should be 
considered as fractions between —1 and +1. Thus, the accumulator starts at 
0, increments in units of 1/128 to 127/128, overflows to — 128/128, con- 

tinues to 0, and repeats. The B register can hold values of 1/128, 2/128, 
3/128, etc. The sawtooth frequency is given by F = 50,000//2, where / is 
the fraction stored in register B, the 50,000 is the sample rate, and the 2 is 
because the sawtooth traverses a range of 2 units; from —1 to +1. In order 

to get finer frequency resolution, it is simply necessary to specify the incre- 
ment with more precision. 
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Increasing the accumulator and increment word length to 16 bits im- 

proves frequency resolution considerably. A modified loop to do this is: 

LOOP DAD B DOUBLE ADD BC REGISTER TO HL REGISTER 

MOV A,H SEND MOST SIGNIFICANT BYTE OF HL 

OUT DAC TO THE DAC 
MOV A,H WAIT 5 STATES FOR 50 KHZ SAMPLE RATE 

JMP LOOP REPEAT 

Here registers H and L function as the accumulator with H being the 

most significant byte, while registers B and C hold the increment with B 
being most significant. The formula for frequency is the same as before, but 
now the frequency resolution is 256 times better or about 0.75 Hz. Thus, if 
it is desired to generate middle C, which has a frequency of 261.625 Hz, the 
value of the increment should be J = 2F/50,000, which evaluates to 

0.010465. Converted to fractional form with a denominator of 32,768, it 

would be closest to 343/32,768 and therefore registers B and C would 

contain 343 or the hex equivalent, 0157. The important point is that the 

frequency resolution has been improved from an unacceptable 195 Hz to a 
mere 0.75 Hz. Extending the fractions to 24 bits gives a resolution of 0.003 
Hz (1 cycle/5 min), which for practical purposes makes frequency a continu- 
ous variable. 

One interesting property of the digital sawtooth generator is that the 
increment can be negative as easily as it is positive. With negative increments, 
the sawtooth slopes downward and underflows upward, just the opposite of 
positive increments. This behavior satisfies the mathematical requirements 
for a negative frequency, which is a handy property if dynamic depth fre- 
quency modulation is being performed because then one does not need to 
worry about possible negative frequencies. 

Other Waveforms 

Just as an analog sawtooth can be easily converted into other 
waveforms, some simple computations are all that is necessary to transform 
digital sawtooths. Programming for the conversion would simply accept a 
sample from the sawtooth generator and return a sample of the converted 
waveform. Perhaps the simplest is conversion into a square waveform. Saw- 
tooth samples are merely tested to determine if they are positive or negative. 
If positive, a value equal to positive full scale is produced, otherwise negative 
full scale is sent out. Rectangular waves with the width specified by a 
parameter are nearly as easy, simply compare the sawtooth samples with the 
parameter rather than with zero. 

Conversion to a triangular waveform requires a little more manipula- 
tion, although it still parallels the analog operation. Full-wave rectification is 
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equivalent to an absolute value function, thus the first step is to test the 

sawtooth sample and negate it if it is negative. A potential problem exists, 
however, because there is no. positive equivalent of negative full scale in 
twos-complement arithmetic. If this value is seen, simply convert to the 
largest positive number which results in an ever so slightly clipped triangle 
wave. The next step is to center the triangle, which is accomplished by 
subtracting one-half of full scale from the absolute value. The result now is a 

triangle wave but with one-half of the normal amplitude. A final shift left by 
1 bit doubles the amplicude to full scale. 

Conversion to a sine wave 1s most difficult. ‘he analog-rounding cir- 
cuits used co do the job have as their digital equivalent either the evaluation 
of an equation representing the rounding curve ot a table lookup. Of these 
two, table lookup is far faster but does require some memory for the table. 
The brute-force way to handle table lookup is to simply take a sawtooth 
sample and treat it as an integer index into a table of sines. The table entry 
would be fetched and returned as the sine wave sample. Memory usage can be 
cut by a factor of four by realizing that the sine function is redundant. Thus, 
if the sawtooth sample, 5, is between zeto and one-half full scale use the table 

entry directly. If it is between one-half and full scale, look into the table at 

1.0 — S. If S is negative, negate the table entry before using it. 
Still, if the sawtooth samples have very many significant bits, the table 

size can become quite large. One could truncate S by just ignoring the less 
significant bits and looking up in a smaller table. Rounding is another 

possibilicy that is implemented simply by adding the value of the most 
significant bit ignored to the sample before truncation. As we shall see lacer, 
rounding has no effect on the audible portion of the error. Generally, trunca- 
tion is accurate enough if a reasonable size table is used. For example, a 
256-entry table, which would require 512 bytes, using symmetry would be 
the equivalent of 1,024 entries. The distortion incurred by using this table 
would be approximarely 54 dB below the signal level, or the equivalent of 
0.2% distortion. Actually, che kind of distortion produced will sound more 
like noise so a S/N ratio is the more appropriate measure. At very low 
frequencies, the noise amplitude will appear to be modulated by the signal. 

Linear Interpolation 

The most accurate approach, however, is interpolation between the sine 

table entries. Linear interpolation gives good results for very gentle curves 
such as sine waves and, if done perfectly, could be expected to reduce the 
noise level to — 103 dB based on a 256-entry table with symmecry, which is 
the limic of 16-bit samples anyway. Figure 13-1 shows generalized linear 
interpolation and some important information about it. Essentially, the job 

is to compute the correct value of F(X) given an arbitrary X, where X is che 

sawtooth sample and F(X) is the sine sample. Xi and X2 are tabulated 
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Fig. 13-1. Linear interpolation 

arguments, while F(X1) and F(X2) are the tabulated sines of those argu- 

ments. 
Due to the nature of the table and binary arithmetic, the computation 

is actually simpler than it looks. Since the table is tabulated in equal incre- 

ments of X, the quantity Xz — X1 is a constant. If the cable has a power 
of two number of entries, then even the division by X2 — X1 is a simple 
shifting operation. As a result, the overall computation is reduced to two 
subtractions, an addition, and one multiplication. 

As an example, consider linear interpolation in a sine table of only 64 
entries using a 16-bit argument and assuming that the table entries are 
signed 16-bit values. Let’s further assume that a separate table giving 
F(X2) — F(X1)/(X2—X1) is also available, which will be called che first 

derivative table and that its entries have been scaled to make the following 
operations possible. Figure 13—2 illustrates binary linear interpolation. 

The first step is to save the most significant 2 bits of the argument and 
transform the remaining 14 bits into a positive, first-quadrant value. Next, 
using only the 6 bits left in the upper byte, access the function table to get 

F(X1) and the derivative table to get F(X2) — F(Xi)(X2—X). Fi- 

nally, multiply the lower byte of the argument, which is X — Xi, by the 
derivative and add the product (possibly shifted for scaling) to F(X 1) fetched 
earlier. The derivative table entry need be only one byte long; therefore, the 
multiply is an 8- X 8-bit operation, which can be quite fast even in software 
on an 8-bit machine. Before returning, the two saved bits, which identify the 

quadrant, should be examined and the function value adjusted accordingly. 
The linear interpolation is so effective that this 192-byte table gives a sine 
wave with 30 dB less noise than a 512-byte table using the brute-force 
method. In practice, it would be up to the programmer to decide if the 
memory savings and improved noise level are worth the extra computation 
time, particularly if hardware multiply is not available. 
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Fig. 13-2. Linear interpolation in a sine table 

Alias Distortion 

So far everything sounds great; all of the normal analog synthesizer 
waveforms are available in digital form with adequate frequency resolution 
and are just waiting to be processed further. There exists, however, one 
problem that can only be minimized and that is alias distortion from the 
upper harmonics of most of these waveforms. When the algorithms just 
described are used to generate samples on a waveform, the samples generated 
are exactly the same as would have come from an ADC sampling the equiva- 
lent analog waveform with no low-pass filter’ Thus, one would expect the 
higher harmonics to fold back into the audio range and create distortion. 

Before deciding what to do about the problem, its severity should be 
determined. As a “best-case” example, Jet us assume a sample rate of 50 
kHz, the use of a sharp 15-kHz low-pass filter in the output DAC, and a 
1-kHz sawtooth wave. The idea is to add up the power in all of the unaliased 
harmonics in the 15-kHz range and compare this with the sum of the aliased 
harmonics that are i the 15-kHz range. 

The power spectrum of a sawtooth wave is well known and is 
Pn = Pifa*, where Pn is the power in the wth harmonic relative to the 
power in the fundamental. Thus, the “signal” is 1 + 1/4 + 1/9... 
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+ 1/225 for the first 15 harmonics that lie within the range of the low-pass 
filter. Harmonics 16 through 34 do zot contribute to the signal or the 
distortion, since they or their aliases are above 15 kHz in this example. 
Harmonics 35 to 65, 85 to 115, etc., contribute to the distortion. If the 

calculations are carried out, it is found that the signal power is 1.58 units, 
while the distortion due to the first-two groups of foldovers is 0.01717 unit 
giving a S/N ratio of about 20 dB. Actually, if the example frequencies were 
exact, the distortion frequencies would exactly overlap the signal frequencies 
and would not be heard. However, if the signal frequency is not a submulti- 
ple of the sample rate, then the distortion would be apparent. 

This does not seem to be very good and in fact does not sound all that 
good either. What’s worse, a 2-kHz signal can be expected to be almost 6 dB 
worse, although lower frequencies can be expected to be better by about 6 
dB/octave of reduction. The square wave is about 2 dB better, but a 
rectangular waveform approaches 0 dB S/N as the width approaches zero. 
The triangle wave S/N ratio is an acceptable 54 dB, and the sine generates no 
alias distortion at all. In conclusion, the results are usable if high-amplitude, 
high-frequency sawtooth and rectangular waveforms are avoided. 

Besides restrictions in use, there are few options available for lowering 
the distortion figure. One thing that can be done is to generate the trou- 
blesome waves at a higher sample rate, pass them through a digital low-pass 
filter operating at the higher rate, and then re-semple the filter output at the 
lower system sample rate. For example, the sawtooth might be generated at 
400 kHz, which is eight times the system rate and then fed to a simple 
digital low-pass filter that cuts off at 15 kHz. Only every eighth sample 

emerging from the filter would actually be used. With this setup, the S/N 
ratio for the 1-kHz sawtooth would be improved to 38 dB. While the 
computation time necessary to do this in software is much greater than that 
required for some of the more sophisticated tone generation techniques, it 
can be a viable hardware technique whereby simplicity of the algorithm often 
outweighs computation time considerations because the digital hardware is 
so fast. 

Table Lookup Method 

If direct computer synthesis is to live up to its promise of nearly infinite 
flexibility and very high sound quality, then better tone-generation tech- 
niques than the simulation of analog synthesizer oscillators will have to be 
used. One of these involves scanning of precomputed waveform tables. An 
important advantage is that the sample values stored in the table can in many 
instances be selected so that alias distortion is not a problem. Another is that 
microprocessors are far more efficient in looking up waveform samples than 
in computing them from scratch. 

Elementary tone generation by table scanning is just what the terms 
imply: a simple loop is programmed to fetch the table entries one at a time 
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and send them to the DAC. When the end of the table is reached, scanning 

should continue uninterrupted at the beginning. Each time through the 
table is one cycle of the waveform. Figure 13-3 shows graphically a gener- 
alized table-scanning process. Since the beginning follows the end, the table 
can be imagined to be circular. The table pointer points to an entry and the 
pointer increment specifies how far the pointer is to advance between sam- 
ples. 

If the number of table entries is a power of two, the ‘‘wraparound” can 
be simplified. Essentially, an J-bit counter is programmed, where 
I = logeN, and N is the number of table entries. The value of the counter 
is used as a pointer into the table. When the counter overflows from 
maximum count to zero, the pointer automatically starts at the beginning of 

the table. Thus, tables of 256 entries are extremely convenient in an 8-bit 

microcomputer, since the lower byte of the address pointer can be used as the 
counter and the upper byte, which is the “page number” (block of 256 
memory addresses starting at an address divisible by 256) of the table, is left 

alone. 

Controlling Frequency 

As with sawtooth oscillator simulation, the frequency of the tone may 
be changed by altering the time between lookups, but this amounts to 
changing the sample rate. Thus, frequency control is achieved by changing 
the increment from | to 2 to 3, etc. Note that this means that table entries 

are skipped as the scanning proceeds. However, as long as the number of 
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entries skipped is less than one-half the period of the highest significant 
harmonic in the tabulated waveform, nothing is lost and no audible noise is 
added. If the number of entries skipped becomes Jarger than this, alias 
distortion occurs. Also, the fact that each trip around the table is likely to be 
different is of no significance, since the effect would be the same as sampling 
a waveform at a rate that is not an exact multiple of its frequency. 

As before, only a very few frequencies can be generated with integer 
increments, so it will be necessary to extend the precision of the increment by 
adding a fractional part. Now, the pointer increment and the table pointer are 
mixed numbers having an integer part and a fractional part. Note that the 
fractional part of the pointer implies some kind of interpolation between 
adjacent table entries. For maximum speed, however, the fractional part of 
the pointer can be ignored and the integer part used to select the table entry 
as before. 

A simple example should clarify this some. Let us assume a moderate- 
performance direct synthesis system with a sample rate of 15S kHz and 
waveform tables having 256 entries of 8 bits each. If a tone frequency of 220 
Hz (A below middle C) is desired, the pointer increment should be 3.75466 

accotding to the formula: ] = NF/Fs, where | is the increment, N is the 

number of table entries, F is the tone frequency, and Fs is the sample rate. In 

an 8-bit machine, it is convenient to make the pointer and the increment 

double-byte mixed numbers with the upper byte being the integer part and 
the lower byte being the fractional part. Thus, the decimal mixed number, 
3.75466 would have an integer part of 3 and a fractional part of 193, the 

latter being 0.75466 multiplied by 256. 
To get the next sample from the table, the increment would be 

double-precision added to the pointer with overflow from the integer parts 
ignored. Then the integer part of the pointer would be used to access the 
table. If the microprocessor has an indirect addressing mode through mem- 
ory like the 6502, then Fig. 134 illustrates how utterly simple these 
operations are. A three-byte vector in memory is used for each tone. The 
most significant byte gives the page address of the waveform table, while the 
remaining two bytes are the pointer. An indirect load through the leftmost 
two bytes of the vector are all that is necessary for the table lookup! In the 
6502, the entire operation of adding the increment and getting the next 
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sample from the table takes a mere 23 clock cycles, which for the standard 
machine is 23 psec. While other microprocessors will be slower, this is a 
highly efficient operation on all of them, 

Ic is perfectly feasible to gradually change the pointer inctement in 
order to gradually change the frequency. Thus, glides, vibrato, and even 
dynamic depth FM can be accomplished by changing the increment as re- 
quired. The only limit to che speed and magnitude of increment variation is 
the FM sidebands that result. If they become broad enough, a portion may 
spill over the Nyquist frequency and begin to generate alias distortion. 

Table Size 

A natural question at this point is, “How large should the table be for 
an acceptable noise and distortion level?” Actually, there are two sources of 
error in samples derived by table lookup. One is simply quantization error of 
the stored samples, which can be made vanishingly small (— 100 dB) simply 
by using 16 bits to store a table entry. The other error is the /wterpolation error 
that occurs when the fractional part of the table pointer is nonzero. This 
error, which is worst with no interpolation at all, can be made smail only by 
using a large table and linear, quadratic, or higher order interpolation be- 
tween the tabulated points. Thus, interpolation noise is likely to completely 

dominate, and if it does not, the precision of the table entries should be 
increased until it does. 

Unfortunately, the average magnitude of the error, and hence noise, is 

dependent on the waveform stored in the table. If the waveform can be 
exactly described by a simple formula, a mathematician can always take the 
formula and other parameters such as size of table, interpolation method, 

sample rate, and DAC LPF cutoff and derive an exact S/N ratio. 
A much simpler way to get a noise estimate is to simulate an ideal tone 

generator and a table-driven tone generator and look at the difference in the 
sample values generated. What is desired is the rms average of the ac compo- 
nent of the difference, which represents the noise power. The ac component of 

the difference is simply the actual difference samples with the long-term 
average of the difference, which represents the inaudible dc component of the 
error, subtracted out. Ic is also important that the two cone generators be 

precisely in phase (truncating rather than rounding the table pointer intro- 
duces a phase shift of m/N radians where N is the number of table entries) 

otherwise the noise estimate will be excessively pessimistic. 

The simulation is best done by choosing an irrational number such as 
a for the pointer increment and obtaining several hundred to a thousand 

samples from each generator and their differences. The rms average difference 

is found by squaring the adjusted difference samples and adding them up. 
The ideal signal samples are also “ac coupled,” squared, and added up. The 
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1000 REM TABLE NOISE CALCULATE ROUTINE 
1001 REM N-NUMBER OF TABLE ENTRIES | P=PHASE SHIFT DUE TO TRUNCATION 
1010 N=256: P=1/(2*N) 
1100 REM GET THE MEAN OF THE IDEAL SAMPLE STREAM AND THE MEAN OF THE 
1101 REM DIFFERENCE BETWEEN IDEAL AND TABLE LOOKUP SAMPLES 
1110 REM MI=MEAN OF IDEAL, M2=MEAN OF DIFFERENCE 
1120 M1=0: M2=0: T1=0 
1130 FOR I=1 TO 1000 
1140 T1=T1+.314159 
1150 IF T1>=1 THEN T1=T1-1 
1160 T=TL 
1170 GOSUB 2000 
1180 MI=M1+S 
1190 S1=S 
1200 T=(INT(N*T1) /N)+P 
1210 GOSUB 2000 
1220 M2=M2+(S1-S) 
1300 NEXT I 
1310 Ml=M1/1000 
1320 M2=M2/1000 
1399 PRINT M1 M2 
1400 REM GET THE AUDIBLE IDEAL SIGNAL POWER AND AUDIBLE NOISE POWER 
1401 REM V1 IS SIGNAL POWER | V2 IS NOISE POWER 
1410 V1=0: V2=0: T1=0 
1420 FOR I=1 TO 1000 
1430 T1=T1+.314159 
1440 IF T1>=1 THEN T1=T1-1 
1450 T=TL 
1460 GOSUB 2000 
1470 V1=V1+(S-M1)*(S-ML) 
1480 S1=S 
1490 T=(INT(NATL)/N)+P 
1500 GOSUB 2000 
1510 V2=v2+( (S1-S)-M2)**2 
1520 NEXT I 
1600 REM PRINT RESULTS 
1610 PRINT V1,V2,4.3429*(LOG(V1)-LOG(V2)) 
1999 STOP 
2000 REM SIMPLE WAVEFORM SUBROUTINE, INPUT IS T, Os=T¢1 OUTPUT IS S 
2100 S=SIN(6.283186*T) 
2200 RETURN 
3000 REM COMPLEX WAVEFORM SUBROUTINE, INPUT IS T, Ox=T<1 OUTPUT IS S 
3100 A=6.283186*T 
3110 S=SIN(A)+SIN(2*A)+SIN(3*A)+SIN(5*A)+SIN(8*A)+SIN(11*A)+SIN(14*A) 
3120 S=SIN(17*A)+5 
9999 END 

Fig. 13-5. program to calculate table lookup interpolation noise 

two sums, which represent noise and signal energy over the same test period, 
are divided to obtain the S/N ratio. 

Figure 13-5 is a program written in BASIC for estimating the S/N 
ratio of the table lookup method with specified parameters. The subroutine 
starting at stacement 2,000 should look at the variable 1’, which represents 

time, and return the corresponding ideal tone sample by storing it in S. T 
will always be between 0 and 1 but will never equal 1. The range of Ss 
returned is not important but should be reasonable. The effect of a table 
lookup tone-generation routine is simulated by quantizing T according to 
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the specified number of table entries and calling the ideal cone-generator 
subroutine. 

The program executes in two parts. The first pact runs 1,000 samples 
through and accumulates the mean of the ideal samples and the mean of the 
difference. The second part runs another 1,000 samples to compute the rms 
difference as described earlier. Phase shift due to truncation in the table 
lookup is also corrected. When complete (the program may run for several 
minutes on many systems) it prints a single number, which is the S/N ratio 
in decibels. Note that this is an absolute worst case, since all noise frequen- 
cies including those that would be stopped by the DAC’s filter are included. 
A figure in better agreement with actual audible noise would be about 5 dB 
better. 

Figure 13-6 gives some results from running the program. Table sizes 
of 256, 512, and 1,024 were tried with no interpolation and with linear 

interpolation. Two waveforms were also tried, one being a simple sine wave 
and the other being a fairly rich waveform having an equal mix of fundamen- 
tal, 2, 3, 5, 8, 11, 14, and 17th harmonics. 

A. NO INTERPOLATION 

1. Sine waveform 

a. 256 points 42.99 dB 

b. 512 points 49.03 dB 

c. 1024 paints 55.05 6B 

2. Complex waveform 

a. 256 points 23.56 dB 

b. 512 points 29.55 dB 
¢. 1024 points 35.41 dB 

B. LINEAR INTERPOLATION 

1. Sine waveform 

a. 256 points 85.19 dB 
b. 512 points 97.23 dB 

G. 1024 points 109.28 dB 

2. Complex waveform 

a. 256 points 42.75 dB 

b. 512 points 54.76 dB 

¢. 1024 points 66.82 dB 

Fig. 13-6. Worst case table noise for various combinations of table length, 
stored waveform, and interpolation. (A) No interpolation. (B) Linear 
interpolation. 
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Filling the Table 
Once a suitable table size and interpolation method has been deter- 

mined, the remaining task is to fill the table with waveform samples. Since 
the table is seldom, if ever, filled in real time, a variety of techniques is 

applicable. 
Probably the simplest method conceptually is drawing a waveform by 

hand on a piece of graph paper (or a graphic digitizer) and then entering the 
sample values into the table. Although simple in concept, there are a number 

of constraints that should be kept in mind. One is that the table must 
contain exactly one cycle of the waveform; therefore, the first and last sam- 

ples are the same as any other adjacent pair and must be continuous. When 
drawing, some forward planning is necessary to complete the cycle exactly at 
the end of the scale. Alternatively, the cycle can be drawn freehand and the 
grid lines added afterward in the proper scale. 

This same constraint applies if one desires to capture a musical instru- 
ment sound in a table. When digitizing the waveform, one possibility is to 
simply adjust the sample rate and the tone frequency until one cycle exactly 
fills N samples. Another alternative is a sample rate conversion program that 
in effect does superinterpolation in order to adjust the sample rate after 
several cycles of the waveform have been digitized. 

When drawing by hand, it is very easy to come up with waveforms 
with such strong upper harmonics that alias distortion and noise can be a 
problem when the table is scanned with pointer increments larger than 1.0. 
Thus, one should be careful to draw reasonably smooth curves rather than 
sharp angles or discontinuous jumps. Note that if a perfect sawtooth 
waveform were placed in a table, the result when scanned would be identical 
ta the sawtooth oscillator studied earlier. 

Table Filling by Fourier Series 

The best way to fill the table is to specify the amplitudes and optionally 
the phases of the harmonics desired in the waveform and then use a Fourier 
series or Fourier transform program to compute the table entries. The result 
when the table is scanned is a tone with the exact harmonic makeup 

specified. Since the timbre of the tone has a much stronger relation to the 
harmonic structure than to the appearance of the waveform, experimentation 
to find the desired timbre will be easier with the Fourier series approach. 

Another advantage is that alias distortion can be positively controlled. 
Since the exact harmonic makeup of the table content is known, one simply 
avoids having the highest harmonic of the highest frequency tone generated 
using the table ever get high enough to produce an audible alias. In practice, 
this means chat tables used for the higher register voices should have a more 
restricted spectrum than those used for the lower-pitched voices. For exam- 
ple, if the sample rate is 30 kHz, the DAC filter cuts off at 10 kHz, and the 
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highest note played is C6 (two octaves above middle C, 1,046 Hz), the 

highest harmonic present in the table should be about the 18th. This would 
alias to about 11.2 kHz, which would be attenuated. Any harmonics higher 

than the 18th would alias to frequencies lower than 11 kHz and would be 
attenuated little if any. For a bass voice with an upper limit of middle C, one 
could go to about the 70th harmonic with no problems. 

Actually computing the waveform that corresponds to a particular set 

of harmonic amplitudes is quite simple in BASIC, although slow. Essentially 
one computes sine waves at the fundamental and harmonic frequencies, 
multiplies each by its corresponding amplitude specification, and adds them 
up. For example, assume that a waveform with | unit of fundamental, 0.5 
unit of second harmonic, and 0.15 unit of third harmonic is desired. Assume 

further that the table size is 256 and the table entries are 8-bit twos- 
complement numbers. Since the sin function in BASIC expects angles in 
radians, the amgle increment that corresponds to a table increment of 1.0 is 

27/256 or 0.024544. Thus, we will start the angle, A, at 0, compute the 

first table entry, increment A by 0.024544, compute the second entry, and 
so on until the 256th entry is done. The preliminary value of a table entry, 
therefore, is equal to sin(A)+0.5sin(2A)+0. 15sin(3A). This assumes that 

all of the phase angles are zero. If a 90° phase angle is desired for the third 
harmonic, the third term of the expression above should be changed to 
0. 15sin(3A + 1.5708), where 1.5708=(90)(277)/360. 

After the preliminary table entries are computed, they must be ad- 
justed and converted into binary integers for use by the table-scanning 
routine, which will undoubtedly be written in assembly language. The first 
step is to normalize the existing entries so that there is no overflow when 

conversion is done but at the same time the full-scale range is used in order to 
minimize quantization noise. This is done by scanning the table and finding 
the entry with the /argest absolute value, which will be called M. Then each 
entry in the table is multiplied by 127/M and “poked” into memory at the 
locations reserved for the table. The poke function available in many mi- 
crocomputer BASICs converts the adjusted entry from floating point to the 
single-byte twos-complement integer desired. 

Figure 13-7 implements these operations in an easy-to-use form. The 
A array holds the harmonic amplitudes and the P array holds the phases. N 
is a variable that specifies the highest harmonic to process. Ideally, 
amplitude-array elements should be between 0 and 1.0 for ease in visualizing 
relationships between harmonics, although the normalization process allows 
virtually anything. The phase entries range from 0, which represents zero 

phase shift, to 1.0 which is a 360° shift. Therefore 0.5 is 180°, 0.25 is 

90°, etc. If phase of the harmonics is not important (it usually is not for 

audio waveforms), the variable Q should be set to zero. This instructs the 
program to set the phases randomly, since zero phase for all of the components 
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1000 REM PROGRAM TO UTILIZE THE FOURIER SERIES TO FILL A WAVEFORM TABLE 
1010 REM ARRAY A HOLDS THE AMPLITUDES OF THE HARMONICS 
1020 REM ARRAY P HOLDS THE PHASES OF THE HARMONICS 
1030 REM THE ZEROTH ELEMENT OF A AND P CORRESPONDS TO THE DC COMPONENT 
1040 REM VARIABLE N HOLDS THE NUMBER OF THE HIGHEST HARMONIC TO PROCESS 
1050 REM VARIABLE M HOLDS THE SIZE OF THE TABLE TO GENERATE 
1060 REM VARIABLE Q IF 0 SELECTS RANDOM PHASES, IF 1 USES ARRAY P 
1070 REM ARRAY T IS THE GENERATED TABLE WITH ALL ENTRIES BETWEEN BUT NOT 
1080 REM INCLUDING -1 AND +1 = + 
1100 REM AMPLITUDE DATA 
1110 DATA 0,.8,.6,.2,.55,1.0,.7,.3,.2,.1,.05 
1120 REM PHASE DATA 
1130 DATA 0,0,.2,.4,.7,.45,.1,.5,.85,.9,0 
1140 LET n=i0 
1150 LET M=256 
1160 LET Q=1 
1200 REM SET UP THE AMPLITUDE AND PHASE ARRAYS 
1210 FOR I=0 TO N 
1220 READ A(I) 
1230 NEXT I 
1240 FOR I=0 TO N 
1250 IF Q=0 GOTO 1270 
1260 READ P(1) 
1270 GOTO 1280 
1270 LET P(1)=RND(1) 
1280 NEXT I 
1300 REM MAIN LOOP TO COMPUTE PRELIMINARY TABLE CONTENTS 
1310 FOR I=0 TO M-1 
1320 LET T(I)=0 
1330 LET Al=6.28318*1/M 
1340 FOR J=0 TO N 
1350 LET T(1)=T(I)+A(J)*COS(J*A1+6.28318*P(J) ) 
1360 NEXT J 
1370 NEXT I 
1400 REM SCAN RESULTING TABLE FOR MAXIMUM ABSOLUTE VALUE 
1410 LET Al=0 
1420 FOR 1=0 TO M-1 
1430 IF ABS(T(I})'sAl THEN LET Al=ABS(T(I)) 
1440 NEXT I 
1500 REM NORMALIZE THE TABLE 
1510 FOR I=0 TO M-1 
120 LET T(1)=T(1)/Al*.99999 
1530 NEXT I 
1600 REM ADD CODE HERE TO OUTPUT THE TABLE IN SUITABLE FORM 
1700 STOP 
1800 END 

Fig. 13-7. Program to optimally fill waveform tables 

almost always produces waves with a single high-amplitude peak and low 
average amplitude elsewhere, which is less than optimum for low noise. The 
array T is the waveform table containing values between —1 and +1 when 
the program returns. Additional code to convert the values into integers with 
the appropriate range and to store them in the final waveform table is easily 
added. 

Assembly language can also be used to construct the table in 1% to 
10% of the time required by a BASIC program. Part of the improvement is 
due co more efficient program execution, while the rest is due to the use of 
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fixed-point rather than floating-point arithmetic. Only the sin function poses 
any computational difficulty and that can bypassed through use of a sine 
table with a length equal to the waveform table being filled. Chapter 18 will 

describe the use of integer and fractional arithmetic to maximize the speed of 
digital synthesis computation. 

Dynamic Timbre Variation 

In a voltage-controlled synthesizer, the tone generators usually put out 
an unchanging waveform that is dynamically altered by processing modules. 
Although the same can be done in direct synthesis with digital filters, the 
table method of tone generation lends itself well to types of timbre variation 
not easily accomplished with filters. 

One technique that is quite practical involves two waveform tables and 
interpolation between them. The idea is to start with the waveform in Table 
A and then gradually shift to a different waveform in Table B. The arithmetic 
is actually quite simple. First, a mixture variable ranging between 0 and 1.0 
is defined, which will be called M. The contribution of waveform B to the 

resultant waveform is equal to M and the contribution of A is 1.0 — M. 
The actual resultant samples are computed by evaluating 
Sr=(1—M)Sa+M5Sb, where Sr is the result sample, Sa is a sample from the 

A table, 5é is the B-table sample, and M is as before. Thus, as M changes 

from 0 to 1.0, the mixture changes in direct proportion. 
In actual use, M should be updated frequently enough so that it 

changes very little between updates. Also the same table pointer should be 
used on both tables to insure that they are in phase. If these rules are 
followed, the transition is glitch- and noise-free even for very fast transitions. 
The technique is not limited to two tables either. One could go through a 

whole sequence of tables in order to precisely control a very complex tonal 
evolution. 

Speaking of evolution, it would be desirable to know exactly what the 
spectrum of the tone does during the transition. If each harmonic has the 
same phase in the two tables, then the amplitude evolution of that harmonic 
will make a smooth, monotonic transition from its amplitude in cone A to its 
new amplitude in tone B. 

Things get quite interesting, however, if they are vot in phase. Depend- 
ing on the phase and amplitude differences between the two tables, any 
number of things can happen as shown in Fig. 13-8. The graph shows 
amplitude and phase variations of an arbitrary harmonic during a linear 
transition from wave A, where this harmonic has an amplitude of 0.4 units, 
to wave B, where its amplitude is 0.9 units. Its phase in wave A is taken as a 
zero reference and its phase in wave B is the parameter for the curves. When 

the phase of this harmonic in wave B is also zero, the amplitude transition is 

linear. It becomes progressively nonlinear and even dips momentarily along 

its rise as the phase difference approaches 180°. 
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Fig. 13-8. Time-variabie interpolation between two sine waves. (A) Amplitude 
contours; phase difference is parameter. (B) Phase contours; 
phase difference is parameter. 

Note on the phase curve that the phase of the resultant shifts during the 
transition as well. This dynamically shifting phase means that the harmonic 
frequency is actually shifting during the transition region! The magnitude of 
apparent frequency shift is proportional to the instantaneous slope of the 
phase curve. Thus, at the beginning and end of the transition region, the 
frequency is unchanged, but it may momentarily increase or decrease in the 
middle. 

The preceding applies to each harmonic in the two waves indepen- 
dently. Thus, a complex harmonic evolution in which some change linearly, 

some nonlinearly, and some undershoot is easily set up merely by altering the 
harmonic phases in one of the waveforms. It is important to realize that, 
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while there is a great variety of possible transitions, the technique is not 
general enough so that any arbitrary transition can be realized. One could 
piecewise approximate an arbitrary transition by using a sequence of tables, 
however. 

Another method of dynamic spectrum variation using the table lookup 
method actually amounts to a continuous Fourier series evaluation. One 
would have a single table, which is actually a sine table, and program several 
table pointers with pointer increments that are integer multiples of the 

smallest increment. Then, using each pointer in sequence, the corresponding 
samples would be fetched from the table, multiplied by a corresponding 
amplitude factor, and the products added together to produce the output 
sample. This is equivalent to treating each harmonic as a separate tone and 
controlling its amplitude independently. Relative phase can be controlled by 
temporarily adding a phase parameter to the pointer when table access is 
performed but using the original pointer value when the increment is added. 

The technique is not limited to exact harmonic frequencies either, since 
the set of pointer increments need not be integer multiples. Most stringed 
musical instruments in which the string is plucked or struck have upper 
harmonics that are somewhat sharp with respect to the fundamental. Bells 
and chimes have spectra that are decidedly inharmonic. For these and other 
similar sounds, this is the only general technique available. Although 
dynamic depth FM can also produce inharmonic spectra, only gross control is 
possible; the details of the spectrum are pretty much left to chance. 

While this technique can be time consuming for a large number of 
harmonics, it is quite effective for a small number. Its primary strength over 
faster Fourier techniques to be discussed is that amplitudes and phases of the 
harmonics may be changed at any time and as rapidly as desired without 
glitches and discontinuities in the composite waveform. In particular, a 
hardware implementation of the technique can be extremely flexible and 
effective as well as adequately fast for real-time tone generation. 

Fourier Transformation 

Fourier transforms are the cornerstone of many modern signal- 
processing techniques. They have a list of desirable mathematical properties 

that seems never to end as well as many useful physical properties for synthesis 
and analysis work. The main attractive feature about any kind of Fourier 

operation is that it is a bridge between the time domain, which is concerned 
with waveforms and sample values, and the frequency domain, which is con- 

cerned with the amplitudes and phases of frequency components. The pri- 
mary need for such a bridge is that the human ear hears in the frequency 
domain, while sound waves are stored, synthesized, and observed (via an 

oscilloscope) in the time domain. 
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As we shall see, a block of samples representing a segment of sound can 
be transformed into the frequency domain via Fourier transform and appear 
as a bunch of harmonic amplitudes and phases. ‘This data can then be trans- 
formed éack into a block of samples unscathed and indistinguishable (within 

round-off error) from the original block via an inverse Fourier transform! 
Thus, Fourier transformation is a reversible operation. However, while in the 

frequency domain, we can manipulate the spectrum directly by altering indi- 
vidual frequency component amplitudes as desired; no filters to design and 
tune are necessary. After the manipulation has been accomplished, the in- 
verse transform returns the data to the timc domain. This is onc way to 

implement a filter with a completely arbitrary amplitude response. 
One can also synthesize a spectrum directly and convert it to the time 

domain for output. This can be valuable, since most sounds are more easily 
described in terms of their spectrum rather than in terms of their waveforms. 
Although a method was just discussed for Fourier series synthesis, the Fourier 

transform can require far less computation if the required spectral detail is 
great. 

In source-signal analysis using digital techniques, the first step is 
nearly always Fourier transformation of the input into spectral form. Since 
the ear hears in the frequency domain, it is logical that audible features of the 
source signal will be much more apparent than when in the time domain. In 

most cases, transformation greatly reduces the quantity of data to be proc- 
essed as well. 

Characteristics of the 
Discrete Fourier Transform 

Fourier transforms applied to sampled data are usually called discrete 
Fourier transforms, since the time domain data are at discrete instants of time 

and the frequency data are likewise at discrete frequencies. One very impor- 
tant property of the discrete transform is that the waveform data are specific- 
sized chunks called records, each consisting of a specified number of samples. 
The discrete transform asswmes that the samples in the record represent 
exactly one cycle of a periodic waveform. This assumption must be made 
regardless of whether or not it is accually true, as in Fig. 13-9. The trans- 
form then gives all of the harmonic amplitudes and phases of the assumed 
periodic waveform. 

This record-oriented property has several important ramifications when 
constantly changing arbitrary sounds are to be synthesized or analyzed. For 
most applications, the record size is fixed and often is a power of two. Thus, 
even if a periodic waveform were being analyzed, it is unlikely that a record 
would exactly span a single cycle. In order to reduce the resulting error, the 
record size is chosen to be great enough to span several cycles of the lowest 
frequency expected. Then the partial cycle at the beginning and end of the 
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Fig. 13-9. Actual and assumed waveforms used with discrete Fourier trans- 
form. (A) Actual wave to be analyzed. (B) Assumed wave that will 
be analyzed. 

record is of less consequence. Techniques are available to “tail out” the ends 
of the record to minimize the error even further. 

When a large but nonintegral number of cycles of a truly periodic 
waveform is transformed, each harmonic of the actual waveform becomes a 

group of harmonics of the assumed waveform. An example of this is shown in 
Fig. 13-10 in which 5.31 cycles of a waveform containing fundamental, 
second, and third harmonics in equal proportions was made into a record and 
Fourier transformed. The three clusters of transform harmonics correspond to 
the individual harmonics of the actual waveform. High-frequency energy 
above the third waveform harmonic is due to the discontinuity caused by the 
nonintegral number of cycles in the record. 

When a section of changing sound is marked off into a record, the 
spectrum reported by the Fourier transform is the average spectrum during 
the time interval represented by the record. Thus, if ane wishes to use 
Fourier transformation to track a changing spectrum, the variation contours 

will themselves be sampled curves with the sample period equal to the record 
period. As a result, there is a tradeoff between long record size for minimum 

“periodicity error” and maximum frequency resolution, and a short record 

size for following rapidly changing sounds. One technique that is often 
useful is to overlap successive records rather than arrange them end to end. 
This way one can obtain a high “spectrum sample rate” while using ade- 
quately long records. 

Fourier transform synthesis is also complicated by record orientation. 
There are actually two problems. One is that an integral number of cycles of 
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Fig. 13-10. Discrete Fourier transtorm of 5.31 cycles of a waveform containing 
equal proportions of fundamental, second, and third harmonics 

the synthesized waveform is just as unlikely to span the record as in the 
analysis case. The other problem is that if the spectrum changes significantly 
from one synthesized record to the next, there is likely to be a discontinuity 
between the two records when they are spliced together. These synthesis 
problems may be overcome by record overlapping and time-variable interpo- 
lation between the overlapping records. 

The frequency domain data produced and used by the discrete Fourier 
transform bear a very specific relationship to the corresponding sample rec- 
ord. In particular, the number of harmonics (including the zeroth or de 
component) in the frequency domain representation is exactly one-half the 
number of samples in the time domain record plus one. It is easily seen that 

any more than this would not make any sense. For example, let’s assume a 
record size of 200 samples taken at a sample rate of 10 kHz. The record 
duration, therefore, is 20 msec, which is also the period of the assumed 

periodic waveform. A 20-msec period is a 50-Hz frequency for the assumed 
wave, so harmonics would fall at 50 Hz, 100 Hz, 150 Hz, etc. It is easy to 

determine, then, that there are 100 harmonics at or below one-half the 

sample rate and, when the dc component is included, the total becomes 101, 
which is one-half the record size plus one. This also shows that the frequency 

resolution of the analysis is 50 Hz or simply the reciprocal of the record 
duration, 

Each harmonic in turn consists of two components. Although har- 
monics have been characterized by amplitude and phase so far, the Fourier 
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transform normally deals in sine and cosine components of the harmonic, 
which can be negative as well as positive. Conversion between the two forms 
is actually quite simple. The overall harmonic amplitude, A, is given by 

A=VS5?+C?, where § is the sine component value and C is the cosine 
camponent. The effective phase angle (in radians) is listed in the following 
cable: 

Cc S Phase angle 

+ + Tan-1(S/C) 
= + Tan~'(S/—C) 

= = Tan '(S/C) 
+ Tan-!(—8/C) 

Note that these formulas always give a positive amplitude and phase 
angle. Also, C will have to be tested for zero before calculating the phase 
angle to avoid division overflow. When C is zero, the phase is 7/2 if S is 
positive and 37/2 if § is negative. When translating from amplitude and 
phase to sine and cosine the formulas are: C=Acos(P) and S=Asin(P). 

Thus, conversion from one form to the other is fairly simple. 

The de and Nyquist frequency components of the wave are a special case, 
however. The cosine part of the zeroth harmonic is the actual dc component, 
while the sine part would be expected to be zero, since a zero frequency wave 

cannot have a phase angle other than zero. For mathematical completeness, it 
is also necessary to consider the harmonic at exactly one-half the sample rate. 

As it turns out, the Nyquist frequency harmonic must have a zero sine part 
also. Note that if this Nyquist frequency component is very strong, it is an 
indication of serious aliasing in the data. Thus, ina real audio signal applica- 
tion, its existence can usually be ignored. 

Now, if the harmonic components are counted up, we find that there is 

exactly the same quantity of numbers forming the frequency domain repre- 
sentation as are in the time domain representation. Actually, this is a re- 
quirement if the transformation is to be precisely reversible for any arbitrary 
sample set as was stated earlier. Fourier transformation is exactly what the 

name implies, a data transformation. It alone is not a magic data compression 
technique. 

Slow Fourier Transform 

Before delving into the fast Fourier transform, it is necessary to under- 
stand how che straightforward but slow version works. A few pages ago there 
was some discussion about filling a waveform table by evaluating a Fourier 
series. By making a couple of modifications to the procedure, the inverse 
(frequency domain to time domain) slow Fourier transform results. The first 
modification is that the number of samples generated in the output record 
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will be exactly twice the number of harmonics in the input record. The other 

modification is for the sine and cosine form of the harmonic data. Thus, 

when filling a waveform table of 256 entries, 128 harmonics must be 

specified, although many if not most of the higher ones may be zero to avoid 

aliasing problems when the table is used for synthesis. 

The program segment below, illustrates the inverse slow Fourier trans- 

form. The “C” and “S” arrays hold the cosine and sine harmonic data, 

respectively. The dc component uses subscript 0, the fundamental uses sub- 

script 1, etc. Thus, the cosine component of the eighth harmonic would be 

stored in C(8) and thc sinc component would be in S(8). During execution, 

the time samples will be stored in the T array, which also starts at subscript 0 

and is assumed to initially contain zeroes. The constant N is simply the 
number of samples in the record and should be even. 

1000 FOR I=0 TO N/2-1 
1001 FOR J=0 TO N-1 
1002 LET TQ)=TQ)+CM)*COS(6.28318*1*J/N) 
1003 NEXT J 
1004 NEXT I 
The outer loop steps through the harmonics starting at the zeroth and ending 
one short of N/2. The inner loop steps through all of the time samples for 

each harmonic adding the specified cosine and sine components to the cur- 
rent content of the samples. 

The “forward” transform, which converts time samples into harmonic 
components, however, is what most people have in mind when they speak 
about a Fourier transform. Unfortunately, its computation is not intuitively 
obvious, although it turns out to be no more complex than the inverse 
transform. The basic approach for determining the amplitude of a component 
with a particular frequency and phase is to generate samples of the sought 

component, multiply them by corresponding samples of the signal to be 
analyzed, and then add up the products. The sum, after being divided by 
one-half the record size for averaging and mathematical anomalies is the 
amplitude of the signal component having that frequency and phase! (The de 
component will be twice its correct amplitude, however.) 

The truth of this can be comprehended by remembering that multiply- 
ing two sinusoidal signals is equivalent to balanced modulation and produces 
a signal having only sum and difference frequency components. The reader 
should also recall that any sinusoidal wave averaged over an integral number 
of cycles is zero. It is easily seen then if the two signals being multiplied have 
different frequencies, that the product consists of two sinusoidal waves that, 
when averaged over a duration having an integral number of periods for both, 
gives zero. If the frequencies being multiplied are the same, the difference 
frequency is zero, which is de and results in an average value equal to the 
product of the signal amplitudes if they are perfectly in phase. When noc in 
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phase, the average is proportional to the cosine of the phase difference. 
Fortunately, this procedure works even when one of the signals has many 
frequency components; if one component matches it will contribute a dc 

component to the product samples. Thus, by using two ‘‘probe” waves 90° 
apart in phase at all of the possible harmonic frequencies of the data record, 
one may determine its complete harmonic amplitude and phase makeup. 

The program segment below, which is remarkably similar to the in- 
verse transform segment, performs discrete Fourier analysis. The C, S, and T 

arrays and N are as before and C and S are assumed to be initially zeroes. 

1000 FOR I=0 TO N-1 
1001 FOR J=0 TO N/2~1 
1002 LET CJ)=CY)+T(1)*COS(3. 14159*1*J/N)N/2) 
1003 LET SQ)=S()+T()*SING. 14 159*I*J/N)/(N/2) 
1004 NEXT J 
1005 NEXT I 

The outer loop in this case scans the time waveform, while the inner loop 
accumulates running averages of cosine and sine components of each har- 

monic. Note that the Nyquist frequency component is not computed. There- 
fore, if one transforms arbitrary random data and then transforms it back, the 

result will not be exactly equivalent. However, practical, unaliased data will 
be returned with only a slight roundoff error. Nore also that in both of these 
program segments that the inner and outer loops may be interchanged with 
no real effect on the results. 

Fast Fourier Transform 

Examination of the preceding two program segments reveals that N2 
useful multiplications and additions are required for the transformation. Use- 
ful is emphasized because a well-thought-out assembly language implemen- 
tation of the programs could eliminate multiplications within the cosine and 
sine arguments by proper indexing through a sine table. Likewise, subscript 
calculations can be eliminated by use of index registers. The division by N/2 
in the forward transform may still be required, but it can be deferred until 
the computation is completed and then need only be a shift if the record size 
is a power of two. In the case of the inverse transform, the number of 

multiplications may be cut in half by using the amplitude-phase form for the 
harmonics rather than cosine-sine. 

Even with the world’s most efficient assembly language program, a 
tremendous amount of computation is needed for even a moderate number of 
samples. For example, 20-msec blocks taken at a 25 kHz sample rate would 
be 500 samples that, when squared, implies about a quarter of a million 
operations for the transform. Upping the sample rate to 50 kHz quadruples 
the work toa million operations. An efficient assembly language program on 
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a minicomputer with automatic multiply would require about a minute for 
such a transform, while a BASIC equivalent running on a microcomputer 

might crunch on it overnight, and that is just one record! 
Like many topics in computer science, the real key to speed lies in an 

efficient algorithm rather than an efficient program. In the case of the 
discrete Fourier cransform, such an algorithm was first publicized in 1965 
and results in an enormous reduction in computation at the expense of a 
longer and rather difficult-to-understand procedure. The fast Fourier trans- 
form algorithm requires approximately Nlog2N multiplications and 
additions instead of N?. This means that 512 samples need only about 4,500 

operations, while 1,024 samples need about 10,000 operations. This is a 
savings of 100-to-1 for the 1,024-sample case! 

Redundancy 

The key to the fast Fourier transform (FFT) algorithm is identification 

and systematic elimination of redundancy in the calculations executed by the 
slow Fourier transform (SFT). From looking at the two program segments, it 
is obvious that every possible product of samples (forward) or amplitudes 
(inverse) and sine/cosine values is formed. Figure 13—11A shows how the sine 

and cosine multipliers for each harmonic can be arranged in a square array. 
The horizontal axis represents time, while the vertical axis represents fre- 
quency. The number at each intersection is a sample of the sine/cosine wave 
for the row at the time designated by the column. 

For the forward transform, one would first write the waveform sample 
values as a row of numbers above the top of the coefficient array. Then each 
sample would be multiplied by every coefficient in the corresponding column 
with the product written just below the coefficient. Finally, the products 
would be added up by row and the sums written as a column at the right side 
of the array. This column then represents the spectrum of the waveform. For 
the inverse transform, the process would be reversed by starting with the 
spectrum column, forming products by row, and adding by column to get a 
row of time samples. Parts B and C of Fig. 13-11 show these operations for a 
record size of 16 samples. Note that the row for the sine of the de compo- 
nent, which would otherwise be all zeroes, has been replaced by the sine of 
the Nyquist frequency component. 

Examination of the array reveals considerable redundancy in the prod- 
ucts, however. For example, the product of sample number 2 and the cosine 
of 7/2, which is 0.707, occurs four times. If in the computation, multipli- 
cation by a negative number is replaced by subtracting the product of the 
corresponding positive number, then the product of sample 2 and 0.707 can 
be reused eight times. Further computational savings are possible by skip- 
ping multiplication altogether when the cosine or sine values ate zero or 
unity. Doing all of this reduces the actual number of unique products to a 
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mere 28 instead of the original 256! Although it is not immediately apparent 

how the redundancies can be identified in a general algorithm, one can use 
mattix theory and trigonometric identities and derive the FFT algorithm 
from this type of table. 

A completely different way to look at the redundancy involves the 

concept of decimation, As an example, consider a sample record with N 
samples where N is even. Using the SFT, one could perform N? operations 
and wind up with the spectrum. Now consider splitting the record into two 
smaller records with N/2 samples in each such that the even numbered 
samples go to one record and the odd numbered ones to go the other. If an 
SFT is performed on each record, it will require N2/4 operations for a total of 
only N?/2 operations. The trick is to combine the two resulting spectrums 
into one reptesenting the true spectrum of the original record. This can be 
accomplished by duplicating the even sample spectrum of N/4 harmonics and 
adding with a progressive phase shift the odd sample spectrum, also dupli- 

cated, to yield N/2 harmonics total. The combination requires N extra 
multiplications and additions. 

If N is divisible by 4, the decimation opetation could be repeated to 
give four records of N/4 samples each. The SFT can be performed on each, 
requiring only N?/4 operations, and the four resulting spectrums combined 
in two stages to form the final spectrum. In face, if N is a power of two, 
decimation can be repeated until there are N/2 subrecords, each having only 
two samples as in Fig. 13-12, Note the resulting scrambled order of the 
samples. This is called 4it-reversed order because if the binary representation of 
the scrambled sample numbers is observed in a mitror, it will appear to be a 
simple ascending binary sequence. 

Since the discrete Fourier transform of two samples is trivial (the cosine 
component of the single harmonic is the sum of the sample values, while the 
sine component is the difference), most of the computation is combining the 
subspectra together in stages to form the final spectrum. The essence of the 
FFT, then, is complete decimation of the time samples followed by recombi- 
nation of the frequency spectra to form the exact spectrum of the original 
sample set. 

Complex Arithmetic 

At this point in the description of the FFT we will be forced to commit 
a mathematical “copout” that is customary in such a discussion. In any case, 
it will not only simplify the discussion but will facilitate the development of 
an FFT program. The first step is to treat each harmonic, which has a cosine 
and a sine component, as a single complex number. Although the cosine 
component is normally called the ‘real’ part and the sine component the 
“imaginary” part, both are quite real as far as a physical waveform is con- 
cerned. Therefore, it is best to forget about “real” and “imaginary” and 
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fo 1 2 3 4 5 6 7 8 9 © WN @ 8 15? 

fo 274 6 8 0 2 al % 3 5 7 9 TT 8B 

’ v ’ Tec v 

fo 4 6 i) @ 6 0 w! 7 5 9 wt 7 Was! 

+ ' \ | x ' 

Ce eS DT 

C000 1000 4100 1100 0019 1010 0110 1110 0001 1001 O101 1101 OOLT 1011 O11 1994 
ara 

90 SoG} GOT O11 G19 GIOT 170 0511 1000 1001 1010 1011 1100 1101 1110 1141 

Fig. 13-12. Stages in decimation of a 16-sample record 

consider the complex number as a compact method of representing a pair of 
closely related but independent numbers. Accordingly, complex numbers 
will be represented here as two ordinary numbers, real part first, separated by 
a comma in a manner much like the two-dimensional coordinates of a point. 

The cosine and sine multipliers used in the computation are also con- 
sidered to be complex numbers. Previously we used the cosine and sine of an 

angle that incremented by 27/N for the fundamental, 477/N for the second 
harmonic, etc. Now the cosine and sine of the angle will be treated as a single 
complex number. Since the angles are always an integer times 277/N, we can 

define a complex function, W, such that W(1)=cos(27I/N),sin(271/N), 

where J is any integer and N is the number of points in the record under 
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Fourier Multipliers Expressed as 
Arguments of the Function 

Wil) = COS(271/N), SIN(27I/N) 

N= 16 

Time " 

oO 1 2 3 4 5 6 id 8 9 10 it 12 (13 14° 18 

Q O 0 oO oO 0 oO ie) o O o oO 0 i) 0 0 oO 

1 oO 1 2 3 4 5 6 7 8 9 10 1 12 13 14 16 

2 0 2 4 6 8 10 12 14 it) 2 4 6 8 10 12 14 

3 0 3 6 9 12 15 2 5 8 W 14 1 4 b 10 13 F 

4 0 4 8 12 0 4 8 2 #O 4 8 12 0 4 8 12 
5 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 ; 

6 0 6 12 2 8 14 4 10 0 6 12 2 8 14 * 10 @ 

7 Q 7 14 5 m 3 10 1 8 15 6 13 4 1 2 9 4q 

8 0 8 lo) 8 0 8 Oo 8 oO 8 te) 8 ie} 8 oO Bou 

9 to) 9 2 "1 4 3 6 16 8 1 10 3 12 5 14 7 & 

10 0 10 4 14 8 2 12 6 Oo 10 4 14 8 2 12 6” 

W 0 it 6 1 12 7 2 13 8 3 14 9 4 15 10 5 ¢ 
12 Q 12 B 4 0 12 8 4 oO 12 8 4 oO 12 8 4 sy 

13 ie) 13 10 7 4 1 14 abl 8 5 2 15 12 9 6 3 
14 Q 14 12 10 8 6 4 2 i) 14 12 10 8 6 4 2 
15 i 15 14 13 12 W 10 9 a 7 6 5 4 3 2 1 

Fig. 13-13. Fourier multipliers expressed as arguments of the function W(/) = 
cos(2al/N),sin(2z1/N). N = 16. 

consideration which is constant throughout the FFT computation. If I ever 
exceeds the range of 0 to N~1, it is customary to use the principal value, 
which is simply I mod N. Finally, as if nothing is sacred, even the time 
samples are considered to be complex numbers with a real part and an 
imaginary parc. 

As a result of going complex, the number of harmonics is equal to the 
number of complex samples. Thus, the forward FFT takes a set of N complex 
time samples and generates a set of N complex harmonics. As we will see 
later, all of the*intermediate arithmetic in the FFT algorithm is also com- 
plex. 

In the real world, which includes audio, the time samples are, of 

course, real, which means that the imaginary parts are zero. The correspond- 

ing spectrum has only (N/2)+ 1 wnique harmonics; the remaining (N/2)—1 
ate simply the complex conjugate (the signs of the sine components are reversed) 
of the others less de and Nyquist frequency components. Thus, in actual use 
with audio samples, one has N samples and (N/2)+1 harmonics, just as 

before. Although the preceding implies considerable waste in the computa- 
tion, a method of eliminating it will be described later. 
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With these conventions for reptesenting everything as complex num- 
bers, the SFT coefficient matrix can be rewritten as in Fig. 13-13. The 
numbers listed in the matrix are arguments to the W function mentioned 
earlier needed to generate the proper complex multiplier. The operations 
involved in going from time to frequency and back are the same as before, 
except all arithmetic is now complex. In case one has forgotten (or never 
knew) the basic arithmetic operations on two complex numbers, A,B and 
C,D are given below: 

A,B + C,D = A+C,B+D 

A,B — C,D = A-D,B—D 

A,B X C,D = AC-—BD,AD+BC 

AB _ AC+BD BC—AD 
GD CED?’ C+D? 

The nice thing about the complex form of the SFT is that it is com- 
pletely symmetrical. There are no special cases for de or Nyquist compo- 
nents, and the form of the output is exactly the same as the form of the input. 

The FFT Algorithm 

At this point, we are ready to look at the FFT algorithm itself. Ac- 

tually, there are many different algorithms, each with an edge over the others 
in certain applications. They all, within roundoff error, give the same resulc, 
however. The one that will be described here is one of the most straightfor- 
ward and has the desirable property that sines and cosines (the W function) 
are used in ascending order. In technical terms, it is a radix 2 FFT using time 

decomposition and input bic reversal. Radix 2 means that the record size 
must be a power of two. Other radices are possible, but two is the most 
efficient, particularly in a binary computer. 

The first step in the FFT is to completely decompose the input samples, 
which means that they are scrambled in bit-reversed order as in Fig. 13-12 

Fortunately, the scrambling can be accomplished without need for a second 
array. One simply programs two counters, one normal] and one bit-reversed, 

and iterates them from 0 to N—1. Whenever the bit-reversed counter is 
numerically greater than the normal counter, the corresponding samples are 

swapped. This is illustrated in Fig. 13-14 for N=16, bur the procedure 

applies for any record size as long as it is a power of two. In assembly 
language on a microprocessor, one could use just one counter and write a 
bit-reversal function, which would take a binary number and return its 
bit-reversed equivalent. 
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‘Step Norma! Counter Bit Reverse Counter Action 

1 0000 ‘9000 NONE 
2 0001 1000 SWAP 188 
3 0010 0100 SWAP 2&4 
4 ont 1100 SWAP 3 & 12 
5 100 0010 NONE 
8 101 1010 SWAP 1085 
7 110 0110 NONE 
8 ort 110 SWAP 1487 
9 1000 0001 NONE 
10 1001 1001 NONE 
4 1010 o101 NONE 
12 1011 1104 SWAP 13 11 
13 1100 ott NONE 
14 1401 101 NONE 
16 1110 ont NONE 
18 1411 vt NONE 

oO ! 2 3 4 5 6 id 8 9 '0 W 68 4 15 

8 4 12 2 lo 6 14 | 2 5 13 3 I 7 15 

Fig. 13-14. In-place bit-reverse scrambling 

The second part of the procedure takes the scrambled sample set, 
massages it using the W function with various arguments, and produces the 
spectrum as output in natural ascending order. The computation is done in 
place, which means that the sepctrum replaces the sample data with no inter- 
mediate storage required! Thus, the FFT is literally a transformation of the 
data in the record. 

AB EF 

¢,0 ————— w(I) 

COMPLEX 
EF = AB + WiNC.0) EXPRESSION 

E = A + COS (ntinC ~ SIM(2o¥njD = NORMAL 
F= B+ GOS@almO + SINZmin)C EXPRESSION 

Fig. 13-15. Nodes used in FFT butterfly diagram 
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The massaging is best described using a special flowchart called a 
butterfly diagram because of its appearance. The fundamental element of a 
butterfly diagram is the node, which is illustrated in Fig. 13-15. There are 
always two inputs to the node. One goes straight in, while the other is 
multiplied by the W function of a specified argument before entering. In the 
node, the two inputs are added together to form a single number, which may 
then become the source for further computations. A node therefore implies 
one complex multiplication and one complex addition. Ina computer program, 
this would be accomplished with four normal multiplications and additions. 

Figure 13-16 shows the butterfly diagram for a 16-point (N=16) 
FFT. Note that there are N rows and log2N columns of nodes. The rows 
correspond to storage locations that are initially filled with the scrambled 
time samples and later become loaded with the spectrum harmonics. The 
computation proceeds one column at a time starting from the time samples at 
the left. In order to retain the in-place computation property of the al- 
gorithm, the nodes are evaluated in pairs. Each member of the pair uses the 
same inputs and produces outputs on the same rows as the inputs. Further- 
more, these inputs are not used by any of the other nodes in the column. 
Thus, after the node pair is evaluated, the node outputs can be stored in place 

of the values used as their inputs. Careful examination reveals that the two 
values of the W function used in each pair of nodes are always the negative of 

oecimaren |" 
TIME FFT 

HARMONICS SAMPLES 8 

Fig. 13-16. N = 16 FFT butterfly 
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each other. This is important because the actual number of multiplications 
required to evaluate the node pair can then be cut in half. 

After the first column of nodes has been processed, everything is back 
in storage in a partially ceansformed state, and processing of the next column 
of nodes can begin. When the rightmost column has been evaluated, the 
array contains the N complex harmonics. Note that for the first column the 
nodes that should be paired for calculation are adjacent. In the next column, 

the pair members are two apart, in the third column four apart, and so forth. 

Also note that the mass of crossing lines forms a group of two nodes in the 
first column, four nodes in the next column and so forth until there is only 

one mass in the final column. These and other symmetries discovered by 
examining the diagram should make the progression sufficiently clear so that 
generalization for other values of N can be understood. Since the progression 
is consistent from column to column, it is clear that a general FFT subroutine 
can be written for any value of N that is a power of two. 

Table 13-1 shows the actual sequence of intermediate results corre- 
sponding to the diagram. The example time samples are of a seven-harmonic 
approximation to a sawtooth wave with a few degrees of phase shift included 
to make life interesting. Note that the spectrum output starts with the dc 
component in the zero array position, fundamental in position 1, etc. up to 
the seventh harmonic in position 7. The Nyquist component is in position 8 

(the sine part is always zero), while higher array positions contain the first 

through the seventh harmonics again but in descending sequence and with 

the sign of the imaginary components (sines) flipped. Also note that the 
correct amplitudes of the frequency components have been multiplied by N/2 
except for the dc component, which is N times too large. 

An FFT Subroutine in BASIC 

Figure 13—17 is an FFT program written in BASIC. Although BASIC 
and fast are contradictory terms, the program serves to illustrate the al- 
gorithm and to allow the reader to become familiar with it. The array of 
complex input samples is actually stored and handled as two arrays of normal 
numbers; D1 being the real part and D2 being the imaginary part. Note that 
the array subscript starts at zero. When the transformation is complete, the 

spectrum is stored in the same two arrays. To insure that N is a power of two, 

the record size is specified by K, which is logeN and must be a positive 
integer. 

In the program itself, statements 3110 to 3125 scramble the naturally 
ordered time samples into bit-reversed order using the method illustrated 
earlier. N3 being the “for” loop index counts naturally from 1 to N. N1 in 
conjunction with statements 3114 to 3117 acts like a bit-reversed counter 

taking on successive values of 0, 8, 4, 12, 2, etc. (for the N=1G case). 

Whenever N 1 is greater than N3, the samples pointed to by N1 and N3 are 

swapped. 



420 MUSICAL APPLICATIONS OF MICROPROCESSORS 

3000 REM FAST FOURIER TRANSFORM USING TIME DECOMPOSITION WITH 
3001 REM INPUT BIT REVERSAL 
3002 REM COMPLEX INPUT DATA IN ARRAY D1 (REAL PART) AND D2 (IMAGINARY 
3003 REM PART). 
3004 REM COMPUTATION IS IN PLACE, OUTPUT REPLACES INPUT 
3005 REM K SPECIFIES NUMBER OF POINTS, K=LOG(2)N 
3100 REM SCRAMBLE THE INPUT DATA INTO BIT REVERSED ORDER 
3110 N=2**K 
3111 N1=0 
3112 N@=N-1 
3113 FOR N3=1 TO N2 
3114 N4=N 
3115 N4=NAa/2 
3116 IF N1+N4>N2 GOTO 3115 
3117 NI=NL-INT(NI/N4)*N4+N4 
3118 IF N1<=N3 GOTO 3125 
3119 T1=D1(N3) 
3120 D1(N3)=D1(N1) 
3121 D1(N1)=T1 
3122 T2=D2(N3) 
3123 D2(N3)=D2(N1) 
3124 D2(N1)=T2 
3125 NEXT N3 
3200 REM DO THE COMPLEX TRANSFORM 
3210 N4=1 
3211 N6=2*N4 
3212 FOR N3=0 TO N4-1 
3213 A=N3*3.1415927/N4 
3214 C=COS(A) 
3215 S=SIN(A) 
3216 FOR N7=N3 TO N-1 STEP N6 
3217 N8=N7+N4 
3218 T1=C*D1(N8)-S*D2(N8) 
3219 T2=C*D2(NB)+5*D1(N8) 
3220 D1(N8)=D1(N7)-T1 
3221 D2(N8)=D2(N7)-T2 
3222 D1(N7)=D1(N7)#T1 
3223 D2(N7)=D2(N7)+T2 
3224 NEXT N7 
3225 NEXT N3 
3226 N4=N6 
3227 IF N4<N GOTO 3211 
3228 RETURN 

Fig. 13-17. FFT subroutine in BASIC 

Statements 3210 to 3227 implement the butterfly diagram and consist 
of three nested loops. The outer loop, which spans lines 3211 to 3227, is 

executed for each column of nodes. The next loop starts in line 3212 and is 
iterated for each different principal value of the W function. The innermost 
loop starting at 3216 covers all of the pairs of nodes using a particular 

principal value. In the N=16 example, the outer loop will be executed four 
times for the four columns of nodes. The middle loop will be executed one 
time for column 1, twice for column 2, four times for column 3 and eight 

times for the final column. The inner loop count is the inverse of the middle 
loop and is executed 8, 4, 2, and 1 time for each iteration of the middle loop. 
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Innermost in the nest of loops is the useful calculation for a pair of 

nodes. The complex numbers chat form the node inputs, outputs, and W 
function are handled one part at a time according to the rules of complex 
arithmetic. Note that only the lower argument value (principal value) of W’ is 
explicitly evaluated, since the upper argument value gives the same result 

with opposite sign. A count of useful operations for the node pair gives four 
multiplications and six additions. These statements are evaluated (NlogeN)/2 
times, which gives a total of 2Nlog2N multiplications and 3Nlog2N 
additions. 

So far the FFT has been described in terms of transforming a set of time 

samples into a frequency spectrum. Because of the symmetry of the W 
coefficient array, transforming a spectrum into a sample record requires only 
a trivial change in the FFT subroutine. All that is necessary is to place a 
minus sign in front of N3 in statement 3213. When this is done, the 
spectrum to be transformed is stored in che D arrays in the same format that 
it appears after a forward transform (be sure to store both the normal and the 
conjugate spectrum) and the modified FFT subroutine is called. The time 
samples will then appear in the D1 array with the first one at the zero 
subscript position. No amplitude adjustment is necessary after the inverse 

transform. 

Modification for Real Data 

As was noted earlier, the complex formulation of the FFT tends to be 

wasteful when the time samples are real. The multiplication count turns out 
to be twice the promised value, which is due to the assumption of complex 
data and the redundant set of computed harmonics. Fortunately, it is possi- 
ble to eliminate the wasted storage and redundant spectrum by the addition 
of a real/complex conversion subroutine. 

For the forward FFT, the idea is to store the even-numbered time 

samples in the real part of the data array and the odd-numbered samples in 
the imaginary part, thus doubling the number of samples stored. Next, the 
FFT is performed as described previously. The spectrum that emerges is no 
longer redundant and typically looks like a list of random numbers. At this 
point, a complex-to-real conversion is performed on the specttum, which 
results in a complete, conventional spectrum of N+1 harmonics for the 2N 
data points. For convenience, the Nyquist component is stored as the sine 

part of the de component which would otherwise always be zero. 
For an inverse FFT, the spectrum is first entered into the data array 

normally with no duplication required. Next a real-to-complex conversion is 
performed that transforms the set of real harmonics into a complex set. 
Finally, the inverse FFT is executed to generate a list of 2N time samples 
stored in even-odd order as before. 

Figure 13-18 is a diagram of the computations involved in the 
complex-to-real conversion. First the dc and Nyquist components are both 
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Fig. 13-18. Complex-to-real transformation for N = 16 
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derived from the de term in the complex spectrum according to the “f”’ 
function. Next the pairs of harmonics that would have been conjugates if the 
even—odd storage arrangement were not done are combined according to the 
“g” function to produce a pair of real harmonics. Finally, the “4” function is 
applied to the remaining N/2th spectral component. Note that cosines and 

sines of angle increments half the size of the smalJest increment used in the 
FFT are utilized in evaluating g much like an extra step in the FFT. In fact, 
the whole procedure can be regarded as an extra column of nodes in the FFT 
algorithm. 

Figures 13-19 and 13-20 are BASIC subroutines for complex-to-real 

and real-to-complex conversion, respectively. The complex-to-real routine 
also scales the spectrum output so that all of the harmonics, including the dc 
component, are of the correct amplitude. Except for scaling, the real-to- 
complex routine undoes what the complex-to-real routine does. 

The conversion adds essentially 2N multiplications to the FFT, which 
gives a total of 2N+2NlogeN for 2N data points. If M = 2N = the number 
of real data points, this is equal to Mlog2M multiplications, which is the 

4000 REM COMPLEX TO REAL TRANSFORMATION FOR FOURIER TRANSFORM 
4001 REM IF REAL DATA POINTS ARE ALTERNATELY STORED IN D1 AND D2 
4002 REM ARRAYS, I.£. TO->D1(0), Tl-»02(0), T2->D1(1), T3->02(1), ... 
4003 REM THEN THIS ROUTINE CONVERTS THE COMPLEX SPECTRUM INTO A 
4004 REM REAL COSINE-SINE SPECTRUM. 
4005 REM THE ROUTINE ALSO DOES AMPLITUDE CORRECTION ON THE OC 
4006 REM COMPONENT AND THE HARMONICS SO THAT THE FINAL SPECTRUM OUTPUT 
4007 REM 1S THE TRUE SPECTRUM OF THE WAVE. 
4008 REM THE SINE PART OF THE DC COMPONENT IS SET EQUAL TO THE NYQUIST 
4009 REM COMPONENT AND SHOULD BE NEAR ZERO IF THE SAMPLE RATE OF THE 
4010 REM DATA WAS ADEQUATE. 
4011 REM THIS ROUTINE USES THE SAME INPUT AS THE FFT ROUTINE 
4100 N=2*4K 
4200 REM COMPUTE DC AND FOLDOVER COMPONENTS 
4201 T1=D1(0) 
4202 T2=D2(0) 
4203 D1(0)=(T1+T2)/({2*N) 
4204 02(0}=(11-12)/{2*N) 
4300 REM COMPUTE REMAINDER OF FREQUENCY COMPONENTS 
4301 FOR Nl=1 TO N/2 
4302 N2=N-N1 
4303 C=COS(-3.1415927*N1/N) 
4304 S=SIN(-3.1415927*N1/N) 
4305 T1=(D1(N1)+D1(N2))/2 
4306 T2=(D1(N1)-D1(N2))/2 
4307 T3=(D2(N1)+D2(N2))/2 
4308 T4=(D2(N1}-02(N2))/2 
4309 T5=T2*S-T3*C 
4310 T6=T2*C+T3*S 
4311 D1(N1)=(T1-T75) 
4312 D1(N2)=(T1+T5) 
4313 02(N1)=(T4-T6) 
4314 02(N2)={-T4-T6 
4315 NEXT N1 
4316 RETURN 

iN 
IN 
iN 
) 

Fig. 13-19. Complex-to-real spectrum transformation routine in BASIC 
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5000 REM REAL TO COMPLEX TRANSFORMATION FOR INVERSE FOURIER TRANSFORM. 
5001 REM THIS ROUTINE CONVERTS A REAL COSINE-SINE SPECTRUM INTO A 
5002 REM COMPLEX SPECTRUM THAT WHEN INVERSE FOURIER TRANSFORMED WILL 
5003 REM PRODUCE REAL DATA POINTS STORED SUCH THAT EVEN NUMBERED 
5004 REM POINTS ARE IN THE REAL PART OF THE DATA ARRAY AND ODD 
5005 REM NUMBERED POINTS ARE IN THE IMAGINARY PART OF THE ARRAY. 
5006 REM THIS ROUTINE IS THE INVERSE OF THE COMPLEX TO REAL ROUTINE 
5007 REM EXCEPT FOR SCALING WHICH HAS BEEN SET FOR THE PROPER OUTPUT. 
5008 REM THIS ROUTINE FOLLOWED BY AN INVERSE FOURIER TRANSFORM IS THE 
5009 REM EXACT INVERSE OF A FORWARD FOURIER TRANSFORM FOLLOWED BY THE 
5010 REM COMPLEX TO REAL ROUTINE. 
5011 REM THIS ROUTINE USES THE SAME INPUT AS THE FFT ROUTINE 
5100 N=2**K 
5200 REM RESTORE DC AND FOLDOVER COMPONENTS 
5201 T1=n1(0) 
5202 T2=D2(0) 
5203 D1(O}=T1+T2 
5204 D2(0)=T1-T2 
5300 REM COMPUTE REMAINDER OF FREQUENCY COMPONENTS 
5301 FOR N1=1 TO N/2 
5302 N2=N-N1 
5303 C1=COS(-3.1415927*N1/N) 
5304 S1=SIN(-3.1415927*N1/N) 
5305 T1=(D1(N1)+D1(N2))/2 
5306 T4=(D2(N1)-D2(N2))/2 
5307 T5=(D1(N2)-D1(N1))/2 
5308 T6=(-D2(N1)-D2(N2))/2 
5309 T2=T5*S1+T6*C1 
5310 T3=T6*S1-T5*C1 
5311 D1(N1)=T1+T2 
5312 D1(N2)=T1-T2 
5313 D2(N1)=T3+T4 
5314 D2(N2)=13-T4 
5315 NEXT N1 
5316 RETURN 

Fig. 13-20. Real-to-complex spectrum conversion routine in BASIC 

promised value. With clever programming to avoid multiplication by zero 
and one in the FFT and real conversion routines (especially in the first 
column of the FET), one can ultimately reach a lower limit of 

M [dogeat)—2] multiplications, which is a significant reduction when M is 
small. 

Using the FFT for Synthesis 

Although the greatest value of the FFT is in sound analysis and modifi- 
cation, it is covered in this chapter because it is also a powerful “synthesis- 
from-scratch” technique. Unfortunately, its record-oriented properties com- 
plicate application to changing spectra with arbitrary frequency components. 

However, if the required spectral detail is great, the FFT can be much more 
efficient in computing samples than a direct Fourier series evaluation in spite 

of these complications. 

In all FFT-based synthesis procedures, the general idea is to compute a 
sequence of sample records using the FFT and then combine them sequen- 
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(A) 

L. 
y 

DISCONTINUITIES 
(B) 

Fig. 13-21. Generating an arbitrary frequency sine wave with the FFT. (A) 
Record boundaries with a 256-Hz wave. (B) Phase correction 
between records. 

tially in time to produce a continuous string of samples suitable for further 
processing or output to a DAC. Generally, the record size is chosen once and 
remains constant throughout the synthesis but a dynamically variable record 
size is conceivable. If the synthesis result is intended for human consump- 
tion, record sizes in the 10-msec to 50-msec range provide the best tradeoff 
between frequency and time resolution consistent with human perceptual 
capabilities. 

In order to get acquainted with some of the problems and their solu- 
tion, let's first consider the task of generating a sine wave of an arbitrary but 
constant frequency using the FFT. For the purpose of illustration, we will 

assume a sample rate of 10 kHz = 0.1 msec/sample, a record size of 256 = 

25.6 msec, and a sine wave frequency of 200 Hz. The first problem that will 
be noted is that 200 Hz is not an exact harmonic of 1/25.6 msec = 39.0625 
Hz. The closest harmonic is the fifth, which ts 195.3 Hz, an error of about 

one-third semitone. If FFT synthesis is to be useful, a way must be foutid to 
produce such intermediate frequencies accurately. 

Figure 13-21A illustrates the problem. Shown is an exact sampled 
200-Hz waveform and the record boundaries for 256-sample records. Obvi- 
ously, the phase of the desired wave with respect to the record boundaries is 
different for each record. in fact, the phase advances by 
(200 — 5 X 39.0625)/39.0625 = 0.12 cycle every record period. Since the 
spectrum fed to the FFT includes phase, one can increment the phase of the 
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fifth harmonic by 0.12 X 2a before each record is calculated and. thus 
generate the correct average frequency. 

Unfortunately, there is a substantial glitch where the records are 
spliced together as shown in Fig. 13-21B. This is due to the fact that the 
wave frequency within the records is still 195 Hz and the entire phase 
correction takes place between the “records. Such discontinuities are quite 
objectionable. If there was a way to spread the correction throughout the 
record, perhaps the results would be better. 

One method of accomplishing spreading involves the concepts of record 
overlap and interpolation. Overlap means that the end of one record overlaps 
the beginning of the next rather than butting up against it. Time-variable 
interpolation is used to combine the overlapping portions of the records into 
a single string of samples in the overlap area. With this technique, the sharp 
discontinuities seen earlier are spread out over the overlap interval. 

Figure 13-22 shows some possibilities for overlapping and interpola- 
tion. Figure 13—22A shows an overlap factor of 50%, which means that 50% 
of the time there is overlap between records. Thus, a new record is started 

every 0.75 times the record length. Figure 13—22B shows 100% overlap 
where a new record is started when the previous one is only half complete. 
Even higher orders of overlap are possible. Obviously, overlapping results in 
more computation, since more records are needed per unit time. 

The interpolation needed in the overlap areas is accomplished with the 
same method described earlier regarding interpolation between two 

waveform tables. One requirement is that the “weighting curves” always 
sum up to 1.0 during the overlap interval. A linear curve is the simplest that 

RECORD OVERLAP 
DURATION INTERVAL OVERLAP INTERVAL 
ee Ee i 
| N42 N+4 [in N+2 nt+a | N+6 

N= | ee ae N45 N—1[ NI N+3 

|. ol ae) 
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Fig. 13-22. Record overlap and interpolation. (A) 50% overlap. (B) 100% over- 
lap. (C) Interpolation curves for 50% overlap. (D) Linear interpola- 
tion for 100% overlap. (E) sin? interpolation for 100% overlap. 
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satisfies this requirement. A better curve for 100% overlap is the sin? curve, 
which also gives a sum of 1.0 (remember that sin2A +cos?A = 1), 

Now, how does overlap and interpolation affect the job of creating a 
200-Hz tone with the FFT? Taking the case of 100% overlap, it is immedi- 
ately obvious that the phase shift per record of the fifth harmonic needs to be 
only one-half of its previous value or 0.06 cycle because there are now twice 
as many records per unit time. A general expression for the phase shift per 
record period with 100% overlap is: P=D(F —H)/2, where P is the phase 
shift in terms of cycles/record period, F is the desired frequency in hertz, H is 

the nearest harmonic frequency of the record duration, and D is the record 
duration. A little study will reveal that the largest possible phase shift, 0.25, 
occurs when the desired frequency falls midway between harmonics. 

How well does overlap and interpolation work in smoothing out distor- 
tions in the synthesis? Figure 13-23 was prepared using a “worst-case” 
situation of synthesizing a 214.8-Hz wave (halfway between fifth and sixth 
harmonics) with a record duration of 25.6 msec, 100% overlap, and a sin? 

interpolation function. The waveform itself in Fig. 13-23A seems to be 
essentially perfect when compared to the ideal below but shows 34% or about 
3 dB of amplitude modulation, which is due to partial phase cancellation 
during the interpolation. Such amplitude modulation is not always objec- 
tionable for musical applications, since it occurs at the relatively slow record 
frequency. 

A more sensitive analysis was performed in Fig. 13-23B by taking the 

FFT of 51.2 msec of the synthesized waveform, which, ideally, would show 
an 11th harmonic component and nothing else. In fact, there is a small 
amount of distortion clustered around the signal frequency that is caused by 
the amplitude modulation, With arbitrary frequencies, the phase shift per 
record averages only half the maximum, which corresponds to about 7.9% or 
0.7 dB of modulation. Higher overlap factors and multiway interpolation in 
the synthesis can reduce the distortion dramatically. A four-to-one overlap, 
for example, exhibits 0.6% worst-case amplitude modulation, which is only 

about 0.05 dB and therefore quite inaudible. 

The Phase-Derivative Spectrum 

At this point, let's examine the best way to represent an arbitrary 
spectrum for use with FFT synthesis. First, we will assume that the arbitrary 
spectrum, which will be called the source spectrum, is given as a list of 
sinusoidal components with each component characterized by an amplitude 
and a frequency parameter. If the spectrum is dynamically changing, there 
will be such a list for each record period, which means chat the amplitude 
and frequency parameters are sampled functions but at a relatively low sam- 

ple rate. 
The first step toward an FFT-compatible representation is to specify 

frequencies in terms of the reciprocal of the record duration. Thus, with a 
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(c) 

Fig. 13-23. FFT synthesis of 5.5 harmonic using 2:1 overlap. (A) FFT- 
synthesized waveform. (B) Reference-perfect waveform. (C) 
Spectrum of synthesized waveform. 

record duration of 25.6 msec = 1/39.0625 Hz, a 100-Hz component would 
have a frequency of 2.56 units. The integer part of che rounded frequency 

parameter is the harmonic in the FFT that this particular frequency compo- 
nent will affect. 

Next, we define the current FFT spectrum, which for convenience will be 
in the amplitude-phase form. This spectrum, after conversion into cosine— 

sine form, is what is Fourier transformed to produce a record. After each 

record is computed, the current FFT spectrum is updated according to the 
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source spectrum. Note that the current spectrum will have to be copied 
before the FFT is executed. 

Updating the current spectrum from the source spectrum is simple if 

the source spectrum components are far enough apart such that no more than 

one affects any given FFT spectrum harmonic. First, each source frequency is 
rounded to an integer and the amplitude simply copied to the corresponding 
FFT harmonic number. Next the rounded value is subtracted from the 
unrounded value and the difference is divided by two (for two-to-one overlap 
factor) to yield a number between —0.25 and +0.25. This number is added 
to the current phase (in units of 27 mod 1.0) of the corresponding FFT 

harmonic to give a new phase. After all of the source spectrum is processed, 
another FFT sample record is computed and the process is repeated. Note 
that even a very-low-frequency source spectrum component, which may 
correspond to the de component of the FFT, comes out alright by virtue of 
the amplitude—phase to cosine—sine conversion. 

Problems occur, however, when two or more source components map 
into the same FFT harmonic. In real life, two such closely spaced frequencies 

would slowly beat together giving an apparent frequency equal to the 
stronger of the two (or the average if substantially equal) and a periodic 
varying amplitude envelope with a frequency equal to the difference between 
the component frequencies. While not exact, it is possible to replace the two 
closely spaced components with one component and some tremolo in the 
amplitude parameter for the new component. 

A more exact method that works for any number of closely spaced 
frequencies is to keep track of the current phase of each in a separate array. 
When the FFT harmonic affected by the cluster is updated, the contents of 
this array are combined according to: 

Aisin(P) 

Pr=ran! 

A:cos(Pi) 

N N 

Ar= SS Aicos(P) |? + | S — Arsin(Ps |? 
i=1 i=] 

where N is the number of frequencies in the cluster, Af and Pi are the am- 

plitude and phase, respectively, of the ‘th array element, and Ar and Pr are 
the amplitude and phase of the resultant that are entered into the FFT 

spectrum. 
Table 13-2 shows these methods applied co a short segment of sound. 

Ic is a sequence of source spectrums, spaced 12.8 msec apart. Frequency ts 
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Fig. 13-24. Waveform computed from sequence of object spectrums from 

Tables 13-2 and 13-3. 

expressed as multiples of the inverse of the record size (39 Hz for 10-kHz 
sample rate and 256 record size) and amplitude is in arbitrary units. Table 
13-3 is a listing of the nonzero portion of the corresponding FFT spectrum 

sequence. 
Figure 13—24 is the actual waveform (with line segments connecting 

the sample points for easier visualization) created by this sequence. Note that 

ultrasharp attacks are simply not possible with FFT synthesis. In fact, no 
event shorter than a record period can be resolved. This drives home the 
primary assumption of FFT synthesis that the record size must be shorter 

than the limits of human time perception yet longer than the limits of 

human frequency perception for simultaneous tones. 

Table 13-2. FFT Synthesis Example: Source Spectrum Sequence 

Record 
number Freq. Amp. Freq. Amp. Freq. Amp. Freq. Amp. Freg. Amp. 

1 to) td) 
2 5.7 1.0 
3 60 13 
4 63 1.0 
5 63 1.0 

6 63 1.0 21 05 
7 63 1.0 2.1 0.75 
8 63. 1.0 21 1.0 
9 61 075 24 06 87 O02 93 02 #04 03 

10 59 0.2 27° 01 87 O05 93 05 O04 07 
iW 87 05 93 05 0.4 1.0 
12 87 05 93° 05 04 1.0 
13 87 03 93 03 0.4 1.0 
14 87 0.1 93 01 0.4 1.0 
15 04 1.0 
16 04 1.0 
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Table 13-3. FFT Synthesis Example: Sequence of Object Spectrums 

Record 
number Hrm. Amp. Phase Hrm. Amp. Phase Hrm. Amp. Phase Hrm. Amp. Phase 

1 — Alo 
2 6 10 
3 6 13 
4 6 1.0- 
5 6 1.0 
6 6 1.0 
7 6 1.0 
8 6 1.0 
9 6 075 

10 6 0.20 
W 9 0.951 
12 9 0.809 
13 9 0.000 
14 9 0.162 
15 Oo 1.0 
16 Oo 10 

0:85 
0.85 
0.00 
0.15 
0.30 
0.45 
0.60 
0.65 
0.60 
0.50 
0.50 
0.00 
0.00 
0.40 
0.60 

COTOWNNNAN 

0.5 0.05 
0.75 0.10 
4.0 0.15 
060 035 9 0235 0.00 0 030 0.20 
0.10 0.20 9 0309 050 9 0.70 0.40 
1.0 0.60 
1.0 0.80 
1.0 0.00 
1.0 0.20 

Note that all harmonics not specilically listed are assumed to have zero amplitude. 



14 
Digital Filtering 

In analog synthesis, filtering is used almost exclusively for modification of 

the severely limiced oscillator waveforms available. However, as was just 
discussed, digital oscillators and tone generators are considerably more flexi- 
ble and are themselves capable of virtually any spectral effect desired. 
Nevertheless, tone modification by filtering is still an important technique if 
for no other reason than convenience. In the digital domain, such modifica- 
tion may be achieved directly by giving each harmonic its own amplitude 
envelope, thereby simulating the effect of a varying filter. However, use of an 
actual filter may require far fewer varying parameters to achieve the desired 
result, This is particularly true if the user has had experience with analog 
systems because the desired result will usually be thought of in terms of 
filtering. 

Also, some types of sounds require the use of filters in their synthesis. 
For example, it is difficult to generate “random” noise with a specified 
frequency spectrum directly; however, one or more filters can easily shape a 
flat noise spectrum into what is required. Also, in sound modification appli- 
cations in which one has no direct control over the source material, filtering 
is the only reasonable way to modify the spectrum. Frequency-sensitive time 

delay (dispersion) and frequency-sensitive phase shift are functions that are 
useful in chorus and reverberation simulators and that are normally regarded 
as “‘all-pass’’ filtering. Finally, as we shall see in the next chapter, digital 
filter ringing is a very convenient method for generating percussive sounds. 

Just as a digital oscillator can generate any waveform subject to the 
constraints of sampling, a digital filter can be designed to have any frequency 
and phase characteristic desired with only two limitations. One is the high- 
frequency limit imposed by sampling. For example, a digital high-pass filter 
cannot be expected to provide a high-pass characteristic up to infinity like an 
ideal analog filter would. Instead, the response is undefined beyond one-half 
the sample rate and may be distorted somewhat just below one-half the 
sample rate. Another limitation is that filters cannot be expected to predict 
the future! While this may seem obvious, a low-pass filter specification with 

433 
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R 

INPUT ia c OUTPUT INPUT 

Fig. 14-1. Analog R-C filters. (A) Passive implementation. (B) Active im- 
plementation. 

zero phase shift at all passband frequencies is asking exactly that. For exam- 
ple, if the filter were presented the first three samples of a low-frequency yet 
high-amplitude wave, it would have no way of “knowing” whether it really 
was part of a low-frequency cycle or part of a high-frequency but low- 
amplitude cycle without further data. Zero phase shift implies that such a 
decision is made immediately and the samples either pass to the output or are 
blocked. Linear phase shift, which implies constant time delay independent of 
frequency, however, is readily available. Note that for filtering outside of real 
time this constraint can be effectively overcome by delaying everything else 

to match. 

Digital filtering, like other aspects of digital signal processing, can be 
highly mathematical. After all, a digital filter is nothing more than a 
mathematical function that accepts a string of input numbers and provides a 
string of output numbers. In this chapter, however, digital filters will be 
discussed as a natural outgrowth of fundamental analog filtering circuits. 
Later, an intuitive approach will be used to discuss filters with an arbitrary 
amplitude response shape. It should be noted that many of the filtering 
concepts mentioned here are equally applicable to analog filtering and some 
in fact were not mentioned in the sections on analog filtering. 

Digital Equivalents of Analog Filters 

The simplest analog filters consist of just two components: a resistor 
and a capacitor. These can be configured in two ways to provide single-pole 
(6 dB/octave) low-pass or high-pass filters. For the moment, we will concen- 
trate on the low-pass circuit. 

Back in Chapter 6, it was shown that the exact same R-C low-pass 
response could be obtained with an op-amp and an R-C feedback circuit such 
as in Fig. 14—1. Careful examination of this circuit reveals a standard analog 
integrator with a “leak” resistor placed across the capacitor. The resistor 
causes the capacitor charge to leak away and thereby puts an upper limit on 
the very low frequency and de gain of the circuit. In fact, the 3-dB attenua- 
tion point is the frequency at which the capacitive reactance equals the leak 
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input Samples Output Samples 
000 000 
309 309 
588 897 
809 1,706 
961 2.657 

1.000 3.657 
951 4.608 
-809 5.417 
588 6.005 
309 6.314 
000 6.314 

~.309 6.005 
—.588 5.417 
—.809 4.608 
—.951 3.657 

~ 1,000 2.657 
~.951 1,706 
— 809 .897 
—.588 -309 
—.309 ,000 
-000 .000 
.309 309 
-588 -397 
809 1.706 

(A) 

Input Samples Output Samples 
.000 .000 
588 588 
951 1.639 
-951 2.490 
588 3.078 
000 3.078 

—,588 2.490 
—.951 1.539 
—.951 -588 
— 588 -000 
.000 -000 
588 588 
951 1.539 

(B) 

Fig. 14-2. Filtering action of a digital integrator. (A) Response to sine wave 
samples at 0.05 Fs. (B) Response to sine wave sampies at 0.1 Fs. 

resistance. The de gain is simply the leak resistance divided by the input- 
gain-determining resistor. 

In the previous chapter, it was mentioned that a digital accumulator 
acts like an integrator when numbers are repeatedly added to it. This is just 
as true when the numbers being accumulated are samples of some arbitrary 
waveform as when they represent a constant “currence” in a digital oscillator. 
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INPUT. 
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OUTPUT 

OUTPUT 
ns is) 

tNpUT 

(D) 

Fig. 14-2. Filtering action of a digital integrator (cont.). (C) Graphs for Fig. 
14-2 (A). (D) Graphs for Fig. 14-2 (B). 

Therefore, inasmuch as an integrator is a type of analog low-pass filter, an 
accumulator is a type of digital low-pass filter. 

As an example, consider the tables and plots of Fig. 14-2. A digital 
integrator is implemented by simply adding input samples to an accumulator 
and providing output samples that are the present content of the ac- 
cumulator. As an experiment, two different strings of sine wave samples are 
tried. The first string represents a sine wave with a frequency 1/20 of the 
sample rate, while the second string has a frequency of 1/10 Fs. The 
amplitudes of both input waves are identical. The resulting tables and graphs 
give the response of the digital integrator to these strings of samples. Note 
that the lower frequency wave comes out with approximately twice the 

amplitude of the higher-frequency wave. Also note that the output wave lags 
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the input wave by 90°. This behavior is just what would be expected of a real 
analog integrator. Even the dc offset at the output would be expected, since 
the input was suddenly applied at zero-crossing time. Although not apparent 
in the figure, the integrator does not contribute any noise or distortion to the 
signals passing through but may alter the signal-to-noise ratio due to its 
filtering effect. 

Digital R-C Low-Pass Filter 

Returning to the leaky integrator equivalent of an R-C low-pass filter, 
Jet us see how the same effect can be accomplished digitally. It should be 
obvious that the magnitude of the leakage current is proportional to the 
voltage across the capacitor and the direction is such that the capacitor is 
discharged. Since the capacitor voltage is the same as the output voltage (the 
capacitor lead connected to the op-amp’s inverting input is at virtual 
ground), the leakage current is proportional to the instantaneous output 
voltage. This same discharging effect can be simulated by subtracting a con- 
stant proportion of the accumulator’s content from the accumulator every sam- 

ple period. In fact, the percentage of accumulator “charge” that should be 
subtracted is exactly equal to the percentage that would have leaked through 
the leakage resistor during one sample period in the analog filter. 

It is well known that the capacitor voltage during discharge follows an 
inverse exponential curve: E=Eoexp(—T/RC), where E is the voltage after 
time T, Eo is the initial voltage, and R and C are the component values in 

ohms and farads. Since the cutoff frequency is /27RC, a substitution can be 
made in the equations, and it is found that E =Evexp(27F cr), where F< is the 

cutoff frequency of the filter. Converting the sample period, 7’, ro the sample 
rate, F:, makes the final result: E=Eoexp(—2aFdFs). Thus, the proper 
percentage to subtract from the accumulator each sample period is: 
l-exp(— 27rF/F:) which can be designated K. A BASIC statement for im- 

plementing the digital filter then would be: 

1000 LET A=A—K*A+I 

where A is the accumulator content, K is the leakage constant, and / is the 

input sample. This statement is executed for each input sample and succes- 

sive values of A are the output samples. 

One could also simply multiply the accumulator contents by 1—K, 
which can be called L, and put the product back into the accumulator with 
the input added in. In BASIC, the result would be: 

1000 LET A=A*L+I1 

which is about as simple as one can get. Note that L can never be greater than 
1.0. If it were, the filter would be unstable and eventually overflow even- 
floating-point arithmetic. (Imagine, a universe full of energy circulating in 

this little filter!) 
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Note that the expression for finding K or L depends on the ratio of 
cutoff frequency to sample frequency. This should have been expected, since 
the same string of sample values can represent entirely different signal fre- 
quencies if the sample rates are different. Thus, it is customary in digital 
filter work to always specify frequency as a fraction of the sample rate rather 
than in hertz. Amplitude response plots, therefore, have the frequency axis 

calibrated from zero (or some lower limit if a log scale) to 0.5. 

There is still one undesirable effect in the digital fileer. It has a substan- 
tial amount of passband gain. In fact, as K is adjusted for lower cutoff 
frequencies, the gain increases in inverse proportion to K. This is of no- 
immediate concern with the floating-point arithmetic in BASIC but later, 
when the filter arithmetic is converted to integers for increased speed, it can 
become a real headache. The amount of dc gain is easily determined by 
noting that for a constant input of 1.0 the output will rise until the amount 

removed from the accumulator each sample period via leakage is equal to the 
amount added via the input. Thus, the dc gain is 1/K or 1/((1—L). The best 
way to counteract the gain is to multiply the input samples by the inverse, K, 

before adding. The final filter statement therefore is: 

1000 LET A=A*L+K*I 

Note that two multiplications and one addition are required for each 
sample processed. By rearranging constants and allowing large numbers in 
the accumulator, one of the multiplications can be eliminated: 

L000 LET O=K*A 
1001 LET A=A—O+I 

DIGITAL 
FILTER 

ANALOS —i8} FILTER se 

20 
n L L nt 1 —_ 

0.005 O.0F 0.02 0.05 or 0.2 Os 
FREQUENCY F/F, 

Fig. 14-3. Measured response of digital low-pass filter 
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where O is now the output of the filter. Although this is certainly slower in 
BASIC because of the extra staternent, it is likely to be much faster in 
assembly language because of the elimination of a multiplication operation. 

At this point one can repeat the Fig. 14—2 experiment with several 
different frequencies to observe the typical R-C low-pass characteristic, 
which was done to create Fig. 14-3. Note that near the 0.5Fs point the 
—6 dB/octave cutoff slope decreases somewhat. This is due to actual aliasing 
of the filter response, since it is not zero at or beyond Fi/2. As digital filters 
are studied, it will be found that their amplitude response always tends to 
depare from the ideal as the Nyquist frequency is approached. 

One can also apply digital square waves to the filter and observe that 
the output samples show the same kind of leading edge rounding that the 
analog filter exhibits. In fact, the samples of the square-wave response (step 
response in general) are exactly the same as ADC samples from the response of 
an analog R-C low-pass filter would be. A digital filter having this property 
is said ta be impulse invariant, which for our purposes means that the time 
domain response is the same as the corresponding analog filter. 

Signal Flow Graphs 

Although the calculations involved in a digital filter can be represented 
as equations or program fragments, they do not give a very clear picture of the 

-0,314 8 

AMPLIFIER WITH GAIN OF 0.914 
MULTIPLIES INPUT SAMPLES BY 0314 

MIXER OR ADDER, 
ADD SAMPLES A AND 8 TOGETHER ANO SUBTRACT C TO PRODUCE 
THE OUTPUT SAMPLE 

ONE SAMPLE PERIOD DELAY 
SAVE THE INPUT SAMPLE FOR ONE SAMPLE PERIOD AND THEN PASS: 
ON TO THE OUTPUT 

Fig. 14-4. Symbols used in signal flow graphs 
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4 OUTPUT 

1— (LEAKAGE FACTOR) 
BASIC FORM 

OUTPUT 

FORM CONTAINING ONLY ONE MULTIPLICATION 

Fig. 14-5. R-C low-pass digital filter diagram 

“structure” of the filter. Singal flow graphs give such structural information 
and at the same time are readily converted into program segments. The three 

symbols used to construct such graphs are shown in Fig. 14-4 and with them 
any kind of digital filter can be represented. The amplifier symbol represents 
a multiplication operation that is really the same as an amplifier with a 
specified gain. By counting up the number of such symbols in a filter 
diagram, the exact number of multiplications needed to process an input 
sample is determined. The summer symbol can have any number of inputs, 
and each individual input may either add to or subtract from the output as 
denoted by plus and minus signs at the arrowheads. The number of 
additions/subtractions per sample is equal to the count less one of summer 
inputs for all summers in the filter diagram. 

The delay element is perhaps the most difficult to understand. In 
essence, the box is a register or memory word that holds a sample value for 

use the vext time the digital filter is evaluated. The Z~! symbol inside is 
optional and merely designates the mathematical meaning of a one sample 

delay. A typical digital filter may have several delay boxes, often connected 
in series. Such a series connection behaves just like a shift register that is 
shifted every sample period. If a common digital filter subroutine is being 
used to simulate several different filters, a word of storage will be required for 
each delay element of each filter. In many digital filters, each delay operation 
is roughly equivalent to a reactive element in an analog filter. 

Figure 14—5 shows the R-C low-pass filter drawn in signal flow graph 
form. Converting such a diagram into a series of program statements consists 
of two major steps. In the first step, the input sample and the outputs of all 
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Fig. 14-6. Analog and digital state-variable filter 

delays are multiplied by the specified constants and added/subtracted in the 
indicated ways to produce the output sample and inputs to the delays. In the 
secand step, the delay block inputs that were just computed are stored into 
the registers corresponding to the delays. When the next input sample is to 
be processed, the values just stored in the delays become the new delay 
outputs. 

State-Variable Digital Filter 

The analogy between analog and digital filters can be extended to cover 
the state-variable type as well. Recall from Chapter 6 that the state-variable 
or integrator loop filter was exceedingly versatile because of a number of 
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desirable properties. First, it was a second-order filter with independent con- 
trol of center frequency and Q. Next, a single circuit simultaneously provides 
low-pass, bandpass, high-pass, and notch outputs from a single input. Fi- 

nally, ic could be cuned over a very wide range of both frequency and Q 
merely by varying just three resistors (two for frequency and one for Q) or 
alternatively, three gain factors. Precise matching of the two frequency- 
determining controls was not necessary unless a deep notch was desired. 
Since all second-order response functions are available from this one circuit, 
it is an ideal building block for sharper and more complex filters. 

Figure 14—6 shows the analog state-variable filter in terms of amplifiers 
and integrators. Taking this and the diagram of a digital integrator, the 

digital state-variable filter follows almost trivially. (Note that the configura- 
tion of the first integrator has been altered somewhat. It is necessary to have a 
delay inside the overall feedback loop for the network to function.) All of the 
desirable characteristics of the state variable have been retained. The four 
different outputs are still present and frequency and Q are independently 
adjustable. A count of arithmetic operations reveals that five additions (six if 
the notch output is needed) and three multiplications per sample are re- 
quired. Although more efficient structures are possible for single-function 
filters such as bandpass, they are not nearly as flexible and give up indepen- 
dence between center frequency and Q control. 

Using the rules just discussed, let us convert this diagram into a series 
of BASIC statements. Before starting, the names of variables must be estab- 
lished. For convenience with the limited names allowed in BASIC, the 
following will be arbitrarily assigned: 

I Input sample 

L Low-pass output sample 
B Bandpass output sample 
H High-pass output sample 

N Notch output sample 
Fl Frequency control parameter 

Ql Q control parameter 
D1 Delay associated with bandpass output 
D2 Delay associated with low-pass output 

The first task is to compute al] of the outputs. The sequence of compu- 
tation is important in order to minimize the statements and to avoid having a 
variable depend on itself in the same time period. Careful examination of the 
diagram reveals that if the low-pass output is evaluated first, everything else 
falls into place. Thus, the first step is accomplished by the following 
statements: 

1000 LET L=D2+F1*D1 
1001 LET H=I—-L—-Q1*D1 
1602 LET B=F1*H+D1 
1003 LET N=H+L 
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Next the inputs to the delays must be computed and stored: 

1004 LET D1=B 

1005 LET D2=L 

This completes the computation for the sample period. Note that two 
statements may be saved by realizing that the current content of the two 
delays is the same as the bandpass and low-pass outputs. 

Tuning Relationships 

In order to use the filter, it is necessary to know the relationship 
between the frequency- and Q-determining factors, Fl and Q1, and the 
corresponding actual physical parameters. The first logical step is to look at 
these relationships in the analog filter. Referring back to Fig. 6-24, the Q of 
the state-variable filter is seen co be simply the inverse of the RQ gain path 

from the bandpass output through the input summing amplifier to the 

high-pass output. The same behavior can also be expected from the digital 
state-variable. Thus, Q1=1/Q which has a useful range from 2, correspond- 
ing to a Q of 0.5, to zero which corresponds to infinite Q. 

In fact, infinite Q is a reasonable situation with most digital filters. 
When excited by a pulse, the infinite Q filter will ring forever with a perfect 
digital sine wave neither gaining nor losing amplitude for as long as one 

wishes to let che program run! Actually, che roundoff errors in integer and 
some floating-point computer arithmetic cancel out each cycle so that there is 

no net accumulation of error. Thus, a ringing infinite Q digital filcer is one 
way to obtain high-quality sine waves without interpolating in a sine table. 

Only two multiplies and two adds per sample generated are required, since 
Q1 is zero and there is no input. Thus, it is a highly efficient method as well. 

The center frequency relation is a little more difficult and a little less 

ideal. For the analog state-variable filter, it was given as F=1/(2a@7RrC) 

where RF was the integrator input resistor and C was the feedback capacitor. 
It is interesting to note that at this frequency the gain of each analog 

integrator is 1.0, since R=Xc=W(27FC). Thus, we would expect that 

resonance would occur in the digital equivalent at the frequency at which the 
integrator gain cancels the loss due to the F1 amplifiers thereby producing a 

net path gain of 1.0. The gain of the digital integrator alone is approximately 
Fi/2mF , where F is the test frequency and Fs is the sample rate. Thus, the 

frequency of unity integrator gain is F/27, Factoring in the F] parameter, 
the unity-gain frequency becomes F =F LF;/27 and conversely F1=27F/Ps, 
where F is the filter's center frequency. 

Unfortunately, this relationship is not exact with the error getting 
worse as the center frequency approaches one-half the sample rate. The root 
cause is the digital integrators whose gain at high frequencies is greater than 
it should be. This is one manifestation of amplitude response aliasing that 
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Fig. 14-7. Tuning error of digital state-variable filter 

was mentioned earlier. Figure 14-7 gives an idea of the magnitude of the 
error for different center frequencies. For use at less chan one-tenth che 

sample rate, which is 5 kHz in a 50-kHz system, the tuning error is about 
1.6% or about one-quarter semitone. 

One can derive a frequency correction factor, however. The ideal gain of 
the digital integrators is Fs/2aF but the actual gain is greater than this by 

a factor of #F/sin(aF). The frequency correction factor, therefore, is the recip- 
rocal or sin(7F)/aF. This factor varies from 1.0 at low frequencies to 0.6366 

at one-half the sample rate. When combined with the approximate center 
frequency formula, the result becomes: F1=2sin(aF/Fs), where F is the 
center frequency and F 1 is the exact value of the frequency parameter for that 
center frequency. Since the correction is relatively small and a fairly smooth 
monotonically rising curve, a correction table with linear interpolation be- 

tween the entries is an alternative to evaluating a sine function. In fact, one 
could simply use the sine table that is almost certainly incorporated some- 
where in the synthesis program that is using the digital filter. 

Multiple Feedback Digital Filters 

With analog filters, there are circuits available that perform a specific 
low-pass, bandpass, or high-pass second order filtering function with fewer 
components than the state-variable type. In exchange for their simplicity, Q 
and center frequency are tied together and related to circuit components by 

complex, usually nonlinear equations. Furthermore, the circuits make great 
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demands on the amplifier and component characteristics and consequently 
are limited to low Q factors. It seems only proper that digital filters with the 
same mix of characteristics exist. 

Figure 14-8 shows low-pass, bandpass, and high-pass versions of the 
multiple-feedback digital filter along with design equations and program 
segments. Like their analog counterparts, the best application is in fixed 
filter banks for spectrum shaping. However, they can be retuned as often as 
desired by recomputing the constants. Note that for low center frequency 
and high Q that the A and B constants get quite close to 2.0 and 1.0, 
respectively. Smal] errors in the constants can therefore have a great effect on 

the filter's characteristics. It is important to realize, however, that only the 
amplitude response curve is distorted; no harmonic or intermodulation dis- 
tortion is ever added to the signal because of inaccurate multiplying con- 
stants. 

The alert reader may have noticed a degree of similarity among the 
various multiple-feedback designs. There exists in fact a single digital filter 
structure that can be used to implement any second order filtering function 

merely by altering the constants; something difficult if not impossible to do 
wich analog circuitry. The structure in Fig. 14-9 is called a cannonical second 
order filter because of its generality. The structure requires only five multi- 
plications and four additions per sample and uses just two storage locations. 

> OUTPUT 

A = 2 costint) exp fon, tei 
feat 

B = exp (—) 
as 

C + 1~ &~ 8 [FOR UNITY PASSBAND GAIN} 
REM | - INPUT, 0 = OUTPUT, DI,02 = DELAY REGISTERS 
LET O = AwDt- 8x02 + Gai 
LET D2 = Dt 
LETOr=0 

{a} 

Fig. 14-8. Multiple-feedback digital filters. (A) Low-pass. 
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Fig. 14-8, Multiple-feedback digital filters (cont.). (B) Bandpass. (C) High-pass. 

For ease of implementation, the summers are shown with all inputs positive 

acting; negative inputs are obtained by making the corresponding constants 
negative. 

Examination reveals two feedback paths and two feedforward paths. Gen- 
erally, the feedback paths are responsible for any peaks or poles in the 
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Fig. 14-9. Cannonical second order digital filter 

amplitude response curve, while the feedforward paths cause response dips or 
zeroes. Note that the same design equations for the filters given earlier can be 
applied to the cannonical form with any unused constants set to zero. Because 
of its generality, this structure is ideal for use in a general-purpose filtering 

subroutine or hardware implementation as a digital filter module, 

All-Pass Digital Filter 

One important type of filter that has not yet been discussed is the 
all-pass filer. As its name implies, ic is not a frequency-discriminating filter 

and in fact passes all frequencies equally well with unity gain. Instead, its 
purpose is frequency-sensitive phase shift. All filters shift phase in varying 
amounts as a natural consequence of frequency discrimination, but the all- 

pass filter exhibits phase shift alone. Consequently, and all-pass network can 
be used to correct for the phase shift of a regular filer without disturbing its 
amplitude response. In synthesis applications, however, it is used to intro- 

duce a time-varying, frequency-sensitive phase shift to otherwise stationary 

sounds, thereby imparting added richness to the sound. 
Before looking at the filter itself, the relation between phase shift and 

time delay should be understood. Either parameter can be plotted as a 
function of frequency as in Fig. 14-10. One type of all-pass filter is a simple 
delay line. As shown in Fig. 14—10A, an ideal delay line has constant delay 
independent of frequency. [ts phase shift, however, is a dinear function of 

frequency as shown in Fig. 14—10B. This can be explained by noting that at 
very low frequencies the 500-jsec delay is only a small fraction of a cycle. At 
500 Hz, which is a 2,000-psec period, the 500-ysec delay becomes a quarter 
cycle phase lag or —90°. At 1 kHz, the delay becomes a half cycle and so on. 
At higher frequencies, the phase-shift magnitude continues to increase, but 
it is customary to plot the principal value of the shift. Thus, the curve shifts 
up to 180° leading and continues its decline from there. 

In mathematical terms, the delay curve is the derivative (proportional 
to slope) of the phase curve or, conversely, the phase curve is the integral 
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Fig. 14-10. Phase and delay graphs. (A) Delay versus frequency of 500-sec 
delay line. (B) Phase versus frequency of 500-sec delay line. (C) 
Delay of a highly dispersive filter. (D) Phase of a highly dispersive 
filter. 

(proportional to atea under a curve) of the delay curve. As a result, only one 
curve is needed to fully characterize the delay/phase behavior of the filcer. 

For musical purposes, the most useful all-pass filters exhibit nonlinear 
phase shifts and therefore time delays that vary with frequency. This means 
that a sharp transient, which contains a wide range of frequency components, 

will exit from the filter with the frequency components separated and 
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Fig. 14-11. Digital all-pass filter 

smeared out in time. The effect is called dispersion and is quite analogous to 
the effect of a prism on white light. Figures 14-10C and D illustrare an 

extreme case of dispersion. Usually, high frequencies are delayed least, which 
means that the transient is converted into a quickly descending frequency 
sweep having a “thunk’’-like sound. Such an extreme case gives the auditory 

illusion of the sound being sent over a 100-foot stretched wire and in fact is 
heard frequently on Jong-distance telephone circuits. Such a large amount of 
dispersion requires many filter sections in combination to emulate. 

Figure 14—11 shows a second order all-pass filter that is a useful build- 
ing block. Like all other second order digital filters, it is an adaptation of the 
cannonical form; however, due to symmetry of the constants and unity gain, 
three of the five multiplications can be bypassed. Examination of the con- 
stants reveals that the feedforward and feedback paths are completely comple- 
mentary. Essentially, the zeroes cancel the poles to produce a flat amplitude 

respanse, but since phase shifts add rather than multiply, the frequency- 

sensitive phase shift is reinforced. 
The phase and delay characteristics of the basic second order all-pass 

filter section are shown in Fig. 14-12. At low frequencies, the phase shift is 

near zero and at high frequencies it is 360° with a monotonic, though 
nonlinear, transition between. Two parameters describe the filter. One is the 
“curnover frequency” in which the phase shift is 180°. The other is called the 

“transition width” and is related to the sharpness of the transition from 0° to 
360° shift, quite analogous to the Q of a bandpass filter. The edges of the 
transition zone are where the phase shift is 90° and 270°. The delay curve 
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Fig. 14-12. (A) Phase response of two-pole all-pass filter. (B) Delay response. 

shows near zero delay at the frequency extremes and maximum delay at the 
turnover frequency. 

More complex phase and delay characteristics may be created by cascad- 
ing all-pass sections. The dispersive filter mentioned earlier may be simu- 
lated by cascading a number of all-pass sections with successively higher 
turnover frequencies. Since the maximum time delay is inversely related to 
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the turnover frequency (at a constant ““Q” value), the delay of the cascade is 
inversely proportional to frequency. 

The audible effect of fixed all-pass filters is generally subtle, but 
dynamic variation of the filter parameters can have a dramatic effect. Con- 
sider, for example, a cascade of four all-pass filters each with the same 
turnover frequency and a relatively broad transition width. Next, assume a 
1-kHz sine wave tone fed through the filters. If the filter turnover frequen- 
cies are high, such as 10 kHz, the tone will be phase shifted very little. If the 
turnover frequency is allowed to rapidly decrease, the tone will experience a 
constantly increasing phase shift up to a maximum of 1,440° or four cycles 
when the turnover frequency has decreased to 100 Hz or so. 

During the turnover frequency transition, however, the tone coming 
out of the filter had a lower instantaneous frequency! Reversing the sweep 
will produce a momentary higher frequency. The speed of the transition 
determines the peak frequency deviation. If the signal entering the filter has 
numerous harmonics, the temporary frequency shift will “ripple” audibly 
through the harmonics as the turnover frequency shifts. By driving the 
turnover frequency parameter with a low-frequency periodic or random sig- 
nal, a chorus-like effect can be obtained. 
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Fig. 14-13. Cosine (A) and sine (B) comb filters 

Digital Notch Filters 

Although a standard notch filter response can be created by suitable 
setting of the cannonical digital filter constants, other more interesting and 
useful variations are possible. The comb filter mentioned in Chapter 2 is one 
of these that is very simple to produce in a digital synthesis system. The filter 
is constructed by splitting the signal into two paths, inserting a time delay in 

one of the paths, and mixing the signals together in equal proportions as 

shown in Fig. 14-13. The filtering effect is produced by phase cancellation 
between the delayed and undelayed signals. At very low frequencies, the 
delay line in Fig. 14-13A has essentially no effect on the phase of the signal 
so it reinforces the undelayed signal in the mixer. When the frequency 



452 MUSICAL APPLICATIONS OF MICROPROCESSORS 

increases such that the delay introduces a 180° phase shift, the delayed 

signal cancels the undelayed signal in the mixer producing zero output. 

Higher frequencies are passed in varying amounts until the phase shift 

through the delay reaches 3 X 180° which produces another cancellation 

and so forth. The filter in Fig. 14-13B works the same way except that the 

first notch is at zero frequency. 

If the delay time is slowly varied while filtering a broadband signal 

source, the distinctive sound of flanging is produced. In a digital synthesis 

system, the delay is very easily produced with a small memory buffer, the 
size of which determines the delay. Such a technique can only give delays 

that are a multiple of the sample period, which results in some choppiness in 
the flanging effect. This may be overcome, at some sacrifice in noise level, by 
interpolating between adjacent samples at the end of the simulated delay line 
to provide essentially continuous delay variation. 

Filters with an Arbitrary Response 

One of the advantages of digital signal processing is that amy filter 
response can be obtained in a straightforward manner. Furthermore, the 
response may be changed as often and as much as desired concurrent with the 
filtering action. 

In the previous chapter, one method of arbitrary filtering was men- 
tioned. In use, one first takes the Fourier transform of the signal to be 
filtered. Next the spectrum is modified according to the filter characteristic 
desired. The modification involves multiplying the amplitude of each spectral 
component by the filter’s amplitude response value at the corresponding 
frequency. If phase is important, the phase of each spectral component is 

added to the filtet’s phase response value at the corresponding frequency. The 

modified spectrum is then converted into the filtered signal via inverse 
transformation. 

Of course, with the FFT, the continuous stream of samples to be 

filtered must be broken into records, processed, and the results spliced 
together again. This indeed can be accomplished without the distortions that 
were encountered in direct FFT synthesis, but the process is complex and can 

be time consuming. Another method that works continuously, sample by 
sample, is called direct convolution, With this method, onc can write a sub- 

routine that accepts a table of numbers describing the filter’s time domain 
response along with individual input samples to produce individual output 
samples. The routine is exceedingly simple and can be quite efficient when 
written in assembly language or implemented in hardware. 

Before describing the algorithm, it is necessary to become familiar with 
a filter’s ‘mpulse response because that is the table of numbers used by the filter 

subroutine. The transient response of high-fidelity components is usually 
characterized by noting their response to square waves. If the square-wave 
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frequency is low, the result is essentially the step response of the component. 
Although few manufacturers care to admit it, hi-fi components act like 
banpass filters and the step response reveals a lot (in fact, everything) about 
the “filter's” characteristics. 

The same idea applies to the impulse response, but the test signal is a 

very narrow pulse rather than a voltage step. In theory the pulse should have 

zero width, infinite amplitude, and finite energy content. In practice, an 
analog impulse has a width that is small in comparison to the fastest respond- 
ing element of the filter under consideration and a height small enough to 
avoid distortion. In a digital system, the impulse is quite simple: just a 

single 1.0 sample surrounded by a sea of zerocs. The spectrum of an isolated 
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impulse is equally simple: an infinite number of frequency components al! of 
equal amplitude and all with zero phase angles. 

The filter’s output in response to an impulse input tells everything 
about its amplitude and phase response but in an easy to use form. Since the 
input spectrum is flat and has zero phase, the output spectrum will directly 

represent the amplitude and phase response of the filter under test! This 
means that the characteristics of a digital filter can be plotted merely by 
taking the Fourier transform of its impulse response. This, in fact, is how 
many of the filter response curves in this book were plotted. Conversely any 
amplitude and phase response may be inverse Fourier transformed co get the 

corresponding impulse response. These are very important points and are 
illustrated in Fig. 14-14. 

If two widely separated impulses are fed to a filter, one would expect to 
see two copies of the impulse response. If the first impulse is twice the height 
of the second, the first response will have twice the amplitude as well but the 
same basic shape. If the impulses are moved closer together, they start to 
overlap. Since filters are linear, the composite output is simply the point- 
by-point sum of the responses due to each impulse. This applies to any 
number of impulses at any spacing. 

Although it is already being taken for granted, sampled analog signals 
are really strings of impulses, the height of each being proportional to the 
sample values. According to the previous paragraph, the output of a filter 
receiving such impulses as input is equal to the sum of the responses to each 

individual sample impulse as illustrated in Fig. 14-15. This then is the crux 
of direct convolution digital filtering. 

Implementation 

The first step in implementing the algorithm is to obtain the impulse 
response in usable form. For digital filtering, samples of the impulse response 
are needed. The samples must be taken at the same sample rate as the signal 
to be processed. If the rate is different, all filter response frequencies will be 
altered in direct proportion to the ratio of the sample rates. Any stable 
impulse response will be bounded on both sides by zeroes, which can then be 
discarded. Unfortunately, most responses do not suddenly cut off, so a 
truncation decision must be made. Since the computation time is directly 
proportional to the number of response samples retained, there is an incen- 
tive to retain as few as possible. Very broadly speaking, if all of the response 
samples omitted are less than 0.01 of the largest response sample, then only 
filrer attenuation beyond 40 dB is likely to be disturbed to any significant 
degree. Accordingly, retaining samples down to 0.001 will not disturb 
attenuation curves less than 60 dB. In any case, the impulse response be- 
comes a string of numbers. 

The calculations involved are quite simple. Assuming that some data 
has already gone through the filter, the Jth output sample is equal to the Zth 
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Fig. 14-15. How filter impulse responses combine to produce an overall re- 
sponse. (A) Input impulses. (B) Individual impulse responses. (C) 
Sum of impulse responses. 
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OUTPUT 

Fig. 14-16. Basic structure of transversal filter 

input sample times the first impulse response sample plus the (7— 1)th input 
sample times the second impulse sample plus the (/—2)th input sample 

times the third impulse sample, etc. for the entire set of impulse samples. 

Thus, every sample processed through the filter requires N multiplies and 
adds, where N is the number of impulse samples kept. 

Figure 14—16 shows a conceptual structure of the filter that is very easy 
to program. Essentially, the input samples are entered into a shift register 

with a tap at every stage. The output at each tap is multiplied by the 
associated impulse response sample and the product is summed with other 
products to produce the output sample. When a new input sample is en- 
tered, all of the old ones are shifted one position right and the sum of 
products is evaluated again. This is often called a transversal filter because 
each signal sample traverses the tabulated impulse response. Because of its 
simple, highly repetitive structure, such a filter lends itself well to hardware 
implementation. In fact, specialized ICs using charge-coupled circuitry have 
been builc to implement filter functions useful in the telephone industry. 

2000 REM SUBROUTINE TO IMPLEMENT A TRANSVERSAL FILTER 
2001 REM INPUT SAMPLE IS Sl, OUTPUT SAMPLE IS $2 
2002 REM IMPULSE RESPONSE OF FILTER IN IN ARRAY R, FIRST ELEMENT IN 
2003 REM R(O), SECOND IN R(1),.... 
2004 REM N IS NUMBER OF IMPULSE RESPONSE SAMPLES 
2005 REM ARRAY S HOLDS PREVIOUS SIGNAL SAMPLES, MUST BE ALL ZEROES 
2006 REM WHEN THIS ROUTINE IS FIRST USED 
2007 REM P IS POINTER FOR S ARRAY, IT TOO MUST BE INITIALLY ZERO 
2100 S2=0 
2110 S(P)=S1 
2120 J=P 
2130 FOR 1=0 TO N-i 
2140 $2=S2+R(I)*S(0) 
2150 J=J-1 
2160 IF J<O THEN J=N-1 
2170 NEXT I 
2180 P=P+1 
2190 IF P=N THEN P=0 
2200 RETURN 

Fig. 14-17. Transversal filter subroutine in BASIC 
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When programming according to the diagram, actually shifting the 
data is very inefficient. Instead, a po/ater to the current sample is maintained 
and references to stored previous sample values are made relative to the 
pointer. Figure 14-17 is a program in BASIC that implements the transver- 
sal filter. The R array contains the impulse response, the S atray contains 
previous signal samples, and N is the number of impulse response samples. 
The input sample is S1 while the output sample is 52. 

In order to make maximum use of the algorithm, it is helpful to know 
some additional impulse response properties. First, if the filter has zero or 
linear phase its impulse response will always be perfectly symmetrical. It 

such a phase response is acceptable, the number of multiplications needed per 
sample can be essentially cut in half by adding the symmetrical parts to- 
gether before multiplication as shown in Fig. 14-18. 

There are limits to the technique too. Filters with low-frequency dis- 

crimination, sharp cutoff slopes, or narrow peaks and dips in their amplitude 
response tend to have long duration impulse responses and therefore will 
require a lot of calculation. Thus, a simple bandpass or low-pass function is 
better performed with one of the previous techniques. On the other hand, if 
the amplitude response has a lot of peaks and dips, only the narrowest or 

OUTPUT 

SYMMETRICAL IMPULSE RESPONSE 

Fig. 14-18. Simplification of Fig. 14-16 for symmetrical impulse response 



q t wy Lt Ss 6 

AMPLITUDE (8) Il o S 

FREQUENCY (kHz) 

(a) 

AMPLITUDE (dB) \ ry 

N a 3 g 

FREQUENCY (kHz) 

(B) 

AMPLITUDE (dB) 

FREQUENCY (kHz) 

tc) 

Fig. 14-19. Some example impulse responses. (A) Well-behaved response. 
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lowest frequency “feature” significantly affects the duration of the impulse 
response. This means that the other features essentially ride along free. 

Figure 14-19 shows several response curves and their associated impulse 

responses, which should aid in understanding these properties. Note in 
particular that, while an ideal low-pass or bandpass filter characteristic can be 
achieved with this technique, the extremely long, slowly decaying impulse 
response makes its application impractical. Any attempt to shorten the re- 

sponse by truncation or smoothing off destroys the ideal cutoff shape. Be- 
cause of the long impulse response, the FFT filtering method should be used 
when such idealized filtering functions are needed. 
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Fig. 14-19. Some example impulse responses (cont.). (D) Ideal low-pass filter 
response. (E) Ideal bandpass response. 
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Reverberation Simulation 

Perhaps the simplest, yet most effective, digital signal-processing func- 
tion is the simulation of reverberation. One particularly nice feature of 
digital reverberation simulators is chat virtually any type of reverberation is 

possible, and it is easy to switch or gradually evolve among the types. 
Perceptual studies have demonstrated that listeners judge their environment 
and distance from sound sources primarily by analyzing the accompanying 
reverberation, Reverberation simulation is such a difficult problem with 
conventional analog circuitry that designers usually turn to mechanical de- 
vices such as springs and special metal plates. Even the latest “analog” 
devices for reverberation (analog charge coupled ICs) actually work with a 
sampled representation of the signal. 

The simplest digital reverberator is nothing more than a delay of 30 
msec or greater inserted into the signal path with provisions for mixing 
delayed and undelayed sound as shown in Fig. 14-20. Actually, “echo 
simulator” would be a better name because the audible effect is that of a 
single echo. The magnitude of the delay and the relative amplitudes of direct 
and delayed sound are parameters for the echo. Multiple echos may be 
simulated by feeding a portion of the delayed output back into the input of 
the delay element. This then creates a string of echos. The closer the feedback 
factor, F, is to unity the larger the number of echos before they become 
inaudible, One advantage of a digital delay over tape or other analog delay in 
this application is that no signal fidelity is lost in multiple trips chrough the 
delay line. Thus, feedback factors close to 1.0 are possible without fear of 
some minor amplitude response peak exceeding unity feedback and causing 
oscillation. 
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Even with a perfect delay line, the string of equally spaced echos 
produced is nor at all like concert hall reverberation, In an empty concert hall 
a clap of the hands produces not a series of echos but what sounds like white 
noise with a smoothly decreasing amplitude. The amplitude decrease approx- 
imates an inverse exponential function, which if plotted in decibels would be 
a constant number of decibels per second. The rate of decrease is generally 
specified by stating the time required for a 60-dB reduction in reverberation 
amplitude. This figure is used because under normal circumstances the re- 
verberation has become inaudible at that point. Typical reverberation times 
for concert halls are in the 1.5-sec co 3-sec range, although values from near 

zero to somewhat more than this may be useful in electronic music. 

Echo density is another parameter that can be used to characterize a 
reverberation process in general terms. The single delay line reverberator 

suffers from a low (and constant) echo density of 0.03 echos/msec. In a 

concert hall, the echo density builds up so rapidly that no echos are per- 
ceived, One measure of the quality of artificial reverberation is the time 
between the initial signal and when the echo density reaches I/msec. In a 
good system, this should be on the order of 100 msec. Furthermore, there 
should be a delay of 10 msec to 20 msec between the signal and the very first 
echo if a sense of being far away from the sound is to be avoided. Finally, if 
the reverberation amplitude decrease is not smooth, a somewhat different yet 
distinct echo effect is perceived. A plot of the impulse response of the 
reverberator is a good way to visualize the buildup of echos and the overall 

smoothness of amplitude decrease. 
A natural consequence of any reverberation process is an uneven 

amplitude response. For example, if the amplitude response of the single- 
echo generator described earlier were measured, it would be found to rise and 
fall with a period (in frequency) equal to the reciprocal of the delay time. In 
fact, examination of the signal flow reveals that it is the same as that of a 
comb filter! However, since the ratio of delayed to direct signal is normally 
less than unity, the notch depth is relatively shallow. The feedback delay line 
has the same properties except that the feedback results in a series of reso- 
nances. As the feedback factor approaches unity, the Qs of the resonances get 
quite high, producing a very uneven amplitude response. 

Concert hall reverberation also has an uneven amplitude response, but 
the peaks and valleys are closely spaced, irregular, and not excessively high or 

deep. It is not unusual to find several peaks and valleys per hertz of bandwidth 
with an average difference between peak and valley of 12 dB. It is possible to 
have high echo density combined with a low resonance density. An excellent 
example is an empty locker room or even a metal garbage can. The small size 

of the reverberant chamber precludes resonant modes spanning a large 
number of wavelengths of moderate frequency sound. The converse situation, 
a high resonance density but low echo density, can be produced by the 
feedback delay line reverberator with a very long delay time, which does not 
sound like reverberation at all. 



462 MUSICAL APPLICATIONS OF MICROPROCESSORS 

> OUTPUT 

UNEQUALLY TAPPED DELAY 
TOTAL DELAY © 100 msec 

Fig. 14-21. Tapped delay line digital reverberator 

A Practical Filter for 
Concert Hall Reverberation 

In theory, it is possible to exactly duplicate the acoustics of a particular 
concert hall by recording its impulse response and then applying the trans- 
versal filter rechnique to the sound to be reverberated. Typical reverberation 
times of 2 sec, however, mean that the filter is 50K to 100K samples long, 

which is clearly impractical. On the other hand just about any assemblage of 
delays, summers, and multipliers will produce some kind of reverberation if 
it doesn’t oscillate instead. Some, of course, are much better at simulating 

convincing concert hall reverberation than others. 
In order to increase the echo density, it is necessary to use several delays 

of unequal length. The structure in Fig. 14-21 is the digital equivalent of 
the multiple-head tape reverberation simulator mentioned in Chapter 2. The 
placement of the taps and the values of the feedback constants are very 
important in determining the sound of the system. Generally, the taps 
should be approximately exponentially distributed but placed at prime 
number locations. This insures a maximum rate of echo buildup. The feed- 
back constants strongly interact with each other and in fact there is no easy 
way to tell if a particular set will not cause sustained oscillation. Typical 

values are around 0.8 with the long delay taps being somewhat more and the 
short taps somewhat less. In any case, experimentation with the number, 
placement, and gain of the taps is necessary to achieve the type of reverbera- 
tion required. 

Another approach is based on the concept of cascading simple reverber- 
ation modules. One could use the Fig. 14--20B setup as a module and cascade 
two or more of them in order to improve the echo density. One problem that 
can arise is that at certain frequencies the peaks and valleys in the individual 
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Fig. 14-22. All-pass reverberation module 

amplitude responses may coincide to produce an exceptionally strong peak or 
valley. One way to avoid the problem is to very carefully choose the delays of 
the modules so that peaks or valleys do not coincide. However, doing this 
while also scrambling the delays for good echo density would probably 
require an iterative search program, and the results would not allow very 
much adjustment flexibility. 

A better way is to modify the multiple-echo module so that it has a 
uniformly flat amplitude response. Actually, all of these reverberation dia- 
grams are equivalent to familiar digital filters, the only difference being that 
the delay is hundreds or thousands of samples Jong rather chan one. A slight 
rearrangement of the summers can convert the multiple echo diagram into 
the equivalent of an all-pass filter. Since the notches introduced by the 
feedforward path cancel the resonances created by the feedback path, the 
overall amplitude response is flat. 

Figure 14—22 shows an all-pass reverberation module. Two parameters 
characterize the module. The delay, D, determines the echo spacing for the 
module, while the feedback factor, F, determines the reverberation time for 

the module. Cascades of as few as three modules can give a reasonable 

simulation of concert hall reverberation, although upwards of seven give 
noticeably better results. As with the tapped delay line reverberator, the 
delay parameters should be approximately exponentially distributed but in 
all cases must be a prime number of samples. An easy way to come up with a 
first approximation is to give the first stage the longest delay, which is in the 
50-msec range, and then successively multiply it by a constant somewhat less 
than 1.0 such as 0.78. Thus, if the longest delay were 50msec, then the 
succeeding ones would be close to 39, 30.4, 23.7, etc. The shortest delay 

should not be much less than 10 msec if a distant, hollow sound is to be 
avoided. 

Appropriate values of the feedback factor tend to be similar for all 
stages, alrhough they should not be identical. The feedback factors and the 
delays combine to determine the reverberation time. The reverberation time 
of a single stage is the number of delay recirculations required to attenuate 
the signal GO dB times the delay time. Thus, Rk=—6.9D/Ln(F), where R: is 
the reverberation time in seconds, F is the feedback factor, and D is the delay 
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Fig. 14-23. High-quality stereo reverberator 

in seconds. For practical purposes, the reverberation time of a cascade of 
sections is equal to the longest section time. Thus, if the delays get succes- 
sively shorter and the feedback is approximately constant, the longest delay 
section determines what the feedback factors should be. 

After the initial values for each stage are determined, further refine- 
ment can be performed by plotting the impulse response and making slight 
adjustments to maximize the echo density and minimize any periodicity or 
unevenness in the decay envelope. Figure 14—23 shows a stereo reverberator. 
The subtle but significant differences between the channels insures that the 
reverberation will be perceived as coming from all directions, while the 
original signal retains its normal directivity. 

Chorus Effect 

In some ways, a chorus effect is similar to reverberation. Both are very 
helpful in adding complexity and realism to simple (relative to natural) 
synthesized sounds. As was detailed in Chapter 2, there are two different 
approaches to implementing a chorus effect. One attempts to directly simu- 
late N instruments all playing the same notes. The other seeks to simulate 
the acoustic effect of a number of players. The first is most successful for 
relatively small multiplicity factors, while the latter, with sufficient effort, 
can give the impression of thousands of sound sources. 

Direct simulation of multiple sources is the simplest. The premise is 
that the basic sound of each instrument is identical to the others, but slight 
differences in timing, intonation, and vibrato are what contribute to the 
chorus effect. Figure 14-24 shows a diagram of a chorus simulator suitable 
for a moderate multiplicity. Each of the parallel delay lines has a different, 
randomly varying delay. In addition, each delayed channel undergoes a small 
amount of amplitude modulation, again randomly. The varying delays in- 
troduce phase and frequency modulation, which simulates differences in 
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Fig. 14-24. Direct chorus simulator 

timing and intonation. The amplitude modulation is of secondary impor- 
tance but tends to emphasize momentary enhancements and cancellations of 
the multiple sources. 

The random control signals are white noise that has been low-pass 

filtered with a cutoff in the range of 10 Hz to 20 Hz. It is important that the 
noise used for each channel be uncorrelated (taken from a separate generator), 

which is easily done with a digital noise generator (to be discussed in Chapter 
15). If naturalness is desired, it is important that the peak frequency modula- 
tion cause changing delay times to be held to 1 Hz of Jess for midfrequencies. 

Because of the numerous variables, adjustment is best done by ear. 
The system shown with a half-dozen delays is remarkably effective in 

simulating a small chorus. Although a fair amount of computer memory is 
necessary for the delay lines (much of it can be shared by programming a 
single long line and variable taps), very little computation is required relative 
to the results obtained. Because of the numerous parameters available for 
experimentation, many weird and whacky effects should also be possible. 

The other method of chorus simulation is considerably more involved 
but much simpler than hundreds of the sections just discussed. Basically, the 

idea is to use a collage of randomly varying delays, phase shifters, frequency 
shifters, and frequency selective filters. Figure 14-25 is a block diagram! of 
the system that was originally implemented with purely analog circuitry. 
Because of its complexity, it is a good candidate for digital implementation. 

This system differs from the one described earlier in that the input 
spectrum is split into several bands and that differences in intonation are 
simulated primarily with spectrum (frequency) shifters rather than phase or 

delay shifters (although these too are used extensively). As was mentioned in 

Chapter 3, a spectrum shift destroys harmonic relationships among compo- 

nents of the shifted spectrum, whereas a delay shift does not. 

‘The block diagram was taken from notes gathered from a technical paper delivered by 
Robert Orban at the 55th convention of the Audio Engineering Society. 
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Fig. 14-25. (A) Parametric chorus simulator. (B) Spectrum shifter block dia- 
gram. 

Figure 14—25B diagrams a spectrum shifter consisting of three major 
parts. The first and most critical is a 90° phase difference network. The 
purpose of the network is co produce two output signals from a single input 
such that the phase difference between che outputs is 90° independent of 
frequency. Such a network is constructed from two multisection all-pass 
filters as shown. Although the input-to-output phase shift of each filter alone 

varies considerably with frequency, the phase difference is reasonably con- 
stant over a fairly wide frequency range. More sections in the filters broaden 
the frequency range of accurate 90° phase difference. Phase errors generally 
cause incomplete suppression of the unwanted spectrum copy. Note that 
since the input spectrum is split into fairly narrow bands that the 90° phase 
difference network can be simpler than it would otherwise be. 
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Fig. 14-25. (Cont.). (C) 90 degree phase difference network detail. 

The other elements are exceptionally easy to implement in digital form. 
The frequency of the sine and cosine waves entering the multipliers deter- 
mines the amount of spectrum shift hertz for hertz. As shown, the spectrum 
is shifted up, but inversion of the driving oscillator phase will cause a 
downshift instead. The oscillator is easily implemented with a sine table and 
two pointers one-quarter the table length apart. Smooth transitions from 

upshift to downshift are accomplished by letting the table increment go 
negative, thereby generating ‘negative’ frequencies. 

The entire system is operated much like the simpler chorus synthesizer. 
Essentially, all of the variable elements are fed independent, slowly varying 
random signals. Again, adjustment is best done by ear, although many 

strange effects are possible by misadjustment. 

Interpolation 

Virtually everyone was taught in junior high school (before the advent 
of pocket calculators anyway) how to interpolate in a table of logs or trig 
functions in order to get an excra digit or two of precision. However, in 
digital music synthesis, interpolation between waveform table entries or 
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waveform samples is of interest and has, in fact, been mentioned in passing 

several times so far. In this section, such interpolation will be looked at more 
closely. 

In general, the interpolation problem can be stated as follows: Given 
one or more tabulated points (X and Y coordinates) describing some sort of 
curve and an arbitrary value of X, determine as “accurately” as possible the 
corresponding Y. Accurately was quoted because unless an equation is known 

that exactly describes the curve in the region from which the tabulated points 
were taken, there is nothing to compare the interpolated result to. In cases in 
which such an equation is not known, interpolation only gives a guess of 
what the untabulated value should be. One can, however, evaluate the guess 

by how close it comes to the “most likely” untabulated value. Clearly, a 
procedure that painstakingly evaluates all of the points in the table (or 
record) should be able ta make a good guess. For our purposes, an interpola- 
tion algorithm can be characterized by how many data points and how much 
calculation is used to make the guess and how good it is likely to be relative 
to an exhaustive procedure. 

The general approach to performing interpolation is to first find an 
equation that “fits” the data, that is, a plot of the equation would pass 
through the data points being considered. After this is done, the X for which 
a value is needed is plugged into the equation and out comes its correspond- 
ing Y. The accuracy of this Y depends entirely on how well che “interpola- 
tion function” models the physical process that created the data points in the 

first place. This is important because there are many different equations that 
will pass through the tabulated data points. Note that in the general case the 

tabulated points need not be equally spaced. In synthesis applications, how- 
ever, they usually are, which simplifies the calculations. 

Generally speaking, the interpolation will be most accurate when the 

unknown point is in the middle of the cluster of known points. If it is 
completely outside the tabulated points, the process is known as extrapola- 
tion, which is sheer speculation as to what the point might be if the curve 
continued to behave as it did in the tabulated interval. 

One class of equations that can be used in interpolation is the standard 
algebraic polynomials. In general an N— sh degree polynomial can be found 
that will exactly pass through N data points. Once found, the polynomial can 
be easily evaluated at the unknown point. The higher the degree of the 
polynomial, that is the more data points that are considered, the better the 
interpolation results. 

The simplest example, which is what most people call interpolation, is 
linear interpolation. Here, a first-degree polynomial, which is a straight line, 
is fit to two data points; one on each side of the unknown point. The 
procedure for doing this was described in detail in the previous chapter. One 
could also fit a quadratic curve through three points and so forth. When a 
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Fig. 14-26, Third- and fifth-degree interpolation polynomials 

cubic is used with four data points, the procedure is called a cubic spline, 
which is detailed in Fig. 14-26 and compared with a fifth-degree interpola- 
tion polynomial. 
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Fig. 14-27. Sample-rate conversion 

Interpolation Filters 

In digital synthesis, one most often needs to interpolate between sam- 
ple points in a single string of samples. One excellent application, which will 
be used throughout the remaining discussion, is sample-rate conversion. This is 

the case in which one has a string of samples taken at, say, 25 kHz and 
wishes to convert it to, say, 28.371 kHz. If it is true that the 25-kHz 

samples captured all of the information in the original low-pass-filcered 
signal, then the conversion should be possible with no degradation of the 
signal whatsoever. Downward conversion is also possible provided the signal 
is low-pass filtered to less than one-half the new sample rate. 

Probably the first inclination in solving the rate-conversion problem is 
to linearly interpolate between the input samples as required to obtain the 
output samples. Unfortunately, this simple method generates an unac- 

ceptably latge amount of noise. Cubic and quintic splines are better, but the 
noise is still excessive when high-frequency signals are being converted. 
These simple procedures fail primarily because the sample points are sparse 
compared with the variability of the curve before it was sampled, even 
though we know that they are dense enough for accurate reconstruction of the 
curve by a low-pass filter. 

Figure 14—27 illustrates another sample-rate-changing process based on 
reconstruction of the original waveform and resampling at a different rate. 

The digital sample stream is converted into analog form at the original 

sample rate by the DAC and filtered by the low-pass filter. The filtered 
waveform is then resampled at the converted sample rate to provide the 

result. The low-pass filter cutoff should be less than one-half of the ower of 
the two sample rates. By studying the diagram, it is apparent that the filter 
actually does the interpolation and the digital-analog-digital conversion is 
just overhead. What is desired is a way to simulate this sample-rate- 
conversion system completely in the digital domain. 

Earlier it was Jearned that the output waveform of a filter is actually the 
superposition of impulse responses, one for each input sample. Figure 14-28 
shows the ideal low-pass impulse response, where the cutoff frequency is 
exactly one-half of an arbitrary sample frequency. Note that the response is 
zero at all sample times except the one that corresponds to the input impulse! 
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Fig. 14-28. Impulse response of ideal low-pass interpolating filter 

Figure 14-29 shows in detail how the impulse responses to a string of 

samples combine to produce a very smooth curve that exactly passes through 

the sample points that are being low-pass filtered. In this respect, the filter 
output satisfies the requirements for an interpolation function of the sample 
points. 

At this time, we can write the equation of the smooth curve connecting 
the data points. If we ignore the filter's delay and call the point at the center 
of the cluster point 0 (X=0, Y=Yo) and scale the X axis in units of the 
sampling period, the impulse response, Io, due to point Xo,Yo is: 

To=Yosin(7X)/wX. Continuing, the response due to the point X1, Y1 is: 
h=Yisin(a(X ~ V)a(X—1), where the (X~1) accounts for shifting the 

impulse response right one unit so that it is centered about X1. In fact the 
response due to a general point Xj, Y? is: Li=Yisin(w(X —i))/a7(X —-1). The 
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Fig. 14-30. Effect of truncating ideal low-pass impulse response. (A) Seven 
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overall response due to all of the points is simply the sum of the individual 
responses, which can be written as: 

+00 
sin 7 (X—/) 

Y= > v[22e | 
i =—00 mX—A) 

This resulting equation can now be evaluated at any desired value of X 
(which can be a mixed number) to obtain a corresponding interpolated Y. For 
sample rate changing, one simply increments X according to the ratio of the 
new sample period to the old sample period and the string of Ys is the new 
sample string. 

The procedure just outlined is ideal, that is, it will give the same 
sample values that would have been obtained if the signal was originally 
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Fig. 14-30. Effect of truncating ideal low-pass impulse response (cont.). (C) 
Twenty-one points kept. (D) Thirteen points kept and taiting fune- 
tion used. 

sampled at the new rate. Unfortunately, the infinity signs in the interpola- 
tion function make it completely impractical. Since the individual impulse 
response curves decrease fairly rapidly on either side of zero, it is possible to 
simply cut them off at some point. If this is donc, the limits on the summa- 
tion become finite such as —10 to +10 (they should be symmetrical), 
which means that a cluster of 21 points is examined to determine the interpo- 
lation function. When the summation is truncated like this, it is important 
that the unknown point be close (within an input sample period) to the 

center of the cluster. 

The truncated impulse response no longer corresponds to an ideal low- 
pass filter. Instead, the degraded filcer exhibits a finite cutoff slope and a 
finite maximum attenuation as shown in Fig. 14-30. The finite cutoff slope 
means that the data being converted must be somewhat oversampled if 
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serious alias distortion is to be avoided. The finite maximum attenuation 
means that some noise will be introduced by the interpolation. It is also 
possible to “tail off” the ends of the impulse response rather than truncate it. 
The effect of this is to increase the maximum attenuation at the expense of 
decreasing the cutoff slope. This means that if the input data is adequately 
oversampled, either the interpolation noise may be reduced or fewer points 
may be used in the interpolation. Tailing off will be discussed further in 

Chapter 16. 

The Table Method of Interpolation 

Even when the number of points is reduced to a reasonable value, the 
sine functions and divisions necessary to apply the method are very time 

SECTION 1 SECTION2 SECTION3 SECTION4 SECTIONS SECTIONG 
ADDR DATA ADDR DATA ADDR DATA ADDR DATA ADDR DATA ADDR DATA 

0 .00000 32 .00000 64 .00000 96 .00000 128 .00000 160 .00000 
-99833 33 -.02819 65 .01157 97 ~.00527129 .00211 161 -.00062 
-99333 34 -.05422 66 .02247 98 -.01023 130 .00407 162 ~.00119 
-98504 35 -.07801 67 .03263 99 ~-.01483 131 .G0587 163 -.00169 
-97349 36 -.09952 68 .04198 100 -.01905 132 .00748 164 -.00213 
-95878 37 -.11870 69 .05047 101 —.02286 133 .00891 165 —.00251 
-94099 38 —.13554 70 .05805 102 ~—.02624 134 .01015 166 -.00282 
-92022 39 -.15004 71 .06470 103 -.02918 135 .01120 167 —.00308 
-89662 40 -.16220 72 .07039 104 -.03167 136 .01206 168 ~.00328 
87032. 41 -.17207 73 .07511 105 —.03371 137 .01274 169 —.00343 

10 84150 42 -.17968 74 07887 106 -—.03530 138 .01322 170 -.00353 
11 81032 43 -—.18510 75 .08165 107 —.03644 139 .01354 171 ~—.00358 
12 .77698 44 ~—.18840 76 .08349 108 -.03715 140 .01368 172 —.00358 
13° .74168 45 -.18967 77 .08441 109 —.03744 141 .01366 173 -.00355 
14 .70464 46 -—.18902 78 .08444 110 -.03732 142 01350 174 ~.00348 
15 .66607 47 —.18654 79 .08364 1x1 —.03684 143 .01320 175 -.00339 
16 .62621 48 —.18237 80 .08203 1x2 —.03599 144 .01277 176 —.00326 
17 58528 «449 -.17663 81 .07967 113 —.03482 145 .01224 177 —.00311 
18 54354 50 -.16956 82 .07663 1x4 -.03336 146 .01161 178 —.00295 
19° .50121 51 -.16099 83 .07297 115 -.03163 147 .01090 179 -.00276 
20 45854 52 -.15138 84 .06875 116 -.02967 148 .01012 180 -.00257 
21 41577 53 -.14077 85 .06404 117 —.02751 149 .00928 181 —.00237 
22 37312 54 -.12931 86 .05891 118 -—.02519 150 .00841 182 -.00216 
23 33084 55 -.11716 87 .05344 119 —.02273 151 .00751 183 —.00194 
24 .29814 56 10446 88 .04769 120 —.02019 152 .00660 184 -.00173 
25 .24824 57 -.09137 89 .04174 121 -.01757 153 .00568 185 ~.00151 
26 .20834 58 -.07801 90 .03565 122 -.01493 154 .00477 186 -.00129 
27 = .16964 59 -.06455 91 .029151 123 -.01229 155 .00388 187 ~.00107 
28 .13232 60 -.05111 92 .02337 124 -.00967 156 .00302 188 —.00085 
29 .09655 61 -.03781 93 01728 125 ~.00711 157 .00219 189 -.00063 
30 06248 62 -.02479 94 01132 126 -.00463 158 .00141 190 -.00042 
31 03026 63 -.01215 95 .00555 127 ~.00255 159 .00068 191 -.00021 

192 00000 

OBNAMAHHRON = 

Fig. 14-31. Interpolation table 
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Fig. 14-32. Interpolation table use example 

consuming, particularly on a microcomputer. Applying a tailing function 
(instead of truncating) takes even longer. The answer to this dilemma is the 
maxim: When in doubt use tables! As it turns out, a very simple table 
lookup algorithm can be derived that requires N multiplications, table 
lookups, and additions, where N is the number of points considered. These 

numbers are the same even if a tailing function is used to reduce interpolation 
noise. 

The basic idea is to store the impulse response in a table. Since the 

impulse response is symmetrical, the cable needs to be only half the size it 
would otherwise be. Figure 14-31 shows how the data is placed in the table. 
First, we will assume that N is odd. The table area is then divided into 

(N— 1)/2 sections and, for convenience on a binary computer, each section 

contains a power of two number of points. The time span of a section is the 
same as the input stream sample period. In the sample, N=13 and there 

are six sections with 32 entries each for a total of 192 entries. It is also 

necessary to include or imagine 16 zeroes preceding the first and following 
the last section. 
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Using the table for interpolation is really quite simple. First we will 
restrict the unknown point to be within one-half of a sample period, either 

side, of the middle tabulated point as shown in Fig. 14-32. This middle 

point will be designated So while those on the left are numbered $—1, S—2, 

etc., and conversely for those on the right. Next, the position of the un- 
known point with respect to the central point will be expressed to the nearest 
1/32 of a sample interval and will be called A. Thus, in the example, A will 

always be between — 16/32 and + 15/32 inclusive. To compute the unknown 
sample value, one simply iterates / through the 13 tabulated points from —6 
through +6 multiplying each point value by the contents of the table at A +7 

and adding up the products. The sum is the interpolated value! When 
Jooking into the table the sign of the argument is ignored, which imple- 

ments the symmetry. If the argument is greater than 6 or less than --6, zero 

should be returned. 
Note that the location of the unknown point is quantized to 1/32 of a 

sampling interval. Abiding by this restriction limits the variety of sample- 
rate ratios. One could reduce this restriction by increasing the size of the 
table or by linear interpolation in the table, which is now allowable because 
the tabulated function is densely sampled. One could also apply the table to 
compute two interpolated samples, one on either side of the arbitrary un- 

known sample and linearly interpolate between them, thus reducing interpo- 
lation effort. This is permissible because now the waveform is grossly over- 
sampled (by a factor of 32 in the example) and linear interpolation will not 

add nearly as much noise as before. The two methods are in fact exactly 
equivalent but the second only requires one linear interpolation rather than 
13. 

Actually writing a sample-rate-conversion program is somewhat tricky 
because both “future” and “past” input samples are needed and because of the 
different input and output sample rates. The problem is generally solved by 
using an input buffer, an output buffer, and a simulated shift register for the 
samples used in the interpolation. The routine would also accept a sample 
rate ratio, R, which would be a mixed number either greater than or less than 
unity. 

In practice, the routine would initially be given a full input buffer, an 
empty output buffer, and a shift register full of zeroes. It would also keep 
track of a time variable, A, which corresponds to the A used in the interpola- 
tion example and which is constrained to the range of —0.5 to +0.5. To 
generate the next output sample, R is added to A. If the sum is between 
—0.5 and +0.5, an interpolation is performed and the computed sample is 
put into the output buffer. If the sum is greater than +0.5, the shift 
register is shifted one position, the next input sample is taken from the input 
buffer and put into the vacant shift register slot, and 1.0 is subtracted from 
A. This is repeated if necessary until A is less than +0.5, at which point an 
interpolation is performed generating another output sample and so forth. 
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When the output buffer becomes full, a dump routine is ealled to transfer it 

someplace. Likewise, when the input buffer becomes empty, a load routine is 
called to refill it. 

Note that, if the sample rate is being converted downward (R>1), the 

data must be separately low-pass filtered (or have been adequately oversam- 
pled in the first place) prior co the sample-rate conversion. The interpolation 
filcer described cuts off at one-half the input sample rate and therefore does 
no bandlimiting itself. 
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Pereussive Sound 

Generation 

Up co this point, discussion has concentrated on the synthesis of basically 

periodic tones. Percussive sounds, however, are quite important as well and 

may in fact have even more variety than periodic types of sounds. Whereas 
tones can be fairly well described by giving a few parameters, many percus- 
sive sounds defy simple description. As is the case with tones, direct digital 
techniques offer considerably more freedom in the synthesis of percussive 
sounds than do analog techniques. Percussive sound generation is such a 
large topic that only a brief introduction can be offered here. Nevertheless, 
the techniques discussed should be suitable for a wide variety of percussive 
sounds. 

Types of Percussive Sounds 

Out of the infinite variety of percussive sounds, it is possible to define 
roughly four categories. Type 1 sounds are those that are basically sine wave 

tones with a suitable amplitude envelope. Any of the synthesis techniques 

covered previously are quite adequate for generation of the tone component of 
the sound, while direct computation or table lookup is suitable for the 
envelope. Nearly all sounds in this group have a moderate to strong sense of 
pitch due to the periodic foundation. Familiar instruments producing sounds 
in this group are wood blocks, clavés, orchestral bells, and bongo drums. 

Type 2 is similar, but the underlying “tone” consists of several, 

nonharmonically related sine wave components. Most free (without snares) 
drums produce sounds in this category when struck with moderate force by a 
padded drumstick. Unlike strings and metal bars, the various vibration 
modes of a drumhead do not correspond to integrally related frequencies. 
Again, the previous synthesis methods can be used to produce the basic tone 
to which an amplitude envelope is added. 

Type 3 sounds are best described as filtered, enveloped noise. In many 
cases, the instrument physics are basically the same as for Type 2, but the 

number of frequency components is so large that the sound resembles random 
noise. In other cases, the instrument operates by means of scraping or rat- 

479 



480 Musicat APPLICATIONS OF MICROPROCESSORS 

tling, thus producing random noise directly. Synthesizing such sounds basi- 

cally amounts to deterinining the amplitude response of the filter and the 

shape of the amplitude envelope. Cymbals, drums with snares, and sand 

blocks produce sounds that are excellent examples of this type of percussion. 

The last class most resembles the first but has great potential for a wide 

variety of distinctive percussive sounds. These are sounds made by a non- 

linear vibrator such as a ruler held over the edge of a table. The difference is 

that the basic parameters of the vibration such as frequency and waveform 
change as the amplitude of the vibration changes. In the case of the ruler, the 
nonlinearity arises from the fact that the effective vibrating length is less on 

the downstroke, where it bears against the table edge, than on the upstroke, 

where it is restrained by the player’s hand. The relative time spent in each of 
the two states varies with amplitude, until at low amplitude the table edge 
becomes dominant and the vibration expires with a Type 1 characteristic. 

Damped Sine Wave Generation 

Most sounds in the first two categories can be quite adequately simu- 
lated with one or more exponentially damped sine waves. Although a sine 
wave tone generator can be given an amplitude envelope for this purpose, the 
very fast attack characteristic of these sounds requires that the attack begin at 
the zero crossing of the sine wave. Otherwise, audible clicks may be gener- 
ated, particularly when the wave being enveloped is of low frequency. 

A convenient way of obtaining damped sine waves with the required 
attack phase continuity is to ring a high Q filter! The center frequency 
determines the wave frequency and the Q determines the decay rate. Because 
of the precision and stability of digital filters, even very slow decay rates are 
easily handled. 

The filter-ringing technique is very common in the analog world for 

simulating the sounds of all kinds of percussive instruments. Its use is most 
popular in electronic organs, where up to a dozen different percussion ‘‘in- 
struments” are driven by digital logic to provide rhythm accompaniment to 
the standard organ sound. For example, a fairly high-frequency (1-2 kHz), 
high-Q (50) ringing filter is used to simulate claves. A lower-frequency (500 
Hz), lower-Q (10-20) filter makes a convincing wood block sound. Even 

lower frequencies (100-250 Hz) and moderate Qs do a surprisingly good job 

of simulating tom-tom’s even though a real tom-tom is a Type 2 percussive 
sound. Much lower frequencies (50 Hz) have all of the oomph of a bass drum 
when played through a good speaker system. 

To these rather common-sounding percussion “instruments,” one may 

add many others by manipulating the frequencies and Qs. In particular, if a 
number of clave-like instruments with pitches on a musical scale are defined, 
a tune can be played that the average person almost invariably associates with 
falling raindrops. And who has not heard a melody “played’’ by a coffee 
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Fig. 15-1. Digital ringing filter 

percolator or corn popper? The tuned percussive sounds in this case are in the 

wood block frequency range but with somewhat lower Qs. And then we can 
have all kinds of tuned thuds, bottle pops, and little pings to work with as 
well. 

Although any resonant digital filter of the recursive type (one that has 
feedback paths) can be rung, probably the digital state-variable type is the 
easiest to work with because of the essentially linear relation between the 
filter parameters and digital constants. Since no input signal is required, the 
structure can be simplified to one of the two shown in Fig. 15-1. To start the 
filter ringing, one switializes the left delay element with a value of A and the 
right delay element with zero. Following this, every iteration of the filter 
will produce an output sample on a damped sine wave starting at zero and 
initially going positive. The first positive peak amplitude will always be 

slightly less than A depending on the Q parameter. Since the filter is a state 
variable, the center frequency may be varied without affecting the Q. This 
means that the damping time increases as the center frequency is reduced. 

The second form of the filter shown has a ringing time that is constant 
as the ringing frequency is changed. Besides being a trifle simpler in struc- 
ture, the constant ring time may be more useful musically, The equation 
given in the diagram gives the time required for the ringing amplitude to 
decay 8.7 dB or to about 37% of its original value. Since the decay is a 
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constant number of decibels per second, the decay time to other endpoint 

values is easily determined. 
One function that is easily performed with a digital ringing filter is 

dynamic variation of the filter parameters while the filter is ringing. In 

particular, variations in frequency can turn a nice “ding” into a “doioing” 

that sounds a lot like a ringing glass with water sloshing around in it. One 
interesting property, however, is that the ringing amplitude decreases when 
the frequency is raised and increases when it is lowered. This is not particu- 
larly noticeable unless the frequency change is large and the Q is high. 

‘Type 2 percussive sounds are also easily done with the filter-ringing 

method simply by using several ringing filters. The various drums men- 
tioned earlier can be more realistically simulated using the method along 
with published figures for the vibration modes of uniformly stretched 
drumheads. This can be important if one is synthesizing a drum solo in 
which the instrument is clearly heard. A particularly effective ringing-filter 
application is in the synthesis of tympana (kettledrums). The ability co cune 
the filters while they are sounding means that a realistic simulation is possi- 

ble. 

A “Perfect” Digital Oscillator 

When the Q is allowed to go to infinity, the two filter structures 
become identical and one has a digital oscillator. If integer arithmetic is 

used, the resulting sine wave will run forever with no noticeable amplitude 

increase or decrease. In fact, such an oscillator using only 8-bit arithmetic 
was sct up and allowed to run overnight with no change in amplitude. This 
was particularly interesting because there was a nonintegral number of sam- 
ples per cycle of the waveform. Apparently, because of the circular nature of 
the oscillation, the roundoff errors cancel after a number of iterations leaving 

exactly the same two numbers in the delay registers as an earlier iteration. 
The perfection of the waveform is limited only by the noise inherent in the 
N-bit representation of the samples generated. 

The content of the other delay also describes a “‘perfect’’ sine wave but 
out of phase with the first wave. In fact, the phase angle is nearly 90° 
depending on the oscillator frequency. For very low frequencies (relative to 
the sample frequency), it is quite close to 90°. Often a quadrature oscillator 

whose outputs are exactly 90° apart is useful. The simple modification of 
the infinite Q filter shown in Fig. 15-2 makes the phase difference exactly 
90° independent of frequency at the expense of two additional multiplica- 
tions per sample. Still this is much faster than computing a sine and cosine 
from a series approximation and is much more accurate than looking in a sine 
cable. The restriction, of course, is that the sine/cosine values are generated 

in sequence and at equal spacing. An application of the oscillator is ina FFT 
program, particularly for a large number of points. Examination of the FFT 
butterfly reveals that the calculation sequence is easily arranged such that the 
W function uses equally spaced sines and cosines in ascending order. 
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Fig. 15-2. Modification of infinite Q filter for 90° phase angle 

Digital Noise Generation 

Type 3 percussive sounds are primarily based on filtered random noise. 

Therefore, to generate such sounds digitally, a source of sampled white noise 
is needed. The filtering then can be accomplished with the same filters used 
in other applications. 

If one were to connect an ADC to an analog white noise generator, the 

resulting samples would appear to be random numbers with a gaussian 
amplitude probability distribution. Actually, if the ADC included an an- 

tialias low-pass filter, the noise samples would be somewhat correlated. 
However, for noise sampling the filter is noc really needed, since the alias 
noise will also be white and indistinguishable from the rest of the signal. 

Fortunately, it is not necessary to sample analog white noise if the goal 
is a string of samples that sounds and behaves like white noise. Instead, one 
simply uses a random number generator with each number from the 

generator being a noise sample. There are numerous random number al- 
gorithms available but only two will be discussed here. 

In general, 2 random number generator provides an N-bit binary 
number every time it is called. Each of the 2% possible combinations should 
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be equally likely, and there should be no perceivable correlation from one 
number to the next. Finally, if chese conditions are truly met, each bit or any 
subset of the bits in the numbers should also be random. This last condition 
implies that a random éit generator can be made into a random number 
generator simply by forming groups of N random bits each. No algorithmic 
random number generator completely meets all of these criteria but any 
imperfections are or can be made completely inaudible. 

Most random number generation algorithms are actually numerical 
functions that accept their previous output as input and generate a new 

-output. Although the output is related to the input in an obscure way, it 
seems to be completely unrelated to it in the end application. The initial 
input used when the generator is started is called the seed and can usually be 
any number except zero. If the same seed number is used on two different 
occasions, the series of numbers generated will also be the same. 

The numerical function utilized by the generator almost always uses 
integer arithmetic, and the function is carefully chosen according to the word 
size of the computer. Since the output numbers are also integers with a finite 
number of bits, it is obvious that at some point in the sequence the seed will 
pop up again. From this point forward, the sequence repeats itself. An 
efficient random number generator will generate all or nearly all of the 2N 
different numbers that can be represented by an N-bit word before repeating. 
Thus, ina 16-bit computer, about 65,000 random numbers can be generated 

with single-precision arithmetic, Even at a 50-kHz sample rate, which gives 
a repetition period of a little over 1 sec, such a generator produces perfectly 
acceptable white noise for human consumption. 

Linear Congruential Method 

One of the most popular random number algorithms is called the Linear 
congruential method. The basic function is: Raw=(AxRod+B)mod M, 

where A and B are carefully chosen constants and M is the largest possible 
number plus one for the chosen word length. The arithmetic is assumed to be 
unsigned integer and ignoring overflow neatly implements the mod func- 
tion. The generator is completely specified by giving values for A, B, and the 
word length. For any given word length, there are values for A and B (besides 
the trivial ones A= 1 and B= 1) that give M values before repeating. One of 
the references gives an extremely detailed analysis of how to determine good 
values for these parameters for general random number use. The following 
table summarizes A and B values that are suitable for white noise generation 
with different word lengths. 

The method is quite efficient if the computer has an unsigned multiply 
instruction. It does have one important shortcoming, however; the less sig- 
nificant bits are not very random. If random bits or short random words ate 
desired, the most significant bits should always be used. 
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Word length Sequence length A B 
8 256 77 55 

12 4096 1485 865 
16 65536 13709 13849 
24 16777216 732573 3545443 
32 4294967296 196314165 907633515 

Shift Register Method 

Another method that is superior to the linear congruential method in 
some respects can be called the feedback shift register random bit generator. 
As the name implies, the method generates random dts that are grouped to 
form random numbers. A feedback shift register similar to that discussed in 
Chapter 10 is used. By proper selection of the taps to be exclusive or-ed and 

fed back, the register can generate a sequence of 2N— 1 bits before repeating. 
To form an N-bit random integer, where N is equal to or less than the 
register length, one simply iterates the register at least N times and then 
reads the result directly from the register. 

One advantage of the method is that all of the bits are random and 
therefore can be used indiscriminately for random control functions. Another 
advantage is that only logical operations are needed. On the other hand, the 
method as presently formulated is not as efficient at generating numbers with 
large N compared with the previous method even if the computer does not 
have a multiply instruction. Also, when set up for iterating N times to get an 
N-bit number, it fails some statistical randomness tests. This fault may be 
minimized by iterating somewhat more than N times. On the other hand, 
quite satisfactory white noise samples are generated with only a few itera- 

tions, such as five, for full 16-bit noise samples. 

The shift register method is ideally suited for hardware implementa- 
tion. With very little logic (three [IC packages costing less than three dol- 

lars), one can set up a random number peripheral that will pass anyone’s test 
for randomness including nonrepeatability of results. The circuit in Fig. 
15-3 shows a 26-stage shift register with feedback logic that would be 

iterated by the microcomputet's clock. Up to 14 (8 are shown) of the register 
bits are available for connection to an input port. If the clock phase used to 

trigger the register is chosen properly, there is no danger of the register 
changing while the computer is reading it. The 276 sequence length would 
run over 30 sec alone, but variations in program execution time make it 
highly unlikely that any repetition could ever be detected. Skeptics can 
substitute a type 4031 64-bit register for the type 4006 18-bitter and have a 
period of nearly 150 million years at 1 mHz. 

Digressing for a moment, such a circuit makes an excellent analog noise 

generator as well. One simply clocks it at 400 kHz or more (an R-C oscillator 
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is fine) and runs one of the register bits through an R-C low-pass filter with a 
cutoff around 20 kHz. The output sound and waveform are indistinguishable 
from diode noise sources and are much less susceptible to hum pickup. Also, 
the output amplitude is repeatable and stable, a virtue not shared by diodes. 
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A modification to the shift register method will greatly increase its 
efficiency as a white noise subroutine. Essentially, the register and 
exclusive-ors are turned inside-out, which results in several of the register 

bits changing in an iteration rather than one. Assuming that the register 

length is the same as the word length, the following steps are performed for 
an iteration: 

1. Shift the register left bringing in a zero on the right and putting the 
overflow bit into the carry flag. 

2. If the carry flag is off, the iteration is complete. 

3. If the carry flag is on, flip selected bits in the register. This may be 
accomplished by exclusive-oring a mask word with the register con- 
tents. The iteration is now complete. 

In a 16-bit machine, these steps may require as few as three instructions to 
generate a sample of quite acceptable, if not statistically perfect, white noise. 

The table below lists mask words for common computer word lengths. 

Word length Sequence length Mask in hexadecimal 
8 265 1D 

12 4095 1D9 

16 65535 1D87 

24 16777215 1D872B 

32 4294967295 1D872B41 

Using the Random Numbers 

The output of the random number generators just discussed is a string 
of unsigned integers. However, since they are random, one can interpret 

them as standard twos-complement numbers as well or even as binary frac- 
tions. Since twos complement is slightly asymmetrical (there is one more 

possible negative value than possible positive values), the mean of the se- 
quence will be —0.5 of the least significant bit rather than 0. This almost 
never causes problems unless the sequence is integrated for long periods of 
time. 

Although the output of a random number generator when sent through 
a DAC sounds like white noise and in fact gives a white Fourier transform, it 
does not look at all like natural white noise. The difference is its probability 
density function, which is uniform rather than gaussian. As was mentioned 
in Chapter 10, one can easily convert uniformly distributed random numbers 
into near-gaussian distributed numbers by adding up 12 of them (assuming a 
range of 0 to 1.0) and subtracting 6.0 from the sum. The mean of the result 
will be O (except for the error described above) and the standard deviation 

will be 1.0. The simulation is not exact because the probability of a result 
greater than 6 standard deviations from the mean is 0 when it should be 
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about 2 X 107%. Actually, since uniformly distributed and gaussian- 
distributed numbers sound the same and even may look the same after 
filtering, there is little reason to perform the gaussian conversion. 

In many synthesis or modification applications, one may need several 
uncorrelated sources of white noise simultaneously. If the random number 
generator is reasonably good, one can simply distribute successive numbers 
to the separate processes requiring them. Thus, one random number 
generator can be used to simulate any number of random processes. 

Type 3 Percussive Sounds 

Now that we have a source of white noise lets discuss how it can be used 
to synthesize Type 3 percussive sounds. A pure Type 3 sound may be 
generated by filtering the noise and applying a suitable amplitude envelope. 
Very simple filters are adequate for many common sounds. For example, a 
quite deadly sounding gunshot may be produced by high-pass filtering the 
noise with a 300 Hz to 500 Hz cutoff and applying an envelope with zero 
attack time and decay to —30 dB in 100 msec to 200 msec. Conversely, a 
cannon boom is noise low-pass filtered at 100 Hz to 200 Hz with a somewhat 
longer attack and decay than the gunshot. Returning to musical instru- 
ments, high-pass filtering above 1 kHz with a 50 msec to 100 msec attack 
and decay simulates brushes (lightly on a snare drum) quite well. Maracas 
sound best with a little lower cutoff frequency and shorter attack and decay. 
Cymbal crashes have about the same frequency distribution as maracas but a 
fast attack and long decay in the 0.5-sec to I-sec range as well as high 
overall amplitude. 

Some sounds are not pure Type 3. A standard snare drum beat is the 
best example and consists of a burst of virtually white noise (only the very 
lowest frequencies are missing) combined with a Type 1 or Type 2 drum 
sound. A very realistic close range (remember how it sounded when one 
passed just 5 feet away in a parade?) bass drum sound can be produced by 
amplitude modulating 500-Hz low-pass filtered noise with the primary 50 
Hz damped sine wave and mixing the two together. 

Noise may also be bandpass filtered to simulate other classes of sounds. 
Many types of drums are more easily synthesized with filtered noise than 
several damped sine waves and sound just as good if not better. The bass 
drum, for example, can be done by bandpass filtering in the 50-Hz range as 
in Fig. 15-4. Pitched drums such as tom-toms also come out well if some- 
what higher center frequencies are used. Sometimes it may be necessary to 
cascade two bandpass filcers to provide greater attenuation of frequencies far 
removed from the center frequency, which would otherwise detract from the 
naturalness. It should be noted that bandpass filters not only take time to die 
out after the input is removed but also take time to reach full output if the 
input is suddenly applied. In some cases, the filter itself may generate a 
suitable envelope simply by turning the noise input on and off. Single-pole 
R-C low-pass filters also have a finite build-up time, but it is relatively short. 
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Fig. 15-4. Bass drum simulator 

Nonlinear Vibrator Simulation 

Many interesting percussive sounds fall into the Type 4 category. The 
vibrating ruler mentioned earlier is one example, while a strongly plucked 
rubber band is another. To these everyday examples can be added any 
number of artificially contrived examples. 

Such sounds involve one or more nonlinear vibrating members. One 
characteristic of nonlinear vibrators is that the waveform and frequency of 
vibration depend to some degree on the amplitude of the vibration. A linear 
vibrator, on the other hand, is totally independent of amplitude. While 
every natural (and electrical analog) vibrator is nonlinear to some extent, the 
effect at normal amplitude levels is small enough to ignore. 

The object here is to simulate the behavior, that is, plot the vibration 
waveform, of an excited nonlinear vibrator given certain vital statistics about 
its components and an expression or a table describing the nonlinearity. Fig- 
ure 15—5 shows a standard spring-mass vibrator, just as it would appear ina 
physics textbook. The position of the mass relative to its stable or neutral 
position as a function of time is the variable of interest. 

The classic first step in analyzing the vibrator is to note all of the forces 

acting on the mass and then apply the conservation principle that requires 

these forces to balance out, that is, sum to zero. There are three forces at 
work (gravity will be ignored, since it is a static force that has no effect on the 

vibration dynamics): the spring-restoring force, the force of friction, and the 

force of inertia. The restoring force is normally proportional to the difference 
between the present position and the neutral position and always pulls to- 
ward the neutral position. The force-versus-position relation is what will be 
made nonlinear later. The friction force can either be due to sliding friction, 
in which case its magnitude is constant (as long as there is movement) or due 

to viscous friction with magnitude proportional to velocity. Viscous friction 
will be used, since it is better behaved and more “‘natural.” In either case, the 

direction is opposite to the direction of movement. The inertia force is 
proportional to the mass of the vibrator and the acceleration (rate of speed 
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Fig. 15-5. (A) Spring-mass vibrator. (B) Forces on the mass. A, acceleration of 
mass; |, inertial force; M, mass; F, friction force; R, spring-restoring 
force; P, position of mass relative to neutral; V, velocity of mass: f, 
spring-restoring force function (linear or nonlinear); and K, friction 
coefficient. 

change) it is experiencing. Its direction opposes the sum of the other two 
forces. 

After the various forces are identified and written in equation form, it is 
customary to rewrite the equation in terms of the primary variable, P (posi- 
tion), instead of velocity and acceleration. This is easily done, since velocity 
is the time derivative of position and acceleration is the time derivative of 
velocity. The result is a standard second order differential equation. 

Our goal, however, is to simulate the physical process described by the 
equation, not “solve” ic in the mathematical sense. In order to get the 
equation into an easily handled form for simulation, it is better to write it in 
terms of acceleration, A, rather than position. If this is done, velocity is 
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Fig. 15-6. (A and B) Electrical analog of spring-mass vibrator. (C) Digital im- 
plementation. 
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replaced by the time integral of acceleration, and position is replaced by the 
double time integral of acceleration. The resulting equation then is a second 
order integral equation. 

At this time, we are ready to construct an electrical analog of the 
mechanical vibrating system. The first step is to move the MA term to the 
right side of the equation and assign it to the output of an op-amp summer as 

in Fig. 15—G6. The left side of the equation now specifies the input to the 
summer, which is also shown. The remaining task is supplying fa and 

f fA. This can be accomplished neatly by passing the summer output, 
MA, through two integrators in series and making the indicated connections 

as in Fig. S—15B. This looks strangely similar to the state-variable filter and, 
in fact, is exactly the same if the input is removed and the noninverting 
integrators are replaced by inverting ones with the friction-feedback term 
flipped to compensate. 

Thus, a nonlinear vibrator may be simulated by inserting a nonlinear 
transfer function in the feedback path from the low-pass output and then 
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Fig. 15-7. Nonlinear vibrator simulation. (A) Increasing slope. (B) Decreasing 
slope. (C) Non-symmetrical slopes. 
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exciting the filter for results. Although an analog nonlinearity using diodes is 
quite possible (and an interesting experiment), with the digital equivalent an 
equation or table describing the transfer function can be used instead. 

Not just any randomly chosen curve will work for the transfer function, 
however. In order for the oscillation to die out completely, the slope of the 
curve must always be positive. If the slope tends to increase away from zero as 
in Fig. 15—-7A, the oscillation frequency will decrease as it dies out and 
vice versa. Symmetrical transfer functions lead to odd harmonics only while 
nonsymmetrical ones give all harmonics. The position (low-pass) output of 
the vibrator tends to have a very strong fundamental relative to the har- 
monics. The velocity (bandpass) and acceleration (high-pass) outputs have 
greater harmonic content. 

The position feedback path is not the only one that can be made 
nonlinear. The velocity path may also be nonlinear with the general effect of 
distorting the decay envelope. Any of the amplifiers in the vibrator structure 
can also be made nonlinear. For example, making the value of Fei dependent 
on position means that the vibrating mass depends on position such as in the 
vibrating ruler case. (The reader should be aware that the ruler sound cannot 

be duplicated with just the nonlinear oscillator, the impact of the ruler 
hitting the table excites additional resonances in the ruler that require 
additional filters to simulate.) It is important to note that digital simulations 
of nonlinear vibrators can easily generate frequencies above one-half the 
sample rate. Thus, experiments should be done at fairly low resonant fre- 
quencies and without sharp discontinuities in the nonlinear transfer func- 

tions. 



16 
Source-Signal Analysis 

One of the great strengths of digital techniques lies in the abilicy to 
thoroughly analyze already existing sounds. These may either be “natural” 
sounds such as musical instruments, speech, animal sounds, etc., or they 

may be synthesized sounds. In either case, the goal of analysis is to determine 

values of the fundamental parameters that characterize the sound and how 
they vary with time. 

When the ultimate purpose is synthesis, one may do analysis simply for 

education. Certainly, a good understanding of the parameters of existing 
sounds will aid in the specification of parameters for similar synthetic 

sounds. Often, published literature will have the necessary information, but 
it may be obscurely presented or applicable only to generalized or overly 
specialized cases. Even when published literature is adequate initially, most 
synthesis applications can be expected to gtadually specialize beyond its 

scope. In either situation, firsthand analysis experience is quite helpful. 
The most common application of analysis, however, is in sound modifi- 

cation in which one obtains data from a natural sound and uses it to direct the 
synthesis of an artificial sound. Sometimes the distortions introduced by the 
analysis/synthesis process alone are sufficient for che desired results. Usually, 
though, the analysis data are modified before the synthesis is performed. 

Digital processing of the analysis data can usually be performed such that the 
useful information is in an easily usable form. For example, if one wishes to 
apply the overall spectral envelope of a particular sound to another sound, a 

standard spectral analysis can be smoothed so that details about the individual 
harmonics are suppressed but the overall envelope is preserved. 

Digital signal analysis is a very broad, very complex topic that keeps 

research staffs at many universities busy continuously. It is typically highly 

mathematical as well and most literature on the subject is quite obscure 
without the necessary training. Although one cannot completely escape such 
complexities, an attempt will be made in this chapter to discuss the most 
important and easily implemented analysis techniques. While these may not 

495 
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always be the most efficient or most accurate techniques, they get the job 
done. It is much more important for the beginner to actually do some 
analysis programming and see the results than to have a thorough mathemat- 

ical understanding of the underlying principles. Only two types of analysis 
will be described in detail. The first is generalized spectrum analysis in 
which the time-varying spectrum of the source sound is determined. The 
second concentrates on extracting and following the frequency parameter of a 

changing sound, a very useful function. 

Spectrum Analysis 

Most source-signal analysis begins with spectral analysis, since virtually 
everything that is audible and important about a sound shows up vividly in a 
spectral analysis. The results of the analysis may then be plotted, passed 
directly to a synthesis process, or undergo further processing. 

A time-variable spectral plot, which is also called a short-time spectral 
analysis, is actually a three-dimensional “surface” that shows the relation 
between time, frequency, and amplitude variables. Time and frequency are 
the independent variables, while amplitude is the dependent variable. When 
spectra are computed digitally, all three variables are quantized and two of 
them, amplitude and frequency, are also sampled. In effect the ‘‘volume” 
represented by the allowable ranges of these variables is filled with discrete 
points and the spectral surface is defined only at point intersections. 

Plotting Methods 

Obviously, most computer graphic displays and plotters cannot di- 
rectly show a three-dimensional surface. This shortcoming has resulted in at 
least five distinct methods of representing the data on paper or a CRT screen. 
Perhaps most obvious is an isometric drawing of the surface such as illus- 
trated in Fig. 16-1A. The surface is drawn in a horizontal position with 
peaks and valleys much like a land area relief map. Typically, time runs 
north/south, while frequency runs east/west, although they may be inter- 

changed. Height always represents amplitude. Such a representation gives a 

“spectacular view” of the spectrum to say the least but is very difficult to 
draw, since hidden line removal (the surface is opaque instead of transparent) 
is necessary to avoid clutter. 

A somewhat easiet-to-draw representation consists of a stack of stan- 
dard two-dimensional curves such as illustrated in Fig. 16-1B. Each curve 
represents a standard amplitude-versus-time plot at a particular frequency. 
Therefore, the horizontal axis is time and the vertical axis is amplitude. Each 
8taph is displaced vertically upward as well so the vertical axis is also fre- 
quency. Sometimes the curves are skewed to the right as well as upward to 
give an isometric effect. 

A third method, which is particularly applicable to digital spectra, 
approaches a true three-dimensional representation more closely. With a 
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Fig. 16-1. Methods of representing three-dimensional spectral data in two 
dimensions. (A} Isometric projection. Source: Audio Engineering 
Society Preprint No. 1139, “Three-Dimensienal Displays for Dem- 
onstrating Transient Characteristics of Loudspeakers,” 1976. (B) 
Stack of two-dimensional curves. 
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Fig. 16-1. Methods of representing three-dimensionai spectral data in two di- 
mensions (cont). (F) Optically weighted character set. Spectral plot 
using optically weighted characters. 

sampled spectrum, amplitude data values are only known at specific incre- 
ments of time and frequency. Thus, if the two dimensions of a sheet of paper 
correspond to time (horizontal) and frequency (vertical), then the area has 

been divided into an array of rectangles, much like graph paper. What is 
drawn within the confines of a particular rectangle represents amplitude at 
that time and frequency intersection. One could simply draw a bar line in the 
rectangle such thac the length corresponds to amplitude as in Fig. 16—1C, If 
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Fig. 18-1. Methods of representing three-dimensional spectral data in two 
dimensions (cont.). (G) Contour map (voiceprint). 

the figure is drawn accurately, this is one of the better quantitative methods 
of representing spectral data, since all three variables can be very easily 

measured on the plot with a compass and ruler. 
One can also fill the rectangle with a patch of gray (or light if on a 

CRT). The density of gray or brightness of light represents amplitude as in 
Fig. 16—-1D. This is commonly called a sound spectrogram, a name coined by a 
company that makes analog equipment for drawing such plots. If one has a 
color display, then a different color can be assigned to each amplitude quan- 
tization level. Computer line printers can also be pressed into service as 
spectrum plotters by defining time and frequency increments in terms of line 
and character positions. The rectangles are then filled in with characters or 
overprinted character combinations chosen for their apparent darkness. 

In any case, this gives a very-easy-to-interpret visual representation of 
the data, but measurement of amplitude from the graph is no longer possi- 
ble. A very clever compromise is illustrated in Fig. 16—-1F in which 16 
different “characters” based on the hexadecimal digits are defined. The idea 
is to have che area covered by black in the character shape to correspond to its 
numerical value. If the amplitude values are quantized to 16 levels, one can 
merely read off the values while simultaneously having a “gray-scale” plot to 
scan visually. 

The final method is the familiar contour map approach to three- 
dimensional plotting as in Fig. 16-1G. When such plots are made of speech 
spectra, they are often called “voiceprints” because of the resemblance in 

form to fingerprints (there is some controversy over whether they are nearly 
as distinctive as fingerprints). This is perhaps the most accurate method of 
representation, particularly if changes in the spectrum are slow. Unfortu- 

nately, visual interpretation in terms of features valuable for synthesis is 
difficult. 

Time—Frequency Resolution 
In a spectral plot, good frequency resolution is desirable so that indi- 

vidual harmonics of the sound are clearly distinguishable. Good time resolu- 
tion is also desirable so that the exact time of significant spectral events can 
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Fig. 16-2. Wideband and narrowband spectrograms. (A) Narrowband (45 Hz). 
(B) Wideband (300 Hz). Source: Applications of Digital Signal Pro- 
cessing, Alan V. Oppenheim, Editor, Prentice-Hall, 1978. 

be determined. Unfortunately, spectral analysis ts limited in the frequency 
and time resolution that it can show. This is not due to any particular 
shortcoming in the computation or the plotting method but instead is due to 
a fundamental law of physics. Since the unit of frequency is “events per 
second” and the unit of time is seconds, it should be intuitively obvious that 
precise measurement of the amplitude of a frequency component in the pres- 
ence of other components will take a finite amount of time. In fact, if 
frequency resolution of X hertz is desired, a segment of sound lasting a 

minimum of 1/X sec must be analyzed. Even the human ear is subject to this 
limitation. As tone bursts are made shorter, there is greater difficulty in 
identifying exactly what the pitches are. 

The two spectrograms in Fig. 16-2 illustrate the time-frequency 
tradeoff. The first spectrogram is called a narrowband analysis because the 
analysis bandwidth is about 45 Hz. This allows individual harmonics of the 
sound (a human voice) to show clearly. The waving up and down of the 
horizontal lines, which are the harmonics, is the result of changing voice 
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Fig. 16-3. Illustration of time-frequency resolution limitation. (A) Actual syn- 
thesized tones. (B) Narrowband spectral analysis. (C) Wideband 
spectral analysis. 

pitch. Note that onset and termination of the major features is somewhat 
smeared. The second spectrogram is a wideband analysis with an analysis 
bandwidth of approximately 300 Hz. Here the time resolution is so good 

(approximately 3 msec) that individual cycles of the fundamental frequency 
are resolved, which causes the vertical bands. However, only the formants 

show up; the harmonics are too closely spaced relative to 300 Hz to be 
resolved. 

Returning to the array of rectangles that makes up a digital sound 
spectrogram, one can consider a narrowband analysis to correspond to rectan- 
gles that are wide and short, while a wideband analysis uses narrow and tall 
rectangles. The area covered by a rectangle remains constant and is equal to 
approximately unity (hertz times time). The actual surface area covered on 
the plot depends on the scale factor chosen for frequency and time axes. An 

analog spectrogram is subject to the same limitation except that the rectan- 

gles become somewhat diffuse, overlapping ellipses. By using interpolation 
in two dimensions, a digital spectrogram can be made vo appear identical to 

an analog one. 
Although it would seem that the narrowband and wideband plots could 

be combined into a single figure with both good frequency and time resolu- 

tion, it is not possible to do so unambiguously. This is illustrated in Fig. 
16-3 in which two nearly simultaneous cone bursts are analyzed. The nar- 
rowband analysis easily separates the two tones but smears the leading and 
trailing edges such that it is impossible to tell which occurred first. The 
wideband analysis has very sharp leading and trailing edges, but now the two 
tones are merged together so it is still not possible to say which came first. 
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Data Representation 

Most of the spectral plotting methods that have been discussed have a 
limited dynamic range for indicating amplitude. This is particularly true in 
the gray-scale representation. Usually, it is the changes and ratios of ampli- 
tude that are important rather than the absolute amplitude itself. Therefore, 
it is customary to at least partially mormalize the amplitude scale so that 
overall low-amplitude portions of the signal show up as well as the high- 
amplitude portions. The normalizing effect can be achieved either with an 
automatic gain control mechanism (which can be applied after the signal is 

digitized) or by expressing the amplitude of each frequency component as a 
percentage of the total spectral power for that time slot. In either case, it is 
helpful to know che true overall amplitude which can be plotted as a conven- 
tional graph below the spectrogram. When pitched sounds are being 
analyzed, it is also nice to have a fundamental frequency plot as well, since 
this information may be difficult to determine accurately from either a 
narrowband or wideband analysis. 

Although spectral plots are instructive to look at and, in fact, may be 
the goal of educational spectral analysis, the associated data must often be 
stored for later use. The most straightforward method of storing spectral data 
is in frames. Each frame represents spectral data at a point in time. Within 

the frame there is a byte or word for every frequency band used in the 
analysis. There may also be one or two additional elements for the overall 
amplitude and fundamental frequency if these data are available. With nar- 
rowband analysis data, the frames would be spread far apart in time and each 
frame would have a large number of elements. An example would be a frame 
every 30 msec with 165 elements per frame representing 30-Hz bands up to 
5 kHz. Frames for wideband analysis data would occur more often, but each 
frame would have fewer elements. The corresponding example would be 
7.5-msec frames with 40 elements, which gives 130-Hz resolution up to 5 
kHz. Note that the amount of data to be stored per second is roughly the 
same. 

With many cypes of spectral data it may not be necessary to retain full 
frequency resolution in the higher frequencies. For example, a frequency 
change from 60 Hz to 90 Hz is interpreted by the ear as an interval of a fifth; 
however, a similar shift from 5,000 Hz to 3,030 Hz is a mere 10-cent (0.1 

semitone) shift, which is marginally audible if at all. As a result, the analysis 

bandwidth can often be widened above a kilohertz or so without loss of 
audible spectral features, thereby reducing the amount of data per spectral 

frame. 

Filtering Methods of Spectral Analysis 

The most obvious method of performing spectral analysis is by means of 

bandpass filtering. The general idea is to feed the time-varying input signal 

to a large number of bandpass filters, each with a different center frequency. 
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Fig. 16-4. Kay electric sound spectograph 

The amplitude of the filter outputs is sampled periodically to provide the 
spectral data. If the center frequencies and Q factors of the filters are chosen 
properly, all possible frequencies in the band of interest will excite at least 
one filter. 

Any number of analog methods for directly realizing or simulating such 
a structure have been devised. Probably the most interesting is that utilized 
by Kay Electric Company in their Sound Spectrograph. The basic parts of the 
machine shown in Fig. 16-4 are the magnetic recording drum, the facsimile 

image drum, and a single tunable bandpass filter. The recording drum is 
mechanically coupled to the facsimile drum such that they rotate in unison. 

In use, up to 2.4 sec of sound can be recorded on the surface of the 
magnetic drum. To plot a spectrogram, a piece of electrosensitive paper 
(turns dark when current is passed through it) is wrapped around the fac- 
simile drum and the machine is started in playback mode. The audio signal 
from the drum goes through the bandpass filter and then directly to the 

writing stylus. High-amplitude filter outputs create a darker trace than 
low-amplitude outputs. A leadscrew causes the writing stylus to gradually 
move along the length of the drum and at the same time increase the center 
frequency of the filter. Thus, the audio signal is serially analyzed at a large 

number of center frequencies outside of real time. An amplitude-quantizing 
attachment is also available to replace the gray-scale plot with a contour plot. 

Most analog spectrum analyzers, however, use a bank of bandpass 
filters so that the spectrum analysis is performed in parallel in real time. The 
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Fig. 16-5. One channel from a filterbank spectrum analyzer 

structure of each channel of such an analyzer is shown in Fig. 16—5. First the 

signal is bandpass filtered with a center frequency corresponding to the 
channel under consideration. The output of the filter, which is still an ac 

signal but with a limited frequency range, is rectified as the first step in 
determining its amplitude. This is best accomplished with a full-wave rec- 
tifier so that the ripple frequency will be high. A final low-pass filter removes 
the ripple, giving the short time average of the bandpass filter output. For the 
lowest couple of bands, the design of this filter is critical, since too much 
filtering means a slow response, while inadequate filtering lets the ripple 
through, effectively adding noise to the channel output. 

A Digital Filterbank Spectrum Analyzer 

Let’s now discuss a digital implementation of the analog filterbank 
analyzer. The main advantage of the filterbank method over the Fourier 
transform method that will be described later is its simplicity and case of 
understanding. Because of its simplicity, dedicated hardware implementa- 
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Fig. 16-6. Digital filterbank spectrum analyzer 
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tion is straightforward as well. Even when implemented in software, it is 
reasonably efficient if the number of frequency bands is small. 

A general block diagram of the structure to be implemented is shown 
in Fig. 16-G. This is essentially an extension of the analog channel diagram 
into digital form. The input signal is a string of samples at the normal audio 
sample rate, which will be assumed to be 20 kHz in this discussion. The 
sampled signal passes through a bandpass filter, rectifier, and low-pass filter 
in succession, all of which operate at the audio sample rate. The oxipat of the 
low-pass filter, however, changes very slowly and therefore can be resampled 
at a much lower frequency to provide spectral frames at a reasonable rate such 
as 100/sec. As a computer program, the analyzer would essentially accept 
samples continuously and return a spectrum frame for every 200 input sam- 

ples. 

The first element to consider is the bandpass filter. Since only a 
bandpass response is needed and the center frequencies are fixed, the cannon- 
ical form will be used because it requires only two multiplications per 
sample. 

The next task is to select the center frequencies of the filters. The 
spectrum sample period of 10 msec suggests that 100-Hz bands are op- 
timum, although wider or narrower bands can be used as well. A bandwidth 
narrower than 100 Hz simply means that the bandpass filter will respond 
slowly to signal changes and, as a result, the channel output will be oversam- 
pled. A bandwidth greater than 100 Hz means that the low-pass filter and 

sampler following the rectifier will limic the channel response speed rather 
than the bandpass filter. 

Let’s assume, then, that we wish to minimize the number of frequency 
bands yet retain enough data to provide a good representation of significant 
audible features. For illustration there will be 30 frequency bands scaled on a 

quasiexponential scale with bandwidths ranging from 50 Hz at the low end 
to 500 Hz at 7.5 kHz. Frequencies above 7.5 kHz are not considered, since 
the low-pass filter used in A-to-D conversion has probably attenuated them 
anyway. 

It is convenient to specify lower and upper cutoff frequencies for the 
filters, especially when using a mixture of bandwidths. The center frequency, 
however, is what is needed to design the filter and it is mot exactly midway 
between che upper and lower cucoff points. It is, in fact, the geometric mean 
of Fs and Fi and is given by WFiFs, where F: is the center frequency. This 
formula holds for any definition of cutoff frequency as long as the same 
definition applies to both F/ and Fs. 

Given the center frequencies and bandwidths, the last task is to com- 
pute the filter Q factors. Since the percentage bandwidths vary from band to 
band as well as the bandwidths themselves, each filter will have a different Q. 
But before the Qs can be determined, the inevitable overfap between bands 
must be considered. Overlap is bound to occur because the cutoff slope at the 
band edges is finite. If the Qs are made high in order to minimize overlap as 
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Fig. 16-7. Overlap between analyzer filters. (A) Insufficient overlap. (B) Ex- 
cessive overlap. 

in Fig. 167A, there will be large frequency gaps that none of the filters 
respond very strongly to. On the other hand, excessive overlap degrades 
frequency resolution. Overlap can be characterized by noting at what attenu- 
ation adjacent amplitude responses cross. A good number for the single- 
section bandpass used here is —6 dB or the 50% voltage response points. The 
formula for Q based on a 6-dB bandwidth is: Q = 1.732F A(Fs—FA. 

Table 16-1 and Fig. 16-8 show the 30-channel bandpass responses 
with overlap at the 6-dB points. What is plotted in Fig. 16-8 is the gain 
versus frequency for each filter after it has been normalized for unity gain at 
the center frequency. This would seem to be the only reasonable way to 
normalize filter gains, but a peculiar thing happens if one feeds white noise 

into the analyzer. Some channels, notably the high-frequency wide 
bandwidth ones, report a higher amplitude than others even though the 
input sound has a flat spectrum! 

The uneven response is due to the fact that white noise has constant 
power per hertz of bandwidth, and the wider bandwidth filters therefore 
absorb more power. A typical complex music spectrum would show the 
same results. On the other hand, a sound having only a few widely spaced 

harmonics would be analyzed correctly! The only way to avoid this dilemma 

is to use equal bandwidths for all of the filters. If wider bandwidths are 
desired at the higher frequencies, two or more bands can be averaged, which 

does not create problems. Even though the spectral data are reduced, compu- 
tation time soars. The filterbank analyzer, therefore, is best suited for rough 

analysis of dense (lots of frequency components) spectra, in which case the 

channel gains are normalized for equal response to white noise. 
The low-pass filters following the rectifiers must also be specified. As 

was mentioned earlier, their primary job is to smooth ripple from the rec- 

tifier without unduly slowing response to sudden spectrum changes. How- 
ever, one must be careful to avoid multisection sharp cutoff filters because 
their step response includes a lot of ringing, which would distort the 
analysis. A reasonable compromise is a resonant low-pass with a Q of around 
0.8. Since the spectrum sample rate is 100 Hz, a cutoff frequency of 30 Hz or 
so is indicated. Acceptable ripple rejection in the lowest band may require a 
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Table 16-1. Filter Data for Filterbank Spectrum Analyzer 

Channel Fi Fr Fe Q 

1 50 100 71 2.45 

100 150 122 4.24 

3 150 200 173 6.00 

4 200 300 245 4.24 

5 300 400 346 6.00 

6 400 $00 447 775 

7 500 600 548 9.49 

8 600 700 648 11.22 

9 700 800 748 12.96 

10 800 900 849 14.70 

an 900 1,000 949 16.43 
12 1,000 1,200 1,095 9.49 

13 1,200 1,400 1,296 11.22 

14 1,400 1,600 1,497 12.96 

18 1,600 1,800 1,697 14.70 
16 1,800 2,000 1,897 16.43 

17 2,000 2,200 2,098 18.17 
18 2,200 2,400 2,298 19.90 
19 2,400 2,600 2,498 21.63 
20 2,600 2,800 2,698 23.37 
21 2,800 3,000 2,898 25.10 
22 3,000 3,300 3,146 18.17 
23 3,300 3,600 3,447 19.90 
24 3,600 4,000 3,795 16.43 
25 4,000 4,500 4,243 14.70 
26 4,500 5,000 4,743 16.43 
27 5,000 5,500 5,244 18,17 

28 5,500 6,000 5,745 19.90 
29 6,000 6,500 6,245 21.63 
30 6,500 7,500 6,982 12.09 

lower cutoff for that band, however. Note that aliasing is a secondary concern 

when the channel outputs are sampled, since the waveform of the channel 

output is of interest. 

Improving the Analyzer 

Before advancing to Fourier transform analysis, let’s discuss some ways 
of improving the performance of the filterbank analyzer. The most obvious 
improvement is bandpass filters with flatter passbands and steeper cutoffs to 
improve analysis accuracy and reduce overlap. In particular, attenuation far 

from the center frequency could stand considerable improvement. Such fil- 

ters can be realized by cascading simple bandpass filters as was done to get a 
supersharp low-pass in Chapter 12, Note, however, that sharp cutoffs in- 
crease filter ring time just as surely as narrow bandwidths, so minimizing 

overlap will incur a penalty in time resolution. 

Another improvement is in the rectifier and low-pass filter area. If the 
bandwidth is fairly small compared to the center frequency, the bandpass 
filter output waveform will appear co be a pure sine wave with a varying 
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amplitude. If instead of the cannonical form, the state-vatiable bandpass 
fileer form is used, the filter output and a 90° phase-shifted copy at the same 
amplitude are available. The amplitude of the waves can then be determined 
instantly without rectification or filtering simply by taking the square root of 

the sum of their squares! This then would eliminate the rectifier and low-pass 
filter at the expense of a more complex bandpass filter. 

The converse is also possible, that is, the bendpass filter can be elimi- 

nated as in Fig. 16-9. Here, the input signal is split and balanced modulated 
(multiplied) by the two ourpurs of a quadrature oscillator running at the 
center frequency of the channel. Recall that balanced modulation produces sum 
and difference frequencies but suppresses the original signals. The following 
low-pass filter allows only sufficiently low difference frequencies through. 
Thus, the modularor-filter combination acts like a bandpass filter with a 

bandwidth twice the low-pass cutoff frequency and a cutoff shape either side 

de 
CHANNEL 
OUTPUT 

QUADRATURE 
OSCILLATOR SIGNAL 

Fig. 16-9. Heterodyne filterbank channel 
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of center identical to that of the low-pass. This setup is called a heterodyne 

filter, since it is the beat note between the signal and a “carrier” that is 
actually measured. Since the two signal paths are 90° out of phase, they may 
be combined by a “square root of sum of squares” element to produce the 
final channel output or they may be kept separate to retain phase information 
about the signal. The sare comments regarding overlap, cutoff slope, and 
ringing time apply to the low-pass filters in this implementation. 

One nice thing about either the channel structure just mentioned or the 
previous bandpass filter channel is that, when implemented digitally, the 
gencral-purpose spectrum analyzct can be made into a harmonic tracker with 
little effort. Obviously, the greatest analysis accuracy occurs when the center. 
frequency of a channel exactly matches a harmonic frequency. The idea 
behind a harmonic tracker is to assign a channel to each harmonic of the wave 
being analyzed and then continuously vary the center frequency to remain 
locked on the harmonic. A prerequisite, however, is a fundamental frequency 
tracker or so-called “pitch follower." Knowing the fundamental frequency, 
harmonic frequencies are easily calculated and filters can be tuned to them. 
The channel output then gives a time history of the actual harmonic spectrum 
of the tone, which is then directly applicable to Fourier series or FFT synthe- 
sis methods. 

Spectrum Analysis Using the FFT 

Almost as obvious as bandpass filtering is spectral analysis by means of 

Fourier analysis. After all, Fourier and his theorem is what the whole idea of 
a frequency spectrum is all about. Applying Fourier analysis to exactly one 
cycle of a periodic waveform in order to determine its harmonic makeup is a 
theoretically simple task that, for practical purposes, yields an exact result. 
On the other hand, applying it to a complex changing sound with arbitrary 
frequency content is not as simple and can be far from exact as well. The 
computational efficiency of the fast Fourier transform, however, makes 
Fourier analysis such an attractive method of high-resolution spectral analysis 
that users often go to great lengths to overcome its problems. Spectrum 
analysis by digital filtering is attractive only for low-resolution (few bands) 
analysis, harmonic-tracking analysis, or where the “intelligence” necessary to 
implement the FFT is lacking. 

As was mentioued in Chapter 13, the FFT computes the spectrum of a 
finite-sized block (record) of samples. It assumes, correctly or not, that the 
block of samples represents exactly one period of a perfectly periodic waveform 
and in curn gives the exact harmonic amplitude and phase spectrum of the 
assumed waveform. The trick in spectral analysis via FFT, then, is to break up 
the continuous stream of samples into records for the FFT and to insure that 
the necessary assumptions do not cause problems. 

The first practical task is to decide the record size, which in turn 
determines the maximum frequency and time resolution of the analysis. 
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Since the spectrum is averaged over the duration of a record, the time 

resolution can be no betcer than the record duration. And since the FFT gives 
harmonic frequencies that are integral multiples of the reciprocal of the 
record duration, the frequency resolution can be no better than this either. 

Thus, time resolution multiplied by frequency resolution can be no less than 
unity. Another consideration is that for maximum efficiency and ease of 
programming, the record size should be a power of two. 

Continuing the example used earlier (20-kHz signal sample rate, 
50-Hz frequency resolution, 100-Hz spectrum sample rate), we see that the 
record size must be at least 400 samples to obtain the required frequency 
resolution. The corresponding time resolution is 20 msec, which means that 

the 100-Hz spectrum sample rate oversamples the changing spectrum by a 

factor of two. We will see later that overlap between successive records is 
often desirable and that it results in spectral oversampling as well. After 
rounding up to the next power of two, the FFT example used in the follow- 
ing discussion will assume a record size of 512, which gives a frequency 

resolution of 39 Hz, and a spectral sample rate of 78 Hz. 

Equivalent Bandpass Filter 

Since the filterbank and the FFT methods of spectral analysis yield 
similar results, it makes sense to talk about an equivalent bandpass filter 
corresponding to each of the “harmonics” computed by the FFT. As an 

example, let us study the 10th FFT harmonic. Ideally, it should act as a 

bandpass filter with a lower cutoff of 9.5 X 39 Hz = 370 Hz and an upper 
cutoff of 10.5 x 39 Hz = 409 Hz. Conceptually, it is simple to plot the 
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Fig. 16-10. Equivalent bandpass filter response of 10th FFT harmonic 
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equivalent bandpass curve. One simply generates a large number of pure sine 

waves of different frequencies (much more closely spaced than 39 Hz), pet- 

forms an FET (512-sample record) of each one, and plots the amplitude of the 

10th FFT harmonic as a function of sine wave frequency (the phase has no 

effect). One might think that the equivalent bandpass filter would be ideal, 

that is, have a flat top and vertical sides. However, the actual plot in Fig. 
16-10 is quite the opposite. If one purchased an analog bandpass filter 
exhibiting such a response curve, it would probably be returned for warranty 

repairs! 
Close examination of the curve, however, reveals that the response is 

zero at all integral multiples of 39 Hz except 390 Hz, where the response is 
unity. Corresponding curves for the other FFT harmonics are similar except 
for being shifted up or down by a multiple of 39 Hz. Thus, the analysis of a 
periodic waveform having a fundamental frequency of 39 Hz (or an integral 
multiple of 39 Hz) will be exact. This should be expected because the FFT 
assumes that the sample block is periodic at 39 Hz and, conversely, one 
should expect some error if this is not true. The real problem with the 
response curve is not its curved top or sloping sides but its poor attenuation 
at frequencies far removed from the center frequency. This phenomenon is 

termed /ezkage, which must be reduced to the —40-dB to —80-dB range if 
the spectral analysis results are to be meaningful. 

The primary cause of leakage is the discontinuity between the begin- 
ning and the end of the record when the test frequency is not an integral 

multiple of 39 Hz. If there were some way to adjust the ends of the record so 

that they are continuous, then perhaps the leakage would be reduced. One 
way to force continuity is to taper both ends of the record toward zero. Since 
the first and last samples are now zero, they are also continuous. This is 

accomplished by applying an amplitude envelope to the record with symmetri- 
cal attack and decay. When used in this manner, such an envelope is called a 
window and can have any of a number of shapes. The zero attack~and-decay 
window used so far is termed a rectangular window. The shape of the window 
has a powerful influence on the equivalent bandpass response shape so the 
goal is to find a window shape that reduces leakage to an acceptable level. 

Fortunately, windows can be evaluated more easily than computing a 
point-by-point amplitude response with a separate FFT for each point. Al- 
though the shape of che equivalent baudpass curve was given for the 10th 

FFT harmonic, it is exactly the same for any of the FFT harmonics— 

including the zeroth. Since an amplitude envelope applied to a dc voltage is 
simply the amplitude envelope itself, we can perform a single FFT of the 
window shape to get the equivalent bandpass response shape. Actually, only 
the upper half of the BPF response is computed, the other half is identical 
and in fact has been reflected against zero and combined with the upper half. 
(This is why the dc component of the FFT must be divided by two before 
use.) 
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Fig. 16-11. Equivalent half-bandpass filter shapes of common windows. (A) 
Rectangular window. (B) Triangular window. 

Of course, an FFT of the window shape will only evaluate the equiva- 
lent BPF at certain discrete frequencies. To get an accurate plot of the curve 
shape, a very large FFT must be performed with the window occupying a 
small portion at the beginning and zeroes occupying the remainder. For 
example, to check the response at eight different frequencies between each 
null point, an FFT eight times the window length will have to be computed. 

In our example, this means a 4,096-point FFT. On the other hand, most all 
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Fig. 16-11. Equivalent half-bandpass filter shapes of common windows 
(cont.). (C) Half-sine window. (D) Hanning window. 

useful windows have the same basic bandpass shape; a large central lobe with 
ripples on both sides. The peak of the ripples and therefore the points of 
worst leakage occur midway between the nulls, that is, at frequencies half- 
way between the original FFT harmonics. Thus, the peaks of the leakage can 
be plotted by evaluating an FFT only twice as long as the window. 



SOURCE-SIGNAL ANALYSIS 515 

AMPLITUDE (dB) 

a nnn 
0 156 234 312 468 624 780 936 1,092 1248 

FREQUENCY (Hz) 

(E) 

Fig. 16-11. Equivalent half-bandpass filter shapes of common windows 
(cont.}. (E) Hamming windows. HM(X) = .54—.46 (cos(27X)) 0 <= 
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Some Example Windows 

Now that they can be easily plotted, let's evaluate some windows. 
Perhaps the simplest is a linear rise and fall, which is called a triangular 
window. This window, along with the upper half of its equivalent bandpass 
response shape, is plotted in Fig. 16~11B. Two characteristics are immedi- 
ately apparent. First, the leakage attenuation is much better than that of the 
rectangular window shown for reference. Second, the apparent width of the 
central lobe, which is the primary bandpass response, is double that of the 
rectangular window. This is the price that is paid for low leakage, and the 
lower the leakage, the broader the bandpass. Thus, one must decide how 
much leakage can be tolerated and choose a window that meets but does not 
greatly exceed that figure. For our example, a figure of —40 dB will be chosen 
and none of the secondary lobes, even the one closest to the center lobe, will 

be allowed to exceed it. According to this criterion, the triangular window is 
not suitable, since the first sidelobe is at —27 dB. Nevertheless, the third 

and higher sidelobes are less than —40 dB, a figure that seemingly even the 
100th lobe of the rectangular window cannot meet. 

A similar window is the half sine wave. It has the advantage of a flat 
rather than pointed top. Its characteristics are shown in Fig. 16-11C. Its 
central lobe is only 1.5 times as wide as the rectangular window, yet has even 

better sidelobe attenuation (beyond the first) than the triangular window. Its 
second sidelobe, which is at the same frequency as the first triangular win- 
dow sidelobe, is about —32 dB. 
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Although the preceding windows are continuous with zero at both 

ends, there is a s/ope discontinuity at the ends. One window that provides for 

continuity of slope (and continuity for a// derivatives as well) is the cosine bell 

ot hanning window. Actually, it is just the point-by-point square of the 

half-sine window but, due to a trig identity, is the same shape as a full cosine 

cycle shifted up to the axis and turned upside down. The response curve in 

Fig. 16-11D exhibits a double width central lobe and first sidelobe of —32 

dB, which is still unacceptable, although the second and succeeding ones are 

fine. 
The last window shown is called a Hamming window and consists of a 

very judicious combination of a hanning and a rectangular window. Essen- 

tially the relative contributions are scaled so that the first sidelobes cancel 

and the rest partially cancel. The result is a curve with all sidelobes at —42 

dB or less, which is accomplished with a central lobe only twice as wide as 
the rectangular window. For most audio spectral analysis work, this is the 
optimum window. For specialized applications such as signal detection in the 
presence of overpowering noise, other windows with sidelobes of —80 dB 
and better are available at the expense of an even wider central lobe. 

Performing the Analysis 

At this point, we are ready to outline the procedure necessary to go 
from an indefinite-length sample string to a sequence of spectral frames using 

the FFT. For illustration purposes, the example of a 20-kHz sample rate, 

512-point FFT, 39-Hz frequency resolution, and 78-Hz spectral sample rate 
will be continued. The crux of the analysis procedure is how the continuous 
stream of samples will be broken up into 512 sample records for the FFT. 
One possibility is to simply take the 512 samples from the input, transform 
them, take the next 512, transform, etc. If this is done, windowing of the 

records may greatly attenuate or miss significant waveform details that occur 
when the window amplitude is near zero. Furthermore, only 39 spectrums 
will be computed per 20,000 samples (1 sec). 

Overlap can be used to insure that all parts of the waveform are seen and 
increase the spectral sample rate as well. The general idea is the exact inverse 
of the method outlined in Chapter 13 in which direct FFT synthesis was 
discussed. For two-to-one overlap, one would only take 256 samples from the 
string for each spectral frame. The other 256 in the record would be left over 
from the previous frame. The process can be likened to a 512-sample shift 
register. Each frame time 256 new samples would be shifted in and the oldest 
256 would be shifted out and thrown away. Other overlap factors (which 
need not be integers) for both higher- and lower-speccrum sample rates are 
possible simply by altering the number of samples shifted in. 

There are a couple of complications in the computation that can lead to 
a lot of partially redundant data arrays. When a window is applied to 



SouRCE-SIGNAL ANALYSIS 517 

overlapped sample data, it myst not alter the data itself because some of it 
will be needed for overlapping purposes in the next spectral frame. Likewise, 
the FFT will destroy the sample data unless a copy is made and the copy 

transformed. For maximum efficiency, one can combine copying, window- 
ing, and bit-reverse decimation into one program loop that takes little more 
time than windowing alone. If memory space is tight, the samples that are 
not needed in the next frame may be destroyed. 

In summary, the procedure for converting a string of samples into a 
string of spectra is as follows (512-point FFT and 2:1 overlap): 

1. Discard 256 signal samples from the right half of the analysis record. 
2. Copy (or equivalent) the remaining 256 samples from the left to the 

right half of the analysis record. 
3. Accept 256 new signal samples from the input string and put them in 

the left half of the analysis record. 
.Make a copy of the analysis record. 
- Apply the chosen window to the copy. 
-Do a 512-poine real FFT. 

. The 256 sine and cosine components represent one spectral frame. They 
may be stored as is or processed further. 

8.Go to step | for the next spectral frame. 

MONA ES 

Note that twice as much output data is generated as input data if phase 
information is retained. This is a result of oversampling (overlapping), but as 
will be seen later such oversampling simplifies subsequent spectral process- 

ing. In fact, for analysis—resynthesis applications, it may be necessary to 
further oversample the sequence of spectra to obtain good resynthesis quality 
after modification. 

Spectral Processing 

In the previous section, two methods of obtaining the time-varying 
spectrum of a sound were presented. We can now assume that the spectrum 
is in the form of a sequence of frames at the spectral sample rate and each 
frame contains samples (in frequency) of the spectral curve at a point in time. 

Three primary applications exist for the spectral data. The first is direct 
modification of the spectrum and immediate FFT resynthesis as sound. The 
second, which may be considered an extension of the first, is the extraction of 

one or more time-varying parameters, such as fundamental frequency or gross 
spectral shape. These data may then be used to control conventional synthesis 
equipment such as oscillators, filters, etc., rather than direct reconstruction 

with the FFT. The third application is display and subsequent study in an 
effort co learn more about the processes that created the original sound. 

Often, it is convenient to perform some translation of the spectral data 
before it is modified. If the FFT was used for analysis, each time-frequency 
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sample of the spectrum is represented by a cosine magnitude and a sine 

magnitude. We have already seen how this form can be converted into 

amplitude and phase form. The amplitude, which is always positive, can be 

further converted into decibels if desired. Since the human ear has difficulty 

in distinguishing amplitude differences much less than 1 dB, the decibel 

amplitude dara can be quantized to as few as 6 bits without serious degrada- 

tion. 

There may be an inclination to discard the phase data, since they have 

little audible effect on the sound. However, the phase data give valuable 

information about a sound parameter that is quite importaut—frequency. 

The fundamental and harmonics of an arbitrary tone are unlikely to fall 
precisely at the center frequencies of the analysis bands. The results of this 
mismatch are twofold. First, since the bandwidth of the Hamming window 

is four times the frequency spacing of the analysis, a given signal component 
will show up strongly in as many as four adjacent frequency bands. Second, 
the exact frequency of the signal is unknown. Even though the analysis seems 
imperfect, resynthesis will yield a result essentially equal to the original 
signal. It is the phase information that allows accurate reconstruction. We 
will see lacer how phase can be utilized to precisely determine the component 

frequencies. 

Direct Spectral Modification 

Spectral analysis, modification, and resynthesis via FFT comprise the 
easiest method of implementing a filter with arbitrary amplitude and phase 
characteristics. Often, it is the most efficient method as well, since the 

computation effort is independent of the filter's response shape. Another 
advantage is that time-varying filters are handled as easily as fixed ones, a 
virtue not shared by the transversal method of arbitrary filter implementa- 
tion. Basically, one takes the sequence of spectral frames and multiplies the 
amplitude of each spectral component by the amplitude response of the filter 
at the corresponding frequency. The resulting sequence of spectral frames is 
then converted back into sound via FFT synthesis. When the spectral data is 
in sine-cosine form, both components must be multiplied by the filter’s 
amplitude response. 

One can also add two or more spectra together. Since the FFT used in 
synthesis is a linear process, the resule should be equivalent to individual 
resynthesis and conventional mixing of the results. However, there ate two 
advantages to mixing in the frequency domain. First, there is no phase 
cancellation among the combined spectra if just amplitude spectra are used. 
Direcely combining sine—cosine spectra, however, gives the typical amount 
of interference among harmonics of the combined tones. The other advantage 

of spectral combination is that only one resynthesis is necessary, thus reduc- 
ing computation effort. 
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Fig. 16-12. Spectrum frequency manipulations. (A) Unmodified spectral data. 
(B) Spectrum shift upward. (C) Frequency interpolation. (D) Left: 
Linear compression of interpolated spectrum. Right: Resampling 
at original center frequencies. 

Besides amplitude modification of the spectral components, many 
weird and wonderful things can be accomplished by altering their frequencies 
as in Fig. 16-12. If, for example, the spectral frequency resolution is 39 Hz, 
an upward spectrum shift of 39 Hz can be accamplished simply by shifting 
the numbers in each frame upward one slot. The de frequency band would be 
replaced by zero and the highest band would be discarded. Likewise, the 
spectrum may be shifted downward without the reflection around zero that 
analog frequency shifters suffer from. Circular shifting and spectral inversion 
are also easily accomplished. 

For maximum flexibility in frequency alteration, it is necessary to 
interpolate between the tabulated frequencies. The same techniques used for 
time interpolation in Chapter 13 can be used for frequency interpolation in a 
spectral frame. With suitable interpolation, the spectral curve can be re- 
garded as continuous (infinite sample rate in frequency) and frequency shifts 
of any arbitrary amount may be performed. 

Instead of shifting all frequencies by an equal amount, which usually 
converts harmonic tones into inhatmonic ones, the spectrum can be linearly 
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stretched or compressed. For example, if all of the frequencies were multi- 
plied by two (with those beyond the high-frequency limit thrown away), 
then the pitch of the sound when resynthesized would be raised an octave, but 
the timing and waveform (except for high-frequency rolloff due to discarded 
components) would remain unchanged! One can also monlinearly stretch, 

compress, and otherwise distort the distribution of the spectral curve without 
affecting the amplitudes of the peaks and valleys themselves. All of these 
manipulations can, of course, be time varying. After processing, the spectral 
curve is resampled at the original center frequencies and resynthesized. Note 
that severe compression of the spectrum may lead to local “alias distortion” 

when it is resampled for synthesis. 
Time alteration of the sequence of spectrum frames is also possible with 

equally strange-sounding results. In time modification, each spectral com- 
ponent in the frame is considered as a time sample of the amplitude curve of 
that component. If the entire set of spectral data is viewed as a rectangular 
array with time in the X direction and frequency in the Y direction, then this 
is equivalent to thinking in terms of rows rather chan columns. 

The simplest manipulation is horizontal stretching or compression of 
the sequence, which amounts to slowing or speeding of the sound events 

without affecting the frequency or timbre. Time interpolation between the 
spectral values can be used to implement any arbitrary amount of speed 
change. When resynthesized, the modified spectrum is resampled at the 
original time points. 

The dispersive filter mentioned earlier may be simulated by shifting the 
tows of spectral data with respect to each other such that the lower-frequency 
rows are delayed more than the higher-frequency rows. Reverse dispersion in 
which high frequencies are delayed more is also possible as well as nonlinear 
dispersion. Small amounts of dispersion are most effective with percussive 
sounds, while larger amounts affect all but the most steady of tones. Vocals 
in particular are given strange accents by dispersion. 

Since the spectral data are being considered as a set of simultaneously 
varying waveforms, it is obvious that these waveforms may themselves be 
fileered. Uniform low-pass filtering of all of the bands simply blurs rapid 
changes in the spectrum, thus making vocals, for example, sound drunk. 

High-pass filtering, on the other hand, emphasizes rapid changes and may 
produce a “caricature” of the original sound. Resonant low-pass filtering 
with moderate Q factors preserves the steady states of the spectrum but gives 
any rapid changes a “‘twangy’ quality due to the overshoot and ringing of the 
filter. Of course, each frequency band can be filtered differently, which tends 
to combine filtering and dispersion effects. 

Resynthesis 

In Chapter 13, direct synthesis from amplitude and frequency data 
using the FFT was described. Basically, the procedure consisted of conversion 
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from an amplitudefrequency “source” form into an amplitude-phase and 
ultimately sine-cosine “object” form that was compatible with the FFT. 
However, most of the spectrum modifications that have just been discussed 
can be performed directly on the sine-cosine or amplitude—frequency form of 
the spectrum. Resynthesis should therefore be simplified over the method 
given in Chapter 13. 

One desirable property of an analysis—synthesis system is transparency, 
that is, no signal distortion in the absence spectral modification. Distortion- 
less reconstruction can, in fact, be done very simply using unmodified spec- 
tral data from the analysis. First, each spectral frame is inverse transformed to 

recover the windowed sample record that created the frame. Next, the win- 

dow is divided out giving the original sequence of samples. Finally, the 
overlap is removed to obtain the original continuous stream of samples. Any 
difference between the original and reconstructed data is due to roundoff 
error in the arithmetic, most of it probably from the window removal (divi- 

sion by small numbers at the edges of the window) step. 
However, if modifications are made, two things are likely to happen. 

First, the inverse-transformed modified records cannot be expected to butt 
together nicely and continuously like unmodified records do. Secqnd, the 
inverse transform of a modified frame may show little if any evidence of a 
window because the precise amplitude and phase relations necessary for the 
window-shaped envelope will have been altered. Inverse windowing, there- 
fore, is likely to distore the record and actually emphasize discontinuities 
between the records. 

Thus, the problem of eliminating interrecord discontinuities is similar 
to that encountered in FFT synthesis from scratch. The same solution, that 
is, windowing and synthesis overlap, used for direct synthesis is reasonably 
adequate for resynthesis. The disadvantage of applying this method is that an 
unmodified spectrum will no longer provide precisely the original data, since 
the resynthesis manipulation itself amounts to a modification. Methods are 

available to reduce resynthesis error to zero but they are complex and amount 
to essentially infinite overlapping (overlap factor=record length) of the syn- 

thesis. As mentioned in Chapter 13, a four-to-one synthesis overlap provides 
results clearly superior to two-to-one overlap and therefore is preferred in 
conjunction with four-co-one analysis or careful time interpolation of two- 
to-one analysis daca. 

Parameter Extraction 

Instead of immediate resynthesis, one may wish co further analyze the 
spectral data in an effort to extract one or more of the fundamental parame- 
ters of sound. These parameters may then be used to direct a conventional 
synthesis process or may be stored for later recall with the advantage that a 

handful of fundamental parameters can often replace hundreds of spectral 
components without loss of information significant to the application. 
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Fig. 16-13. Response of spectrum analysis with Hamming window to a single 
frequency component 

Variations in overall amplitude are most easily extracted, One simply 
sums the amplitudes of all of the frequency bands to get the total amplitude 
for the frame. This neatly overcomes problems with rectifier ripple experi- 
enced in analog envelope followers, although the signal processing involved 
is certainly much more complex. Another advantage is that some frequency 
bands may be weighted more heavily than others. For example, if a result 

with good correlation to subjective loudness is desired, the spectrum can be 
weighted according to the Fletcher-Munson loudness curves described in 
Chapter 1. Since the weighting curve itself depends on amplitude, some 
intelligence is needed to select the proper curve anyway. 

Frequency Analysis 

True frequency analysis, in which the sound being analyzed is broken 
down into a list of components in which the exact frequency and amplitude 
of each is tabulated, is another useful form for analysis data. Note that this is 
the “source-spectrum”’ form used for direct FFT synthesis in Chapter 13. The 
process described there of updating the phase of the object spectrum to 
obtain arbitrary frequencies can be reversed to determine what an arbitrary 
frequency is from analysis data. One simply looks at the phase of successive 
analysis frames and ascertains the magnitude and direction of shift from one 
frame to the next. This then gives the difference between the band’s center 
frequency and the signal frequency. For example, if the phase in band J 
advances 45° (77/4) every frame, it can be concluded that the signal frequency 
is equal to the band’s center frequency plus one-eighth of the spectral sample 
tate. 

With a Hamming analysis window, a single frequency component will 
excite as many as four adjacent analysis bands as shown in Fig. 16-13. One 
could compute frequency from the channel with the strongest response 
(channel 7 in the diagram) and ignore the others and get good results. 
However, if the spectrum sample rate is sufficiently high, the frequency can 

be computed from avy of the responding channels. If a good, clean frequency 
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component is actually being seen (as opposed to random. noise), then all of 
the frequency measures will yield the same value. A high spectral sample rate 

is necessary because otherwise the phase shift for a distant band such as [+2 
in the diagram may exceed 180° per frame and give a false result. For the 
Hamming window, an analysis overlap factor of four or more would give a 
sufficiently high spectral sample rate. 

Another constraint is that frequency resolution must be high enough so 
that every component of the signal is completely resolved. [f the components 

are not completely separated, serious errors in frequency and amplitude 
measurement are likely. For a Hamming window, this means that frequency 
components can be no closer than four times the reciprocal of the analysis 
record duration. In our analysis example (20-kHz Fs, 512-sample analysis 
record), this evaluates to about 150 Hz. The only reasonable way to improve 
frequency resolution is to use longer analysis records, which, of course, 
degrade time resolution. Alternatively, if all of the frequency components are 
nearly equal in amplitude, a rectangular window having one-half the 
bandwidth of the Hamming window can be considered. 

Once the frequency of a component has been determined, its amplitude 
must be calculated to complete the analysis. The simplest method is to note 

the band with the greatest response to the component and use its response 
amplitude. The error incurred when doing this is small enough (1.5 dB 
maximum for a Hamming window) that it can be ignored in many applica- 
tions. For greater accuracy, the curved top of the equivalent bandpass filrer 

can be considered and a correction factor derived based on the difference 
between the dominant band’s center frequency and the actual signal fre- 
quency. One could also rms sum (square root of the sum of squares) the 

responding bands co get a single amplitude measurement for the component. 
Of course, all of the analysis bands will show some response due to noise or 

leakage. However, only those with sufficiently high outputs and reasonable 
frequency correlation among adjacent bands should actually be considered as 
detecting a valid signal component. 

Spectral Shape Analysis 

Many natural sounds can be madeled as an oscillator driving a filter as 
in Fig. 16-14. The oscillator’s waveform is called the excitation function and is 
normally rich in harmonics. The filter is called the system function and is 
typically rather complex having several resonant peaks and possibly some 
notches as well. The spectrum of the output sound is the point-by-point 
product of the excitation function spectrum and the amplitude response of 
the filrer as in Fig. 16—14B. In musical applications, the frequency of the 
excitation function is the primary variable, since it determines the pitch of 
the resulting tone. The waveform may also change some, typically acquiring 
additional upper harmonic amplitude as its overall amplitude increases. Al- 
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Fig. 16-14. Natural sound modeling. (A) Simple model of natural sound pro- 
cess. (B) Spectral interpretation of simple model. 

ternatively, the excitation function can be white noise, which does invalidate 

the pitch parameter but has no effect on anything else. The system function 
may be either fixed or variable depending on the sound being modeled. 

The range of natural sounds to which this model is applicable is ac- 
tually very large. Most wind instruments, such as the bassoon, and bowed 
string instruments, such as the violin, are well described by this model. The 
human voice is a prime example. In these examples, a harmonic-rich excita- 

tion function is generated by a vibrating element such as a reed, sticky 
string, or flapping folds of flesh. Resonators in the instruments, such as the 
folded tube of the bassoon, wood panels with odd-shaped cutouts, or oral and 

nasal cavities filter the excitation function before it actually escapes into the 
air. Musical instruments usually have fixed resonators (notable exceptions are 
muted brass instruments), whereas the human voice depends on a highly 

variable resonator for its expression. All of these resonators may have a 
number of distinct resonant frequencies (peaks in the amplitude response) 
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and some, such as the violin, can have significant antiresonant valleys as 

well. 
In technical terms, the resonant peaks are called poles of the system 

function while the notches, if present, are termed zeroes. In speech and 

music work, the zeroes are frequently ignored and the poles are called for- 
mants. The goal of formant estimation is determination of the number of 
formants, their resonant frequencies, and possibly their bandwidth or Q 
factors. This information represents the characteristics of the filter, which is 

usually a majority portion of the analyzed sound's timbre. Musical applica- 
tions of formant analysis seek the design of a filter with the same formant 
structure as the analyzed sound. Different synthesized excitation functions 
are then modified by the filter. The resulting sound has the most prominent 
characteristics of both. For example, if vocal vowel sounds are used for the 

formant analysis and the resultant filter is driven with a square-wave excita- 
tion function, the vowel quality would be retained but with the characteristi- 
cally hollow timbre of square waves! 

Perhaps the most straightforward method of formant analysis is to scan 
the amplitude spectrum and find the center points of high-amplitude clusters 
of harmonics. The center points are the formant frequencies. The bandwidths 
may be estimated by noting the 3-dB points on either side of each peak. This 
method works well only if the harmonics are dense compared to the 
bandwidths of the formants, which means a low excitation frequency. This is 
because the excitation function harmonics effectively sample the filter re- 

sponse curve and insufficiently dense sampling leads to aliasing and incorrect 
conclusions regarding the response curve. Even if the sampling is theoreti- 

cally dense enough, interpolation may have to be used to increase it further so 

that the center point and 3-dB points of the peaks can be accurately deter- 
mined. Note that the original spectral analysis need not resolve the har- 
monics themselves to be useful for this method of formant analysis. 

Linear Prediction 

A more refined method of formant analysis is called inear prediction 

because, by specifying the filter involved in the original sound generation, 
one is able to predict what future time samples of the sound are likely to be. 
Although originally developed for the efficient transmission of speech signals 
over limited bandwidth channels, linear prediction is useful in music synthe- 
sis because it results in an actual design of the filter represented by the system 
function. Unfortunately, the calculations are too involved to be covered here 
in simple terms but the general characteristics of linear prediction can be 

discussed. Additional reference material is listed in the bibliography. 
In linear prediction, the actual filrer used to generate the sound being 

analyzed is approximated by a filter having a specified number of poles and 
zeroes. Often, because of computational difficulties encountered in handling 
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the zeroes, an a/l-pole model is used. The filter resulting from all-pole linear 

prediction analysis gives the “best” (least-square error) approximation possi- 

ble when constrained to the specified number of poles (twice the number of 

resonances). Often, the appropriate number of resonances to use can be 

determined from a physical knowledge of the natural sound source. In such 

cases, the linear prediction model can be expected to give excellent results. In 
cases in which the filter is arbitrary, a balance between resonance count and 

result quality will have to be determined by experiment. If vocals are being 

analyzed, three or four resonances are quite sufficient to capture the intelli- 
gence of the words. Many more are necessary to characterize the timbre in 
sufficient detail for recognition of the singer’s identity. Figure 16—15 shows 
the results of linear prediction analysis of a vowel sound with different 

resonance counts. 
An all-poles digital linear prediction calculation usually results in the 

set of multiplier coefficients necessary for implementation of the filter in can- 

nonical form. These coefficients apply only to the feedback paths; the feed- 
forward coefficients, which implement zeroes, are zero for an all-poles model. 
The number of coefficients from the calculation will be 2N+1, where N is 

the number of resonances. The extra coefficient is an overall gain factor. The 

cannonical form of the filter can be converted into cascade form with N 
sections. The conversion is desirable because multiplier accuracy require- 
ments of the cascade form are much less than the cannonical form. 

Note that linear prediction just gives the filter design, not the actual 

formant frequencies and bandwidths. Although the latter can be determined 
by analyzing the filter, they are not needed to utilize the filter for synthesis 
with an arbitrary excitation function. 

Homomorphic Analysis 

In digital music synthesis using the natural sound model of Fig. 
16-14, all that is really needed is a plot of the filter's amplitude response. 
With such a plot, the methods of arbitrary filter implementation discussed in 
Chapter 14 can be used to apply the filter to a different excitation function. 
However, a typical spectrum plot such as the one in Fig. 16-16A shows 
effects due to discrete harmonics of the excitation function as well as general 
trends due to the system function. In homomorphic analysis, the goal is to 

obtain an amplitude response curve of the system function independent of the 
characteristics of the excitation function. 

From examination of the overall spectrum, it is obvious that what is 

desired is a “smoothed” plot of the spectrum that retains the general spectral 
shape but suppresses the individual harmonic “noise.” This smoothing may 
be accomplished by a moving average, which is actually a digital low-pass 
transversal filter, or by other low-pass filters applied to the frequency sample 
sequence just like they would be normally applied to a time sample sequence. 
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Fig. 16-15. Effectiveness of linear preditive spectral analysis. Source: Digital 
Processing of Speech Signals, L.R. Rabiner and R.W. Schafer, 
Prentice-Hall, 1978. 

In the following discussion, the spectrum will in fact be considered as a time 

sequence and terms relating to time-sequence processing will be used. 

Unfortunately, applying a linear filter to a raw amplitude spectrum is 

not really mathematically correct. In the natural sound model, the final 
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Fig. 16-16. Homomorphic spectral analysis. (A) Conventional linear scale 
spectrum. (B) Log scale spectrum. 

spectrum shape is due to multiplication of the excitation function spectrum 
and the system function response curve. Our goal is to separate the two 
spectra based on differences in their variability or “frequency content” (re- 

member the spectral curve is being considered as a time sequence) by filter- 
ing. A filter, however, can only separate components that have been added, 
not multiplied, together. Thus, directly filtering the raw spectrum can lead 

to incorrect, though not necessarily useless, results. 

The problem is solved by remembering from high school math that the 
product of two numbers is equal to the ancilog of the svm of their logarithms. 
Thus, if the amplitude spectrum is converted to decibels as in Fig. 16-16B, 
then the resultanc shape is the sum of the excitation decibel spectrum and the 
filter response curve in decibels, The two curves may now be separated by 
filtering using a high-pass to recover the excitation spectrum and a low-pass 
to obtain a clean system function response shape. In music synthesis, the 
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Fig. 16-16. Homomorphic spectral analysis (cont.). (C) Magnitude of the 
cepstrum. (D) Smoothed log spectrum. 

recovered excitation function is usually discarded, except for its fundamental 
frequency, and the recovered system function ts utilized. 

Of course, the Fourier transform can also be used to implement the 
separation filter with the advantage of zero phase shift. Phase shift (delay) in 
the separation filter is undesirable because it shifts all of the recovered 
frequencies upward (or downward depending on the direction of filtering). 
The forward Fourier transform of a decibel spectrum, however, is a 
mathematical absurdity and so the word cepstrum was coined to refer to it. 
The word is formed by reverse spelling of the first half of the word “spec- 
trum” and tacking on the laste half. It is only fitting, then, to call the 
independent variable of a cepseral plot, which has the dimension of time, 

quefrency! A cepstral plot is shown in Fig. 16—16C. 
Low-quefrency values in the cepstrum are due to the system function 

shape, while high-quefrency values are due to the excitation function. To 
recover the system function shape, all quefrency values above a certain cutoff 
point are set to zero and the inverse Fourier transform is taken. Figure 
16-16D shows a cepstrally smoothed spectrum. To recover the excitation 

function, low-quefrency values are omitted and the inverse transform is 
taken. 
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Pitch Measurement 

One of the most difficult tasks in source-signal analysis is determina- 
tion of pitch. Actually, “fundamental frequency” or “period” would be 
better terms because pitch is a subjective parameter, whereas frequency and 
period are objective parameters. Nevertheless, for musical instrument 

sounds, there is a one-to-one correspondence between frequency and musical 

pitch. 
One reason that acceptable pitch measurement is so difficult is that 

errors are acutely obvious. A momentary error of a semitone, for example, 
completely changes the character of a musical phrase, whereas a similar error 

(6%) in amplitude measurement or spectral shape determination would go 
unnoticed. Most pitch detector errors are likely to be much larger yet with 
common values of one or even two octaves. With errors being so obvious, it 

is much easier to judge the performance of a pitch detector compared with an 
amplitude detector or formant estimator. The net result is an abundance of 
pitch detection schemes covering a wide range of complexity and perfor- 
mance levels. Even so, it is safe to say that none of them is completely 

satisfactory, that is, agree with a human observer in all cases. Another 
potential problem is that most pitch detection research has been with speech 

sounds. In some ways, musical instrument sounds will be easier to analyze, 
while in others they may be more difficult. 

Typical accuracy specifications for a frequency counter are 0.001% or 1 
Hz, whichever is greater. However; anyone who has purchased such a device 
and then tried to use it to: tune a musical instrument knows that a very clean, 
smooth waveform is necessary to avoid gross errors. The reason, of course, is 

that the frequency counter responds to zero crossings (a zero crossing is said to 
occur when the signal voltage changes sign from plus to minus or minus to 
plus) of the waveform and complex musical instrument waveforms may have 
any even number of zero crossings per cycle. 

Figure 16-17 shows a number of unquestionably periodic waveforms. 
The human ear has no problem in determining their pitch, but all of the 
pitch detection schemes that will be discussed will fail miserably on at least 
one of them. Although the waveforms are contrived, it is reasonable to expect 
something like each of them to occur occasionally in musical instrument 
tones. The last waveform, which is just white noise, can be a problem as well 

because a pitch detector should also give an indication that the sound is 
unpitched. 

Tf a pitch detector output is to agree with a human observer, it is 
reasonable to first ask how the human performs the task. Unfortunately, that 
is not known for sure, but two distinctly different theories have evolved. The 
first proposes that pitch is judged by detecting the periodicity of the 
waveform. The example waveforms are certainly periodic, and, in fact, care- 
ful visual determination of their period of repetition would give an accurate 
result in all cases. Changing waveforms would give a little more trouble 
because the waveshape repetition would not be precise every period. Pitch 
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Fig. 16-17. Troublesome waveforms for pitch detectors. (A) Sine wave (only 
one frequency component). (B) Flattened sine wave (rounded 
peak is hard to detect accurately). (C) Missing fundamental. 
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Fig. 16-17. Troublesome waveforms for pitch detectors (cont.). (D) Strong 
harmonic. (E) Contrived wave in which peak detection is useless. 
(F) Speech sounds. 
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Fig. 16-17. Troublesome waveforms for pitch detectors (cont.). (G) Rapidly 
changing amplitude. (H) White noise (has no pitch) 

detector designs based on finding the period of repetition are time domain 

methods, since they directly examine the time waveform. 

The second theory maintains that the ear performs a frequency analysis 

of each harmonic and then computes the “lowest common divisor” to deter- 

mine what the fundamental frequency is even if the fundamental component 

itself is missing. Such an analysis method also works well for the example 
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waveforms, but blind application of it can lead to errors with rapidly chang- 

ing waveforms and unpitched sounds. 

In truth, human hearing probably utilizes both kinds of information. It 

is unlikely that the pitch of high-pass (1-kHz) filtered 60-Hz buzz is deter- 

mined from a frequency analysis because of the resolution necessary to ac- 

count for the-very precise judgments people are capable of. On the other 

band, waveforms are easily contrived in which the periodicity is not easily 

spotted visually yet they are also accurately judged. Then we have the case of 

bells and chimes, which are decidedly nonperiodic and therefore nonhar- 
monic yet produce a strong sensation of pitch. Last, but not least, the 

existence of a tone that sounds as if its pitch is continuously rising— 
forever!—aunderlines the fact that human pitch perception is a very complex 

topic indeed. 

Time-Domain Methods 

The simplest pitch detection methods work in the time domain, where 
the waveform itself is examined for periodicity. In fact, it is the period that is 
measured chat requires a division to determine the corresponding frequency. 

Most time-domain methods were developed for analog implementation; 
however, they can be readily implemented as a program for processing sam- 

pled data. One problem with sampled data is that the period determination 
is normally made in terms of an integer number of samples. This can lead to 
significant errors unless the sample rate is high or interpolation is used, both 
of which increase processing time. 

In order to improve pitch detector performance, it is common practice 
to preprocess the signal. Typically, this consists of low-pass filtering to remove 
high-frequency harmonics and noise that may contribute to jitter or confuse 
the detection algorithm. An obvious question, then, is what the cutoff 

frequency should be. If the sounds being analyzed have a strong (but not 
necessarily dominant) fundamental, then it is appropriate to set the cutoff 
just above the highest fundamental expected. Often, dynamic filters are 
utilized, in which case the cutoff can track just above the current fundamen- 
tal frequency. If the fundamental is dominant, as it often is in direct string 
pickups and mouthpiece microphones, such preprocessing may be sufficient 
to allow a simple zero-crossing detector to do the actual period detection. 
Even if the fundamental is not dominant, repeated integration can make it 
dominant. Unfortunately, the integrators emphasize low-frequency tran- 
sients and may actually blank out the zero-crossing detector for hundreds of 

‘This is usually demonstrated as a continuous upward sweep or an ascending musical 
scale that never stops. In reality, the effect is much like the stripes on a harber pole, 
and, in fact, a spectrogram of che former example is an endless series of upward 
sloping diagonal bars. For a scale, the continuous cise is simply quantized at musical 
scale pitches. 
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Fig. 16-18. Simple time-domain pitch detector. Source: Electronotes Newslet- 
ter # 55, July, 1975. 

milliseconds following a transient. Of course, if the fundamental is absent as 
in Figs. 16-17C and F, low-pass preprocessing may filter our the entire 
signal and leave nothing to process further. Thus, with more sophisticated 
pitch detectors, the preprocessing filter cutoff should be fairly high, such as 1 
kHz, and used primarily for reducing noise. 

Experience with typical instrument waveforms and examination of Fig. 
16-17 reveals that in all cases but one the location of waveform peaks contains 
sufficient information for determining periodicity. In fact, a simple positive 
peak detector with dynamic threshold performs infinitely better than a zero- 
crossing detector. A dynamic threshold is implemented by setting the 

threshold for peak detection to some fraction of the amplitude of the last 
detected peak. The trick is to make this fraction smal] enough so that sounds 
of decreasing amplitude, such as Fig. 16-17G, are followed properly yet 
high enough to avoid double peaks from waveforms such as Fig. 16—-17F. 
When double peaks are unavoidable, the detector can be blanked for some 
fraction of the currently measured period. Peaks would not be detected 
during the blanking interval. Of course, any peak detector scheme will fail 
on the waveform in Fig. 16-17D, which has two equally spaced positive 
peaks of equal amplitude. However, Fig. 16—17D has only one negative peak 
so perhaps two detectors, one for positive and one for negative peaks, would 

work better. Where there is disagreement between the two, the one report- 
ing the longest period would be selected for output. 

Let's examine a fairly simple pitch detector based on peak detection 

that has been reasonably successful as an analog implementation and should 

2 

?This pitch detector was designed by B.A. Hutchins and was described in Electronotes 
53-55. 
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work quite well in digital form. Before starting, though, the reader should 
be aware that it will surely fail on the waveforms in Fig. 16—17D and E and 
may be temporarily confused by Figs. 16-17F and G. Nevertheless, its 
simplicity is attractive and its performance adequate for “data taking” where 
errors can be edited out later. 

Figure 16-18 is a block diagram of the detector. Input processing 
consists of a two-section Butterworth low-pass followed by a 30-Hz cutoff 
high-pass to suppress low-frequency noise. The low-pass is tunable via a 
feedback path from the detector output and during normal operation is set to 
pass only the fundamental. In cases in which the fundamental is weak, the 
tuning could be adjusted to allow the lower harmonics through (if the 
fundamental is absent at least two harmonics are required to determine the 

pitch). The diode following the high-pass, although not actually present, 
emphasizes that only positive peaks are processed by the system. 

The downslope peak detector is an improvement over the standard type 
in that dynamic thresholding is automatic. Figure 16-19 is a simplified 

schematic of the detector with typical analog waveforms. The ideal diode and 
storage capacitor form a peak-holding circuit that holds the highest voltage 
reached by the input. The leakage resistor serves to slowly discharge the peak 
holder to allow proper response to changing input signals. A buffer amplifier 
followed by slight (1% to 596) attenuation passes a large fraction of the most 
recent peak voltage to a comparator, which compares this voltage to the raw 
input. When the peak reverses and starts back down, the comparator ourput 
goes positive. When the input re-reverses and crosses the (decayed) held peak 
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Fig. 16-19. Downstope peak detector 
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again, the comparator goes negative. If the leakage current is low, the circuit 

is capable of responding exclusively to the highest peak in the presence of 
other peaks of nearly equal height. However, too little leakage inhibits 
response to decaying signals entirely. In a digital implementation, the pre- 
cise point of comparator switching can be determined by interpolation at the 
switching point only, thus avoiding a significant increase in computation 
elsewhere. 

In an analog implementation, single-shot number 1 simply indicates 

the beginning of a new period. The output converter is a period-to-voltage 
converter followed by a reciprocal element. In a digital implementation, one 

would simply count samples between peak detections for the period and doa 
digital division or table lookup. 

The adaptive contro] processor looks at the current frequency and sets 
three detection parameters accordingly. The preprocessor filter cutoff is set at 
about 1.2 times the current frequency, while the blanking single shot is set 
for 80% of the current period. The peak detector discharge rate is normally 
set fairly high to allow tracking of decaying signals. During startup from 
silence, however, it is set for little or no discharge. Startup also requires that 
the low-pass filter revert to a high cutoff frequency and that the blanking 
time be set to a low value. As soon as two peaks are detected, which then 
gives a preliminary period estimate, the parameters are set accordingly. If the 
first estimate is erroneous due to multiple peaks, the filter cutoff and blank- 
ing will continue to favor high frequencies until the peak detector has 
charged to the absolute highest peak in the signal. At this point, a longer 
period would be found and the feedback would adjust to favor it. The 
processor also detects long dead periods and resets to the startup mode in 
response. 

One way to improve the performance of the detector is to construct a 
duplicate that processes negative peaks. As before, if the two disagree, the 
final pitch output should the lower of the two estimates. With this im- 
provement, about the only waveforms that it would consistently fail on 
would be Fig. 16-17E and a backward version of Fig. 16-17F, the latter of 

which is unlikely to occur unless the speech had been subjected to severe 
dispersion. 

The idea of using multiple detectors and taking a majority vote has 
been carried to the limit in a scheme proposed by Gold and Rabiner. The 
general idea is to make several (six) estimates of the period using individual 
peak and valley (negative peak) amplitudes as well as differences between 
peak and valley and peak and previous peak. These six estimates along with 
the preceding two estimates for each are combined in a decision tree to obtain 
the final estimate. If there is a significant lack in consistency among the 18 

values, no decision is made and the sound is declared to be unpitched. A full 

explanation of the algorithm is quite involved and would require too much 
space to reproduce here. Although seemingly complex, the programming is 

straightforward and efficient. 
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Fig. 16-20. Autocorrelation analyzer 

The algorithm actually settles on the correct period for each of the 
sample waveforms and flags the noise as well. There is a potential problem 
with the waveform in Fig. 16-17B whose very broad, nearly flat peak would 
make any kind of pitch detection based on peak analysis susceptible to noise. 
Also, if the amplitude of the crook in Fig. 16—17E was reduced so that the 

peaks around zero disappeared, the method would fail. The interested reader 
is referred to the bibliography for references giving exact implementation 
details. 

Autocorrelation 

The most sophisticated of time-domain techniques is termed ausocorre- 

Jation analysis. Autocorrelation means literally that a section of the waveform 
spanning several cycles is compared with a time-delayed version of itself as in 
Fig. 16-20. In practice, the delay starts at zero and is increased until the 
correlation reaches a high peak, which, in theory, indicates a full-cycle delay. 

In true autocorrelation, the raw and delayed signal samples are com- 
bined by taking their sample-by-sample product, adding up the products for 
enough samples to cover at least two pitch periods, and dividing by the 
number of samples processed to get the value of the autocorrelation function 
for a particular delay value or Jag. This process is repeated for different lags 
until the largest peak is found. If none of the peaks is very large, then the 
sound is unpitched. 

A related technique combines the two signals by adding up the 
sample-by-sample magnitude of their difference. When the signals remesh at 
a lag equal to the period, the differences will tend toward zero, which means 
that a large dip in the correlation function is being sought. 
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Quite obviously, either method involves a lot of calculation, approxi- 

mately M x N opérations, where M is the number of samples in the 
waveform section being analyzed and N is the number of lags tried in the 

peak/dip search, It can be reduced substantially by only evaluating lags that 
are close to the last measured pitch period. 

In theory, true autocorrelation is guaranteed to produce maximum- 

height peaks only at multiples of the true period. Thus, any perfectly 
periodic waveform will be correctly analyzed by the autocorrelation method. 
A changing waveform, however, is a different story. When the waveform 
changes, the peak corresponding to the pitch period is smaller than it would 

otherwise be because of the inexact repetition. There are also additional peaks 
that may be due to strong harmonics, formants, etc. If the pitch peak 
attenuation due to waveform change is great enough, these secondary peaks 
will cause an error. 

Frequency-Domain Methods 

Pitch detection in the frequency domain is fairly simple to understand 
but does imply a lot of computation to obtain the spectrum. However, if the 
spectrum is used for formant analysis, then the additional processing neces- 
sary for pitch detection is relatively minor. 

The most straightforward frequency-domain pitch-detection scheme is 
an extension of frequency analysis mentioned earlier. The idea is to take the 
measured frequency of each significant component found and determine the 
greatest common divisor. For example, if components were found at 500 Hz, 
700 Hz, 1,100 Hz, and 1,500 Hz, the fundamental would be 100 Hz 

because it is the highest possible frequency for which all of the measured 
frequencies are harmonics. In real life, though, the frequency measurements 

will not be exact because of noise, a changing spectrum, etc. Thus, classic 
greatest-common-divisor algorithms will have to be extensively modified to 
allow some slop. Also, confining attention to the strongest half-dozen or 
fewer components will lessen the likelihood of confusion. If the least com- 
mon multiple turns out to be a ridiculous number such as 20 Hz (any value 
less than the spectrum analysis bandwidth is suspect), then an unpitched 
sound should be assumed. 

The primary difficulty with the frequency-analysis method is the re- 
striction on harmonic spacing so that accurate analysis is assured. When low 
fundamental frequencies are to be analyzed, this leads to very long analysis 
records and the possibility of significant frequency content changes over the 
duration of the record, which in turn can lead to errors. 

Homomorphic spectral analysis leads to a very good pitch detector, in 
fact one of the best available for speech sounds. In a cepstral plot, the 
low-quefrency values correspond to the spectrum shape, while high- 

quefrency values correspond to the excitation function. For harmonic-rich 

tones, there will be a single sharp peak in the upper part of the cepstrum that 
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corresponds to the fundamental frequency of the sound. The reciprocal of the 
quefrency of the peak is the fundamental frequency. This peak will be present 
even if the actual fundamental and several lower harmonics of the analyzed 
tone are missing, a situation that confuses pitch detectors using low-pass 
preprocessing. 

However, confusion is possible in certain cases. For example, if the 

excitation function has only odd order harmonics such as a square or triangu- 

lar wave, the cepstrum will give a fundamental frequency twice its correct 
value. This is because the cepstrum essentially responds to periodicity of 
harmonic spacing, and the spacing of odd order harmonics is twice the fun- 
damental frequency. A pure sine wave, which all other schemes discussed 
handle beautifully, gives a pitch estimate equal to the reciprocal of the record 
length used in analysis! These failures could be a problem with certain kinds 
of musical instrument sound such as a clarinet or a flute. Thus, cepstral pitch 
detection should be augmented by other pitch-detection schemes for 
maximum accuracy. 



7 
Digital Hardware 

At this point, we are ready to start discussing actual implementation and use 
of some of the digital sound synthesis and modification techniques that have 
been described. There is, however, a natural division between hardware and 

software implementation techniques. Either can perform any of the functions 
that have been studied. A hardware approach performs the data movement 
and calculations considerably faster than software. In fact, the usual goal of 
hardware implementation is real-time operation. Software, on the other 
hand, is cheaper, easier, and more flexible but much slower. Finally, the $5 
MOS microprocessor and high-speed bipolar microprocessors make possible a 
third category that behaves in a system like a hardware implementation but 
1s designed, and for the most part, built like a software implementation. 

Hardware implementation and real-time operation seem to be of 
greatest interest to most people at this time. Digital synthesis hardware can 
be integrated into an overall computer-controlled system in several ways, 

however. At the lowest level, one can build modules that on the outside act 
just like analog modules but offer greater precision, more flexibility, and 
perform functions impossible to do with analog hardware. Along the same 
lines, the voice-per-board method of system organization can be done en- 
tirely with digital hardware and with the same advantages. One may define 
and construct a modular digital synthesizer that conceptually acts like a 
modular voltage-controlled synthesizer but is all digital, including the 
signal-routing system. It is also practical to consider an actual programmable 
“computer” specialized for ultra-high-speed execution of synthesis al- 
gorithms in an effort to combine the flexibility of software with the speed 

necessary for real-time operation. Special-purpose “black boxes” that perform 
certain useful but time-consuming operations such as the FFT can also be 
added as a peripheral to general-purpose computers in order to enhance the 

speed of software-based synthesis. 
Unfortunately, a complete discussion of all of these options is well 

beyond the scope of this chapter. However, those suitable for implementa- 
tion by individuals will be described in detail, while the others will only be 
surveyed. 

541 
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Analog Module Replacement 

In many cases, digital techniques and circuitry can replace analog 

circuitry with the substantial advantages that have been described earlier. 
One of the biggest potential advantages in this role, however, is the ability of 
digital logic’ to multiplex itself among numerous channels. Modern logic is so 
fast that in many cases it would just be loafing when used to implement a 
single function. The surplus speed along with a small amount of memory can 
instead be used to simulate several independent modules using only one set of 
somewhat more complex logic. The per-function cost is then reduced, often 

considerably below that of an equivalent quantity of analog modules. Digital 
oscillators, which will be discussed extensively in the following paragraphs, 
lend themselves well to multiplexed operation. It is not difficult to have one 
logic board perform the function of 16 or more functionally independent 
oscillators! 

Simple Digital Oscillator Module 

Enhanced frequency accuracy and greater waveform variety are the 
leading advantages of a digital oscillator over a conventional voltage- 
controlled type. The oscillator we will be discussing initially accepts a 

single-word digital input that controls frequency and produces a single 
analog output. The oscillator may be used as a stand-alone oscillator module 
or may be part of a larger voice module. 

The most fundamental part of the oscillator is the variable-frequency 

source. Basically, all digital oscillators share one common trait in this area: 

they take a fixed, crystal-controlled, high-frequency clock and divide it down 
to a useful range under the control of a digital word. There are at least four 
distinct ways of doing this, each with a set of advantages and disadvantages. 
For the purposes of illustration, we will assume that the goal is to generate 
frequencies in the audio range with infinite frequency resolution and perfect 
short-term as well as long-term frequency stability. 

Divide-by-N Frequency Generator 

The most obvious frequency generator is the divide-by-N counter. The 
circuit mercly accepts the fixed frequency reference, F, a digital number, N, 

and produces an output frequency of F/N Hz. Any number of logic schemes 
can be used to implement the divide-by-N, and they are all quite inexpensive 
and easy to understand. Figure 17—1 shows one that requires only counter 
blocks (plus one two-input gate) and is indefinitely expandable. The idea is 
to load N into the counter at the beginning of an output cycle and count up 
to all ones on successive clock pulses. When the counter overflows, N is 
loaded again and the cycle repeats. The actual division factor is 24—N, where 

M is the number of counter bits. If the twos complement of N is supplied, 
however, the circuit indeed divides by N. 
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Fig. 17-1. Simple, high-speed divide-by-N counter 

The master clock may be as high as 15MHz, and the output frequency 
consists of pulses with a length of one clock period. N may be changed at 
almest any time, bur if it is changed within 10 nsec of the end of an output 
pulse, an incorrect value may be loaded into the counters and cause a momen- 
tary glitch (click) in the output frequency. 

The assumption behind the divide-by-N approach is that, if the clock 
frequency is high enough, the frequency increment between adjacent values 
of N will be small enough to be inaudible. Let’s determine how high the 
master clock must be to get a resolution of 5 cents (1/20 of a semitone or 

0.3%) throughout the audio range. Taking the low end first, we seek a clock 
frequency, F, such that F/N=20.0 and F{N—1)=20.06, where N is the 

division factor for a 20-Hz output. Using the standard procedure for solving 
simultaneous equations, F and N are found to be 6.68 kHz and 334, respec- 
tively. Solving the same equations at the upper end of the audio range gives 
an F of 6.68 MHz and N the same as before. 

Since the clock frequency must remain fixed, we are forced to use the 
6.68 MHz value of F, since using lower values will not provide the required 
amount of resolution at high frequencies. Thus, with a master clock of 6.68 
MHz, the division ratio varies from 334 for a 20-kHz output to 334,000 for 
a 20-Hz output. The counter circuit in Fig. 17—1 will therefore require 20 
bits or five 4-bit counters, which could then provide frequencies as low as 6.4 
Hz. While the resolution at high frequencies barely meets specification, the 
resolution at low frequencies is 1,000 times better than required. Note thac 
the high-frequency resolution can only be improved by a factor of two before 
counter speed limitations become a factor. Clearly, the divide-by-N method 
of frequency generation performs best when generating low frequencies. 

One advantage of the divide-by-N method is that the output frequency 

is pure, that is, there is no jitter in the period other than that of the master 
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Fig. 17-2. Equal-tempered scale frequency generator 

clock. The circuit merely passes every Nth inpuc pulse to the output. A 
potential problem with the method, however, is the highly nonlinear, recip- 
rocal relation between N and output frequency. 

Modern electronic organs use dividers to produce all of the notes on the 
12-tone equally tempered scale simultaneously. The heart of these instruments 
is an IC called a “top octave divider.” This IC (sometimes a set of two) 

accepts a high-frequency clock input and produces 12 different output fre- 
quencies, which correspond to the 12 equally tempered notes in the highest 
octave of the organ. Associated with each output internally is a simple 
divide-by-N counter with appropriate Ns wired in. Each output in turn 
drives a 6-bit binary counter, which provides the lower notes in precise 
octave increments as shown in Fig. 17-2. 

One example is the MM5555 family from National Semiconductor. 
The type 5555 and 5556 ICs accept an input frequency of 2.12608 MHz and 
produce outputs from C8 (four octaves above middle C) to B8 (4,186 Hz to 
7,902 Hz) plus a C9 output. By judicious selection of the clock frequency, 
the maximum output frequency error has been made less than 0.66 cent with 
respect to ideal equal temperment. The 5554 hex flip-flop divides these 
down as low as C2, which is about 65 Hz. For a programmable oscillator, a 
multiplexor (it should be CMOS to match the weird logic levels used by the 
5555 family) can be added to select one of the 72 output frequencies under 
control of a digital address input. Thus, if only 12-cone equally tempered 

note frequencies are desired, they can be selected with a simple 7-bit number 
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Fig. 17-3. Rate multiplier 

that directly corresponds to the note rather than a 20-bit number that would 

have to be looked up in a table. Also, multiple simultaneous outputs can be 

implemented by adding multiplexors only. 

Rate Multiplier 

The rate multiplier is a combination counter and logic network specift- 

cally designed for variable-frequency generation. Its basic form is illustrated 

in Fig. 17-3. The fixed-frequency clock is fed to a standard binary counter of 
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M bits that just continuously counts through its 2 possible states. The 

gating network compares the content of the counter with the frequency 

control word and based on the comparison either allows a clock pulse through 

or blocks it. The average output frequency is equal to FN/2™, where F is the 

clock frequency and M and N are as before. Note that unlike the divide-by-N 

approach, the rate multiplier produces an output frequency directly propor- 

tional to N rather than inversely proportional. Note also that by increasing 

the number of counter bits that the frequency resolution may be made as 
high as desired without altering the clock frequency. 

So far this sounds ideal but there is a catch. Examining the gating 
structure and truth table for N=11, it is seen that the output pulses are 

erratically spaced, although there are indeed 11 of them per 16 input pulses. 
A litle furcher study of the effect of different Ns reveals that the instantaneous 
output frequency never varies over a range greater than two to one, although 

it is never less than that either unless N is a power of two, in which case it 

does not vary at all. The audible effect of such frequency jitter is a very rough 
sound to say the least.,Thus, it is clear that a rate multiplier alone is 

unsuitable as an audio tone source. 
One can, however, “digitally filter” the jittery output with a simple 

binary counter and reduce the percentage of frequency modulation. Figure 
17-4 shows how a divide-by-8 counter smooths the frequency jitter substan- 
tially from 100% to about 12%. Unfortunately, the clock frequency must be 
increased by a factor of 8 to compensate for the frequency division of the jitter 
filter. By adding stages to the filter counter, the jitter may be made as small 
as desired, subject only to the clock-frequency limit of the rate-multiplier 
counter. A divide-by-256 filter counter, which leaves only a trace of rough- 
ness in the sound, is probably adequate in most cases. Thus, if the rate 

multiplier is to be used to produce frequencies up to 20 kHz, the clock 
frequency must be 5.12 MHz, about what it was with the divide-by-N 
approach. 

With an overall output frequency relation af FN/2M+J, where J is the 
number of bits in the jitter filter, it is seen that frequency is a linear function 
of the digital word, N. Thus, frequency resolution is poorest at /ow frequen- 
cies rather than at high frequencies. If one wishes to experiment with rate 

multipliers, the 7497 is a 6-bit cascadable unit that functions up to 20 MHz. 
Four of these, an 8-bit filter counter (74393), and a 5-MHz crystal oscillator 

are sufficient to build a frequency source with good resolution at all but the 
very lowest audio frequencies (1.5% at 20 Hz). 
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Fig. 17-5. Accumulator-divider structure 

Accumulator Divider 
The accumulator-divider method is based on the digital sawtooth 

generator discussed in Chapter 13. The basic structure shown in Fig. 17-5 
consists of a set of binary adders and a D-type register. The adders sum the 
current register contents and the frequency control word together and feed 
the result back to the register, which latches it up on the next clock pulse. 

Thus, N is repeatedly added to the M-bit register, which overflows whenever 
the accumulated sum exceeds 24—!, The overflow frequency is the output 

frequency which can be conveniently detected by monitoring the most signif- 
icant register bit. As with the sawtooth generator, the output frequency is 
FN/2™M, the same as the rate multiplier. Note that the division ratio must be 
two or greater in order to use the MSB as the output. 

The circuit can be considered co let every N/2“th clock pulse through to 
the output. When this ratio is an integer, which only occurs when N is a 

power of two, the output pulse train is jitter-free. When it is not an integer, 
it alternates between the integer values on either side such that the long-term 
average is exactly equal co the fractional value. For example, if M is 16 (2 is 
65,536) and N is 384, the ratio 2M/N is 65536/384 or 170.66667. The 
circuit will alternate dividing by 170 and by 171 with the latter occurring 
twice as often as the former. Thus, the peak sime jitter is never more chan one 
clock period. The peak-to-peak frequency jitter in percent is simply the recip- 
rocal of N. Thus, at low output frequencies the jitter is very smal] but gets 
worse as the output frequency is increased. Contrast this with the rate 

multiplier, which has an essentially constant jitter regardless of output fre- 

quency. 

The absolute frequency resolution of the accumulator divider is depen- 
dent entirely on the register length, M, and can be increased without theoret- 
ical limit. The relative resolution as a fraction of a particular ourput 

frequency is simply 1/N for the N required to produce the frequency of 
interest. The lowest possible output frequency is F/2M, while the highest is 
F/2 if the most significant register bit is the output. The master clock 
frequency determines the time jitter, which is one clock period peak to peak. 
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As an example, let’s assume that an oscillator with 1-cent (0.06%) 

resolution over a 20-Hz to 20-kHz frequency range and inaudible jitter is 
desired. Under normal conditions, 0.5% frequency shift is about the 
minimum audible for single tones of moderate frequency. It is reasonable to 
assume that this much jitter at 20 kHz would be completely inaudible, while 
at midfrequencies the jitter is far less anyway. At 1 kHz, for example, it 
would be a mere 0.025%, which is much lower than the wow and flutter 

figures for most audio equipment. 
The first step is to determine the clock frequency from the jitter re- 

quirement. The period of the highest frequency is 50 pisec and 0.59% of this 
is 250 nsec. Thus, the clock frequency must be at least 4 MHz to meet the 
jitcer specification. To meet the resolution requirement at 20 Hz, N must be 
1/0.0006 or about 1,600. If the output frequency equation is rewritten as 
F=6.4 X 109/2M, M can be found by applying M=log2(6.4 x 109/20), 
which yields a figure of 28.2. Thus, the adder and register must be 28 bits 
long. Note, however, that N will never be greater than 1,342,178, which 
means that only about 20 bits are needed to represent N. The remaining 
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adder B inputs should be grounded. In fact, the upper eight adder and 
register bits can actually be replaced by a simple counter that is enabled to 
count when the most significant remaining adder generates a carry out. In 
this respect, the “extra” eight bits in M function is a jitter filter! 

If one wishes to experiment with the accumulator divider, the general 

circuit structure shown in Fig. 17-G is suggested. The A version of the type 
7483 adder has a high-speed carry generation circuit internally, which be- 
comes important when several are used for long words. The 74161 is a 
synchronous counter that is easily enabled to count when an adder carryout is 

present. If, however, the most significant A input to the most significant 
adder is zero, then the most significant register bit is guaranteed to flip, 
which can then be used to trigger a ripple counter such as a 74393 instead. 

Phase-Locked Loop 

When using the preceding methods, an output could only be produced 
coincident with a clock pulse. Therefore, the frequency resolution and time 
resolution (jitter) is limited by how finely time can be divided up by the 
clock. The phase-locked-loop (PLL) method, however, uses a tunable oscil- 
lator, which generates the output frequency, and a feedback mechanism that 
keeps it locked on the correct frequency relative to a second fixed frequency 
clock. 

The structure of the PLL frequency synthesizer is shown in Fig. 17-7. 
Two independent divide-by-N counters are used along with independent 
inputs, Ni and Ne. The Ni counter reduces the master clock frequency to 
some convenient value. The Ne. divider likewise divides the voltage- 
controlled oscillator output to, when the circuit is stabilized, the same 

convenient value. The phase comparator looks at the two frequencies and 
produces a de correction voltage that tends to adjust the VCO to equalize the 

comparator inputs. In effect, the upper counter divides the clock to an 
intermediate frequency, while the lower counter and VCO multiplies this up 
to the desired output frequency. The output frequency is therefore equal to 
F(Ni/N2) with no theoretical restriction on the values of N1 and Ne. Thus, 

any rational output frequency may be produced. 



550 Musica APPLICATIONS OF MICROPROCESSORS 

The circuit should also, theoretically, have a jitter-free output regard- 
less of the relation between output frequency and master clock frequency. In 

reality, however, the phase-comparator error voltage output has significant 
tipple, which is filtered by the low-pass filter. Any remaining ripple will 
tend to jitter the VCO. An effective filter, unfortunately, slows the response 

to changing digital inputs. This, in fact, is a major limitation of the circuit 
as a musical oscillator, alchough it is useful in precision test equipment in 

which frequency changing is by front panel controls and is done infrequently. 
There is also a serious range limitation unless the low-pass filter and certain 
VCO parameters are altered as a function of final output frequency. 

Which is Best? 

Of these four techniques, which comes closest to the goals of infinite 
resolution and freedom from short-term frequency jitter? The divide-by-N is 
the only technique with a totally clean output and, given a suitably high 
clock frequency, can have excellent resolution at low- and midaudio frequen- 

cies as well. As we shall see later, it does not lend itself well to multiplexing, 

however. The rate multiplier has no resolution limitation but does exhibit 
significant frequency jitter at all frequencies, which must be filtered. Its 

main advantage is the availability of specialized rate multiplier ICs, which 
reduce parts count. It does, however, multiplex well. The accumulator di- 
vider has no resolution limit either, and its jitter decreases with output 

frequency. It is the most complex, however, but it does multiplex quite well. 
The PLL divider was included for completeness; it is not recommended as a 

music oscillator except in very limiced situations. 
The accumulator divider seems to have more good features than the 

others, alchough it is more complex. We will see later how multiplexing can 
actually make it the simplest in terms of parts count. The divide-by-N is 

probably the best for a dedicated oscillator, where its nonlinear control 
characteristic can be tolerated. 

Waveshaping the Oscillator Output 

The frequency-generation circuits that have been discussed thus far 
either put out narrow pulses or square waves at the desired frequency. For use 
as a practical analog oscillator replacement, other output waveforms are 
necessary. A pulse output is readily converted to a sawtooth wave by the 
circuit in Fig. 17-8. The pulse, which may only be 100 nsec wide, is 
stretched by the single shot and discharges the capacitor through a transistor 

switch. The current source (which can be just a resistor for audio applica- 
tions) then recharges the capacitor during the remainder of the cycle. Square 
waves, such as from the accumulator divider, can also operate the circuit. 

There is a problem, however: the amplitude decreases as frequency 
increases, While not objectionable for a limited range of two octaves ot less, 
it must be compensated over a wider range. The charging current could be 
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Fig. 17-8. Digital divider waveshaping circuits. (A) Generating a sawtooth 
wave. (B) Compensating a sawtooth from a divide-by-N oscillator. 

increased at higher frequencies by deriving it from a DAC connected to the 
most significant frequency control bits. For a divide-by-N frequency source, 
a multiplying DAC could be placed in the feedback path of an op-amp to 
provide reciprocal compensation. : 

Along these same lines, a square-wave output can be integrated into a 
triangle wave, and a multiplying DAC can be used to raise the integrator 

gain at high frequencies. Two variable integrators in a state-variable low-pass 
configuration can filter a square wave into a reasonable sine wave as well. The 
2040 integrated volcage-controlled filter can do both of these jobs quite well 
and can be driven directly from a current output DAC. 

Although these essentially analog methods do work, they seem to 
defeat the whole purpose of going digital in an oscillator module. Much more 
flexible waveshaping can be had by implementing some of the techniques 
discussed in Chapter 13. In the example of accumulator division given 
earlier, the most significant 8 bits of the register were implemented as a 
binary counter, which counted through every one of its states every cycle. If 
an 8-bit DAC is connected to the counter, a sawtooth wave with amplitude 

independent of frequency would emerge. One could also construct logic to 
implement all of the direct waveform computation methods detailed in 
Chapter 13 such as triangle and sine conversion as well. 

Another possibility is table lookup shaping followed by digital-to- 
analog conversion and filtering to get an analog output. In hardware, this is 

accomplished by placing a read-only memory (ROM) between the accumulator 
divider and the DAC as in Fig. 17-9. The ROM functions exactly like a 

ost 
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Fig. 17-9. Digital waveshaping of digital oscillator 
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Fig. 17-10. Digital waveshaping using RAM 

waveform table and simply transforms sawtooth input samples into samples 

on any waveform desired. 
A particularly convenient type of ROM to use is the erasable and 

reprogrammable variety (EPROM) such as the 1702, which is organized as 
256 8-bit words. Since this type of EPROM is virtually obsolete for mi- 
croprocessor program storage, it can be purchased for $3 or less. The type 
2708 EPROM is four times larger with 1,024 8-bit words. A digital oscil- 
lator with four different waveforms may be constructed by connecting the 
lower 8 address bits to the frequency divider and using the remaining 2 
address bits to select one of four waveforms. An EPROM programmer con- 
nected to the user's microcomputer would allow the waveforms to be com- 
puted in BASIC and then written intco EPROM for use in the oscillator 
module. 

Obviously, read/write memory can also be used to hold the waveform. 

If this is done, the control computer can set the oscillator output waveform 
and even change it during the course of the music. Figure 17-10 shows how 
the RAM is connected between the divider and the DAC. The main item of 
interest is the address selector. During normal operation, the accumulator 
divider is selected as the source of addresses for the RAM. When a new 
waveform is to be written into the RAM, the selector allows addresses from 

the first microcomputer output port to reach the RAM instead. A second 
output port provides the data to be written, while a third port controls the 
write enable line on the RAM and the address selector. Up to three 

additional oscillators can be serviced with the same interface by paralleling 

address and data with the first oscillator and distributing the six remaining 
control bits among the other oscillators. 

A convenient RAM to use is a pair of 2101s, which provides 256 words 
of 8 bits with separate data input and output. Note that gradual waveform 
changes during a note are not really possible because addressing the RAM for 
writing thoroughly scrambles the read data going to the DAC. This can be 
overcome with holding registers and careful timing bur is unlikely to be 
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Fig. 17-11. Timing of generalized digital oscillators. (A) Nonmultiplexed oscil- 
lator timing. (B) Multiplexed oscillator timing. 

practical with a dedicated oscillator. With multiple oscillators, however, one 

can be reprogrammed, while the others continue to function normally. 

Variable and Constant Sample Rate 

The oscillator and ROM/RAM waveshaper just discussed is an example 

of variable sample rate digital synthesis. Earlier, it was strongly suggested that 

the sample rate should remain constant in a digital synthesis system. This in 
fact is true if the system is handling several unrelated signals at once. 

However, a dedicated oscillator is handling only one signal so the rule can be 
relaxed somewhat with important advantages, 

Using the Fig. 17-10 system as an example, we ignore for a moment 

the fact that the count-up rate of the most significant 8 bits of the ac- 
cumulator divider is not exactly constant. Therefore, if the raw DAC output 
is examined, it is found to consist of exactly 256 steps per cycle of the 
waveform and each cycle is identical to the previous one. As the division ratio 
and hence synthesized wave frequency is changed, the stepped wave is merely 
stretched or compressed, but its step-by-step shape remains constant. The 
spectrum of such a wave is exactly harmonic, including all of the alias copies 

of the intended spectrum. Thus, the alias distortion is purely Harmonic distor- 
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tion rather than intermodulation distortion and white noise. Furthermore, 

and this is the crux of the matter, the quantization noise is also harmonic 

distortion! This means that perfectly clean sounding tones can be produced 
with 8 and even fewer bit DACs. 

Since the reader is not really expected to believe the previous paragraph 

immediately, let’s discuss the meaning of harmonic distortion. In audio 
equipment, the most prevalent measure of quality is harmonic distortion. 

Literally, this means that any tone entering the equipment will leave with its 
harmonic amplitude relationships altered. Even large amounts (several per- 
cent) of such distortion are inaudible provided the distortion is pure, that is, 

no other type of distortion is present, and that the amplitude alteration is 

spread out evenly among the harmonics. 
However, the mechanism that causes harmonic distortion in audio 

equipment does not meet either criteria when several tones are present simul- 

taneously. First, intermodulation (IM) distortion is inevitable, which causes 
easily heard nonharmonic frequencies to occur. In fact, an amplifier with pure 
harmonic distortion would be quite an interesting device indeed. Second, the 
harmonic portion of the distortion tends to concentrate at high frequencies, 
where it is easily heard. Historically, harmonic distortion ratings were used 
because they were easy to measure and correlate well with IM readings, 
which are a much better measure of subjective distortion. Although direct 
IM measurements are now easily performed, tradition requires that harmonic 
distortion still be quoted on spec sheets. 

As an example, consider the synthesis of a tone having the exact har- 
monic makeup (chosen at random) listed in Table 17-1. For the sake of 

argument, let’s assume that only 64 words of memory (64 samples per cycle) 

are available and that each word is a paltry 6 bits long, which means that a 
6-bit DAC can be used. Also shown in Table 17-1 are the corresponding 
sample values to 16-bit (5-digit) accuracy and rounded to 6-bit accuracy. The 
final column shows the actual harmonic spectrum that would emerge from 
this low-budget tone generator. 

The first surprise is that the difference between desired and actual 
harmonic amplitudes expressed in decibels is not very great, at least for the 
significant high-amplitude ones. Lower-amplitude harmonics do suffer 
greater alteration but are more likely to be masked by the higher-amplitude 
harmonics. The real difference is that no harmonic can be entirely absent 

because of the quantization “noise.” In actual use with a fairly “bright” 
harmonic spectrum, the approximation errors would be audible but would be 
characterized as a slight timbre alteration rather than distortion; much like 

the audible difference between two presumably excellent speaker systems of 
different manufacture. The use of 8 bits and 256 steps for the waveform of a 
digital oscillator is therefore well justified. 

Although the alias frequencies are also harmonic, they should be fil- 
tered if a high-pitched “chime” effect is to be avoided. Unfortunately, the 
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filter cutoff must track the cone frequency as it changes. This used to be an 
expensive proposition but a 2040 VCF driven by an 8-bit DAC connected to 
the frequency control word can now solve the problem for under $15. In 
many cases, it may be possible to omit the filter. For example, when using a 
256-entry waveform table, only fundamental frequencies below 150 Hz re- 
quire filtering, since otherwise the alias frequencies are entirely beyond 20 

Table 17-1. Performance of a 64-Word 6-Bit Waveform Table 

Harmonic number Desired amplitude Actual amplitude 

1) —100 —48.67 
4 3 —3.14 
2 -5 -5.13 
3 —10 —10.28 
4 -8 -8.27 
5 -2 —2,02 
6 10] 0.16 
7 4 —4.27 
8 -10 -10.29 
9 -15 —14.88 

10 -19 -19.45 
11 —10 —10.15 

12 6 -5.09 
13 = -1.12 
14 -6 —6.2 
15 -12 -12.14 
16 20 —21.06 

17-32 -100 —§2.24 best 
—36.72 worst 

Ideal Actual Ideal Actual Ideal Actual 
sample sample sample sample sample sample 
values values values values values values 

—0.051854 —0.0625 —0.181621 0.1875 —0.005724 0.0 
0.249919 0.25 —0.182356 0.1875 0.243738 0.25 
0.353100 0.34375 -0.174635 ~0.1875 0.470721 0.46875 

0.150009 0.15625 —0.383177 —0.375 0.463172 0.46875 
0.072522 0.0625 —0.224204 ~0.21875 0.248244 0.25 
0.460679 0.46875 ~0.106272 —0.09375 —0.028076 - 0.03125 
0.909300 0.90625 -0.463232 —0.46875 —0.353254 -0.34375 
0.745635 0.71875 —0.999997 0.96875 -0.720503 ~—0.71875 
0.068102 0.0625 -0.990784 —0.96875 -0.903528 -0.875 

—0.280506 —0.28125 —0.335606 —0.34375 —0.654850 ~—0.65625 
0.090172 0.09375 0.217383 0.21875 --0.086723 —0.09375 
0.536646 0.53125 0.136746 0.125 0.389132 0.375 
0.334821 0.34375 = ~—0.134930 -0.125 0.526439 0.5 

—0.255813 —0.25 0.0744874 0.0625 0.424187 0.40625 
—0.407391 ~0.40625 0.585016 0.5625 0.319785 0.3125 
0.058757 0.0625 0.643670 0.625 0.248252 0.25 
0.452688 0.4375 0.0782302 0.0625 0.158014 0.15625 
0.213340 0.21875 —0.486549 —0.46875 0.084257 0.09375 

—0.364094 —0.34375 —0.559661 0.5625 0.082703 0.09375 
—0.584477 -0.5625 —0.330236 —0.3125 0.070032 0.0625 
—0.244755 —0.25 —0.151069 -0.15625 —0.058026 ~0.0625 

—0.177100 0.1875 
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kHz. In fact, mellow tones containing few harmonics can be generated 
filter-free down to 80 Hz. 

A dedicated digital tone generator can, of course, be based on the 

constant sample rate approach too. The structure is basically the same as 
Figs. 17-9 and 17-10 except for the following: 

1, The master clock (sample rate) is much slower, such as 50 kHz. 

2. The most significant bits of the accumulator divider will be actual 
register bits, since the slow clock eliminates the “jitter-filter’’ counter 

(the jitter now becomes interpolation error). 

3. The waveform memory will require more words (1,024) and more bits 
per word (10-12), since interpolation and quantization error will now 
be white noise instead of pure harmonic distortion. 

The constant sample rate tone generator is, in fact, a precise hardware 
implementation of the software table-scanning technique described in Chap- 
ter 13. In exchange for additional hardware complexity, one has a structure 

that can use a fixed low-pass filter (probably no filter at all for 50-kHz sample 
rate), operates at a much lower clock rate, and can be easily multiplexed. 

There is one serious problem that the variable sample rate approach did not 
have and that is “harmonic overflow” or alias distortion caused by generating 
frequencies beyond one-half the sample rate. This may be controlled only by 
cutting back on stored waveform complexity when high-frequency tones are 
being generated. 

Multiplexed Digital Oscillator 

Digital circuitry has the unique ability to be time multiplexed among 
several, possibly unrelated, tasks. Although a large time-sharing computer is 
the epitome of this concept, quite small amounts of very ordinary logic can 
be multiplexed among several similar tasks and made to act like many copies 
of itself. Probably the best way to illustrate time multiplexing is to describe a 
specific example and then generalize from it. Since digital oscillators have 
been under discussion, let’s examine the design and implementation of a 
multiplexed digital oscillator module having the following general specifica- 
tions: 

1. Sixteen independent oscillators are simulated. 
2. Each oscillator has an independently programmable waveform. 
3. Moderately high tonal quality (50 dB S/N) is desired. 
4, Waveforms may be dynamically updated without glitching the output. 

Although the last feature may be impractical in a single-channel oscillator, 
its cost is divided by 16 when multiplexed. 

A typical nonmultiplexed digital oscillator has a timing diagram some- 
thing like Fig. 17-11A. Immediately following the active clock edge, things 
happen and signals change. A finite time later, everything settles down and 
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Fig. 17-12. Nonmultiplexed oscillator organization 

remains stable until the next active clock edge. The time between settling 
and the next clock is “wasted” because nothing is happening. 

Multiplexing utilizes this idle time by assigning it to the “data” for one 
or more additional oscillators as illustrated in Fig. 17—11B. Such data consist 
of the frequency control word, the state of the counter in the frequency 
divider, and the waveshaping table. Essentially, the data are read from a 
memory, the next state is determined by the logic, and the result is written 

back into the memory and an output citcuit. The entire sequence for a 
particular oscillator takes place during one #énor clock cycle. A major clock cycle 
consists of N minor clock cycles, where N is the number of oscillators 
simulated. There will, in fact, be a minor clock cycle counter that identifies 
minor cycles within a major cycle. Thus, the sample rate for each oscillator is 
the major clock frequency, while the ¢hroughput rate for the computation logic 

is N times the sample rate or the minor clock frequency. 

Before proceeding further, the implementation technique for the oscil- 
lator must be determined. One thing to keep in mind is that the minor cycle 
frequency is N times the effective clock frequency for a particular oscillator. 
This eliminates the variable sample rate techniques described earlier because 
they all require a clock frequency on the order of 5 MHz. To multiplex these 
according to the specs above would require a throughput rate of 16 X 5 or 80 

MHz, somewhat beyond the capabilities of standard logic. Thus, a fixed 
sample rate approach will be used. In the example system being discussed, 

the sample rate will be set at 62.5 kHz, which when multiplied by 16 yields 
a throughput rate of 1.0 MHz. This equates to a major cycle time of 16 usec 
and a minor cycle time of 1.0 psec. 

Hardware Structure 

The first step in designing the multiplexed oscillator is to draw a 
detailed block diagram of the equivalent nonmultiplexed oscillator as in Fig. 
17-12. Note that the data input to the oscillator logic comes from a register 
and that the DAC output goes to a sample-and-hold, which acts like an 
analog register. The 20-bit word length chosen for the accumulator allows a 
frequency resolution of 0.3% at 20 Hz and 0.005% (equal to typical crystal 



Musical APPLICATIONS OF MICROPROCESSORS 558 

SINdINO 
SOTVNY 

91 

uoneziuebio 
soyeyioso 

p
e
x
e
d
y
i
n
w
 

‘er-zt 
“614 "N39 

ONIWIL 

“960 

2SibZ 
| 499135 
ssayady 

S
L
M
 

NI 
NI 

viva 
ssauaoy 

F
e
 

Y
a
L
N
d
W
O
D
 
T
O
H
L
N
O
D
 

WOUSTONLNOD 
WHOLEAUR 

a
i
d
 

NI 
NI 

vivd 
ssayaoy 

U
H
 

¥
3
L
N
d
W
O
D
 
T
O
4
1
N
O
D
 

WOY4 
TO¥LNOD 

AINSNOIHS 

oscillator accuracy) at 1 kHz. The LO-bit word length for waveform address 

and data gives a S/N ratio of greater than 50 dB for the tone. 
—13, one 

f N words and ad- 

In converting to the multiplexed oscillator shown in Fig. 17 

replaces all registers with memories, each consist ing o' 
dressed by the minor clock cycle counter. In the case of the waveform tables, 
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an N times larger memory holds all of the waveforms, and a particular section 
is addressed by the minor cycle counter. Thus, the frequency control word 
becomes the freguency control memory, which is 16 words of 20 bits, and the 
accumulator register becomes the accumulator memory, which is the same size. 
The waveform memory grows to 16K by 10 if each oscillator is to have a 
different waveform. The final outputs now come from 16 SAH circuits, 

which are addressed like a 16-position analog memory. 
Before determining the timing diagram, components must be selected 

for the various blocks. Such a selection must be made on the basis of speed 
and cost. Obviously, memories that require a 2 pasec cycle time cannot be 

used, but, on the other hand, a 50-nsec bipolar memory would be overkill for 
the waveform tables. For this example, the waveform memory will use 10 
type 4116 MOS dynamic RAMs, which are organized as 16,384 words of 1 
bit each. Although 16K RAMs are the cheapest form of memory available, 
their dynamic nature requires periodic refreshing to retain data. Refreshing is 
accomplished simply by reading at least one location in each of the 128 

blocks of 128 addresses every 2 msec. Since the oscillators are constantly 

scanning through the waveform memory, it will be automatically refreshed 
provided that zero frequency (or an exact multiple of 7.8125 kHz) is not 
programmed for all of the oscillators simultaneously. 

Frequency control words and accumulators will be stored in 10 type 
7489 bipolar memories, which are conveniently organized as 16 words of 4 
bits each. The address selector for the waveform memory uses four type 

74153 dual one-of-four multiplexors, which simultaneously select between 
accumulator and external addresses and between lower and upper 7-bit halves 
as required by the 4116s.' The frequency control memory address must also 
pass through a selector to allow the control computer to write frequency 

control words into the memory. This may be implemented with a single 

74157. The 20-bit adder will use five cascaded type 7483A 4-bit adders. 
Unfortunately, there are a few timing and design details that require 

additional latches to correct. One problem is that the 7489 memories do not 

have an edge-triggered write. This means that a race condition is possible 
when writing, which can be corrected by inserting a 20-bit holding register 
between the adder output and the accumulator memory input. Another 
problem is that the 4116 waveform memory only activates its data output for 
a short time at the end of a memory cycle. Vhus, another holding register 

between the 4116s and the DAC is required. Almost any edge-triggered 
latch can be used for the holding registers but the type 74175 will be 
specified because of its low cost and ready availability. Figure 17-13 shows a 
block diagram of the complete multiplexed oscillator. Excluding the timing 

The type 4116 RAM actually time multiplexes 14 address bits on 7 address pins. Two 
clock inpurs called row address strobe (RAS) and column address strobe (CAS) trigger 
internal latches, which then reconstruct che full 14-bit address. The reader should 
consult the manufacturer's data sheet (Mostek Corporation) for full details. 
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Fig. 17-14. Multiplexed oscillator timing diagram 

generator and interface to the control computer, the total digital IC package 
count is approximately 40. 

Timing 

Figure 17-14 shows a timing diagram for the events that take place 
during one minor clock cycle. The only difference from one minor cycle to the 
next is the content of the minor cycle counter, which addresses the various 
memories involved, Each minor clock cycle consists of two subcycles that are 
termed internal and external subcycles. During the first subcycle, the required 
internal oscillator calculations are performed. The second subcycle is avail- 
able to the external control computer for writing in new frequency control 

words or new waveforms if it so desires. Each subcycle is further divided into 
four ‘‘phases,” each 125 nsec in duration. These phases are used to sequence 
the various events that take place. All of the necessary timing signals (except 
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CAS, which utilizes a 30-nsec delay element) can be generated by a 3-bit 
counter driven by an 8-MHz crystal-controlled clock. 

At the beginning of a minor cycle, which is also the beginning of an 
internal subcycle, the minor cycle counter is incremented, which causes an 
address change to the frequency control memory and the accumulator mem- 
ory. Since these are bipolar memories, the newly addressed contents emerge 
about 50 nsec later. The adder, which sees a stable input about midway 

through Phase 0, produces a stable output by the middle of Phase 1. At the 
beginning of Phase 2, the adder output is latched in the adder holding 
register and during Phase 3 the sum is written back into the accumulator 

memory. While all of this is going on, the previous contents of the ac- 
cumulator memory are used to address the waveform memory in conjunction 
with 4 bits from the minor cycle counter, which identifies which stored 

waveform to use. The address selector switches between low 7-bit mode and 

high 7-bit mode as required by the 4116s at the beginning of Phase 2. The 
RAS spans Phases | to 3 while the CAS spans Phases 2 and 3 but with a 30- 
nsec turn-on delay to allow address switching to complete. At the end of 
Phase 3, data from the waveform memory ts available and is latched into the 

DAC register. 
The DAC is allowed to settle during the second subcycle and the 

appropriate SAH channel is updated during the first half of the ext minor 
cycle. Thus, SAH channel I will actually contain che signal from oscillator 
I-1 which is corrected simply by relabeling the analog outputs. 

This time skew from one minor cycle to the next is an example of 
pipelining, which is a very powerful logic throughput enhancement tech- 
nique. It is applicable whenever a repetitive sequence of operations is to be 
done by logic (or sampled analog) blocks connected in series. Rather than 
making the logic fast enough to do all of the operations in one clock period, 

only one operation per clock is performed. The data words shift down the 
chain one position per cycle and are operated on in assembly line fashion. 
Since a given block has a full cycle to “do its thing,” slower logic can be 
used. Conversely, the throughput rate can be speeded up, often by several 
times compared with a nonpipelined approach. Pipelining is very easy to 

implement when strictly repetitive tasks are performed. Fortunately, nearly 
all hardware implementations of digital synthesis techniques are sufficiently 
repetitive. 

Returning to the oscillator timing diagram, the external subcycle is 

used to allow the control computer to access the frequency control and 
waveform memories without interfering with the oscillator operation. Fol- 
lowing address settling in Phase 0, Phases 1 to 3 are available for writing into 
the frequency control memory. An and gate connected to the RAM’s write 

enable input inhibits actual writing unless the control computer specifically 

allows it. A similar arrangement is used for writing into the waveform 
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memory. The waveform memory can also be read externally if desired. If 

write enable is not exercised, read data is available during Phase 3. 

Interfacing to the Control Computer 

The simplest method of interfacing the oscillator is direct connection of 
the 50 external input signals to 50 output port bits and suitable software 
manipulation of the bits to effect the desired results. Timing requirements 
for writing into the frequency control memory are very simple. First, the 
write enable pulse must be at least 1 psec in duration. Also the 4-bit address 
must be set up and stable 30 nsec before write enable is turned on and must 
remain stable for 30 nsec after it is removed. 

The waveform memory is a little more difficult to handle. Essentially, 

none of its inputs are allowed to change during an external subcycle. This 
requirement may be satisfied by inserting latches between the computer and 
the waveform memory inputs and clocking the latches at the beginning of 
minor cycles. 

The number of output port bits required may be cut in half by realizing 
that simultaneous writing into both memories is not likely to be done. Since 
each memory requires 24 bits of information (address + data), only 24 port 

bits are needed plus two more for the write enables. Since registers are 
required anyway for operating the waveform memory, one may fill the regis- 
ters 8 bits at a time with only 8 bits needed for the data and 5 bits used for 
control as shown in Fig. 17-15. 

Fourier Series Tone Generator 

The oscillator module just described is certainly quite versatile but does 
suffer one shortcoming: dynamic variation of the waveform, that is, smooth 

changes during the duration of a single note, is not really practical. Although 

the logic timing is such that a new waveform can be written without interfer- 
ing with waveform scanning, it would be very difficult to rewrite a waveform 
on the fly and insure that discontinuities due to half-old/half-new waveform 

scanning did not occur. One could possibly use two oscillator channels along 
with variable-gain amplifiers to alternately interpolate between successive 
versions of the waveform. In any case, variable filters would probably be used 
for dynamic variation. 

What is needed is a Fourier transform or Fourier series tone 
generator, which is set up for continuous variation of the harmonic 
amplitudes and possibly the phases as well. When one realizes that such a 
tone generator is really nothing more than a bank of sine wave oscillators 
operating at harmonically related frequencies and having independent 
amplitude control, it becomes obvious that a multiplexed oscillator could do 
the job. Although the previous oscillator could provide up to 16 harmonic 
{and inharmonic as well) frequencies, external gain control elements would 



DiciraL HaRDWwaRe 563 

5-BIT PORT 2 B-BIT PORT 1 

‘if 

8-BIT REGISTER 8-BIT REGISTER 8-BIT REGISTER 
274175 cul leuk 2 74175 ik 2 74175 

( [ f f 8 

OSCILLATOR % \ WRITE WRITE. 

10 WAVE FORM WAVEFORM ENABLE ENABLE 
TABLE TABLE FREQUENCY WAVEFORM 
ADDRESS DATA 

FREQUENCY DATA 

Fig. 17-15. Minimal microcomputer interface 

be necessary to control relative amplitude. Thus, an optimized Fourier series 
tone generator will be briefly described. Note that, although the unit is 
multiplexed in order to generate numerous harmonics, it can only generate a 

single composite tone, whereas the previous oscillator could generate 16 
tones. Many musical situations, however, call for a solo instrument of great 

expressiveness with accompaniment in the background. The solo could there- 
fore be played by the Fourier series generator, while the less critical accom- 
paniment could be played by the oscillator bank described earlier. 

The unit that will be described has the following general specifications: 

. Up to 64 harmonics in an unbroken series from 0 to 63. 

. Amplitude is independently adjustable. 

. Phase is independently adjustable. 

. Amplitude and phase may be updated at any time without glitching 

the output. 

5. Fundamental frequency is controlled by a single 20-bic word. 
6. The output is a 16-bit word at 62.5-kHz sample rate. 

RW re 

Much of the basic structure and organization of the previous multiplexed 
oscillator will be retained. Thus, the Fourier series is evaluated via “brute 

force’ in which each harmonic is individually computed, scaled, and 

summed, Although a computation time savings of 10-to-1 is theoretically 
possible chrough use of the FFT, the computation logic would be much more 
complex. Also, as was seen in Chapter 13, FFT synthesis of arbitrary fre- 
quencies (which is necessary in a fixed sample rate implementation) is even 

more complex. Another advantage of brute-force evaluation is that amplitude 
and phase changes take effect immediately, between samples, rather than 
between FFT records. 
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Hardware Structure 

17-16 shows the Following the same development as before, Fig. 
conceptual block diagram of a single harmonic channel without multiplex- 
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ing. The first obvious feature is that three control variables are involved: 
frequency, amplitude, and phase. Another feature is the inclusion of two 
multiplier blocks, one for multiplying the frequency parameter by the har- 
monic number and the other for multiplying the sine table content by the 
amplitude variable. Phase control is implemented by adding the phase shift 
parameter to the accumulator contents in a separate phase adder before feeding 
it to the sine table. Finally, we have a harmonic accumulator, which sums the 

output of this channel with that of the other harmonic channels to provide 
the final output, which is then sent to the DAC. 

Before continuing further, a few things should be said about the word 

lengths of the various blocks. When the 20-bit frequency control word is 
multiplied by the 6-bit harmonic number, a 26-bit product is expected. 
However, in order to use the same accumulator frequency generator and 
sample rate as before, only the /ow order 20 bits of the product are used. 

Thus, product overflow is possible when high fundamental frequencies are 
used. While this may seem to be an operational restriction, a little thought 
will reveal that product overflow is indicative of serious alias distortion in the 
tone anyway. When using the tone generator, the amplitudes of all har- 
monics that exceed 31 kHz will have to be made zero. The word lengths in 
the sine lookup blocks are 10 bits, the same as before. When 64 individual 
sine waves are added up, the result is a 16-bit final output word. 

Let’s now look at these blocks and see how they would be implemented 
in the multiplexed case. Since there are 64 harmonics, the amplitudes and 

phases can be stored in two 64-bit by 10-bit memories. The throughput rate 
is 64 X 62.5 kHz=4 MHz or 250 nsec minor clock cycle, which means that 
bipolar or fast MOS memories will be needed. Unfortunately, 64 words is a 
somewhat nonstandard size for memory ICs and using the 16- X 4-bit type 
7489 memory means that 20 packages would be required. Other possibilities 
are the 2101A-1, which has a 200 nsec cycle time, and the 93422, which is a 

50 nsec bipolar device. The latter is fast enough to be used directly, whereas 
the MOS 2101A-1 would have to be pipelined. Both of these have identical 
pin connections and are organized as 256 words of 4 bits; thus, three-quarters 
of their capacity will not be utilized. 

When considering 64 channels, each with harmonically related fre- 
quencies,” the leftmost four blocks in Fig. 17-16 seem to be redundanc. In 
pacticular, ic would be nice to eliminate the harmonic multiplier as well as 
individual frequency generation accumulators. In order to see how this might 
be done, consider the case in which the frequency control word has a value of 
1 and the entire module had just been reset, that is, all 64 frequency 
generation accumulators set to 0. After one sample period (16 psec), the 

2If one wishes to generate decidedly nonharmonic cones, the 64 frequency generation 
subsystems may be retained. The frequency control words would then come from a 
64-word x 20-bir memory rather chan a harmonic multiplier. Thus, one has essen- 
tially 64 independent sine wave generators and a 64-channel mixer with independent 
gain contro! for each channel. The phase control adders are useless in such an applica- 
tion and therefore can be omitted 
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Fig. 17-17. Harmonic-frequency generator 

fundamental accumulator has a value of 1, second harmonic 2, third 3, etc. 

After a second sample period cycle, they are 2, 4, 6, etc., and after a third 

cycle they are 3, G, 9, etc. After a number of sample periods, overflow of the 
highest harmonic is inevitable. This is merely an indication that it has 
completed a full cycle and can be ignored. In fact, all of the harmonics will 

overflow as they complete full cycles. 
These same relationships hold regardless of the value of the frequency 

control word. Thus, the content of the fundamental’s accumulator can be 

multiplied by the harmonic number to obtain what wox/d be in the har- 
monics’ accumulators if they had their own accumulators and adders! This 
then eliminates 63 frequency generation subsystems. Only the low 20 bits of 
the 26-bit product should be retained to properly implernent the overflow 
phenomenon mentioned earlier. 

Now that the redundant frequency generators are eliminated, let's see 

about getting rid of the multiplier as well. If the multiplexing is done in 
order of increasing harmonic numbers, then multiplication by 2, 3, 4, etc., 
can be accomplished by successive addition of the fundamental’s frequency 
generation accumulator into a second indexing accumulator. Thus, the har- 

monic multiplier is replaced by an adder and accumulator. The substructure 
that accomplishes this is shown in Fig. 17-17. Note that this substructure is 

not multiplexed, but it does provide multiplexed data to the 64 sine 
generators, which, of course, are multiplexed. The frequency-control register 

and the two accumulators are therefore actual registers rather than memories. 

In operation, the frequency-generation accumulator is clocked at the 62.5- 
kHz major cycle rate, while the indexing accumulator is clocked at the 
4-MHz minor cycle rate. Note that the indexing accumulator must be 
cleared at the beginning of every major cycle for proper operation. 

Amplitude Multiplier 

The amplitude multiplier is much more difficult to eliminate so let’s 
see what is involved in hardware multiplication. There are a multitude of 
hardware multiplication techniques that would require an entire chapter to 

describe in detail. There are, however, basically two ways of multiplying in 
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hardware. The first is the serial shift and add algorithm or serial muttiplica- 
tion. When an M-bic multiplier is being multiplied by an N-bit multi- 
plicand, the basic approach is to examine the M bits one bit at a time and 

based on the result either add the multiplicand to a product accumulator 
followed by a shift or just do the shift (either the accumulator can move right 
or the multiplicand can move left). This approach is economical of hardware 
requiring just an N-bit adder, an M + N-bit shift register, and an N-bit 
latch but is slow, since M clock cycles are necessary to compute the product. 
With Schottky TTL logic, shift and add can be done at about a 20-MHz rate, 
which means thata 10 X 10 multiplication requires 500 nsec to perform, too 

slow for the Fourier series generator as curtently specified, although possibly 
adequate for a 32-harmonic implementation. 

The second approach is called parallel multiplication. Essentially, a large 
number of adders and gates is combined to form a massive combinational 
logic network that accepts the factors as static inputs and eventually produces 
the product output after the logic states have stabilized. For short word 
lengths, it may even be practical to use a ROM as a multiplication table. 

Besides much higher speed, the parallel multiplier is much easier to use, 
since no clocks or timing signals are necessary. Settling time from when 

operands are applied to when the result is stable is in the 150-nsec range for 
10-bit operands and a 20-bit product. 

Each IC manufacturer has its own pet parallel multiplier line. Most 
popular are building-block modules such as 4 X 4 and 2 X 4 parallel 

multipliers. The former consists of two ICs (actually 256 x 4-bit mask 
programmed ROMs) interconnected, whereas the latter is self-contained. 
Longer word lengths are handled by cascading the blocks in two dimensions. 
This means that the required 10 X 10 multiplier would need a3 X 3=9 
array of 4 X 4 blocks or a3 X 5 array of 2 X 4 blocks. Cascading of the 4 x 
4 variety (748284 and 74S285 made by Texas Instruments) requires external 
adder IC’s, whereas the 2 X 4 type (AM2505 made by advanced Micro 
Devices) can be directly interconnected with no external circuitry required. 

Recently, complete parallel multipliers for long word lengths have 

been put on a single chip and introduced by TRW, Signetics, and other 
manufacturers. In some cases, an adder and accumulator is also provided, 

meaning that sum-of-products, such as are required here, can be accom- 
plished with no added external circuitry. These are certainly easy to use and 

save considerable space and power bur, at this time, cost substantially more 
than the parts necessary for a component multiplier. In any case, a parallel 

multiplier is indicated for the Fourier series tone generator. 
Before continuing, let’s briefly investigate a method for eliminating the 

amplitude multiplier. It is well known that if two sine waves of exactly the 

same frequency and unity amplicude bur of different phase are added, that 

the amplitude and phase of the resultant depends on the phase Jifference 

according to: 
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Pi—P2 p= Pit+P2 
A=2 cos 3 3 

where A is the resultant amplicude, P is the resultant phase, and P1 and Pe 

are the phases of the individual waves. Thus, the two parameters P1 and 

Pz can be manipulated to give the effect of A and P parameters. The advan- 

tage, of course, is that multiplication by A and addition to the harmonic 

accumulator is replaced by two additions to the accumulator. There are 

disadvantages, however. One is that the throughput rate of the phase adder 

and sine table is doubled; another is the highly nonlinear relation between 

P1,P2 and A,P, which would probably require a translation table to over- 

come. The most serious disadvantage, however, is that greatly increased 

resolution in the sine table is necessary for good control at low-amplitude 

levels where the two waves nearly cancel. This means both more words in the 
sine table as well as greater word length. To equal the dynamic range and 

noise performance of the 1024 X 10-bit sine table with a true multiplier, one 
would have to go to a 4,096 entry sine table with 16 bits per entry. 

A complete block diagram of the generator is shown in Fig. 17-18. A 
timing diagram for the generator is given in Fig. 17-19. Note that a 
pipeline register has been inserted between the sine ROM and the amplitude 
multiplier. The purpose is to isolate the propagation delay of the phase adder 
and sine ROM from the delay of the amplitude multiplier. The only side 
effect is that the phase memory address for harmonic N is N, whereas the 
amplitude memory address is N+1. This can be avoided by inserting another 
pipeline register between the amplitude memory and the multiplier. How- 
ever, for minimum cost the control computer can simply take the skew into 
account when writing into the memories. The harmonic accumulator adds up 

the 64 sine waves during a major cycle. At the end of the cycle, its content is 
transferred to the output register, which holds it for the entire duration of 
the next major cycle, thus giving the DAC stable data. 

All timing is derived from an 8-MHz crystal clock. Two clock cycles 
make a minor cycle and 64 minor cycles make a major cycle. All of the clock 
and clear inputs to the various blocks are assumed to be positive edge 
triggered. The first one-quarter of each minor cycle is devoted to external 
access to the amplitude and phase memories and the frequency-control regis- 

ter. This rapid rate of access allows the generator to be connected directly to 
the bus of most microcomputers with no wait states or buffer memories 
needed. The remaining three-quarters of each minor cycle, which is about 
190 nsec, is aliowed for memory access, adder delay, etc. The parallel 
amplitude multiplier must therefore act in approximately 150 nsec. 

Rapid, glitchless updating of phase makes possible a control technique 
that can be used to simulate inexact runing of the harmonics. If the control 

computer periodically increments the phase parameter of a harmonic, the 
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Fig. 17-19. Timing diagram for Fourier series tone generator 

effective frequency of that harmonic will be increased somewhat. Although 
the magnitude of frequency shift is restricted to a few hertz, the technique is 
useful in simulating a real vibrating string with slightly sharp upper har- 

monics. 

An Intelligent Oscillator? 

The best method of interfacing either of the previously described oscil- 
lators to a system is the use of a dedicated microprocessor. Actually operating 
such an oscillator bank with frequency glides and dynamic waveform changes 

to worry about, not to mention other modules in the system such as 

amplifiers and filters, may pose a very heavy load on the control computer, It 
would be much nicer if the oscillator bank could be given high-level com- 
mands such as “increase frequency of channel 7 from C4 to G4 linearly over a 
period of 300 msec starting at time point 1230,” or “change the harmonic 
content smoothly from what it is currently to the following specification over 

the next 150 msec.” 

A dedicated processor to perform such functions would actually add 
very little to the module cost. Two-thousand bytes of program ROM should 
be sufficient for a moderately sophisticated command interpreter. Read/write 
memory is only necessary for miscellaneous programming use and the storage 
of parameters; thus, it can be 256 or at most 1K bytes in size. Memory and 

V/O interfacing would involve about five additional ICs. A simple logic 

replacement microprocessor such as a 6502 suffices quite well for the intelli- 
gence. The net result is that less chan $50 worth of extra parts can be added 
to make an intelligent oscillator. 

Speaking of the 6502 microprocessor, the observant reader may have 
noticed that the 16-channel multiplexed oscillator timing diagram exactly 

parallels the 6502's bus timing. In fact, one could drive the 6502 clock with 
the internal/external address selector signal. Since the 6502 does nothing 
during the first half of its 1-pisec bus cycle, that half would be the oscillator’s 
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internal half cycle. The external half cycle would be devoted ro the mi- 
croprocessor, which could then dérectly write into the frequency and 
waveform memories. In fact, with some attention to detail, these memories 

could appear to the micro as regular read/write memory and thereby elimi- 
nate interface ports and registers altogether! 

Communication between the control computer and the oscillator can 
now be more casual. This allows techniques such as serial asychronous (RS- 
232),> which are normally useless in real-time conerol applications, to be 

effectively utilized. In turn, this means that digital modules can be designed 
with a “universal interface” chat can easily connect co any kind of control 
computer. Furthermore, interpretive high-level languages, such as BASIC, 

can be used to control the oscillators and other intelligent digital music 
modules. 

Modular Digital Synthesizer 

Up to this point, we have been discussing the digital implementation 
of analog modules in which an analog output is retained. These outputs are 

then interconnected and processed further in the axalog domain just as if they 
had originated in an analog module. In a modular digital synthesizer, all 
signal generation, processing, and interconnection are done in the digital 
domain. Only the final two- or four-channel audio output is in analog form. 
One advantage of an all-digital synthesizer is the elimination of vast quan- 
tities of DACs. Another is that multiplexed operation of the component 
modules makes available very large numbers of module functions at an 
attractive per-module cost. The biggest advantage in the author's mind, 
however, is complete interconnection flexibility. As we saw in Chapter 8, a 
generalized analog-switching matrix for even a moderate number of modules 
can become very large indeed. An equivalent digital matrix using read/write 

memory is compact and economical. At this point in history, there are as 
many different digital synthesizer organizations as there are digital synthe- 
sizers in existence. The organization in Fig. 17-20, however, represents an 
ideal that most of all them approach to some degree. The entire system 
revolves around two major memories. The control memory contains all oper- 
ation parameters for all of the modules, including interconnection informa- 
tion. The control computer writes into the control memory, while the mod- 

ules read from ic. 

3This is the method mosc often used co talk to ‘normal’ peripherals such as terminals, 
printers, etc. Ic is a serial by bit technique that is inherently slow (compared with 
microprocessor speed) and usually implemented with little or no busy/done feedback 
or error checking. Its main virtue is standardization and minimal wiring complexity 
QG wires are sufficient for bidirectional communication). 
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Fig. 17-20. Digital synthesizer organization 

The signal memory contains sample words of all signals in the system. 

Essentially, every module ovtpur is associated with a word in the memory. 
During each system sample period, the content of the signal memory is 
updated by the modules according to theit current output samples. Every 
module input represents a read access to an address specified by the control 
memory. Interconnection then is accomplished simply by specifying read 

addresses for module inputs! The modules themselves are normally highly 
multiplexed so a single “oscillator board” might actually represent 16 oscil- 
Jator functions. In a truly modular system, one can easily add multichannel 
modules simply by connecting them to the memory buses. 

A Hard-Wired Digital Synthesizer 

Probably the best way to introduce the basic concepts of a digital 
modular synthesizer is to briefly describe one fairly simple unit that has been 
proposed. The basic idea is to emulate the operation of a large modular 
analog system with the advantages of direct computer control, program- 

mable interconnection matrix, and, of course, extreme accutacy, freedom 

from drift, etc. Analog module terminology will be used co describe the 
digital modules, since from the control computer's point of view, the whole 
system looks just like a multitude of DACs driving analog modules coupled 
with a signal routing matrix. 

The system as it was originally proposed has the following modules, 
although there is certainly room for expansion: 

16-way multiplexed oscillator 
16-way multiplexed mixer/controlled amplifier 
16-way multiplexed state-variable filter 
16-way multiplexed contour (envelope) generator 
16-way multiplexed universal filter 
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Fig. 17-21. Typical digital synthesizer module 

16-way multiplexed multiinput mixing amplifier 
32 “pseudo”-DACs 
4 final output DACs 
2 white noise generators (uniform and gaussian) 
1 reverberation element 

The system sample rate is 62.5 kHz and all signals are 16-bit twos- 
complement values. Full scale is considered to be 12 bits, however, with the 

extra bits used to provide substantial “headroom” in the signal processing. 
Figure 17-21 shows the general structure of a module. Up to seven 

classes of digital words are handled by the module. “Fixed” controls are 
values fetched from the control memory that act just like adjustment knobs 
on analog modules. They are called fixed because only the control computer 
can alter their values, not other modules in the system. Addresses for signal 
memory read accesses are also read from the control memory. One address is 
read for each of the module’s signal inputs and is sent to the signal memory, 
which returns a signal input. Since a unique location in the signal memory is 

associated with every module output, these addresses serve to define inter- 

modular connections. Signal output words from the module are written into 

the control memory at locations defined when the module is built. Many 
modules require temporary storage from one sample to the next. In multi- 

plexed modules, this is a smal] memory, which is called the ‘‘save memory.” 

Usually, the save memory is not a system resource, but rather it is part of the 

module itself. 
In most respects, the module functions parallel the equivalent analog 

modules. The oscillator module, for example, has cwo signal inputs that are 
summed and control frequency just like a VCO. The tuning relationship is 
exponential with a resolution of 3 cents. In the original proposal, the oscil- 

lator provided the “basic four” waveforms (sawtooth, triangle, rectangle, 
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sine) to four locations in the signal memory, but the present low cost of 

memory would make a programmable waveform equally practical. Fixed 

controls for “octaves per unit" and zero offset would also be included, al- 

though they were not originally present. 

The mixer/controlled amplifier acts just like an analog VCA. Although 

the control computer is capable of generating slow contours for envelopes and 

so forth, a 16-way multiplexed contour generator with four different curve 

segment shapes is provided to relieve it of that function. Virtually any 

contour shape can be constructed from the linear, concave, convex, and “S$” 

curves available. 

The universal filter module consists of 16 general second order cannoni- 

cal digital filters in which each of the five multiplying factors is read from the 

control memory. Since the input and output of each filter communicates 

with the signal memory, they can be cascaded, paralleled, and even made 
into a filter bank spectrum analyzer by suitable setting of control words and 
signal memory addresses. The pseudo-DAC module simply serves as a 
method for the control computer to write directly into the signal memory. 

As might be expected, the system is performance limited by the two 
memories. Although the control memory is shown as a system-wide resource, 
in reality it is part of the individual modules. Only the control computer 

requires access to all of the control memory. Modules need only access the 
portion that holds their own control words. Control memory design, then, is 
equivalent to that employed in the multiplexed oscillators described earlier. 
Thus, the control memory does not limit performance as modules are added. 

The signal memory is a different story, however. Every module must be 
able to access any part of it at random. In fact, the total number of read 
accesses per sample period is equal to the total number of signal inputs in the 

system. Likewise, the number of write accesses per sample period is equal to 
the number of signal outputs in the system. The total number of words in the 
memory is also equal to the number of outputs. Thus, at first glance, N + M 
memory cycles must be performed in a sample period, where N is the number 
of inputs and M is the number of outputs. The proposed system had provi- 
sions for 288 inputs and 288 outputs. A straightforward time-multiplexed 
signal memory would need a cycle speed of 27 nsec to get all 576 accesses 
accomplished in a 16-jsec sample interval. 

The cycle rate can be nearly cuc in half if writing is performed in an 

orderly fashion. This is quite reasonable, since every word is written each 
sample period and write addresses are preassigned to the modules. In order to 
save time when writing, the memory array is organized such that several 
write ports are formed that can be written into simultaneously. In the 
proposed system, the signal memory consisted of 18 blocks of 16 words each. 
Only 16 write cycles were therefore necessary to update the entire memory. 
By using the block write, the number of memory accesses per 16pssec is cut 
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down to 304, which allows a 50-nsec read cycle and a 100-nsec write cycle; a 
practical figure for conventional logic. 

The number of signal inputs in the system is therefore limited by signal 
memory speed. The only way to ovetcome that limitation without sacrificing 
interconnection flexibility is to completely duplicate the memory so that two 
real read access ports are available. The same data would be written into the 
same addresses in both memories simultaneously. Reading would be inde- 
pendent with half of the modules reading from one memory, while the 
remainder read from the other half. The memory throughput capability 
would therefore be doubled. Memory splitting without duplication is also 

possible if a communication module is defined that can transfer selected signals 

from one-half of the system to the other. 

Signal-Processing Computer 

In spite of the flexibility of a modular digital synthesizer, nothing 
matches the generality of an ordinary computer in sound synthesis and 
modification. However, only the largest general-purpose computers ate fast 
enough for really significant real-time synthesis, not to mention their enor- 
mous cost. A specialized signal-processing computer, however, is less general 
than a standard computer but more general than the collection of hard-wired 
modules described earlier. The primary benefit of a signal-processing com- 
puter is that the computations, their sequencing, and their eventual disposi- 

tion can all be specified by programming. 

Speed is gained by taking advantage of repetition and using “mac- 
roinstructions,” both of which allow a high degree of parallelism and pipelin- 

ing. Speed is also enhanced by the virtual absence of conditional branch-type 
instructions, which normally bog down a pipelined machine. One simple 
type of macroinstruction can be represented by the expression A = A + B + 
CD, where A is an accumulator register and B, C, and D are variable 

operands. This single instruction replaces two adds, a multiply, and several 
data move instructions in a typical computer yet requires little if any extra 

hardware to implement because of the nature of multiplication. Such an 
instruction is useful in implementing digital filters and performing the fast 
Fourier transform. As a matter of fact, an instruction to perform the calcula- 

tions involved in evaluating an FFT node pair is well within the realm of 
practicality. Other macroinstructions might perform linear interpolation, 

maximum-value selection, or table lookup (including argument scaling and 
table origin offset), again with a single instruction. 

Repetition is denoted by arranging data in blocks and then executing a 

particular instruction on the entire block. In this manner, a long, highly 

efficient pipeline can be kept filled with data a high percentage of the time. 
For example, a parallel multiplier array can be pipelined by placing a set of 

registers between each level of 2 X 4 multiplier blocks. Although the overall 
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input-to-output delay is increased substantially, the throughput rate is in- 

creased dramatically. It is not unreasonable to obtain a new product every 40 

nsec with TTL logic. This is possible because in a nonpipelined parallel 
multiplier the top levels settle out first and become idle, while the lower 
levels continue to settle. Pipelining allows new data to be given to the top 

levels as soon as they settle. 
A special case of the signal-processing computer is the array processor. 

These are normally hard-wired or microprogrammed to perform a limited 

variety of operations on blocks of numbers at very high speed. Normally they 
are interfaced to a host computer as a direct memory access I/O device. In 
operation, one or more arrays of numbers are transferred to the array proces- 
sor followed by a sequence of operation commands. Often, these operations 
are at a very high level such as computation of the autocorrelation function, 
conversion of an array of complex numbers from polar form to rectangular 
form and vice versa, or even a complete FFT. It is not unusual for an array 
processor optimized for FFT computation to compute a 1,024-point FFT in 
15 msec using 16-bit arithmetic! Such a device can require an entire rack full 
of logic, however. 

Much sound synthesis computation can be effectively performed by an 
array processor. For example, one block of samples can be an audio signal, 
while a second block can be an amplitude envelope. An array multiplication 
(computes element-by-element product) operation will then recurn an array 
of enveloped samples. Transversal digital filtering is another array-oriented 

operation that can be performed efficiently on an array processor. 
Even with the tremendous speed improvement offered by signal- 

processing computers and array processors, there is no guarantee that real- 
time operation can be sustained during highly complex portions of the score. 
Nevertheless, such devices are very useful in composing a complex piece 
where subsets of the final score can be performed in real time. They are also 
valuable in the final run where what might be hours of computation is 
reduced to minutes. 

Digital Voice-Per-Board System 

The voice modular concept of synthesizer organization is also well 
suited co digital implementation. In general terms, a voice module is noth- 
ing more than a frequency generator, static waveshaper, optional dynamic 

waveshaper (variable filter), and amplitude controller connected in a series 

string as in Fig. 17-22, A one or more channel envelope generator controls 

the amplitude and dynamic waveshaper. A very wide variety of new and 
existing musical instruments can be simulated by suitable setting of 
parameters. 

We have seen how digital circuitry does an excellent job implementing 
the oscillator and static waveshaper and, when multiplexed sufficiently, does 
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Fig. 17-22. General voice module 

so at low cost. The dynamic waveshaper can be implemented via Fourier 

series (in which case the static waveshaper is not needed) or with a digital 

filter. The amplitude-control element is simply a multiplier, whereas en- 

velope generation can be done by the using system or a dedicated mi- 
croprocessor. 

When cost is an overriding factor, the Fourier series approach is out 
(remember that the entire unit diagrammed in Fig. 17-18 is just one voice). 
A digital filter and amplitude multiplier would only be practical in a highly 
multiplexed voice module and even then the hardware for such “simple” 
signal processing would dominate the module's cost, mainly because of the 
multiplications required. At this time, analog-variable filters and controlled 
amplifiers can do the job cheaper, while theit inaccuracies are not significant 
in this application. Thus, in a voice module, digital techniques are most 

effective for frequency- and static-waveform generation, while analog tech- 
niques are best for economical processing of the tone. 

When hybrid techniques are used in a voice module, multiplexing of 
the frequency generator and waveshaper becomes less attractive because the 
analog portion of the module cannot be multiplexed. In fact, most of the 
current work in this area is with nonmultiplexed “voice-per-board” modules 
that can be built, or purchased, one at a time as need (or budget) dictates. 

This does not mean that some logic functions cannot be profitably shared. 
The crystal frequency standard, for example, can be shared among modules as 

can the interface to the control computer. 

A Hybrid Voice Module 

Figure 17-23 is a block diagram of a hybrid voice module that is 

practical for an individual to build. Very little is present that has not been 
discussed in detail previously. The most interesting feature is a “floating- 
point” method of specifying the frequency parameter. The method allows a 
frequency resolution of better than 1 cent throughout the audio range with a 
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Fig, 17-23. Hybrid voice module 

single 15-bit parameter. The idea is to use the most significant 3 bits of the 
parameter to specify an octave ahd 12 additional bits to specify a frequency 

within the octave. 
The frequency and waveform generator utilizes variable-sample-rate 

techniques to minimize the size and resolution required in the waveform 
memory. Waveforms as coarse as 4-bit resolution and 16 steps have been 
successfully used in similar generators, and while a wide variety of timbres 
was available, waveforms of very low harmonic content are not really possi- 
ble. 

The frequency generator consists of an eight-stage prescaler followed by 
a 12-bit accumulator divider, which drives an 11-bit jitter filter and 
waveform address generator. The prescaler divides the 17. 145893-MHz mas- 
ter clock (=2!° times the frequency of middle C) by 2, 4, 8, . . . 256 under 
control of the 3-bit “exponent” in the frequency-control word. The ac- 
cumulator divider uses the 12-bit “fraction” of the control word to divide by 
values nominally between 1.0 and 2.0, although much higher division fac- 
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum. (A) 
Example waveform with no symmetry and spectrum. 

tors are possible with a loss in resolution. The first 2 bits of the postdivider 
function as jitter filter, while the remaining 9 bits participate in waveform 

table lookup. The highest fundamental frequency that can be generated is 33 
kHz, whereas the lowest frequency for full resolution is 65.4 Hz, although 
much lower frequencies are possible with less frequency resolution. 

The basic waveform generator is a 256-word x 8-bit read/write mem- 
ory. It may hold either four different 64-point waveforms, two 128-point 
waves, or a single 256-point waveform. To increase flexibility and partially 

overcome the small size of the waveform memory, particularly when the 
four-waveform mode is selected, symmetry logic has been added. Under the 
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum 
(cont.). (B) Waveform with even symmetry added and spectrum. 

control of a mode word, normal operation plus 4 degrees of symmetry can be 
imposed on the tabulated waveform without changing the memory contents. 
Figure 17—24 illustrates the symmetry options and their effect on the shape 
and harmonic spectrum of the tabulated wave. Option 1 is called even sym- 
metry and consists of alternately playing the waveform forward for a cycle and 
backward for a cycle. The audible effect is a tone with substantially the same 
timbre and brillance bur an octave lower in pitch. Odd symmetry is created 

when the waveform is alternately played right-side-up for a cycle and 
upside-down for a cycle. The resulting tone has the same degree of brilliance 
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum 
{cont.). (C) Waveform with odd symmetry added and spectrum. 

and other characteristics as the original but also has the distinctive hollow 
quality of odd order harmonics plus octave-lowered pitch. Even symmetry 

may be followed by odd symmetry, which gives a two-octave pitch reduc- 
tion, odd order harmonics, and a weird timbre reminiscent of balanced 
modulation or spectrum shifting. Finally, odd symmetry followed by even 
symmetry retains the two-octave drop but removes the hollow quality from 
the timbre. 

Fortunately, this kind of symmetry logic is quite simple. Even sym- 
metry is created by conditionally inverting the 8 address bits entering the 
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum 
(cont.). (D) Waveform with even symmetry followed by odd sym- 
metry and spectrum. 

waveform memory. On even scans though the waveform memory, the ad- 

dress bits pass unaltered, while on odd scans they are inverted by exclusive-or 
gates, thus addressing the table backward. Odd symmetry is similarly im- 
plemented by conditionally inverting the 8 data bits leaving the memory, 
which are assumed to be offset binary encoded. The most significant 2 bits of 
the postdivider in conjunction with the symmetry selection determines when 
address or data should be inverted. 

Figure 17-25 shows a logic schematic of the frequency generator and 
static waveform generator. The 17. 14-MHz frequency standard is sent to an 
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Fig. 17-24. Effect of symmetry logic on waveform and harmonic spectrum 
fcont.). (E) Waveform with odd symmetry followed by even sym- 
metry and spectrum. 

8-bit prescaler counter built with 74LS161 counters. The “LS” version is 
necessary because a timing anomaly of the standard 74161 prevents operation 

at high clock frequencies. An eight-input multiplexor (74151) selects one of 
the eight divided outputs under the control of three frequency control bits. 
The multiplexor output is strobed by a D-type flip-flop to suppress glitches 
when the frequency control register is changed. 

The prescaler output clocks both the accumulator and the postdivider. 
The latter is enabled to count only when the adder in the accumulator divider 
generates a carry output. Note that the frequency and mode control registers 
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are also clocked by the prescaler output. This prevents its content from 
changing at inopportune times and glitching the adders or waveform 
generator. Since the 74173 is a synchronous load register, it must be enabled 

by the control computer long enough to be loaded by the next clock pulse. 
Even with the largest prescaler division ratio selected, the lead delay is never 
more than 15 psec. 

Symmetry logic and waveform partitioning logic has been incorporated 
into a single 256-word X 4-bit programmable read-only memory. Three of 
the ROM address bits are the three most significant bits of the postdivider, 

whereas the remaining five address bits are the waveform mode control bits. 
Thus, one of 32 different waveform memory operating modes can be 
selected. This allows nearly all combinations of waveform table size (64, 128, 

or 256), waveform selection when the smaller sizes are used, and symmetry 

to be specified. Two of the ROM output bits control conditional com- 
plementers on the waveform memory, while the other two are the most 

Table 17-2. Waveform Memory Scan Control! PROM Pattern 

Mode Most significant accumulator bits? Mode 
Number’ O 1 2 3 4 5 6 7 description 

ie) oe 0 0 0 0 0 0 0 64 points, wave 1, no symmetry 
1 6 40 4 0 4 0 4 even symmetry 
2 0 8 0 8 0 8 QO 8 odd symmetry 
3 0 ¢ 8 40 6 8 4 odd-even symmetry 
4 0 4.8 © 0 4 8 CG even-odd symmetry 
5 1 1 1 1 1 1 1 a wave 2, no symmetry 
6 1 656 1 6 41 5&6 1 5 even symmetry 
7 1 £9 #1 9°44 9 1 9 odd symmetry 
8 1D9 5 ‘1 Dg 5 odd-even symmetry 
9 15 9 OD 1 5 9 DO even-odd symmetry 

10 2 2 2 2 2 2 2 2 wave 3, no symmetry 
1 2 6 2 6 2 6 2 6 even symmetry 
12 2 A 2 A 2 A 2 A odd symmetry 
13 2 E—E A 6 2 E A 6 odd-even symmetry 
14 2 6 A E 2 6 AE even-odd symmetry 
15 3°93 3 3 3 3 3 3 wave 4, no symmetry 
16 3 * 3 7 3 F 8 F even symmetry 
17 3 B 3 B 3 B 83 B odd symmetry 
18 3 F B 7 3 F B 7 odd-even symmetry 
19 3 7 B F 3 7 B F ever-odd symmetry 
20 CO) 1 0 1 ie) al ie) | 128 points, wave 1, na symmetry 

24 0 1 4 5 @ 1 4° § even symmetry 
22 0 1 8 $ G0 1-8 9 odd symmetry 
23 0 1 C¢ D 8 9 4 § odd-even symmetry 
24 o 1 4 5 8 8 € D even-odd symmetry 
25 2 3 2 3 2 3 2 3 wave 2, no symmetry 

26 2 3 6 7 23 6 7 even symmetry 
27 2 3 A B 2 3 A B odd symmetry 
28 2 3 E F A B. 6 7 odd-even symmetry 
29 2 5 6 7 A B E F even-odd symmetry 

30 o 1 2 3 0 1 2 8 256 points, wave 1, no symmetry 

31 0 1 2 3 4 5 6 7 even symmetry 

Notes: ‘Most significant § PROM address bits expressed in decimal. 
2Least significant 3 PROM address bits expressed in decimal. 
3PROM contents expressed in hexadecimal. 
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significant waveform memory address bits. The other six waveform memory 
address bits are taken directly from the postdivider. 

Although the exact ROM contents will depend on personal preference, 
Table 17-2 shows one possibility that works well. The chosen combinations 
of waveform size, symmetry, etc., are simply arranged sequentially and 
assigned mode numbers from 0 to 31, which corresponds to the 5-bit mode 
control input. The only omitted waveform combinations are odd, even—odd, 

and odd—even symmetry with 256-point waveforms. 
Final values from the waveform memory are sent directly to an inexpen- 

sive 8-bit DAC. From this point forward, the tone will be processed by the 

voltage-controlled analog circuitry in Fig. 17-26. The four control voleages 
required are generated by a 10 bit DAC that is multiplexed four ways using 
sample-and-hold circuits. Note that writing into the waveform memory will 
generate intolerable noise and therefore must be done while the amplitude is 
set to zero. This is one reason for multiple-waveform capability. 

One problem with all variable-sample-rate techniques is the need for a 
tracking antialias filter. Without the filter, low-frequency waveforms with 
little harmonic content will exhibit a “chime-like” effect due to the high 
alias frequencies that are unmasked by the absence of strong high-frequency 
harmonics (remember that with variable sample rate, the alias frequencies 

themselves are harmonic). The filtering requirement is simplified consid- 
erably by using one channel of the 10-bit multiplexed DAC to drive a 2050 
VCF IC connected as a two-section Butterworth filter. Although the filter 

control could be slaved to the frequency control word, the latter's floating 
point format complicates matters. Thus, for simplicity and maximum flexi- 
bility (one may want to under- or over-filter the waveform for special func- 
tions), the antialias filter is independently controlled. Utilization of the 
exponential tuning feature of the 2050 allows a 1,000-to-1 tuning range 
with a step size so small (0.79) it is inaudible. 

The dynamic waveshaping filter can take on many forms, but here the 
simple state-variable type is used. Two channels of the 10-bit multiplexed 
DAC are used to control center frequency and Q factor of the filter. Exponen- 
tial tuning of both parameters at the rate of 100 steps/octave retains better 

than 0.7% resolution over a 1,000-to-1 range. A 2-bit word and some analog 
switches select the filter's operating mode. 

A VCA built with a 3080 gain control element uses the remaining 

10-bit DAC channel to control amplitude in steps of 1/10 dB with a theoret- 
ical range of 100 dB. Note that any nonlinear distortion in the VCA results 
in pure harmonic distortion of the waveform, since only one tone is being 
handled. 

Interfacing to the control computer is not explicitly shown because of 
wide variations in computer types, word lengths, and personal bias. When 
updating the frequency control words, however, it is important that all 15 
bits change simultaneously. When using an 8-bit host, this requirement is 
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taken care of with an additional buffer register much like the vector graphics 

oscilloscope interface described in Chapter 11. Writing into the waveform 

memory and multiplexed DAC memory should conform with the timing 

requirements of the RAM chips used. 

Commercial Voice Modules 

Unlike the complete digital synthesizers discussed previously, digital 

voice-per-board modules are on the market now and are being sold in signift- 
cant numbers. Actually, these are hybrid modules much like the one just 

described but with different cost—flexibility-quality tradeoffs. One of the 

most popular units is one made by Solid State Music (the same company that 

developed the 2000 series of analog synthesizer ICs), which is a completely 
self-contained board that plugs into an S-100 bus computer. Another is made 
by ALF Products, which uses a proprietary bus for control. However, a 
sophisticated S-100 bus adapter is available. They also make a synthesizer 

mainframe that includes an intelligent (6502) interface usable with any kind 
of host. In either case, each board generates a single voice. Multiple boards 
are used for real-time polyphonic synthesis. 

Solid State Music SBI 

Looking more closely at the Solid State Music SB1 synthesizer board 
diagrammed in Fig. 17—27, it is seen to resemble the unit just described but 
at a somewhat more primitive level. An I/O interface IC is used to interface 
to the host computer bus with the advantage that all control parameters can 

be read back from the board. The frequency generator utilizes a 14.31818- 
MHz (four times the color TV subcarrier frequency) precision clock, which is 
fed to an 8-bit divide-by-N divider. The output of the divider enters an 8-bit 
divide-by-256 counter, which, when combined with a nine-input octave 
selector, implements division by 1, 2, 4, .. . 256. A 12-bic frequency 

control word is thus needed to control the output, which is 32 times the 
ultimate frequency. Unfortunately, the resolution of the 8-bit divide-by-N 
block is about 0.8% or around 12 cents; an error that critical listeners can 

easily hear, particularly in chords. 

The static waveform generator consists of an additional 5-bit counter 
driven by the frequency generator, which in turn addresses a 32-point section 

of the 256 X 8 waveform memory. Eight different waveforms can therefore 
be stored in the waveform memory. The memory output then drives an 8-bit 
DAC for the final waveform. No antialias filter is provided, so use is re- 
stricted to relatively bright timbres unless the fundamental frequency is high 

(500 Hz) or a chime-like effect can be tolerated at low frequencies. 
A different approach to dynamic waveshaping is utilized in the SB1. 

An on-board envelope generator also sequences through four of the eight 
stored waveforms. Thus, a rough approximation of dynamic waveform varia- 
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Fig. 17-27. Solid-state music SB1 simplified block diagram 

tion is implemented. One drawback of this approach, even with considerably 

more intermediate waveforms, is discontinuities when switching from one 

waveform to another. Nevertheless, it is an appropriate technique for accom- 

paniment voices. Amplitude control is by two VCAs connected in series. 

One is used for enveloping the tone, while the other is an overall volume 
control. Each is driven by a 4-bit DAC giving coarse but usually acceptable 
amplitude control. 

One nice feature of the board is the built-in programmable envelope 
generator. The amplitude envelope shape is actually written into a 16-word 

X 4-bit “waveform” memory, which allows arbitrary envelope shapes to be 
specified. A 4-bit counter driven by a 4-bit divide-by-N block driven by a 
200-Hz (trimpot adjustable) oscillator scans the envelope memory. The pro- 
grammable divider is used to control the envelope duration. Each four counts 
of the envelope scan counter also selects a different waveform, 
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Fig. 17-28. ALF Products AD8 simplified block diagram 

ALF Products AD8 

Figure 17-28 is a block diagram of the AD8 synthesizer board from 
ALF products. The frequency generator utilizes a top octave divider, which is 
actually located on the system interface board and shared among voice mod- 
ules. A 4-bit code chen selects one of 12-note frequencies, while another 
4-bit code selects one of 7 octaves. Although the frequencies are very accurate 

for the 12-tone equal-tempered scale, flexibility to use other tuning systems, 
“bend” a note, or do glides is completely absent (although four “external 
reference” inputs allow external oscillators to perform these functions). One 
unique feature of the frequency generator is the inclusion of a frequency 
multiplier using a PLL, which partially offsets frequency division in the 
waveform generator. 

The waveform generator utilizes a single 128-point X 8-bit waveform 
memory. Following the 8-bir DAC, a programmable low-pass filter at- 
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tenuates alias frequencies. A 4-bit value selects one of 16 possible cutoff 
frequencies. There is no provision for dynamic waveshaping. 

An unusually sophisticated hybrid envelope generator is provided. Four 
8-bit values select attack rate (decibels per millisecond), decay/release rate, 
sustain amplitude, and overall amplitude. A sequential digital circuit and an 
analog integrator are used to approximate the standard ADSR envelope. 

In spite of their limitations, very listenable music can be synthesized in 
real time if a sufficient quantity of either type of board (four to eight or more) 
is available. At an average cost of $250 each, a large system can become an 
expensive proposition, although the cost compares favorably with large elec- 
tronic organs, which such a system emulates quite well. A complete setup for 

general music synthesis requires percussion instruments as well, but the 
author is not aware of any percussion voice boards being on the market. 



IB 
Music Synthesis 

Software 

With few exceptions, the entire discussion up to this point has concentrated 

on hardware-related items, both digital and analog. The key to a successful 

computer music system, particularly one utilizing direct synthesis tech- 
niques, however, is efficient and easy to use software. Actually in the final 

analysis, software is the real frontier in computer music tegardless of the 
sound generation technique utilized. Little of the preceding hardware discus- 
sion can be considered “new” and almost certainly none of it is revolutionary. 
On the other hand, any given programmer with a suitable knowledge of 
music and synthesis techniques can create a music-oriented programming 
system significantly different from others that have been done and may 
possibly stage a software breakthrough. This is as ic should be, since, after 
all, the general-purpose computer was conceived as a finite hardware device 
with infinite application possibilities through programming. 

Computer music “systems,” where a system is the combination of 

musical I/O hardware with software “glue,” can be separated into two easily 
distinguishable groups. The first group covers systems designed for real-time 
performance directly from manual input devices such as keyboards and 
source-signal analysis. The second group covers “programmed” performance, 

either real-time or not, in which the sounds are carefully specified prior to 
the actual synthesis. While the former type of system has not been empha- 

sized in this text, it is of interest to a great many people. In terms of 
software, however, such systems tend to be specialized for particular combi- 

nations of input devices and synthesis techniques. The second type of system 
tends to be much more general. Often, these develop along classic software 
system lines with the concepts of tasks, events, macros, supervisors, and 

languages being integral parts. 
In this chapter, programming techniques for the programmed perform- 

ance type of system will be discussed. In addition, the anatomy of a simplis- 
tic but expandable music software system will be described. It is immaterial 
whether the synthesis is performed in real time or not, since the “score” is 
definitely prepared outside of real time. In most cases, nonreal-time direct 
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synthesis will be assumed because it is more general and, in most respects, 
more difficult than real-time performance using external synthesis hardware. 

Organization of Music Software Systems 

Like most nontrivial software systems, a music synthesis software sys- 
tem is organized into a hierarchy of programs and functions. Figure 18-1 
illustrates chat at least five distinct levels can be identified ranging from the 

lowest level sample-by-sample computations to the highest level operating 
system functions. The levels are distinguished by the time scale at which 
they operate. The lower levels operate in the micro- and millisecond terms of 
individual waveform and envelope samples, while the higher levels operate 
on the scale of seconds associated with notes and phrases in the musical 
performance. Information flow is generally from the higher levels to the 

lower levels, although in some cases signaling in the opposite direction may 
be done. 

Fig. 18-1. Music software system hierarchy 
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Often, each level is served by a distinct program or set of subroutines 
and in fact the programming languages used may vary from level to level. 
Over all a music synthesis software system for programmed performance 
operates as an svterpretive system that extracts information from the uset- 
prepared score and then acts on the information, The higher levels do the 
information extraction and organization, while the lower levels do the actual 

execution, 

The lowest level synthesis routines, which will be called “Level 1” 
routines, operate at the sample rate of the final sound. This means that a 

single “loop” through the synthesis routine generates only one sample of the 

final sound. Basically, the routine accepts sound parameters as input and 
generates sound samples as output. The output samples may be mixed with 
the output of other Level 1 routines or the same routine with different 
parameters. Details of the routine, of course, depend heavily on the synthesis 
method chosen. If waveform table lookup is the primary scheme utilized, 
then each loop involves the computation of a new lookup address based on a 
frequency parameter, actual table lookup based on a waveshape parameter, 
amplitude adjustment based on an amplitude parameter, and output based 
on a location parameter. 

Usually, a Level 1 synthesis routine will generate a “block” of samples 

before returning to the next higher level. This saves most of the considerable 
overhead associated with call and return linkage and the passing of param- 
eters. In the hierarchical system being outlined, the parameters of the 

sound being synthesized are assumed to be constant throughout the block. 
Often, a sample buffer is used to hold one or more blocks of samples. As 
samples are computed, they are algebraically added to corresponding samples 
in the buffer in a manner analogous to the audio bus of an analog voice 
modular system. If stereo or quad is being synthesized, there will be a 
distinct buffer for each channel of sound. 

In some cases, there may be a “Level 0” routine that processes sound 

samples from the buffer before playing them through the DAC or writing 
them on a storage device. The usual function of such a routine is the addition 
of reverberation or a chorus effect to the sound. Parameters from the upper 

levels are often required to control the effects produced, particularly when 
they are used in a piece for dramatic contrast. 

Level 2 routines operate at what can be called the “envelope sample 

rate.” This is the rate at which the fundamental parameters needed by the 
Level 1 routines are updated and is equal to the audio sample rate divided by 
their block size. Rates of 50 Hz to 2,000 Hz are useful, which corresponds to 

update periods of 0.5 msec to 20 msec. Level 2 routines accept envelope 
parameters from the higher levels and supply sound parameters to the Level 1 
routines. Envelope parameter descriptions vary widely, however, and a typi- 
cal system may use different Level 2 routines simultaneously according to 
envelope type and description. 
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For example, amplitude envelope needs are often satisfied by the ADSR 

shape, which can be completely described by five parameters. It is the 

responsibility of a Level 2 routine to generate samples of the shape as needed, 

given the parameters, and then pass these samples as parameters to the Level 

l routines. A different Level 2 routine may produce arbitrary contour shapes 

using a piecewise linear or curvilinear approximation. With such approxima- 

tions, the higher-level routine specifies segment endpoints, the amount of 
time spanned by the segment, and the segment shape (linear, concave, 

convex, etc.). Yet another might interpolate between tabulated samples of a 
shape that could be the result of a source-signal analysis, for example. 

Level 3 routines comprise the bulk of the coding in the system. Their 
job is to accept music language statements, which are character strings, 

extract the information contained in them (or flag an error if the statement is 
incomprehensible), and supply parameters to Levels 1 and 2 routines. It is 
also responsible for setting up waveform and envelope shape tables, if used, 
in response to voicing statements in the score. It is hard to pin down the 

exact rate of execution for a Level 3 routine, but it is generally at the rate that 

notes are played. This is often called the “syllabic rate” from the correspond- 
ing level in the hierarchy of routines that comprise a typical speech synthesis 

system. 
Level 4 programming is a superset of Level 3. In most music, there is a 

considerable amount of repetition that when added to the many conventions 
of standard music notation results in a conventional score much shorter than 

the corresponding computer score expressed as character strings. The concept 
of macroinstructions is useful in taking advantage of these properties of the 
score to reduce its size. Basically, a macroinstruction is a command to the 

macroexpander (the Level 4 routine under consideration) to convert a state- 

ment such as “repeat the following three-note sequence eight times’ into 
eight repetitions of the three-note statement, which are then interpreted by 
the Level 3 routine just as if the user had written the sequence eight times 

himself. Most macroexpanders allow loops, conditional tests, counters, and 
procedure calls (subroutines), suggesting their use as a composition tool as 
well. 

Even though they are not really part of the music software system, 
operating system functions on Level 5 have been included for completeness. 
These are the routines that allow the user to prepare and edit the score file, 
link and load the music system programs into memory, and control the 

reading of the score file and writing of the sample file in a non-real-time 
system. Depending on the installation, the operating system may range from 
a paper tape editor and loader to a full disk operating system. In a loosely 

structured music software system, the operating system is vital in its role of 
maintaining the data base. 

Implementation of the Levels 

Current thinking in computer science dictates that each of these levels 
be independently implemented as a separate program and linked together 
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only for execution. In fact, each level should probably be broken down 
further into many subroutines. While this book is not the place to discuss 
modular and structured programming practices, it is clear that the major 
levels need not all be coded in the same programming language. In fact, the 
optimum balance between programming effort and music program speed 
requires that different languages be used on different levels. 

There is a little question that Levels 0 and 1 should be implemented in 
assembly language for the machine being used. The reason, of course, is that 
they execute at the sound sample rate of 8 kHz to 50 kHz. Furthermore, for 

almost any personal computer, fixed-point (integer) arithmetic must be used 
for the sample calculations. Most programmers are unfamiliar with the fine 
points of fixed-point computation, having been spoiled by the floating-point 
capabilities of large mainframe computers or high-level languages. Since 
integer computation is vital to acceptable speed with microcomputers, it will 
be discussed in detail later. 

In isolated instances, the lower-level routines have actually been im- 

plemented in the microcode of a microprogrammed minicomputer. This essen- 
tially means that new instructions are added to the computer’s repertoire that 

facilitate sample computation. What is actually happening is that the inter- 

nal machine registers and logical elements are being directly manipulated 
by the microcode at maximum speed without the overhead of reading in- 
structions from main memory. Although two to three times faster, 
microprogramming is even more obscure and difficult than assembly pro- 

gramming. Also, only the larger minicomputers allow user microprogram- 

ming anyway. 

Dedicated hardware such as was discussed in the previous chapter can 
be thought of as replacing Level 1 routines. If the dedicated hardware is 

intelligent, Level 2 may also be replaced. In computer-controlled analog 

systems, voltage-contralled oscillators, amplifiers, and filters perform the 

functions of Level 1 routines, while envelope generators do the Level 2 
functions. 

High-Level Languages 

Level 3 routines are best implemented in a higher-level language, 
particularly in a non-real-time system. This level of the music system typi- 

cally handles a relatively small volume of data but does a lot of character 
string scanning, data table maintenance, and decision making. Thus, only a 

small portion of the computational effort is spent in these routines, while a 
large portion of the programming effort is sunk into them, High-level 
languages tend to minimize the programming effort required while simulta- 

neously making the programs easier to read and modify (if adequately com- 
mented). High-level languages for microcomputer systems almost invariably 

have features chat make it easy to link to assembly level routines. 
The natural question, of course, is: Which high-level language should 

be used in the upper levels of a music software system? Like microprocessor 



598 MUSICAL APPLICATIONS OF MICROPROCESSORS 

selection itself, language preference tends to be more a matter of personal 
experience (and raste) than scientific weighing of virtues and drawbacks. The 

following, therefore, amounts to nothing more than a summary of the au- 

thor’s biases, which, hopefully, are shared by a majority of readers. 
The primary virtue of BASIC, of course, is its nearly universal im- 

plementation on microcomputer systems. Drawbacks are many but most 
serious are the lack of a true subroutine capability and a restricted variable- 
naming convention. Its formal mechanism for linking to assembly language 

leaves much to be desired, although tricks for enhancing it abound. These 
shortcomings make writing and implementation of large programs in BASIC 
more difficult than necessary. Nevertheless, BASIC is excellent for getting 
started, and after all, has been used in programming examples so far. 

FORTRAN is the grandaddy of programming languages and is now 
available on some microcomputers. For musical purposes, it is very similar to 

BASIC but with subroutine and naming restrictions removed. It is, however, 
somewhat weaker in the handling of character string data than BASIC is. 
Since FORTRAN is compiled, it is faster than a BASIC program, which is 
usually interpreted. The best-known direct computer synthesis program, 
MUSIC V, is implemented in FORTRAN but is far too big and dependent 
on a big mainframe operating system to run on a microcomputer without 

extensive modification. FORTRAN would be a good choice for someone 
already familiar with it but should probably be bypassed by newcomers in 
favor of a more “modern” language. 

COBOL, the most widely used big-computer language, is unsuitable 
for a music software system. 

APL may be available on some microcomputers. While it is an excel- 
lent problem-solving language for those adept in its use, it is an extremely 
self-contained, “isolationist” language. This means that communication 

with the operating system, assembly language programs, and data files is 
poor or nonexistent. While not suitable for a music performance system, it 
may be useful in exploring computer composition techniques. 

The remaining are called “block-structured” languages because of the 
way that statements are grouped together and the mechanism for variable 
storage allocation. “System programming” languages such as PL/M are mid- 
way between assembly languages and other high-level languages. As such, 
they are easier to use than assembly language but are still too closely tied to 
the machine for maximum ease of use and good portability. 

PASCAL is a new high-level language that is gaining popularity among 
microcomputer users, primarily through the efforts of the University of 
Southern California at San Diego (USCSD). It is fairly conventional in appear- 
ance but satisfies programming purists because of its structured properties. 
Linkage to assembly language is well provided for through the same “call” 
mechanism used for PASCAL subroutines. The linking loader that is part of a 
PASCAL system insures that the assembly language subroutine has access to 
PASCAL variables and vice versa. This language is highly recommended for 
implementation of the higher levels of a music programming system. 
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C is another new language that seems to be gaining followers. It is 
curtently implemented on the LSI-11 and to a lesser extent (“Tiny” C) on 

other microprocessors. Its main distinguishing feature is a somewhat cryptic, 

although compact, syntax, which may make an inadequately commented 
program difficult to comprehend. 

One programming language property that is taking on increasing sig- 

nificance is portability. Ac the current rate of microprocessor evolution, it is 
quite likely that the computer being used will become obsolete in the course 
of music system development (this has happened twice to the author and 
threatens to happen again). Parts of the system implemented in a high-level 

language should be easily transportable to a new system if required. PASCAL 
promises to be very good in this respect. Although the low-level assembly 
language routines are not portable, they can usually be kept small, thus 
minimizing the effort needed to reimplement them on different hardware. 

Low-Level Programming Techniques 

Because they are executed so much, low-level sample computation 

routines completely dominate the speed characteristics of a direct computer 
synthesis system. Arithmetic operations in turn dominate the execution time 

of these low-level routines, particularly on a microcomputer. This is in stark 

contrast with most general-purpose assembly level programming in which 
arithmetic instructions are among the /east used. Unless the reader has an 

IBM 370 or other large mainframe computer handy, it is a sure bet that these 

arithmetic operations will be of the fixed-point variety. The techniques of 
fixed-point computation are rapidly becoming an obscure art, however. In 
the next few pages these will be described to the depth necessary for use in 
digital signal-processing applications. Reasonable familiarity with the binary 
number system will be assumed. If the reader lacks such knowledge, intro- 

ductory chapters of nearly any book on microprocessor programming can 

provide the background. 
Adequately illustrating such a discussion requires an example mi- 

ccoprocessor. Although Chapter 5 strongly suggested that the LSI-11 or 
other 16-bit machine should be used for direct synthesis applications, we will 

be using the 6502 microprocessor here for illustration. Such a choice can be 
rationalized! in a couple of ways. First, programming just about any other 
choice would be easier, since the 6502 does not have hardware multiply or 
divide or even double byte add and subtract. Thus, understanding the given 
examples implemented on a 6502 will make similar implementation on a 
better machine seem simple in comparison. Another reason is that the 6502 
is the basis of a great number of very inexpensive microcomputer systems. 
Examples are the minimal KIM-1, SYM-1, and AIM-65 single-board com- 

puters priced between $180 and $375, Commodore PET complete system for 
$800, and APPLE-II color graphics system for around $1,000. 

'The eruth is the author's LSI-11-based system is not yet “up and running.” 
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The examples would not be very interesting unless actual synthesis and 

analysis experiments can be performed. Fortunately, direct synthesis support 

for 6502-based systems is provided by a company called Micro Technology 

Unlimited. These people have available an “8-bit Audio System” board 

consisting of an 8-bit DAC (adjusted to better than one-quarter LSB linear- 

ity), sharp 3.5-kHz low-pass filter (three-section 0.5-dB Chebyshev), and a 

half-watt audio power amplifier, all of which runs on a single 5-V power 

supply and costs less than $50. An ADC subsystem with microphone pre- 

amp, low-pass filter, sample-and-hold amplifier, and 8-bit 15-usec ADC is 

also available for somewhat more. While these items are definitely not hi-fi, 

they are indeed capable of illustrating all of the synthesis, modification, and 

analysis techniques described in previous chapters. Most experimentation 

will require a large memory buffer co hold a few seconds of sampled sound (or 
external mass storage device), although some real-time operations are possi- 

ble. A 32K memory, for example, will hold about 3.5 sec of sound at the 
sample rate for which these boards were designed. 

Properties of Binary Arithmetic 

Before plunging into programming examples, it is wise to review the 
characteristics of binary arithmetic that are important to signal processing. 
We will be dealing with two fundamentally different kinds of numbers, 
Signed twos-complement numbers and znsigned numbers. In an unsigned 
number, the weight of each bit is two raised to the bit number power. Thus, 

a single byte in the 6502 can represent any number from 0 through +255. 
Unsigned numbers are therefore always positive. In programming, they are 

normally used to represent addresses but in signal processing they are most 
useful as multiplying coefficients in digital filters, etc. Besides doubled 
dynamic range compared with signed numbers, the use of unsigned numbers 
simplifies the associated multiplications. 

Signed twos-complement numbers are probably more familiar to most 
readers. The bit weights are the same as in unsigned numbers except that bit 
7 (the leftmost) has a weight of —128. The number is negative only if this 
bic is a 1; thus, it is called the sign bit. The remaining bits are called 
magnitude bits, although it must be remembered thar they have been com- 

plemented in the case of a negative number. A signed single-byte number 
can therefore represent quantities be-ween —128 and +127. In signal proc- 
essing, signed numbers are used to represent audio signal samples that 
invariably swing positive and negative. 

A signed twos-complement number can be xegated, that is, N converted 
to —N or —N converted to N, by complementing every bit in che number 

and then incrementing the result by one. This will not work for the number 
~ 128, however, because the increment operation overflows and the result 

becomes — 128 again. Since negation will be required often in signal process- 
ing, mere existence of the largest negative number in a sample stream may 
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cause an overflow that gives rise to a full-amplitude noise spike. Avuidance of 
such overflows usually requires an extra bit of precision in the numbers that 

may propagate when calculations are chained togethet. Thus, it is wise to 
prevent the occurrence of the largest negative number in synthesized samples 
and to search and correct ADC data by converting any —128s to —127 
(which amounts to slight clipping rather than a full-scale noise spike) or the 
equivalent when other word lengths are used. 

Fixed-point arithmetic is often equated with integer arithmetic because 
memory addresses are usually involved. In signal processing, fractions and 
mixed numbers are more common. There are at least two ways to think about 

such numbers. One involves the concept of a scale factor. The numbers 
being manipulated are considered to be the product of the actual quan- 
tity and a scale factor that the programmer keeps track of. The scale factor is 
chosen so that when it multiplies the numbers being handled, the results are 
pure integers, which are “compatible” with integer arithmetic. In the course 

of a chained calculation, the scale factors change so as to maintain the largest 

range of integers possible without overflowing the chosen word lengths. 

The other method, which will be used here, involves the concept of a 

binary point. The function, meaning, and consequences of binary-point posi- 
tion are the same as they are with decimal points and decimal arithmetic. 
The microcomputer can be likened to an old mechanical calculator or a slide 
rule in which raw numbers are fed in and raw answers come out. It is the 
operator's responsibility to place the decimal point. Binary integers have the 

binary point to the right of the magnitude bits: Binary fractions have the 
binary point to the left of the magnitude bits. For unsigned numbers, this 
means to the left of a// bits, while signed numbers have the point between 
the sign bit and the rest of the bits. Mixed numbers can have the binary point 
anywhere in between. 

A good way to think of mixed binary numbers is to consider their 
resolution, which is the weight of the least significant bit, and their range, 

which is the largest number that can be represented. We will also be refer- 
ring to their integer part, which is the string of bits to the left of the point, 
and their fractional part, which is the string to the right. Thus, a signed 
number with the binary point between bits 3 and 4 as illustrated in Fig. 
18-2 has a resolution of 1/16 or 0.0625 and a range of 715/16 or 7.9375 
(which can be called 8 for convenience). The integer part is bits 4—G and the 

fractional part is bits 0-3. Integers, of course, have a resolution of unity and 
a range dependent on word size, while fractions have a range just shore of 

unity and a resolution determined by word size. 
The last property of binary numbers is word size or simply the number 

of bits allocated to the representation of the number. Arithmetic word sizes 
are usually chosen to be integer multiples of the computer's word size, or in 

the case of a sophisticated machine, a multiple of the smallest directly 
addressable data element, usually an 8-bit byte. When the word size of a 
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-27 28 2 24 23 22 a 20 

SIGNED INTEGER [es] 64 | 32 IE | a] 4 | 2 | | 

7 6 5 4 3 2@ ft 90 
1 1 0 0 J Oo ol |. 53. 

= 2 gf © gt pe? 23 e* 

SIGNED MIXED NUMBER [-8 | 412 | ' | va] \/8 [vs | 

7 6 & @ 3 2@ Tf OO 
1 1 06 O 1 0 1 1 =~3.3125 

SIGNED FRACTION 72 \/8 | 16 | 1/32 

7 6 5S 4 3 2 
bok 3g 1 0 = —0.4140625 

Fig. 18-2. Binary point placement 

number is greater than the word size of the machine, the number is said to be 

a double-precision or multiple-precision number. Thus, with the 6502 example 
machine, 16-bic numbers are double-precision quantities, 24 bits is triple- 
precision, etc. 

Before the advent of microprocessors, visualization of multiple preci- 
sion numbers on paper and in memory was a simple, unambiguous task. A 
double-precision number, for example, would be visualized as consisting of a 
high order, more significant part and a low order, less significant part. When 
written on paper, it is natural and even necessary to write the high order part 

to the left of the low order part. If one listed a portion of memory containing 
the number, it would be reasonable to expect it to look the same as it did on 
the notepad. However, many of the most popular microprocessors (6502 
included) handle double-precision unsigned numbers (namely memory ad- 
dresses) /ow byte first! Thus, the address byces of instructions and indirect 

address pointers all appear on a memory dump backward. Furthermore, since 
address arithmetic is done one byte at a time, the programmer must be aware 
of this to get these operations done right. 

The question, then, is: Should 2// numbers be stored and manipulated 

backward or just addresses? The author has tried it both ways and found 
neither to be completely satisfactory on the 6502. However, in signal- 
processing work, it is recommended that all numbers except addresses be 
scored in natural order. One reason is that data arithmetic will predominate, 

which means that confusion will be only partial rather than tocal. The other 
reason is that more powerful 16 and even pseudo-32-bit microcomputers will 
eventually eliminate the problem by directly handling the word sizes of 
interest—in natural order. 
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Addition and Subtraction 

Ac this point, we are ready co discuss the effect of arithmetic operations 
on the various kinds of numbers. We will be discussing the four fundamental 
arithmetic operations (addition, subtraction, multiplication, and division) 
and their effect on the word size and binary point placement in the result. 
Rules governing mixed operands such as signed/unsigned and different word 
sizes will also be discussed. 

Addition is the most fundamental operation and is usually considered 
the simplest. The operands of an addition are not distinguished from each 
other and are simply called addends. The following is a summary of the rules 
of binary addition of signed numbers: 

1. The binary points of the addends must line up before addition unless 
scaling (multiplying or dividing by a power of 2) of one addend is 
specifically desired. 

2. The range of the result can be up to twice as large as that of the widest 
range addend (one extra bit added to the integer part) and the resolu- 
tion of the result is equal to that of the highest resolution addend (no 
change in the fractional part). 

In heeding the first rule, it may be necessary to shift one of the addends 
with respect to the other. When shifting left, zeroes should be brought in 
from the right. When shifting right, bits equal to the sign bic must be 
brought in. Adding entire bytes to the left of a short number so that it can be 
added to a long number is essentially equivalent to shifting right so these 
bytes must be filled with sign bits. If an unsigned number is to be added to a 
signed number, it is usually necessary to provide a high order extension of 
the signed number because of the greater range of the unsigned number. 

Rule 2 simply says that to avoid overflow when unknown numbers are 
added up, it is necessary to allow for sums larger than the addends. When a 
string of equal-length numbers is being added, the word size of the final sum 

will not exceed logeN more bits than the word sizes of the addends, where N 
is the number of numbers added. If it is known that the addends do not cover 

the full range allowed by their word size, then the word size allowed for the 

sum may be less than that given by the rule. 
The usable resolution of the sum may be less than the resolution given 

by Rule 2. If the addend with less resolution is an audio signal or other 

“approximate”’ value, the usable resolution of the result cannot be any greater 
because of quantization noise. 

In subtraction, there is a distinction between the operands. When done 
on paper, the top number is called the minuend and the number being 
subtracted is called the subtrahend. Twos-complement subtraction is gener- 
ally accomplished by negating the subtrahend and adding the result to the 
minuend. This may be done either by a hardware subtract instruction or by 
actually complementing the subtrahend and adding. Since signed operands 
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were assumed for addition anyway, the properties and rules for subtraction 

are the same as for addition. 
Often, such as in digital filters, a quantity of numbers that partially 

cancel each other may be added up. A property of twos-complement arithme- 

tic is that the order of addition/subtraction is immaterial. This is true even if 

intermediate sums overflow! This is a handy property to keep in mind 

because it may allow the word size of intermediate results to be the same as 

the addends. 

Multiplication 

The rules of binary multiplication are quite different from addition and 

subtraction. In particular, there is none governing location of the binary 

points of the operands. Those governing the range and resolution of the 

result are as follows: 

1. The range of the result is the product of the ranges of the operands. 
This means that the number of magnitude bits in the integer part of 
the product is the swm of the number of magnitude bits in the integer 

parts of the operands. 
2. The resolution of the result is the product of the resolutions of the 

operands. This means that the number of fraction bits in the product is 
the sum of the number of fraction bits in the operands. 

From the foregoing we can conclude that if the operands are of equal 
length, the result length is twice as great. Actually, it is one bit shorter when 
both operands are signed (provided that Jargest negative numbers are 
avoided). It is also easy to see that when both operands are fractions that the 
range of the result is unchanged, although the resolution is increased. Thus, 
fractional arithmetic is attractive because a chain of multiplications will not 

increase the range of numbers to be handled. Note that, if both operands are 
signed binary fractions, the binary point in the result wil] be two positions to 
the right of the sign bit of the result, that is, the sign bit will be duplicated. 

Thus, one would normally shift the double-length fractional product left one 
position before using it. 

One may be tempted to conclude that the excess resolution that may 
result can always he discarded without any loss of significant data. This is not 

generally true if one of the factors is small. S/N ratio will be lost if the excess 
resolution is discarded in such a situation, but the absolute noise level 

telative to full scale will remain constant. Ideally, multiplication and other 

arithmetic operations are done with word lengths longer than the initial 
input samples or final output samples in order to eliminate “computational 
noise” from the results. Of course, this must be tempered by a possible 
increase in computation time, particularly when using machines like the 
6502. 
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Division 

Division is by far the mest difficult fixed-point arithmetic operation to 
control. Fortunately, it is not needed very often in signal-processing work 
and in many of the remaining cases it can still be eliminated. Division 
operands must be carefully distinguished. The numerator is called the divi- 
dend and the denominator is called the divisor. Like multiplication, there is 
no restriction on the position of the operands’ binary points, although there 

is definitely a practical restriction. Unlike multiplication, nothing concrete 
can be said in general about the range and resolution of a division result. This 
should be obvious, since division by very small numbers gives rise to a very 
large quotient, while for most operands there is no limit to how far the 
fractional part of the quotient can be carried. 

Fixed-point binary division is customarily done with a dividend word 
length precisely double the divisor word length. The quotient is restricted to 
a word length equal co the divisor. With these restrictions, the rules of 
binary division are as follows: 

1, The upper Aa/f of the dividend must be numerically smadler than the 
numerical value of the divisor to avoid overflow. 

2. The range of the quotient is equal to the range of the dividend divided 
by the range of the divisor. This means that the number of bits in the 
integer part of the quotient is equal to the number of integer bits in the 
dividend minus the number of integer bits in the divisor. 

3. The resolution of the quotient is equal to the resolution of the dividend 
divided by the resolution of the divisor. This means that the number of 
fraction bits in the quotient is equal to the number of fraction bits in 
the dividend minus the number of fraction bits in the divisor. 

Examination of these rules reveals that one just can’t win with division. 

For example, if both operands have the same word size and both are fractions, 

the one used for the dividend must be padded on the right by N zeroes, 
where N is the fraction size desired in the quotient. Thus, if the desired 
resolution is the same as the operands, the dividend must also be smaller than 
the divisor so that the range of the result is less than unity. The only way to 
cover all possible combinations (except a zero divisor) of two N-bit fractional 
operands without overflow or loss of resolution is to use a dividend 4N bits 

long and a divisor 2N bits long. The dividend used in the arithmetic opera- 
tion would be the actual N dividend bits padded on the left by N zeroes (or 
sign bits if signed) and padded on the right by 2N zeroes. The divisor would 
similarly be padded by N zeroes on the right. The 2N quotient bits then 
allow N range bits (N—1 for signed operands) and N resolution bits. Fortu- 
nately, when division is needed in signal processing (usually for computing a 

scale factor), the values of the operands will be known well enough to avoid 
trouble. 
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Required Arithmetic Instructions 

Regardless of whether hardware instructions are available or an arith- 
metic subroutine package is being used, there is a certain “complete set” of 
operations that is needed for straightforward signal-processing computation. 

Such a set is usually built around a particular word length. When hardware 

instructions are available, this is usually the machine's accumulator word 
length. Some of the operations produce or process double words, which then 
require a pair of registers to hold. In fact, classic single-accumulator comput- 
ers usually had an accumulator extension or multiplicr/quoticnt register, 

which was used to hold the low order half of double words. 
For illustrating a fixed-point arithmetic package with the 6502, a word 

length of 8 bits will be used for simplicity, although 16 bits would be more 
practical in high-quality synthesis. Since the 6502 has very few registers, two 
bytes are set aside in memory for a double-word accumulator. The other 
operand if single byte or its address if double byte is passed to the subroutine 
in a register. Following is a list of the arithmetic operations and the operand 
word lengths that would be expected in such a package: 

1. Double-word load accumulator 
2.Double-word store accumulator 

3.Double-word addition to accumulator 
4, Double-word subtraction from accumulator 
5.Double-word negation of accumulator 
6. Double-word left shifting of accumulator 
7.Double-word signed and unsigned right shifting of accumulator 
8.Unsigned multiplication 8 X 8=16 
9.Signed multiplication (uses unsigned multiplication as a subroutine) 

8 X B=15 

10. Unsigned division 16/8=8 
11. Signed division (uses unsigned division as a subroutine) 15/8=8 

Double-word addition is necessary for forming sums of products that will in 
general be double-word values. Shifting operations are needed for scaling. Of 
course, single-word addition, subtraction, negation, and shifting are also 
necessary. It is often helpful to have a “load with sign extend” operation, 
which is used to translate a single-word signed value into a double-wourd one. 
It is surprising how many computers, both micro and mini, that claim to 
have complete hardware arithmetic capability fail to include all of these 
necessary operations. 

A Fixed-Point Arithmetic Package 
for the 6502 

Here we will briefly describe the 8-bit arithmetic package for the 6502 
shown in Fig. 18-3. A pseudo-16-bit accumulator is assumed to exist in 
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MATHS 8 BIT MATH PACK 
8 BIT ARITHMETIC PACKAGE FOR THE 6502 

-PASE 'B BIT ARITHMETIC PACKAGE FOR THE 6502' 

ALL ROUTINES UTILIZE A 16 BIT PSEUDO ACCUMULATOR IN PAGE 0. 
ACCH IS THE HIGH BYTE AND ACCL IS THE LOW BYTE OF THE PSEUDO 

ROUTINES REQUIRING A DOUBLE BYTE SECOND OPERAND EXPECT X TO 
POINT TO THE HIGH BYTE OF THE OPERAND WHICH IS ASSUMED TO BE 

ROUTINES REQUIRING A SINGLE BYTE SECOND 
OPERAND EXPECT IT TO BE IN THE HARDWARE ACCUMULATOR. 
ALL ROUTINES PRESERVE X, THEY MAY DESTROY A AND Y. 

3 STORAGE AREA FOR ARITHMETIC PACKAGE 
3 PSEUDO ACCUMULATOR HIGH BYTE 

PSEUDO ACCUMULATOR LOW BYTE 
3 TEMPORARY STORAGE FOR UNSIGNED MPY/DIV 
3 TEMPORARY STORAGE FOR SIGNED MPY/DIV 

DOUBLE LOAD 
MOVE HIGH BYTE FROM ADDRESS IN X 
TO PSEUDO ACCUMULATOR 
MOVE LOW BYTE FROM ADDRESS IN X PLUS 1 
TO PSEUDO ACCUMULATOR 
RETURN 

DOUBLE STORE 
MOVE HIGH BYTE FROM PSEUDO ACCUMULATOR 
TO ADDRESS IN X 
MOVE LOW BYTE FROM PSEUDO ACCUMULATOR 
TO ADORESS IN X PLUS 1 
RETURN 

DOUBLE ADD 
ADD LOW PART OF PSEUDO ACCUMULATOR 
TO LOW BYTE POINTED TO BY X+1 

AND PUT RESULT IN PSEUDO ACCUMULATOR 
ADD HIGH PART OF PSEUDO ACCUMULATOR TO 
HIGH BYTE POINTED TO BY X 
USING CARRY FROM LOW PARTS 
RETURN 

DOUBLE SUBTRACT 
SUBTRACT LOW BYTE POINTED TO BY X 
FROM LOW PART OF PSEUDO ACCUMULATOR 

AND PUT RESULT IN PSEUDO ACCUMULATOR 
SUBTRACT HIGH BYTE POINTED TO BY X 
FROM HIGH PART OF PSEUDO ACCUMULATOR 
USING BORROW FROM LOWER PARTS 
RETURN 

3 3 ARITHMETIC PACKAGE FOR THE 6502 
4 3 
5 3 
§ 3 ACCUMULATOR. 

8 3 
ie = STORED ON PAGE ZERO. 

ll H 
12 
13 0000 = XE 3 
14 00€8 ACCH: 1=.4 1 3 
15 OQE9 ACCL: + 1 3 
16 QOEA TEMP1: .=.+ 1 z 
17 OGEB TEMP2:  .=.+ 1 3 
18 
3 OOEC = x'200 
2 3 
21 0200 8500 DLO: LDA 0,X ; 
22 0202 85E8 STA ACCH : 
23 0204 B501 LDA 1,X 3 
24 0206 85E9 STA ACCL ; 
25 0208 60 RTS 3 
26 
27 ; 
28 0209 ASES DST: LDA ACCH 3 
29 0208 9500 STA 0,X 3 
30 0200 ASE9 LDA ACCL 3 
31 O20F 9501 STA 1,X w 
32 0211 60 RTS 3 
33 
34 ; 
35 0212 ASE9 DADD: LDA ACCL 3 
36 0214 18 CLC 3 
37 0215 7501 Apc §1,X 
38 0217 85E9 STA ACCL 3 
39 0219 ASE8 LOA ACCH ; 
40 0218 7500 ADC 0,X 3 
41 021D 85E8 STA ACCH F 
42 021F 60 RTS 3 
43 
44 ; 
45 0220 ASE9 DSUB: LDA  ACCL 
46 0222 38 SEC 3 
47 0223 F501 SBC 1,X 
48 0225 8559 STA ACCL ; 
49 0227 ASE8 LDA ACCH 3 
50 0229 F500 sBc 0, X 3 
51 0228 85E8 STA ACCH 3 
52 022D 60 RTS 3 
§3 

Fig. 18-3. Signal-processing math package for the 6502 
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MATHB 8 BIT MATH PACK 
8 BIT ARITHMETIC PACKAGE FOR THE 6502 

92 0253 85EA UMULT: STA  TEMPL 
$3 0255 A900 UMULTO: LDA #0 

SAVE MULTIPLICAND 
ZERO UPPER PRODUCT 

$4 ; DOUBLE NEGATE 
55 O22E ASED ONEG: LDA ACCL ; COMPLEMENT LOW BYTE OF PSEUDO ACCUMULATOR 
56 0230 49FF EOR #X'FF 
57 0232 85E9 STA = ACCL 
58 0234 A5E8 LDA ACCH ; COMPLEMENT HIGH BYTE 
59 0236 49FF EOR  #X'FF 
60 0238 8558 STA ACCH 
61 023A E6E9 INC = ACCL 3 INCREMENT THE RESULT 
62 023C D002 BNE DNEGRT 
63 023E E6ES INC ACCH 
64 0240 60 DNEGRT: RTS 3 RETURN 
65 
66 3 DOUBLE SHIFT LEFT 
67 0241 O6E9 DSHL: ASL = ACCL ; SHIFT LOW BYTE LEFT AND PUT OVERFLOW BIT 
68 3 IN CARRY FLAG 
69 0243 2658 ROL ACCH 3 SHIFT HIGH BYTE LEFT BRINGING IN OVERFLOW 
70 3 BIT 
71 0245 60 RTS 3 RETURN 
72 
73 ; DOUBLE SHIFT RIGHT UNSIGNED 
74 0246 46E8 DSHR: LSR  ACCH 3 SHIFT HIGH BYTE RIGHT AND PUT UNDERFLOW 
75 3 BIT IN CARRY FLAG 
76 0248 66E9 ROR ACCL 3 SHIFT LOW BYTE RIGHT BRINGING IN 
77 3 UNDERFLOW BIT 
78 024A 60 RTS 3 RETURN 
79 
80 3 DOUBLE SHIFT RIGHT SIGNED 
81 024B ASE8 DSHRS: LDA ACCH 3 FIRST COPY THE SIGN BIT INTO THE CARRY 
82 024D 2A ROLA 3 FLAG 
83 O24E 66E8 ROR ACCH 3 THEN SHIFT HIGH BYTE RIGHT BRINGING IN 
84 0250 66£9 ROR = ACCL 3 COPY OF SIGN BIT AND CONTINUE AS ABOVE 
2 0252 60 RTS 3 RETURN 

87 3 UNSIGNED 8X8 MULTIPLY 
88 3 ENTER WITH MULTIPLICAND IN ACCUMULATOR 
89 3 ENTER WITH MULTIPLIER IN ACCL 
30 3 EXIT WITH DOUBLE LENGTH PRODUCT IN ACCH 
91 3 AND ACCL 

3 
94 0257 85E8 STA ACCH 
95 0259 A009 iby #9 3 SET CYCLE COUNT 
96 025B 18 CLC 3 INITIALLY CLEAR CARRY 
97 O25C 66E8 UMULTI: ROR  ACCH 3 SHIFT PSEUDO ACCUMULATOR RIGHT BRINGING 
98 O25E 66E9 ROR ACCL 3 IN ANY OVERFLOW FROM PREVIOUS ADD AND 
99 3 SHIFTING QUT NEXT MULTIPLIER BIT 

100 0260 88 DEY 3 DECREMENT CYCLE COUNT AND 
101 0261 FOOC BEG MULTRT 3 RETURN WHEN DONE 
102 0263 90F7 BCC UMULT1 3 SKIP ADDITION IF MULTIPLIER BIT WAS ZERO 
103 0265 AS5E8 LDA ACCH 3 ADD SAVED MULTIPLICAND TO UPPER BYTE 
104 0267 18 cLC 3 OF PSEUDO ACCUMULATOR 
108 0268 65EA ADC TEMP1 3 BEING CAREFUL TO PRESERVE ANY POSSIBLE 
106 026A 85E8 STA ACCH 3 CARRY OUT 
107 026C 4c5C02 dMP -UMULT1 3 GO SHIFT PSEUDO ACCUMULATOR 
108 026F 60 MULTRT: RTS 
109 

Fig. 18-3, Signal-processing math package for the 6502 (cont). 
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MATHS 8 BIT MATH PACK 
8 BIT ARITHMETIC PACKAGE FOR THE 6502 

110 3 UNSIGNED 16/8 DIVIDE 
111 3 ENTER WITH 16 BIT DIVIDEND IN ACCH,ACCL 
112 3 ENTER WITH DIVISOR IN REGISTER A 
113 3 RETURN WITH QUOTIENT IN ACCL 
114 3 RETURN WITH REMAINDER IN ACCH 
115 3 DIVISOR MUST BE LARGER THAN ACCH TO 
116 3 AVOID OVERFLOW 
117 0270 85EA UDIV: STA  TEMPL 3 SAVE DIVISOR 
118 0272 A008 LOY #8 3 SET CYCLE COUNT 
119 0274 06E9 ASL ACCL 3 SHIFT DIVIDEND LOW 
120 0276 2668 UDIV1: ROL ACCH 3 SHIFT DIVIDEND HIGH 
121 0278 BOOB BCS UDIV2 3 JUMP IF A 1 SHIFTED OUT OF DIVIDEND 
122 027A ASES LDA  ACCH 3 SUBTRACT DIVISOR FROM ACCH 
123 027C 38 SEC 
124 027D ESEA SBC TEMP1 
125 027F 9010 BCC UDI V4 3 JUMP TO SHIFT AND COUNT IF UNDERFLOW IS 
126 3 IMMENIENT, CARRY IS QUOTIENT BIT 
127 0281 8558 STA ACCH 3 STORE DIFFERENCE IF NO UNDERFLOW, CARRY 
128 3 FLAG IS QUOTIENT BIT 
129 0283 BOOC BCS uDIV4 3 GO TO SHIFT AND COUNT 
130 0285 A5E8 UDIV2: LDA  ACCH 3 SUBTRACT DIVISOR FROM ACCH 
131 0287 ESEA SBC -TEMP1 
132 0289 B005 BCS UDIV3 3 SKIP IF UNDERFLOW IMMENIENT 
133 0288 85£8 STA ACCH 3 STORE DIFFERENCE IF NO UNDERFLOW 
134 0280 38 SEC 3 QUOTIENT BIT IS A ONE 
135 028E BOOL BCS UDIV4 3 @ TO SHIFT AND COUNT 
136 0290 18 UDIV3: CLC 3 QUOTIENT BIT IS A ZERO 
137 0291 26€9 UDIV4: ROL ACCL 3 SHIFT DIVIDEND LOW PART 
138 0293 88 DEY ; COUNT ITERATIONS 
139 0294 DOEO BNE UDIV1 ; LOOP IF NOT DONE 
140° 0296 60 RTS 3 OTHERWISE RETURN 
141 
142 3 TWO QUADRANT MULTIPLY 
143 ; USAGE IS THE SAME AS WITH UMULT 
144 3 PSEUDO ACCUMULATOR CONTAINS THE SIGNED 
145 3 FACTOR AND THE MACHINE ACCUMULATOR 
146 3 CONTAINS THE UNSIGNED FACTOR 
147 0297 85EA MULT2Q: STA TEMPL 3 SAVE UNSIGNED MULTIPLICAND 
148 0299 ASEO LDA ACCL 3 SAVE SIGNED MULTIPLIER 
149 029B 85E8 STA TEMP2 
150 0290 205502 JSR UMULTO 3 DO AN UNSIGNED MULTIPLICATION 
151 02A0 ASEB LDA TEMP2 3 TEST SIGN OF MULTIPLIER 
152 02A2 1007 BPL MULT2R 3 GO RETURN IF POSITIVE 
153 02A4 ASE LDA ACCH 3 SUBTRACT MULTIPLICAND FROM HIGH PRODUCT 
154 02A6 38 SEC 
155 02A7 ESEA SBC TEMP? 3 IF MULTIPLIER IS NEGATIVE 
156 O2A9 &5E8 STA ACCH 
157 02AB 60 MULT2R: RTS 3 RETURN 
158 
159 3 SIGNED MULTIPLY 
160 3 USAGE IS THE SAME AS WITH UMULT 
161 O2AC 85EA SMULT: STA TEMPL 3 SAVE MULTIPLICAND 
162 O2AE ASED LDA ACCL 3 SAVE MULTIPLIER 
163 02B0 85€B STA  TEMP2 
164 0282 205302 JSR = UMULT 3 00 AN UNSIGNED MULTIPLICATION 
165 02B5 A5EA LOA  TEMP1 3 TEST SIGN OF MULTIPLICAND 
166 0287 1007 BPL = SMULT1 3 JUMP AHEAD IF POSITIVE 
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167 02B9 ASES LDA ACCH 
168 0288 38 SEC 
169 O2BC ESEB SBC -TEMP2 
170 O2BE 858 STA ACCH 
171 02CO ASEB SMULT1: LDA  TEMP2 
172 02€2 1007 BPL = SMULT2 
173 02C4 ASE8 LDA ACCH 
174 02C6 38 SEC 
175 02C7 E5SEA SBC TEMP1 
176 02C9 85E8 STA ACCH 
177 02CB 60 SMULT2: RTS 
178 
179 
180 
181 
182 
183 
184 O2CC 85EA Div2Q: STA TEMPL 
185 O2CE ASE8 LOA ACCH 
186 02D0 85EB STA TEMP2 
187 02D2 ASE8 LDA ACCH 
188 02D4 1003 BPL DIV2Q1 
189 0206 202E02 JSR -DNEG 
190 0209 207002 DIV2Ql: JSR UDIV 
191 02DC ASEB LDA TEMP2 
192 O2DE 1008 BPL DIV2Q2 
193 02EQ A5E9 LDA ACCL 
194 O2E2 49FF EOR #X'FF 
195 02E4 85E9 STA ACCL 
196 O2E6 E6E9 INC ACCL 
197 O2E8 60 O1V2Q2: RTS 
198 
199 
200 
201 O2E9 85EA SOIV: STA TEMP1 
202 O2EB 45E8 EOR = ACCH 
203 O2ZED 85EB STA TEMP2 
204 O2EF ASES8 LDA ACCH 
205 02F1 1003 BPL SDIV1 
206 O2F3 202E02 JSR = DNEG 
207 O2F6 ASEA SOIV1: LDA TEMP 
208 02F8 1005 BPL SDIV2 
209 O2FA 49FF EOR  #X'FF 
210 O2FC 18 cLe 
211 O2FD 6901 ADC #1 
212 O2FF 207002 SDIV2: JSR  UOIV 
213 0302 ASEB LDA -TEMP2 
214 0304 1008 BPL = SDIV3 
215 0306 ASE LDA ACCL 
216 0308 49FF EOR  #X‘FF 
217 030A 85E9 STA ACCL 
218 030C E6E9 INC = ACCL 
219 030E 60 SDIV3: RTS 
220 
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SUBTRACT MULTIPLIER FROM HIGH PRODUCT 
IF MULTIPLICAND IS NEGATIVE 

TEST SIGN OF MULTIPLIER 
GO RETURN IF POSITIVE 
SUBTRACT MULTIPLICAND FROM HIGH PRODUCT 
IF MULTIPLIER IS NEGATIVE 

RETURN 

TWO QUADRANT DIVIDE 
USAGE IS THE SAME AS WITH UDIV 
PSEUDO ACCUMULATOR CONTAINS THE SIGNED 
DIVIDEND AND THE MACHINE ACCUMULATOR 
CONTAINS THE UNSIGNED DIVISOR 
SAVE DIVISOR 
COMPUTE SIGN OF QUOTIENT 
SAVE THE SIGN UNTIL LATER 
TEST SIGN OF DIVIDEND 
SKIP IF POSITIVE 
TWOS COMPLEMENT DIVIDEND IF NEGATIVE 
00 THE DIVISON 
TEST DESIRED SIGN OF QUOTIENT 
GO RETURN IF SHOULD BE POSITIVE 
TWOS COMPLEMENT QUOTIENT IF SHOULD BE 
NEGATIVE 

RETURN 

SIGNED DIVIDE 
USAGE IS THE SAME AS WITH UDIV 
SAVE DIVISOR 
COMPUTE SIGN OF QUOTIENT 
SAVE THE SIGN UNTIL LATER 
TEST SIGN OF DIVIDEND 
SKIP IF POSITIVE 
TWOS COMPLEMENT DIVIDEND IF NEGATIVE 
TEST SIGN OF DIVISOR 
JUMP IF POSITIVE 
TWOS COMPLEMENT DIVISOR IF NEGATIVE 

00 THE DIVISON 
TEST DESIRED SIGN OF QUOTIENT 
GO RETURN IF SHOULD BE POSITIVE 
TWOS COMPLEMENT QUOTIENT IF SHOULD BE 
NEGATIVE 

RETURN 

Fig. 18-3. Signal-processing math package for the 6502 (cont.). 



Music SYNTHESIS SOFTWARE 611 

page zero memory at location ACCH for the high order half and ACCL for 
the low order half. All subroutines that require a double-byte second operand 
expect the address of the high order half of the operand to be in the X index 
register. Single-byte second operands are expected to be in the hardware 
accumulator. 

Load and store are trivially simple. Although they can be easily done by 
in-line code in the calling program, using the subroutines will make a 

signal-processing program easier to read and later convert to a machine with 
hardware to replace this package. 

Double-precision addition and subtraction are equally straightforward. 
Both process the low bytes first and then use the carry flag to transmit carry 

information to the high bytes. Note that the 6502 does not have add and 
subtract in which the carry flag is ignored. Therefore, it is frequently neces- 
sary to clear or set the carry before an addition or subtraction, respectively. 
Negation is performed by flipping all of the pseudoaccumulator bits with 
exclusive-or instructions and then double-length incrementing the result. 

Note that carry out of the low byte when incrementing is detected by testing 
for a zero result, since the increment instruction does not affect the carry flag. 

The shift routines do one shift at a time, again using the carry flag to 
transfer bits from one byte to the other. Note that when shifting right the 
left byte is shifted first, whereas when shifting left the right byte is shifted 
first. A fair amount of fooling around is necessary to duplicate the sign bit 
when doing a signed shift right. A machine with decent arithmetic capabil- 

ity would explicitly provide a shift with sign-extend instruction. Note that 
the ability of the 6502 co directly modify memory greatly simplifies many 
operations on the pseudoaccumulator. 

The basic multiplication subroutine handles two 8-bit unsigned num- 
bers and produces a 16-bit unsigned product. While most computer users 
know that the proper way to multiply involves shifting and adding, the 

number of inefficient (or just plain incorrect) multiply subroutines that have 
been published (IC manufacturers are the worst offenders) indicates a general 
lack of understanding in this area. Minicomputer designers of the 1960s, 

PRODUCT 

r 
SHIFT ENTIRE REGISTER AND CARRY MULTIPLIER, 
ee MULTIPLIER BITS 

eS = —} 

()—L TTT ¢ 

AOD IF 
MULTIPLIER <——————— 
BIT (S AONE 

LTT TI 
MULTIPLICAND 

Fig. 18-4. Shift-and-add multiplication 
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however, did know how to multiply and as it turns out their hardware 
methods are highly efficient in software too. 

Figure 18—4 illustrates the shift and add multiplication algorithm. 
Two “registers” are involved; the multiplicand register which is 8 bits long, 
and the 16-bit pseudoaccumulator. Prior to multiplication, the multiplicand 
is placed in the mulciplicand register, the multiplier is placed in the low 
order half of the pseudoaccumulator, and the high order half is cleared. A 
shift and add cycle consists of shifting the entire pseudoaccumulator right 
one bit and testing the least significant bit shifted out. If this bit is a zero, 
the cycle is complete. If the bic is a onc, the multiplicand register is single- 
precision added to the upper half of the pseudoaccumulator. This addition may 
overflow, so it is important to bring in the carry flag when the next shift 
cycle is done. A little thought will reveal that as the multiplication pro- 
gresses the multiplier is “eaten away” at its right end and the product grows 

downward as the multiplier is shifted out. A total of 814 cycles are needed to 
complete the operation, The half-cycle is a final shift of the pseudoac- 

cumulator to bring in a possible overflow from the last addition and properly 
align the product. 

The above algorithm is different from many that are published in that 
the product is shifted right and the multiplicand stands still rather than 

vice versa. Efficiency improvement is due to both product and multiplier 
shifting being handled simultaneously and the fact that only single-precision 
addition of the partial products is required. If the upper part of the pseudoac- 

cumulator is not cleared prior to multiplication, its contents wind up being 
added to the product. Since this may be useful and actually saves a slight 
amount of time, the unsigned multiplication routine provides an alternate 
entry point thac skips clearing the product. Note that binary multiplication, 
even with the “free add” included, cannot overflow. 

Unsigned binary division, illustrated in Fig. 18-5, is precisely the 
reverse of multiplication. The algorithm can be described as a “shift and 
conditionally subtract” procedure, opposite that of multiplication, Again, 

CrVIDEND 
K r 

a SHIFT ENTIRE REGISTER LEFT 

REMAINDER QUOTIENT 
~ T = 

e= Loe 

SUBTRACT IF 
RESULT 15 

NOU NEGATIVE QUOTIENT BITS 
TOR SUCCESSFUL 

1 oe SUBTRACT 

oes a 
DIViSOR 

Fig. 18-5. Shift-and-subtract division 
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two registers are involved. The dividend is a double-length value, which is 
held in the pseudoaccumulator. The divisor is kept in the same register as the 
multiplicand was in multiplication and is not altered by the division routine. 

A shift and subtract cycle begins by shifting the entire pseudoac- 
cumulator left, being sure to bring in the carry flag on the right end. Next 
the divisor is single-precision subtracted from the high order half of the divi- 
dend and the result suspended. If the subtraction underflowed (that is, went 

negative, which is not allowed in unsigned arithmetic), the result is thrown 

away. If the subtraction did not underflow, the result replaces the high order 
portion of the dividend. Deciding whether an underflow occurted is a little 

tricky because a significant dividend bit may have been shifted out when the 
dividend was shifted left. The table below can be used to determine if an 
underflow occurred: 

Carry from shift Carry from subtract Underflow? Quotient bit 
0 0 Yes 0 

0 1 No 1 
1 0 No 1 
| 1 Yes 0 

The quotient bit value from the table is saved in the carry flag and shifted 
into the pseudoaccumulator on the next cycle. 

As the division progresses, the dividend is eaten away on the left by 

subtracting the divisor, while the quotient is shifted in bit by bit on the 
right. The final result finds the quotient in the right half and the remainder 
in the left half of the pseudoaccumulator. Eight-and-a-half shift/subtract 
cycles are required to complete the division. The last half cycle is necessary to 
bring in the last quotient bit without moving the remainder out of position. 
Note thar a subsequent call to UMULTO, which would multiply the quo- 
tient by the divisor and add in the remainder, will recover the dividend 

exactly. 
In signal processing both two-quadrant (unsigned X signed) and four 

quadrant (signed X signed) multiplication is needed. The obvious procedure 
is to take the absolute values of the operands, perform the operation, and 
then adjust the sign of the product according to the rules of algebra. The 

signed multiplication routine, however, uses a different approach that is 
more efficient and actually works with largest negative numbers. The idea is 

to go ahead and multiply the raw operands with the unsigned multiply 

routine and correct the result later. 
The correction turns out to be quite simple. After unsigned multiplica- 

tion, the multiplicand sign is tested. If it is negative, the multiplier is 
unsigned, single-precision subtracted from the upper half of the pseudoac- 
cumulator. Then the multiplier sign is tested and the multiplicand is condi- 
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tionally subtracted in the same manner. If one of the operands is unsigned, 

only the signed operand need be tested. The author does not know of a 

simple correction procedure for division so it is handled using the absolute- 

value method. 

Example Programs 

The best way to illustrate use of the arithmetic package and scaling 

techniques for fixed-point arithmetic is to actually study a couple of simple 

signal-processing programs. Two reasonably useful functions will be covered. 

The first is a generalized digital filcer using the state-variable structure. The 

second is a Fourier series (SFT method) program designed to optimally fill 

8-bit, 256-word waveform tables for low-budget direct synthesis. 

Before tackling the digital filter programming, let’s discuss exactly 

what the program should do and how it would be used. For full flexibility as 
a state-variable filter, one input sample is required, four output samples are 
produced, and two parameters are needed. The input and output samples are 
assumed to be 8-bit signed binary fractions. The dynamic range of frequency 
and @ parameters are maximized if they are unsigned values. Referring to 
Chapter 14, we recall that the useful range of the frequency and Q multipliers 
is 0 to 2. Therefore, the binary point will be between bits 6 and 7 in these 

8-bit multipliers. 
The digital filter wil] he programmed as a subroutine and the input 

sample will be passed to it in the accumulator. For ease of understanding, the 
four output samples will be stored in specific locations in memory and the 
two parameters will be taken from specific memory locations. Note that this, 
like all recursive digital filters, requires storage registers to hold values from 
sample to sample. Two 16-bit numbers will therefore be stored in dedicated 
memory locations as well. A truly general-purpose routine should have the 

addresses of input, output, parameter, and register storage passed to it to 
minimize data shuffling when using the same routine to simulate many 
different filters. 

Figure 18—6 shows a signal flow diagram for the filter along with the 
sequence of calculations spelled out in detail. Note that all addition and 
subtraction operations are done using 16-bit arithmetic. In fact, except for 
the input sample itself, all addition and subtraction operands are 16 bits in 

length because they are the result of multiplications. Also note that while the 
result of a multiplication is allowed to have a range of 1.99, the result of all 
additions and subtractions must have a range of 0.99 or less. 

It is apparent, then, that overflow can easily occur if the input signal is 
near maximum and the Q is high (@Q factor low). This is simply a consequence 
of the fact that a digital filter can have a gain substantially greater than 
unity. One might be tempted to consider moving the binary point of the 
filter output to eliminate the possibility of overflow until the cumulative 

effect of cascading several such “scaled filters” in a general-purpose digital 
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FREQUENCY ap FREQUENCY 

INPUT, HP, BP, LP, NOTCH S.XXXXXXK 

Q, FREQUENCY XXXXXXKX 

ac S. KKMANK AKA KK AKAN 

SEQUENCE OF CALCULATIONS 
STEP OPERATION —_ BINARY REPRESENTATION 

———— 
ES SXXXXKKXXXKXKKK 

X FREQ _XXXXXXXX _ 
FS XXXXXKKXXKKKAKK 

HS XKXXXXXXXKKXKKX 
GS KKXXKKXXXXEXAKK 

LP OUTPUT 

ES SXXXXXXXKXXXXKK 
x@ XXXXXKKX 

A SXXXXXXAXKKKKKKK 
“A S XXX XXKAXKXXKKKXKK 

-6 SSXXXXXXXKXXKKAXKK 

singul $ SXXXXXXXOO00000 
B S SMXKKXXXAXXKKKKXKK 
ae iP UTPUT 

Co SK EXXR KKK RKARE KK 

S SMX KKXXKKKKKKKK 
5 x KRKEXK SESW AOA “~BP QUTPUT 

He SKXKXXKXX 

“* NGTCH OUTPUT 

Fig. 18-6. Signal flow diagram of fixed-point arithmetic digital filter 

synthesis system is considered. It can be a viable technique in dedicated filter 
applications such as a spectrum analyzer, however. Of course, with 8-bit 
samples and arithmetic, the programmer constantly walks a tightrope in 

keeping signal levels high to maximize S/N ratio, while keeping them low 
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STATE VARIABLE DIGITAL FILTER 

221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 

48 
A2CO 
200002 
204102 
ASES 
85E9 
ASCH 
209702 
A2c2 
201202 
200902 
204102 
ASES 
85C8 
A2cO 
200002 
204102 
ASES 
85E9 
ASC? 
209702 
A2c2 
201202 
A2c4 
200902 

202002 
200902 
204102 

»PAGE ‘STATE VARIABLE DIGITAL FILTER" 
STATE VARIABLE DIGITAL FILTER 
ENTER WITH 8 BIT INPUT SAMPLE IN THE ACCUMULATOR 
EXIT WITH 8 BIT QUTPUT SAMPLES IN LOPAS, BNDPAS, HIPAS, AND 
NOTCH. 
CENTER FREQUENCY PARAMETER IS IN FREQ AND Q PARAMETER IS IN Q. 
INPUT AND OUTPUT SAMPLES ARE SIGNED FRACTIONS. 
FREQUENCY AND Q PARAMETERS ARE UNSIGNED NUMBERS WITH A RANGE OF 
2.0 AND A RESOLUTION OF 1/128. 

DELAY1 
DELAY2 
TEMP: 
FREQ: 
q: 
LOPAS: 
BNDPAS 
HIPAS: 
BNDREJ: 

SVDFLT: PHA 
LDX 
JSR 
JSR 
LDA 
STA 
LDA 
JSR 
LOX 
JSR 
JSR 
JSR 
LDA 
STA 
LDX 
JSR 
JSR 
LDA 
STA 
LDA 
JSR 
LOX 
JSR 
LOX 
JSR 
PLA 
STA 
LDA 
STA 
JSR 
JSR 
JSR 
JSR 

x'c0 
z 
2. 
2 
1 
I 
1 
1 
1 
1 

X'400 

#DELAY1 
DLO 
DSHL 
ACCH 
ACCL 
FREQ 
MULT2Q 
#DELAY2 
DADD 
DST 
DSHL 
ACCH 
LOPAS 
#DELAY1 
OLD 
DSHL 
ACCH 
ACCL 
Q 
MULT2Q 
#DELAY2 

STORAGE IN PAGE ZERO 
STORAGE REGISTER FOR DELAY 1 
STORAGE REGISTER FOR DELAY 2 
TEMPORARY STORAGE FOR A 16 BIT VALUE 
CENTER FREQUENCY PARAMETER 
Q FACTOR PARAMETER 
LOWPASS FILTERED OUTPUT SAMPLE 
BANDPASS FILTERED OUTPUT SAMPLE 
HIGHPASS FILTERED OUTPUT SAMPLE 
BAND REJECT FILTERED OUTPUT SAMPLE 

SAVE INPUT SAMPLE ON THE STACK 
LOAD OUTPUT OF DELAY 1 INTO THE PSEUDO 
ACCUMULATOR 
SHIFT IT RIGHT 7 BIT POSITIONS FOR USE AS 
THE MULTIPLIER 

MULTIPLICAND IS FREQUENCY PARAMETER 
TWO QUADRANT MULTIPLY 
ADD OUTPUT OF DELAY 2 TO PRODUCT 

PUT SUM BACK INTO DELAY 2 
SHIFT LEFT ONE TO FORM LOWPASS OUTPUT 

LOAD OUTPUT OF DELAY 1 INTO THE PSEUDO 
ACCUMULATOR 
SHIFT IT RIGHT 7 BIT POSITIONS FOR USE AS 
THE MULTIPLIER 

MULTIPLICAND IS Q PARAMETER 
TWO QUADRANT MULTIPLY 
ADD RESULT TO SAVED LOWPASS OUTPUT 

SAVE IN TEMPL 

5 RESTORE INPUT SAMPLE 
PUT INTO PSEUDO ACCUMULATOR AND SHIFT 
RIGHT ONE 

SUBTRACT SAVED SUM FROM INPUT SAMPLE TO 
SAVE RESULT FOR LATER USE IN NOTCH OUTPUT 
FORM HIGHPASS OUTPUT 

Fig. 18-6. Signal flow diagram of fixed-point arithmetic digital filter (cont.). 
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STATE VARIABLE DIGITAL FILTER 

275 O44F ASES LDA ACCH 
276 0451 85CA STA HIPAS 
277 0453 85£9 STA ACCL 3 IS ALSO MULTIPLIER 
278 0455 A5C6 LDA FREQ 3 MULTIPLY BY FREQ 
279 0457 209702 JSR MULT2Q 
280 O45A A2CcO LDX  #DELAY1 3 ADD OUTPUT OF DELAY 1 TO THE PRODUCT 
281 O45C 201202 JSR DADD 
282 O45F 200902 JSR DST 3 PUT SUM BACK INTO DELAY 1 
283 0462 204102 JSR DSHL 3 SHIFT LEFT ONE BIT 
284 0465 A5EB LDA  ACCH 
285 0467 85C9 STA BNDPAS 3 HIGH BYTE IS BANDPASS OUTPUT 
286 0469 A2C4 LDX  #TEMP 3 BAND REJECT OUTPUT IS DELAY2 PLUS TEMP1 
287 0468 200002 JSR -DLD 
288 O46E A2C2 LOX  #DELAY2 
289 0470 201202 JSR DADO 
290 0473 204102 JSR = DSHL 
291 0476 A5E8 LDA  ACCH 
292 0478 85CB STA BNDREJ 
eae 047A 60 RTS 3 RETURN 
29) 

Fig. 18-6. Signal flow diagram of fixed-point arithmetic digital filter (cont). 

enough to avoid serious distortion caused by overflow. With 16-bit arithme- 
tic, which is recommended for serious work, such problems are much less 

severe. 
The second example program, which is shown in Fig. 18-7, is included 

to illustrate the use of division and as a useful program for experimentation. 
The idea is ro take the spectral description of a harmonic waveform, compute 

samples for one cycle of it, and store them in a waveform table. With the 

6502 example machine, the waveform table is assumed to be 256 samples 

long (one memory page), and to contain 8-bit signed samples. 

Because of the limited resolution provided by 8 bits, it is advantageous 
to maximize the amplitude of the stored waveform. It is very difficult, 

however, to predict the magnitude of the largest peak of the waveform 
without actually computing an entire cycle, although it is easy to prove that 

the peak will not exceed the sum of the harmonic amplitudes but in most 
cases will be considerably less than this because of momentary phase cancella- 
tion, etc. Thus, it would be nice if the table-filling program would adjust 
the waveform amplitude automatically and optimally. 

The program is actually just a collection of three subroutines. The 
point evaluator, FSEVAL, accepts a point number and a spectrum descrip- 

tion and returns a 16-bit signed number representing the waveform at that 
point in time. The point number simply represents time to a resolution of 

1/256 of a cycle. The scale factor determination routine, SCALE, calls 
FSEVAL 256 times in order to determine the absolute maximum sample 
value that will be encountered when the table is actually filled. The table- 
filling routine, FILL, also calls FSEVAL 256 times. The 16-bit values re- 

turned are divided by the maximum peak found by SCALE and stored in the 
waveform table as 8-bit values. 
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WAVEFORM TABLE FILL USING FOURIER SERIES 

«PAGE ‘WAVEFORM TABLE FILL USING FOURIER SERIES' 
295 
296 047B X'80 3 STORAGE IN PAGE ZERO 
297 0080 HRMACC: ae 2 3 HARMONIC ACCUMULATOR 
298 0082 PNTNO: yee 3 POINT NUMBER WITHIN CYCLE OF WAVE 
299 0083 NDXACC: + 1 3 INDEXING ACCUMULATOR 
300 0084 HRMCNT: ae 3 HARMONIC COUNTER 
301 0085 MAX: ge od 3 MAXIMUM WAVEFORM AMPLITUDE 
302 0086 WAVETB: cb 2 3 ADDRESS OF WAVEFORM TABLE TO FILL 
303 
304 0088 NHARM: at. 1 3 HIGHEST HARMONIC TO GENERATE (16 MAX) 
305 0089 FSRAM: 4 3 ROOM FOR 16 HARMONIC AMPLITUDES AND 
306 3; PHASES 
307 
308 O0A9 = X'500 
309 
310 ; WAVEFORM TABLE FILL ROUTINE 
311 ; THIS SUBROUTINE FILLS THE WAVEFORM TABLE AT WAVETB WITH 256 
312 3 SAMPLES OF THE WAVEFORM SPECIFIED BY THE SPECTRUM AT FSRAM, 
313 H MAX MUST HAVE BEEN PREVIOUSLY SET GREATER THAN TWICE THE 
314 3 ABSOLUTE VALUE OF THE LARGEST SAMPLE THAT WILL BE ENCOUNTERED. 
315 
316 0500 A900 FILL: LDA #0 ; ZERO THE POINT NUMBER 
317 0502 8582 STA PNTNO 
318 0504 204005 = FILL1: «JSR FSEVAL 3 EVALUATE A WAVEFORM POINT ; 
319 0507 A580 LDA HRMACC ; DIVIDE POINT BY MAXIMUM POINT FOR SCALING 
320 0509 85E8 STA ACCH 3 FIRST TRANSFER POINT TO PSEUOO 
321 050B A581 LDA —-HRMACC+1 ; ACCUMULATOR FOR USE AS THE DIVIDEND 
322 O50D 859 STA ACCL 
323 OSOF A585 LDA MAX ; LOAD MAX AS THE DIVISOR (UNSIGNED) 
324 0511 20CC02 Usk o1v2Q 3 DO A TWO QUADRANT DIVIDE 
325 0514 ASEQ LDA ACCL 3 GET THE SIGNED QUOTIENT 
326 0516 A482 LDY . PNTNO 3 GET THE POINT NUMBER 
327 0518 9186 STA (WAVETB),Y — ; STORE RESULT IN WAVEFORM TABLE 
328 051A F682 INC PNTNO ; INCREMENT THE POINT NUMBER 
329 051C DOE6 BNE FILL 3 GO FOR ANOTHER POINT IF NOT FINISHED 

O51E 60 RTS 5 RETURN WHEN FINISHED 

332 : SCALE FACTOR DETERMINATION SUBROUTINE 
333 THIS SUBROUTINE GOES THROUGH ONE CYCLE OF THE WAVEFORM DEFINEO 
334 : BY THE SPECTRUM AT FSRAM AND FINDS THE POINT WITH THE MAXIMUM 
335 ; MAGNITUDE. 
336 i THIS MAGNITUDE IS THEN DOUBLED AND INCREMENTED BY ONE AND 
en : STORED AS AN UNSIGNED NUMBER. 

339 051F A900 SCALE: LOA #0 3 ZERO THE POINT NUMBER 
340 0521 8582 STA PNTNO 
341 0523 8585 STA MAX ; ZERO THE MAXIMUM MAGNITUDE 
342 0625 204005 SCALE1: JSR FSEVAL 3 EVALUATE A WAVEFORM POINT 
343 0528 A580 LOA. HRMACC 3 GET UPPER BYTE OF THE POINT 
344 052A 1005 BPL  SCALE2 ; SKIP_IF POSITIVE 
345 052C 49oFF EOR #X'FF 3 NEGATE IF NEGATIVE 
346 052E 18 cic 
347 052F 6901 AoC #1 
348 0531 ¢585 SCALE2: CMP = MAX 3 COMPARE WITH CURRENT MAXIMUM 

Fig. 18-7. Waveform table filler 
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IAVEFORM TABLE FILL USING FOURTER SERIES 

0533 3002 BMI SCALE3 
0535 8§85 STA MAX 
0537 E682 SCALE3: INC — PNTNO 
0539 DOEA BNE | SCALE] 
0538 0685 : ASL MAX 
0530 E685 INC MAX TO AVOID POSSIBLE DIVISON OVERFLOW 
O53F 60 RTS AND RETURN 

FOURIER SERIES POINT EVALUATOR 
THIS SUBROUTINE EVALUATES A POINT ON THE WAVEFORM SPECIFIED BY 
THE SPECTRUM AT FSRAM. 
NHARM SPECTFIFS THE HIGHEST HARMONIC TO BE INCLUDED 

PNTINO IS THE POINT NUMBER TO BE EVALUATED 
THE COMPUTED POINT IS RETURNED IN HRMACC AS A 16 BIT TWOS 
COMPLEMENT NUMBER 
DESTROYS A AND Y, SAVES X 

SKIP IF NOT GREATER 
UPDATE MAXIMUM IF GREATER 
INCREMENT POINT NUMBER 
GO FOR NEXT POINT IF NOT DONE 
DOUBLE AND THEN INCREMENT MAXIMUM VALUE 

0540 8A FSEVAL: TXA ; SAVE INDEX X 
0541 48 PHA. 
0542 A900 LDA #0 3 CLEAR HARMONIC ACCUMULATOR 
0544 8580 STA HRMACC 
0546 8581 STA HRMACC+1 
0548 8584 STA HRMCNT 3 ZERO HARMONIC COUNTER 
054A 8583 STA NOXACC 3 ZERO THE INDEXING ACCUMULATOR 
054C A584 FSEV1: LDA HRMCNT ; GET CURRENT HARMONIC NUMBER AND DOUBLE IT 
O54E OA ASLA 
O54F AA TAX 
0550 B589 LDA FSRAM,X 
0552 48 PHA 
0553 BS8A LDA FSRAM+1,X 
0555 6583 ADC NDXACC 
0557 AA TAX 
0558 BD8605 LOA COSINE, X 
O55B 85&9 STA ACCL 
055D 68 PLA 
O55E 209702 JSR MULT2Q 

USE AS AN INDEX TO THE SPECTRUM TABLE 
GET AMPLITUDE 
SAVE ON STACK TEMPORARILY 
GET PHASE 
ADD IT TO THE INDEXING ACCUMULATOR 
USE AS AN INDEX INTO THE COSINE TABLE 
GET COSINE 
SAVE AS MULTIPLICAND 
RESTORE AMPLITUDE 
MULTIPLY AMPLITUDE (UNSIGNED) BY COSINE 
(SIGNED) 
SHIFT PRODUCT RIGHT 4 FOR 12 BIT RESULT 0561 Az04 LDX #4 

0563 204B02 FSEV2: JSR DSHRS 
0566 CA DEX 
0567 DOFA BNE FSEV2 
0569 A280 LDX #HRMACC ; ADD RESULT TO HARMONIC ACCUMULATOR 

056B 201202 JSR DADO 
O56E 200902 JSR DST 
0571 AS84 LDA HRMCNT 
0573 €588 CMP NHARM 
0575 FOOC BEQ FSEV3 

TEST IF CURRENT HARMONIC IS LAST ONE TO 
INCLUDE 
GO RETURN IF SO 

0577 £684 INC HRMCNT INCREMENT TO NEXT HARMONIC 
0579 AS&2 LDA PNTNO ADD POINT NUMBER TO THE INDEXING 

0578 18 CLC ACCUMULATOR 
057C 6583 ADC NOXACC 
O57E 8583 STA NDXACC 
0580 4C4C05 JMP FSEV1 ; LOOP FOR ANOTHER HARMONIC 

0583 68 FSEV3: PLA RESTORE INDEX X 

0584 AA TAX 
0585 60 RTS RETURN 

Fig. 18-7. Waveform table filler (cont.). 
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WAVEFORM TABLE FILL USING FOURIER SERIES 

404 
405 ; 256 POINT COSINE TABLE, TWOS COMPLEMENT 
406 
407 0586 7F7E7F7F COSINE: .BYTE X‘7F,X'7F,X'7F,X'7F,X'7F,X'7F,X'7E,X'7E 
408 OS8E 7D707C78 [BYTE X*7D.X"7D,X'7C,X'7B,X'7A,X'79,X'78,X'77 
409 0596 76757372 TBYTE X'76,X'75,X'73,X'72,X'71, X'6F , X60, X'6C 
410 O59E 6AG86665 TBYTE X'6A,X'68,X'66,X'65,X'63, X'61,X'5E,X'5C 
411 0586 5A585653 ‘BYTE X'5A,X'58,X'56,X'53,X'51,X'4E,X'4C,X'49 
412 OSAE 4744413F "BYTE X'47,X'44,X'41,X'3F,X'3C,X'39, X!36,X°33 
413 0586 31262828 [BYTE X'31,X'2E,X'2B,X'28,X'25,X'22, X'LF,X'IC 
414 O5BE 1916120F TBYTE X!19,X'16,X'12,X'OF,X*0C,X'09, X'06,X'03 
415 05C6 OOF DFAF7 "BYTE X'00,X'FD,X'FA,X'F7,X°F4,X'F1, X'EE, X'EA 
416 OSCE E7E4E10E TBYTE X°E7,X"E4,X‘E1, X'DE,X ‘DB, X'D8, X*D5,X'D2 
417 05D6 CFCDCAC? UBYTE X'CF,X'CD,X'CA,X'C7,X°C4,X'CL, X" BF, X'BC 
418 O5DE B9B7B482 ‘BYTE X'B9,X'B7,X'B4, X'BZ, X'AF, X'AD, X'AA, X'AB 
419 OSE6 AGAGA29F "BYTE X'AG,X'AG>X'AZ,X'9F, X'9D,X'9B, X'9A,X'98 
420 OSEE 96949391 TBYTE X'96,X'94,X'93,X'91, X*BF, X'8E, X'8D,X'8B 
421 O5F6 8Ag98B87 "BYTE X'BA,X'89,X'88, X87, X*86,X'B5,X'84,X'83 
422 OSFE 83828281 "BYTE X'83,X'82,X'82,X'81,X'B1,X'81,X'B1,X'81 
423 0606 81818181 “BYTE X'81,X'81,X'81,X'81,X'81,X'81,X'82,X'82 
424 O60 83638485 “BYTE X'83,X'83,X'84, X'85, X'B6,X'87,X'88,X'89 
425 0616 SASBEDeE BYTE X'8A,X'8B,X'8D,X'8E,X'8F,X'91,X'93,X'94 
426 061E 96989A9B “BYTE X'96,X'9B8,X'9A,X'9B, X*9D,X'9F, KAZ, X'AG 
427 0626 AGABAAAD “BYTE X'AG,X'AB,X'AA, X'AD, X'AF,X'B2, X'BA, X'B7 
428 062E BOBCBFC1 “BYTE X'B9,X'BC,X'BF,X'C1,X'C4,X'C7,X!CA,X*CD 
429 0636 CFO2D508 “BYTE X'CF,X'D2,X'D5,X'D8,X'DB,X'DE, X*E1, X'E4 
430 063E E7EAEEF SBYTE X*E7,X'EA,X*EE, X*F1, X°F4, X'F7,X'FA, X*FD 
431 0646 00030609 “BYTE X'O0,X'03,X'06,X'09,X'0C,X'OF,X'12,X'16 
432 O64E 191C1F22 “BYTE X*19, X*1C,X*1FX'22,X'25,X'28, X'2B, X!2E 
433 0656 31333639 TBYTE X'315X'335X'36,K'39,X'3C,X!3E,X'41 4X44 
434 O65E 47494C4E SBYTE X'47,X'49,X'4C,X°4E, X'52,X'53,X'56, X'58 
435 0666 5ASC5E61 ‘BYTE X'5A,X'5C,X'5E,X'61,X'63,X'65, X'66,X'68 
436 O66E 6AGCEDEF “BYTE X'6A,X'6C,X'6D,X'6F,X'71,X"72,X'73,X!75 
437 0676 76777879 ‘BYTE X*76,X'77,X'78,X'79.X'7A,X!7B,X'7C,X! 7D 
438 O67E 707E7E7F SBYTE X"7D,X*7E,X°7E,X'7F,X'7F XE, XZ, X TE 

Fig. 18-7. Waveform table filler (cont.). 

The spectrum description expected by these routines consists of pairs of 
8-bit unsigned numbers, each of which corresponds to a harmonic in ascend- 
ing order starting with zero (the dc component). The first member of the pair 
is the amplitude which is treated as an 8-bit unsigned fraction. The second 

member is the phase angle of the harmonic. Zero gives a cosine wave, 64 
gives an inverted sine wave, 128 gives an inverted cosine, etc. A parameter 

called NHARM determines the highest harmonic number chat will be con- 
sidered with smaller values giving faster computation. The scaling logic 
assumes that NHARM is never greater than 16, although this can be ex- 
tended by modifying the scaling computation or restricting the amplitude 
sum to less than 16. 

Looking closer at FSEVAL, it is seen that the product of a harmonic 
amplitude and a sine table enrry is a full 16 bits. To avoid almost certain 
overflow when other harmonics are added in, the product is shifted right four 
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times, which effectively moves the binary point between bits 11 and 10. This 
increases the range to 16 and reduces the resolution to 1/2,048. The in- 
creased range positively insures against overflow for up to 16 harmonics. 

In seale, only the most significant byte of the 16-bit samples produced 
by FSEVAL is examined. Peak determination is by comparing the absolute 
value of the upper sample bytes with a current maximum, which is kept in 
MAX. This maximum is incremented by one before returning. Note that the 
binary point position of MAX is between bits 3 and 2. 

The FILL routine normalizes the samples by simply dividing the 16-bit 
sample returned by FSEVAI by MAX. Since the binary points are in equiva- 

lent positions, the point position for the quotient will be between bits 6 and 
7, making it a signed fraction ready for storage in the waveform table. 
Incrementing MAX by one in SCALE is required to avoid overflow in the 
division, which would occur when the peak point is divided by itself. Unfor- 
tunately, this action also introduces an error that reduces the scaled 
amplitude somewhat. Large values of MAX minimize this error, however. 

Thus, when a harmonic spectrum is prepared, the strongest harmonic should 
be given an amplitude of 0.996 (0.FF). A 16/32-bit arithmetic package 
would reduce the error to insignificance but would be about three times 
slower on the 6502. It is important to note that this error is only an 

amplitude error; it does not introduce excess noise beyond that due to the 
lower amplitude. Also note that only the highest peak is normalized. It is 
also possible to shift the baseline of the waveform to force positive and 

negative symmetry and thus insure use of all 256 quantization levels in the 
waveform table. Unfortunately, this may also introduce a significant dc 
component to the waveform, which may cause trouble, such as a “thump” 

when a fast amplitude envelope is applied. 

NOTRAN Music System 

After coming this far, it is about time to see how the various synthesis 
and processing techniques can be put together for form a usable music 
software system. The system that will be described here is rather small and 
simple compared to mammoth systems like MUSIC V. Nevertheless, it 
should serve well as an example of how a system of manageable size (for one 
person) might be put together. A subset of the system to be described was 
actually implemented on a university minicomputer (about twice as fast as an 

LSI-11 with the multiply/divide option) in 1970 and used to perform a Bach 
organ fugue? with considerable attention to detail. The version described 

2The piece was “Toccata and Fugue in D Minor.” The computer was an Adage 
Ambilog 200, which had a 30-bit word but for arithmetic behaved like a 15-bit 
machine. Twelve-bit samples were used and the sarnple race wes 32 kHz, although 
four-to-one speedup of the audio tape was necessary to obrain that speed due co the 
low-density (556BPI) of the tape drives. Computation time for the 8-min piece was 
about 3.5 h. 
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here as well as logical extensions is within the capabilities of nearly any 

microcomputer given the necessary mass storage capacity and audio DAC. 

The acronym for the system is NOTRAN, which is taken from the 

words, NOte TRANslation. Immediately it is apparent that the system is 

based on conventional music notation and the 12-tone scale with all of its 

trappings and as such it is seemingly bound to the performance of conven- 

tional sounding music. This is basically true but does not detract from its 

utility as a system organization example, and besides, far more people are 
experienced in conventional notation. Thus, the reader is allowed to concen- 
trate on the system organization, which is the purpose of this section. In any 

case, the huge variety of techniques, options, and goals in music synthesis 

makes “assumptions to simplify the problem” absolutely necessary if any 
results at all are to be obtained. Extensions to cover other tuning and nota- 

tion systems are certainly no more difficult than with other music software 
systems. 

Another characteristic of the NOTRAN system as described here is that 

it is a programmed, non-real-time, direct digital synthesis system. However, 

the three lowest levels of software could be replaced by dedicated synthesis 
hardware or an interface to an analog synthesizer to allow real-time opera- 

tion. The basic syntax of the language itself is not optimized for minimum 
typing effort. Instead, it is designed for ease of understanding (by humans) 
and ease of interpretation (by computers). However, a macroprocessor can be 
used to define more advanced statements that may generate numerous basic 
NOTRAN statements. 

Finally, NOTRAN statements are in strict time order. All sounds 
created by the NOTRAN system are discrete events having a starting time 

and a duration. The starting time is determined by the location of statements 
invoking the event, whereas the duration is determined both by the invoca- 
tion statement and a corresponding ‘voice definition” statement. Once 
started, an event runs to completion independent of other events and 
statements. 

In describing the NOTRAN system, the lowest-level routines and 
design considerations will be covered first. While this is in direct opposition 
to “top-down” philosophy, it offers a smooth transition from familiar con- 
cepts already covered to the unfamiliar ones being introduced. Where word 
sizes are given they were chosen for very high sound quality and can certainly 

be cut back for experimentation in 8-bit systems. 

Level 1 Routines 

The Level 1 or actual sound generation routines in a synthesis system in 
many ways determine the “character” of sounds generated by the system. The 

NOTRAN system utilizes two basic types of sounds, definitely pitched tones 
and percussive sounds. Accordingly, there are two Level 1 subroutines, one 
for each type of sound. Although only two subroutines are involved, each 
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may be called several times with different arguments in order to generace 

simultaneous sounds. While actual listings of these two subroutines will not 
be given, it ts expected that they will be written in assembly language, The 
actual code is quite straightforward and may in fact represent the majority of 
machine level coding required for the entire NOTRAN system. 

As mentioned earlier, efficiency considerations dictate that Level 1 

routines work with blocks of samples in order to minimize call/return over- 
head. All control parameters are assumed to be constant throughout the 
block. A good block size is about 1 msec of samples; thus, for example 

purposes we will assume a 30-kHz sample rate and a 30-sample block size. 

The subroutine will therefore compute 30 samples before returning. For 
maximum flexibility, these 30 samples will be added to the contents of a 
30-sample, 16-bit output buffer to effect mixing. The upper level routines 
will be using block counts for timing purposes so an exact 1-msec block size 
is convenient. 

The tone generation subroutine will operate on the table lookup princi- 
ple. A table size of 1,024 16-bit words is sufficient for very high quality but 
could be reduced to 256 8-bit words for lower-quality experimentation. In 
either case, the subroutine needs the following five arguments passed to it: 

1. Address of the waveform table (16 bits) 

2. Frequency parameter (16 to 32 bits) 
3. Amplitude parameter (8 or 16 bits) 
4. Address of sample buffer (16 bits) 

5. Waveform table pointer (16 to 32 bits to match frequency 
parameter) 

Note that the waveform table pointer will be changed by the computation, 
while the rest of the parameters are left alone. 

HIGH BYTE LOW BYTE — MNEMONIC 

penal SOUND 1D — | SNDID BLOCK 
ADDRESS FLAGS 

+2 WAVE TABLE ADDRESS WAVTBA 

+4 HIGH ORDER FREQ. PARM. FREQ 

+6 LOW ORDER FREQ. PARM. 

+8 AMPLITUDE PARM AMP 

+10 | ADDRESS OF SAMPLE BUFF SMPBFA 

+12 | HIGH ORDER WAVE TABLE PTA. | WAVTBP 

+14 | LOW ORDER WAVE TABLE PTR. 

+30 UNUSED 

Fig. 18-8. Sound contro! block for tone generator 



624 Musical APPLICATIONS OF MICROPROCESSORS 

ENTRY 

ESTABLISH 
ADDRESSABILITY 
QF SOUND 
CONTROL BLOCK 

INITIALIZE 
30. SAMPLE COUNT 

WAVTEP 

SAMP ADDR =— 
WAVTBA + 
(19 MSB) WAVTEP 

SAMPLE <— 
(SAMP ADDR) « AMP 

a 
(SMPBFA) —— 
ISMPBFA) + SAMPLE 

1 
INCREMENT 
SMPBFA 

i 
DECREMENT 30 
‘SAMPLE COUNT 

RETURN 

Fig. 18-9. Tone generator subroutine flowchart 

The most efficient method of passing this information back and forth is 
to treat the five items as an array and simply pass the address of the array to 
the subroutine. Although the array size is fixed for this particular subroutine, 
other Level 1 subroutines may require a different array size and format. Thus, 
for ease of storage allocation by upper level routines and future expandability, 
a fixed argument array size of, say 32 bytes will be used for all Level 1 
routines. 

Figure 18-8 shows one possible way to arrange the five arguments into 

fields within the 32-byte sownd control block. With the 6502, LSI-11, and 

most other microcomputers, indexed addressing can be used to quickly access 
the fields in the sound control block. One simply loads the address of the 

control block passed by the caller into a register and then uses fixed offsets to 
access the data. In a machine without indexed addressing, such as the 8080, 

the control block can be copied into a fixed memory area, the samples 
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computed, and those descriptor elements changed by the execution (such as 
the table pointer) copied back. Alternatively, the order of the fields within 
the block can be carefully sequenced so that increment index instructions can 
be used to scan through them. 

The initial byte of activity flags is used by the upper level routines to 
keep track of which control blocks are actually generating sound. The sound 
ID byte identiftes which Level 1 routine the control block is formatted for. 

The wave table address is the address of the first entry of the waveform table 
being used. The wave table pointer is shown as a 32-bit value, which consists 
of a 22-bit fractional part and a 10-bit integer part. The integer part is added 

to the wave table address to actually get a sample. The frequency parameter is 

also shown as 32 bits and is the waveform table pointer increment. The 
amplitude parameter gives the desired waveform amplitude, while the sam- 
ple buffer address indicates where the 30-sample buffer is located. 

Figure 18—9 shows a flowchart for the tone generator subroitine. Essen- 
tially, it goes through a sample computation loop 30 times and returns. Note 
that the argument giving the address of the sample buffer is incremented 
during execution. This is desirable and minimizes the overhead associated 
with building up large sample blocks for mass storage devices, such as 3,000 
samples for IBM-style magnetic tape. The other calculations perform stan- 
dard waveform table lookup without interpolation as described in Chapter 
13. 

The percussion generator routine is less straightforward than the tone 

generator. In Chapter 15, it was seen that a wide variety of mechanisms 
produce percussive sounds. Covering all of these in a single subroutine is not 
practical. Figure 18-10 shows a model that can be used to approximate the 
majority of common percussive instruments as well as numerous others. The 
pulse-excited bandpass filter is used to provide a damped sine wave, while 
the white noise source and multimode filter provide filtered noise. Three 
gain controls are shown, which allow a noise envelope, the ratio of noise to 

damped wave, and overall output amplitude to be independently controlled. 

AMP Fog 

STRIKE 
PULSE 

BANDPASS 
Fikfee# | __( ¢ OUTPUT 

AMP 3 
MULTIMODE | 
PLTER 

FQ MODE AMP 2 

Fig. 18-10. Percussive sound model 
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HIGH BYTE | LOWBYTE MNEMONIC 

BLOCK ACTIVITY 
SOUND ID SNDID 

ADDRESS. FLAGS 

+2 BANDPASS FILTER F RESNF 

+4 BANDPASS FILTER Q RESNQ 

+6 MULTIMODE FILTER F MMFF 

+8 MULTIMODE FILTER Q MMFQ 

+10] FILTER MODE MMFM 

+12] DAMPED SINE AMP. RESNAM. 

+ 14] FILTERED NOISE AMP. MMFAM 

+16 | OVERALL AMP. AMP 

+18] ADDRESS OF SAMPLE BUFF | SMPBFA 

+20 | STORAGE FOR BANDPASS RESND1 

+22 FILTER RESND2 
+24 | STORAGE FOR MULTIMODE | MMFD1 
+26 FILTER MMFD2 
+28 | NOISE REGISTER NOISE 
+30 UNUSED 

Fig. 18-11. Sound conirol block for percussion generator 

For maximum efficiency, amplitude control of the damped wave is controlled 

by varying the intensity of the strike pulse, which only has to be done once, 
rather than doing a sample-by-sample multiplication of the generator out- 

put. 

The sound control block for percussive sounds is shown in Fig, 18~11. 

The data elements in the control block should be self-explanatory. Note that 
all but two bytes of the block are used and that many of them simply describe 
the percussive timbre, which is constant. In the tone generator control block, 
the actual waveform was stored elsewhere and a pointer to the information was 
given. This could also be done with the percussive generator and thus free up 
10 bytes in its sound control block, although it was not. 

Figure 18-12 is a flowchart of the major operations performed by the 
Level 1 percussion routine. Note that each half of the percussive sound 
model is checked for activity before computing the 30 samples. This saves 

considerable time when only half of the model is needed for simple percussive 
sounds. 

The envelope of the filtered noise is handled by higher level routines 
just as with the tone generator routine. The damped sine wave generator, 

however, supplies its own envelope because of the way it works. The activity 
flags are used to pass information about the damped wave generator to and 
from the calling routine. The start flag is set by the caller when the percussive 
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ESTABLISH 
ADDRESSABILITY 

DECREMEN 
SMPBFA BY 30 

RESNO] <— RESHAN 
RESND2 <— 0 

TURK START SET 30 
FLAG OFF SAMPLE COUNT 

ITERATE RINGING 
BANDPASS FILTER 

ITERATE 
RANDOM-NUMBER 
GENERATOR 

ITERATE MULTIMCOE 
FILTER ANO SELECT 
OUTPUT SAMPLE. 
ACCORDING TO MMF 

ADD SAMPLE TO 
SAMPLE BUFFER 

ADD SAMPLE TO 
SAMPLE BUFFER 

INCREMENT 
SMPBFA 

INCREMENT SMPBFA DECREMENT 
DECREMENT 30 COUNT 30 COUNT 

SET RESON 
STOP 

Fig. 18-12. Percussion generator subroutine flowchart 

sound is to be started. When the percussive routine sees the flag set, it 
initializes one of the bandpass filter registers (the digital state-variable type is 
assumed) to the damped wave amplitude and turns the start flag off. This 
operation is equivalent to striking the resonator, and thereafter the filter is 

iterated to produce the damped wave. 
In theory, the wave amplitude will never reach zero so a mechanism is 

necessary to detect when a very small amplitude is reached so that the 
percussive sound can be considered complete. Thus, at the end of every 

30-sample block, the bandpass filter registers are examined (their absolute 
values are summed and compared with a constant representing perhaps 60 dB 
of decay), and if a low enough amplitude is seen, the stop flag is turned on. 
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MODIFIED 
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Fig. 18-13. Tone envelope details 

Level 2 Generator Routines 

Level 2 routines operate much like Level 1 routines except at a slower 
speed. They are primarily responsible for sequencing through envelopes in 
the synthesized sound. In this respect, they act much like waveform 

generators but at a 1-kHz sample rate. Also, in order to crudely implement 
dynamic spectrum changes during a note, several waveform tables may be 

sequenced through in the course of the note. Cross-fading (time-variable 
interpolation) from one waveform table to the next is therefore handled in 
these routines as well. Also, there is a routine responsible for scanning the 
control blocks and insuring that all of the active ones contribute their sam- 
ples to the sample buffer. Finally, there is a routine that controls the collec- 
tion of 30 sample blocks into larger records and initiates writing of the 
records onto a mass storage device. 

The most important Level 2 routine controls the execution of tone 
events. A tone event is basically a pitched note that uses the Level 1 tone 
subroutine to generate sound. One important aspect of a tone event is its 

envelope, which is sketched in Fig. 18-13. This routine uses the standard 
ADSR envelope shape, which consists of four phases. To make life interest- 
ing, not only is the amplitude controlled by the envelope but the waveform is 

as well. Each envelope phase can correspond to a different waveform, which, 
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HIGH, BYTE LOW BYTE MNEMONIC 

BLOCK ADDRESS ACTIVITY FLAGS. EVENT iD EvTID 

#2 TONE TYPE ENVELOPE PHASE # | TONTYP ENVPHN 

+4 TIME COUNTER ENVTC 

+6 ATTACK DURATION ENVAD 

+8 DECAY DURATION ENVOD 

+10 | SUSTAIN DURATION | ENVSD 

+12 | RELEASE DURATION ENVRD 

+14 | ATTACK WAVE TABLE ADDRESS ENVAW 

+16 | DECAY WAVE TABLE ADDRESS ENVDW 

+18 | SUSTAIN WAVE TABLE ADDRESS ENVSW 

+20 | RELEASE WAVE TABLE ADDRESS ENVRW 

+22 | SUSTAIN AMPLITUDE ENVSAM 

+24 | OVERALL AMPLITUDE | EVTAMP 

+26 | WAVE A CONTROL BLOCK ADDR. WAVACB 

+28 | WAVE B CONTROL BLOCK ADDR. WAVBCB 

+30 | CROSS-FADE VALUE CFVAL 
+32 | CROSS-FADE INCREMENT CFINC 

i - TONE FREQUENCY EVTFRQ 

t — 

+62| NOT USED 

Fig. 18-14. Tone-event control block 

although seemingly crude, is quite effective. A sudden switch from one wave 
table to the next might inject objectionable clicks, however, so a “‘cross- 
fading” technique is used. 

From the foregoing it can be seen that this routine has several tasks to 
perform. it must sequence the envelope through its four phases according to 

several parameters, and it must generate an acceptable curve for each phase. 
During the cross-fading interval, two tones are being generated. Besides 
controlling the cross-fading itself, sound control blocks for the needed tones 
must be ercated, used, and deactivated. Although this routine is much more 

complex than the lower-level routines, it is executed far less frequently, 

which makes the extra time tolerable. 
Figure 18-14 shows the event control block for tones. Since these blocks 

will rend to be large, an allocation of 64 bytes is assumed. The activity flags 

and event ID fields parallel those of sound control blocks. The tone type field 

indicaces which type of tone generation subroutine is to be used if the system 
is ever expanded. The envelope phase number ranges from 1 to 4 to indicate 
which part of the envelope is being generated. The time counter is used to 
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EAVPHN— 1 
ENVTC= ENVAD 
CFYAL*- 0. 
CFINC =~ 0 
START FLAG-*- OFF 

FIND AN INACTIVE 
SOUND CONTROL BLOCK| 
AND INTEALIZE IT 

COPY ENVAW, FREG., 
AMP.TO SOUND 
CONTROL BLOCK 

ae Se 

INCREMENT ENVPHN 
ENVTC= DURATION 
OF ENVELOPE PHASE 

CALL LEVEL) TONE 
GENERATOR ROUTINE 
USING WAVACB AND 
AMP = EVTANP 
(TABLE LOOKUP OF 
ENVELOPE CURVE! ® 

STOP 
FLAG 

EXIT 

COPY SOUND (= CFVAL) CFVAL* 0 GSR ADDRESS ud COMPUTE CFINC 
BASED ON ENVTC 

FIND AN INACTIVE 
SOUND CONTROL BLOCK' 
AND INITIALIZE IT y 

CALL LEVEL 1 TONE 
GENERATION ROUTINE 
USING WAVECB AND 
AMP = EVTAMP * 
(FABLE LOOKUP OF 
ENVELOPE CURVE) + 
CFVAL 

CEACTIVATE 
WAVACE 
CONTROL BLOCK 

CFVAL*- CFVAL + CFINC 
CANNOT INCREMENT 
PAST 1.0 COPY ENVAW, FREQ, 

AMP TO SOUND 
CONTROL BLOCK 

COPY SOUND CONTROL 
BLOCK ADDRESS TO. 
WAVBCE 

STOP wAVACB N AND wAVeCB eo 
CFVAL —0 
cFING =-0 

eee 
Fig. 18-15. Level 2 tone-control routine 

count milliseconds during each phase. The next four parameters give the 
duration for each phase. Two additional parameters give the sustain 
amplitude relative to the peak amplitude of the attack (remember that the 
ADSR shape overshoots the sustain level during attack) and the overall 

amplitude of the entire event. 
The remaining parameters are used to control waveform switching. 

Four parameters give waveform table addresses for each of the four envelope 
phases. Since sound control blocks must be created to generate sound, their 
addresses ate stored in the event control block. The cross-fade value increases 
from 0 to 1.0 as the old waveform fades out and the new waveform fades in. 
The rate of fade is arbitrarily set to complete in one-quarter of the duration of 
the current envelope segment. The cross-fade increment is computed at the 
beginning of an envelope segment such that this is true. 
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Figure 18-15 is a rough flowchart of the Level 2 tone control routine. 
Start and stop flags similar co the percussive sound control block are used to 
control initiation and termination of the event. If this routine finds the start 

flag on, it initializes things for the attack phase of the envelope. Since no 
waveform cross-fade is used during che attack, the cross-fade parameters are 
zeroed. 

Note that a routine is called to find an inactive sound control block and 
initialize it. This is a Level 2 utility that will be used quite often. It simply 
scans the portion of memory devoted to sound control blocks and uses the 
first inactive (stop flag on) one it finds. Failure to find an inactive block is an 

etror condition, which means that too many sounds are going simulta- 
neously. Once a sound control block is found and initialized, it is called 
waveform A and its address is stored in WAVACB. 

The second decision block determines if an envelope segment has ex- 

pired. If so, and it is the release segment, the stop flag is set, which means 
that the tone event is complete. Otherwise, the envelope phase number is 
incremented and the envelope time counter is initialized to the duration of 
the next phase. Since cross-fading will be necessary when entering the new 
phase, the cross-fade parameters are initialized. The cross-fade value 

(CFVAL) is set to zero and the increment (CFINC) is computed according to 

the formula CFINC=4/ENVTC, where CFINC and CFVAL are assumed to 

be fractions. With this increment, the cross-fade will be complete in one- 

quarter of che duration of the current envelope phase. Finally, another sound 
control block is set up and called waveférm B. Cross-fading will always fade 
out waveform A and fade in waveform B. 

Most of the time, entry into the tone control routine falls through the 
first cwo decisions and enters a block where the Level 1 routine for waveform 

A is called. The amplitude for the 30 samples that it computes is the product 
of the overall event amplitude, the current-envelope amplitude, and one 

minus the cross-fade value. The current-envelope amplitude is a function of 

the time counter (ENVTC) and the duration of the current-envelope phase. 
In an analog-envelope generator, the attack, decay, and release curves 

are negative exponential functions, which never really reach their endpoints. 
In the digiral domain, linear curves are easier to generate and also reach their 
endpoints but do not always “sound right,” particularly with long duration 
envelopes. Here, a compromise is made in which the exponential curve is 

adjusted to reach the endpoint in three time constants. This may be accom- 
plished as shown in Fig. 18-16 by computing a virtual endpoint 5.2% 
further away from the beginning point than the actual endpoint. For 
maximum efficiency in the envelope routine, the three-time constant expo- 
nential curve is stored in a table. Then a table lookup based on the envelope 
phase number, time counter, and envelope phase duration is performed 
according to the formulas given in the figure. 

After waveform A samples are computed, a test is made to determine if 
cross-fading is in effect. If so, B waveform samples are also computed, which 
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ENDPCINT 5% 

TABLE CONTENTS (Y)} 

2 & 

4 

04 

0.2 

0 4 = 
1/3 2/3 

(TIME 
CONSTANT 

TABLE LOOKUP ARGUMENT (x) 

Y = 1,0524(1 — E~ **) for 0 =X=<1.0 
ENVT! 

TABLE LOOKUP: DURING ATTACK X = 1 — 
ENVAI 

ENVELOPE = Y 

ENVTC 
DURING DECAY X = ENVDD 

ENVELOPE = 1 — Y(1 — ENVSAM) 

ENVTC 
QDUAING RELEASE X = ENVAD 

ENVELOPE = ENVSAM(1 — Y) 

Fig. 18-16. Truncated exponential curve 

are automatically added to the A samples in the sample buffer. The 
amplitude argument for B is the same as for A except that the cross-fade 
value is factored in differently so that wave B fades in. If cross-fading is not in 

effect, waveform B is bypassed. 
After the 30 composite samples are computed, the cross-fade increment 

is added to the cross-fade value. If the sum reaches 1.0, which means that the 

A waveform is completely faded out, the A sound control block is deactivated 

and the B sound control block becomes a new A by swapping the control 
block addresses, WAVACB and WAVBCB, in the event control block. The 

cross-fade parameters are then zeroed co inhibit cross-fade processing until 
the next envelope phase is started. The final operation before a normal exic is 
decrementing the time counter. 

Control of percussive events in most respects parallels that of tone 

events. The filtered noise envelope, for example, is controlled in a similar 

fashion but for simplicity is a simple attack—release shape. In order to 
broaden the range of sounds available from the simple model used, provisions 
are made for the noise filter and ringing resonator parameters to vary during 
the sound. Both the center frequency and Q factor for the noise filter may 
vary, while only the ringing frequency of the resonator is adjustable. A linear 
variation from a specified initial value to a specified final value is used. This 
variation scheme is well defined for the enveloped noise, which has a duration 
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HIGH BYTE | LOW BYTE MNEMONIC 

BLOCK ADDRESS| ACTIVITY FLAGS | EVENT ID EVTID 

+2 PERCUSSION TYPE l ENV. PHASE #| PRCTYP ENVPHN 

+4 TIME COUNTER ENVTC 

+6 ATTACK DURATION ENVAD 

+8 DECAY DURATION ENVDD 

+10 INITIAL NOISE FILTER FREQ. | MMFIF 

+12 FINAL NOISE FILTER FREQ. MMFFF 

+14 INITIAL NOISE FILTER Q MMF IQ 

+16 FINAL NOISE FILTER Q MMFFQ 

+18 NOISE FILTER FREQ. INC. MiMFFIN 

+20 NOISE FILTER Q INC. MMFQIN 

+ 22 NOISE FILTER MODE MMFM 

+ 24 FILTERED NOISE AMP. MMFAMP- 

+26 INITIAL RESONATOR FREQ. RSNIF 

+ 28 FINAL RESONATOR FREQ. RSNFF 

+30 RESONATOR FREQ. INC. RSNFIN 

+32 RESONATOR Q RSNQ 

+ 34 RESONATOR AMPLITUDE RSNAMP 

+36 SOUND CNTL BLOCK ADDR. SCBADR 

+ 62 UNUSED 

Fig. 18-17. Percussion-event control block 

that is the sum of attack and release times. The ringing bandpass filter does 
not have such a well-defined duration so for simplicity the “duration”’ is 
assumed to equal that of the enveloped noise. (If no enveloped noise is 

desired, its amplitude parameter may be set to zero but with an envelope 
defined to establish the “pseudoduration.”’) 

The percussion event control block in Fig. 18-17 again contains a large 
number of parameters, most of which are manipulated similarly to those in 
the tone event control block. The main difference is control information for 
varying filrer parameters during the event. For maximum efficiency, an 

“increment” (which can be negative) for each parameter is computed when 
the event is started, and the increment is added to the filter parameter every 
block of 30 samples. 

Figure 18-18 is a flowchart of the percussion event control routine. 
Again, it is similar to the tone routine and in most respects is simpler. The 
major complication is that the “duration” of the filtered noise portion of the 
event may be different from that of the damped sine wave portion. No 
problem occurs if the damped wave is shorter, but, if it is longer, the event 
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ENVPHN +I 
ENVTC + ENVAD 
START FLAG +- OFF 

INCREMENT 
FIND AN INACTIVE 
SOUND CONTROL 
AND INITIALIZE IT 

COPY RSNIF, RSNG, 
RSNAMP, EVTAMP, MMFM,| 
MMFIF, MMFIO INTO 
SOUND CONTROL 
BLOCK 
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ROUTINE USING MMFAM 
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(TABLE LOOKUP OF 
ENVELOPE CURVE) 
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COPY CONTROL BLOCK 
ADORESS TO SCBAOR — 
‘COMPUTE MMFFIN, 
MMFQIN, RSNFIN BASEO) RSNFIN TO GN INITIAL AND FINAL CORRESPONDING 
VALUES AND ENVAD PARAMETER IN SOUND SET stor FLAG 

CONTROL BLOCK IN EVENT 
CONTROL BLOCK 

DECREMENT ENVTC exit 
BUT NOT BELOW ZERO 

AND ENVDO 

Fig. 18-18. Level 2 percussion-control routine 

control block will have to be kept active beyond the end of the noise en- 
velope. This is accomplished by the bottom-most decision block, which does 
not allow the event control block stop flag to be set until the sound control 
block stop flag is set. This solution requires the envelope-sequencing logic to 
be smart enough to avoid overshooting the end of the envelope. 

Level 2 Sequencing Routine 

Up to this point, sound and cnyclope gencrator routines have becn 

discussed. Although many sounds may be going simultaneously, there is 
only one copy of each generator subroutine in memory. The multiple sounds 
are the result of calling these routines with different event control blocks. 

The Level 2 sequencer routine is responsible for scanning the area of memory 
devoted to event control blocks and having each active one processed. This is 
the routine that is actually called by the Level 3 routines to be discussed. 

Figure 18-19 is a flowchart for the sequencer routine. Entry is directly 
from the NOTRAN language interpreter and is with exactly one argument. 
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<—___ 

SCAN ALL EVENT CONTROL BLOCKS 
ANO CALL APPROPRIATE LEVEL 2 
GENERATOR ROUTINE FOR EACH 
ACTIVE ONE FOUND. 

fs 
BIG SAMPLE 

BUFFER FULL 

NO 

WRITE SAMPLE RECORD. 
ON MASS -STORAGE 
DEVICE 

| SCAN ALL SOUND 
CONTROL BLOCKS AND 
RESET SAMPLE 
BUFFER ADDRESSES 

DECREMENT 
TIME COUNT 
OF SHORTEST 
EVENT 

Fig. 18-19. Level 2 general-control routine 

This argument specifies how many milliseconds of sound to generate before 
returning. Although no new events can be started dwring this interval, any 
number may terminate (as mentioned earlier, events are defined by their 
starting time and duration). New events can only be created by the NO- 
TRAN interpreter when it is in control. 

The first task is to scan the memory area devoted to event control 
blocks. Every active block found is further tested for the event type and the 
corresponding Level 2 generator routine is called. After a complete scan 
through all of the blocks, 30 samples have been added to the sample buffer 
and the buffer address pointers in all sound control blocks have been in- 
cremented by 30. 

The next task is to determine if the large sample buffer is full. In the 
original implementation of NOTRAN, this buffer was 3,000 samples long, 

which would therefore hold 100 of the small sample blocks. If the large 
buffer is full, then a sample record would be written to the mass storage 
device. Following this, all of the sound control blocks would be scanned and 
their sample buffer addresses reset to the beginning of the large sample 
buffer. While this method of handling the sample buffer seems redundant 
(the buffer address field of all sound control blocks is the same), keeping the 
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information separate and with the sounds facilitates implementation of stereo 

or quad at a later time. 
The last task is to determine if the specified duration of sound genera- 

tion has elapsed. The time argument that was passed to this routine is simply 

decremented and tested for zero. If the cime has not elapsed, the routine is 

simply executed again for another 30 samples. When the time is elapsed, the 

Level 3 NOTRAN interpreter regains control so that more events can be 

started. 

NOTRAN Language 

Level 3 routines in the NOTRAN system are what actually look at 

NOTRAN statements. Like the lower-level routines, most of the work is 

simply the manipulation of tables of information. Before discussing what 
these routines do, a brief description of the NOTRAN language itself is in 
order. Note that up to this point the sound generation routines are com- 
pletely independent (within the constraints imposed by the sound generation 
models) of the actual music language used. Thus, language freaks could 
completely restructure the language and still use the sound generation 
routines that have been discussed. 

In many ways, NOTRAN is similar co FORTRAN, which these days is 
not necessarily an asset. Nevertheless, music code in the language is broken 
up into statements. Each statement uses one (or more) lines of text and almost 

always starts with a keyword such as TEMPO or VOICE. The keywords, 

besides being easy to read, make it easy for the interpreter to identify the 
type of statement. The boundaries between statements either denote the 
passage of time or simply separate blocks of information. 

NOTRAN statement types can be divided into three different groups. 
First, there is the specification group, which is used to define the characteris- 
tics of something such as an “instrument.” Specification statements are 

instantaneous and do not consume any time in the musical performance. 
Next, there are control statements, which influence what notes are to be 

played and how they are to be played but again they do not consume any 
time. Finally, there are vole statements that actually cause sound to be 

generated. Usually, but not always, a duration is associated with each note. 
Later, we will discuss the importance of durations in sequencing and coor- 
dinating multiple, simultaneous sounds. NOTRAN statements are executed 
sequentially, one after another. The standard language has no provisions for 
loops or repeats, etc.; that function is left for a Level 4 macroprocessor. 

VOICE Statement 

The VOICE statement is a specification statement used to define all of 
the parameters associated with tone-type sounds. Thus, the envelope, 
amplitude, and waveform parameters associated with tones must be 
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Example: VOICE2 AD=80; DD=50; RD=250; SA=45; VA=15; 
1,50,50; H2,20,25; H4,30,60; 
1,100; H2,80; H3,20; SW=H2,75; H3,50; H4; 

RW=H1 

VOICEn where n is the voice ID number 

AD Attack Duration in milliseconds 

OD Decay Duration in milliseconds 

RD Release Duration in milliseconds 

SA Sustain Amplitude in percent of peak attack amp titude 

VA Voice amplitude in percent of DAC full scale range 

AW Attack Waveform 

OW Decay Waveform 

SW Sustain Waveform 

RW Release Waveform 

Hn Harmonic number 

Fig. 18-20. Voice statement format. The example defines a voice ID of 2, and 
attack duration of 80 msec, decay duration of 50 msec, release 
duration of 250 msec, sustain amplitude 45% of attack amplitude, 
and total voice amplitude 15% of overflow level. The attack 
waveform consists of fundamental, second, and fourth harmonics 
with relative amplitudes of 50%, 20%, and 30% of the full 
waveform amplitude and phases of 180°, 90°, and 216°, respec- 
tively. The decay waveform has fundamental, second, and fourth 
harmonics with amplitudes of 50%, 40%, and 10% of the total and 
random phase angles. The sustain waveform has second, third, 
and fourth harmonics with amplitudes of 33.3%, 22.2%, and 
44.4% of the total and random phases. The decay waveform con- 
tains only the fundamental harmonic, which is, of course, 100% of 
the waveform. 

specified. The syntax of the VOICE statement could be as simple as a string 
of parameters (numbers) separated by commas (this, in fact, is how the 

original version of NOTRAN worked), but with possibly dozens of parame- 
ters, it becomes very difficult for the user co read the statement. Therefore, 

the convention of £eyword parameters is adopted whereby each parameter is 

identified by a two-character mnemonic. This method also allows parameters 
to be scrambled or omitted if desired. The statement interpreter then 
supplies default parameters for the omitted ones. For example, if a simple 
AR envelope is desired, then only the attack and release parameters need to 
be specified and the interpreter will set the decay duration and sustain 
amplitude to zero and unity, respectively. 

Parameters are separated by semicolons and optionally spaces. The 
semicolons act as a signal to the interpreter that more parameters, possibly on 
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the next line, follow. Parameters probably should not be split across line 

boundaries (whether this is a requirement depends on the interpreter im- 

plementation), and besides, splitting makes the statement hard to read. 

Parameters that specify a duration are always in units of milliseconds. 

Parameters that specify an amplitude are in terms of percent. Depending on 
the parameter type, the values of related parameters may have to add up to 

100% or less. With other parameter types, the percentage figures merely 

establish ratios and can add up to any value, although individual parameters 
must be less than 100%. With these conventions for numerical parameters, 
integers can normally be used; however, a decimal point and fractional part 

can be tacked on for additional precision. 
Figure 18-20 shows an example VOICE statement and a list of the 

keyword parameters available. The number immediately following the 
VOICE keyword is the ID number for the voice and note staternents; using 

the voice will specify the ID number. During the course of the music, a 
particular voice number may be redefined as often as desired. There is no 
restriction on the numbers that can be used. 

The AD, DD, and RD parameters are used to specify the durations, in 
milliseconds, of three phases of the ADSR envelope. The duration of the 
sustain phase depends on the note being played. The first letter identifies the 
envelope phase and the D is a mnemonic for duration. If a parameter is 
omitted, zero (actually 1 msec) is assumed. SA refers to sustain amplitude 
and gives the sustain level relative to the peak overshoot of the attack. Note 

that the percent figure refers to voltage amplitude; thus, a specification of 50 
would give a sustain level 6 dB below the attack peak. Omission of this 
parameter gives a default of 100%. 

The voice amplitude (VA) parameter is very important. Its basic func- 
tion is to specify the amplitude of the voice relative to that of other sounds. 
The importance is due to the requirement that the sum of all of the voice 
amplitudes of all simultaneous sounds must not exceed 100% if total freedom 
from overflow is desired. This means that if at some point in the musical 

score 15 simultaneous sounds have been built up, the VA parameters as- 
sociated with each sound should not add up to more than 100%. Observing 
this rule will virtually guarantee (since the filtered noise used in percussion 
instruments is random, it cannot be absolutely guaranteed) that overflow will 
not occur when the sounds are summed in the sample buffer. In most cases, 

with a lot of simultaneous sounds, the amplitude sum could substantially 
exceed 100% without undue risk of overflow because of the low probability 
of envelope and waveform peaks all coinciding at the same time. 

The remaining parameters define the four waveforms associated with 
the four envelope phases. These are organized into groups of parameters. A 
Stoup starts with a keyword, such as AW for attack wave, followed by an 

equals sign, which signals that a group of parameters follows. Within the 
group may be several parameter subgroups, each of which corresponds to a 
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harmonic. The subgroup starts with the keyletcer H (harmonic) immediately 
followed by a number defining the harmonic number. Commas then separate 
the parameters in the subgroup. The first parameter after the harmonic 

number is amplitude (in percent) and the second is phase in units of 277/100 
(thus, 50 specifies 180°, 25=90°, etc.). The last parameter in a subgroup is 
followed with a semicolon if any more subgroups or groups follow; other- 
wise, the end of the statement is assumed. If the phase parameter is omitted, 
a random-number generator determines the phase, and, if the amplitude 
parameter is omitted, a 100% amplitude is assumed. Omitted harmonics, of 
course, have zero amplitude. The amplitude percentages in a waveform 

specification simply indicate relative harmonic amplitudes; there is no re- 
striction on their sum, since the waveform will be scaled after it is computed. 
DW, SW, and RW are similarly used to specify groups of parameters for the 
other three waveforms. If a waveform is not defined for an envelope phase, 
the waveform of the previous segment will be used, which saves space in the 
waveform table area of memory. The attack segment must have a waveform 
specified. 

PRCUS Statement 

The PRCUS statement, which is detailed in Fig. 18-21, defines the 

sound of a percussion instrument. The ID number and duration and 
amplitude parameters closely parallel those of the voice statement. Since a 

two-phase envelope is used, only the AD and RD parameters are needed. 
The use of filtered noise in the percussion sound model creates some 

interesting problems in specifying the amplitude of the filtered noise. The 
worst problem is that the parameters specified for the filter will greatly 

influence the perceived as well as actual amplitude of the filtered noise. 
Although che interpreter could look at the filter bandwidth and adjust the 
amplitude parameter, the correction will be inaccurate if the bandwidth 

changes during the sound. For simplicity, the noise amplitude parameter 
should simply be passed through with any necessary correction supplied by 
the user. Another problem with filtered noise is the fact thar its peak 
amplitude cannot be predicted with certainty even if uniformly distributed 
noise samples are used. Nevertheless, this will seldom cause a problem unless 
the noise filter bandwidth is quite smal] and the percussive voice amplitude 

is a sizable portion of the DAC’s range. If a problem is encountered, it would 
be easy to incorporate a test in the percussion sound generation routine to 

clip excessively large filtered noise samples. 
The noise filter mode parameter is different because it uses mnemonics 

for its value. While convenient for the user, mode numbers could be used 

just as well to simplify the interpreter program. Parameter transitions are 

specified by giving two numbers separated by commas, the first of which is 
the initial value of the parameter and the second is the final value. The 
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Example: PRCUS4 AD=10; RD=70; NA=30; SA=70; VA=10; 

NM=BP; NF=400,600; NQ=3; SF=100,90; SQ=15 

PRCUSn where n is the percussive voice ID number 

AD Attack Duration for filtered noise in milliseconds 

RD Release Duration for filtered noise in milliseconds 

NA Filtered noise amplitude in percent 

SA Damped sine wave amplitude in percent 

VA Voice Amplitude in percent of DAC full scale range 

NM Noise filter Mode 

BP Bandpass 

LP Low-Pass 

HP Righ-Pass 

BR Band-Reject 

NF Noise filter Frequency in Hertz initial,finat 

NQ Noise filter Q factor initial,final 

SF damped Sine wave Frequency in Hertz initial,final 

SQ damped Sine wave Q factor 

Fig. 18-21. Percussion statement format. The example defines a percussive 
sound with an ID of 4, a filtered noise attack duration of 10 msec, 
filtered noise release duration of 70 msec, filtered noise amplitude 
of 30%, damped sine amplitude of 70%, and overall amplitude of 
10% of the DAC range. The noise filter mode is bandpass, and its 
center frequency increases from 400 Hz to 600 Hz during the 
80-msec combined duration of the envelope. The noise filter Q 
factor is constant at 3, giving a 3-dB bandwidth of 133 Hz at the 
beginning of the sound. The damped sine wave frequency de- 
creases from 100 Hz at a rate that will make it 90 Hz when the 
filtered noise envelope expires. The damped sine wave Q of 15 
will give a ring time to —60 cB of about 330 msec assuming a 
constant frequency. 

parameters specifying Q are different from the others in that they are pure 
numbers rather than percents or durations. 

Linear transition of the ringing filter frequency under the control of an 
unrelated process (the noise envelope) can lead to some interesting error 

situations if a decreasing frequency is specified. The problem occurs when the 
center frequency decreases all the way to zero before the ringing is damped 
enough to deactivace the sound. If this occurs, the frequency may go negative 
(and therefore seern to start increasing from zero) or it might get stuck. With 
the constant Q form of the ringing filter, sticking at zero frequency would 
probably prevent the sound control block from ever being deactivated, even 
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though it is nét producing an audible sound. Again, exceptional condition 
testing is probably necessary to eliminate the effects of this kind of error. The 
testing can be relatively infrequent, however. 

Control Statements 

The basic level of NOTRAN has very few control statements. Many 
more would undoubtedly be added if the language is extended via a macro- 
processor. One of the basic control statements is the TEMPO statement. The 
TEMPO statement essentially specifies a correspondence between musical 
time in terms of quarter notes, etc., and real time. The statement format is 

simply the keyword TEMPO followed by a valid duration specification (see 
the section on nove statements), an equals sign, and a number specifying the 
number of milliseconds assigned to that duration. An example statement is: 

TEMPO Q=350 

where Q refers to a quarter note and the 350 specifies that the quarter note 
has a duration of 350 msec. If the time signature (which does not need to 
be specified) is 4/4, then this corresponds to a metronome marking of 170 
beats/min. 

The only other control statements are START and STOP. These 

keywords require no parameters and are merely used to skip over code while 
the score is “debugged.” Sound generation is started when a START state- 
ment is encountered and suspended when a STOP statement is seen. With 
sound generation suspended, statements are interpreted and thrown away at 
great speed, thus allowing rapid syntax checking or skipping of sections 
known to be correct. 

Comment lines may be inserted simply by making the first character on 
the line an *. The interpreter then ignores the remainder of the line and goes 
to the next. 

Note that there are no jump or repeat statements and no provisions for 
subroutines (refrains) in the basic language. A little chought will reveal that 
if these are implemented in the Level 3 interpreter chat the entire NOTRAN 

score would have to be in memory at once. During actual sound synthesis 
much, if not most, of memory will be needed for waveform tables, control 
blocks, and sample buffers. Although the text could be kept on disk and 
randomly accessed in response to a jump or refrain statement, such a facility 
is beyond many microcomputer operating systems. In any case, these func- 
tions will be left to a higher-level macroprocessor that has all of memory 
available when run. 

Note Statements 

Note statements are the only ones that actually produce sound and take 
real time to execute. Whereas the other statements all began with a keyword, 
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a note statement begins with either an ID number or simply one or more 

blanks, The statement ID number is not important to the interpreter but 

may be included to identify various portions of the score such as measure 

numbers to the user. The remainder of the note statement consists of one or 

more event (note) specifications. As before, a semicolon following a specifica- 

tion is a signal that more follow on the same or next line. 

Quite a bit of information is needed in the specification such as the 
voice ID, pitch, duration, and articulation so the syntax is somewhat con- 
densed to save space without unduly affecting readability. For a tone event, 
the specification starts with a numbet corresponding to the voice statement 

defining the “instrument” that will play the event. Immediately following 
the voice ID is a single letter pitch mnemonic, which is simply one of the 

letters A-G. If the basic pitch must be sharped or flatted, the letter is 
followed by a # or an @ sign, respectively. Following this is a single digit 
specifying the octave where C4 through B4 spans the octave starting at 
middle C. Note that the octave numbers “turn over” at C in accordance with 
usual musical practice. 

After the voice and pitch have been specified, the duration is needed. In 
the original version of NOTRAN, standard fractions such as 1/4 were used 
for the duration. However, single-letter mnemonics will be used here for the 
common durations as listed below: 

Whole note 
Half note 
Quarter note 

Eighth note 
Sixteenth note 

Thirty-second note Hemore 

These stock durations may be modified by appending one or more dots 
(periods) or the digit 3. The dot extends the duration specified to its left by 
50% and can be repeated if desired, that is, Q.. is 75% longer than a 
standard quarter note. The “3” modifier indicates a triplet, which has a 
duration two-thirds of that specified. This format is much faster to type than 

the old fractional form but may not be quite as flexible. For example, tied 
notes are not readily specified, although for most common cases dots can be 
used to simulate Ged notes. A general sulution to situations such as a half 

note tied to an eighth note is left to the reader's imagination. 

The final variable to specify is articulation. Currently, only staccato is 
recagnized and is indicated by the letter “S” following all other specifica- 
tions. When normal (legato) notes are interpreted and given to the sound 
generation routines, the sustain duration is made equal to the note duration 
minus the attack and decay duration. Thus, the release phase of the note 
occurs beyond its musical stopping point. If the note duration is shorter than 
the attack plus decay time, che full attack, decay, and release phases are still 
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executed. When staccato is specified, che sustain duration is made uncondi- 
tionally zero. 

Obviously, with so many options in statement construction, a great 

variety of note specifications is possible. Below is a list of some legal specifi- 
cations and how they are interpreted: 

97 3C4Q Voice 3, middle C, quarter note duration (the 97 is a tag 
and is not processed) 

4E@4E. Voice 4, E-flat just above middle C, dotted eighth duration 
(equivalent to 3/16) 

2F #3838 Voice 2, F-sharp just below middle C, part of a sixteenth 
note triplet in which three notes take the time normally 
required by two of them. Staccato articulation. 

19B@5Q3..S | What a mess! The duration should evaluate to 1/4 X 2/3 X 
3/2 X 3/2 = 9/24. Voice 19 and staccato articulation are 
specified. 

In a long score, much of this information seems to be redundant. For exam- 
ple, a melody line might run for dozens of notes in the same octave, yet the 

octave number must be specified for each note. If ic weren’t for the fact that 
several notes with the same voice ID can be playing simultaneously, it would 
be easy to have the NOTRAN interpreter assume octave numbers. Of course, 

the melody could just as well be split between two octaves and such assump- 
tions would probably lead to numerous errors. Again, a general solution to 

this and other redundancies is left to the reader. 

Percussive note specifications are much simpler than tones because only 
the voice number really has to be specified. The form: Pn is used where the P 
signals a percussive voice and n refers to the ID of a percussive voice defini- 
tion. For convenience in certain situations, a duration specification identical 
to that described above can be appended. 

Sequencing and Overlap 

Now that the events themselves are fully specified, all that remains is to 
define their sequencing, which relies on just two simple, bur very powerful, 
concepts. The first is that every note staternent represents a distinct poit in 
time. These time points are in the same sequence as the note statements. All 
of the events within a single note statement start at the point in time 
corresponding to the statement. Once started, each event runs for its dura- 

tion and stops when finished, completely independent of other events started by 
this or earlier statements. 

The second key concept involves spacing of the time points. Simply 

put, the shortest specified duration in a note statement determines the ammount 
of real time that elapses until the next note statement is executed. Thus, if a 
note statement specifies a quarter-note event, two eighth-note events, and a 

sixteenth-note event, time equal to a sixteenth-note duration will clapse 



644 Musica APPLICATIONS OF MICROPROCESSORS 

= dee 

r 

ry 

ere aa 
2080 RE 

at 1£40; RE 
2D5Q; RE 1@4Q; 2E5H (A) aa (B) 1F4Q: RE 

3 

veda, 
—f ’ of 

: { A 

2650 

1G3Q: 2F4E; 3ESE3 
3F5E3: ASI 
2GdE: ASS 
SESE3 
1A3Q: 2G4E; SESES 
BESES, ASS 
DASE; RSA 

(c} SDSE3 

Fig. 18-22. Note-sequencing examples 

before the next statement is executed. The fact that three other notes are still 

playing in no way affects interpretation of the next statement. Note that 

durations specified with Qs, Es, etc., ate what count. Even though a staccato 

quarter note may sound for only a sixteenth-note duration, its time value is 
still a quarter, and if that is the shortest time value in the statement, ic will 

control the delay before the next statement. Likewise, a percussive event with 
a specified duration (which need have no relation to its actual sound duration) 

can control the statement duration. 
Often, it is necessary to go on to the next statement even sooner. The 

rest specification is provided for this purpose. A rest specification is simply 
the letcer R followed by a duration specification. Its only effect is to be 
factored into the shortest duration evaluation and if indeed the rest is the 
shortest, it will control when the next statement is executed. This use of the 
rest is quite different from normal use in which a particular voice is in- 
structed to be silent. In NOTRAN, no sound is created unless a note or 

percussion specification specifies it; thus, the usual rests are not needed. 
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However, if a period of silence is needed, a statement having a lone rest 
specification can be used. 

Figure 18-22 shows some common musical situations and how they 
might be coded in NOTRAN. This sequencing method is quite general and 
should be able to handle any situation likely ro be encountered in reasonably 
conventional scores. 

Level 3 Routines 

The primary function of Level 3 software is to decode the NOTRAN 

statements that were just described and extract their information content. 
Conversely, if a typing or specification error is found, the condition should 
be reported to the user. The routines for statement scanning and syntax 
checking, however, are in the realm of compilers and other language analysis 
programs and are therefore beyond the scope of this text. Basic NOTRAN as 
specified here is very simple in comparison with a typical programming 
language; thus, a statement interpreter should not be very difficult to write 
even by one experienced in general programming but inexperienced in com- 

pilers. In fact, a successful interpreter can be written with no knowledge of 
classic compiler theory at all, just common sense. The main danger, how- 
ever, is a program that might misinterpret an erroneous statement rather 
than flag it as an error. 

Once a statement is decoded, its information content is systematically 
stored in tables. In the case of a voice statement, for example, the various 

envelope parameters are stored in a table that describes the characteristics of 

that voice. The waveform parameters are then used to compute a waveform 
table (or tables) that is stored away, and a pointer to the table is stored along 
with the envelope parameters. The voice ID is also part of these data. Before 
allocating additional table space, a scan is performed to determine if the same 
voice ID had been defined previously. If so, the new information replaces the 
old; otherwise, more table space is allocated. Percussive voice definitions are 

handled in the same way except that the parameters are different and no 
waveform table is needed. TEMPO statements simply update a single tempo 
variable, which then influences all succeeding time calculations. 

When an actual event is encountered in a note statement, several 

operations must be performed. First, the voice ID is extracted and used to 
locate the table of information created earlier when the corresponding voice 
statement was processed. Next, a new event control block (ECB) is created 

(by scanning the control block area until an inactive one is found), and 
pertinent information such as waveform table addresses and envelope 
parameters are copied over to it. The frequency parameter in the ECB is set 

by further scanning the specification for pitch information. Next, the dura- 
tion and articulation specifications are analyzed and the information used in 
conjunction with the tempo variable to set the sustain duration. Finally, the 
duration is compared with the current “shortest duration,” which is updated 
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if longer. After all events in the statement are processed, the current shortest 
will be the actual shortest, which is then passed as an argument to the Level 2 

ECB scanner routine. 

Level 4 Routines 

The preceding has described a functionally complete direct digital 

music synthesis system that is quite usable as is. However, even higher-level 

programming can be added to further ease its use and reduce the amount of 

typing effort needed to encode a score. In a nutshell, Level 4 programming 

accepts a string of “extended NOTRAN” statements as input and produces a 
longer string of “basic NOTRAN” statements as output. This output string 
is then tun through the synthesis program (Levels 1-3) as a separate opera- 

tion. The details of Level 4 programming will not be described, but perhaps 
a discussion of some ideas and possibilities will give a hint of what could be 

accomplished. 
One easy-to-incorporate enhancement would be a key signature capabil- 

ity. A new control statement would be added whereby the user could specify 
the key in which the music was written. Note statements then could be 
coded without explicit sharps and flats except where necessary. The Level 4 
processor would provide al] of the accidentals in the output score. It might be 
necessary to provide a semipermanent override capability, however, to cover 

atonal and highly modulated scores. As mentioned before, other redundan- 
cies such as octave selection could also be removed with similar facilities. 

A somewhat more complex enhancement would be a transposition 
facility. Orchestral scores, for example, are written for instruments that 

actually sound pitches different from what the score says (and the player 
thinks), A B-flat trumpet, for example, sounds B-flat when the player reads 
and fingers C. The trumpet part of the score, therefore, has been adjusted so 
that the correct pitches are played. With transposition capability, one could 
declare that voice 3, for example, was a B-flat voice and therefore directly use 

notes from a B-flat instrument score. 

Sophisticated sequence control could also be added. Simple repeats and 
jumps are obvious but a subroutine capability can allow many weird and 

wonderful things to be done. Like a software subroutine, a musical sub- 
routine can be written once and then called by name whenever it is needed. 
Power comes from the fact that a subroutine can in turn call another one and 
so on. Thus, very complex sequences can be built up from a relatively small 

number of statements. Much of the usefulness of software subroutines is due 
to the ability to pass argwments that then alter the action of the routine in a 
specific way for that particular cal]. Arguments such as key signature, pitch 
register, tempo, and voicing would allow great variety in the expression of a 
musical subroutine without rewriting it. Some really nice effects can be 
accomplished if a single voice line can be subroutined independent of other 
simultaneous voice lines. 
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Many other possibilities should come to mind. In fact, the appearance 
of the input language need not even bear a resemblance to NOTRAN. In this 
respect, “basic NOTRAN" would be used as a musical “machine language” 
with a-high-level compiler generating code for it. 

Level 0 Routines 

Although seemingly out of sequence, Level 0 routines are discussed 
here because for most microcomputer direct synthesis installations they 
would comprise a separate program and separate pass of the data. As men 

tioned earlier, Level 0 routines operate on the individual sound samples 

produced by the Level 1 routines to introduce reverberation, choral effects, 
etc. The reader should not underestimate the utility of these simple tech- 
niques in enhancing and ‘‘de-mechanizing” the sound of even the most 
sophisticated synthesis methods. 

The techniques described in Chapter 14, however, require large 
amounts of memory for simulated delay lines and therefore would probably 
not fit if implemented as part of the synthesis program. Thus, Level 0 
functions would be written to read a sample stream from a mass storage 
device, process it, and write the altered stream on another device. 

In some cases, the “acoustical environment’ created by the Level 0 

routines must change during the course of the score. If the ability to dynami- 
cally specify reverberation parameters is desired, the Level 0 program will 

also have to scan the score while processing the sample string. Virtually all of 
the score data will be ignored, but timing will have to be followed to 
determine where in the sample string to change reverberation parameters. 

Playback Program 

After sound samples for the score are all computed and saved on a mass 
storage device, the last step is playing them back through the DAC for 
conventional recording. Because of the sustained high data rate involved and 
the requirement for an absolutely stable sample rate, this tends to be a highly 
specialized program that may not be easy to write. Most of the problems are 
due to the fact that samples are stored in blocks on the mass medium. With 

IBM-type tape, the time lapse between blocks is fairly constant and predicta- 

ble. Disks are far more erratic. If the next sector is even barely missed, the 

playback program will have to wait a full revolution before reading it again. 

Even more time is wasted when a track seek is necessary. Also, rereading a 

block after an error is usually out of the question, so top-quality recording 

media are a must. The net effect of such an erratic input data flow is that as 

much memory as possible should be used as a data buffer. 

Details of the playback program are heavily dependent on the systern 

configuration. The ideal situation is an audio DAC that is interfaced to the 

system as a direct memory access (DMA) device and a mass storage system 
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that is also a DMA device. The DAC could be configured so that it continu- 
ously scans, say, 16K words of memory in a circular fashion and generates an 
interrupt whenever wraparound occurs. The playback program then attempts 

to keep ahead of the DAC by reading records from the storage device. Of 
course, the records cannot be read too fast or the DAC may be “lapped.” This, 
of course, assumes a system that can support simultaneous DMA such as an 

LSI-11. 

A livable system can often be put together when only one of the two 
data streams is under DMA control. The easiest situation would be a DMA 
DAC coupled with a programmed transfer mass storage device. Execution 

time constraints on the playback program would remain lenient as long as 
sample entry into the buffer did not fall behind the DAC. Programmed 
transfer to the DAC with DMA sample reading is a less desirable situation. 
Assuming that the DAC is merely double-buffered (can hold one sample in a 
register while converting the previous one), the playback program must be 
free every sample period to get the next sample loaded before the previous 
one expires. While not difficult to do most of the time, the dara must be 

kept flowing even while servicing exceptional conditions on the storage 
device such as an end of record interrupt or seeking to the next track. In 
either case, DMA activity must not lock the processor out for long periods of 
time. Programmed I/O for both data streams is quite a challenge unless the 
system is fast and the sample rate is low. 

5The microprogrammed memory refresh feature of the LSI-11 cannot be used by a 
smple playback system because of che large blocks of rime (60 psec every 2 msec) 
stolen. 



Appendix 

Table for Comparison of Popular Operational Amplifiers 
will be found on page 650 
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Periodicals 

Electronotes Newsletter, 1 Pheasant Lane, Ithaca, New York 14850 

Computer Music Journal, P.O. Box e, Menlo Park, California 94025 

ADC analog-to-digital converter 
ADSR attack—decay—sustain—release envelope generator 

AGC automatic gain control 
AR attack—release envelope generator 
BCD binary coded decimal 
BIFET  ._ process name used by National Semiconductor Inc. to refer to the 

integration of bipolar and field-effect transistors on the same chip 
BPF bandpass filter 
BPI bytes per inch 
CAS column address strobe 
CMOS complementary metal-oxide field-effect transistor logic 

CPU central processing unit 
CRT cathode-ray tube 

DAC digital-to-analog converter 

DIP dual-inline package—most popular form of integrated circuit 
packaging 

DMA direct memory access 
DOS disk-operating system 

FET field-effect transistor 
FFT fast Fourier transform 
FIFO first-in-first-out buffer memory 
Ic integrated circuit 
IM intermodulation 
VO input/outpur 

JFET junction field-effect transistor 
LPF low-pass filter 

LSB least significant bit 
MIPS million instructions per second 

MOSFET metal-oxide field-effect transistor 
MSB most significant bit 
NFET N-channel field-effect transistor 

OTA operational transconductance amplifier 
PLL phase-locked loop j 
PROM programmable read-only memory 
RAM read/write memory 
RAS row address strobe 
rms root-mean-square 
RMW read—modify—write 

ROM read-only memory 



SAH 

SPT 

S/N 

VCA 

VCF 

vCco 

VFO 

BIBLIOGRAPHY 

sample and hold 
slow Fourier transform 
signal-to-noise ratio 

voltage-controlled amplifier 
voltage-controlled filter 
voltage-controlled oscillator 
variable-frequency oscillator 
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Index 

Accumulator divider, 547-549 
Accuracy DAC, 216, 346 
Acquisition time, 380 

ADC. See Analog-to-digital conversion 
Addressing modes 

LSI-L1, 153-154 

6502, 162-163 
Algorithmic input, 303-315 
Alias distortion. See Distortion, alias 
AM. See Amplitude modulation 
Amplifier 

differential, 191-192 

nonlinear, 48-54 
operational, 172-173, 650 
operational transconductance, 

191-200 

voltage-controlled, 87-88, 189-200 
Amplitude modulation, 32-33 

parameter, 16-18 
response, definition of, 54-56 
response, effect of finite pulse width, 

356-358 
Analog switch. See Switch, analog 

Analog synthesis See Voltage control 

Analog synthesizer. See Voltage-con- 
trolled synthesizer 

Analog-to-digital conversion, 110, 213, 
244-251 

audio, 379-381 
dual-slope, 245-246 
linear search, 246 
single-shot, 244-245 
successive approximation, 247-251 
tracking, 247 

Analysis 
frequency, 522-523 

homomorphic, 526-529 
sound, 495-540 

spectral shape, 523-529 
Analysis-synthesis, 70-74, 517-518 

Aperture delay, 380 
Aperture uncertainty, 381 
Arithmetic 

binary, 600-614 
complex, 412-415 
fixed point, 600-614 
fractional, 214-215 

mixed number, 392-393 
multiple precision, 601-602 
program, 607-610 

Array processor, 576 

Attack. See Envelope, amplitude 

Autocorrelation, 538-539 
Automatic gain control, 381 

Bandwidth, definition, 56-57 
Bessel functions, 98 

Bit reversal. See Decimation 
Buffer 

display, 329 
first-in-first-out, 344, 380 

Bus 

LSI-11, 151-153, 330 

$-100, 130, 133, 145-146, 330 
6502, 159-161 
8080, 143-145 

Butterfly diagram, 416-417 

Capacitor, hold, 241 
Cascade, filter, 60, 62 
Cassette, tape, 135-136 
Cepstrum, 529-530, 539-540 
Chorus effect, 69-70, 120, 464-467 

simulator, digital, 465, 466-467 
Clippers. See Amplifier, nonlinear 
Clock 

audio DAC timing, 343-344, 377 

real-time, 259, 286 
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Coding, DAC, 231-233, 347-352 

Coloration, sound, 69 
Comparator, window, 247 

Compensation 
bulk resistance, 188 
discharge, 188 
finite pulse width, 368-369 
linearity in 3080, 197-199 
op-amp, 231 
temperature, 178, 187, 211 

Composition 
algorithmic, 303-315 
by editing, 333-340 

Computer 
signal processing, 575-576 
synthesis, direct, 38-39, 383-431, 

621-648 
Control blocks, NOTRAN system, 629, 

633 
Controller, musical instrument, 303 
Convolution, direct, 452 
Corner peaking, 89 
Current mirror, 193-194 

Current-to-voltage converter, 230-231 

Cutoff frequency, 359 
slope, 359 

DAC. See Digital-to-analog converter 
Decay. See Envelope, amplitude 
Decibel, 17 
Decimation, 412-413 
Deglitcher, DAC. See Glitch, DAC 

Deviation, frequency modulation, 95-97 
Digital control of synthesizers, 170, 

271-274 

See also Synthesizer, computer-con- 
trolled 

Digital filters, 433-477 
Digital filter 

all-pass, 447-451 
arbitrary response, 452-459 
cannonical, 447 
impulse invariant, 439 
low-pass, 437-439, 445 
multiple feedback, 444-447 
program, 615-617 
state-variable, 441-444,627,615-617 
tuning, 443-444 

90° phase shift, 465-467 
Digital integrator, 384-385, 434-437 

Digital-to-analog convetter, 106, 
213-224, 231-239, 243, 
343-354, 377-379, 551-552, 
554, 600 

Digital-to-analog converter 
audio, 343-354, 377-379, 600 

display, 320, 324 
duty-cycle, 218-219 
exponential, 223-224 
floating-point, 349-352 
intelligent, 243 
resistive divider, 219-223 

Digitizer, graphic, 302, 332 

Disk 
fixed media, 137, 647 
floppy, 136-137, 647 

Dispersion. See Phase response 
Display 

alphanumeric, 318 

bit-mapped. See Display, raster 
computer graphic, 318-331 
list, editing. See Editing, display list 

format, 321-322 

raster, 327-331 
vector, 319-327 

Distortion 
alias, 384, 389-390, 392, 396 

553-556 
DAC glitching, 353-354 
harmonic, 553-556, 586 

intermodulation, 554 
slew limiting, 355-357 

Division, software, 605, 612-614 
DMA, 145, 151, 160-161, 329, 

647-648 
DOS, 140 

Echo. See Reverberation 
Editing 

display list, 322, 331 
functions, graphic display, 335-340 
sound using tape recorder, 44-45 
text, 138, 140 

Envelope 
amplitude, 32-33, 596 
generation, analog, 90-91 
spectral, 28, 524-529 
tracking, 71 

Equalizer, 61 
Exponential converter, 174, 176-179 



Exponential converter (comtinued) 
DAC, See Digital-to-analog 

converter, exponential 

function, 82-83 
truncated, 631-632 

Fast Fourier transform. See Fourier 
transform, fast 

Feedback shift register. See Sequence 
generation, digital 

FFT. See Fourier transform, fast 

Filter 
active, 369-375, 378 
all-pass, 447-451 
bandpass, 56, 204, 270 

FFT equivalent, 511-516 
band-reject, 57, 205 
cascade implementation, 360, 361 
comb, 63-64, 451-452 
constant bandwidth, 89-90 

Q, 89-90 
definition, 54-60 

design data, 370-374 
digital, 119, See also Digital filters 
dispersive, 447-451, 520 
heterodyne, 509-510 

high-pass, 56, 205 
interpolation, 470-477 
jitter, 546 
low-pass, 56, 109, 115, 204, 

358-376 
audio reconstruction, 358-376 
Butterworth, 363-365, 370-372 

Cauer, 366-367 
Chebyshev, 365-366, 368, 

370-374 
elliptical, 366-367 
iterative R-C, 361-363 
iterative R-L-C, 362-363 
vector generator, 326-327 
4-pole, 209-211 

notch. See Filter, band-reject 
parallel implementation, 360, 361 

passive, 375 
ringing, 480-482 

R-L-C, 203-205 
spectrum analysis, 503-510 
state-variable, 204-208 
state-variable, digital. See Digital 

filter, state-variable 
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Filter (continued) 
tracking, 586. 
transversal, See Digital filter, 

arbitrary response 
voltage-controlled, 88-90, 201-211 
I/E. See Noise, pink 

Filterbank, analyzer, 505-510 
Flanging. See Filter, comb 
Floating point, 157, 577 
EM. See Frequency modulation 
Formant 

definition of, 62 

tracking, 72, 523-529. See also 
Spectrum tracking 

usage, 335, 523-525 
Fourier series, 117, 396-399, 401, 

562-563 
Fourier transform, 401-431 

computer, 575-576 

discrete, 402-431 
fast, 407-408, 412-424 
fast, complex-real conversion, 

421-424 

forward, 406-421 

inverse, 406, 421 
program, 406, 407, 419-420, 

422-424 

slow, 405-407, 409-411, 562-563, 
614, 618-620 

in spectral analysis, 510-517 

Frequency 
fundamental, 22 

generation, digital, 542-550 
generator, harmonic, 565-566 
harmonic, 22-26 
modulation, 32, 94-100 

patch, 99-100 
negative, 99-100, 180, 386 
parameter, 13-15 

response. See Amplitude response 
Fuzz effect, 48 

Gate, music keyboard, 276-278 
Gilbert multiplier, 199 
Glitch, DAC, 217, 222, 353-357, 

378 

Handshake protocol, 284 
Harmonic 

Fourier transform, 404-406, 
425-431 



658 

Harmonic (continued) 
inexact, 568-570 
Nyquist frequency, 405 

History 
microprocessor, 127-133 
sound synthesis, 34-41 

Hold droop, 381 

step, 381 

Impulse response 
of concert hall, 462 
of filter, 452-459, 473-474 

Input-output, memory-mapped, 142, 
149, 152, 160, 250 

Instruction set 
arithmetic, 606 
LSI-11, 154-157 
6502, 163-165 
8080, 146-149 

Interlace, raster scan display, 328-329 
Interpolation 

beeween waveforms, 339-401, 
628-631 

in curve editing, 337-339 
linear, 387-388 
noise. See Noise, interpolation 

polynomial, 468-469 
sinc function, 470-477 

Interrupts 
application of, 278-279, 286, 648 

LSI-11, 153 
6502, 161 
8080, 146, 161 

Toterval timer. See Clock, real-time 

Jetsound effect. See Filter, comb 
Jitter 

in audio DAC, 343-344 
in digital oscillator, 546-550 

Joystick, 301-302 

Keyboard 

function, 333 
music, 91-92, 275-297 

assignment problem, 280-281 

polyphonic, 281-297 
pressure sensitive, 297 

INDEX 

Keyboard (continued) 
two note, 279-281 

velocity-sensitive, 282-283 

Ladder, R-2R, 222-223 
Language 

APL, 598 

assembly, 126, 141, 599 
BASIC, 126, 141-142, 419-420, 

423, 424, 571, 598 
C, 599 
FORTRAN, 126, 598 

PASCAL, 598 

PL/M, 598 
portability, 598-599 
machine. See Language, assembly 
music, 120-123, 299, 621-648 

Level, signals in voitage-controlled 
synthesizer, 81-84 

Light pen, 332-333 

Linear prediction, 525-526 
Linearity, DAC, 215-216, 219-221, 

345-346 
Logic replacement, 158-159 

Machine, finite state, 290-291 
Microcode, 597 
Microcomputer 

Altair, 129 

definition, 126-127 
H8, 133 
IMP-16, 129 

MARK-8, 129 
PET, 133 
TRS-80, 133 

Microprocessor 

definition of, 126-127 
IMP-16, 129, 131 

LSI-11, 132, 150-158, 244, 251, 
259, 330, 599, 624, 648 

Micro Nova, 132 
PACE, 132 
SCMP 131 

Z-80, 143 
4004, 127-128 
6502, 131, 158-165, 243, 244, 250, 

282, 324, 330, 392, 570-571, 
588, 599, 606-621, 624 

6503, 286 
6800, 330 
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Microprocessor (comtinwed) 
8008, 128, 259 

8080, 129, 143-150, 161, 244, 

249, 385, 386, 625 
8085, 143 

9900, 132 

Microprocessors, description of, 
40-41, 143-165 

Mixing, sound, 117 
Modification 

sound, 43-74 
spectrum, 49-68, 518-320 

Modulation index, 95-97 
Modulator, balanced, 65-68 
Modulator, ring, 65-68 
Module 

instrument, 256, 268-274 
voltage-controlled, 75-78, 84-94 

Monitor 
software, 139-140 
X-Y graphic, 319-320 

Monotonicity. See Lineatity, DAC 

Mouse, 332 
Multiplexing 

ADC, 252-253 
addtess on 4116, 559-561 
analog, 239-241 

DACs, 237-243, 260 
digital module, 542, 550, 556-562 

Multiplication 

hardware, 566-567 
software, 604, 611-612 

Multiplier 
analog. See Gilbert multiplier 
rate, 545-546 

Multiplying DAC, 218, 236-237 
Muse, 312-315 

Music, definition of, 4 

MUSIC V, music language, 122-123 

Noise generator 
analog synthesizer module, 93 
generation, digital, 483-488 

interpolation, 387, 393-395 
pink, 93, 309 
quantization, 111-112, 344-352, 

554-555 
unwanted analog, 274, 371, 376 
unwanted digital, 272-274, 378-379 

white, definition of, 30 

NOTRAN music language, 121-122; 
621-648 

Nyquist’s theorem, 111 

Operational amplifier. See Amplifier, 
operational 

Organ, Hammond electronic, 36 
Oscillator 

digital, 542-550, 556-562 

sawtooth, digital, 384-386 
sawtooth-pulse, 174-175, 181-184, 

186 
quadrature, 482-483, 509 
sinewave, digital, 482 
triangle-square, 174-175 
voltage-controlled, 84-87, 173-189, 

549 
; Oscilloscope, 9 
Overlap, in use of Fourier transform, 

426-427, 516-517 
Overtone. See Harmonic 

Parameter 

NOTRAN language, 637-639 
sound, 8-31 

variation, 31-34 
Patching 

automatic, 261-268 
definition of, 78-80 
fixed, 268-274 
manual, 257-261 
pinboard matrix, 78-79 

Percussive sound synthesis, 479-493, 
625-627 

types of, 479-480 

Phase cancellation multiplier, 567-568 
locked loop, 549-550, 590 
parameter, 20 

response 
definition 54-55 
of filter, 367-368 
of filter, all-pass, 447-448 

Phosphor, display, 320 
Pipelining, 561 
Pitch 

musical, 14-15 
perception, 11-13, 530-534 
tracking, 71, 530-540 

Pole count, filter, 359, 367 
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Polyphony, definition of, 275-276 
Portamento, 92 

Printers, computer, 138-139 

Q control, 208-209 

definition of, 56 
Quantization error, 111-112 

Quefrency, 529-530, 539-540 
Queue, data, 284-286, 291-296 

RAM, definition of, 134 
Random number generator, 483-487 
RCA synthesizer, 37-38 
Record, discrete Fourier transform, 

424.431 
Refresh 

display, 320, 323, 329 
dynamic RAM, 559 
multiplexed DAC, 242 

Relay, mechanical, 265 
Resolution 

binary arithmetic, 601 
DAC, 213-215 

display, 318-319, 327, 328 

time-frequency, 500-502 
Reverberation 

digital, 460-464 
electronic, 68-69, 120 
using tape recorder, 46-47 

Reverberator 
all-pass, 463-464 
delay line, 462 

Rhythm display, 339-340 

Ribbon controller, 299-300 
ROM, definition of, 128 

Sallen and key filter. See Filter, active 
Sample 

definition of, 106 
playback, 114-115, 647-648 

tate conversion, 470-477 
definition, 106 
envelope, 595, 623 
selection, 109-111, 360-361 

storage, 114-115 
Sample-and-hold 

analog synthesizer module, 93, 

304-308 

INDEX 

Sample-and-hold (continued) 

in audio DAC, 380-381 
DAC deglitcher. See Glitch, DAC 
etrors, 380-381 

Scaling, binary in synthesizers, 170 
Sequencer module, 92-93, 104, 125 
Settling time, 216-217 
Sequence generation 

analog, 310-311 
digital, 311-315, 484-487 

Sideband, 97 

Signal flow graph, 439-441 
routing, 255-274 

Signal-to-noise ratio of audio DACs, 

344.352 
Sine 

mathematical definition, 18-20 
mechanical definition, 20-21 

Slew limiting distortion, 355-357 
of sample-and-hold, 307-308, 

355-357 
Software 

microcomputer system, 139-142 

music synthesis, 593-648 
Sonogram, 496-502 
Sound spectrogram, 496-502 
Spectrum analysis 

definition of, 27-31 

modification. See Modification, 
spectrum 

phase-derivitive, 427-431 
plotting methods, 496-502 
shift, 64-68, 465-467 
tracking, 72, 523-529. See also 

Formant tracking 
Speed change using tape recorder, 

45-56 
Standards, analog synthesizer, 169-172 
Statistics, 306-309, 487-488 
Stochastic music, 308-310 

Storage, mass, 135-138 

Sustain. See Envelope, amplitude 

Switch, analog, 221, 224-230 

“Switched On Bach,” 40 

Synthesis by Fourier transforms, 
403-404, 424-431, 520-521 

goals, 4-8 

percussive sound, 479-493 
speech, 334-336 

Synthesizer 
analog. See Voltage-controlled 

synthesizer 



Synthesizer (continued) 
computer-controlled, 170-172, 

255-274, 541-591 
voice modular, 172 

voltage-controlled. See Volrage- 
controlled synthesizer 

Table lookup, 118, 390-395, 623 
interpolation, 474-477 

Tape 

1/2 inch computer, 137, 647 
recorder, multitrack, 47-48, 

102-103, 259 

use in synthesis, 37, 43-48 
Telcharmonium, 35-36 
Theremin, 37 
Timer, interval. See Clock, real-time 
Top octave divider, 544, 590 
Track-and-ground, 356-357 
Trackball, 332 
Tracking error, 380 

Transconductance gain block, 191-192 
Tremolo. See Amplitude modulation 

INDEX 661 

Trigger, music keyboard, 276-278 

Tuning systems, 14-15 

Vector generator, 324-327 

Vibrato, 32-70. See also Frequency 
modulation 

Vibrator, nonlinear simulation, 
489-493 

Voice module, hybrid, 577-591 
Voiceprint, 500 

Voltage control, limitations, 101-103 
Voltage-controlled oscillator. See 

Oscillator, voltage-controlled 
Voltage-controlled synthesizer, 39-40, 

75-100, 169-211 

Wah-wah effect, 48, 63 
Waveform computation, 115-119 

drawing, 9, 36-37 
Waveshaper, 184-185, 187 

Window, spectral analysis, 512-516, 
522-523 



MUSICAL APPLICATIONS 
OF MICROPROCESSORS 
Hal Chamberlin 

Here’s a truly comprehensive book 

that covers digital microprocessor 

sound and music synthesis, and fea- 

tures heretofore unpublished tech- 
niques that are practical only with 

microprocessors. Standard linear 

techniques for microprocessor appli- 

cation are discussed. And, in non- 
mathematical language, musical ap- 

plications for the newer and more 

powerful 16-bit microprocessors are 

explained. Also covered are all 

phases of waveform shaping and fil- 

tering as applied by digital devices to 

electronic music generation. 

The book is divided into three sec- 
tions. Chapters 1 to 5 cover important 

background material including ana- 

log music synthesis principles, direct 

digital music synthesis principles, 
and much more. Chapters 6 to 11 

cover the applications of micropro- 

cessors to controlling analog sound- 

synthesizing equipment. Chapters 12 

to 18 detail digital synthesis tech- 

niques. Numerous waveforms charts, 

nomographs, and sample control and 

generation programs written in BASIC 

are used to provide actual hands-on 
experimentation and application. 
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