

K-1008-2L PATCHES TO MICROSOFT BASIC

FOR 6502 PROCESSORS

K-1008-2 BASIC PATCHES USER'S MANUAL

The K-1008-2 BASIC Patches software package allows the MTU K-1008 Visible Memory to be used as a terminal display and graphics output device with BASIC. It is designed to work with Microsoft BASIC for the KIM (it is compatible with the Synertek SYM and the Rockwell AIM as well). In order to use the package, the user must first obtain a copy of "Microsoft 9 Digit BASIC" which has been assembled starting at address 2000₁₆. Microsoft 9 Digit BASIC is available from Johnson Computer (Box 523, Medina, OH 44256)

This software package consists of 3 machine language programs and a demonstration program written in BASIC. The first program consists of a text display routine, a set of plotting routines, a routine that "pokes" patches into BASIC, and a dispatch routine. This program is loaded immediately after the BASIC interpreter at address 4261 and extends up through address 49D7.

The second and third programs are keyboard handler routines that can be used in place of a serial teletype keyboard. The first is written for an unencoded keyboard that is available from Jameco Electronics (1021 Howard Ave., San Carlos, CA 94070). The second is written for nearly any kind of parallel encoded ASCII keyboard with a 7-bit plus strobe output. Either routine implements all of the control codes recognized by BASIC correctly, something that is not possible with a teletype keyboard. Both programs start at address 0200.

The fourth program is a BASIC demonstration program that shows off the graphics capabilities of the system and verifies that it is working properly.

These are recorded on the enclosed cassette first in Hypertape format then in standard KIM format.

Prog. #	ID	Address	Description
1	01	4261-49D7	Text, graphics, patches, and dispatcher
2	02	0200-03E1	Unencoded keyboard routine
3	03	0200-02BC	ASCII encoded keyboard routine
71	04	49DA-55FB	Demonstration program in BASIC
5-8	Same	as program	1-4 except in standard speed KIM format

Required Hardware Configuration

- 1. Standard KIM-1 (see note 1 below for SYM-1 or AIM-65)
- 2. Model K-1008 Visible Memory addressed from C000-DFFF
- 3. Model K-1016 or equivalent 16K memory addressed from 2000-5FFF
- 4. Parallel keyboard recommended, serial teletype keyboard is acceptable (see note 2 below)
- Note 1. To prevent conflicts with on-board ROM in the SYM and AIM, the address of the Visible Memory will have to be changed. Store the new page address of the VM in location 4263.
- Note 2. The following locations must be modified to restore the serial keyboard handler that comes with BASIC:

427B	5A
4280	1E
4285	A9
428A	01
428F	20 45

Loading Instructions

- 1. Reset the KIM and ready it for cassette input.
- 2. Load in the Microsoft 9 Digit BASIC cassette supplied by Johnson Computer.
- 3. Load in file 01 from the K-1008-2 cassette supplied in this package.
- 4. If an unencoded keyboard is used, load in file 02 from the K-1008-2 cassette. If an ASCII encoded keyboard is used, load in file 03. If a serial teletype keyboard is used, make the changes listed in note 2 on the previous page.
- 5. If any changes were made to MTU software, dump the updated MTU program onto another tape to save patching effort the next time BASIC is loaded.
- 6. Begin execution at location 4261. The display connected to the Visible Memory should clear and the message MEMORY SIZE? should appear.
- 7. Type a carriage return. The message TERMINAL WIDTH? should appear.
- 8. type 53 and then a carriage return. The message 5670 BYTES FREE followed by the copyright statement should appear. If more than 16K of continuous memory is installed the number of bytes free will be greater.
- 9. Type LOAD which causes the KIM to wait for cassette input. Play program 4 on the K-1008-2 cassette. The KIM display should light with 0000 4C following a successful load.
- 10. Press GO to re-enter BASIC at the warm start location. BASIC should respond by typing READY
- 11. You may list the entire program by typing LIST 0-9999 and carriage return. To temporarily stop the listing, hold down the Control key and type S. To resume listing hold down Control and type Q. To terminate the listing hold down Control and type C. If a teletype keyboard is being used, any key will terminate the listing.
- 12. Run the demonstration program by typing RUN followed by a carriage return. The program will run for approximately 1.5 hours with a long pause between each demonstration so that the screen can be examined. Most of the time is spent in the prime number mosaic demonstration. An infinite loop has been programmed following the prime number mosiac so Control/C will be necessary to interrupt the program and return to BASIC.
- 13. The demo program may now be modified as desired or the user can write his own graphics programs according to the following instructions.
- 14. Note that the cold start location (4261) can be used at any time to completely re-initialize BASIC. The patches made for a different VM address or a serial keyboard will be retained however.
- 15. The trigonometric routines are always retained when using the K-1008-2 BASIC Patches.

Use of the K-1008-2 Plotting Routines

The graphics routines supplied with the K-1008-2 package are capable of rapid clearing of the screen, plotting and erasing points, plotting and erasing vectors, and readback of points. For plotting purposes, the Visible Memory screen consists of an array of dots 200 dots high by 320 dots wide. Each dot is called a pixel and represents one bit in the Visible Memory. If the bit is a one, the pixel shows as a bright dot; if a zero, the pixel is black. A graphics image is formed by selectively turning pixels on and off in the desired pattern. Although the POKE function of BASIC could be used to create images directly according to the programming instructions given in the Visible Memory manual, plotting would be extremely slow. The machine language graphics routines in the K-1008-2 package perform the plotting functions hundreds of times faster and are more convenient to use.

An X-Y coordinate system is used to identify points on the VM screen. X and Y must always be zero or positive which means that the entire screen appears in the first quadrant. The allowable range for X is 0 through 319 and the allowable range for Y is O through 199. If coordinates outside the allowable range are used, the graphics routines will convert them to values in the allowable range by repeated subtraction of 320 (X) or 200 (Y). To plot, erase, or read a point, only a single X,Y pair is needed. To plot or erase a line, two X,Y pairs are needed, one for each endpoint. The following BASIC statement is required in every graphics BASIC program to identify the coordinates to the machine language plotting routines:

1 X1%=0: Y1%=0: X2%=0: Y2%=0

The statement number 1 insures that this statement is executed first whenever a RUN command is given to BASIC. This causes the integer variables X1%, Y1%, X2%. and Y2% to be placed first in the variable table where the machine language plotting routines can easily find them.

The USR function of BASIC is used to actually call the plotting routines into action. The argument used with the USR function determines which plotting function is performed. These are listed below:

USR(0) Clear the screen

USR(1) Plot a white point at X1%, Y1%

USR(2) Plot a white line from X1%, Y1% to X2%, Y2%

USR(3) Erase the point at X1%,Y1%

USR(4) Erase the line running from X1%,Y1% to X2%,Y2%

USR(5) Returns the color of the point at X1%,Y1% black=0, white=1

Note that USR(x) is a function subprogram, not a statement. A convenient method of using it to plot is to code the BASIC statement: Z=USR(x) where x is the argument corresponding to the desired plot function and Z is a dummy variable. The line plot and erase routines copy X2% into X1% and Y2% into Y1% when they execute. This allows a chain of end-to-end lines to be plotted or erased by simply changing X2% and Y2% for each successive endpoint after the first.

^{1.} Use of RUN (statement number) will not work correctly because the coordinate definition statement will not be executed. Instead the statement: 2 GOTO (statement number) should be entered and the plain RUN command used.

The following program segments are examples of how the graphics routines are used to perform fundamental plotting operations (be sure to define the coordinates as outlined previously):

1. To clear the screen before plotting: 10 Z=USR(0)2. To plot a point at X=160 Y=100 (the center of the screen) 10 X1%=160 20 Y1%=100 30 Z=USR(1)3. To plot a line from X=20 Y=30 to X=113 Y=16510 X1%=20 20 Y1%=30 30 X2%=113 40 Y2%=165 50 Z=USR(2) After statement 50 is executed, X1%=X2%=113 and Y1%=Y2%=165. 4. To erase the point at X=180 Y=32 10 X1%=180 20 Y1%=32 30 Z=USR(3)5. To erase a line running from X=78 Y=73 to X=13 Y=1910 X1%=78 20 Y1%=73 30 X2%=13 40 Y2%=19 50 Z=USR(4) After statement 50 is executed, X1%=X2%=13 and Y1%=Y2%=19. 6. To read the color of the pixel at X=100 Y=50 into the variable A 10 X1%=100 20 Y1%=50 30 A=USR(5)

The demonstration program should be consulted for other examples of plotting.

Use of the K-1008-2 Text Display Routines

The text display capability built into the K-1008-2 package can be used to annotate the graphic images created by the plotting routines. Normal PRINT statements are used to create the text so the secret to successful use is positioning the text in the desired locations on the screen.

The text display routine, SDTXT, keeps two variables of its own which identify the location of the text cursor on the screen. The character number is stored in location E4 (228 decimal) and varies from 0 for the left screen edge to 52 decimal for the right screen edge. The line number is kept in location E5 (229 decimal) and varies from 0 for the top line to 21 decimal for the bottom line. BASIC also has its own character number which is stored in location 16 (22 decimal) and ranges from 0 to 52 for a terminal width of 53. Normally BASIC's character number and SDTXT's character number agree. Every carriage-return/line-feed issued by BASIC sets both character numbers to zero and increments SDTXT's line number. When the line number tries to go beyond 21 the screen contents are moved upward by 9 raster lines instead.

Putting text at arbitrary locations on the screen basically amounts to POKEing the desired character and line numbers into memory at 228 and 229 respectively. The text is then generated with print statements. The coordinates of the center of a character at character position C and line number L are: X=6*C+2 $Y=19\overline{5-9*L}$; C=(X-2)/6 L=(195-Y)/9. Characters extend 2 pixels either side of center widthwise and 3 pixels either side of center heightwise. A semicolon terminator should be used after each element printed to prevent BASIC from following it with a carriage return. Also, BASIC's character number at location 22 should be reset to zero before the accumulated output exceeds 53 characters or else BASIC will insert a carriage-return/line-feed anyway. Also be aware that when numbers are printed with the semicolon terminator that a blank is printed following the number and that positive numbers are preceded by a blank.

There is one additional complication. The cursor displayed by SDTXT is a software cursor and arbitrarily changing the line and character numbers will foul up its proper handling. Therefore before changing the line or character numbers, the cursor should be cleared by executing the statement: Z=USR(6). After the line and character numbers are changed but before any PRINT statements, the cursor should be inserted by executing the statement: Z=USR(7). After all labels and captions are printed, the cursor may be cleared if desired. Return to BASIC's command mode will automatically restore the cursor for normal interactive text output. If possible, text printing should be done before any plotting.

For example, if the caption "Market Index" is desired to start at $X=70\ Y=180$ the following BASIC statements should be coded:

- 10 Z=USR(6)
- 20 POKE 228,11
- 30 POKE 229,2
- 40 POKE 22,0
- 50 Z=USR(7)
- 60 PRINT "Market Index";

Character number 11 and line number 2 are closest to the desired starting point of $X=70\ Y=180$. Note that lower case letters are available and may be part of a literal field with no problems. The demonstration program can be consulted for additional examples of text output.

Demonstration Program Documentation

The BASIC demonstration program supplied with the K-1008-2 software package is designed to illustrate the use of the plotting and text display functions. It is intended to be easy to read and understand rather than illustrate techniques for program compression and speed enhancement. The program is composed of five different demonstrations that execute in sequence with a long pause between each demonstration. The fifth ends with an infinite loop which must be interrupted to return to BASIC.

The first program illustrates point plotting by drawing a circle with 250 individual dots. The parametric equations: X=COS(A) and Y=SIN(A) are used to generate X,Y pairs as a function of the variable, A. Note that scaling of X and Y, which vary between -1 and +1, is necessary. Although it does not happen in the demonstration, if Y became exactly 1.0 then Y1% would become 200 which is outside the 0-199 range of Y1%.

The second program illustrates vector plotting by creating a very beautiful 31 point star. Since the string of endpoints is connected, the line drawing routine's property of updating X1% and Y1% is utilized to advantage. However the first point is a special case. To handle the first point, a variable called FP is initially set to 1. As each new endpoint is computed, the value of FP is interrogated. If it is found to be non-zero, the endpoints are forced to be equal which effectively moves the "pen" without drawing a line from where it was. After the first point is plotted, FP is set to zero thus allowing vectors to be drawn between all successive points.

The third program illustrates selective erasure of previously plotted lines. Points for the same 31 point star are computed but USR(4) is used to erase the lines computed. Note that when two lines cross and one of them is erased that a small gap is left in the other line. This is a fundamental problem of all stored image (as opposed to refresh vector) graphic displays.

The fourth program illustrates how a fully labelled and captioned graph can be produced. First the Y axis calibration labels are produced with a FOR loop and and print statements. Note that if the FOR loop had been written: FOR Y=-1 TO 1 STEP .2 that after 10 iterations Y would not be precisely 0 because of roundoff error in decimal fraction to binary floating point conversion. Thus rather than 0 being printed, something like -1.16415322E-10 would be printed instead. The captions are printed next. BASIC's character number is reset to zero once to prevent a spurious carriage-return/line-feed. Then the axes themselves are plotted with calibration marks for the Y axis. Finally the Fourier synthesis of the sound waveform of a particular organ pipe is plotted.

The last program demonstrates the ability to read data back from the Visible Memory. It also shows that visualization of number sequences can lead to new insights about the sequences. In the demonstration the sieve of Eratosthenes is used to plot the prime numbers from 3 to 132,001. Each pixel represents an odd integer starting with 3 in the lower left corner of the screen. The sieve method starts with all pixels set to one. Then all of the odd multiples of 3 up to 132,001 are computed and the corresponding pixels are reset to zero. Then a search for the next pixel beyond 3 which is still a one is performed and all of its odd multiples are set to zero and so on. This continues until 363, which is approximately equal to the square root of 132001 is tried. At this point, pixels remaining on the screen correspond to prime numbers. Do the prime numbers appear to be randomly placed? Is there a decrease in prime number density as the numbers get larger? Approximately what percentage of the odd integers are prime? The answers to these questions are immediately apparent when viewing the screen and may be supprising.

Notes on the Text and Graphics Routines

The heart of the K-1008-2 BASIC Patches software package is the VMBAS program. This program is file 01 on the cassette and is loaded immediately following BASIC into locations 4261 through 49D7. After loading, the cold start location (INIT) 4261 is executed. The main job of the cold start routine is to automatically patch certain locations in BASIC. These patches alter the operation of BASIC as follows:

- 1. USRLOC is altered to point to the graphics dispatch routine.
- The call to KIM's teletype input routine is altered to point to an internal input routine (ANKBX) which calls a parallel keyboard routine in location 0200 and echos the input text to SDTXT.
- 3. The call for testing for control/C is altered to point to an internal routine (CNTLCX) which in turn calls an improved control/C test routine in location 0203.
- 4. Patches BASIC so that program storage starts at location 49D8 instead of 4261
- 5. Patches BASIC so that the question about keeping the trigonometric routines is bypassed.
- 6. Clears the screen, inserts a cursor at character 0 line 0 and enters BASIC's initialization routine.

The graphics dispatch routine (DISPCH) is entered whenever the USR function is used in a statement. Its job is to look at the value of the argument and jump to the corresponding graphics routine. If the argument is out of range, an immediate return is taken. However the contents of 4316 and 4317 may be changed to jump to another machine language program instead if the argument is outside the range of 0 through 7.

Before dispatching to a graphics routine, the first 4 variables in BASIC's variable table are transferred to page zero locations for easy access by the graphics routines. After the transfer they are range checked and corrected if necessary by successive subtraction of the maximum value+1 if. After returning from a graphics routine, these page zero locations are copied back into BASIC's variable table. The four variables are assumed to be integer variables and are assumed to be stored in the following order: X1, Y1, X2, Y2. All of the routines return a value for the USR function but only argument 5 (read pixel) returns a predictable value.

USR function arguments 6 and 7 merely link to CSRCLR and CSRSET respectively in SDTXT. The character and line numbers utilized by SDTXT are checked for validity and corrected if necessary every time SDTXT is called.

Notes on the Keyboard Routines

Because of severe limitations with teletype input to KIM BASIC, the K-1008-2 BASIC Patches Package includes two parallel keyboard input subroutines. Besides, who wants to use a noisy teletype when the Visible Memory is doing all of BASIC's printing? Teletype input may still be selected however by putting the KIM in teletype mode which causes both keyboard routines to call the TTY input routine in the KIM monitor. Both keyboard routines use a transfer vector. Location 0200 contains a jump to the actual keyboard input subroutine and location 0203 contains a jump to the control/C test routine.

The keyboard routine in file 02 in conjunction with an unencoded keyboard is the least cost approach to adding a parallel keyboard to the KIM-1. In addition, port A is left completely free for other uses such as operating the MTU K-1002 8-Bit Audio System. An article reprint describing the theory and construction details of the keyboard is included. For best results with the file 02 keyboard routine the following additions to the keyboard matrix described in the article should be made:

- 1. The Shift Lock key should be connected between row 3 and column 3. This key should be unlocked while using the KIM monitor to avoid possible interference with the display.
- 2. Germanium diodes (type 1N270 is best) should be placed in series with the shift key, shift lock key, repeat key, and control key to eliminate a possible "phantom key" effect. The cathode (end with the band) should connect to the column lines.

For maximum usefulness with BASIC (and all other keyboard applications as well) the shift lock functions as an "upper case only" (caps lock) mode key. When active, all letters will be forced to upper case but the numbers and special characters will be unaffected. This is important because a bug in BASIC prevents recognition of statements and commands entered in lower case. In fact, a quite reasonable word processing system can be set up using the strings facility of BASIC and the lower case capability of the keyboard and Visible Memory display.

The test for control/C routine performs several functions. BASIC calls this routine periodically while printing and while running programs. When entered, it first tests for the control and C keys being pressed simultaneously. If that combination is seen the carry flag is set and an immediate return is taken. This causes BASIC to stop what it was doing and print a BREAK message. If control/C is not seen then control/O is tested. If this condition is true, BASIC's "suppress output" flag at location 0014 is toggled. The effect is to "flush" all output until the flag is turned back off by another control/O. Extra code is required to insure that the flag is toggled only once each time control/O is pressed. If control S is seen a loop is entered which waits until control/Q is seen. The effect is to suspend execution of the BASIC program until control/Q is pressed. If none of these special control functions are seen, an immediate return is taken with the carry flag off.

File 03 contains a similar but much shorter keyboard routine for parallel ASCII encoded keyboards. The keyboard should be connected to port A with the 7 ASCII data bits connected to bits 0 through 6. The key pressed or strobe signal should be connected to bit 7. The data is assumed to be in true form and the strobe is assumed to be active when it is a logic one although either or both polarities may be altered by changing the mask byte in location 02BA. All functions are similar to those of the unencoded keyboard with the exception of the caps lock feature. CNTL/R is used to turn caps lock on and CNTL/T is used to turn it off. Note that proper operation of the control/C routine with a pulse strobe keyboard requires a register to hold the keycode between keystrokes. This is a standard feature of keyboards using an LSI encoder chip. Also note that the strobe pulse must be at least 12 microseconds long to be seen reliably.

```
1 X1%=0: Y1%=0: X2%=0: Y2%=0:
2 REM PREVIOUS STATEMENT REQUIRED TO DEFINE
3 REM GRAPHIC COORDINATES
10 REM CLEAR THE SCREEN
10 Z=USR(0)

100 REM DEMONSTRATION OF POINT PLOT

110 REM PLOT A CIRCLE IN DEAD CENTER OF SCREEN USING

120 REM 250 POINTS

130 FOR I=0 TO 250

140 A=6.28318*I/250

150 X1%=100*COS(A)+160

160 Y1%=100*SIN(A)+100

170 Z=USR(1)

180 NEXT I

190 GOSUB 9000

200 REM DEMONSTRATION OF VECTOR PLOT

210 Z=USR(0): REM CLEAR SCREEN

220 FP=1: REM SET FIRST POINT FLAG

230 FOR I=0 TO 31

240 A=13*I*6.2831828/31

250 X2%=150*COS(A)+160
  11 Z=USR(0)
 240 A=13*1*0.2831828/31
250 X2$=150*COS(A)+160
260 Y2$=100*SIN(A)+100
270 IF FP<>1 THEN GOTO 290
280 X1$=X2$: Y1$=Y2$: FP=0
290 Z=USR(2)
300 NEXT I
 310 GOSUB 9000
400 REM DEMONSTRATION OF VECTOR ERASE
410 FP=1
420 FOR I=0 TO 31
430 A=13*I*6.2831828/31
440 X2$=150*COS(A)+160
450 Y2$=100*SIN(A)+100
460 IF FP<>1 THEN GOTO 480
470 X1$=X2$: Y1$=Y2$: FP=0
480 Z=USR(4)
490 NEXT I
500 GSUB 9000
500 GOSUB 9000
600 REM DEMONSTRATION OF AXIS PLOT, LABEL, AND TITLE
610 Z=USR(0)
620 REM INSERT Y AXIS LABELLING FIRST
630 FOR Y=-10 TO 10 STEP 2
640 REM REPOSITION TEXT CURSOR
 650 Z=USR(6)
660 POKE 228,0: POKE 229,(-Y+10)
670 Z=USR(7).
680 PRINT Y/10;: REM PRINT Y AXIS LABEL
690 NEXT Y
700 REM PRINT X AXIS CAPTION
700 REM PRINT X AXIS CAPTION
710 Z=USR(6): POKE 228,49: POKE 229,10: Z=USR(7)
720 PRINT "Time";
730 REM PRINT X AXIS CAPTION AND FIGURE CAPTION
740 Z=USR(6): POKE 228,0: POKE 229,21: Z=USR(7)
741 POKE 22,0: REM RESET BASIC'S CHAR POINTER TO 0
750 PRINT "Amplitude";
760 PRINT " Waveform of Great Diapason C4 16FT'
770 Z=USR(6)
                                               Waveform of Great Diapason C4 16FT";
 770 Z=USR(6)
 800 REM PLOT X AND Y AXES
810 X1%=20: X2%=294: Y1%=105: Y2%=105: REM HOR AXIS 820 Z=USR(2)
830 X1%=20: X2%=20: Y1%=11: Y2%=199: REM VERT AXIS 840 Z=USR(2)
```

```
900 REM PLOT TIC MARKS ON Y AXIS
910 FOR Y=-1 TO 1 STEP .2
920 X1%=18: X2%=20
930 Y1%=15+90*(Y+1): Y2%=Y1%
      940 Z=USR(2)
     950 NEXT Y
1000 REM PLOT THE WAVEFORM USING VECTORS
1010 FP=1
1020 XF=270/(4*3.14159): REM X SCALE FACTOR
1030 YF=60: REM Y SCALE FACTOR
1040 FOR X=0 TO 4*3.14159 STEP 4*3.14159/270
1050 Y=SIN(X)+.49*SIN(2*X+3.9)+.3*SIN(3*X+5.81)
1060 Y=Y+.24*SIN(4*X+3.8)+.18*SIN(5*X+97)
1070 Y=Y+.12*SIN(6*X+4.3)+.04*SIN(7*X+3.54)
1080 Y=Y+.07*SIN(8*X+.87)+.03*SIN(9*X+5.3)
1090 X2$=20+XF*X: Y2$=105+YF*Y
1100 IF FF<>1 THEN GOTO 1120
1110 X1$=X2$: Y1$=Y2$: FP=0
1120 Z=USR(2)
1130 NEXT X
  :1120 Z=USR(2)

1130 NEXT X

1140 GOSUB 9000

2000 REM SIEVE OF ERATOSTHENES DEMONSTRATION

2001 REM THIS PROGRAM FINDS ALL OF THE PRIME NUMBERS

2002 REM FROM 3 TO 128001 USING THE VISIBLE MEMORY.

2003 REM EACH PIXEL ON THE SCREEN REPRESENTS AN ODD

2004 REM INTEGER STARTING WITH 3 IN THE LOWER LEFT

2005 REM CORNER. THE PROGRAM FIRST TURNS ALL PIXELS

2006 REM ON AND THEN TURNS THOSE OFF THAT DO NOT

2007 REM REPRESENT PRIME NUMBERS. THOSE THAT ARE

2008 REM LEFT ON AFTER EXECUTION ARE PRIME. IS THE

2009 REM RESULTING PATTERN RANDOM? ARE THE PRIME

2010 REM NUMBERS UNIFORMLY DISTRIBUTED? THE ABILITY

2011 REM TO READ BACK FROM THE VISIBLE MEMORY IS

2012 REM USED IN THIS PROGRAM.
   2100 Z=USR(0)
2110 REM QUICKLY TURN ALL PIXELS ON
2120 FOR I=0 TO 199
2130 X1%=0: X2%=319: Y1%=I: Y2%=I: Z=USR(2)
2140 NEXT I
    2200 FOR I=3 TO SQR(128001) STEP 2
    2210 N=I
    2220 GOSUB 8000
   2220 GUSUB 8000

2230 IF USR(5)=0 THEN GOTO 2300

2240 FOR J=3 TO 128001 STEP 2

2250 N=I*J

2260 IF N>128001 THEN GOTO 2300

2270 GOSUB 8000

2280 Z=USR(3)
    2290 NEXT J
2300 NEXT I
2310 GOTO 2310: REM WAIT FOREVER
    8000 REM FUNCTION TO CONVERT ODD INTEGER TO X,Y
8010 N1=(N-3)/2
8020 N2=N1/320
    8030 X1%=N1-INT(N2)*320
8040 Y1%=N2
    9000 REM DELAY ROUTINE TO HOLD IMAGE IN SCREEN
9010 FOR D=1 TO 10000
    9020 NEXT D
   9030 RETURN
9999 END
```

9B

19

20

26 27 28

29 30 31

32 33 34

41 42

43 44

;

:

.PAGE 'DOCUMENTATION'
*****MODIFIED FOR KIM BASIC*****
THIS PACKAGE ALLOWS THE VISIBLE MEMORY TO BE USED WITH MICRO-SOFT BASIC AS TERMINAL DISPLAY DEVICE AND A GRAPHICS DISPLAY DEVICE. A SLIGHTLY MODIFIED VERSION OF SDTXT IS USED FOR TEXT DISPLAY AND AN ABBREVIATED VERSION OF THE GRAPHICS PACKAGE IS USED FOR GRAPHICS.

> INTERFACE WITH BASIC IS AT TWO LEVELS. THE CALL TO THE KIM TTY PRINT ROUTINE IS REPLACED BY A CALL TO SDTXT WHICH MEANS THAT ALL PRINTED OUTPUT FROM BASIC GOES TO THE SCREEN. THE KEYBOARD ROUTINE SUPPLIED BY THE USER SHOULD ALSO CALL SDTXT SO THAT TYPED INPUT APPEARS ON THE SCREEN AS WELL. INTERFACE
> TO THE GRAPHICS ROUTINES IS THROUGH THE USR FUNCTION AND THE
> VARIABLE STORAGE AREA IN BASIC. THE ARGUMENT OF THE USR
> FUNCTION CALL SELECTS WHICH GRAPHICS ROUTINE IS TO BE USED. THE COORDINATE DATA USED BY THE GRAPHICS FUNCTIONS IS ASSUMED TO BE IN THE FIRST 4 ENTRIES OF THE VARIABLE TABLE AND IS ASSUMED TO BE INTEGER DATA. TO ESTABLISH THE COORDINATE NAMES AND INSURE THAT THEY ARE STORED FIRST IN THE VARIABLE TABLE, THE FOLLOWING BASIC STATEMENT MUST BE CODED AS PART OF THE USER'S PROGRAM:

1 X1%=0; Y1%=0; X2%=0; Y2%=0

THE STATEMENT NUMBER 1 INSURES THAT IT WILL BE EXECUTED FIRST AND THAT X1%, Y1%, X2%, AND Y2% WILL APPEAR FIRST IN THE VARIABLE TABLE AND IN THE CORRECT ORDER. THE % SIGNS AFTER THE VARIABLE NAMES INDICATE THAT THEY ARE INTEGER VARIABLES AND MUST BE USED. THE ACTUAL NAME MAY BE CHANGED BUT CONFUSION IS MINIMIZED BY USING THE NAMES GIVEN. THE ORIGIN OF THE COORDINATE SYSTEM IS THE LOWER LEFT CORNER OF THE SCREEN. THE ALLOWABLE RANGE OF X IS 0 TO 319 INCLUSIVE AND THE Y RANGE IS 0 TO 199 INCLUSIVE. OUT OF RANGE COORDINATES WILL BE CORRECTED BY COMPUTING THEIR VALUE MODULO THE MAXIMUM VALUE PLUS 1. THE MODULUS COMPUTATION IS PRIMITIVE AND MAY BE SLOW HOWEVER. IF THE GRAPHICS ROUTINE MODIFIES ANY OF THE COORDINATES. THEY WILL BE MODIFIED IN BASIC'S VARIABLE TABLE COORDINATES, THEY WILL BE MODIFIED IN BASIC'S VARIABLE TABLE AS WELL.

THE USR FUNCTION CODES ARE AS BELOW:

- O CLEAR THE SCREEN AND SET THE TEXT CURSOR AT UPPER LEFT

- CLEAR THE SCREEN AND SET THE TEXT CURSOR AT UPPER LEFT CORNER OF THE SCREEN POINT PLOT X1, Y1 NOT CHANGED LINE PLOT K1, Y1 HITE DOT X1, Y1 NOT CHANGED LINE PLOT FROM X1, Y1 TO X2, Y2 WHITE LINE X2 COPIED INTO X1 AND Y2 COPIED INTO Y1 UPON RETURN POINT PLOT X1, Y1 BLACK DOT X1, Y1 NOT CHANGED LINE PLOT FROM X1, Y1 TO X2, Y2 BLACK LINE (ERASE) X2 COPIED INTO X1 AND Y2 COPIED INTO Y1 UPON RETURN READ POINT AT X1, Y1 VALUE OF USR FUNCTION ON RETURN IS THE STATE OF THE POINT O-BLACK 1-WHITE CLEAR THE TEXT CURSOR FROM THE SCREEN

55

10A

VMBAS BASIC/VM PATCHES DOCUMENTATION

57 58 59 60 61 62 63 64 65 66 67 68	;	FOR TEXT OUTPUT ANYWHERE ON THE SCREEN THE POKE FUNC BE USED TO DIRECTLY ALTER THE CURSOR POSITION. THE NUMBER IS KEPT IN LOCATION 228 (10) AND THE LINE NUMBER IS KEPT IN LOCATION 229. THE CHARACTER NUMBER RANGE TO 52 INCLUSIVE AND THE LINE NUMBER RANGES FROM 0 TO INCLUSIVE. THE CHARACTER MATRIX IS 5 BY 7 IN A CHARCELL OF 6 BY 9. LINE 0 CHARACTER OIS THE UPPER LEID OF THE SCREEN AND COVERS X COORDINATES OF 0 TO 6 AND COORDINATES OF 191-199 INCLUSIVE. OUT OF RANGE LINE OR CHARACTER NUMBERS WILL BE CORREAS WITH POINT COORDINATES.
69 70 71 72 73 74 75 76	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	NOTE THAT THE TEXT CURSOR SHOULD BE CLEARED FROM THE BEFORE MOVING IT WITH POKES AND SHOULD BE SET AFTER STANDARD BASIC PRINT STATEMENTS CAN BE USED FOR PLO' IF SEMICOLONS ARE USED TO SUPPRESS CARRIAGE RETURN/I NOTE THAT IF A CARRIAGE RETURN/LIME FEED IS PRINTED LINE NUMBER IS 21 THAT THE ENTIRE DISPLAY, GRAPHICS WILL BE SCROLLED UPWARD 9 SCAN LINES.

VMBAS BASIC/VM PATCHES EQUATES AND STORAGE

```
.PAGE ' EQUATES AND STORAGE'
 77
78
                                            GENERAL EQUATES
                              ;
 80 0140
81 00c8
                              NX
                                                                            ; NUMBER OF BITS IN A ROW
; NUMBER OF ROWS
; NUMBER OF PIXELS
                              NY
                                                       200
 82 FA00
                              NPIX
                                                       NX*NY
                                                                              NUMBER OF VISIBLE LOCATIONS
CHARACTER WINDOW HEIGHT
 83 1F40
84 0009
                              NLOC
CHHI
                                                       8000
  85 0006
                              CHWID
                                                                               CHARACTER WINDOW WIDTH
 86 0035
                              NCHR
                                                       320/CHWID
                                                                              NUMBER OF CHARACTERS PER LINE
NUMBER OF TEXT LINES
 87 0016
88 1D88
                              NLIN
                                                       NLOC/40/CHHI;
                                                                           ; NUMBER OF LEXT LINES
10 ; NUMBER OF LOCATIONS TO SCROLL
; NUMBER OF LOCATIONS TO CLEAR AFTER SCROL
; LOCATION OF KEYBOARD ROUTINE
; LOCATION OF TEST FOR CONTROL/C ROUTINE
                              NSCRL
                                                       NLIN-1*CHHI*40
 89 01B8
                                                       NLOC-NSCRL
                              NCLR
 90 0200
91 0203
92
                              ANKB
                                                       X'0200
                              CNTLC
                                                       X'0203
 93
94
                                           PAGE 0 STORAGE
                                                                              THIS IS THE ONLY RAM STORAGE USED BY THIS
 95
 96 0000
                                                      X'E3
                                                                           ; START BASE PAGE STORAGE 3 PAST END OF ; BASIC AREA
 97
 98
99
                                            PERMANENT STORAGE THAT MUST NOT BE WIPED OUT BY EXITING TO
100
102 00E3
                              VMORG:
                                                                           ; FIRST PAGE NUMBER OF VISIBLE MEMORY
103 00E4
104 00E5
                              CSRX:
                                                                           ; TEXT CURSOR CHARACTER NUMBER
                             CSRY:
                                            .=.+
                                                                           ; TEXT CURSOR LINE NUMBER
105
106
                                           TEMPORARY STORAGE THAT MAY BE WIPED OUT BY EXITING TO THE KIM
107
108
109 00E6
110 00E8
                                                                              COPY OF BASIC'S X1 COORDINATE COPY OF BASIC'S Y1 COORDINATE COPY OF BASIC'S X2 COORDINATE
                             X1CORD:
                                                      2 2 2
                             Y1CORD:
                                           .=.+
111 OOEA
                              X2CORD:
112 00EC
                              Y2CORD:
                                                                              COPY OF BASIC'S X2 COORDINATE
113 00EE
114 00F0
115 00F1
                             TEMP:
                                                                              TEMPORARY STORAGE
                                           .=.+
                                                                             BIT POINTER WITHIN BYTE
DO NOT USE KIM'S STATUS SAVE BYTE!!!
                                            .=.+
                                           .=.+
                                                                             DO NOT USE KIM'S STAT
ADDRESS POINTER 1
ADDRESS POINTER 2
DELTA X FOR LINE DRAW
DELTA Y FOR LINE DRAW
116 00F2
                             ADP1:
117 00F4
118 00F6
                             ADP2:
DELTAX:
                                           .=.+
119 00F8
                             DELTAY:
                                           .=.+
                                                                             DELTA Y FOR LINE DRAW
ACCUMULATOR FOR LINE DRAW
X MOVEMENT DIRECTION, ZERO=+
Y MOVEMENT DIRECTION, ZERO=+
EXCHANGE X AND Y FLAG, EXCHANGE IF NOT O
COLOR OF LINE DRAWN -1=WHITE
DOUBLE PRECISION COUNTER
120 OOFA
                             ACC:
                                            .=.+
121 00FC
                             XDIR:
                                           .=.+
122 00FD
                             YDIR:
                                           .=.+
123 00FE
124 00FF
                             XCHFLG:
COLOR:
                                           .=.+
                                           .=.+
125 00EE
                             DCNT1
                                                      TEMP
126 00FE
                             MRGT 1
                                                      XCHFLG
                                                                              TEMPORARY STORAGE FOR MERGE
127
```

TIA

VMBAS BASIC/VM PATCHES INITIALIZATION ROUTINE

				. PAGE	' INITIALIZAT	IC	ON ROUTINE'
128							OTANO TIMEDIAMBLY DEVOND DAGEG
129 130	0100			.=	X'4261	;	START IMMEDIATELY BEYOND BASIC
131 132	4261	D8	INIT:	CLD			CLEAR DECIMAL MODE DON'T CARE WHERE THE STACK IS RIGHT
	4262	4900		LDA	#X'C0		INITIALIZE THE LOCATION OF THE VISIA
	4264			STA			MEMORY
	4266			LDA			SET USRLOC TO GO TO GRAPHICS DISPAT(
		8D4020		STA			ROUTINE
	426B			LDA	#DISPCH/256	,	
		8D4120		STA	X!2041		
	4270			LDA			SET BASIC PRINT CALL TO GO TO SDTXT
		8D522A		STA	X'2A52	,	DET BROTO TREMT ONDS TO GO TO DEFINE
	4275			LDA	#SDTXT/256		
		8D532A			X'2A53		
	427A			LDA	#ANKBY&Y'FF		SET BASIC KEYBOARD CALL TO GO TO ANK
		8D5724		STA	x 12457	,	
	427F			LDA	#ANKBX/256		
		8D5824		STA	X12458		
	4284			LDA	#X '4C	:	SET BASIC TEST CONTROL/C CALL TO GO
		8DDA26		STA	X'26DA		CNTLCX
	4289			LDA	#CNTLCX&X'FF	,	
		8DDB26		STA	X'26DB		
	428E			LDA	#CNTLCX/256		
		8DDC26		STA	X'26DC		
	4293			LDA	#END+1&X'FF	;	ADJUST BEGINNING OF BASIC PROGRAM A
154	4295	8DCE40		STA	X · 40CE	;	TO SKIP OVER GRAPHICS PACKAGE
155	4298	A949		LDA	#END+1/256		
156	429A	8DD040		STA	X ' 40D0		
157	429D	A207		LDX	#7	;	MOVE 7 BYTES INTO BASIC WHICH CAUSES
158	429F	BDB042	INIT1:	LDA	INTCOD, X	;	QUESTION REGARDING TRIG FUNCTIONS TO BE
159	42A2	9D3641		STA	X'4136,X		SKIPPED AND PRESERVES BASIC'S INITI
160	42A5	CA		DEX		;	ROUTINE
161	42A6	10F7		BPL	INIT1		
162	42A8	A90C		LDA	#X'OC		CLEAR THE SCREEN AND PUT THE CURSOR
		203745		JSR	SDTXT		CHARACTER O LINE O
	42AD	4C6540		JMP	X ' 4065	;	ENTER BASIC
165							
166							
		A2D9	INTCOD:	LDX			INITIALIZATION CODE TO POKE INTO BASIC
	42B2			LDY		;	INITIALIZATION ROUTINE
	42B4	4c8341		JMP	X ' 4 183		
170							

VMBAS BASIC/VM PATCHES INPUT ROUTINE

171 172 173	;	KEYBOA		CALL USER'S KEYBOARD ROUTINE, ECHO BACK THE THE SCREEN, AND RETURN.
174 42B7 200002 175 42BA 203745 176 42BD 60	ANKBX:	JSR JSR RTS	ANKB SDTXT	; GO TO KEYBOARD ROUTINE ; ECHO THE CHARACTER ON THE SCREEN ; RETURN
178	;			TINE - CALL USER'S CONTROL/C TEST ROUTINE
179	;			JLD RETURN WITH CARRY SET IF CONTROL/C IS
180	;			TH CARRY CLEAR IF NOT SEEN. USER'S ROUTINE
181	;			THE CONTROL/O FUNCTION AND XOFF-XON (CNTL/S
182	;	AND CN	TL/Q)	
183				
184 42BE 200302	CNTLCX:	JSR	CNTLC	; GO TO CONTROL C ROUTINE
185 42C1 B005		BCS	CTCYES	; JUMP IF CONTROL/C SEEN
186 42C3 A901	CTCNO:	LDA	#1	; "NO" RETURN, LOAD 1 INTO A
187 42C5 C902		CMP	#2	; SET THE NEGATIVE INDICATOR
188 42C7 60		RTS		; RETURN
189 42C8 4CE126 190	CTCYES:	JMP	X'26E1	; GO TO YES RETURN IN BASIC

```
.PAGE ' DISPATCH ROUTINE FROM A USR CALL'
                                     DISPATCH ROUTINE FROM A USR CALL
THIS ROUTINE LOOKS AT THE ARGUMENT OF THE USR FUNCTION CALL
AND DISPATCHES TO THE PROPER GRAPHICS ROUTINE.
191
192
193
194
195
                                      IT ALSO COPIES THE COORDINATES FROM THE VARIABLE AREA IN BASIC
                                     TO PAGE O LOCATIONS BEFORE EXECUTING A GRAPHICS ROUTINE AND
196
                                     COPIES THEM BACK AFTER EXECUTING A GRAPHICS ROUTINE
197
198
     42CB A002
                         DISPCH: LDY
                                                                ; SET UP TO MOVE 4 COORDINATES TO PAGE 0
199 42CD A200
                                      LDX
                                               #0
                                                               ; GET HIGH BYTE OF AN INTEGER VARIABLE ; STORE IT IN PAGE 0
                                              (X'007A),Y
                         DISPC1:
200 42CF B17A
                                     I.DA
201 42D1 95E7
                                     STA
                                              X1CORD+1,X
202 42D3 C8
203 42D4 B17A
204 42D6 95E6
                                     LDA
                                               (X'007A),Y
                                                                  GET LOW BYTE OF THE VARIABLE
                                                                  STORE IT IN PAGE O
ADD 6 TO Y TO POINT TO NEXT VARIABLE
                                     STA
                                              X1CORD, X
205 42D8 98
                                      TYA
206 42D9 18
207 42DA 6906
                                     CLC
ADC
                                                                ; IN BASIC'S VARIABLE TABLE
                                              #6
208 42DC A8
                                      TAY
209 42DD E8
210 42DE E8
                                                                  ADD 2 TO X TO POINT TO NEXT VARIABLE IN
                                     TNX
                                                                  PAGE 0
                                      INX
211 42DF E008
212 42E1 DOEC
                                               #8
                                                                  TEST IF MOVE IS COMPLETE
                                      CPX
                                               DISPC1
                                                                  CONTINUE IF NOT
                                     BNE
213 42E3 20EB43
214
                                                                ; TEST IF COORDINATES ARE IN RANGE AND
; CORRECT IF NECESSARY
215
216
217
                                     GET ARGUMENT OF USR CALL, CHECK FOR ALLOWABLE RANGE, AND DISPATCH TO CORRECT GRAPHICS ROUTINE
218
219 42E6 201843
                                               GETARG
                                                                   GET LOW ARGUMENT IN A AND HIGH ARGUMENT
                                     JSR
220
                                                                  IN Y
221 42E9 A5B1
                                              X'B1
                                                                  TEST FOR LEGAL ARGUMENT
                                     LDA
                                                                  UPPER BYTE MUST BE ZERO
GO RETURN IF ILLEGAL ARGUMENT
TEST FOR RANGE OF 0 TO 7 INCLUSIVE IN
222
223 42EB D028
                                     BNE
                                               ILLEGL
224 42ED A5B2
                                               X'B2
                                     LDA
225 42EF C907
226 42F1 B022
                                     CMP
                                                                  LOWER BYTE AND
GO RETURN IF NOT IN RANGE
                                     BCS
                                               ILLEGL
227 42F3 201E43
228
                                     JSR
                                               VCTJSR
                                                                  DO A VECTOR JSR TO THE CORRESPONDING GRAPHICS ROUTINE
229 42F6 A8
                                                                ; RETURN FUNCTION VALUE TO BASIC
                                     TAY
230 42F7 A900
231 42F9 201B43
                                               #0
                                     LDA
                                              PUTARG
                                     JSR
232
233
234
                                     MOVE
                                            THE COORDINATES BACK TO BASIC
235 42FC A002
                                     LDY
                                                                ; SET UP TO MOVE 4 COORDINATES BACK
236 42FE A200
237 4300 B5E7
238 4302 917A
                                     LDX
                         DISPC2:
                                     LDA
STA
                                              X1CORD+1,X
(X'007A),Y
                                                                  GET HIGH BYTE OF AN INTEGER VARIABLE STORE IT BACK IN BASIC
239 4304 C8
240 4305 B5E6
                                     INY
                                               X1CORD.X
                                                                  GET LOW BYTE OF THE VARIABLE
                                     LDA
                                                                ; STORE IT BACK
; ADD 6 TO Y TO POINT TO NEXT VARIABLE
; IN BASIC'S VARIABLE TABLE
241 4307 917A
                                      STA
                                               (X'007A),Y
242 4309 98
                                     TYA
CLC
243 430A 18
244 430B 6906
                                     ADC
                                               #6
```

245 430D A8 246 430E E8 247 430F E8 248 4310 E008 249 4312 DOEC 250 4314 60 251		TAY INX INX CPX BNE RTS	#8 DISPC2	;;;;	ADD 2 TO X TO POINT TO NEXT VARIABLE IN PAGE 0 TEST IF MOVE IS COMPLETE CONTINUE IF NOT RETURN TO BASIC
252 4315 4C1443 253 254 255	ILLEGL:	JMP	DISPC3	;	IMMEDIATE RETURN ON ILLEGAL ARGUMENT CAN BE CHANGED TO GO TO ANOTHER USR ROUTINE
256 4318 6C0600 257	GETARG:	JMP	(X'0006)	;	GO TO GET ARGUMENT FUNCTION IN BASIC
258 431B 6C0800 259	PUTARG:	JMP	(X'0008)	;	GO TO PUT ARGUMENT FUNCTION IN BASIC
260 431E 0A 261 431F AA 262 4320 BD2A43 263 4323 48 264 4324 BD2943 265 4327 48 266 4328 60 267 268 269		ASLA TAX LDA PHA LDA PHA RTS	DSPTAB+1,X DSPTAB,X	;	DOUBLE THE ARGUMENT VALUE USE AS INDEX INTO DISPATCH TABLE TRANSFER TABLE ENTRY TO THE STACK JUMP TO THE ADDRESS ON THE TOP OF THE STACK RETURNS TO THE CALLER OF THIS ROUTINE
270 4329 3843 271 4328 A543 272 432D 2D44 273 432F B443 274 4331 2944 275 4333 C343 276 4335 2746 277 4337 1C46 278	DSPTAB:	.WORD .WORD .WORD .WORD .WORD .WORD .WORD .WORD	CLEAR-1 STPIX-1 DRAW-1 CLPIX-1 ERASE-1 RDPIX-1 CSRCLR-1 CSRSET-1	; ; ; ;	O ADDRESS OF CLEAR SCREEN ROUTINE 1 ADDRESS OF SET PIXEL ROUTINE 2 ADDRESS OF DRAW LINE ROUTINE 3 ADDRESS OF CLEAR PIXEL ROUTINE 4 ADDRESS OF EHASE LINE ROUTINE 5 ADDRESS OF READ PIXEL ROUTINE 6 ADDRESS OF CLEAR CURSOR ROUTINE 7 ADDRESS OF INSERT CURSOR ROUTINE

VMBAS BASIC/VM PATCHES DOCUMENTATION OF ABBREVIATED GRAPHICS PACKAGE

		.PAGE 'DOCUMENTATION OF ABBREVIATED GRAPHICS PACKAGE'
279		
280	:	THIS PACKAGE PROVIDES FUNDAMENTAL GRAPHICS ORIENTED
281	<u>:</u>	SUBROUTINES NEEDED FOR EFFECTIVE USE OF THE VISIBLE MEMORY AS
282		A GRAPHIC DISPLAY DEVICE WITH MICROSOFT BASIC. THE ROUTINES
283	;	INCLUDED ARE AS FOLLOWS:
284	:	INCECUED AND TOLLOWS.
285	;	CLEAR - CLEARS THE ENTIRE VISIBLE MEMORY AS DEFINED BY
286	;	NPIX/8
287	;	PIXADR- RETURNS BYTE AND BIT ADDRESS OF PIXEL AT X1CORD,
288		Y1CORD
289	,	CKCRD - PERFORM A RANGE CHECK ON ALL COORDINATES
290	:	STPIX - SET PIXEL AT X1CORD, Y1CORD TO A ONE (WHITE DOT)
291	· .	CLEAN CLEAR RIVEL AT VICORD VICORD TO A ONE (WHITE DOT)
292	,	CLPIX - CLEAR PIXEL AT X1CORD, Y1CORD TO ZERO (BLACK DOT)
293	;	RDPIX - COPY THE STATE OF THE PIXEL AT X1CORD, Y1CORD INTO
294	,	THE ACCUMULATOR
295	į	DRAW - DRAW THE BEST STRAIGHT LINE FROM X1CORD, Y1CORD
296	;	TO X2CORD, Y2CORD. X2CORD, Y2CORD COPIED TO
	;	X1CORD, Y1CORD AFTER DRAWING
297	;	ERASE - SAME AS DRAW EXCEPT A BLACK LINE IS DRAWN
298	;	
299	;	ALL SUBROUTINES DEPEND ON ONE OR TWO PAIRS OF COORDINATES.
300	;	EACH COORDINATE IS A DOUBLE PRECISION, UNSIGNED NUMBER WITH
301	;	THE LOW BYTE FIRST (I.E. LIKE MEMORY ADDRESSES IN THE 6502)
302	;	THE ORIGIN OF THE COORDINATE SYSTEM IS AT THE LOWER LEFT
303	;	CORNER OF THE SCREEN THEREFORE THE ENITRE SCREEN IS IN THE
304	;	FIRST QUADRANT. ALLOWABLE RANGE OF THE X COORDINATE IS 0 TO
305	;	319 (DECIMAL) AND THE RANGE OF THE Y COORDINATE IS 0 TO 199.
306		

VMBAS BASIC/VM PATCHES CLEAR ENTIRE SCREEN ROUTINE

	. PAGE	'CLEAR ENTIR	E SCREEN ROUTINE'
307	CLEAR	ENTIRE SCREEN	ROUTINE
308	USES	BOTH INDICES A	ND ADP1
309			
	EAR: LDY	#0	: INITIALIZE ADDRESS POINTER
311 433B 84F4	STY	ADP2	; AND ZERO INDEX Y
312 433D A5E3	LDA	VMORG	
313 433F 85F5	STA	ADP2+1	
314 4341 A91F	LDA	#NPIX/8/256	; SET COUNT OF BYTES TO CLEAR
315 4343 85EF	STA	DCNT 1+1	
316 4345 A940	LDA	#NPIX/8&X'FF	
317 4347 85EE	STA	DCNT1	
318 4349 4C1A47	JMP	FCLR	; GO DO CLEAR AND RETURN
319			A COUNTY OF THE PARTY OF THE PA

```
.PAGE 'PIXADR - BYTE AND BIT ADDRESS OF A PIXEL'
                                     PIXADR - FIND THE BYTE ADDRESS AND BIT NUMBER OF PIXEL AT
321
322
                                                 X1CORD,Y1CORD
                                      PUTS BYTE ADDRESS IN ADP1 AND BIT NUMBER (BIT 0 IS LEFTMOST)
323
                                      IN BTPT.
                                     DOES NOT CHECK MAGNITUDE OF COORDINATES FOR MAXIMUM SPEED PRESERVES X AND Y REGISTERS, DESTROYS A BYTE ADDRESS = REM($256+(199-Y1CORD)*40+INT($CORD/8$) BIT ADDRESS = REM($XCORD/8$) OPTIMIZED FOR SPEED THEREFORE CALLS TO A DOUBLE SHIFT ROUTINE
324
325
326
327
328
329
                                      ARE NOT DONE
330
331
     434C A5E6
                                                                 ; COMPUTE BIT ADDRESS FIRST
                         PIXADR: LDA
                                               X1CORD
332
     434E 85F2
                                                                   ALSO TRANSFER X1CORD TO ADP1
WHICH IS SIMPLY THE LOW 3 BITS OF X
                                      STA
                                               ADP1
333 4350 2907
334 4352 85F0
                                      AND
                                               #X 107
                                      STA
                                               BTPT
335 4354 A5E7
                                               X1CORD+1
                                                                 ; FINISH TRANSFERRING X1CORD TO ADP1
                                      LDA
336 4356 85F3
337 4358 46F3
                                      STA
                                               ADP1+1
                                                                 ; DOUBLE SHIFT ADP1 RIGHT 3 TO GET
                                               ADP 1+1
                                      LSR
338 435A 66F2
                                                                 ; INT(XCORD/8)
                                      ROR
                                               ADP 1
339 435C 46F3
340 435E 66F2
                                      LSR
                                               ADP1+1
                                      ROR
                                               ADP 1
341 4360 46F3
342 4362 66F2
343 4364 A9C7
                                      LSR
                                               ADP1+1
                                      ROR
                                               ADP 1
                                               #199 0
                                                                 : TRANSFER (199-Y1CORD) TO ADP2
344 4366 38
345 4367 E5E8
346 4369 85F4
                                                                   AND TEMPORARY STORAGE
                                      SEC
                                               Y1CORD
                                      SBC
                                      STA
                                               ADP2
347 436B 85EE
348 436D A900
                                      STA
                                               TEMP
                                      LDA
349 436F E5E9
350 4371 85F5
351 4373 85EF
                                               Y1CORD+1
                                      SBC
                                      STA
                                               ADP2+1
                                               TEMP+1
                                      STA
                                                                 ; COMPUTE 40*(199-Y1CORD)
352 4375 06F4
                                      ASL
                                               ADP2
353 4377 26F5
354 4379 06F4
                                               ADP2+1
                                                                 ; 2*(199-Y1CORD)
                                      ROI.
                                      ASL
                                               ADP2
355 437B 26F5
                                      ROL
                                               ADP2+1
                                                                     4*(199-Y1CORD)
                                                                     ADD IN TEMPORARY SAVE OF (199-Y1CORD)
TO MAKE 5*(199-Y1CORD)
356 437D A5F4
357 437F 18
                                      LDA
                                               ADP2
                                      CLC
358 4380 65EE
                                      ADC
                                               TEMP
359 4382 85F4
360 4384 A5F5
                                      STA
                                               ADP2
                                      LDA
361 4386 65EF
                                      ADC
                                                TEMP+1
362 4388 85F5
                                                                     5*(199-Y1CORD)
                                      STA
                                               ADP2+1
 363 438A 06F4
                                      ASL
                                                ADP2
                                                                    10*(199-Y1CORD)
364 438C 26F5
365 438E 06F4
                                                ADP2+1
                                      ROL
                                                                  ; 20*(199-Y1CORD)
                                      ASL
                                               ADP2
 366 4390 26F5
                                      ROL
                                                ADP2+1
                                                                  ; 40*(199-Y1CORD)
367 4392 06F4
                                      ASL
                                               ADP2
368 4394 26F5
                                               ADP2+1
                                      ROL
369 4396 A5F4
                                                ADP2
                                                                  ; ADD IN INT(X1CORD/8) COMPUTED EARLIER
                                      LDA
370 4398 18
371 4399 65F2
                                      CLC
                                                ADP 1
                                      ADC
372 439B 85F2
                                      STA
373 439D A5F5
                                      LDA
                                                ADP2+1
374 439F 65F3
                                      ADC
                                                ADP 1+1
375 43A1 65E3
                                                                    ADD IN VMORG*256
                                      ADC
                                                VMORG
376 43A3 85F3
377 43A5 60
378
                                      STA
                                                ADP 1+1
                                                                    FINAL RESULT
                                                                    RETURN
                                      RTS
                                                                                                      14 A
```

```
.PAGE 'INDIVIDUAL PIXEL SUBROUTINES'
                                       STPIX - SETS THE PIXEL AT X1CORD, Y1CORD TO A ONE (WHITE DOT)
DOES NOT ALTER X1CORD OR Y1CORD
ASSUMES IN RANGE CORRDINATES
380
381
382
383 43A6 204C43
                          STPIX:
                                       JSR
                                                 PIXADR
                                                                      GET BYTE ADDRESS AND BIT NUMBER OF PIXE
384
                                                                      INTO ADP1
385 43A9 A4FO
                                                                      GET BIT NUMBER IN Y
                                       LDY
386 43AB B9D543
                                       LDA
                                                 MSKTB1,Y
                                                                      GET A BYTE WITH THAT BIT =1, OTHERS =0
387 43AE A000
                                       LDY
                                                 #0
                                                                      ZERO Y
388 43B0 11F2
                                                 (ADP1),Y
                                       ORA
                                                                      COMBINE THE BIT WITH THE ADDRESSED VM
389 43B2 91F2
                                       STA
                                                 (ADP1),Y
                                                                      BYTE
390 43B4 60
                                                                   ; RETURN
                                       RTS
391
                                       CLPIX - CLEARS THE PIXEL AT X1CORD, Y1CORD TO A ZERO (BLACK DO DOES NOT ALTER X1CORD OR Y1CORD
392
393
394
                                       ASSUMES IN RANGE COORDINATES
395
396 43B5 204C43
                                                                      GET BYTE ADDRESS AND BIT NUMBER OF PIXE
                          CLPIX:
                                       JSR
                                                 PIXADR
397
                                                                      INTO ADP1
                                                                      GET BIT NUMBER IN Y
GET A BYTE WITH THAT BIT =0, OTHERS =1
398 43B8 A4F0
                                       LDY
                                                 BTPT
399 43BA B9DD43
                                                 MSKTB2,Y
                                       LDA
400 43BD A000
                                       LDY
401 43BF 31F2
402 43C1 91F2
                                                 (ADP1),Y
                                                                      REMOVE THE BIT FROM THE ADDRESSED VM
                                       AND
                                                 (ADP1),Y
                                       STA
                                                                      BYTE
403 43C3 60
                                                                   ; AND RETURN
404
405
                                       RDPIX - READS THE PIXEL AT X1CORD, Y1CORD AND SETS A TO ALL
                                       RDF1X - READS THE FIXEL AT A CORD, FICORD AND SET 
ZEROES IF IT IS A ZERO OR TO ONE IF IT IS A ONE. 
LOW BYTE OF ADP1 IS EQUAL TO A ON RETURN 
DOES NOT ALTER X1CORD OR Y1CORD 
ASSUMES IN RANGE CORRDINATES
406
407
408
409
410
                                                                   ; GET BYTE AND BIT ADDRESS OF PIXEL ; GET ADDRESSED BYTE FROM VM
411 43C4 204C43
                           RDPIX:
                                        JSR
                                                 PIXADR
412 43C7 A000
                                       LDY
413 43C9 B1F2
                                       LDA
                                                 (ADP1), Y
                                                                   ; GET BIT NUMBER IN Y
; CLEAR ALL BUT ADDRESSED BIT
; SKIP AHEAD IF IT WAS A ZERO
414 43CB A4FO
                                       I.DY
                                                 BTPT
415 43CD 39D543
                                                 MSKTB1,Y
                                       AND
416 43D0 F002
417 43D2 A901
                                       BEQ
                                                 RDPIX1
                                                                      SET TO 01 IF IT WAS A ONE
                                       L.DA
                                                 #X 101
418 43D4 60
                           RDPIX1:
                                                                   : RETURN
                                       RTS
419
                                       MASK TABLES FOR INDIVIDUAL PIXEL SUBROUTINES
MSKTB1 IS A TABLE OF 1 BITS CORRESPONDING TO BIT NUMBERS
MSKTB2 IS A TABLE OF 0 BITS CORRESPONDING TO BIT NUMBERS
420
421
422
423
                                        .BYTE X'80,X'40,X'20,X'10
.BYTE X'08,X'04,X'02,X'01
.BYTE X'7F,X'BF,X'DF,X'EF
424
     43D5 80402010 MSKTB1:
                                       .BYTE
425 43D9 08040201
426 43DD 7FBFDFEF
                          MSKTB2:
                                        .BYTE
427 43E1 F7FBFDFE
                                        .BYTE X'F7, X'FB, X'FD, X'FE
428
429
                                       WRPIX - SETS THE PIXEL AT X1CORD, Y1CORD ACCORDING TO THE STAT
                                       OF BIT O (RIGHTMOST) OF A
                                       DOES NOT ALTER X1CORD OR Y1CORD
ASSUMES IN RANGE CORRDINATES
432
```

VMBAS BASIC/VM PATCHES INDIVIDUAL PIXEL SUBROUTINES

```
434 43E5 2901
                                                   #X'01
CLPIX
                                                                      ; TEST LOW BIT OF A
; GO WRITE A ZERO IF IT IS ZERO
; OTHERWISE WRITE A ONE
                            WRPIX:
                                         AND
435 43E7 FOCC
                                         BEQ
436 43E9 DOBB
                                         BNE
                                                   STPIX
437
```

VMBAS BASIC/VM PATCHES COORDINATE CHECK AND CORRECT ROUTINE

```
'COORDINATE CHECK AND CORRECT ROUTINE'
                                     CHECKS ALL COORDINATES TO VERIFY THAT THEY ARE IN THE
439
                                     PROPER RANGE. IF NOT, THEY ARE REPLACED BY A VALUE MODULO THE MAXIMUM VALUE+1.
440
441
                                     NOTE THAT THESE ROUTINES CAN BE VERY SLOW WHEN CORRECTIONS ARE
442
                                     NECESSARY BECAUSE A BRUTE FORCE DIVISON ROUTINE IS USED TO COMPUTE THE MODULUS.
443
444
445 43EB A200
446 43ED A000
447 43EF 200344
                                              #X1CORD-X1CORD ; CHECK X1CORD
#XLIMIT-LIMTAB
                         CKCRD:
                                     LDX
                                     LDY
                                     JSR
448 43F2 A204
                                              #X2CORD-X1CORD ; CHECK X2CORD
                                     I.DX
449 43F4 200344
                                     JSR
                                              CK
450 43F7 A202
451 43F9 A002
                                              #Y1CORD-X1CORD ; CHECK Y1CORD
                                     LDY
                                              #YLIMIT-LIMTAB
452 43FB 200344
                                     JSR
                                              CK
453 43FE A606
454 4400 4C0344
                                     LDX
                                              Y2CORD-X1CORD
                                                                    CHECK Y2CORD
                                                                 ; CHECK Y2CON
; AND RETURN
                                     JMP
                                              CK
455
456
457 4403 B5E7
458 4405 D92744
                         CK:
                                    LDA
                                              X1CORD+1,X
LIMTAB+1,Y
                                                                 CHECK UPPER BYTE
                                     CMP
                                                                 AGAINST UPPER BYTE OF LIMIT
                                                                 OK IF LESS THAN UPPER BYTE OF LIMIT
GO CHECK LOWER BYTE IF EQUAL TO
UPPER BYTE OF LIMIT
459 4408 901B
                                     BCC
                                              CK4
460 440A F012
                                    BEQ
                                              CK3
461
462 440C B5E6
                         CK2:
                                    LDA
                                             X1CORD, X
                                                                 SUBTRACT THE LIMIT
463 440E 38
464 440F F92644
                                                               ; LOWER BYTE FIRST
                                    SEC
                                     SBC
                                              LIMTAB, Y
465 4412 95E6
466 4414 B5E7
                                     STA
                                              X1CORD, X
X1CORD+1, X
                                     LDA
467 4416 F92744
                                     SBC
                                              LIMTAB+1,Y
468 4419 95E7
469 441B 4C0344
                                    STA
                                              X1CORD+1,X
                                     JMP
                                                               ; AND THEN GO CHECK RANGE AGAIN ; CHECK LOWER BYTE OF {\bf X}
470 441E B5E6
471 4420 D92644
                                              X1CORD, X
                         CK3:
                                    LDA
                                    CMP
                                              LIMTAB, Y
472 4423 B0E7
473 4425 60
                                                               ; GO ADJUST IF TOO LARGE
                         CK4:
                                    RTS
                                                               ; RETURN
474
475
476
                         LIMTAB:
                                                               ; TABLE OF LIMITS
477
     4426 4001
                         XLIMIT:
                                    .WORD NX
     4428 C800
                         YLIMIT:
                                    .WORD
479
```

15A

```
.PAGE 'LINE DRAWING ROUTINES'
480
                                  DRAW - DRAW THE BEST STRAIGHT LINE FROM X1CORD, Y1CORD TO
481
                                  X2CORD, Y2CORD.
X2CORD, Y2CORD COPIED TO X1CORD, Y1CORD AFTER DRAWING
482
483
                                  USES AN ALGORITHM THAT REQUIRES NO MULTIPLICATION OR DIVIS
484
485 442A A900
486 442C F002
                       ERASE:
                                                           ; SET LINE COLOR TO BLACK
                                  BEQ
                                           DRAW1
                                                          ; GO DRAW THE LINE
488 442E A9FF
                       DRAW:
                                           #X'FF
                                                          ; SET LINE COLOR TO WHITE
489 4430 85FF
                       DRAW1:
                                  STA
                                           COLOR
491
492
                                  COMPUTE SIGN AND MAGNITUDE OF DELTA X = X2-X1
                                  PUT MAGNITUDE IN DELTAX AND SIGN IN XDIR
493
494 4432 A900
495 4434 85FC
                                                          ; FIRST ZERO XDIR
                                           XDTR
                                  STA
496 4436 A5EA
                                  LDA
                                           X2CORD
                                                          ; NEXT COMPUTE TWOS COMPLEMENT DIFFERE
497 4438 38
498 4439 E5E6
                                  SEC
                                           X1CORD
DELTAX
                                  SBC
499 443B 85F6
                                  STA
500 443D A5EB
501 443F E5E7
502 4441 85F7
                                  LDA
                                           X2CORD+1
                                  SBC
                                           X1CORD+1
DELTAX+1
                                  STA
503 4443 100F
504 4445 C6FC
                                  BPL
                                           DRAW2
                                                           ; SKIP AHEAD IF DIFFERENCE IS POSITIVE
                                  DEC
                                                            SET XDIR TO -1
                                           XDIR
505 4447 38
506 4448 A900
                                                            NEGATE DELTAX
                                  LDA
                                           #0
507 444A E5F6
                                  SBC
                                           DELTAX
508 444C 85F6
                                  STA
                                           DELTAX
509 444E A900
                                  LDA
510 4450 E5F7
                                  SBC
                                           DELTAX+1
511 4452 85F7
512
                                  STA
                                           DELTAX+1
513
                                  COMPUTE SIGN AND MAGNITUDE OF DELTA Y = Y2-Y1
514
                                  PUT MAGNITUDE IN DELTAY AND SIGN IN YDIR
515
516 4454 A900
517 4456 85FD
518 4458 A5EC
                       DRAW2:
                                                          ; FIRST ZERO YDIR
                                  LDA
                                  STA
LDA
                                           YDTR
                                           Y2CORD
                                                          ; NEXT COMPUTE TWOS COMPLEMENT DIFFERE
519 445A 38
520 445B E5E8
                                  SEC
                                           YICORD
                                  SBC
521 445D 85F8
                                           DELTAY
                                  STA
522 445F A5ED
523 4461 E5E9
                                           Y2CORD+1
Y1CORD+1
                                  LDA
                                  SBC
524 4463 85F9
                                  STA
                                           DELTAY+1
525 4465 100F
526 4467 C6FD
                                  BPL
DEC
                                                          ; SKIP AHEAD IF DIFFERENCE IS POSITIVE ; SET YDIR TO -1
                                           DRAW3
                                           YDIR
527 4469 38
                                                           ; NEGATE DELTAX
528 446A A900
                                  LDA
529 446C E5F8
                                  SBC
                                           DELTAY
530 446E 85F8
                                           DELTAY
531 4470 A900
532 4472 E5F9
                                  LDA
SBC
                                           #0
                                           DELTAY+1
                                                                                          15B
533 4474 85F9
                                  STA
                                          DELTAY+1
```

```
VMBAS BASIC/VM PATCHES
LINE DRAWING ROUTINES
  535
536
                                          DETERMINE IF DELTAY IS LARGER THAN DELTAX IF SO, EXCHANGE DELTAY AND DELTAX AND SET XCHFLG NONZERO ALSO INITIALIZE ACC TO DELTAX
  537
538
                                          PUT A DOT AT THE INITIAL DENPOINT
   540 4476 A900
541 4478 85FE
                              DRAW3:
                                                                       ; FIRST ZERO XCHFLG
                                                    XCHFLG
                                          STA
   542 447A A5F8
543 447C 38
544 447D E5F6
                                                     DELTAY
                                                                       ; COMPARE DELTAY WITH DELTAX
                                          SEC
                                          SBC
                                                    DELTAX
  545 447F A5F9
546 4481 E5F7
                                                     DELTAY+1
                                          SBC
                                                    DELTAX+1
                                                                       ; SKIP EXCHANGE IF DELTAX IS GREATER THAN
   547 4483 9012
                                          BCC
                                                    DRAW4
  548
549 4485 A6F8
550 4487 A5F6
                                                                          DELTAY
                                                                       ; DELTAY
; EXCHANGE DELTAX AND DELTAY
                                          LDX
                                                    DELTAY
                                          L.DA
                                                    DELTAX
   551 4489 85F8
                                           STA
                                                     DELTAY
  551 4489 85F8
552 448B 86F6
553 448D A6F9
554 448F A5F7
555 4491 85F9
556 4493 86F7
557 4495 C6FE
558 4497 A5F6
                                           STX
                                                     DELTAX
                                                    DELTAY+1
                                          LDX
                                           LDA
                                                     DELTAX+1
                                                    DELTAY+1
DELTAX+1
                                           STA
                                           STX
                                                                        ; SET XCHFLG TO -1
; INITIALIZE ACC TO DELTAX
                                                     XCHFLG
                              DRAW4:
                                                     DELTAX
                                           L.DA
   559 4499 85FA
                                           STA
                                                     ACC
   560 449B A5F7
561 449D 85FB
                                                     DELTAX+1
                                           STA
                                                     ACC+1
                                                                        ; PUT A DOT AT THE INITIAL ENDPOINT
   562 449F A5FF
                                                     COLOR
                                           LDA
   563 44A1 20E543
564
                                           JSR
                                                     WRPIX
                                                                        ; X1CORD,Y1CORD
   565
566
                                           HEAD OF MAIN DRAWING LOOP
                                           TEST IF DONE
   567
   568 44A4 A5FE
569 44A6 D00E
570 44A8 A5E6
                                                                       ; TEST IF X AND Y EXCHANGED ; JUMP AHEAD IF SO
                              DRAW45:
                                                     XCHFLG
                                          LDA
BNE
                                                     DRAW5
                                           LDA
                                                     X1CORD
                                                                        ; TEST FOR X1CORD=X2CORD
   571 44AA C5EA
572 44AC D015
                                           CMP
BNE
                                                     X2CORD
DRAW7
                                                                        ; GO FOR ANOTHER ITERATION IF NOT
   573 44AE A5E7
574 44BO C5EB
575 44B2 DOOF
                                                     X1CORD+1
                                           CMP
BNE
                                                     X2CORD+1
DRAW7
                                                                        ; GO FOR ANOTHER ITERATION IF NOT
   576 44B4 FOOC
                                           BEQ
                                                     DRAW6
                                                                        GO RETURN IF SO
   577 44B6 A5E8
578 44B8 C5EC
                                                     Y1CORD
Y2CORD
                              DRAW5:
                                                                        ; TEST FOR Y1CORD=Y2CORD
                                           CMP
   579 44BA D007
                                                                        ; GO FOR ANOTHER INTERATION IF NOT
                                           BNE
                                                     DRAW7
   580 44BC A5E9
581 44BE C5ED
                                           LDA
CMP
                                                     Y1CORD+1
Y2CORD+1
   582 44C0 D001
583 44C2 60
584
                                           BNE
                                                     DRAW7
                                                                        ; GO FOR ANOTHER INTERATION IF NOT
                                                                        ; RETURN
                              DRAW6:
```

16A

DO A CLACULATION TO DETERMINE IF ONE OR BOTH AXES ARE TO BE BUMPED (INCREMENTED OR DECREMENTED ACCORDING TO XDIR AND YDIR) AND DO THE BUMPING

VMBAS BASIC/VM PATCHES LINE DRAWING ROUTINES

590 591 592 593 594 595 596 597 598 600 601	44C3 A5FE 44C5 D006 44C7 200F45 44C0 200F45 44C0 202345 44D0 20F344 44D3 20F344 44D6 1013 44D8 A5FE 44DD 4006 44DC 202345 44DP 40E544 44E2 200F45 44E8 200145	DRAW8: DRAW9: DRAW10: DRAW11:	LDA BNE JSR JMP JSR JSR JSR BPL LDA BNE JSR JSR JSR JSR JSR JSR JSR JSR	XCHFLG DRAW8 BMPX DRAW9 BMPY SBDY DRAW12 XCHFLG DRAW10 BMPY DRAW11 BMPY ADDX ADDX	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	TEST IF X AND Y EXCHANGED JUMP IF SO BUMP X IF NOT BUMP Y IF SO SUBTRACT DY FROM ACC TWICE SKIP AHEAD IF ACC IS NOT NEGATIVE TEST IF X AND Y EXCHANGED JUMP IF SO BUMP Y IF NOT BUMP X IF SO ADD DX TO ACC TWICE
605 606	44EB A5FF 44ED 20E543 44FO 4CA444	DRAW12:	LDA JSR JMP	COLOR WRPIX DRAW45	•	OUTPUT THE NEW POINT GO TEST IF DONE

VMBAS BASIC/VM PATCHES SUBROUTINES FOR DRAW

609	;	.PAGE SUBRO	'SUBROUTIN	ES FOR DRAW' RAW
610 611 44F3 A5FA	SBDY:	LDA	ACC	; SUBTRACT DELTAY FROM ACC AND PUT RESULT
612 44F5 38		SEC		; IN ACC
613 44F6 E5F8		SBC	DELTAY	
614 44F8 85FA		STA	ACC	
615 44FA A5FB 616 44FC E5F9		LDA	ACC+1	
617 44FE 85FB		SBC STA	DELTAY+1 ACC+1	
618 4500 60		RTS	AUCTI	
619				
620				
621 4501 A5FA	ADDX:	LDA	ACC	; ADD DELTAX TO ACC AND PUT RESULT IN ACC
622 4503 18		CLC		
623 4504 65F6		ADC	DELTAX	
624 4506 85FA		STA	ACC	
625 4508 A5FB 626 450A 65F7		LDA	ACC+1	
627 450c 85FB		ADC STA	DELTAX+1 ACC+1	
628 450E 60		RTS	ACC+1	
629		MID		
630				
631 450F A5FC	BMPX:	LDA	XDIR	; BUMP X1CORD BY +1 OR -1 ACCORDING TO
632 4511 D007		BNE	BMPX2	; XDIR
633 4513 E6E6		INC	X1CORD	; DOUBLE INCREMENT X1CORD IF XDIR=0
634 4515 D002		BNE	BMPX1	
635 4517 E6E7 636 4519 60	BMPX1:	INC RTS	X1CORD+1	
637 451A A5E6	BMPX2:	LDA	X1CORD	; DOUBLE DECREMENT X1CORD IF XDIR110
638 451C D002	Din AL.	BNE	BMPX3	, DOUBLE DECRETENT A TOORD IF ADIREZO
639 451E C6E7		DEC	X1CORD+1	
640 4520 C6E6	BMPX3:	DEC	X1CORD	
641 4522 60		RTS		
642				
643	Dubu			
644 4523 A5FD 645 4525 D007	BMPY:	LDA Bne	YDIR BMPY2	; BUMP Y1CORD BY +1 OR -1 ACCORDING TO
646 4527 E6E8		INC	Y1CORD	; YDIR ; DOUBLE INCREMENT Y1CORD IF YDIR=0
647 4529 D002		BNE	BMPY1	, DOUBLE INCHEMENT INCOME IF IDIN-0
648 452B E6E9		INC	Y1CORD+1	
649 452D 60	BMPY1:	RTS		
650 452E A5E8	BMPY2:	LDA	Y1CORD	; DOUBLE DECREMENT Y1CORD IF YDIR120
651 4530 D002		BNE	BMPY3	
652 4532 C6E9 653 4534 C6E8	DMDV2 -	DEC	Y1CORD+1	
654 4536 60	BMPY3:	DEC RTS	Y1CORD	
655		UID		
433				

```
.PAGE 'SIMPLIFIED TEXT DISPLAY FOR BASIC'
                                    THIS SUBROUTINE TURNS THE VISABLE MEMORY INTO A DATA DISPLAY TERMINAL (GLASS TELETYPE).
657
658
                                    CHARACTER SET IS 96 FULL ASCII UPPER AND LOWER CASE.
CHARACTER MATRIX IS 5 BY 7 SET INTO A 6 BY 9 RECTANGLE.
LOWER CASE IS REPRESENTED AS SMALL (5 BY 5) CAPITALS.
659
660
661
                                     SCREEN CAPACITY IS 22 LINES OF 53 CHARACTERS
662
                                    CURSOR IS A NON-BLINKING UNDERLINE. CONTROL CODES RECOGNIZED:
663
664
                                                               SETS CURSOR TO LEFT SCREEN EDGE MOVES CURSOR DOWN ONE LINE, SCROLLS
665
                                              X'OD
666
                                              X'OA
667
                                                               DISPLAY UP ONE LINE IF ALREADY ON BOTTOM
668
                                                               LINE.
                                                               MOVES CURSOR ONE CHARACTER LEFT, DOES
669
                                    BACK ARROW X'5F
                                                               NOTHING IF ALREADY AT LEFT SCREEN EDGE
CLEARS SCREEN AND PUTS CURSOR AT TOP LEF
OF SCREEN, SHOULD BE CALLED FOR
INITIALIZATION
670
671
672
                                              X'OC
673
674
                                    ALL OTHER CONTROL CODES IGNORED.
ENTER WITH CHARACTER TO BE DISPLAYED IN A.
CSRX SHOULD CONTAIN THE CHARACTER NUMBER
675
676
677
678
                                     CSRY SHOULD CONTAIN THE LINE NUMBER
                                     CSRX AND CSRY ARE CHECK FOR IN RANGE VALUES AND CORRECTED IF
679
680
                                     NECESSARY
681
                                     682
683
684
                                                 VMORG MUST BE SET BEFORE CALLING SDTXT
685
                                     686
687
688 4537 48
                         SDTXT:
                                     PHA
                                                               ; CHECK AND CORRECT CURSOR SETTING
; CLEAR UPPER ADP2
689 4538 208746
                                     JSR
                                              CKCUSR
690 453B A900
691 453D 85F5
                                     LDA
                                               #0
                                     STA
                                              ADP2+1
                                                               ; GET INPUT BACK
; BUT LEAVE IT ON THE STACK
; INSURE 7 BIT ASCII INPUT
692 453F 68
693 4540 48
694 4541 297F
                                     PHA
                                              #X'7F
                                     AND
695 4543 38
                                     SEC
                                                               ; TEST IF A CONTROL CHARACTER ; JUMP IF SO
696 4544 E920
697 4546 3049
                                              #X 120
                                     SBC
                                              SDTX10
                                     BMI
                                                               ; TEST IF BACK ARROW (UNDERLINE)
; JUMP IF SO
698 4548 C93F
                                     CMP
                                              #X'5F-X'20
699 454A F045
700
                                     BEO
                                              SDTX10
                                     CALCULATE TABLE ADDRESS FOR CHAR SHAPE AND PUT IT INTO ADP1
701
702
                                                               ; SAVE CHARACTER CODE IN ADP2
; COMPUTE 8*CHARACTER CODE IN ADP2
703 454C 85F4
                         SDTXT1:
                                     STA
704 454E 203346
705 4551 203346
                                     JSR
JSR
                                              SADP2L
                                              SADP2L
706 4554 203346
                                              SADP2L
                                                               ; NEGATE CHARACTER CODE
707 4557 49FF
708 4559 38
                                     EOR
                                              #X'FF
                                                               ; SUBTRACT CHARACTER CODE FROM ADP2 AND
                                     SEC
709 455A 65F4
                                     ADC
                                              ADP2
                                                                ; PUT RESULT IN ADP1 FOR A FINAL RESULT
```

```
VMBAS BASIC/VM PATCHES
SIMPLIFIED TEXT DISPLAY FOR BASIC
  710 455C 85F2
                                                 ADP 1
                                                                   ; 7*CHARACTER CODE
  711 455E A5F5
                                        LDA
                                                  ADP2+1
  712 4560 69FF
713 4562 85F3
                                        ADC
                                                 #X'FF
                                        STA
                                                 ADP 1+1
  714 4564 A5F2
                                                 ADP 1
                                                                   ; ADD IN ORIGIN OF CHARACTER TABLE
                                        LDA
  715 4566 18
716 4567 6938
                                        CLC
                                                 #CHTB&X'FF
                                        ADC
  717 4569 85F2
                                                 ADP1
ADP1+1
                                        STA
  718 456B A5F3
719 456D 6947
                                        I.DA
                                        ADC
                                                  #CHTB/256
                                        STA ADP1+1 ; ADP1 NOW HAS ADDRESS OF TOP ROW OF ; CHARACTER SHAPE
COMPUTE BYTE AND BIT ADDRESS OF FIRST SCAN LINE OF
  720 456F 85F3
  721
722
  723
724
                                        CHARACTER AT CURSOR POSITION
                                                                   ; COMPUTE BYTE AND BIT ADDRESSES OF FIRST ; SCAN LINE OF CHARACTER AT CURSOR POS.
  725
       4571 204446
                                        JSR
                                                  CSRTAD
  726
  727
  728
                                        SCAN OUT THE 7 CHARACTER ROWS
                            ;
  729
                                                                     INITIALIZE Y INDEX=FONT TABLE POINTER
  730 4574 A000
731 4576 B1F2
                                        LDY
  732 4578 20A246
733 457B 203846
734 737
                                                  (ADP1), Y
                                                                      GET A DOT ROW FROM THE FONT TABLE
                            SDTX2:
                                        LDA
                                                                      MERGE IT WITH GRAPHIC MEMORY AT (ADP2)
ADD 40 TO ADP2 TO MOVE DOWN ONE SCAN
                                        JSR
                                                  MERGE
                                                  DN1SCN
                                        JSR
                                                                      LINE IN GRAPHIC MEMORY
                                                                      BUMP UP POINTER INTO FONT TABLE TEST IF DONE
  735 457E C8
736 457F C007
737 4581 D0F3
                                        INY
                                                                      GO DO NEXT SCAN LINE IF NOT
DO A CURSOR RIGHT
                                        BNE
                                                  SDTX2
   738 4583 A5E4
739 4585 C934
740 4587 1005
                                        LDA
                                                  CSRX
                                                                      TEST IF LAST CHARACTER ON THE LINE
SKIP CURSOR RIGHT IF SO
CLEAR OLD CURSOR
                                        CMP
                                                  #NCHR-1
                                        BPL
                                                  SDTX3
   741 4589 202846
                                        JSR
                                                  CSRCLR
   742 458C E6E4
                                        INC
                                                  CSRX
                                                                      MOVE CURSOR ONE POSITION RIGHT
                                                                      GO INSERT CURSOR, RESTORE REGISTERS,
   743 458E 4C0746
                            SDTX3:
                                        JMP
                                                  SDTXRT
   744
                                                                      AND RETURN
   745
   746
747
                                        INTERPRET CONTROL CODES
   748
        4591 C9ED
                                                  #X'0D-X'20
                                                                      TEST IF CR
                             SDTX10:
                                        CMP
  749 4593 FOOF
750 4595 C9EA
751 4597 FO2F
752 4599 C93F
753 459B FO11
                                                  SDTXCR
#X'0A-X'20
                                        BEO
                                                                      JUMP IF SO
                                                                             IF LF
                                        CME
                                                                      TEST
                                         BEQ
                                                  SDTXLF
                                                                       JUMP
                                                                             TF SO
                                                  #X'5F-X'20
                                                                      TEST IF BACK ARROW (UNDERLINE)
                                        CMF
                                                  SDTXCL
                                                                      JUMP IF SO
                                        BEQ
   754 459D C9EC
                                         CME
                                                  #X'0C-X'20
                                                                      TEST IF FF
                                                                      JUMP IF SO
   755 459F F01B
                                        BEO
                                                  SDTXFF
   756 45A1 4CO746
                                        JMP
                                                  SDTXRT
                                                                      GO RETURN IF UNRECOGNIZABLE CONTROL
   757
                                                                      CARRIAGE RETURN, FIRST CLEAR CURSOR ZERO CURSOR HORIZONTAL POSITION
   758 45A4 202846
                                                  CSRCLR
                             SDTXCR:
                                        JSR
   759 45A7 A900
                                        LDA
```

760 45A9 85E4

761 45AB 4C0746

763 45AE 202846 764 45B1 A5E4 STA

JMP

JSR LDA

SDTXCL:

CSRX

SDTXRT

CSRCLR CSRX ; GO SET CURSOR AND RETURN

CURSOR LEFT, FIRST CLEAR CURSOR GET CURSOR HORIZONTAL POSITION

		IC/VM PATC TEXT DISP		ASIC			
766 767			SDTX20:	CMP BEQ DEC JMP	SDTX20 CSRX	;	TEST IF AGAINST LEFT EDGE SKIP UPDATE IF SO OTHERWISE DECREMENT CURSOR X POSITI GO SET CURSOR AND RETURN
770 771 772 773	45BF 45C1 45C3	203943 A900 85E4 85E5 4C0746	SDTXFF:	JSR LDA STA STA JMP	#0	;	CLEAR THE SCREEN PUT CURSOR IN UPPER LEFT CORNER GO SET CURSOR AND RETURN
777 778 779 780 781 782 783 784 785 786 787 790 791 792 793	45CB 45CD 45CF 45D1 45D3 45D5 45DD 45DD 45DE 45E2 45E2 45E8 45E8 45E8 45EC	1004 E6E5 D032 A900 85F4 A5E3 85F5 18 6901 85F3 A968		LDA CMP BPL INC BNE	CSRCLR CSRY #NLIN-1 SDTX#0 CSRY 8DTXRT #0 ADP2 WMORG ADP2+1 #CHHI*40/256 ADP1+1 #CHHI*40&X'FI ADP1 #NSCRL&X'FF DCNT1 #NSCRL/256 DCNT1+1	· · · · · · · · · · · · · · · · · · ·	LINE FEED, FIRST CLEAR CURSOR GET CURRENT LINE POSITION TEST IF AT BOTTOM OF SCREEN CO SCROLL IF SO INCREMENT LINE NUMBER IF NOT AT BOT CO INSERT CURSOR AND RETURN SET UP ADDRESS POINTERS FOR MOVE ADP1 = SOURCE FOR MOVE = FIRST BYTF SECOND LINE OF TEXT ADP2 = DESTINATION FOR MOVE = FIRST IN VISIBLE MEMORY SET NUMBER OF LOCATIONS TO MOVE LOW PART
796 797 798 799 800 801 802 803 804 805 806 807 808 809 811 812	45F1 45F3 45F5 45F7 45F8 45FA 45FC 45FE 4600 4602 4604	A988 85F4 A91D 18 65E3 85F5 A9B8		LDA STA LDA CLC ADC STA LDA STA LDA STA LDA STA JSR	#NLIN-1*CHHI: ADP2 #NLIN-1*CHHI: VMORG ADP2+1 #NCLR&X'FF DCNT1 #NCLR/256 DCNT1+1 FCLR	; ; ; ; ; ; ; ; ; ;	SPEED MEMORY MOVE ROUTINE CLEAR LAST LINE OF TEXT D&X'FF ; SET ADDRESS POINTER LOW BYTE
	460A 460B			PLA RTS			RESTORE INPUT FROM THE STACK RETURN

```
.PAGE 'SUBROUTINES FOR SDTXT'
                                   COMPUTE ADDRESS OF BYTE CONTAINING LAST SCAN LINE OF
817
                                  CHARACTER AT CURSOR POSITION
ADDRESS = CSRTAD+(CHHI-1)*40
                                                                         SINCE CHHI IS A CONSTANT 9,
819
                                   (CHHI-1)*40=320
820
821
                                   BTPT HOLDS BIT ADDRESS, 0=LEFTMOST
822
                                                            ; COMPUTE ADDRESS OF TOP OF CHARACTER CELL
823 460C 204446
                       CSRBAD:
                                  JSR
                                           CSRTAD
824
                                                              FIRST
825 460F A5F4
                                                            ; ADD 320 TO RESULT = 8 SCAN LINES
                                   LDA
                                           ADP2
826 4611 18
                                   CLC
827 4612 6940
                                   ADC
                                            #320&X'FF
828 4614 85F4
829 4616 A5F5
                                           ADP2
                                   STA
                                            ADP2+1
                                   LDA
830 4618 6901
                                   ADC
                                            #320/256
831 461A 85F5
                                           ADP2+1
                                   STA
832 461C 60
833
                                   SET CURSOR AT CURRENT POSITION
834
835
                                                              VERIFY LEGAL CURSOR COORDINATES
GET BYTE AND BIT ADDRESS OF CURSOR
836 461D 208746
                        CSRSET:
                                   JSR
                                            CKCUSR
837 4620 200C46
838 4623 A9F8
                                            CSRBAD
                                   JSR
                                   LDA
                                                              DATA = UNDERLINE CURSOR
839 4625 4CA246
                        CSRST1:
                                   JMP
                                            MERGE
                                                              MERGE CURSOR WITH GRAPHIC MEMORY
                                                            ; AND RETURN
840
841
842
843
                                   CLEAR CURSOR AT CURRENT POSITION
                                                            ; VERIFY LEGAL CURSOR COORDINATES
; GET BYTE AND BIT ADDRESS OF CURSOR
; DATA = BLANK DOT ROW
; REMOVE DOT ROW FROM GRAPHIC MEMORY
844 4628 208746
                        CSRCLR:
845 462B 200C46
846 462E A900
                                            CSRBAD
                                   JSR
                                   LDA
                                            #0
847
     4630 4CA246
                                   JMP
                                            MERGE
                                                              AND RETURN
848
849
                                   SHIFT ADP2 LEFT ONE BIT POSITION
850
851
852 4633 06F4
                        SADP2L:
                                            ADP2
853 4635 26F5
                                   ROL
                                            ADP2+1
854 4637 60
855
                                   RTS
856
857
858 4638 A5F4
                                   MOVE DOWN ONE SCAN LINE
                                                                       DOUBLE ADDS 40 TO ADP2
                        ;
                                            ADP2
                                                            ; ADD 40 TO LOW BYTE
                        DN1SCN:
                                  LDA
859 463A 18
860 463B 6928
                                   CLC
                                            #40
                                            ADP2
DN1SC1
861 463D 85F4
                                   STA
                                                            ; EXTEND CARRY INTO UPPER BYTE
862 463F 9002
863 4641 E6F5
864 4643 60
                                   BCC
INC
                                                            ; RETURN
                        DN1SC1:
                                   RTS
865
866
                                    COMPUTE BYTE ADDRESS CONTAINING FIRST SCAN LINE OF
867
                                    CHARACTER AT CURSOR POSITION AND PUT IN ADP2
                                   BIT ADDRESS (BIT 0 IS LEFTMOST) AT BTPT
868
                                   BYTE ADDRESS = YMORG*256+CHHI**40*CSRX+INT(CSRX*6/8)
SINCE CHHI IS A CONSTANT 9, THEN CHHI*40=360
869
870
```

VMBAS BASIC/VM PATCHES SUBROUTINES FOR SDTXT

871 872	;	BIT AD	DRESS=REM(CSR	Х*	5/8)
873 4644 A900	CSRTAD:	LDA	#O	;	ZERO UPPER ADP2
874 4646 85F5		STA	ADP2+1		
875 4648 A5E5		LDA	CSRY	;	FIRST COMPUTE 360*CSRY
876 464A OA		ASLA		;	COMPUTE 9*CSRY DIRECTLY IN A
877 464B OA		ASLA			
878 464C OA		ASLA			
879 464D 65E5		ADC	CSRY		
880 464F 85F4		STA	ADP2	;	
881 4651 203346		JSR	SADP2L	;	
882 4654 203346		JSR	SADP2L	;	36*CSRY IN ADP2
883 4657 65F4		ADC	ADP2	;	ADD IN 9*CSRY TO MAKE 45*CSRY
884 4659 85F4		STA	ADP2		
885 465B A900 886 465D 65F5		LDA	#0		
		ADC	ADP2+1		NEWGODY TV ADDO
887 465F 85F5 888 4661 203346		STA	ADP2+1	;	
889 4664 203346		JSR JSR	SADP2L	;	90*CSRY IN ADP2 180*CSRY IN ADP2
890 4667 203346			SADP2L	;	
801 JIEEA AERJI		JSR LDA	SADP2L CSRX	;	360*CSRY IN ADP2 NEXT COMPUTE 6*CSRX WHICH IS A 9 BIT
Roo Make Ov		ASLA	CSRX	;	VALUE
802 JI66D 65EJI		ADC	CSRX	,	VALUE
801 166E 04		ASLA	CDITA		
895 4670 85F0		STA	BTPT	;	SAVE RESULT TEMPORARILY
896 4672 6A		RORA	2111	;	DIVIDE BY 8 AND TRUNCATE FOR INT
897 4673 4A		LSRA		;	FUNCTION
898 4674 4A		LSRA		;	NOW HAVE INT(CSRX*6/8)
891 466A A5E4 892 466C OA 893 466D 65E4 894 466F OA 895 467O 85FO 896 4672 6A 897 4673 4A 898 4674 4A 899 4675 18		CLC		;	DOUBLE ADD TO ADP2
900 4676 65F4		ADC	ADP2	,	
901 4678 85F4		STA	ADP2		
902 467A A5F5		LDA	ADP2+1		
903 467C 65E3		ADC			ADD IN VMORG*256
904 467E 85F5		STA	ADP2+1		FINISHED WITH ADP2
905 4680 A5F0		LDA	BTPT	;	COMPUTE REM(CSRX*6/8) WHICH IS LOW 3
906 4682 2907		AND	#7		BITS OF CSRX*6
907 4684 85F0		STA	BTPT		KEEP IN BTPT
908 4686 60		RTS		;	FINISHED
909				_	an i Pari Villana III I I I I I I I I I I I I I I I I
910	;				OR LEGAL VALUES. IF ILLEGAL, COMPUTE
911 912	;	THEIR	VALUE MOD THE	IK	MAXIMUM VALUE
913 4687 A5E4	CKCUSR:	LDA	CSRX		GET CHARACTER NUMBER
914 4689 C935	CKCOSK:	CMP	#NCHR		COMPARE WITH MAXIMUM CHARACTER NUMBER
915 468B 9007		BCC	CKCSR1		JUMP AHEAD IF OK
916 468D E935		SBC	#NCHR		SUBTRACT MAXIMUM FROM IT IF TOO BIG
917 468F 85E4		STA	CSRX		SAVE UPDATED
918 4691 408746		JMP	CKCUSR		GO TRY AGAIN
919 4694 A5E5	CKCSR1:				GET LINE NUMBER
920 4696 C916	OROGII	CMP			COMPARE WITH MAXIMUM LINE NUMBER
921 4698 9007		BCC			GO RETURN IF OK
922 469A E916		SBC	#NLIN		SUBTRACT MAXIMUM FROM IT IF TOO BIG
923 469C 85E5		STA			SAVE UPDATED
924 469E 4C9446		JMP	CKCSR1		GO TRY AGAIN
925 46A1 60	CKCSR2:	RTS		;	RETURN
					19 B

VMBAS BASIC/VM PATCHES SUBROUTINES FOR SDTXT

```
926
                                        MERGE A ROW OF 5 DOTS WITH GRAPHIC MEMORY STARTING AT BYTE ADDRESS AND BIT NUMBER IN ADP2 AND BTPT
927
928
929
930
                                        5 DOTS TO MERGE LEFT JUSTIFIED IN A
PRESERVES X AND Y
931
                                                                     ; SAVE INPUT DATA
932 46A2 85FE
933 46A4 98
                           MERGE:
                                        STA
                                                  MRGT 1
                                                                     ; SAVE Y
                                        TYA
934 46A5 48
935 46A6 A4F0
                                        PHA
                                                                     ; OPEN UP A 5 BIT WINDOW IN GRAPHIC MEMORY
                                        LDY
                                                  BTPT
                                                                    ; LEFT BITS
; ZERO Y
936 46A8 B9DE46
                                                  MERGT, Y
                                        LDA
937 46AB A000
938 46AD 31F4
939 46AF 91F4
940 46B1 A4F0
                                        LDY
                                                  (ADP2),Y
                                        AND
                                                  (ADP2),Y
                                        STA
                                        LDY
                                                  BTPT
                                                  MERGT+8,Y
941 46B3 B9E646
                                        LDA
                                                                     ; RIGHT BITS
942 46B6 A001
                                        LDY
942 46B6 A001
943 46B8 31F4
944 46BA 91F4
945 46BC A5FE
946 46BE A4FO
                                         AND
                                                  (ADP2),Y
                                         STA
                                                  (ADP2),Y
                                                  MRGT 1
                                                                     ; SHIFT DATA RIGHT TO LINE UP LEFTMOST
                                        LDA
                                                                       DATA BIT WITH LEFTMOST GRAPHIC FIELD
                                        LDY
                                                  BTPT
                                                                     : SHIFT BTPT TIMES
947 46C0 F004
                                        BEO
                                                  MERGE2
948 46C2 4A
                           MERGE1:
                                        LSRA
940 40C2 4A
949 46C3 88
950 46C4 DOFC
951 46C6 11F4
952 46C8 91F4
953 46CA A908
                                         DEY
                                                  MERGE1
                                        BNE
                                                                     ; OVERLAY WITH GRAPHIC MEMORY
                           MERGE2:
                                                  (ADP2),Y
                                        ORA
                                         STA
                                                   (ADP2),Y
                                                                     ; SHIFT DATA LEFT TO LINE UP RIGHTMOST
                                        LDA
                                                  #8
                                                                     ; DATA BIT WITH RIGHTMOST GRAPHIC FIELD ; SHIFT (8-BTPT) TIMES
954 46cc 38
                                         SEC
955 46CD E5F0
956 46CF A8
                                         SBC
                                                  BTPT
                                         TAY
957 46D0 A5FE
                                         LDA
                                                  MRGT 1
958 46D2 0A
959 46D3 88
                           MERGE3:
                                         ASLA
                                         DEY
 960 46D4 DOFC
                                                  MERGE3
                                         BNE
961 46D6 C8
962 46D7 11F4
                                        INY
ORA
                                                                     ; OVERLAY WITH GRAPHIC MEMORY
                                                   (ADP2),Y
 963 46D9 91F4
                                         STA
                                                   (ADP2),Y
                                                                     ; RESTORE Y
964 46DB 68
965 46DC A8
                                         PLA
                                         TAY
 966 46DD 60
                                                                     ; RETURN
                                         RTS
967
                                         BYTE X'07,X'83,X'C1,X'EO ; TABLE OF MASKS FOR OPENING UP.
BYTE X'FF,X'FF,X'FF,X'FF; ; IN GRAPHIC MEMORY
BYTE X'7F,X'3F,X'1F,X'OF
968 46DE 0783C1EO MERGT:
969 46E2 F0F8FCFE
970 46E6 FFFFFFFF
971 46EA 7F3F1F0F
 972
 973
974
                                         FAST MEMORY MOVE ROUTINE
                                         ENTER WITH SOURCE ADDRESS IN ADPT1 AND DESTINATION ADDRESS IN ADPT2 AND MOVE COUNT (DOUBLE PRECISION) IN DCNT1.
 975
976
                                         MOVE PROCEEDS FROM LOW TO HIGH ADDRESSES AT APPROXIMATELY 16US
 977
                                         PER BYTE.
                                         EXIT WITH ADDRESS POINTERS AND COUNT IN UNKNOWN STATE. PRESERVES X AND Y REGISTERS.
 978
 979
 980
```

VMBAS BASIC/VM PATCHES SUBROUTINES FOR SDTXT

```
981 46EE 8A
                         FMOVE:
                                                             ; SAVE X AND Y ON THE STACK
                                    TXA
 982 46EF 48
983 46F0 98
                                    PHA
                                    TYA
 984 46F1 48
                                    PHA
 985 46F2 C6EF
                         FMOVE1:
                                             DCNT1+1
                                                             ; TEST IF LESS THAN 256 LEFT TO MC
                                    DEC
 986 46F4 3015
                                    ВМІ
                                             FMOVE3
                                                             ; JUMP TO FINAL MOVE IF SO
 987 46F6 A000
                                             #0 (ADP1),Y
                                                               MOVE A BLOCK OF 256 BYTES QUICKL
                                    LDY
 988 46F8 B1F2
989 46FA 91F4
                         FMOVE2:
                                    LDA
                                                             : TWO BYTES AT A TIME
                                    STA
INY
                                             (ADP2),Y
 990 46FC C8
 991 46FD B1F2
992 46FF 91F4
                                             (ADP1),Y
                                             (ADP2),Y
                                    STA
 993 4701 C8
994 4702 DOF4
995 4704 E6F3
                                    INY
                                    BNE
                                             FMOVE2
                                                             ; CONTINUE UNTIL DONE
                                                             ; BUMP ADDRESS POINTERS TO NEXT PA
                                    INC
                                             ADP 1+1
 996 4706 E6F5
997 4708 4CF246
                                             ADP2+1
                                    INC
                                    JMP
                                             FMOVE1
                                                             ; GO MOVE NEXT PAGE
 998 470B A6EE
                         FMOVE3:
                                                             ; GET REMAINING BYTE COUNT INTO X ; MOVE A BYTE
                                    LDX
                                             DCNT1
 999 470D B1F2
                         FMOVE4:
                                    LDA
                                             (ADP1),Y
1000 470F 91F4
                                    STA
                                             (ADP2),Y
1001 4711 C8
                                    TNY
1002 4712 CA
                                    DEX
1003 4713 DOF8
1004 4715 68
                                    BNE
                                             FMOVE4
                                                             ; CONTINUE UNTIL DONE
                                    PI.A
                                                              ; RESTORE INDEX REGISTERS
1005 4716 A8
1006 4717 68
1007 4718 AA
                                    PLA
                                    TAX
1008 4719 60
                                                             ; AND RETURN
1009
1010
                                    FAST MEMORY CLEAR ROUTINE
1011
                                    ENTER WITH ADDRESS OF BLOCK TO CLEAR IN ADP2 AND CLEAF
1012
                                    IN DCNT1.
1013
                                    EXIT WITH ADDRESS POINTERS AND COUNT IN UNKNOWN STATE
1014
                                    PRESERVES X AND Y REGISTERS
1015
1016 471A 98
1017 471B 48
1018 471C A000
                        FCLR:
                                                             ; SAVE Y
                                    PHA
                        FCLR1:
                                    LDY
                                             #0
                                                             ; TEST IF LESS THAN 256 LEFT TO MC; JUMP TO FINAL CLEAR IF SO; CLEAR A BLOCK OF 256 QUICKLY
1019 471E C6EF
1020 4720 300B
                                             DCNT1+1
                                    BMT
                                             FCLR3
1021 4722 98
1022 4723 91F4
1023 4725 C8
                                    TYA
                        FCLR2:
                                    STA
                                             (ADP2),Y
                                                             ; CLEAR A BYTE
                                    INY
1024 4726 DOFB
1025 4728 E6F5
                                             FCLR2
                                                             ; BUMP ADDRESS POINTER TO NEXT PAC
; GO CLEAR NEXT PAGE
                                             ADP2+1
FCLR1
                                    TNC
1026 472A 4C1C47
                                    JMP
1027 472D 98
1028 472E 91F4
                         FCLR3:
                                    TYA
                                                             ; CLEAR REMAINING PARTIAL PAGE
                                    STA
INY
                        FCLR4:
                                             (ADP2),Y
1029 4730 C8
1030 4731 C6EE
                                             DCNT 1
1031 4733 DOF9
                                    BNE
                                            FCLR4
1032 4735 68
                                    PLA
                                                             ; RESTORE Y
1033 4736 A8
                                    TAY
1034 4737 60
                                                             ; RETURN
1035
```

20B

```
'CHARACTER FONT TABLE'
                                                  . PAGE
                                                  CHARACTER FONT TABLE
1036
                                                  ENTRIES IN ORDER STARTING AT ASCII BLANK
                                                  96 ENTRIES
1038
                                                  EACH ENTRY CONTAINS 7 BYTES
1039
                                                  7 BYTES ARE CHARACTER MATRIX, TOP ROW FIRST, LEFTMOST DOT IS LEFTMOST IN BYTE
1040
1041
                                                  LOWER CASE FONT IS SMALL UPPER CASE, 5 BY 5 MATRIX
1042
1043
                                                  .BYTE
                                                                      X'00,X'00,X'00
                                                                                                       ; BLANK
1044 4738 000000
                                  CHTB:
                                                  BYTE X'00,X'00,X'00,X'00
BYTE X'20,X'20,X'20
BYTE X'20,X'20,X'20
1045 473B 00000000
1046 473F 202020
1047 4742 20200020
                                                                                                       ; 1
1048 4746 505050
                                                  .BYTE
                                                                      X'50, X'50, X'50
                                                  BYTE X'50,X'50,X'50
BYTE X'00,X'00,X'00
BYTE X'50,X'50,X'50
BYTE X'50,X'50,X'50
BYTE X'50,X'50,X'50
BYTE X'20,X'78,X'40
BYTE X'70,X'28,X'50,X'50
BYTE X'20,X'40,X'98,X'98
X'40,X'40,X'40,X'40,X'40
BYTE X'40,X'40,X'40,X'46
1049 4749 00000000
                                                                                                      ; #
1050 474D 5050F8
1051 4750 50F85050
1052 4754 2078A0
                                                                                                       ; $
1052 4754 2070A0
1053 4757 7028F020
1054 475B C8C810
1055 475E 20409898
1056 4762 40A0A0
                                                                                                       ; %
                                                                                                       ; &
                                                             x'40, x'A8, x'90, x'68
x'30, x'30, x'30
x'00, x'00, x'00, x'00
1056 4762 40889068
1057 4765 40889068
1058 4769 303030
1059 4760 00000000
                                                  .BYTE
                                                                                                      ; '
                                                  BYTE
                                                  BYTE
                                                  BYTE X'20,X'40,X'40
BYTE X'40,X'40,X'40,X'20
1060 4770 204040
1061 4773 40404020
1062 4777 201010
                                                                                                      ; (
                                                  BYTE
                                                                       X'20,X'10,X'10
                                                                                                      ; )
                                                  BYTE X'10, X'10, X'10, X'20
BYTE X'20, X'A8, X'70
 1063 477A 10101020
                                                                                                      ; *
1064 477E 20A870
1065 4781 2070A820
                                                  .BYTE X'20, X'70, X'A8, X'20
                                                             X'00, X'20, X'20
X'F8, X'20, X'20, X'00
1066 4785 002020
1067 4788 F8202000
                                                  .BYTE
                                                  .BYTE
 1068 478C 000000
                                                                       x,00,x,00,x,00
                                                  .BYTE
                                                             X'30,X'30,X'10,X'20
X'00,X'00,X'00
1069 478F 30301020
1070 4793 000000
1071 4796 F8000000
                                                  .BYTE
                                                                                                       ; -
                                                  .BYTE
                                                              X'F8, X'00, X'00, X'00
                                                  .BYTE
                                                  BYTE X'00,X'00,X'00
BYTE X'00,X'00,X'30,X'30
BYTE X'00,X'00,X'30,X'30
BYTE X'20,X'40,X'80,X'80
BYTE X'20,X'40,X'80,X'80
 1072 479A 000000
1073 479D 00003030
1074 47A1 080810
                                                                                                       ; .
 1075 47A4 20408080
1076 47A8 609090
                                                                                                       ; 0
 1077 47AB 90909060
                                                             x'90,X'90,X'90,X'60
                                                  BYTE
                                                             X'20, X'60, X'20
X'20, X'20, X'20, X'70
1078 47AF 206020
1079 47B2 20202070
1080 47B6 708810
                                                  .BYTE
                                                                                                       ; 1
                                                  .BYTE
                                                                       X'70, X'88, X'10
                                                                                                      ; 2
                                                  .BYTE
                                                             X'70,X'88,X'10
X'20,X'40,X'80,X'F8
X'70,X'88,X'08
X'30,X'08,X'88,X'70
X'10,X'30,X'50
X'90,X'F8,X'10,X'10
 1081 47B9 204080F8
                                                  .BYTE
                                                                                                      ; 3
 1082 47BD 708808
                                                  .BYTE
                                                  BYTE
 1083 4700 30088870
 1084 47C4 103050
1085 47C7 90F81010
1086 47CB F880F0
                                                                                                      ; 4
                                                  .BYTE
                                                  .BYTE
                                                                                                      ; 5
 1087 47CE 080808F0
1088 47D2 708080
                                                  .BYTE X'08, X'08, X'08, X'FO
                                                  .BYTE X'70,X'80,X'80
.BYTE X'F0,X'88,X'88,X'70
                                                                                                      ; 6
 1089 47D5 F0888870
```

21A

VMBAS BASIC/VM PATCHES CHARACTER FONT TABLE

```
1090 47D9 F80810
                                                       X'F8,X'08,X'10
X'20,X'40,X'80,X'80
X'70,X'88,X'88
                                             .BYTE
                                                                                            ; 7
1091 47DC 20408080
                                             .BYTE
1092 47EO 708888
                                              .BYTE
                                                                                            ; 8
1093 47E3 70888870
                                             BYTE
                                                       X'70, X'88, X'88, X'70
1094 47E7 708888
                                             .BYTE
                                                               X'70, X'88, X'88
                                                                                            ; 9
1095 47EA 78080870
                                                        X'78, X'08, X'08, X'70
                                             .BYTE
1096 47EE 303000
                                                       X'30,X'30,X'00
X'00,X'30,X'30,X'30
X'30,X'30,X'00
                                             .BYTE
                                                                                           ; :
1097 47F1 00003030
                                             .BYTE
1098 47F5 303000
                                             .BYTE
                                                                                           : :
                                                       X'30, X'30, X'10, X'20
X'10, X'20, X'40
X'10, X'20, X'40
X'80, X'40, X'20, X'10
X'00, X'00, X'58
X'00, X'58, X'00, X'00
1099 47F8 30301020
                                             BYTE
1100 47FC 102040
                                             .BYTE
                                                                                           ; LESS THAN
1101 47FF 80402010
                                             .BYTE
1102 4803 0000F8
                                             BYTE
1103 4806 00F80000
                                             .BYTE
                                                       X'40, X'20, X'10
X'08, X'10, X'20, X'40
1104
       480A 402010
                                             .BYTE
                                                                                           ; GREATER THAN
1105 480D 08102040
                                             .BYTE
1106 4811 708808
                                             .BYTE
                                                               X'70, X'88, X'08
                                                                                           : ?
                                                       X'10, X'20, X'00, X'20
X'70, X'88, X'08
X'68, X'A8, X'A8, X'D0
1107 4814 10200020
                                             .BYTE
1108 4818 708808
                                             .BYTE
                                                                                           ; 0
1109 481B 68A8A8D0
                                             .BYTE
                                                       X'20,X'50,X'88
X'88,X'F8,X'88,X'88
X'F0,X'48,X'48
1110 481F 205088
                                             .BYTE
                                                                                           ; A
1111 4822 88F88888
                                             .BYTE
1112 4826 F04848
                                                                                           ; B
                                             .BYTE
                                                       x'70, x'48, x'48, x'50
x'70, x'88, x'80
x'80, x'80, x'88, x'70
x'50, x'48, x'48
x'48, x'48, x'48, x'50
1113 4829 704848F0
                                             BYTE
1114 482D 708880
                                                                                           ; C
                                             .BYTE
1115 4830 80808870
1116 4834 F04848
                                             .BYTE
                                                                                           ; D
1117 4837 484848FO
                                             .BYTE
                                                       X'F8, X'80, X'80
X'F0, X'80, X'80
X'F0, X'80, X'80
X'F0, X'80, X'80
X'F0, X'80, X'80
X'70, X'88, X'80
1118 483B F88080
1119 483E F08080F8
                                             .BYTE
                                                                                           ; E
                                             .BYTE
1120 4842 F88080
                                             .BYTE
                                                                                           ; F
1121 4845 F0808080
1122 4849 708880
                                             .BYTE
                                                                                           ; G
                                                       X'B8,X'88,X'88,X'70
X'88,X'88,X'88
X'F8,X'88,X'88,X'88
1123 484C B8888870
                                             .BYTE
1124 4850 888888
                                             .BYTE
                                                                                           ; H
1125 4853 F8888888
                                             BYTE
1126 4857 702020
                                             .BYTE
                                                               X'70, X'20, X'20
                                                                                           ; I
                                                       X'20, X'20, X'20, X'70
X'38, X'10, X'10
X'10, X'10, X'90, X'60
X'88, X'90, X'80
X'CC, X'A0, X'90, X'88
1127 485A 20202070
                                             .BYTE
1128 485E 381010
                                             .BYTE
                                                                                           ; J
1129 4861 10109060
                                             BYTE
1130 4865 8890A0
                                             .BYTE
                                                                                           ; K
1131 4868 COA09088
                                             .BYTE
                                                      X'CC, X'AO, X'9O, X'88

X'8O, X'8O, X'8O, X'F8

X'8C, X'8C, X'DE, X'AE

X'AE, X'BE, X'BE, X'AE

X'AE, X'BE, X'BE, X'BE

X'AE, X'BE, X'BE, X'BE

X'BE, X'BE, X'BE, X'BE

X'SE, X'BE, X'BE, X'BE

X'FO, X'BE, X'BE, X'BE

X'FO, X'BE, X'BE, X'BE
1132 4860 808080
                                             .BYTE
                                                                                           ; L
1133 486F 808080F8
                                             BYTE
1134 4873 88D8A8
                                             BYTE
1135 4876 A8888888
                                             .BYTE
1136 487A 8888C8
                                             .BYTE
                                                                                           ; N
1137 487D A8988888
1138 4881 708888
                                             BYTE
                                             .BYTE
                                                                                           ; 0
1139 4884 88888870
                                             .BYTE
1140 4888 F08888
                                             .BYTE
                                                                                           ; P
1141 488B F0808080
                                                       X'F0, X'80, X'80, X'80
                                             .BYTE
                                                       X'70, X'88, X'88
X'88, X'A8, X'90, X'68
1142 488F 708888
                                             BYTE
                                                                                           ; Q
1143 4892 88A89068
                                             .BYTE
1144 4896 F08888
                                             .BYTE
                                                               X'FO, X'88, X'88
                                                                                                          21B
```

VMBAS BASIC/VM PATCHES CHARACTER FONT TABLE

```
1145 4899 F0A09088
                                                                                             .BYTE X'F0, X'A0, X'90, X'88
1146 489D 788080
1147 48AO 700808F0
                                                                                             .BYTE
                                                                                                                  X'78,X'80,X'80
X'70,X'08,X'08,X'F0
                                                                                                                                                                                           ; S
1148 48A4 F82020
                                                                                                                                   X'F8, X'20, X'20
                                                                                                                                                                                           ; T
                                                                                             .BYTE
                                                                                                                X1F8, X120, X120

X120, X120, X120, X120

X188, X188, X188, X188

X188, X188, X188, X188

X150, X150, X120, X120

X188, X188, X188

X188, X188, X188

X188, X188, X188

X188, X188, X188, X188

X188, X188, X188, X188

X188, X188, X188, X188
1149 48A7 20202020
1150 48AB 888888
                                                                                             .BYTE
                                                                                                                                                                                            ; U
                                                                                             .BYTE
 1151 48AE 88888870
                                                                                             BYTE
                                                                                                                                                                                           ; V
1152 48B2 888888
1153 48B5 50502020
                                                                                             .BYTE
                                                                                             BYTE
                                                                                                                                                                                            ; W
 1154 48B9 888888
                                                                                              .BYTE
 1155 48BC A8A8D888
                                                                                              BYTE
 1156 48C0 888850
                                                                                             BYTE
                                                                                                                                                                                             ; X
 1157 48C3 20508888
1158 48C7 888850
                                                                                                                  X'20,X'50,X'88,X'88
X'88,X'88,X'50
                                                                                              .BYTE
                                                                                                                                                                                             : Y
                                                                                              BYTE
                                                                                                                  X'20,X'20,X'20,X'20

X'F8,X'08,X'10

X'20,X'40,X'80,X'F8

X'70,X'40,X'40
  1159 48CA 20202020
                                                                                              BYTE
 1160 48CE F80810
1161 48D1 204080F8
1162 48D5 704040
                                                                                               .BYTE
                                                                                                                                                                                             ; Z
                                                                                              .BYTE
                                                                                              BYTE
                                                                                                                 X'70, X'40, X'40
X'40, X'40, X'40, X'70
X'80, X'80, X'80
X'70, X'10, X'10, X'10
X'10, X'10, X'10, X'10
X'10, X'10, X'10, X'10
X'00, X'00, X'00
X'00, X'00, X'00
X'00, X'00, X'00
X'00, X'00, X'00
X'00, X'00, X'10
X'10, X'40, X'40
X'10, X'40, X'40
X'48, X'70, X'48, X'70
X'80, X
                                                                                                                                                                                             ; LEFT BRACKET
 1163 48D8 40404070
                                                                                               .BYTE
                                                                                                                                                                                             : BACKSLASH
 1164 48DC 808040
1165 48DF 20100808
                                                                                             .BYTE
                                                                                                                                                                                             ; RIGHT BRACKET
  1166 48E3 701010
                                                                                               BYTE
 1167 48E6 10101070
1168 48EA 205088
                                                                                              .BYTE
                                                                                                                                                                                             ; CARROT
 1169 48ED 00000000
1170 48F1 000000
                                                                                               .BYTE
                                                                                                                                                                                              ; UNDERLINE
                                                                                               BYTE
  1171 48F4 000000F8
                                                                                               .BYTE
                                                                                                                                                                                             ; GRAVE ACCENT
 1172 48F8 C06030
1173 48FB 00000000
1174 48FF 000020
1175 4902 5088F888
                                                                                               .BYTE
                                                                                               BYTE
                                                                                                                                                                                             ; A (LC)
                                                                                               .BYTE
                                                                                               .BYTE
  1176 4906 0000F0
                                                                                                                                                                                              ; B (LC)
                                                                                              .BYTE
 1177 4909 487048F0
1178 490D 000078
                                                                                               .BYTE
                                                                                                                                                                                              ; C (LC)
                                                                                               .BYTE
                                                                                                                   X'80, X'80, X'80, X'78
X'00, X'00, X'F0
X'48, X'48, X'48, X'F0
  1179 4910 80808078
                                                                                               .BYTE
                                                                                                                                                                                             ; D (LC)
 1180 4914 0000F0
1181 4917 484848F0
                                                                                              .BYTE
                                                                                                                   X'00, X'00, X'F8
X'80, X'E0, X'80, X'F8
X'00, X'00, X'F8
  1182 491B 0000F8
                                                                                                                                                                                              ; E (LC)
                                                                                               .BYTE
  1183 491E 80E080F8
1184 4922 0000F8
                                                                                               .BYTE
                                                                                                                                                                                              ; F (LC)
                                                                                               .BYTE
                                                                                                                    X'80, X'E0, X'80, X'80
X'00, X'00, X'78
X'80, X'98, X'88, X'78
  1185 4925 80E08080
                                                                                               .BYTE
                                                                                                                                                                                              ; G (LC)
 1186 4929 000078
1187 492C 80988878
                                                                                               .BYTE
                                                                                               BYTE
                                                                                                                   X'00,X'00,X'88
X'88,X'F8,X'88,X'88
X'00,X'00,X'70
  1188 4930 000088
                                                                                               .BYTE
                                                                                                                                                                                              ; H (LC)
 1189 4933 88F88888
1190 4937 000070
                                                                                               .BYTE
                                                                                                                                                                                              ; I (LC)
                                                                                              .BYTE
                                                                                                                    X'20, X'20, X'20, X'70
X'00, X'00, X'38
X'10, X'10, X'50, X'20
  1191 493A 20202070
                                                                                               .BYTE
                                                                                                                                                                                              ; J (LC)
 1192 493E 000038
1193 4941 10105020
                                                                                               .BYTE
                                                                                               .BYTE
                                                                                                                    X'00,X'00,X'90
X'A0,X'C0,X'A0,X'90
X'00,X'00,X'80
  1194 4945 000090
                                                                                                                                                                                              ; K (LC)
                                                                                               .BYTE
  1195 4948 A0C0A090
1196 494C 000080
                                                                                               .BYTE
                                                                                               BYTE
                                                                                                                                                                                              ; L (LC)
                                                                                                                   X'80, X'80, X'80, X'F8
X'00, X'00, X'88
X'D8, X'A8, X'88, X'88
  1197 494F 808080F8
1198 4953 000088
1199 4956 D8A88888
                                                                                               .BYTE
                                                                                                                                                                                              ; M (LC)
                                                                                               .BYTE
```

VMBAS BASIC/VM PATCHES CHARACTER FONT TABLE

NO ERROR LINES

```
X'00,X'00,X'88
X'C8,X'A8,X'98,X'88
X'00,X'00,X'70
X'88,X'88,X'88,X'70
 1200 495A 000088
                                                                .BYTE
                                                                                                                                 ; N (LC)
 1201 495D C8A89888
1202 4961 000070
                                                                .BYTE
                                                                .BYTE
                                                                                                                                 ; 0 (LC)
 1203 4964 88888870
1204 4968 0000F0
                                                                .BYTE
                                                                             X'00,X'00,X'F0
X'00,X'00,X'F0
X'88,X'F0,X'80,X'80
X'00,X'00,X'70
X'88,X'88,X'90,X'68
X'00,X'00,X'F0
X'88,X'F0,X'40,X'90
                                                                 .BYTE
                                                                                                                                 ; P (LC)
 1205 496B 88F08080
                                                                .BYTE
1206 496F 000070
1207 4972 88A89068
                                                               .BYTE
                                                                                                                                 ; Q (LC)
                                                               .BYTE
1208 4976 0000F0
1209 4979 88F0A090
                                                                                                                                 ; R (LC)
                                                                .BYTE
1210 497D 000078
                                                                             x'100, x'100, x'178

x'180, x'170, x'108, x'170

x'100, x'100, x'178

x'120, x'120, x'120, x'120

x'120, x'120, x'120, x'120

x'100, x'100, x'108

x'188, x'188, x'188, x'170
                                                               .BYTE
                                                                                                                                 ; S (LC)
1210 4970 000078
1211 4980 807008F0
1212 4984 0000F8
1213 4987 20202020
1214 4988 000088
                                                               .BYTE
                                                                                                                                 ; T (LC)
                                                                .BYTE
                                                                .BYTE
                                                                                                                                ; U (LC)
1215 498E 88888870
1216 4992 000088
                                                                .BYTE
                                                                             X'00, X'00, X'00, X'00, X'00
X'00, X'00, X'00, X'00
X'00, X'00, X'00
X'00, X'00, X'08
X'00, X'00, X'08
X'00, X'00, X'08
X'50, X'20, X'50, X'88
                                                               .BYTE
                                                                                                                                 ; V (LC)
1217 4995 88885020
1218 4999 000088
1219 499C 88A8D888
                                                                .BYTE
                                                                                                                                 ; W (LC)
                                                               .BYTE
1220 49A0 000088
1221 49A3 50205088
1222 49A7 000088
                                                                .BYTE
                                                                                                                                 ; X (LC)
                                                               .BYTE
                                                                             x'00, x'00, x'88
x'50, x'20, x'20, x'20
x'00, x'00, x'58
x'10, x'20, x'40, x'58
x'10, x'20, x'40, x'50
x'10, x'20, x'20, x'20
                                                               .BYTE
                                                                                                                                 ; Y (LC)
1223 49AA 50202020
1224 49AE 0000F8
                                                               BYTE
                                                               .BYTE
                                                                                                                                ; Z (LC)
1225 49B1 102040F8
                                                               .BYTE
1226 49B5 102020
1227 49B8 60202010
1228 49BC 202020
                                                               BYTE
                                                                                                                                 ; LEFT BRACE
                                                               .BYTE
                                                                              X'20,X'20,X'20
X'20,X'20,X'20,X'20
X'40,X'20,X'20
                                                               .BYTE
                                                                                                                                 ; VERTICAL BAR
1229 49BF 20202020
1230 49C3 402020
                                                               .BYTE
                                                                .BYTE
                                                                                                                                ; RIGHT BRACE
1231 49C6 30202040
1232 49CA 10A840
1233 49CD 00000000
                                                                             X'30,X'20,X'20,X'40
X'30,X'20,X'40
X'10,X'A8,X'40
X'00,X'00,X'00,X'00
X'A8,X'50,X'A8
                                                                .BYTE
                                                                                                                                 ; TILDA
                                                               .BYTE
1234 49D1 A850A8
                                                                                                                                 ; RUBOUT
1235 49D4 50A850A8
                                                               .BYTE
1236
1237 0000
                                           END:
                                                               .END
```

```
.PAGE 'KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE'
                                       *****MODIFIED FOR KIM BASIC*****
                                       THIS SUBROUTINE SCANS AN UNENCODED KEYBOARD MATRIX CONNECTED TO THE KIM-1 APPLICATION CONNECTOR. USER PERIPHERAL PORT B
3
5
                                       BITS 5 (MSB) THROUGH 2 (LSB) ARE CONNECTED TO A ONE-OF-16 DECODER (74154) WHICH DRIVES THE KEYSWITCH COLUMNS. SENSING OF THE ROWS IS BY A PORTION OF THE KIM ON-BOARD
                                        KEYBOARD CIRCUITRY WHICH USES SYSTEM PERIPHERAL PORT B BITS
9
10
                                        WHEN CALLED, THE ROUTINE SITS IN A LOOP WAITING FOR A KEY TO
                                       BE PRESSED. WHEN A KEY IS PRESSED (EXCEPTING SHIFT, CONTROL, REPEAT), THE ROUTINE RETURNS WITH KEY CODE IN ACCUMULATOR. BOTH INDEX REGISTERS ARE RETAINED.
11
12
13
14
15
16
17
18
19
20
21
22
23
                                       THE ROUTINE IMPLEMENTS TRUE 2-KEY ROLLOVER, KEY DEBOUNCING, AND REPEAT TIMING. ONE RAM LOCATION IS REQUIRED, ITS INITIAL CONTENT IS INSIGNIFICANT.
SHIFT LOCK IS SUPPORTED, IT ONLY AFFECTS LETTERS MAKING IT EFFECTIVELY A "CAPS LOCK" KEY.
                                        SHIFT LOCK SHOULD BE RELEASED WHEN USING THE KIM MONITOR.
                                        GERMANIUM DIODES SHOULD BE WIRED IN SERIES WITH ALL MODE MODIFYING KEYS TO AVOID THE "PHANTOM KEY" EFFECT. THESE
                                        INCLUDE: SHIFT, CONTROL, REPEAT, AND SHIFT LOCK.
24
25
                                                                     ; SYSTEM PORT A DATA REGISTER ; SYSTEM PORT A DIRECTION REGISTER
                                                  X'1740
    1740
                           SYSPA
                                                  X'1741
X'1702
26
     1741
                           SYSPAD
                                                                        USER PORT B DATA REGISTER
27
28
    1702
1703
                           USRPB
                           USRPBD
                                                  X'1703
                                                                        USER PORT B DIRECTION REGISTER
                                                                     ; REPEAT PERIOD, MILLISECONDS
; DEBOUNCE DELAY, MILLISECONDS
29 0032
                           RPTRAT
                                                  50
30 0005
                           DBCDLA
31
                                                                     ; PUT INTO KIM RAM UNUSED BY BASIC
    0000
                                                  X'0200
32
33
                                                                     ; DISPATCH VECTOR KEYBOARD ROUTINE ; DISPATCH VECTOR CONTROL/C ROUTINE
34
     0200 400602
                                                   ANKB
35
36
    0203 4CF202
                                        JMP
                                                  CNTLC
37 0206 98
38 0207 48
39 0208 8A
                           ANKB:
                                        TYA
                                                                      : SAVE THE INDEX REGISTERS
                                        PHA
                                        TXA
40 0209 48
                                        PHA
                                                                     ; TEST KIM TTY/KEYB SWITCH
41 020A A901
42 020C 2C4017
                                        I.DA
                                                  X 1740
                                                                      ; CONTINUE WITH KEYBOARD IF IN KEYB POSIT.
43 020F D006
                                        BNE
                                                  ANKBO
                                                                     ; GET A TTY CHARACTER IF IN TTY POSITION
44 0211 205A1E
45 0214 4C9802
                                        JSR
                                                  X'1E5A
                                        JMP
                                                   ANKB10
                                                                        GO ECHO IT AND RETURN
                                                                        SET UP DATA DIRECTION REGISTERS
46 0217 AD4117
                           ANKBO:
                                        LDA
                                                  SYSPAD
                                                                      ; SET SYSTEM PORT A BITS 4-0 TO INPUT
                                                  #X'E0
47 021A 29E0
48 021C 8D4117
                                        AND
                                        STA
                                                   SYSPAD
49 021F AD0317
                                        LDA
                                                  USRPBD
                                                                     ; SET USER PORT B BITS 5-2 TO OUTPUT
                                                   #x'3C
                                        ORA
50 0222 093C
     0224 8D0317
                                                   USRPRD
                                                                        INITIALIZE REPEAT DELAY
52 0227 A032
53 0229 A205
54 022B 20AF0
                                        LDY
                                                   #RPTRAT
                                                                        INITIALIZE DEBOUNCE DELAY
WAIT 1 MILLISECOND
                                                   #DBCDLA
                           ANKB1:
                                        LDX
     022B 20AF02
                           ANKB2:
                                        JSR
                                                   WA 1MS
                                                   ANKBT1
                                                                      ; GET KEY ADDRESS LAST DOWN
55 022E ADE103
                                        LDA
                                                                                                                        23A
```

```
MAINPR
```

KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE

```
; TEST IF ADDRESSED KEY STILL DOWN
                                 JSR
                                         KEYTST
56 0231 20B602
 57 0234 BOOC
                                          ANKB4
                                                           JUMP IF UP
                                                         ; TEST STATE OF REPEAT KEY
58 0236 A931
59 0238 20B602
                                 I.DA
                                          #X 131
                                 JSR
                                         KEYTST
60 023B B0EC
                                 BCS
                                         ANKB1
                                                           LOOP BACK IF REPEAT KEY IS UP
61 023D 88
62 023E D0E9
                                 DEY
                                                           DECREMENT REPEAT DELAY
                                                           LOOP BACK IF REPEAT DELAY UNEXPIRED
                                         ANKB1
                                 BNE
63 0240 F029
                                                           GO OUTPUT REPEATED CODE
                                 BEQ
                                         ANKB7
64 0242 CA
                      ANKB4:
                                 DEX
                                                           DECREMENT DEBOUNCE DELAY
65 0243 D0E6
                                         ANKB2
                                                         ; GO TEST KEY AGAIN IF NOT EXPIRED
                                 BNE
                                 PREVIOUS KEY IS NOW RELEASED, RESUME SCAN OF KEYBOARD
67
68
69 0245 EEE103
                      ANKB5:
                                                         ; INCREMENT KEY ADDRESS TO TEST
70 0248 ADE103
71 024B C93F
                                 L.DA
                                          ANKBT1
                                                         ; SKIP OVER SHIFT
                                 CMP
                                          #X'3F
 72 024D F0F6
                                          ANKB5
                                                         : SKIP OVER CAPS LOCK
73 024F C933
74 0251 F0F2
                                 CMP
                                          #X133
                                          ANKB5
                                 BEQ
 75 0253 C92E
76 0255 F0EE
77 0257 C931
                                 CMP
                                          #X 12E
                                                         ; SKIP OVER CONTROL
                                 BEO
                                         ANK B5
                                          #X'31
                                                         ; SKIP OVER REPEAT
                                 CMP
 78 0259 FOEA
                                 BEQ
                                          ANKB5
                                                         ; INITIALIZE DEBOUNCE DELAY
79 025B A205
80 025D ADE103
                                 I.DX
                                          #DBCDLA
                                          ANKBT1
                                                           TEST STATE OF CURRENTLY ADDRESSED KEY
                      ANKB6:
                                 LDA
 81 0260 20B602
                                 JSR
                                          KEYTST
                                                         : GO TRY NEXT KEY IF THIS ONE IS UP
 82 0263 B0E0
                                 BCS
                                          ANKB5
 83 0265 20AF02
                                 JSR
                                          WA 1MS
                                                           WAIT 1 MILLISECOND IF DOWN
                                                         ; DECREMENT DEBOUNCE DELAY
; GO CHECK KEY AGAIN IF NOT EXPIRED
 84 0268 CA
                                 DEX
 85 0269 D0F2
                                 BNE
                                          ANKB6
                                 TRANSLATE AND OUTPUT A KEY CODE
 87
88
                                                         ; GET BASIC ASCII CODE FROM TABLE
 89 026B AEE103
                       ANKB7:
                                 LDX
                                          ANKBT1
                                          ANKBTB, X
                                                           INTO INDEX Y
 90 026E BC4103
                                 LDY
                                                         ; TEST STATE OF CONTROL KEY
 91 0271 A92E
                                 LDA
                                          #X'2E
 92 0273 208602
                                 JSR
                                          KEYTST
                                                           SKIP AHEAD IF NOT PRESSED
 93 0276 B006
94 0278 98
                                 BCS
                                          ANKB8
                                 TYA
                                                            CLEAR UPPER THREE BITS OF CODE IF
                                          #X ' 1F
                                                           CONTROL PRESSED
 95 0279 291F
                                 AND
                                                           IGNORE SHIFT AND GO RETURN
TEST STATE OF SHIFT KEY
                                          ANKB10
 96 027B 4C9802
                                 JMP
 97 027E A93F
                       ANKB8:
                                          #X'3F
 98 0280 20B602
                                  JSR
                                          KEYTST
                                                         ; SKIP AHEAD IF PRESSED
; TEST STATE OF CAPS LOCK KEY
 99 0283 9010
                                  ВСС
                                          ANKB9
100 0285 A933
101 0287 20B602
                                  LDA
                                          #X 1 33
                                          KEYTST
                                  JSR
                                                           RETRIEVE PLAIN CODE FROM Y
GO RESTORE REGISTERS AND RETURN IF CA
102 028A 98
                                  TYA
                                          ANKB10
103 028B B00B
                                 BCS
                                                         ; LOCK KEY IS UP
; IF DOWN, TEST IF CODE IS A LETTER
; NO, GO RETURN
104
105 028D C961
                                  CMP
                                          #X'61
106 028F 9007
                                 BCC
                                          ANKB10
107 0291 C97B
                                 CMP
                                          #X'7B
                                 BCS
                                          ANKB10
                                                         ; NO, GO RETURN
108 0293 B003
109 0295 BD9103
110 0298 48
                                          ANKBTB+80, X
                                                           FETCH SHIFTED CODE FROM TABLE SAVE CHARACTER CODE
                       ANKB9:
                                 [.DA
                                 PHA
                       ANKB10:
```

KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE

```
111 0299 C90F
                                            #X'OF
                                                            ; TEST IF THE CODE IS CNTL/O
112 029B D006
                                   BNE
                                            ANKB11
113 029D A514
                                                             ; TOGGLE OUTPUT ENABLE BIT IN BASIC
                                   LDA
                                            X 1 14
114 029F 45FF
                                            X'FF
                                   EOR
115 02A1 8514
                                            X 1 14
116 02A3 68
                        ANKB11:
                                                             ; RESTORE A
                                   PI.A
117 02A4 BA
                                   TSX
118 02A5 BC0201
119 02A8 9D0201
                                                            ; RESTORE Y FROM STACK ; SAVE CHARACTER CODE IN STACK WHERE Y WAS ; RESTORE X
                                   LDY
                                           X'102,X
X'102,X
                                   STA
120 02AB 68
                                   PLA
121 O2AC AA
                                   TAX
122 O2AD 68
                                   PLA
                                                               RESTORE CHARACTER CODE IN A
123 O2AE 60
                                   RTS
124
125
                                   WAIT FOR ONE MILLISECOND ROUTINE
126
127 02AF A9C8
                        WA1MS:
WA1MS1:
                                   LDA
                                            #200
                                                            ; WAIT FOR APPROXIMATELY 1 MILLISECOND
128 02B1 E901
                                   SBC
129 02B3 D0FC
130 02B5 60
131
                                   BNE
                                            WA 1MS 1
                                   RTS
132
                                   KEY STATE TEST ROUTINE
                                   ENTER WITH ADDRESS OF KEY TO TEST IN ACCUMULATOR
LEAVES BOTH INDEX REGISTERS ALONE
SETS ANKBT1 TO ZERO IF ILLEGAL KEY ADDRESS AND TESTS KEY ZERO
133
134
135
136
                                   RETURNS WITH CARRY FLAG ON IF NOT PRESSED, OFF IF PRESSED
137
                                                            ; TEST IF LEGAL KEY ADDRESS ; SKIP AHEAD IF SO
138 02B6 C950
                        KEYTST:
                                   CMP
                                            #80
139 02B8 9005
                                            KEYTS1
                                   BCC
140 02BA A900
141 02BC 8DE103
                                                               SET TO ZERO OTHERWISE
                                            ANKBT1
                                   STA
                                                              UPDATE ANKBT1
142 02BF 48
                        KEYTS1:
                                   PHA
                                                             ; SAVE A ON STACK
; SAVE X ON STACK
143 02C0 8A
144 02C1 48
                                   TXA
                                   PHA
145 02C2 AD0217
                                           USRPB
                                                             ; CLEAR USER PORT B BITS 2-5
                                   LDA
146 02C5 29C3
147 02C7 8D0217
                                   STA
                                            USRPB
148 02CA BA
                                                             ; RESTORE KEY ADDRESS FROM STACK
                                   TSX
149 02CB BD0201
150 02CE 290F
                                   LDA
                                            X'102,X
                                                             ; ISOLATE LOW 4 BITS OF KEY ADDRESS
                                            #X'OF
                                   AND
151 02D0 0A
                                                             ; POSITION TO LINE UP WITH BITS 2-5
                                   ASLA
152 02D1 0A
                                   ASI.A
153 02D2 0D0217
                                                               SEND TO USER PORT B WITHOUT DISTURBING
                                   ORA
                                            USRPB
154 02D5 8D0217
                                   STA
                                            USRPB
                                                               OTHER BITS
155 02D8 BD0201
                                   LDA
                                            X 102, X
                                                               GET KEY ADDRESS BACK
156 02DB 4A
                                                             ; RIGHT JUSTIFY HIGH 3 BITS
                                   L.SRA
157 02DC 4A
                                   LSRA
158 02DD 4A
159 02DE 4A
                                   LSRA
                                                            ; USE AS AN INDEX INTO MASK TABLE ; GET SYSTEM PORT A STATUS
                                   L.SRA
160 02DF AA
                                   TAX
161 02E0 AD4017
                                   LDA
                                            SYSPA
                                                              GET SYSTEM PORT A STATUS
SELECT BIT TO TEST AND SET CARRY FLAG
162 02E3 3DED02
                                   AND
                                            MSKTAB, X
163 02E6 18
164 02E7 E900
                                   CLC
                                                             ; ACCORDINGLY
                                            #0
                                   SBC
165 02E9 68
                                                             ; RESTORE X FROM STACK
                                   PLA
```

KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE

```
166 O2EA AA
                                    TAX
167 O2EB 68
168 O2EC 60
                                    PLA
                                                               ; RESTORE A FROM STACK
                                    RTS
                                                               RETURN
169
170 02ED 01020408 MSKTAB:
                                   .BYTE X'01, X'02, X'04, X'08
                                                                           ; MASK TABLE FOR KEYTST
171 02F1 10
172
                                     .BYTE X'10
                                    TEST FOR CONTROL/C ROUTINE RETURNS WITH CARRY SET IF CONTROL AND C KEYS DOWN, RETURNS
173
174
175
                                    WITH CARRY OFF IF NOT
176
                                    ALSO TESTS IF CONTROL AND O KEY STRUCK, IF SO TOGGLES THE
177
                                    CONTROL/O FLAG IN BASIC
178
                                    ALSO TEST IF CONTROL AND S KEYS DOWN, IF SO WAITS UNTIL
179
                                    CONTROL AND Q KEYS ARE DOWN AND RETURNS
180
                                    PRESERVES BOTH INDEX REGISTERS
181
182 02F2 AD4117
183 02F5 29E0
184 02F7 8D4117
                         CNTLC:
                                    LDA
                                                              ; SET UP DATA DIRECTION REGISTERS
; SET SYSTEM PORT A BITS 4-0 TO INPUT
                                              #X'E0
                                              SYSPAD
                                     STA
185 02FA AD0317
186 02FD 093C
                                     LDA
                                              USRPBD
                                                               ; SET USER PORT B BITS 5-2 TO OUTPUT
                                              #X 13C
                                     ORA
187 02FF 8D0317
                                              USRPBD
                                     STA
                                                              ; TEST STATE OF CONTROL KEY
188 0302 A92E
189 0304 20B602
                                    LDA
                                              #X'2E
                                              KEYTST
                                     JSR
                                                               ; GO TO "NO" RETURN IF NOT PRESSED ; TEST STATE IF "C" KEY
190 0307 B034
                                     BCS
                                              CTLCNO
191 0309 A93B
                                     LDA
                                              #X!3B
192 030B 20B602
                                              KEYTST
                                     JSR
193 030E 902F
                                              CTLCYS
#X'15
                                                               ; GO TO "YES" RETURN IF PRESSED ; TEST STATE OF "O" KEY
194 0310 A915
                                     I.DA
195 0312 20B602
                                              KEYTST
                                     JSR
                                              CTLODN
#X'14
                                                               ; BRANCH IF IT IS DOWN
; SET ANKET1 OFF OF O CODE IF NOT SEEN
196 0315 9016
                                     BCC
197 0317 A914
198 0319 8DE103
                                     L.DA
                                              ANKBT1
                                                               ; TEST IF S KEY IS DOWN (CNTL/S = XOFF)
199 031C A92C
200 031E 20B602
                                     I.DA
                                              #X 12C
                                              KEYTST
                                     JSR
                                                               ; GO TO CONTROL C FAIL IF NOT
; IF CNTL S IS SEEN, HANG IN A LOOP UNTIL
; CONTROL Q IS SEEN (CNTL/Q = XON)
201 0321 B01A
                                     BCS
                                              CTLCNO
202
203
204 0323 A91D
205 0325 20B602
                         CTLA:
                                     LDA
                                              #X 1D
                                                                  TEST "O" KEY
                                     JSR
                                              KEYTST
206 0328 B0F9
                                     BCS
                                                                  LOOP UNTIL IT IS SEEN
                                              CTLA
                                                                  WHEN SEEN, EXIT TO CONTROL C FAILURE WITH CARRY FLAG ON
207 032A 38
208 032B B010
                                     SEC
                                     BCS
                                              CTLCNO
209 032D A915
                         CTLODN:
                                                                  CONTROL O IS DOWN, TEST IF IT WAS DOWN
                                     LDA
210 032F CDE103
211 0332 F009
                                     CMP
                                              ANKBT1
                                                                  PREVIOUSLY
                                                                  DO NOTHING IF DOWN PREVIOUSLY, GO TO
                                     BEQ
                                              CTLCNO
                                                                  CONTROL C FAIL RETURN
SET ANKBT1 TO 0 CODE
FLIP OUTPUT CONTROL FLAG WHEN CONTROL O
212
213 0334 8DE103
214 0337 A514
215 0339 49FF
                                              ANKBT1
                                     STA
                                     LDA
                                              X 1 14
                                              #X'FF
                                                                  IS PRESSED
                                                                  AND EXECUTE CONTROL C FAIL
216 033B 8514
                                              X 1 14
                                     STA
217
                                                               ; "NO" RETURN, CLEAR CARRY : RETURN
218 033D 18
                         CTLCNO:
                                     CLC
219 033E 60
220
```

```
MAINPR
```

275 0000

NO ERROR LINES

.END

KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE 221 033F 38 CTLCYS: SEC ; "YES" RETURN, SET CARRY 222 0340 60 RTS ; RETURN 223 ASCII CHARACTER CODE TRANSLATE TABLE 225 226 ; UNSHIFTED SECTION 227 BS CARRET : -0 9 8 7 6 5 4 3 BYTE X'36,X'35,X'34,X'33
BYTE X'32,X'31,X'1B,X'A0
BYTE X'7F,X'04,X'5C,X'5B
BYTE X'77,X'04,X'5C,X'5B
BYTE X'77,X'74,X'72,X'65
BYTE X'77,X'71,X'09,X'A1
BYTE X'06,X'00,X'5D,X'40
BYTE X'3B,X'6C,X'6B,X'6A
BYTE X'68,X'67,X'66,X'64
BYTE X'73,X'61,X'00,X'A2 2 1 ESC (AUX H) DEL LF BACKSLASH P O I U 231 034D 32311BA0 232 0351 7F0A5C5B 233 0355 706F6975 234 0359 79747265 235 035D 777109A1 P O I U Y T R E W Q HT (AUX L) 236 0361 060D5D40 237 0365 3B6C6B6A 238 0369 68676664 HEREIS CR ; L K J H G F D 239 036D 736100A2 S A CTL (AUX SHIFT) BYTE X'00,X'00,X'20,X'00
BYTE X'2F,X'2E,X'2C,X'6D
BYTE X'6E,X'62,X'76,X'63 240 0371 00002000 241 0375 2F2E2C6D (RIGHT BLANK) REPAT SP LOCK / . , M N B V C 242 0379 6E627663 BYTE X'78, X'74, X'00, X'00
BYTE X'80, X'81, X'82, X'83
BYTE X'84, X'85, X'86, X'87
BYTE X'88, X'89, X'84, X'88
BYTE X'86, X'87, X'88, X'87 X Z (LEFT BLANK) SHIFT
(AUX 0 1 2 3)
(AUX 4 5 6 7)
(AUX 8 9 A B)
(AUX C D E F) 243 037D 787A0000 244 0381 80818283 245 0385 84858687 246 0389 88898A8B 247 038D 8C8D8E8F 248 ; SHIFTED SECTION 249 250 .BYTE X'5F,X'7E,X'2A,X'3D .BYTE X'30,X'29,X'28,X'27 .BYTE X'26,X'25,X'24,X'23 ; BS TILDA * = 251 0391 5F7E2A3D 252 0395 30292827 253 0399 26252423 ; BS TILDA * =
; O) ('
; & % \$ #
; " ! ESC (AUX H)
; DEL LF VERTBAR
; P O I U
; Y T R E BYTE X'26,X'25,X'24,X'23
BYTE X'22,X'21,X'1B,X'A3
BYTE X'7F,X'0A,X'7C,X'7B
BYTE X'7F,X'0A,X'7C,X'7B
BYTE X'55,X'4F,X'49,X'55
BYTE X'55,X'54,X'52,X'45
BYTE X'57,X'51,X'09,X'A1
BYTE X'06,X'0D,X'7D,X'60
BYTE X'28,X'4C,X'4B,X'4A
BYTE X'48,X'47,X'46,X'44
BYTE X'55,X'41,X'00,X'A5
BYTE X'55,X'41,X'00,X'A5
BYTE X'57,X'0A,X'3C,X'4D
BYTE X'48,X'42,X'56,X'43
BYTE X'58,X'5A,X'00,X'00
BYTE X'58,X'5A,X'00,X'00
BYTE X'58,X'5A,X'00,X'00
BYTE X'94,X'95,X'96,X'97 254 039D 22211BA3 255 03A1 7F0A7C7B 256 03A5 504F4955 257 03A9 59545245 ; W Q HT (AUX L) ; HEREIS CR GRAVEACCENT ; + L K J ; H G F D ; S A CTL (AUX SHIFT) ; (RIGHT BLANK) REPAT SP LOCK 258 03AD 575109A4 259 03B1 060D7D60 260 03B5 2B4C4B4A 261 03B9 48474644 262 03BD 534100A5 263 03C1 5F002000 264 03C5 3F3E3C4D ? ½ ¼ M N B V C 265 03C9 4E425643 266 03CD 585A0000 X Z (LEFT BLANK) SHIFT (AUX 0 1 2 3) (AUX 4 5 6 7) 267 03D1 90919293 268 03D5 94959697 269 03D9 98999A9B 270 03DD 9C9D9E9F .BYTE X'94, X'95, X'96, X'97 .BYTE X'98, X'99, X'9A, X'9B (AUX 8 9 A B) .BYTE X'9C, X'9D, X'9E, X'9F ; (AUX C D E F) 272 03E1 00 ANKBT1: BYTE O STORAGE OF CURRENTLY SCANNED 273 274

25A

2				LLEL ASCII KEYBOARD ROUTINE'			
2 3 4 5 6 7	;;;;	*****MODIFIED FOR KIM BASIC***** THIS SUBROUTINE WAITS FOR A KEY TO BE PRESSED ON A PARALLE! KEYBOARD CONNECTED TO PORT A ON THE KIM-1 APPLICATION CONNECTOR. IT RETURNS WITH THE ASCII CODE IN THE ACCUMULAT WHEN A KEY IS PRESSED.					
8 9 10 11 12 13	;	THE KEYBOARD IS ASSUMED TO PRESENT 7 BIT ASCII TO PORT A BI O (LSB) THROUGH 6 (MSB). THE STROBE MAY BE EITHER A "KEY PRESSED" LEVEL STROBE OR A PULSED STROBE. PROPER OPERATION OF THE CONTROL/C ROUTINE HOWEVER REQUIRES DATA LATCH IN THE KEYBOARD FOR PROPER OPERATION WITH A PULS STROBE.					
14 15 16 17 18 19	;	A "CAPS LOCK" FEATURE HAS BEEN INCLUDED. IF CNTL/R IS PRES CAPS LOCK WILL BE TURNED ON. IF CNTL/T IS PRESSED CAPS LOC WILL BE TURNED OFF. WHEN CAPS LOCK IS ON, ALL LOWER CASE LETTERS ARE TRANSLATED TO UPPER CASE; THE NUMBERS AND SPECI CHARACTERS ARE UNAFFECTED.					
21 22 23 24	, ; ;	CHANGI	NG THE DATA/S	TIVE-GOING STROBE ARE ASSUMED. HOWEVER B STROBE INVERSION MASK AT MASK, ANY E/FALSE POSITIVE/NEGATIVE CAN BE ACCOMODA			
25 26 27 28 29	;	IF THE TTY/KEYBOARD MODE SWITCH ON THE KIM IS IN TTY INPUT IS TAKEN FROM THE TELETYPE PORT USING KIM'S TTY ROUTINE. HOWEVER CNTL/C, CNTL/O, CNTL/S, AND CNTL/Q ACTIVATED FROM THE PARALLEL KEYBOARD.					
30 31 1700 32 1701	USRPA USRPAD		X'1700 X'1701	; USER PORT A DATA REGISTER ; USER PORT A DIRECTION REGISTER			
33 34 0000 35		.=	X'0200	; PUT INTO KIM RAM UNUSED BY BASIC			
36 0200 4C0602 37 0203 4C6D02 38		JMP JMP	ANKB CNTLC	; DISPATCH VECTOR KEYBOARD ROUTINE ; DISPATCH VECTOR CONTROL/C ROUTINE			
39 0206 98 40 0207 48 41 0208 8A 42 0209 48	ANKB:	PHA TXA PHA	#1	; SAVE THE INDEX REGISTERS : TEST KIM TTY/KEYB SWITCH			
43 020A A901 44 020C 2C4017 45 020F D006 46 0211 205A1E 47 0214 4C2F02		LDA BIT BNE JSR JMP	X 1740 ANKBO X 11E5A ANKB3	; CONTINUE WITH KEYBOARD IF IN KEYB POS ; GET A TTY CHARACTER IF IN TTY POSITIO ; GO ECHO IT AND RETURN			
49 0219 8D0117	ANKBO:	STA	#0 USRPAD	; SET UP DATA DIRECTION REGISTERS ; SET USER PORT A FOR INPUT			
50 021C AD0017 51 021F 4DBA02 52 0222 30F8		LDA EOR BMI	USRPA MASK ANKB1	TEST STATUS OF KEY PRESSED BUT PERFORM SELECTIVE BUT INVERSION IF PRESSED, WAIT UNTIL RELFASED			
53 0224 AD0017 54 0227 4DBA02 55 022A 10F8	ANKB2:	LDA EOR BPL	USRPA MASK ANKB2	; WHEN RELEASED, WAIT UNTIL PRESSED AGA			

5758 5960 611 622 633 644 655 667 701 772 773 774 775 777 778 814 834 845 868 878 888	0231 2 0232 (0234 1 0238 2 0238 2 0238 2 0238 1 0240 2 0247 (0247 0 0249 1 0249 1 0255 0 0255 0 0258 1 0258 1 02	297F 48 C90F D006 A514 49FF B514 C912 D007 A9FF BDBB02 D009 C914 D005 A900 C914 D005 A900 C961 9006 C87B BB02 29DF 48 68 BA BB02 BB02 BB02 BB02 BB02 BB02 BB002 BB002 BB002 BB002 BB003 BB003 BB004 BB004 BB006 BB	ANKB4: ANKB5: ANKB6: ANKB10: ANKB11:	AND PHA CMP BNE LDA EOR STA CMP BNE LDA STA BNE LDA STA LDA STA LDA BEQ PLA BEQ PLA BEQ CMP BCC CMP BCC CMP BCA AND	ANKB5 #X'IFF CAPSLK ANKB6 #X'14 ANKB6 #0 CAPSLK CAPSLK CAPSLK ANKB11 #X'61 ANKB10 #X'7B ANKB10 #X'DF	SET LAST STATE OF STROBE CLEAR OUT STROBE BIT AND SAVE CHARACTER CODE TEST IF THE CODE IS CNTL/O SKIP IF NOT TOGGLE OUTPUT ENABLE BIT IN BASIC TEST IF CNTL/R SKIP IF NOT SET CAPS LOCK FLAG IF SO TEST IF CNTL/T SKIP IF NOT CLEAR CAPS LOCK FLAG IF SO TEST STATE OF CAPS LOCK FLAG DO NOTHING IF OFF IF ON, TEST IF CODE IS A LOWER CASE LETTER JUMP IF NOT JUMP IF NOT TURN OFF BIT 5 IF A LOWER CASE LETTER RESTORE A RESTORE Y FROM STACK SAVE CHARACTER CODE IN STACK WHERE Y WAS RESTORE CHARACTER CODE IN A RESTORE CHARACTER CODE IN A
	026C					

```
.PAGE 'TEST FOR CONTROL/C ROUTINE'
                                        TEST FOR CONTROL/C ROUTINE RETURNS WITH CARRY SET IF CONTROL AND C KEYS DOWN, RETURNS
    92
    93
94
                                        WITH CARRY OFF IF NOT
                                        ALSO TESTS IF CONTROL AND C KEY STRUCK, IF SO TOGGLES THE CONTROL/O FLAG IN BASIC
    95
    96
97
                                        ALSO TEST IF CONTROL AND S KEYS DOWN, IF SO WAITS UNTIL
                                        CONTROL AND Q KEYS ARE DOWN AND RETURNS PRESERVES BOTH INDEX REGISTERS
    98
                                                                  ; SET UP DATA DIRECTION REGISTER ; FOR INPUT
    99
   100 026D A900
101 026F 8D0117
                            CNTLC:
                                        I.DA
                                                 USRPAD
                                        STA
   102 0272 AD0017
103 0275 4DBA02
                                                 USRPA
                                                                  ; LOOK AT KEYBOARD DATA IRREGARDLESS O
                                        EOR
                                                 MASK
   104 0278 297F
                                        AND
                                                 #X'7F
                                                                  : STATE OF STROBE
   105 027A C903
106 027C F034
                                        CMP
                                                 #X'03
                                                                    TEST IF CNTL/C
                                                                    GO TO CNTL/C SUCCESS IF SO
TEST IF CNTL/S
                                        BEQ
                                                 CTLCYS
   107 027E C913
108 0280 D00E
                                                 #X'13
                                        CMP
                                        BNE
                                                 CNTLC2
                                                                     JUMP AHEAD IF NOT
   109 0282 AD0017
                            CNTLC1:
                                                                  ; IF SO, WAIT UNTIL CNTL/Q IS SEEN
                                       LDA
                                                 USRPA
  110 0285 4DBA02
111 0288 297F
                                        EOR
                                                 MASK
                                        AND
                                                 #X'7F
#X'11
   112 028A C911
                                        CMP
  113 028C D0F4
114 028E F017
                                                 CNTLC 1
                                        BNE
                                                 CTLCNO
#X'OF
                                                                    GO TO CNTL/C FAILURE RETURN TEST IF CNTL/O
                                        BEO
   115 0290 C90F
                            CNTLC2:
                                       CMP
   116 0292 D013
117 0294 AD0017
                                                                    GO TO CNTL/C FAILURE RETURN IF NOT
COMPARE LAST STATE OF STROBE WITH
CURRENT STATE OF STROBE
                                                 CTLCNO
                                       LDA
                                                 USRPA
   118 0297 4DBA02
                                        EOR
                                                 MASK
   119 029A 4980
                                        EOR
                                                 #x '80
   120 029C 0DBC02
                                                                    IF PREVIOUSLY OFF AND NOW ON FLIP THE SUPPRESS OUTPUT FLAG IN BAS OTHERWISE EXECUTE A CTL/C FAILURE RE
                                       ORA
                                                 ANKBT 1
   121 029F 3006
                                                 CTLCNO
   122
   123 02A1 A514
                                                 X 14
                                       LDA
                                                                     FLIP OUTPUT CONTROL FLAG WHEN CONTRO
   124 02A3 49FF
                                                 #X'FF
                                                                     IS PRESSED
                                       EOR
  125 02A5 8514
126 02A7 AD0017
                                        STA
                                                 X 1 14
                                                                     AND EXECUTE CONTROL C FAIL
                                                 USRPA
                           CTLCNO:
                                                                    "NO" RETURN, UPDATE LAST STATE OF ST
                                       LDA
   127 02AA 4DBA02
                                                 MASK
                                        EOR
   128 02AD 8DBC02
                                       STA
                                                 ANKBT1
   129 02B0 18
                                       CLC
                                                                  : CLEAR CARRY
  130 02B1 60
131 02B2 AD0017
132 02B5 8DBC02
                                                                     RETURN
                                                                     "YES" RETURN, UPDATE LAST STATE OF
                           CTLCYS:
                                                 IISRPA
                                       I.DA
                                                                    STROBE
                                       STA
                                                 ANKBT 1
   133 02B8 38
                                                                     SET CARRY
   134 02B9 60
                                       RTS
                                                                    RETURN
   135
   136 02BA 00
                                                                    MASK FOR TRUE DATA AND POSITIVE STRO
                           MASK:
                                        .BYTE
                                                0
   137 02BB 00
                           CAPSLK:
                                                                    CAPS LOCK FLAG, ON IF NON-ZERO STORAGE FOR CURRENT STATE OF STROBE
                                        .BYTE
                                                0
   138 02BC 00
                           ANKBT1:
                                       .BYTE
   139
   140 0000
                                        END
NO ERROR LINES
```

Software Keyboard Interface

with a pittance of hardware!

'll bet you're thinking, "Oh sure, another scheme using some obscure surplus keyboard that will be sold out by the time I get around to this project." Not so! This keyboard (manufactured by Datanetics Corp. of Fountain Valley CA) is offered by at least a half-dozen mail-order houses and is a current production item. But at \$20 each (the most common price), these outfits are not doing us any favors; their cost is probably less than \$10 each. An auxiliary keyboard the same style as the main unit is also available for less than \$10 and can be used in this project for function keys, etc.

Why are these keyboards so cheap? The reason certainly is not lack of mechanical or electrical quality. They are unusually rigid one-piece construction of one-sixteenth-inch-thick Bakelite plastic, ribbed into a honeycomb form, with an overall depth of one-half inch. Each cell contains a contact arrangement with no fewer than four parallel contacts mounted inside a rugged plastic plunger. The contacts effectively reduce bounce and insure a long, error-free life. Finally, a keybutton is

pressed onto the plunger, sealing the cell from dust and liquids.

One reason for the low cost is the one-piece base casting and cell structure. As I understand, the initial cost of the mold was borne by a huge quantity contract with Digital Equipment Corporation. However, the other reason is that the keyboard is devoid of any encoding electronics. This is the problem whose solution will be addressed in this article.

Besides the keyboard, the only other hardware this project requires is a single 74154 TTL integrated circuit (1of-16 decoder), which costs less than two dollars, and some wire. Only four of the I/O port bits on the KIM's application connector are used, and even these may be used for other purposes when typing is not actually being done. Standard two-key rollover operation (which will be described later) is provided, and a full uppercase and Iowercase ASCII character set is available. Even the repeat key works and has a programmable rate. The auxiliary keyboard is also supported with codes from its keys being identified by having the

eighth bit set to a one. Even though some of the KIM's built-in keyboard circuitry is utilized, there is no conflict (with one small exception) between the built-in keypad and the new alphanumeric keyboard. A slight amount of additional circuitry using another IC may be added to have the break key function as an interrupt.

A software routine of approximately 350 bytes does all of the key scanning and code translation. This, in fact, is how the on-board KIM keypad is handled, with the difference being that the scanning software is in the KIM monitor ROM. If a code other than ASCII is desired, such as EBCDIC or Baudot, a translate table in the software may be easily altered. This table can be changed to suit different application programs, such as ASCII for running Tiny BASIC or Baudot for an automated RTTY application. The complete assembled and tested program is given at the end of this article.

Keyboard Scanning Theory

Nearly all keyboards in common use with more than a few keys use some kind of scanning logic to detect keyswitch closures, eliminate contact bounce, and generate unique key codes. In operation, scanning logic sequentially tests the state (up or down) of each individual key in the array. When a key is found in the down position, its code is determined and sent out. In order to avoid the code's being sent out more than once for each key depression, the scanning is stopped while the key is down and resumed when it is released. Typical scanning rates range from 20 to 500 complete scans per second of the approximately 60 keys in an average array.

Besides being a simple and inexpensive method of having a single logic circuit monitor the states of 60 individual keys, scanning also can cope with simultaneous key depressions. When someone is typing at substantial speed it is a common occurrence for more than one key to be down simultaneously. For example, consider rapid typing of the word THE. The T would first be pressed, followed shortly thereafter by a finger of the other hand pressing the H. Next the T would be released and the E would be quickly pressed with another finger of the same hand. Subsequently, the H would be released followed by the E, which completes the triad. A scanning keyboard would actually send the proper THE sequence to the computer, with no additional logic or buffer register reauired.

In order to understand how this works, let us examine the detailed sequence of events. Initially, no keys are pressed, and the scanning circuitry is running at full speed. When the T is pressed. the scanner eventually finds it, sends the T code and stops. As long as the T is held down, the scanner is stopped and testing the T key. While waiting for the T to be released, the typist presses the H. but the scanner is not aware of it. When the T is

finally released, the scanner takes off again but is immediately stopped when it sees that the H key is down. After sending the H code it waits for the H to be released, and so on.

If the typist is sloppy (or unusually fast) it is possible for even the E key to be pressed before the T is released, resulting in three keys being down simultaneously. In this situation, two keys are pressed while the scanner is waiting for the T key to be released. When scanning is resumed, two keys are down. The scanner will see the one that is closest to T in the scanning sequence and send that code next. The closest key might very well be the E, resulting in an error. This action on multiple key depressions is termed two-key rollover and is found on most computer terminals and other equipment used by casual typists. Some wordprocessing machines and other equipment used by professional typists have N-key rollover logic, which responds only to the order of key depression, regardless of how many keys are down simultaneously or the order in which they are released. Either special keyswitches or more complex scanning logic can be used to achieve N-key rollover. This keyboard interface is capable of N-key rollover with a more complex scanning program.

The scanning method can also easily take care of keyswitch contact bounce. When a closed contact is found. scanning is stopped, but sending of the code is delayed. If the contact should open during the delay, the closure is ignored and scanning is resumed without sending the code. If the momentary closure was really due to contact bounce, the key will be seen again on the next scan. If the closure is solid for the entire delay time, the code is sent. In addition, noise on contact opening may be rejected by requiring that the contact remain continuously open for a delay period before scanning is resumed. Typical values of debounce delay are one to five milliseconds.

Now, how is scanning circuitry typically implemented? One simple scheme for up to 64 keys would be to have an oscillator drive a 6-bit binary counter. The output of the counter would drive a decoder network having 64 separate outputs. All but one of the decoder outputs would be off, with the one on corresponding to the binary number in the counter. As the counter counts, each of the 64 decoder outputs would be turned on in sequence. For scanning a keyboard, each decoder output would be connected to one side of a keyswitch contact as shown in Fig. 1. The other sides of the contacts would all be connected together. This signal would be a zero except when a keyswitch was closed and that particular switch was addressed by the counter and decoder. With proper wiring between the decoder and the switch array, the 6-bit content of the binary counter while it is addressing a closed key can be the actual desired code of that key! Thus encoding is automatic with a scanning keyboard. Unfortunately, the shift and control keys of a typical keyboard complicate coding matters somewhat, but the basic concept is still valid.

Actually the scanning logic and switch wiring can be simplified greatly from the above conceptual model by arranging the keys in a matrix. Taking the same 64-key array, let us wire the keys in a matrix of eight rows and eight columns with a signal wire for each row and column. The contacts of a switch will be wired across each intersection, as shown in Fig. 2. Using the same 6-bit counter, let us connect three of the bits to a one-of-eight decoder and the other three bits to an 8-input multiplexer. A multiplexer is a

logic circuit that has several signal inputs, some binary address inputs and one output. In operation, one of the signal inputs is logically connected to the output according to the binary code at the address inputs. The single output of the multiplexer is the addressed-keyclosed signal as before. With matrix connection of the keys, the scanning logic grows in proportion to the square root of the number of keys, instead of directly.

As the scanning counter counts, the decoder activates one column of the matrix at a time and the multiplexer sequentially examines each row for a closed switch transferring the column signal over to a row. When a closed switch is found, the counter contains a unique code for

the switch as before. Although it is still possible for this code to be the actual desired keycode, the scrambled key layout of a typical keyboard would make the matrix wiring quite messy. Typically a read only memory is used to translate the scramble code from the scanner into the end-use code the computer system needs. This same ROM also takes care of the shift and control keys, which are wired in directly.

Connection to the KIM

All of the previously described functions of scanning hardware can also be easily performed by software, along with an output and an input port. The most straightforward approach to simulate matrix scanning hardware would be to use an 8-bit

Fig. 1. Basic keyboard scanner.

Fig. 2. Matrix keyboard scanner.

Keyboard point-to-point wiring.

output port with software to simulate the one-of-eight decoder and an 8-bit input port with software to simulate the 8-input multiplexer. The counter, of course, would be just a memory location that is incremented to perform the scanning. Unfortunately, in the case of the KIM this would utilize all of the built-in ports and then some.

A look at the KIM manual will reveal that much of the circuitry for the on-board keypay has signals brought out to the application edge connector. In particular, seven bits of an internal input port are available. These are

connected internally to the on-board keypad and sevensegment displays, but when the KIM monitor is not running (user program running) they are completely free for use as an input port. Of course, when the monitor is in control, these inputs must not be driven by external circuitry, or interference with the keypad and display will result. If this port is connected to the rows of a key matrix and no keys are pressed, then nothing is driving the row wires; they are just hanging. Thus, when using the KIM monitor, one would not expect to be

typing on the external keyboard so any interference is completely avoided.

At this point, one could use an 8-bit output port on the KIM to drive the key matrix and handle up to 56 keys without any interfacing circuitry. If you do not need the one full 8-bit port, and a limited character set (some missing symbols) is sufficient for your needs, then this can indeed be done. However, on my system the 8-bit port is connected to a digital-toanalog converter (for playing music) and two of the seven bits on the other port are motor controls for two cassette recorders. This leaves five bits for selecting the column to be scanned. The solution is to use four of these bits and an external 1-of-16 decoder to drive up to 16 columns. Combined with seven rows, up to 112 keys could be scanned.

Fig. 3 shows the connections to the KIM and the matrix hookup of the keys. Note that the optional 19-key keyboard is included. The arrangement of keys in the matrix was chosen mostly for simplicity of wiring, with

proper coding taken care of with translation software. The one exception is the wiring of the 0-F keys on the auxiliary keyboard. They are in order with the 0 key in column 0, 1 key in column 1, etc. This would simplify a scanning routine that uses just those 16 keys. The 74154 decoder needs about 35 milliamps of +5 volt power. This should not strain any decent power supply for the KIM, but could be reduced to a mere 10 milliamps if a 74LS154 was substituted.

Note that the two shift kevs are both wired into the matrix at row 3, column 15. The key labeled SHIFT on the auxiliary keyboard is intended to be relabeled and used for a less redundant function. The shift lock can be connected across the other two shift keys, but a problem arises in doing so. If it is left in the lock position when using the KIM monitor, there can be interference between the add-on keyboard and the KIM keyboard. If the shiftlock function is desired, and the requirement that it be unlocked before using the monitor is not judged to be bothersome, then the shiftlock key may be wired in.

Wiring the little tabs sticking out of the back of the keyboard should not be difficult. They are stiff enough and long enough to be wire-wrapped, too, if care is taken. Actually, this would be an ideal use of a Vector wiring pencil, which should get the job done in about 30 minutes. If hand wiring and soldering must be done, however, it is permissible to use bare bus wire for the row wiring and insulated wire for the columns. The purist can mount the 74154 IC in a socket on a piece of perfboard, but there is no reason that it cannot be glued to the bottom or side of the keyboard and wired directly.

The little circuit in Fig. 4 can be added to allow the Break key to be used as an interrupt. The KIM board would respond to this key in

Fig. 3. Complete KIM-1 alphanumeric keyboard interface schematic.

the same manner as the ST key on the built-in keypad and return to the monitor. However, if the nonmaskable interrupt (NMI) vector is changed at 17FA and 17FB, the interrupt could jump to a specific point in the user's program instead. The resistors, capacitor and 7413 Schmitt trigger IC debounce the break key to prevent multiple interrupts. The diode in series with the output simulates an opencollector output so that normal ST key operation is not affected. Preferably, the diode is a germanium type such as a 1N34 or 1N270, but a silicon unit will generally work OK.

Scanning Program

The program in Fig. 5 is the heart of the add-on keyboard system and is responsible for most of its features. Although shown assembled for locations 0200-035C (hexadecimal), it may be modified for execution anywhere by changing those locations marked with an underline in the object-code column. One temporary storage location is required on page 0. Its initial value when the keyboard is first used in a user program is not important, but thereafter it should not be bothered. The routine may be interrupted with no ill effects, but it is not reentrant (that is, it may not be called by an interruptservice routine if it was itself interrupted) due to the temporary storage location just mentioned. This temporary location is at 00EE (just below the KIM reserved area) in the listing shown but may be easily moved elsewhere.

Using the program is quite simple. It is called as a subroutine whenever a character from the keyboard is needed. The contents of the registers when called are not important. When called, the routine waits until a key is pressed (except for code, shift or epeat). When a key is pressed, its code is loaded into the accumulator and a

return taken. For maximum flexibility, the contents of the index registers are not disturbed by the routine.

Before you get into the program logic, perhaps a word should be said about the assembly language. The assembler used to prepare the listing is a modified version of the National Semiconductor IMP-16, which, in turn, is similar to the PACE assembler. In most respects, the syntax conforms to that recommended by MOS Technology. The major difference is that hexadecimal constants are denoted by X' instead of \$. The use of a # before a constant or symbol specifies the immediate addressing mode. The assembler automatically distinguishes between zero page and absolute mode addressing according to the numerical magnitude of the address zero page if between 0000 and 00FF and absolute otherwise. The various indexed and indirect addressing modes are represented in the same way as with the MOS Technology assembler.

The overall logic of the keyboard subroutine closely parallels that described for a hardware keyboard scanner. The first step when it is entered is to save the index registers on the stack. Next, the direction registers for the input and output port bits are set up. Note that only the direction bits for the port bits actually used are changed; the others are left unchanged.

Fig. 4. Optional break-key interface.

When the subroutine is entered, an assumption is made that the last key pressed is still down. This is certainly a valid assumption since a return from the previous invocation of this subroutine occurred immediately when a key was pressed, and it is unlikely that processing of that character by the calling program took very long. ANKBT1 is the temporary storage location mentioned earlier. Functionally. it is equivalent to the counter in a hardware keyboard scanner. It always addresses a key in the matrix, and in this case it points to the key that was last pressed and had its code sent.

Thus, after saving the registers and setting up the ports, a loop is entered in which the keyboard routine is waiting for this last-pressed key to be released. While in this waiting loop, the status of the repeat key is continually interrogated. If the repeat key is continuously down while the last-pressed key is also continuously down for the repeat period.

an exit is taken from the loop and the key code is sent again. Note that the repeat period, RPTRAT, is a parameter that may be changed; in this case it is set to 50 milliseconds, giving a moderately fast repeat rate of approximately 20 characters per second.

An internal subroutine, KYTST, is used to actually test the state of a key. It is used by loading the address of the key to be tested into the accumulator, and then calling it. When it returns, the carry flag will be on if the key is up, and off if it is down

The other exit from this waiting loop, of course, is sensing that the last addressed key has been released. A debounce delay (DBCDLA) is included to insure that the key is interpreted to be up only when it has been continuously up for the debounce delay period. This will prevent noisy contacts from generating multiple characters.

At this point, scanning of the keyboard resumes.

Fig. 5. KIM-1 alphanumeric keyboard scan and encode routine.

		D 4 0D					
1				HANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE'			
2	;	THIS	SUBROUTINE S	SCANS AN UNENCODED KEYBOARD MATRIX CONNECTED			
3	;	TO TH	E KIM-1 APPI	ICATION CONNECTOR. USER PERIPHERAL PORT B			
4	•	BITS	5 (MSB) THRO	OUGH 2 (LSB) ARE CONNECTED TO A ONE-OF-16			
5	;	DECOD	ER (74154) V	HICH DRIVES THE KEYSWITCH COLUMNS.			
6	;	SENSI	NG OF THE RO	OWS IS BY A PORTION OF THE KIM ON-BOARD			
7	;	KEYBO	ARD CIRCUIT	RY WHICH USES SYSTEM PERIPHERAL PORT B BITS			
8	;	0 - 4					
9	;	WHEN	CALLED, THE	ROUTINE SITS IN A LOOP WAITING FOR A KEY TO			
10	;	BE PR	ESSED. WHEN	A KEY IS PRESSED (EXCEPTING SHIFT, CONTROL,			
11	;	REPEA	T), THE ROUT	INE RETURNS WITH KEY CODE IN ACCUMULATOR.			
12	;	BOTH	INDEX REGIST	TERS ARE RETAINED.			
13	:	THE R	OUTINE IMPLE	MENTS TRUE 2-KEY ROLLOVER, KEY DEBOUNCING,			
14	:	AND REPEAT TIMING. ONE RAM LOCATION IS REQUIRED, ITS INITIAL					
15	:	CONTENT IS INSIGNIFICANT.					
16	,						
17 0000		.=	X'200	: START PROGRAM AT LOCATION 0200 (HEX)			
18		•		, similar sound in Sound of the Control of the Cont			
19 1740	SYSPA	=	X'1740	; SYSTEM PORT A DATA REGISTER			

```
20 1741
                     SYSPAD
                                       X'1741
                                                        SYSTEM PORT A DIRECTION REGISTER
 21 1702
                     USRPB
                                       X 1702
                                                        USER PORT B DATA REGISTER
 22
                     USRPBD
                                       X'1703
                                                        USER PORT B DIRECTION REGISTER
    1703
 23 0032
24 0005
                     RPTRAT
                                       50
                                                        REPEAT PERIOD, MILLISECONDS
                     DBCDLA
                                                       DEBOUNCE DELAY, MILLISECONDS
 25
 26 00EE
                     ANKBT1
                                       X'EE
                                                      ; TEMPORARY STORAGE LOCATION ADDRESS
 27
 28
 29 0200 98
30 0201 48
                     ANKB:
                               TYA
                                                      : SAVE THE INDEX REGISTERS
                               PHA
 31
    0202 8A
 32 0203 48
                               PHA
 33 0204 AD4117
34 0207 29E0
                               LDA
                                       SYSPAD
                                                      ; SET UP DATA DIRECTION REGISTERS
                                AND
                                       #X'E0
                                                       SET SYSTEM PORT A BITS 4-0 TO INPUT
 35 0209 8D4117
36 020C AD0317
                               STA
                                       SYSPAD
                               LDA
                                       USRPBD
 37 020F 093C
                                                      ; SET USER PORT B BITS 5-2 TO OUTPUT
                               ORA
 38 0211 8D0317
39 0214 A032
                               STA
                                       USRPBD
                                                      ; INITIALIZE REPEAT DELAY
                               LDY
                                       #RPTRAT
 40 0216 A205
                     ANKB1:
                                       #DBCDLA
                                                        INITIALIZE DEBOUNCE DELAY
 41 0218 20<u>7B02</u>
42 021B A5EE
                     ANKB2:
                               JSR
                                       WA 1MS
                                                        WAIT 1 MILLISECOND
                               LDA
                                       ANKBT1
                                                        GET KEY ADDRESS LAST DOWN
                                                        TEST IF ADDRESSED KEY STILL DOWN
 43 021D 20<u>8202</u>
                               JSR
                                       KEYTST
 44 0220 BOOC
                               BCS
                                       ANKB4
                                                        JUMP IF UP
                                                        TEST STATE OF REPEAT KEY
 45 0222 A931
                               LDA
                                       #X'31
 46 0224 208202
                               JSB
                                       KEYTST
                                                       LOOP BACK IF REPEAT KEY IS UP
 47 0227 BOED
                               BCS
                                       ANKB1
 48 0229 88
                               DEY
                                                        DECREMENT REPEAT DELAY
 49 022A DOEA
                               BNE
                                       ANKB1
                                                        LOOP BACK IF REPEAT DELAY UNEXPIRED
 50 022C F022
                                                        GO OUTPUT REPEATED CODE
                               BEQ
                                       ANKB7
 51 022E CA
                     ANKB4:
                                                        DECREMENT DEBOUNCE DELAY
                                       ANKB2
                                                       GO TEST KEY AGAIN IF NOT EXPIRED
 52 022F D0E7
                               BNE
 53
54
                               PREVIOUS KEY IS NOW RELEASED, RESUME SCAN OF KEYBOARD
 55
 56 0231 E6EE
                     ANKB5:
                               INC
                                       ANKBT1
                                                      ; INCREMENT KEY ADDRESS TO TEST
 57 0233 A5EE
                                LDA
                                       ANKBT1
 58 0235 C93F
                                                      : SKIP OVER SHIFT
                               CMP
                                       #X'3F
 59 0237 FOF8
                                       ANKB5
                               BEQ
 60 0239 C92E
61 023B F0F4
                               CMP
                                       #X'2E
                                                      : SKIP OVER CONTROL
                                       ANKB5
                               BEQ
 62 023D C931
                                       #X'31
                                                      ; SKIP OVER REPEAT
 63 023F F0F0
                               BEO
                                       ANKB5
 64 0241 A205
                                       #DBCDLA
                                                       INITIALIZE DEBOUNCE DELAY
                               LDX
 65 0243 A5EE
66 0245 208202
                     ANKB6:
                               I.DA
                                       ANKBT1
                                                       TEST STATE OF CURRENTLY ADDRESSED KEY
                               JSR
                                       KEYTST
 67 0248 BOE7
                               BCS
                                       ANKB5
                                                        GO TRY NEXT KEY IF THIS ONE IS UP
 68 024A 207B02
                               JSR
                                       WA 1MS
                                                       WAIT 1 MILLISECOND IF DOWN
 69 024D CA
                               DEX
                                                        DECREMENT DEBOUNCE DELAY
                                                       GO CHECK KEY AGAIN IF NOT EXPIRED
 70 024E DOF3
                                       ANKB6
 72
                               TRANSLATE AND OUTPUT A KEY CODE
 73
74 0250 A6EE
                     ANKB7:
                                       ANKBT1
                                                      : GET BASIC ASCII CODE FROM TABLE
                               LDX
 75 0252 BCBD02
                               LDY
                                       ANKBTB, X
                                                        INTO INDEX Y
 76 0255 A92E
77 0257 208202
                               L.DA
                                       #X'2E
                                                       TEST STATE OF CONTROL KEY
                               JSR
                                       KEYTST
 78 025A B006
                                       ANKB8
                                                        SKIP AHEAD IF NOT PRESSED
                               BCS
 79 025C 98
                               TYA
                                                        CLEAR UPPER THREE BITS OF CODE IF
 80 025D 291F
                                       #X'1F
                                                        CONTROL PRESSED
                               AND
 81 025F 4C7002
                               JMP
                                       ANKB10
                                                       IGNORE SHIFT AND GO RETURN
TEST STATE OF SHIFT KEY
 82 0262 A93F
                     ANKB8:
                               LDA
                                       #X'3F
 83 0264 208202
                               JSR
                                       KEYTST
 84 0267 9004
                               BCC
                                       ANKRO
                                                       SKIP AHEAD IF PRESSED
 85 0269 98
                                                        RETRIEVE PLAIN CODE FROM Y
                               TYA
 86 026A 4C7002
                                       ANKB10
                                                        GO RESTORE REGISTERS AND RETURN
87 026D BDODO3
                     ANKB9:
                               LDA
                                       ANKBTB+80, X
                                                       FETCH SHIFTED CODE FROM TABLE
88 0270 BA
                     ANKB10:
                               TSX
89 0271 BC<u>0201</u>
90 0274 9D<u>0201</u>
                               LDY
                                       X'102,X
                                                        RESTORE Y FROM STACK
                                                       SAVE CHARACTER CODE IN STACK WHERE Y WAS
                               STA
                                      X'102.X
 91 0277 68
                                                       RESTORE X
 92 0278 AA
                               TAX
 93 0279 68
                               PLA
                                                     ; RESTORE CHARACTER CODE IN A
94 027A 60
                               RTS
                                                      RETURN
95
96
                               WAIT FOR ONE MILLISECOND ROUTINE
                     :
98 027B A9C8
                                                     ; WAIT FOR APPROXIMATELY 1 MILLISECOND
                     WA1MS:
                                      #200
                               LDA
99 027D E901
                               SBC
100 027F DOFC
                               BNE
                                      WA1MS1
101 0281 60
102
103
                               KEY STATE TEST ROUTINE
                               ENTER WITH ADDRESS OF KEY TO TEST IN ACCUMULATOR
104
                               LEAVES BOTH INDEX REGISTERS ALONE
105
                               SETS ANKBT1 TO ZERO IF ILLEGAL KEY ADDRESS AND TESTS KEY ZERO
106
107
```

Scanning is accomplished by incrementing ANKBT1 and calling KEYTST to look at the state of the newly addressed key. Note that the shift, code and repeat keys are specifically skipped in the scan sequence. Also note that another function of KEYTST is to detect an illegal key address and set ANKBT1 to zero if an illegal address occurs. Such an illegal address would normally occur after testing the last key in sequence, so the forced reset to zero would start another scanning cycle. If a key is found depressed, another loop is entered that verifies that it is continuously depressed for the debounce delay interval before it is declared to be really pressed.

Once a newly pressed key has been found (or the conditions for a repeated character have been satisfied), the key code must be generated. First, the current key address in ANKBT1 is translated into a plain unshifted character code by using it as an index into the first part of the code table. Next, the state of the control key is tested. If it is down, only the lower five bits of the translated code are retained, and an exit is taken. If control is up, then the shift key is tested. If it, too, is up, an exit is taken. If the shift key is down, however, the code is retranslated using the second part of the code table. Note that with a code like ASCII, with logical bit pairing (unshifted and shifted codes differ by only one bit), the second half of the code table might be replaced with a little more programming to make the adjustments necessary on shifted characters.

Finally, the two index registers are restored and a return taken. Note that some playing around with the stack was necessary to preserve the character code in A while the other registers were restored.

The key state test routine, KEYTST, takes a key address in A and tests if the corresponding key is pressed. After checking for a valid key

address, and correcting it if not, the lower four bits of the address are sent to the port bits that have the 1-of-16 column decoder connected to them. These four port bits are updated without affecting any of the other bits on the same port. After the column address is sent out, the remaining three upper bits of the key address are used to access a "mask table," which selects one of the five significant row input bits to test. Then the input port that senses the five rows is read and tested against the mask. The zero or nonzero result is transferred to the carry flag, which won't be destroyed during the register restore sequence.

108

The code translate table is divided into two parts. The first is for unshifted codes; the second is for shifted codes. The characters are in matrix-wise order, starting with row 0, column 0, going through the columns on row 0, proceeding to row 1, and so forth, ending with row 4, column 15. The table given is for ASCII on the main keyboard. The blank or oddly marked keys are assigned to useful ASCII control codes such as CR for the key marked CLR. The 0-F keys of the auxiliary keyboard become 80-8F for lowercase and 90-9F for uppercase. The remaining three auxiliary keys are assigned codes A0-A5. The table may be changed freely to reflect the user's choice of convenient control codes or to accommodate a completely different character code.

Building this keyboard interface for the KIM should prove to be a worthwhile one-evening project. Besides saving a substantial amount of money, it serves as a good learning tool and an excellent example of how software can substitute for hardware, offer a lot of extra features and still be easy to use. The basic concepts can be easily applied to expanding other low-cost microcomputer trainer boards.

```
110
                                                           ; TEST IF LEGAL KEY ADDRESS
                        KEYTST: CMP
  111 0282 C950
                                                            SKIP AHEAD IF SO
                                   BCC
                                            KEYTS1
  112 0284 9004
                                                             SET TO ZERO OTHERWISE
  113 0286 A900
                                   LDA
                                            #0
                                            ANKBT1
                                                             UPDATE ANKBT1
  114 0288 85EE
                                   STA
                                                             SAVE A ON STACK
                         KEYTS1:
  115 028A 48
                                                            : SAVE X ON STACK
  116 028B 8A
                                   TYA
  117 028C 48
                                   PHA
                                            USRPB
                                                            : CLEAR USER PORT B BITS 2-5
  118 028D AD0217
  119 0290 2903
                                   AND
                                            #X 1 C3
  120 0292 8D0217
                                   STA
                                                           ; RESTORE KEY ADDRESS FROM STACK
  121 0295 BA
                                            X'102,X
  122 0296 BD0201
                                   LDA
                                                            ; ISOLATE LOW 4 BITS OF KEY ADDRESS
                                   AND
                                            #X'OF
  123 0299 290F
                                                            POSITION TO LINE UP WITH BITS 2-5
                                    ASLA
  124 029B 0A
  125 029C 0A
                                    AST.A
                                                            ; SEND TO USER PORT B WITHOUT DISTURBING
                                            USRPB
                                   ORA
  126 029D 0D0217
                                            USRPB
                                                             OTHER BITS
  127 02A0 8D0217
                                                             GET KEY ADDRESS BACK
                                            X'102.X
  128 02A3 BD0201
                                   LDA
                                   LSRA
                                                            ; RIGHT JUSTIFY HIGH 3 BITS
  129 02A6 4A
  130 02A7 4A
                                    LSRA
  131 02A8 4A
                                   LSRA
                                   LSRA
  132 02A9 4A
                                                           ; USE AS AN INDEX INTO MASK TABLE ; GET SYSTEM PORT A STATUS
  133 02AA AA
                                    TAX
                                            SYSPA
  134 02AB AD4017
                                   L.DA
                                                            ; SELECT BIT TO TEST AND SET CARRY FLAG
                                            MSKTAB, X
                                    AND
  135 02AE 3DB802
                                                            : ACCORDINGLY
  136 02B1 18
  137 02B2 E900
                                    SBC
                                            #0
                                    PLA
                                                            : RESTORE X FROM STACK
  138 02B4 68
   139 02B5 AA
                                    TAX
                                                            ; RESTORE A FROM STACK
  140 02B6 68
                                   PLA.
  141 02B7 60
                                                                       ; MASK TABLE FOR KEYTST
  143 02B8 01020408 MSKTAB:
                                    .BYTE X'01, X'02, X'04, X'08
  144 02BC 10
                                    BYTE X'10
  145
                                   ASCII CHARACTER CODE TRANSLATE TABLE
  146
  148
                                                                          UNSHIFTED SECTION
  149
  150 02BD 085E3A2D ANKBTB:
                                   .BYTE X'08, X'5E, X'3A, X'2D
                                                                          BS CARRET
                                                                             9 8 7
5 4 3
1 ESC
                                           X'30, X'39, X'38, X'37
                                                                          0
  151 02C1 30393837
                                    .BYTE
                                                                         6
                                            X'36, X'35, X'34, X'33
  152 0205 36353433
                                                                                      (AUX H)
                                           X'32,X'31,X'1B,X'A0
X'7F,X'0A,X'5C,X'5B
  153 02C9 32311BA0
                                    BYTE
                                                                          DEL LF BACKSLASH C
  154 02CD 7F0A5C5B
                                    .BYTE
                                           X'70, X'6F, X'69, X'75
X'79, X'74, X'72, X'65
X'77, X'71, X'09, X'A1
  155 02D1 706F6975
                                                                         P O
Y T
                                                                                I U
R E
  156 02D5 79747265
                                    .BYTE
                                                                               HT
                                                                                     (AUX L)
                                    .BYTE
  157 02D9 777109A1
                                           X'06, X'0D, X'5D, X'40
X'3B, X'6C, X'6B, X'6A
X'68, X'67, X'66, X'64
                                                                         HEREIS CR J @
; L K J
H G F D
  158 02DD 060D5D40
                                    BYTE
  159 02E1 3B6C6B6A
                                    BYTE
                                    BYTE
  160 02E5 68676664
                                                                             A CTL (AUX SHIFT)
                                           X'73,X'61,X'00,X'A2
X'00,X'00,X'20,X'00
   161 02E9 736100A2
                                    .BYTE
                                                                          S
                                                                          (RIGHT BLANK)
                                                                                          REPAT
  162 02ED 00002000
                                    .BYTE
                                            X'2F, X'2E, X'2C, X'6D
  163 02F1 2F2E2C6D
                                    BYTE
                                                                          N B
                                           X'6E, X'62, X'76, X'63
X'78, X'7A, X'00, X'00
   164 02F5 6E627663
                                    BYTE
                                                                                (LEFT BLANK) SHIFT
  165 02F9 787A0000
                                    .BYTE
      02FD 80818283
                                            X'80,X'81,X'82,X'83
                                                                          (AUX 0 1 2 3)
(AUX 4 5 6 7)
                                           X'84,X'85,X'86,X'87
X'88,X'89,X'8A,X'8B
   167 0301 84858687
                                    BYTE
                                                                          (AUX 8
   168 0305 88898A8B
                                    .BYTE
                                    .BYTE X'8C, X'8D, X'8E, X'8F
                                                                          (AUX C D E F)
  169 0309 8C8D8E8F
  170
                                                                        ; SHIFTED SECTION
  171
  172
                                                                        ; BS CARRET # =
  173 030D 085E2A3D
                                    .BYTE X'08, X'5E, X'2A, X'3D
                                            X'30, X'29, X'28, X'27
                                                                          0
  174 0311 30292827
                                    .BYTE
  175 0315 26252423
                                            X'26, X'25, X'24, X'23
                                                                            %
                                                                                   ø
                                                                              ESC (AUX H)
                                           X'22, X'21, X'1B, X'A3
X'7F, X'0A, X'7C, X'7B
  176 0319 22211BA3
                                    .BYTE
                                                                             !
                                                                          DEL
  177 031D 7F0A7C7B
                                    BYTE
  178 0321 504F4955
                                            X'50, X'4F, X'49, X'55
                                                                             0
                                           X'59, X'54, X'52, X'45
X'57, X'51, X'09, X'A4
  179 0325 59545245
180 0329 575109A4
                                    .BYTE
                                                                                R E
                                                                                HT
                                                                                     (AUX L)
                                    .BYTE
                                                                         HEREIS CR } GRAVEACCENT
+ L K J
                                           X'06,X'0D,X'7D,X'60
X'2B,X'4C,X'4B,X'4A
X'48,X'47,X'46,X'44
   181 032D 060D7D60
                                    BYTE
  182 0331 2B4C4B4A
                                    .BYTE
                                                                             G F D
  183 0335 48474644
                                    .BYTE
  184 0339 534100A5
                                    BYTE
                                           X'53, X'41, X'00, X'A5
X'00, X'00, X'20, X'00
                                                                                CTL (AUX SHIFT)
                                                                          (RIGHT BLANK) REPAT SP
  185 033D 00002000
                                    .BYTE
  186 0341 3F3E3C4D
187 0345 4E425643
                                            X'3F,X'3E,X'3C,X'4D
                                                                         ? > < M
N B V C
                                    .BYTE
                                    .BYTE
                                            X'4E, X'42, X'56, X'43
  188 0349 585A0000
                                            X'58, X'5A, X'00, X'00
                                                                             Z (LEFT BLANK) SHIFT
                                    BYTE
                                                                          (AUX 0 1 2
(AUX 4 5 6
                                           X'90,X'91,X'92,X'93
                                                                                          3)
7)
  189 034D 90919293
                                    .BYTE
  190 0351 94959697
191 0355 98999A9B
                                           X'94, X'95, X'96, X'97
X'98, X'99, X'9A, X'9B
                                                                          (AUX 4 5
(AUX 8 9
                                    .BYTE
                                                                                      A
E
                                    .BYTE
  192 0359 9C9D9E9F
                                            X'9C, X'9D, X'9E, X'9F
                                                                          (AUX C
                                                                                   D
                                    .BYTE
  194 0000
                                    .END
NO ERROR LINES
```