

K-1008-2 BASIC PATCHES USER'S MANUAL

The K-1008-2 BASIC Patches software package allows the MTU K-1008 Visible
Memory to be used as a terminal display and graphics output device with BASIC. It
is designed to work with Microsoft BASIC for the KIM (it is compatible with the
Synertek SYM and the Rockwell AIM as well). In order to use the package, the user
must first obtain a copy of "Microsoft 9 Digit BASIC" which has been assembled

starting at address 2000qg. Microsoft 9 Digit BASIC is available from Johnson
Computer (Box 523, Medina, OH 44256)

This software package consists of 3 machine language programs and a
demonstration program written in BASIC. The first program consists of a text
display routine, a set of plotting routines, a routine that "pokes" patches into
BASIC, and a dispatch routine. This program is loaded immediately after the BASIC
interpreter at address 4261 and extends up through address 49D7.

The second and third programs are keyboard handler routines that can be used
in place of a serial teletype keyboard. The first is written for an unencoded
keyboard that is available from Jameco Electronics (1021 Howard Ave., San Carlos,
CA 9U070), The second is written for nearly any kind of parallel
encoded ASCII keyboard with a 7-bit plus strobe output. Either routine implements
all.of the control codes recognized by BASIC correctly, something that is not
possible with a teletype keyboard. Both programs start at address 0200,

The fourth program is a BASIC demonstration program that shows off the
graphics capabilities of the system and verifies that it is working precperly.

These are recorded on the enclosed cassette first in Hypertape format then in
standard KIM format.

Prog. # 1ID Address Description
1 01 4261-49D7 Text, graphics, patches, and dispatcher
2 02 0200-03E1 Unencoded keyboard routine
3 03 0200-02BC ASCIT encoded keyboard routine
4 ol 4ODA-55FB Demonstration program in BASIC
5-8 Same as program 1-4 except in standard speed KIM format

Required Hardware Configuration

Standard KIM-1 (see note 1 below for SYM-1 or AIM=-65)

Model K-1008 Visible Memory addressed from CCOO-DFFF

Model K-1016 or equivalent 10K memory addressed from 2000-5FFF

. Parallel keyboard recommended, serial teletype keyboard is acceptable
(see note 2 below)

W -

Note 1. To prevent conflicts with on-board ROM in the SYM and AIM, the
address of the Visible Memory will have to be changed. Store the
new page address of the VM in location 4263.

Note 2. The following locations must be modified to restore the serial
keyboard handler that comes with BASIC:

L27B 5A
4280 1E
1285 A9
4284 01
428F 2e7 L

10,

13.

1,

15.

Loading Instructions

. Reset the KIM and ready it for cassette input.
. Load in the Microsoft 9 Digit BASIC cassette supplied by Johnson Computer.
. Load in file 01 from the K-1008-2 cassette supplied in this package.

. If an unencoded keybcard is used, load in file 02 from the K-1008-2 cassette.

If an ASCII encoded keyboard is used, load in file 03,
If a serial teletype keyboard is used, make the changes listed in note 2 on
the previous page.

If any changes were made to MTU software, dump the updated MTU program onto
another tape to save patching effort the next time BASIC is loaded.

. Begin execution at location 4261. The display connected to the Visible Memory

should clear and the message MEMORY SIZE? ghould appear.

. Type a carriage return. The message TERMINAL WIDTH? should appear.

type 53 and then a carriage return. The message 5670 BYTES FREE
followed by the copyright statement should appear. If more than 16K of
continuous memory is installed the number of bytes free will be greater.

. Type LOAD which causes the KIM to wait for cassette input. Play program 4

on the K-1008-2 cassette. The KIM display should light with 0000 4C following
a successful load.

Press GO to re-enter BASIC at the warm start location. BASIC should respond
by typing READY

. You may list the entire program by typing LIST 0-9999 and carriage return.

Te temporarily stop the listing, hold down the Control key and type S. To
resume listing hold down Contreol and type Q. To terminate the 1listing hold
down Control and type C. If a teletype keyboard is being used, any key will
terminate the listing.

. Run the demonstration program by typing RUN followed by a carriage

return., The program will run for approximately 1.5 hours with a long pause
between each demonstration so that the screen can be examined. Most of the
time is spent in the prime number mosaic demonstration. An infinite loop has
been programmed following the prime number mosiac so Control/C will be
necessary to interrupt the program and return to BASIC.

The demo program may now be modified as desired or the user can write his ocwn
graphics programs according to the following instructions.

Note that the cold start location (L4261) can be used at any time to completely
re-initialize BASIC. The patches made for a different VM address or a serial
keyboard will be retained however.

The trigonometric routines are always retained when using the K-1008-2 BASIC
Patches.

Use of the X-1008-2 Plotting Routines

The graphies routines supplied with the K-1008-2 package are capable of rapid
clearing of the screen, plotting and erasing points, plotting and erasing vectors,
and readback of points. For plotting purposes, the Visgible Memory screen consists
of an array of dots 200 dots high by 320 dots wide. Each dot is called a pixel
and represents one bit in the Visible Memory. If the bit is a one, the pixel
shows as a bright dot; if a zero, the pixel is black. A graphics image is formed
by selectively turning pixels on and off in the desired pattern. Although the
POKE function of BASIC could be used to create images directly according to the
programming instructions given in the Visible Memory manual, plotting would be
extremely slow. The machine language graphics routines in the K-1008-2 package

perform the plotting functions hundreds of times faster and are more convenient to
use.

An X-Y coordinate system is used to identify points on the VM screen. X and Y
must always be zero or positive which means that the entire screen appears in the
first quadrant. The allowable range for X is 0 through 319 and the allowable
range for Y is 0 through 199, If coordinates outside the allowable range are
used, the graphics routines will convert them to values in the allowable range by
repeated subtraction of 320 (X) or 200 (Y). Te¢ plot, erase, or read a point, only
a single X,Y pair is needed. To plot or erase a line, two X,Y pairs are needed,
one for each endpoint. The following BASIC statement is required in every
graphics BASIC program to identify the coordinates to the machine language
plotting routines:

1 X1%=0: Y1%=0: X2%=0: Y2%=0

The statement number 1 insures that this statement is executed first whenever a
RUNT command is given to BASIC. This causes the integer variables X1%, Y1%, X2%,
and Y2% to be placed first in the variable table where the machine language
plotting routines can easily find them.

The USR function of BASIC is used to actually call the plotting routines into
action. The argument used with the USR function determines which plotting
function is performed. These are listed below:

USR(0) Clear the screen

USR(1) Plot a white point at X1%,Y1%

USR(2) Plot a white line from X1%,Y1% to X2%,Y2%

USR(3) Erase the point at X1%,Y1%

USR{4) Erase the line running from X1%,Y1% to X2%,Y2%

USR(5) Returns the color of the point at X1%,Y1% Dblack=0, white=1

Note that Ugﬂ(x) is a function subprogram, not a statement. A convenient method
of using it to plot is to code the BASIC statement: Z=USR(x} where x is the
argument corresponding to the desired plot function and Z is a dummy variable.
The line plot and erase routines copy X2% into X1% and ¥2% into Y1% when they
execute. This allows a chain of end-to-end lines to be plotted or erased by
simply changing X2% and Y2% for each successive endpoint after the first.

1. Use of RUN (statement number) will not work correctly because the coordinate
definition statement will not be executed. Instead the statement:
2 QOTO (statement number) should be entered and the plain RUN command used.

The following program segments are examples of how the graphics routines are
used to perform fundamental plotting operations (be sure to define the coordinates
as outlined previously):

1. To clear the screen before plotting:
10 Z=USR(0)
2. To plot a point at X=160 Y=100 (the center of the screen)

10 ¥1%=160
20 Y1%=100
30 Z=USR(1)

3. To plot a line from X=20 Y=30 to X=113 Y=165
10 X1%=20
20 Y1%=30
30 X2%=113
40 Y2%=165
50 Z=USR(2)
After statement 50 is executed, X1%=X2%=113 and Y1%=Y2%=165.
4, To erase the point at X=180 Y=32
10 X1%=180
20 Y1%=32
30 2=zUSR(3)
5. To erase a line running from X=78 Y=73 to X=13 Y=19
10 X1%=78
20 Y1%=73
30 X2%=13
Lo Y2%=19
50 Z=USR(Y4)
After statement 50 is executed, X1%=X2%=13 and Y1%=Y2%=19.
6. To read the color of the pixel at X=100 Y=50 into the variable A
10 X1%=100
20 Y1%=50
30 A=USR(5)

The demonstration program should be consulted for other examples of plotting.

4

Use of the K-1008-2 Text Display Routines

The text display capability built into the K-1008-2 package can be used to
annotate the graphic images created by the plotting routines. Normal PRINT
statements are used to create the text so the secret to successful use is
positioning the text in the desired locations on the screen.

The text display routine, SDTXT, keeps two variables of its own which identify
the location of the text cursor on the screen. The character number is stored in
location EY4 (228 decimal) and varies from O for the left screen edge to 52 decimal
for the right screen edge. The line number is kept in location E5 (229 decimal)
and varies from 0 for the top line to 21 decimal for the bottom line. BASIC also
has its own character number which is stored in location 16 {22 decimal) and
ranges from 0 to 52 for a terminal width of 53. Normally BASIC's character number
and SDTXT's character number agree. Every carriage-return/line-feed issued by
BASIC sets both character numbers to zero and increments SDTXT's line number,

When the line number tries to go beyond 21 the screen contents are moved upward by
9 raster lines instead.

Putting text at arbitrary locations on the screen basically amounts to POKEing
the desired character and line numbers into memory at 228 and 229 respectively.
The text is then generated with print statements. The coordinates of the center
of a character at character position C and line number L are: X=6%#C+2 Y=195-0%L,;
C=(X-2)/6 L=(195-Y)/9. Characters extend 2 pixels either side of center widthwise
and 3 pixels either side of center heightwise. A semicolon terminator should be
used after each element printed to prevent BASIC from following it with a carriage
return. Also, BASIC's character number at location 22 should be reset to zero
before the accumulated output exceeds 53 characters or else BASIC will insert a
carriage-return/line-feed anyway. Also be aware that when numbers are printed
with the semicolon terminator that a blank is printed following the number and
that positive numbers are preceeded by a blank.

There is one additional complication. The cursor displayed by SDTXT is a
software cursor and arbitrarily changing the line and character numbers will foul
up its proper handling. Therefore before changing the line or character numbers,
the cursor should be cleared by executing the statement: Z=USR(6). After the line
and character numbers are changed but before any PRINT statements, the cursor
should be inserted by executing the statement: Z=USR(7). After all labels and
captions are printed, the cursor may be cleared if desired. Return to BASIC's
command mode will automatically restore the cursor for normal interactive text
output. If possible, text printing should be done before any plotting.

For example, if the caption "Market Index" is desired to start at X=70 Y=180
the following BASIC statements should be coded:

10 Z=USR{6)

20 POKE 228,11

30 POKE 229,2

40 POKE 22,0

50 Z=USR(7)

60 PRINT "Market Index™;

Character number 11 and line number 2 are closest to the desired starting point of
X=T0 Y=180. Note that lower case letters are available and may be part of a
literal field with no problems. The demonstration program cah be consulted for
additional examples of text output.

Demonstration Program Documentation

The BASIC demonstration program supplied with the K-1008-2 software package is
designed to illustrate the use of the plotting and text display functions. It is
intended to be easy to read and understand rather than illustrate techniques for
program compression and speed enhancement. The program is composed of five
different demonstrations that execute in sequence with a long pause between each
demonstration. The fifth ends with an infinite loop which must be interrupted to
return to BASIC.

The first program illustrates point plotting by drawing a circle with 250
individual dots. The parametric equations: X=COS(A) and Y=SIN(A) are used to
generate X,Y pairs as a function of the variable, A. Note that scaling of X and
Y, which vary between -1 and +1, is necessary. Although it does not happen in the
demonstration, if Y became exactly 1.0 then Y1% would become 200 which is outside
the 0-199 range of Y1%.

The second program illustrates vector plotting by creating a very beautiful 31
point star. Since the string of endpoints is connected, the line drawing
routine's property of updating X1% and Y1% is utilized to advantage. However the
first point is a special case. To handle the first point, a variable called FP is
initially set to 1. As each new endpoint is computed, the value of FP is
interrogated. If it is found to be non-zero, the endpoints are forced to be equal
which effectively moves the "pen" without drawing a line from where it was. After
the first point is plotted, FP is set to zero thus allowing vectors to be drawn
between all successive points.

The third program illustrates selective erasure of previously plotted lines.
Points for the same 31 point star are computed but USR(Y4) is used to erase the
lines computed. Note that when two lines cross and one of them is erased that a
small gap is left in the other line. This is a fundamental problem of all stored
image (as opposed to refresh vector) graphic displays.

The fourth program illustrates how a fully labelled and captioned graph can be
produced. First the Y axis calibration labels are produced with a FOR loop and
and print statements. Note that if the FOR loop had been written: FOR Y=-1 TO 1
STEP .2 that after 10 iterations Y would not be precisely 0 because of roundoff
error in decimal fraction to binary floating point conversion. Thus rather than 0
being printed, something like -1.16415322E-10 would be printed instead. The
captions are printed next. BASIC's character number is reset to zero once to
prevent a spurious carriage-return/line-feed. Then the axes themselves are
plotted with calibration marks for the Y axis. Finally the Fourier synthesis of
the sound waveform of a particular organ pipe is plotted.

The last program demonstrates the ability to read data back from the Visible
Memory. It also shows that visualization of number sequences can lead to new
insights about the sequences. In the demonstration the sieve of Eratosthenes is
used to plot the prime numbers from 3 to 132,001. Each pixel represents an odd
integer starting with 3 in the lower left corner of the screen. The sieve method
starts with all pixels set to one. Then all of the odd multiples of 3 up to
132,001 are computed and the corresponding pixels are reset to zero. Then a
search for the next pixel beyond 3 which is still a one is performed and all of
its odd multiples are set to zero and so on. This continues until 363, which is
approximately equal to the square root of 132001 is tried. At this point, pixels
remaining on the screen correspond to prime numbers. Do the prime numbers appear
to be randomly placed? Is there a decrease in prime number density as the numbers
get larger? Approximately what percentage of the odd integers are prime? The
answers to these questions are immediately apparent when viewing the secreen and
may be supprising.

6

Notes on the Text and Graphics Routines

The heart of the K-1008-2 BASIC Patches software package is the VMBAS program.
This program is file 01 on the cassette and is loaded immediately following BASIC
into locations 4261 through 49D7. After loading, the cold start location (INIT)
4261 is executed. The main job of the cold start routine is to automatically

patch certain locations in BASIC. These patches alter the operation of BASIC as
follows:

1. USRLOC is altered to point to the graphics dispatch routine.

2. The call to KIM's teletype input routine is altered to point to an
internal input routine (ANKBX) which calls a parallel keyboard routine in
location 0200 and echos the input text to SDTXT.

3. The call for testing for control/C is altered to point to an internal
routine (CNTLCX) which in turn calls an improved control/C test routine
in location 0203.

4. Patches BASIC so that program storage starts at location 49D8 instead of
4261,

5. Patches BASIC so that the question about keeping the trigonometric
routines is bypassed.

6. Clears the screen, inserts a cursor at character 0 line 0 and enters
BASIC's initialization routine.

The graphics dispatch routine (DISPCH) is entered whenever the USR function is
used in a statement. 1Its job is to look at the value of the argument and jump to
the corresponding graphics routine. If the argument is out of range, an immediate
return is taken. However the contents of 4316 and 4317 may be changed to jump to
another machine language program instead if the argument is outside the range of 0
through 7.

Before dispatching to a graphics routine, the first 4 variables in BASIC's
variable table are transferred to page zero locations for easy access by the
graphics routines. After the transfer they are range checked and corrected if
necessary by successive subtraction of the maximum value+] if. After returning
from a graphics routine, these page zero locations are copied back into BASIC's
variable table. The four variables are assumed to be integer variables and are
assumed to be stored in the following order: X1, Y1, X2, Y2. All of the routines
return a value for the USR function but only argument 5 (read pixel) returns a
predictable value.

USR function arguments 6 and 7 merely link to CSRCLR and CSRSET respectively
in SDTXT. The character and line numbers utilized by SDTXT are checked for
validity and corrected if necessary every time SDTXT is called.

Notes on the Keyboard Routines

Because of severe limitations with teletype input to KIM BASIC, the K-1008-2
BASIC Patches Package includes two parallel keyboard input subroutines. Besides,
who wants to use a noisy teletype when the Visible Memory is doing all of BASIC's
printing? Teletype input may still be selected however by putting the KIM in
teletype mode which causes both keyboard routines to call the TTY input routine in
the KIM monitor. Both keyboard routines use a transfer vector. Location 0200
contains a jump to the actual keyboard input subroutine and location 0203 contains
a jump to the control/C test routine.

The keyboard routine in file 02 in conjunction with an unencoded keyboard is
the least cost approach to adding a parallel keyboard to the KIM=-1. In addition,
port A is left completely free for other uses such as operating the MTU K-1002
8-Bit Audio System. An article reprint describing the theory and construction
details of the keyboard is included. For best results with the file 02 keyboard
routine the following additions to the keyboard matrix described in the article
should be made:

1. The Shift Lock key should be connected between row 3 and column 3. This
key should be unlocked while using the KIM monitor tc avoid possible
interference with the display.

2. Germanium diodes (type 1N270 is best) should be placed in series with the
shift key, shift lock key, repeat key, and control key to eliminate a
possible "phantom key" effect. The cathode (end with the band) should
connect to the column lines.

For maximum usefulness with BASIC (and all other keyboard applications as
well) the shift lock functions as an "upper case only" {(caps lock) mode key. When
active, all letters will be forced to upper case but the numbers and special
characters will be unaffected. This is important because a bug in BASIC prevents
recognition of statements and commands entered in lower case. In fact, a quite
reasonable word processing system can be set up using the strings facility of
BASIC and the lower case capability of the keyboard and Visible Memory display.

The test for control/C routine performs several functions. BASIC calls this
routine periodically while printing and while running programs. When entered, it
first tests for the control and C keys being pressed simultaneously. If that
combination is seen the carry flag is set and an immediate return is taken. This
causes BASIC to stop what it was doing and print a BREAK message. If control/C is
not seen then control/0O is tested. If this condition is true, BASIC's "suppress
output™” flag at location 0014 is toggled. The effect is to "flush" all output
until the flag is turned back off by another control/0. Extra code is required to
insure that the flag is toggled only once each time contrcl/0 is pressed. If
control S is seen a loop is entered which waits until control/Q is seen. The
effect is to suspend execution of the BASIC program until control/Q is pressed.

If none of these special control functions are seen, an immediate return is taken
with the carry flag off.

File 03 contains a similar but much shorter keyboard routine for parallel
ASCII encoded keyboards. The keyboard should be connected to port A with the 7
ASCII data bits connected to bits 0 through 6. The key pressed or strobe signal
should be connected to bit 7. The data is assumed to be in true form and the
strobe is assumed to be active when it is a logic one although either or both
polarities may be altered by changing the mask byte in loecation 02BA., All
functions are similar to those of the unencoded keyboard with the exceptiocn of the
caps lock feature. CNTL/R is used to turn caps lock on and CNTL/T is used to turn
it off. Note that proper operation of the control/C routine with a pulse strobe
keyboard requires a register to hold the keycode between keystrokes. This is a
standard feature of keyboards using an LSI encoder chip. Also note that the
strobe pulse must be at least 12 microseconds long to be seen reliably. 8

1 X1%=0: Y1%=0: X2%=0: Y2%=0:

2 REM PREVIQUS STATEMENT REQUIRED TO DEFINE
3 REM GRAPHIC COORDINATES

10 REM CLEAR THE SCREEN

11 Z=USR(0)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
206
250
260
270
280
290
300
310
400
410
420
430
4u0
450
460
470
480
490
500
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
7
750
760
770
800
810
820

8o

REM DEMONSTRATION OF POINT PLOT

REM PLOT A CIRCLE IN DEAD CENTER OF SCREEN USING

REM 250 POINTS

FOR I=0 TO 250
A=6.28318%*1/250
X1%=100%COS(A)+160
¥Y1%=100¥SIN(A)+100
Z=USR(1)

NEXT 1

GOSUB 9000

REM DEMONSTRATION OF VECTOR PLOT
Z=USR(0): REM CLEAR SCREEN
FP=1: REM SET FIRST POINT FLAG
FOR I=0 TO 31
A=13%1%6.2831828/31
X2%=150%COS(A)+160
Y2%=100*3IN(A)+100

IF FP<>1 THEN GOTO 290
X1%=X2%: Y1%=Y2%: FP=0
Z=USR(2)

NEXT I

GOSUB 9000

REM DEMONSTRATION OF VECTOR ERASE
FP=1

FOR I=0 TO 31
A-13%I%6.2831828/31
X2%=150%*COS(4)+160
Y2%=100%SIN(A)+100

IF FP<>1 THEN GOTO 480
X1%=X2%: Y1%=Y2%: FP=0
Z=USR(4)

NEXT I

GOSUB 9000

REM DEMONSTRATION OF AXIS PLOT, LABEL, AND TITLE

Z=USR(0)

REM INSERT Y AXIS LABELLING FIRST

FOR Y=-10 TO 10 STEP 2

REM REPOSITION TEXT CURSOR

Z=USR(6)

POKE 228,0: POKE 229,(-Y+10)

Z=USR(7) . .

PRINT Y/10;: REM PRINT Y AXIS LABEL

NEXT ¥

REM PRINT X AXIS CAPTION

7=USR(6): POKE 228,49: POKE 229,10: Z=USR(7)

PRINT "Time";

REM PRINT X AXIS CAPTION AND FIGURE CAPTION

7=USR(6): POKE 228,0: POKE 229,21: Z=USR(T)

POKE 22,0: REM RESET BASIC'S CHAR POINTER TO O

PRINT "Amplitude";

PRINT " Waveform of Great Diapason C4 16FT";

Z=USR(6)

REM PLOT X AND Y AXES

X1%=20: X2%=294: Y1%=105: Y2%=105: REM HOR AXIS

Z=USR(2)
0

X1%=20: X2%=20: Y1%=11: Y2%=199: REM VERT AXIS
Z=USR(2)

94

900
310
920
930
940
950
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
. 1130
1140
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2100
2110
2120
2130
2140
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
8000
8010
8020
8030
8ouo
8050
9000
9010
9020
9030
9999

REM PLOT TIC MARKS ON Y AXIS

FOR Y=-1 TO 1 STEP .2 .

X1%=18: X2%=20

Y1%=15+90%(Y+1): Y2%=Y1%

Z=USR(2)

NEXT Y

REM PLOT THE WAVEFORM USING VECTORS
FP=1

XF=2T70/(4%3.14159): REM X SCALE FACTOR
YF=60: REM Y SCALE FACTOR

FOR X=0 TO 4%*3,14159 STEP 4¥3,14159/270
Y=SIN(X)+.49*SIN(2*X+3.9)+.3*SIN(3*X+5.81)
Y=Y+.24*¥SIN(LU*¥X+3.8)+.18*SIN(5%*X+.97)
Y=Y+ .12¥SIN(6¥X+U.3)+.0U*¥SIN(7%X+3.54)
¥=Y+.,07%*SIN(8%*X+.87)+.03*SIN(9%¥X+5.3)

X2%=20+XF¥X: Y2%=105+YF¥*Y
IF FP<>1 THEN GOTO 1120
X1%=X2%: Y1%4=Y2%: FP=0
Z=USR(2)

NEXT X

GOSUB 9000

REM SIEVE OF ERATOSTHENES DEMONSTRATION

REM THIS PROGRAM FINDS ALL OF THE PRIME NUMBERS
REM FROM 3 TO 128001 USING THE VISIBLE MEMORY.
REM EACH PIXEL ON THE SCREEN REPRESENTS AN 0ODD
REM INTEGER STARTING WITH 3 IN THE LOWER LEFT
REM CORNER. THE PROGRAM FIRST TURNS ALL PIXELS
REM ON AND THEN TURNS THOSE OFF THAT DO NOT
REM REPRESENT PRIME NUMBERS. THOSE THAT ARE
REM LEFT ON AFTER EXECUTION ARE PRIME. IS THE
REM RESULTING PATTERN RANDOM? ARE THE PRIME
REM NUMBERS UNIFORMLY DISTRIBUTED? THE ABILITY
REM TO READ BACK FROM THE VISIBLE MEMORY IS
REM USED IN THIS PROGRAM.

Z=USR(0)

REM QUICKLY TURN ALL PIXELS ON

FOR I=0 TO 199

X1%=0: X2%=319: Y1%=1: Y2%=1: Z=USR(2)

NEXT I

FOR I=3 TO SQR(128001) STEP 2

N=1I

GOSUB 8000

IF USR(5)=0 THEN GOTO 2300

FOR J=3 TO 128001 STEP 2

N=I1%*J

IF N>128001 THEN GOTO 2300

GOSUB 8000

Z=USR(3)

NEXT J

NEXT I

GOTO 2310: REM WAIT FOREVER

REM FUNCTION TO CONVERT ODD INTEGER TO X,Y
N1=(N=-3)/2

N2=N1/320

X1%=N1-INT(N2)¥320

Y1%=N2

RETURN

REM DELAY ROUTINE TO HOLD IMAGE IN SCREEN

FOR D=1 TO 10000

NEXT D

RETURN

END

93

VMBAS BASIC/VM PATCHES

DOCUMENTATION
.PAGE 'DOCUMENTATION®

3) *EREEMODIFIED FOR KIM BASICH#ax#

y @ THIS PACKAGE ALLOWS THE VISIBLE MEMORY TO BE USED WITH MICRQ=-
5 : SOFT BASIC AS TERMINAL DISPLAY DEVICE AND A GRAPHICS DISPLAY
6 ; DEVICE. A SLIGHTLY MODIFIED VERSION OF SDTXT IS USED FOR TEXT
7 i DESPLAY AND AN ABBREVIATED VERSION OF THE GRAPHICS PACKAGE IS
8 - USED FOR GRAPHICS.

9

10 : INTERFACE WITH BASIC IS AT TWO LEVELS. THE CALL TO THE KIM
i1 ; TTY PRINT ROUTINE IS REPLACED BY 4 CALL TO SDTXT WHICH MEANS
12 ; THAT ALL PRINTED OUTPUT FROM BASIC GOES TO THE SCREEN. THE
13 : KEYBOARD ROUTINE SUPPLIED BY THE USER SHOULD ALSO CALL SDTXT
14 ; S0 THAT TYPED INPUT APPEARS ON THE SCREEN AS WELL. INTERFACE
15 ; TO THE CRAPHICS ROUTINES IS THROUGH THE USR FUNCTION AND THE
16 ; VARIABLE STORAGE AREA IN BASIC. THE ARGUMENT OF THE USR

17 ; FUNCTION CALL SELECTS WHICH GRAPHICS ROUTINE IS TO BE USED.
18 f THE COORDINATE DATA USED BY THE GRAPFICS FUNCTIONS IS ASSUMED
19 : TO BE IN THE FIRST U ENTRIES OF THE VARIABLE TABLE AND IS
20 ; ASSUMED TC BE INTEGER DATA. TO ESTABLISE THE COORDINATE NAMES
21 H AND INSURE THAT THEY ARE STORED FIRST IN THE VARIABLE TABLE,
22 ; THE FOLLOWING BASIC STATEMENT MUST BE CODED AS PART OF THE

23 : USER'S PROGRAM:

24

22 ; 1 X1%=0; Y1%=0; X2%=0; Y2%=0

2

27 : THE STATEMENT NUMBER 1 INSURES THAT IT WILL BE EXECUTED FIRST
28 : AND THAT X1%, ¥1%, X2%, AND Y2§ WILL APPEAR FIRST IN THE

29 H VARIABLE TABLE AND IN THE CORRECT ORDER. THE % SIGNS AFTER
30 ; THE VARIABLE NAMES INDICATE THAT THEY ARE INTEGER VARIABLES
31 ; AND MUST BE USED. THE ACTUAL NAME MAY BE CHANGED BUT

32 ; CONFUSION IS MINIMIZED BY USING THE NAMES GIVEN. THE ORIGIN
33 ; OF THE COORDINATE SYSTEM IS THE LOWER LEFT CORNER OF THE

34 ; SCREEN. ‘'THE ALLOWABLE RANGE OF X IS O TO 319 INCLUSIVE AND
35 ; THE Y RANGE IS 0 TO 199 INCLUSIVE, OUT OF RANGE COCRDINATES
36 ; WILL BE CORRECTED BY COMPUTING THEIR VALUE MODULQ THE MAXIMUM
37 ; VALUE PLUS 1. THE MODULUS COMPUTATION IS PRIMITIVE AND MAY BE
38 H SLOW HOWEVER. IF THE GRAPHICS ROUTINE MODIFIES ANY OF THE

39 i COORDINATES, THEY WILL BE MODIFIED IN BASIC'S VARIABLE TAELE
up 3 AS WELL.

41

32 ; THE USR FUNCTION CODES ARE AS BELOW:

3

iy] 0 CLEAR THE SCREEN AND SET THE TEXT CURSOR AT UPPER LEFT
45 : CORNER OF THE SCREEN

46 ; 1 POINT PLOT X1,Y1 WHITE DOT X1, Y1 NOT CHANGED

L7 ; 2 LINE PLOT FROM X1,¥1 TO X2,Y2 WHITE LINE

L - X2 COPIED INTO X1 AND Y2 COPIED INTC Y1 UPON RETURN
g : 3 POINT PLOT X1,Y# BLACK DOT X1, Y1 NOT CHANGED
50 - 4 LINE PLOT FROM X1,Y1 TO X2,¥2 BLACK LINE (ERASE)
51 ; ¥2 COPIED INTO X1 AND ¥2 COPIED INTO Y1 UPON RETURN
52 : 5 READ POINT AT X1,Y1 VALUE OF USR FUNCTION ON RETURN IS
53 ; THE STATE OF THE POINT O0=BLACK 1=WHITE

54 ; 6 “LEAR THE TEXT CURSOR FROM THE SCREEN

55 ; 7 SET THE TEXT CURSOR ON THE SCREEN

56

104

VMBAS BASIC/VM PATCHES

DOCUMENTATION

L
58
59
60
61
62
63
64
65
66
67
€8
69
70
71
T2
73
T4
75
76

FOR TEXT OUTPUT ANYWHERE ON THE SCREEN THE POKE FUNC
BE USED TO DIRECTLY ALTER THE CURSOR POSITION. THE
NUMBER IS KEPT IN LOCATION 228 (10) AND THE LINE NUM
1S KEPT IN LOCATION 229. THE CHARACTER NUMBER RANGE
T0 52 INCLUSIVE AND THE LINE MUMBER RANGES FROM 0 TC
INCLUSIVE. THE CHARACTER MATRIX IS 5 BY 7 IN A CHAF
CELL OF € BY 9. LINE O CHARACTER O IS THE UPPER LE!
OF THE SCREEN AND COVERS X COORDINATES OF 0 TO 6 AND
COORDINATES OF 191-199 INCLUSIVE.

OUT OF RANGE LINE OR CHARACTER NUMBERS WILL BE CORR:
AS WITH POINT COORDINATES.

NOTE THAT THE TEXT CURSOR SHCULD BE CLEARED FROM THE
BEFORE MOVING IT WITH POKES AND SHOULD BE SET AFTER
STANDARD BASIC PRINT STATEMENTS CAN BE USED FOR PLO"
IF SEMICOLONS ARE USED TO SUPPRESS CARRIAGE RETURN/I
NOTE THAT IF A CARRIAGE RETURN/LINE FEED IS PRINTED
LINE NUMBER I3 21 THAT THE ENTIRE DISPLAY, GRAPHICS
WILL BE SCRCLLED UPWARD 9 SCAN LINES.

10B

VMBAS BASIC/VM PATCHES
EQUATES AND STORAGE

.PAGE ' EQUATES AND STORAGE'

17

78 : GENERAL EQUATES

79

80 0140 NX = 320 ; NUMBER OF BITS IN A ROW

81 ooc8 NY = 200 ; NUMBER OF ROWS

82 FA00 NPIX = NX*NY ; NUMBER OF PIXELS

83 1F40 NLOC = 8000 ; NUMBER OF VISIBLE LOCATIONS

84 0009 CHHI = 9 ; CHARACTER WINDOW HELGHT

85 0006 CHWID = 6 ; CHARACTER WINDOW WIDTH

86 0035 NCHR = 320/CHWID ; NUMBER OF CHARACTERS PER LINE

87 0016 NLIN = NLOC/40/CHHI ; NUMBER OF TEXT LINES

88 1D88 NSCRL = NLIN-1®CHHI®40 ; NUMBER OF LOCATIONS TO SCROLL

89 01B8 NCLR N NLOC-NSCRL ; NUMBER OF LOCATIONS TO CLEAR AFTER SCROL
90 0200 ANKB = X10200 ; LOCATION OF KEYBOARD ROUTINE

91 0203 CNTLC = X'0203 ; LOCATION OF TEST FOR CONTROL/C ROUTINE
92

93

9y ; PAGE 0 STORAGE THIS IS THE ONLY RAM STORAGE USED BY THIS
95 o PROGRAM

96 0000 iE X'E3 ; START BASE PAGE STORAGE 3 PAST END OF
a7 ; BASIC AREA

98

99 3 PERMANENT STORAGE THAT MUST NOT BE WIPED OUT BY EXITING TO
100 ; THE KIM MONITOR

101

102 00E3 VMORG: .=.+ 1 ; FIRST PAGE NUMBER OF VISIBLE MEMORY
103 OOE4 CSRX: =1 ; TEXT CURSOR CHARACTER NUMBER

104 O0UES CSRY: =+ 1 ; TEXT CURSOR LINE NUMBER

105

106 H TEMPORARY STORAGE THAT MAY BE WIPED OUT BY EXITING TO THE KIM
107 ; MONITOR ’
108

109 OOE6 X1CORD: .=.+ 2 i COPY OF BASIC'S X1 COORDINATE

110 OOE8 Y1CORD: .=.+ 2 ; COPY OF BASIC'S Y1 COORDINATE

111 OOEA X2CORD: .=z.+ 2 ; COPY OF BASIC'S X2 COORDINATE

112 00EC Y2CORD: .=.+ 2 ; COPY OF BASIC'S X2 COORDINATE

113 OOEE TEMP: sk 2 ; TEMPORARY STORAGE

114 00F0 BTPT: R | ; BIT POINTER WITHIN BYTE

115 00F1 IE| ; DO NOT USE KIM'S STATUS SAVE BYTE!!!
116 Q0F2 ADP1: =k 2 ; ADDRESS POINTER 1

117 OOF4 ADP2: Lze 2 ; ADDRESS PCINTER 2

118 DOF6 DELTAX: .=.+ 2 ; DELTA X FOR LINE DRAW

119 0OF8 DELTAY: ,=.+ 2 ; DELTA Y FOR LINE DRAW

120 OOFA AcC: =4+ 2 ; ACCUMULATOR FOR LINE DRAW

121 OOFC XDIR: T ; X MOVEMENT DIRECTION, ZERO:=+

122 0OFD ¥YDIR: =+ 1 ; Y MOVEMENT DIRECTION, ZERO=+

123 OOFE XCHFLG: .=.+ 1 ; EXCHANGE X AND Y FLAG, EXCHANGE IF NOT O
124 OOFF COLOR: =+ 1 ; COLOR OF LINE DRAWN -1=WEITE

125 OOEE DCNT1 =z TEMP ; DOUBLE PRECISION COUNTER

126 OOFE MRGT1 = XCHFLG ; TEMPORARY STORAGE FOR MERGE

127 -IIIA

VMBAS BASIC/VM PATCHES
INITIALIZATION ROUTINE

_PACE ' INITIALIZATION ROUTINE'

128

129 0100 .= X'4261 : START IMMEDIATELY BEYOND BASIC

130

131 4261 D8 INIT: CLD ; CLEAR DECIMAL MODE

132 ; DON'T CARE WHERE THE STACK IS RIGHT
133 4262 A9CO LDA #X'C0 ; INITIALIZE THE LOCATION OF THE VISIt
134 4264 BSE3 STA ¥MORG ; MEMORY

135 4266 A9CB LDA #DISPCH&X'FF ; SET USRLOC TO GO TO GRAPHICS DISPAT!
136 4268 8D4020 STA X12040 ; ROUTINE

137 426B A942 LDA #DISPCH/256

138 426D 8D4120 STA X'2041

139 4270 A937 LDA #SDTXT&X'FF ; SET BASIC PRINT CALL TO GO TO SDTXT
140 L4272 8D5224 STA X'2852

141 L4275 AQUS LDA #SDTXT /256

142 4277 8D532A STA X'2453

143 4274 A9BT LDA #ANKBY&X'FF ; SET BASIC KEYBOARD CALL TO GO TO ANE
144 L427C 8D5T724 STA Xt2457

145 427F A9l2 LDA #ANKBY /256

146 4281 8p5824 STA X12458

147 42BL AgYC LDA #xric ; SET BASIC TEST CONTROL/C CALL TO GO
148 4286 BDDA26 STA X126D4 ; CNTLCX

149 4289 AYBE LDA #CNTLCX&X 'FF

150 428B 8DDB26 STA X'26DB

151 428E A942 LDA #CNTLCX /256

152 4290 8DDC26 STA X'26DC

153 4293 A9D9 LDA #END+1&X'FF ; ADJUST BEGINNING OF BASIC PROGRAM 4
154 4295 BDCEYO STA X'4OCE ; TO SKIP OVER GRAPHICS PACKAGE

155 4298 A9L9 LDA #END+1/256

156 4294 8DDONO STA X'40D0

157 429D AZ07 LDX #7 ; MOVE 7 BYTES INTO BASIC WHICH CAUSE:
158 429F BDBOL2 INIT1: LDA INTCOD, X ; QUESTION REGARDING TRIG FUNCTIONS TG .+
159 4242 $D3641 STA X14136,% : SKIPPED AND PRESERVES BASIC'S INITI
160 42A5 CA DEX ; ROUTINE

161 4246 10F7 ‘BPL INIT!

162 L2AB A90C LDA #x10C ; CLEAR THE SCREEN AND PUT THE CURSOR
163 N2AA 203745 JSR SDTXT ; CHARACTER O LINE O

164 L2AD 4C65L40 JMP X' 4065 ; ENTER BASIC

165

166

167 42BO A2D9 INTCOD: LDX #END+1&X"FF ; INITIALTZATION CODE TC PCKE INTO BAS!c
168 L2B2 AOLY LDY #END+1/256 ; INITIALIZATION ROUTINE

169 42BY4 4c8341 JMP ¥'H183

170

11B

VMBAS BASIC/VM PATCHES
INPUT ROUTINE

171
172
173
174
175
176
77
178
179
180
181
182
183
184
185
186
187
188
189
190

42B7
L2Ba
42BD

L2BE
L2c1
4203
42c5
4ze7
42c8

200002
203745
60

200302
BO05
A901
€902
60
4CcE126

ANKBX:

i
3
3
3
3

CNTLCX:

CTCNO:

CTCYES:

LJPAGE ' INPUT ROUTINE'
KEYEOARD ROUTINE - CALL USER'S KEYBOARD ROUTINE, ECHO BACK THE
CHARACTER TYPED ON THE SCREEN, AND RETURN.

JSR ANKB ; GO TO KEYBOARD ROUTINE
JSR SDTXT ; ECHO THE CHARACTER ON THE SCREEN
RIS ; RETURN

CONTROL/C TEST ROUTINE - CALL USER'S CONTROL/C TEST ROUTINE
USER'S ROUTINE SHOULD RETURN WITH CARRY SET IF CONTROL/C IS
SEEN AND RETURN WITH CARRY CLEAR IF NOT SEEN. USER'S ROUTINE
MAY ALSO IMPLEMENT THE CONTROL/O FUNCTION AND XOFF-XON (CNTL/S
AND CNTL/Q)

JSR CNTLC
BCs CTCYES

GO TO CONTROL C ROUTINE
JUMP IF CONTROL/C SEEN

LDA #1 "NQO" RETURN, LOAD 1 INTO A
cMP #2 SET THE NEGATIVE INDICATOR
RTS RETURN

JMP X126E1 GO TO YES RETURN IN BASIC

12A

VMBAS BASIC/VM PATCHES
DISPATCH ROUTINE FROM A USR CALL

.PAGE ' DISPATCH ROUTINE FROM A USR CALL'
191 H DISPATCH ROUTINE FROM A USR CALL

192 H THIS ROUTINE LOOKS AT THE ARGUMENT OF THE USR FUNCTION CALL
193 3 AND DISPATCHES TO THE PROPER GRAPHICS ROUTINE.

194 : IT ALSO COPIES THE COORDINATES FROM THE VARIABLE AREA IN BASIC
195 H TO PAGE 0 LOCATIONS BEFORE EXECUTING A GRAPHICS ROUTINE AND
196 5 COPIES THEM BACK AFTER EXECUTING A GRAPHICS ROUTINE

197

198 L2CB AQ02 DISPCH: LDY #2 ; SET UP TO MOVE 4 COORDINATES TO PAGE O
199 42¢D 4200 LDX #0

200 L2CF B1TA DISPC1: LDA (X'007A),Y ; GET HIGH BYTE OF AN INTEGER VARIABLE
201 42D1 95ET7 STA X1CORD+1,X ; STORE IT [N PAGE 0

202 L42p3 c8 iny

203 L2p4 B17A LDA (X'0074),Y ; GET LOW BYTE OF THE VARIABLE

204 42p6 95E6 STA X1CORD, X ; STORE IT TN PAGE 0

205 42p8 98 TYA ; ADD 6 TO Y TO POINT TO NEXT VARIABLE
206 L2p9 18 CLC ; IN BASIC'S VARIABLE TABLE

207 L2DA 6906 ADC #6

208 42DpC A8 TAY 5

209 42pDp EB INX ; ADD 2 TO X TO POINT TO NEXT VARIABLE IN
210 42DE EB INX ; PAGE O

211 42DF E008 CPX #8 ; TEST IF MOVE IS COMPLETE

212 42E1 DOEC BNE DISPC1 ; CONTINUE IF NOT

213 42E3 20EB43 JSR CKCRD ; TEST IF COORDINATES ARE IN RANGE AND
214 ; CORRECT IF NECESSARY

215

216 : GET ARGUMENT OF USR CALL, CHECK FOR ALLOWABLE RANGE, AND
217 ' DISPATCH TO CORRECT GRAPHICS ROUTTNE

218

219 42E6 201843 JSR GETARG ; GET LOW ARGUMENT IN A AND HIGH ARGUMENT
220 ;

221 42E9 A5B1 LD4 X'B1 ; TEST FOR LEGAL ARGUMENT

222 ; UPPER BYTE MUST BE ZERO

223 42EB D028 BNE ILLEGL ; GO RETURN IF ILLEGAL ARGUMENT

22l 42ED ASB2 LDA X'B2 ; TEST FOR RANGE OF 0 TO 7 INCLUSIVE IN
225 42EF €907 CMP #7 ; LOWER BYTE AND

226 U2F1 BO22 BCS ILLEGL ; GO RETURN IF NOT IN RANGE

227 42F3 201E43 JSR VCTJSR ; DO A VECTOR JSR TO THE CORRESPONDLING
228 ; GRAPHICS ROUTINE

229 42F6 48 TAY ; RETURN FUNCTION VALUE TO BASIC

230 42FT 4900 LDA #0

231 Y2F9 201BU43 JSR PUTARG

232

233 § MOVE THE COORDINATES BACK TO BASIC

234

235 42FC A002 LDY 2 ; SET UP TO MOVE 4 COORDINATES BACK
236 42FE 4200 LDX #0

237 4300 BSEY DISPC2: LDA X1CORD+1,X ; GET HIGH BYTE OF AN INTEGER VARIABLE
238 4302 9174 STA (X'0074),Y ; STORE IT BACK IN BASIC

239 4304 c8 INY

240 4305 BSEH LDA X1CORD,X ; GET LOW BYTE OF THE VARIABLE

241 4307 9174 STA (X'0074),Y ; STORE IT BACK

242 4309 98 TYA ; ADD 6 TO Y TO POINT TO NEXT VARIABLE
243 4304 18 CLC ; IN BASIC'S VARIABLE TABLE

244 430B 6906 ADC #6

128

VMBAS BASIC/VM PATCHES

DISPATCH ROUTINE FROM A USR

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

430D
430E
430F
4310
4312
131}

4315

4318
431B

431E
431F
4320
4323
4324
4327
4328

u329
432B
432D
432F
4331
4333
4335
4337

A8
E8
E8
E008
DOEC
60

Lciyu3

6C0600
6C0800

OA
AA
BD2A43
48
BD2943
48
60

3843
A543
2phl
B4Y3
2941
c343
2746
1c46

DISPC3:

ILLEGL:

GETARC:

PUTARG:

VCTJSR:

DSPTAB:

CALL

TAY
INX
INX
CPX
BNE
RTS

JMP

JMP

JMP

ASLA
TAX
LDA
PHA
LDA
PHA
RTS

.WORD
-WORD
.WORD
. WORD
+WORD
.WORD
.WORD
.WORD

#8
DISPC2

DISPC3

(X'0006)

(X'0008)

DSPTAB+1,%

DSPTAB, X

CLEAR-1
STPIX-1
DRAW-1
CLPIX-1
ERASE-1
RDPIX-1
CSRCLR-1
CSRSET-1

3

ADD 2 TO X TO POINT TO NEXT VARIABLE TN
PAGE ©
TEST IF MOVE IS COMPLETE
CONTINUE IF NOT
RETURN TO BASIC

IMMEDIATE RETURN ON ILLEGAL ARGUMENT
CAN BE CHANGED TO GO TO ANOTHER USR
ROUTINE

GO TO GET ARGUMENT FUNCTION IN BASIC

GO TO PUT ARGUMENT FUNCTION IN BASIC

DOUBLE THE ARGUMENT VALUE
USE AS INDEX INTO DISPATCH TABLE

; TRANSFER TABLE ENTRY TO THE STACK

JUMP TO THE ADDRESS ON THE TOP OF THE
STACK
RETURNS TO

0
T
2
3
i
5
6
7

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

THE CALLER OF THIS ROUTINE

OF
OF
OF
OF
OF
OF
OF
OF

CLEAR SCREEN ROUTINE
SET PIXEL ROUTINE
DRAW LINE ROUTINE
CLEAR PIXEL ROUTINE
ERASE LINE ROUTINE
READ PIXEL ROUTINE
CLEAR CURSOR ROUTINE
INSERT CURSOR ROUTINE

134

VMBAS BASIC/VM PATCHES
DOCUMENTATION OF ABBREVIATED GRAPHICS PACKAGE

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

VMBAS
CLEAR

307
308
309
310
311
312
313
314
315
316
317
318
319

BASIC/VM PATCHES

ENTIRE SCREEN ROUTINE

4339
433B
433D
433F
43u1
4343
4345
4347
4349

AQ0O
84FL
ASE3
B5F5
AGIF
85EF
A94D
B5EE
Uc1AsT

CLEAR:

.PAGE 'DOCUMENTATION OF ABBREVIATED GRAPHICS PACKAGE!

THIS PACKAGE PROVIDES FUNDAMENTAL GRAPHICS ORIENTED
SUBROUTINES NEEDED FOR EFFECTIVE USE OF THE VISIBLE MEMORY AS
A GRAPHIC DISPLAY DEVICE WITH MICROSOFT BASIC. THE ROUTINES
INCLUDED ARE AS FOLLOWS:

CLEAR - CLEARE THE ENTIRE VISIELE MEMORY AS DEFINED BY
NPIX/

PIXADR- RETURNS BYTE AND BIT ADDRESS OF PIXEL AT X1CORD,
Y1CORD

CKCRD - PERFORM A RANGE CHECK ON ALL COORDINATES

STPIX - SET PIXEL AT X1CORD,YICORD TO A ONE (WHITE DOT)

CLPIX - CLEAR PIXEL AT XI1CORD,Y1CORD TO ZERQ (BLACK DOT)

RDPIX - COPY THE STATE OF THE PIXEL AT X1CORD,Y1CORD INTO
THE ACCUMULATOR

DRAW - DRAW THE BEST STRAIGHT LINE FROM X1CORD,Y1CORD
TO X2CORD,Y2CORD. X2CORD,Y2CORD COPIED TO
X1CORD,Y1CORD AFTER DRAWING

ERASE - SAME AS DRAW EXCEPT A BLACK LINE IS DRAWN

ALL SUBROUTTNES DEPEND ON ONE OR TWO PAIRS OF COORDINATES.
EACH COORDINATE IS A DOUBLE PRECISION, UNSIGNED NUMBER WITH
THE LOW BYTE FIRST (I.E. LIKE MEMORY ADDRESSES IN THE 6502)
THE ORIGIN OF THE COORDINATE SYSTEM IS AT THE LOWER LEFT
CORNER OF THE SCREEN THEREFORE THE ENITRE SCREEN IS IN THE
FIRST QUADRANT. ALLOWABLE RANGE OF THE X COORDINATE IS O TO
319 (DECIMAL) AND THE RANGE OF THE Y COORDINATE IS 0 TO 19G.

.PAGE 'CLEAR ENTIRE SCREZEN ROUTINE®
CLEAR ENTIRE SCREEN ROUTINE
USES BOTH INDICES AND ADP1

LDY #0 ; INITIALIZE ADDRESS PCINTER
STY ADP2 ; AND ZERO INDEX Y
LDA VMORG

STA ADP2+1

LDA #NPIX/8/256 ; SET COUNT OF BYTES TO CLEAR
STA DCNT 1+1

LDA #INPIX/8&X'FF

STA DCNT1

JMP FCLR ; GO DO CLEAR AND RETURN

13B

VMBAS BASIC/VM PATCHES
PIXADR - BYTE AND BIT ADDRESS OF A PIXEL

320
321
322
323
324
325
326
327
328
329
330
EER
332
333
334
335
336
337
338
339
340
341
342
343
34y
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
3T
372
373
374
375
376
377
378

434¢
434E
4350
4352
4354
4356
4358
4354
435¢
435E
4360
4362
U364
4366
4367
4369
4368
436D
436F
4371
4373
4375
u377
4379
4378
437D
U37F
4380
4382
14384
4386
4388
4384
438¢c
438E
4390
4392
4394
4396
4398
4399
4398
439D
439F
4381
4343
1385

ASE6
85F2
2907
85F0
ASE7
85F3
46F3
66F2
46F3
66F2
46F3
66F2
A9CT

ESE8
85F4
85EE
A900
ESEQ
85F5
85EF
06F4
26F5
06F4
26F5
AS5FL

65EE
85F4
ASF5
65EF
85F5
06F4
26F5
06FL
26FS
06FU
26F5
ASFY
18

65F2
85F2
ASF5
65F3
65E3
85F3
60

PIXADR:

.PAGE 'PIXADR - BYTE AND BIT ADDRESS OF A PIXEL'

PIXADR - FIND THE BYTE ADDRESS AND BIT NUMBER OF PIXEL AT
X1CORD, Y 1CORD

PUTS BYTE ADDRESS IN ADP1 AND BIT NUMBER (BIT 0 IS LEFTMOST)

IN BTPT,

DOES MOT CHECK MAGNITUDE OF COORDINATES FOR MAXIMUM SPEED

PRESERVES X AND Y REGISTERS, DESTROYS A

BYTE ADDRESS = VMORG*256+(199-Y1CORD)#*40+INT(XCORD/8)

BIT ADDRESS = REM(XCORD/8)

OPTIMIZED FOR SPEED THEREFORE CALLS TO A DOUBLE SHIFT ROUTINE

ARE NOT DONE

LDA X1CORD COMPUTE BIT ADDRESS FIRST

STA ADP1 ALSC TRANSFER X1CORD TO ADP1

AND #X107 ; WHICH IS SIMPLY THE LOW 3 BITS OF X
STA BTPT

LDA X1CORD+1 ; FINISH TRANSFERRING X1CCRD TO ADP1

STA ADP1+1

LSR ADP1+1 DOUBLE SHIFT ADP1 RIGHT 3 TO GET

ROR ADP1 ; INT(XCORD/8)

LSR ADP1+1

ROR ADP1

LSR ADP1+1

ROR ADP1

LDA #199 ~¢ ; TRANSFER (199-Y1CORD) TO ADP2
SEC ; AND TEMPORARY STORAGE
SBC Y1CORD

STA ADP2

STA TEMP

LDA #0

SBC Y1CORD+1
STA ADP2+1
STA TEMP+1

ASL ADP2 ; COMPUTE 40%(199-Y1CORD)

ROL ADP2+1 ; 2%(199-Y1CORD)

ASL ADP2

ROL ADP2+1 ; U¥(199-Y1CORD)

LDA ADP2 ; ADD IN TEMPORARY SAVE OF (199-Y1CORD)
cLC ; TO MAKE 5%(199-YICORD)

ADC TEMP

STA ADP2

LDA ADP2+1
ADC TEMP+1

STA ADP2+1 ; S*%(199-Y1CORD)
ASL ADP2 s 10%(199-Y1CORD)
ROL ADP2+1

ASL ADP2 ; 20%{199-Y1CORD)
ROL ADP2+1

ASL ADP2 ; 40%(199-Y1CORD)
ROL ADP2+1

LDA ADP2 ; ADD IN INT(X1CORD/8) COMPUTED EARLIER
cLC

ADC ADP1

STA ADP1

LDA ADP2+1
ADC ADP1+1

ADC VMORG ; ADD IN VMORG¥256
STA ADP1+1 ; FINAL RESULT
RTS ; RETURN

144

VMBAS BASIC/VM PATCHES
INDIVIDUAL PIXEL SUBROUTINES

.PAGE 'INDIVIDUAL PIXEL SUBROUTINES'

379 H STPIX - SETS THE PIXEL AT X1CORD,Y1CORD TO A ONE (WHITE DOT)
380 : DOES NOT ALTER X1CORD OR Y1CORD

381 ; ASSUMES IN RANGE CORRDINATES

382

383 4346 204¢43 STPIX: JSR PIXADR ; GET BYTE ADDRESS AND BIT NUMBER OF PIXE
384 ; INTO ADP1

385 43A9 A4FO LDY BTPT 5 GET BIT NUMBER IN Y

386 43AB BYDSY3 LDA MSKTBE1,Y ; GET A BYTE WITH THAT BIT =1, OTHERS =0
387 43AE AOCO LDY #0 ; ZERO Y

388 43B0 11F2 ORA (ADE1),Y ; COMBINE THE BIT WITH THE ADDRESSED VM
389 43B2 91F2 STA (ADP1),Y ; BYTE

390 43BY4 60 RTS ; RETURN

391

392 CLPIX - CLEARS THE PIXEL AT X1CORD,Y1CORD TO A ZERO (BLACK DO

363 : DOES NOT ALTER X1CORD OR Y1CORD

394 ASSUMES IN RANGE COORDINATES

395

396 43B5 204C43 CLPIX: JSR PIXADR ; GET BYTE ADDRESS AND BIT NUMBER OF PIXE
397 ; INTO ADP1

398 43B8 AUFO LDY BTPT ; GET BIT NUMBER IN Y

399 43BA BYDD43 LDA MSKTB2,Y ; GET A BYTE WITH THAT BIT =0, OTHERS =1
400 43BD A00O LDY #0 ; ZERO Y

4071 43BF 31F2 AND (ADP1),Y ; REMOVE THE BIT FROM THE ADDRESSED VM
402 u43c1 91F2 STA (ADP1),Y ; BYTE

403 43c3 60 RTS ; AND RETURN

4ol

405 ; RDPIX — READS THE PIXEL AT X1CORD,Y1CORD AND SET3 A TO ALL
406 ; ZEROES IF IT IS A ZERO OR TO ONE IF IT IS A ONE.

uo7 ; LOW BYTE OF ADP1 IS EQUAL TO A ON RETURN

408 ; DOES NOT ALTER X1CORD OR Y1CORD

409 s ASSUMES IN RANGE CORRDINATES

410

411 43CH 204CL3 RDPIX: JSR PTXADR ; GET BYTE AND BIT ADDRESS OF PIXEL
412 43CT7 A00O LDY #0 ; GET ADDRESSED BYTE FROM VM

413 43c9 BIF2 LDA (ADP1),Y

414 43CB AUFO LDY BTPT ; GET BIT NUMBER IN Y

415 43CD 39D543 AND MSKTB1,Y ; CLEAR ALL BUT ADDRESSED BIT

416 43D0 FO02 BEQ RDPIX1 ; SKIP AHEAD IF IT WAS A ZERO

417 43p2 4901 LDA #X101 ; SET TO 01 IF IT WAS A ONE

418 43p4 60 RDPIX1: RTS ; RETURN

419

420 H MASK TABLES FOR INDIVIDUAL PIXEL SUBROUTINES

421 ; MSKTB1 IS A TABLE OF 1 BITS CORRESPONDING TO BIT NUMBERS
422 ; MSKTB2 IS A TABLE OF O BITS CORRESPONDING TOQ BIT NUMBERS
423

424 43p5 80L0D2010 MSKTB1: .BYTE X'80,X'40,X'20,X'10

425 43pg 08040201 .BYTE X'08,X'04,X'02,X'01

426 43DD TFBFDFEF MSKTB2: .BYTE X'7F,X'BF,X'DF,X'EF

ﬁzg 43E1 FTFBFDFE .BYTE X'F7,X'FB,X'FD,X'FE

2

429 ; WRPIX - SETS THE PIXEL AT X1CORD,YICORD ACCORDING TO THE STA?
430) OF BIT O (RIGHTMOST) OF A

431 H DOES NOT ALTER X1CORD OR Y1CORD

432 i ASSUMES IN RANGE CORRDINATES

14B

VMBAS BASIC/VM PATCHES
INDIVIDUAL PIXEL SUBROUTINES

433

434 43E5 2901 WRPIX: AND #X'01 ; TEST LOW BIT OF A

435 43E7 Focc BEQ CLPIX ; GO WRITE A ZERO IF IT IS ZERO
436 L43E9 DOBB BNE STPIX ; OTHERWISE WRITE A4 ONE

437

VMBAS BASIC/VM PATCHES
COORDINATE CHECK AND CORRECT ROUTINE

.PAGE 'CCORDINATE CHECK AND CORRECT ROUTINE'

438 CHECKS ALL COORDINATES TO VERIFY THAT THEY ARE IN THE
439 PROPER RANGE, IF NOT, THEY ARE REPLACED BY A VALUE
440 MODULO THE MAXIMUM VALUE+1.

i
H

441 H NOTE THAT THESE ROUTINES CAN BE VERY SLOW WHEN CORRECTIONS ARE
H

Luz NECESSARY BECAUSE A BRUTE FORCE DIVISON ROUTINE IS USED TO
4uy3 COMPUTE THE MODULUS.

4y

445 43EB A200 CKCRD: LDX #X1CORD-X1CORD ; CHECK X1CORD

446 43ED A0QOO LDY #XLIMIT=-LIMTAB

U447 UY3EF 200344 JSR CK

448 U3F2 A204 LDX #X2CORD-X1CORD ; CHECK X2CORD

449 U3FY4 200344 JSR CK

450 43FT7 A202 LDX #¥1CORD-X1CORD ; CHECK Y1CORD

451 U3F9 A002 LDY #YLIMIT-LIMTAB

452 U3FB 200344 JSR CK

453 U3FE A606 LDX Y2CORD-X1CORD ; CHECK Y2CORD

454 4400 HCOF4l JMP CK ; AND RETURN

455

456

457 4403 BSET CK: LDA X1CORD+1,X ; CHECK UPPER BYTE

458 L4LO5 D92TLL CMP LIMTAB+1,Y ; AGAINST UPPER BYTE OF LIMIT
459 4408 9018 BCC CK4 ; OK IF LES3 THAN UPPER BYTE OF LIMIT
460 440A FO12 BEQ CK3 ; GO CHECK LOWER BYTE IF EQUAL TO
461 ; UPPER BYTE OF LIMIT

462 HuQC BSEb CK2: LDA X1CORD, X ; SUBTRACT THE LIMIT

463 H4OE 38 SEC ; LOWER BYTE FIRST

464 440F F926LY SBC LIMTAB,Y

465 4412 95E6 STA X1CORD, X

466 4414 B5ET LDA X1CORD+1,X

467 L4416 F927L4Y4 SBC LIMT#B+1,Y

468 4419 95ET STA X1CORD+1,X

469 L41B 4cO344 JMP CK ; AND THEN GO CHECK RANGE AGAIN
470 UY1E BSEG CK3: LDA X1CORD, X ; CHECK LOWER BYTE OF X

471 U420 DY264Y CMP LIMTAB,Y

472 4423 BOET BCS cK2 ; GO ADJUST IF TOO LARGE

473 4425 60 CKl: RTS ; RETURN

474

475

476 LIMTAB: ; TABLE OF LIMITS

477 4426 4001 XLIMIT: .WORD NX

478 4428 c8oo YLIMIT: .WORD NY

154

VMBAS BASIC/VM PATCHES
LINE DRAWING ROUTINES

u80
481
482
483
L8y
185
486
487
488
489
490
491
492
493
494
Lg5
496
ug7
498
499
500
501
502
503
504
505
506
507
508
509
510

w

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

42
442¢

4uzE
4430

432
B3k
4436
4438
39
4438
443D
4y3F
i
B3
1445
yuuT
P
nug
ulic
H4HE
4450
hyse

4ysy
uys6
4458
hisp
4458
445D
4L5F
4L61
4u63
4465
Lyg7
4469
1464
Lugc
LU6E
4470
4y72
4yTY

A900
Foo2

ASFF
85FF

A900
85FC
ASEA
38

ESE6
85F6
ASEB
ESET
B5F7
100F
C6FC

A300
E5F6
85F6
A900
ESF7
B5F7

A900
85FD
ASEC
38

ESE8
85F8
ASED
ESE9
85F9
100F
CBFD
38

A900
E5F8
85F8
A900
ESF9
85F9

ERASE:

DRAW:
DRAW1:

DRAW2:

.PAGE

LDA
BEQ

LDA
STA

'LINE DRAWING ROUTINES'

DRAW - DRAW THE BEST STRAIGHT LINE FROM X1CORD,Y1CORD TO
X2CORD, Y2CORD.
X2CORD,Y2CORD COPIED TO XI1CORD,Y1CORD AFTER DRAWING

USES AN ALCORITHM THAT REQUIRES NO MULTIPLICATION OR DIVIS

#X100
DRAW1

#HX'FF
COLOR

H
P

SET LINE COLCR TO BLACK
GO DRAW THE LINE

SET LINE COLOR TO WHITE

COMPUTE SIGN AND MAGNITUDE OF DELTA X = X2-X1
PUT MAGNITUDE IN DELTAX AND SIGN IN XDIR

LDA
STA
LDA
SEC
SBC
STA
LDA
SBC
STA
BPL
DEC
SEC
LDA
SBC
STA
LDA
SBC
STA

i#0
XDIR
X2CORD

X1CORD
DELTAX
X2CORD+1
X1CORD+1
DELTAX+1
DRAW2
XDIR

#0
DELTAX
DELTAX
#0
DELTAX+1
DELTAX+1

FIRST ZERC XDIR

; NEXT COMPUTE TWOS COMPLEMENT DIFFERE

SKIP AHEAD IF DIFFERENCE IS POSITIVE
SET ¥DIR TO =1
NEGATE DELTAX

COMPUTE SIGN AND MAGNITUDE OF DELTA Y = Y2-Yi
PUT MAGNITUDE IN DELTAY AND SIGN IN YDIR

LDA
STA
LDA
SEC
SBC
STA
LDA
SBC
STA
BPL
DEC
SEC
LDA
SBC
STA
LDA
SBC
STA

#0
YDIR
Y2CORD

Y1CORD
DELTAY
Y2CORD+1
Y1CORD+1
DELTAY+1
DRAW3
YDIR

{0
DELTAY
DELTAY
#0
DELTAY+1
DELTAY+1

FIRST ZERO YDIR

NEXT COMPUTE TWOS COMPLEMENT DIFFERE

SKIP AHEAD TF DIFFERENCE IS POSITIVE
SET YDIR TQ -1
NEGATE DELTAX

15B

VMBAS BASIC/VM PATCHES
LINE DRAWING ROUTINES

534

535 3 DETERMINE IF DELTAY IS LARGER THAN DELTAX

536 } IF SO, EXCHANGE DELTAY AND DELTAX AND SET XCHFLG NONZERO
537 - ALSO INITIALIZE ACC TO DELTAX

538 : PUT A DOT AT THE INITTAL DENPOINT

539

540 LUT6 A900 DRAW3: LDA #0 ; FIRST ZERO XCHFLG

541 4478 B5FE STA XCHFLG

542 4y7a ASF8 LDA DELTAY ; COMPARE DELTAY WITH DELTAX

543 L4yTC 38 SEC

544 447D ESF6 SBC DELTAX

545 4LTF ASF9 LDA DELTAY+1

546 4481 ESFT SBC DELTAX+1 *

547 4483 9012 BCC DRAWY ; SKIP EXCHANGE IF DELTAX IS GREATER THAN
548 ; DELTAY

549 L485 A6F8 LDX DELTAY ; EXCHANGE DELTAX AND DELTAY

550 LY87 ASF6 LDA DELTAX

551 L4489 85F8 STA DELTAY

552 U4UBB BEFE STX DELTAX

553 448D A6FY LDX DELTAY+1

554 448F ASFT7 LDA DELTAX+1

555 4491 85F9 STA DELTAY+1

556 4493 BEF7 STX DELTAX+1

557 4495 C6FE DEC XCHFLG ; SET XCHFLG TO -1

558 4497 ASFG DRAWL: LDA DELTAX ; INITIALIZE ACC TO DELTAX

559 4499 85Fa STA AcC

560 449B ASF7 LDA DELTAX+1

561 449D 85FB 3TA ACC+1

562 4U9F ASFF LDA COLOR ; PUT A DOT AT THE INITIAL ENDPOINT
563 44A1 20E543 JSR WRPIX ; X1CORD,Y1CORD

564

565 i HEAD OF MAIN DRAWING LOOP

566 : TEST IF DONE

567

568 44AL ASFE DRAW4S: LDA XCHFLG ; TEST IF X AND Y EXCHANGED

569 L4A6 DOOE BNE DRAWS ; JUMP AHEAD IF SO

570 L4a8 ASEH LDA X1CORD ; TEST FOR X1CORD=X2CORD

571 L4AA CSEA CMP X2CORD

572 UY4AC D015 BNE DRAWT ; GO FOR ANOTHER ITERATION IF NOT
573 W4AE ASET LDA X1CORD+1

ST4 BUBO C5EB ot X2CORD+1

575 44B2 DOOF BNE DRAWY ; GO FOR ANOTHER ITERATION IF NOT
576 44B4 FOOC BEQ DRAWE ; GO RETURN IF SO

577 44B6 ASES DRAWS: LDA Y1CORD ; TEST FOR Y1CORD=Y2CORD

578 44BB C5EC CMP Y2CORD

579 44BA DOO7 BNE DRAWT ; GO FOR ANOTHER INTERATION IF NOT
580 44BC ASE9 LDA Y1CORD+1

581 Y4BE CSED CMP Y2CORD+1

582 44co poo1 BNE DRAWT ; GO FOR ANOTHER INTERATION IF NOT
Egs Whc2 60 DRAW6: RTS ; RETURN

584

585 3 DO A CLACULATION TO DETERMINE IF ONE OR BOTH AXES ARE TC BE
586 ; BUMPED (INCREMENTED OR DECREMENTED ACCORDING TC XDIR AND YDIR)
587 i AND DO THE BUMPING

588

164

VMBAS BASIC/VM PATCHES
LINE DRAWING ROUTINES

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

L4c3
u4cs
4kt
yuca
LLTei)
u4po
Lyp3
446
]
4upa
ulpc
44pF
LYyE2
44E5
L44E8

44EB
44ED
44F0

A5FE
D006
200FU5
4cDokY
202345
20F344
20F344
1013
ASFE
D006
202345
4CESHY
200F45
200145
200145

ASFF
20ES43
Healyy

DRAWT :

DRAWS :
DRAWY :

DRAW1Q:
DRAV11:

DRAW12:

LDA
BNE
JSR
JMP
JSR
JSR
JSR
BPL
LDA
BNE
JSR
JMP
JSR
JSR
JSR

LDA
JSR
JMP

XCHFLG
DRAWS
BMPX
DRAWY
BMPY
SBDY
SBDY
DRAW12
XCHFLG
DRAW10
BMPY
DRAWT1
BMPX
ADDX
ADDX

COLOR
WRPIX
DRAW4S

3

TEST IF X AND Y EXCHANGED
JUMP IF SO
BUMP X IF NOT

BUMP Y IF SO
SUBTRACT DY FROM ACC TWICE

SKIP AHEAD IF ACC IS NOT NEGATIVE
TEST IF X AND Y EXCHANGED

JUMP IF SO

BUMP Y IF NOT

BUMP X IF S0

ADD DX TO ACC TWICE

OUTPUT THE NEW POINT

GO TEST TF DONE

16B

VMBAS BASIC/VM PATCHES

SUBROUTINES FOR DRAW

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
527
628
629
630
631
632
633
634
635
536
637
638
639
610
641
812
543
Bl
645
546
b4T

649
650
651
652
653
654
655

4Y4F3
U4FS
L4F6
L4r8
LhFa
Y4FC
L4FE
us00

4501
4503
4504
4508
4508
4504
450C
4S0E

450F
4511
4513
4515
4517
4519
4514
451¢C
4518
4520
U522

4523
U525
4527
4529

452D
4528
4530
4532
4534
4536

ASFA

E5FB
85FA
A5FB
E5F9
85FB
60

ASFA
18

65F6
85FA
ASFB
65FT
85FB
60

ASFC
D007
E6E6
Doo2
E6ET
60

ASE6
D002
C6E7
C6E6
60

ASFD
Doo7
E6ES
D002

60
A5E8
D002
C6E9
COE8
60

SBDY:

ADDX:

BMPX:

BMPX1:
BMPX2:

BMPX3:

BMPY:

BMPY1:
BMPY2:

BMPY3:

.PAGE

SUBROUTINES FOR DRAW

LDA
SEC
SBC
STA
LDA
SBC
STA
RTS

LDA
CLC
ADC
STA
LDA
ADC
STA
RTS

LDA
BNE
INC
BNE
INC
RTS
LDA
BNE
DEC
DEC
RT3

LDA
BNE
INC
BNE
INC
RTS
LDA
BNE
DEC
DEC
RTS

'SUBROUTINES FOR DRAW'

ACC

DELTAY
ACC
ACC+1
DELTAY+1
ACC+1

ACC

DELTAX
ACC
ACC+1
DELTAX+1
ACC+1

XDIR
BMPX2
X1CORD
BMPX1
X1CORD+1

X1CORD
BMPX3
X1CORD+1
X1CORD

YDIR
BMPY2
Y1CORD
BMPY1
Y1CORD+1

Y1CORD
BMPY3
Y1CORD+1
Y1CORD

SUBTRACT DELTAY FROM ACC AND PUT RESULT
IN ACC

ADD DELTAX TO ACC AND PUT RESULT IN ACC

BUMP X1CORD BY +1 OR -1 ACCORDING TO
XDIR
DOUBLE INCREMENT X1CORD IF XDIR=0

DOUBLE DECREMENT X1CORD IF XDIRA30
BUMP Y1CORD BY +1 OR -1 ACCORDING TO

YDIR
DOUBLE INCREMENT Y1CORD IF YDIR=0

COUBLE DECREMENT Y1CORD IF YDIRZ30

174

VMBAS BASIC/VM PATCHES
SIMPLIFIED TEXT DISPLAY FOR BASIC

656
657
658
659
560
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

4537
4538
453B
453D
¥53F
4540
4541
4543
4544
4546
4548
4544

usic
454E
4551
4554
4557
4559
4554

u8
208746
A900
85F5
68
48
297F
38
E920
3049
CI3F
Fous

85FY
203346
203346
203346
UgFF
38
65F4

i
i
;
3
)

SDTXT:

b

SDTXT1:

.PAGE 'SIMPLIFIED TEXT DISPLAY FOR BASTC'

THIS SUBROUTINE TURNS THE VISABLE MEMORY INTO A DATA DISPLAY
TERMINAL (GLASS TELETYPE).

CHARACTER SET IS 96 FULL ASCII UPPER AND LOWER CASE.
CHARACTER MATRIX IS 5 BY 7 SET INTO A 6 BY 9 RECTANGLE.
LOWER CASE IS REPRESENTED AS SMALL (5 BY 5) CAPITALS.

SCREEN CAPACITY IS 22 LINES QF 53 CHARACTERS

CURSOR IS A NON-BLINKING UNDERLINE.

CONTROL CODES RECOCNIZED:

CR X'0D SETS CURSOR TO LEFT SCREEN EDCE

LF X'0A MOVES CURSOR DOWN ONE LINE, SCROLLS
DISPLAY UP ONE LINE IF ALREADY ON BOTTOM
LINE

BACK ARROW X'5F MOVES CURSOR ONE CHARACTER LEFT, DOES
NOTHING IF ALREADY AT LEFT SCREEN EDGE

FF xroc CLEARS SCREEN AND PUTS CURSOR AT TOP LEF

: OF SCREEN, SHOULD BE CALLED FOR

INITIALIZATION

ALL OTHER CONTROL CODES IGNORED.

ENTER WITH CHARACTER TO BE DISPLAYED IN A.

CSRY SHOULD CONTAIN THE CHARACTER NUMBER

CSRY SHOULD CONTAIN THE LINE NUMBER

CSRX AND CSRY ARE CHECK FOR IN RANGE VALUES AND CORRECTED IF
NECESSARY

R RN RN R F RN AR RN RN RN RN RN RN AR RN R R RN RERNE RN
*

* VMORG MUST BE SET BEFORE CALLING SDIXT

*

ERNRERAEEENARRE NN RXEFRARRR RN R NN RN AR RN RN R N AR SR RBA R RN R NN

PHA ; SAVE INPUT
JSR CKCUSR ; CHECK AND CORRECT CURSOR SETTING
LDA #0 ; CLEAR UPPER ADP2

STA ADP2+1

PLA ; GET INPUT BACK

PHA ; BUT LEAVE IT ON THE STACK

AND #X'TF ; INSURE 7 BIT ASCII INPUT

SEC

SBC #X'20 TEST IF A CONTROL CHARACTER

BMI SDTX10 i JUMP TF SO
CMP #X'5F_X'20 ; TEST IF BACK ARROW (UNDERLINE)
BEQ SDTXI0 L JuMP TF SO

CALCULATE TABLE ADDRESS FOR CHAR SHAPE AND PUT IT INTO ADP1

STA ADP2 SAVE CHARACTER CODE IN ADP2

JSR SADP2L ; COMPUTE 8*CHARACTER CODE IN ADP2
JSR SADPZL
JSR SADP2L
EOR #X'FF
SEC

ADC ADP2

NEGATE CHARACTER CODE
SUBTRACT CHARACTER CODE FROM ADP2 AND
PUT RESULT IN ADPi FOR A FINAL RESULT

17B

VMBAS BASIC/VM PATCHES
SIMPLIFIED TEXT DISPLAY FOR BASIC

710 U55C 85F2 STA ADP1 ; T*CHARACTER CODE

711 U55E A5F5 LDA ADP2+1

712 4560 69FF ADC #%'FF

713 4562 85F3 STA ADP 141

714 U564 ASF2 LDA ADP1 ; ADD IN ORIGIN OF CHARACTER TABLE

715 4566 18 CLC

716 U567 6938 ADC #CHTB&X 'FF

717 4569 85F2 STA ADP1

718 U456B ASF3 LDA ADP1+1

719 456D 6947 ADC #CHTB/256

720 456F 85F3 STA ADP1+1 ; ADP1 NOW HAS ADDRESS OF TOP ROW OF
721 ; CHARACTER SHAPE

722 5 COMPUTE BYTE AND BIT ADDRESS OF FIRST SCAN LINE OF

723 . CHARACTER AT CURSOR POSITION

72U

725 U571 204446 JSR CSRTAD ; COMPUTE BYTE AND BIT ADDRESSES OF FIRST
726 ; SCAN LINE OF CHARACTER AT CURSOR POS.
727

728 ; SCAN OUT THE 7 CHARACTER ROWS

729

730 4574 A000 LDY #0 ; INITTALIZE Y INDEX-FONT TABLE POINTER
731 4576 BIF2 SDTX2: LDA (ADP1),Y ; GET A DOT ROW FROM THE FONT TABLE
732 4578 204246 JSR MERGE ; MERGE IT WITH GRAPHIC MEMORY AT (ADP2)
733 457B 203846 JSR DN1SCN ; ADD 40 TO ADP2 TO MOVE DOWN ONE SCAN
734 ; LINE IN GRAPHIC MEMORY

735 457E C8 INY ; BUMP UP POINTER INTO FONT TABLE

736 457F €007 CPY #7 ; TEST IF DONE

737 U581 DOF3 BNE SDTX2 { GO DO NEXT SCAN LINE IF NOT

738 4583 ASEY LDA CSRX ; DO A CURSOR RIGHT

739 4585 €93y CMP #NCHR-1 s TEST IF LAST CHARACTER ON THE LINE
74O 4587 1005 BPL SDTX3 ; SKIP CURSOR RIGHT IF SO

741 4589 202846 JSR CSRCLR ; CLEAR OLD CURSOR

742 458c EGEY INC CSRX ; MOVE CURSOR ONE POSITION RIGHT

743 458E LCOTUE SDTX3: JMP SDTXRT ; 00 INSERT CURSOR, RESTORE REGISTERS,
T4 ; AND RETURN

745

746 : INTERPRET CONTROL CODES

47

748 4591 CYED SDTX10: CMP #X'0D-X'20 ; TEST IF CR

T49 4593 FOOF BEQ SDTXCR ; JUMP IF S0

750 4595 COEA CMP #X'0A-X'20 ; TEST IF LF

751 4597 FO2F BEQ SDTXLF ; JUMP IF 50

752 4599 C93F CMP #X'S5F-X'20 ; TEST IF BACK ARROW (UNDERLINE)}

753 U459B FO11 BEQ SDTXCL ; JUMP IF S0

754 459D C9EC CMP #¥'0C-X'20 ; TEST IF FF

755 459F FO1B BEQ SDTXFF ; JUMP IF SO

756 4541 4COTUE JMP SDTXRT ; GO RETURN IF UNRECOGNIZABLE CONTROL
757

758 454l 202846 SDTXCR: JSR CSRCLR ; CARRIAGE RETURN, FIRST CLEAR CURSOR
759 U5AT A900 LDA #0 ; ZERO CURSOR HORIZONTAL POSITION

760 4549 B85EY4 STA CSRX

721 454B 4COTUE JMP SDTXRT ; GO SET CURSOR AND RETURN

762

T63 YSAE 202846 SDTXCL: JSR CSRCLR ; CURSOR LEFT, FIRST CLEAR CURSOR

764 45B1 ASEM LDA CSRX ; GET CURSOR HORIZONTAL POSITION

184

VMBAS BASIC/VM PATCHES

SIMPLIFIED TEXT DISPLAY FOR BASIC
765 45B3 €900 CMP
766 45B5 F002 BEQ
767 4S5BT COHEN DEC
768 U45BY 4COT4E SDTX20: JMP
769
770 45BC 203943 SDTXFF: JSR
771 USBF A900 LDA
772 45C71 B5EY STA
773 45C3 85ES STA
TT4 45C5 4COTYHE JMP
175
776 45C8 202846 SDTXLF: JSR
T77 Y5CB ASES LDA
778 4s5cD c915 CMP
779 USCF 1004 BPL
780 45D1 EGES INC
781 45D3 D032 BNE
782 45D5 A900 SDTX¥40: LDA
783 45DT 85FY STA
784 L5DG ASE3 LDA
785 L45DB 85F5 STA
786 L4spD 18 cLC
787 45DE 6901 ADC
788 LUSEQ 85F3 STA
789 USE2 A968 LDA
790 USEY B85F2 STA
791 UYSE6 A988 LDA
792 USEB B5EE STA
793 USEA A91D LDA
794 YSEC 8SEF STA
795 4YSEE 20EEU6 JSR
796
797
798
799 USF1 A988 LDA
800 L45F3 85F4 STA
B01 45FS A91D LDA
802 USF7 18 cLC
803 4SF8 65E3 ADC
804 UYSFA 85F5 STA
805 4sFC A9B8 LDA
806 UYSFE 85EE STA
807 4600 A901 LDA
808 4602 85EF STA
809 4604 201ALT JSR
810
B11
812
813 4607 201DL6 SDTXRT: JSR
814 4604 68 PLA
815 460B 60 RTS
816

#0
SDTX20
CSRX
SDTXRT

CLEAR
#0
CSRX
CSRY
SDTXRT

CSRCLR
CSRY
#NLIN-1
SDTX40Q
CSRY
SDTXRT
#0
ADP2
VMORG
ADP2+1

#CHHI*40/256
ADP1+1

#CHHI*40&X'FF

ADP1
#NSCRL&X'FF
DCNT1
#NSCRL/256
DCNT1+1
FMOVE

3
#NLIN-1¥CHHI*L0&X ' FF

ADP2

’

TEST IF AGAINST LEFT EDGE

SKIP UPDATE IF S0

OTHERWISE DECREMENT CURSOR X POSITI
GO SET CURSQOR AND RETURN

CLEAR THE SCREEN

PUT CURSOR IN UPPER LEFT CORNER

GO SET CURSOR AND RETURN

LINE FEED, FIRST CLEAR CURSOR

GET CURRENT LINE POSITION

TEST IF AT BOTTOM OF SCREEN

GO SCROLL IF SO

INCREMENT LINE NUMBER IF NOT AT BOT
GO INSERT CURSOR AND RETURN

SET UP ADDRESS POINTERS FOR MOVE
ADP1 = SOURCE FOR MOVE = FIRST BYTF
SECOND LINE OF TEXT

ADP2 = DESTINATION FOR MOVE = FIRS?
IN VISIBLE MEMORY

SET NUMBER OF
LOW PART
HIGH PART

LOCATIONS TO MOVE

EXECUTE MOVE USING AN OPTIMIZED, HI
SPEED MEMORY MOVE ROUTINE

; CLEAR LAST LINE OF TEXT

; SET ADDRESS POINTER
LOW BYTE

#NLIN-1¥CHHI*40/256

VMORG
ADP24+1
#NCLR&X'FF
DCNT1
#NCLR/256
DCNT1+1
FCLR

CSRSET

b

HIGH BYTE
SET LOW BYTE OF CLEAR COUNT

SET HIGH BYTE QF CLEAR COUNT

; CLEAR THE DESIGNATED AREA

NO EFFECTIVE CHEANGE IN CURSOR PO3I"

RETURN SFQUENCE, INSERT CURSCR
RESTORE INPUT FROM THE STACK

18B

VMBAS BASIC/VM PATCHES
SUBROUTINES FOR SDTXT

817
818
819
820
821
822
823
82}
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
810
811
842
843
8uY
845
8U6
8y7
8u8
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
861
865
866
867
868
869
870

460C

L&oF
L611
Lg12
4614
4616
4618
4614
Le1c

461D
h620
4623
L625

4628
462B
462E
4630

4633
4635
4637

4538
u63A
4638
463D
L463F
4611
U613

204446

ASFY
18

6940
85FL
ASFS
6901
85F5
60

208746
200ck6
A9F8

4ca246

208746
200Ck6
A900

4Cca2u6

06F4
26F5

ASFY
18

6928
85F4
9002
E6FS
60

CSRBAD:

;

CSRSET:

CSRST1:

3

CSRCLR:

SADP2L:

’

DN1SCN:

DN1SC1:

.PAGE 'SUBROUTINES FOR SDTXT'

COMPUTE ADDRESS OF BYTE CONTAINING LAST SCAN LINE OF
CHARACTER AT CURSOR POSITION

ADDRESS = CSRTAD+(CHHI-1)*¥U0 SINCE CHHI IS A CONSTANT 9,
(CHHI-1)#40=320

BTPT HOLDS BIT ADDRESS, 0=LEFTMOST

JSR CSRTAD ; COMPUTE ADDRESS OF TOP OF CHARACTER CELL
; FIRST

LDA ADP2 ; ADD 320 TO RESULT = 8 SCAN LINES

CcLC

ADC #320&X'FF

STA ADP2

LDA ADP2+1
ADC #320/256
STA ADP2+1
RTS

SET CURSOR AT CURRENT POSITION

JSR CKCUSR VERIFY LEGAL CURSOR COORDINATES

JSR CSRBAD ; GET BYTE AND BIT ADDRESS OF CURSOR
LDA X F8 ; DATA = UNDERLINE CURSOR
JMP MERGE ; MERGE CURSOR WITH GRAPHIC MEMORY

; AND RETURN

CLEAR CURSOR AT CURRENT POSITION

JSR CKCUSR ; VERIFY LEGAL CURSOR COORDINATES

JSR CSRBAD ; GET BYTE AND BIT ADDRESS OF CURSOR
LDA #0 ; DATA = BLANK DOT ROW
H

JMP MERGE REMOVE DOT ROW FROM GRAPHIC MEMORY
AND RETURN

SHIFT ADP2 LEFT ONE BIT POSITION

ASL ADP2

ROL ADP2+1

RTS

MOVE DOWN ONE SCAN LINE DOUBLE ADDS 40 TO 4DP2
LDA ADP2 ; ADD 40 TO LOW BYTE

CLC

ADC #40

STA ADP2

BCC DN1SC1 ; EXTEND CARRY INTO UPPER BYTE
INC ADP2+1

RTS ; RETURN

COMPUTE BYTE ADDRESS CONTAINING FIRST SCAN LINE OF
CHARACTER AT CURSOR POSITION AND PUT IN ADP2
BIT ADDRESS (BIT O IS LEFTMOST) AT BTPT
BYTE ADDRESS =VMORG¥256+CHHI®40¥CSRY+INT(CSRX*6/8)
SINCE CHHI IS A CONSTANT 9, THEN CHHI®40=360

194

VMBAS BASIC/VM PATCHES
SUBROUTINES FOR SDTXT

871
872
873
874
a75
876
8717
878
879
880
881
882
883
88y
885
886
887
868
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

i
4646
4648
L6UA
46UB
ugig
464D
HEUF
4651
4651
1657
4659
4658
465D
465F
4661
4664
4667
4664
466C
466D
HE6F
670
672
1673
4674
4675
4676
4678
4674
u67c
46TE
4680
4682
u68H
4686

4687
4689
468B
468D
468F
4691
4694
4696
4698
4694
469C
469E
46a1

4900
85F5
A5ES
o]

04

oA
65E5
B5F4
203346
203346
65FY
85F4
4900
65F5
85F5
203346
203346
203346
ASEY
oA
65E4
04
85FQ
64

Y1

ha

18
65F4
85F4
ASF5
65E3
85F5
ASFO
2907
85F0
60

ASEN
€935
9007
E935
B5EY
48746
ASES
c916
9007
E916
85E5
4C94le
60

k]

CSRTAD:

CKCUSR:

CKCSR1:

CKCSR2:

BIT ADDRESS=REM(CSRX*5/8)

LDA
STA
LpA
ASLA
ASLA
ASLA
ADC
STA
JSR
JSR
ADC
STA
LDA
ADC
STA
JSR
JSR
JSR
LDA
ASLA
ADC
ASLA
STA
RORA
LSRA
LSRA
CLC
ADC
STA
LDA
ADC
STA
LDA
AND
STA
RTS

#0
ADP2+1
CSRY

CSRY
ADP2
SADP2L
SADP2L
ADP2
ADP2
#0
ADP2+1
ADP2+1
SADP2L
SADP2L
SADP2L
CSRX

CSRX

BTPT

ADP2
ADP2
ADP2+1
VMORG
ADP2+1
BTPT
#7
BTPT

ZERO UPPER ADP2

; FIRST COMPUTE 360%*CSRY

COMPUTE 9*CSRY DIRECTLY IN A

STORE 9*CSRY IN LOWER ADP2
18%¥CSRY IN ADP2

36%CSRY IN ADP2

ADD IN 9%CSRY TO MAKE U5¥CSRY

Ys*CSRY IN ADP2

Q0*CSRY IN ADP2

180*C3SRY IN ADP2

360%CSRY IN ADP2
NEXT COMPUTE 6*CSRX WHICH IS A 9 BIT
VALUE

SAVE RESULT TEMPORARILY
DIVIDE BY 8 AND TRUNCATE FOR INT
FUNCTION
NOW HAVE INT(CSRX*6/8)
DOUBLE ADD TO ADP2

ADD IN VMORG¥256

FINISHED WITH ADP2

COMPUTE REM(CSRX*6/8) WHICH IS LOW 3
BITS OF CSRX*6

KEEP IN BTPT

FINISHED

CHECK CSRY AND CSRY FOR LEGAL VALUES. IF ILLEGAL, COMPUTE

THEIR VALUE MOD THEIR

LDA
CMP
BCC
SBC
STA
JMP
LDA
CMP
BCC
SBC
STA
JMP
RTS

CSRX
#NCHR
CKCSR1
#NCHR
CSRX
CKCUSR
CSRY
#INLTN
CKC3R2
#INLTIN
CSRY
CKCSR1

MAXIMUM VALUE

GET CHARACTER NUMBER

COMPARE WITH MAXTMUM CHARACTER NUMBER
JUMP AHEAD IF OK

SUBTRACT MAXIMUM FROM IT [F TOO BIG
SAVE UPDATED

GO TRY AGATIN

GET LINE NUMBER

COMPARE WITH MAXIMUM LINE NUMBER

G0 RETURN 1F OK

SUBTRACT MAXIMUM FROM IT [F TOO BIS
SAVE UPDATED

; GO TRY AGAIN
; RETURN

19B

VMBAS BASIC/VM PATCHES
SUBROUTINES FOR SDTXT

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
9h2
943
9L4
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

heaz
46A4
4645

Lone |

4678
4648
464D
Lear
46B1
45B3
46B6
46B8
46BA
46BC
46BE
46c0
46c2
46c3
bocl
46Ch
46c8
46ch
4écc
h6Ccp
46CF
46D0
L6D2
46D3
ugph
L6D6
46D7T
46D9
U6DB
46DC
46DD

U46DE
UpE2
LEEB
L6EA

BOE6U6
AOO1
31F4
91F4
ASFE
AUFO
FOO4
4a
88
DOFC
11F4
91F4
A908
38
ESFO
48
ASFE
04
88
DOFC
c8
1174
91F4
68
A8
60

0783C1EQ
FOFBFCFE
FFFFFFFF
TF3F1FOF

IRV

MERGE :

MERGE1:

MERGE2:

MERGE3:

MERGT:

MERGE A ROW OF 5 DOTS WITH GRAPHIC MEMORY STARTING AT BYTE
ADDRESS AND BIT NUMBER IN ADP2 AND BTPT

5 DOTS TO MERGE LEFT JUSTIFIED IN A

PRESERVES X AND Y

STA MRGT 1 ; SAVE INPUT DATA

TYA ; SAVE ¥

PHA

LDY BTPT s OPEN UP A 5 BIT WINDOW IN GRAPHIC MEMORY
LDA MERGT, Y ; LEFT BITS

LDY #0 ; ZERO Y

AND (ADF2),Y
STA (ADP2),Y

LDY BTPT
LDA MERGT+8,Y : RIGHT BITS
LDY #1

AND (ADP2),Y
STA (ADP2),Y

LDA MRGT1 ; SHIFT DATA RIGHT TO LINE UP LEFTMOST
LDY BTPT ; DATA BIT WITH LEFTMOST GRAPHIC FIELD
BEQ MERGEZ ; SHIFT BTPT TIMES

LSRA

DEY

BNE MERGE1
ORA {ADP2),Y
STA (ADP2},Y
LDA #8

SEC

SBC BTPT

TAY

LDA MRGT1
ASLA

DEY

BNE MERGE3
INY

ORA (ADP2),Y
STA (ADP2),Y

OVERLAY WITH GRAPHIC MEMORY

SHIFT DATA LEFT TO LINE UP RIGHTMOST
DATA BIT WITH RIGHTMOST GRAPHIC FIELD
SHIFT (8-BTPT) TIMES

OVERLAY WITH GRAPHIC MEMORY

PLA 3 RESTORE Y
TAY
RTS ; RETURN

.BYTE X'07,X'83,X'C1,X'E0
.BYTE X'FO,X'F8,X'FC,X'FE
.BYTE X'FF,X'FF,X'FF,X'FF
.BYTE X'7F,X'3F,X"1F,X'0OF

TABLE OF MASKS FOR OPENING UP
A 5 BIT WINDOW ANYWHERE
IN GRAPHIC MEMORY

P

FAST MEMORY MOVE ROUTINE

ENTER WITH SOURCE ADDRESS IN ADPT1 AND DESTINATION ADDRESS IN
ADPT2 AND MOVE COUNT (DOUBLE PRECISICN) IN DCNT1.

MOVE PROCEEDS FROM LOW TO HIGH ADDRESSES AT APPROXIMATELY 16US
PER BYTE.

EXIT WITH ADDRESS POINTERS AND COUNT IN UNKNOWN STATE.
PRESERVES X AND Y REGISTERS.

20A

VMBAS BASIC/VM PATCHES
SUBROUTINES FOR SDTXT

981
982
983
984
985
986
987
988
989
9g0
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

Y6EE 84
46EF 48
46F0 98
46F1 48
UY6F2 C6EF
46F4 3015
46F6 A00O
L6F8 B1F2
L6FA 91F4
LeFc 8
U6FD BIF2
46FF 91FU
4701 c8
4702 DOFY
4704 E6F3
4706 E6F5
4708 4CF2U6
4TOB AGEE
470D B1F2
4TOF 91FY
4711 8
4712 CcA
4713 DOF8
4715 68
4716 A8
4717 68
4718 aA
4713 60

4714 98
471B U8
471Cc A0O0O
U71E CHEF
4720 300B
4722 98
4723 91F4
4725 C8
4726 DOFB
4728 E6FS
472A UC1chT
472D 98
472E 91F4
4730 c8
4731 C6EE
4733 DOF9
4735 68
4736 A8
4737 60

FMOVE:

FMOVET :

FMOVE2:

FMOVE3:
FMOVEY :

FCLR:

FCLR1:

FCLR2:

FCLR3:
FCLR4:

TXA
PHA
TYA
PHA
DEC
BMI
LDY
LDA
STA
INY
LDA
STA
INY
BNE
INC
INC
JMP
LDX
LDA
STA
INY
DEX
BNE
PLA
TAY
PLA
TAX
RTS

DCNT1+1
FMOVE3
#0
(ADP1),Y
(ADP2),Y

(ADP1), ¥
(ADP2),Y

FMOVE?
ADP1+1
ADP2+1
FMOVE1
DCNT1
(ADP1),Y
(ADP2),Y

FMOVEY

SAVE X AND Y ON THE STACK

TEST IF LESS THAN 256 LEFT TO MC
JUMP TO FINAL MOVE IF SO

MOVE A BLOCK OF 256 BYTES QUICKL
TWO BYTES AT A TIME

; CONTINUE UNTIL DONE
; BUMP ADDRESS POINTERS TO NEXT P!

GO MOVE NEXT PAGE
GET REMAINING BYTE COUNT INTO X

; MOVE A BYTE

CONTINUE UNTIL DONE
RESTORE INDEX REGISTERS

; AND RETURN

FAST MEMORY CLEAR ROUTINE

ENTER WITH ADDRESS OF BLOCK TO CLEAR IN ADP2 AND CLEAF
IN DCNT1.
EXIT WITH ADDRESS POINTERS AND COUNT IN UNKNOWN STATE
PRESERVES X AND Y REGISTERS

TYA
PHA
LDY
DEC
BMI
TYA
STA
INY
BNE
INC
JMP
TYA
STA
INY
DEC
BNE
PLA
TAY
RTS

#0
DCNT1+1
FCLR3

(ADP2),Y
FCLR2
ADP2+1
FCLR1
(ADP2),Y

DCNT1
FCLRY

1

; SAVE Y

TEST IF LESS THAN 256 LEFT TO MC
JUMP TO FINAL CLEAR IF SO

CLEAR A BLOCK OF 256 QUICKLY
CLEAR A BYTE

BUMP ADDRESS POINTER TO NEXT PAC
GO CLEAR NEXT PAGE
CLEAR REMAINING PARTIAL PAGE

RESTORE Y

RETURN

208

VMBAS BASIC/VM PATCHES
CHARACTER FONT TABLE

.PAGE 'CHARACTER FONT TABLE!

1036 2 CHARACTER FONT TABLE

1037 i ENTRIES IN ORDER STARTING AT ASCIT BLANK
1038 o 96 ENTRIES

1039 : EACH ENTRY CONTAINS 7 BYTES

1040 i 7 BYTES ARE CHARACTER MATRIX, TOP ROW FIRST, LEFTMOST DOT
1041 3 IS LEFTMOST IN BYTE

1042 i LOWER CASE FONT IS SMALL UPPER CASE, 5 BY 5 MATRIX
1043

1048 4738 000000 CHTB: .BYTE X'00,X'00,X'00 ; BLANK
1045 473B 00000000 JBYTE X'00,X'00,X'00,X'00

1046 U73F 202020 .BYTE X'20,X'20,X'20 p
1047 4742 20200020 LBYTE X'20,X'20,X'00,X'20

1048 U47l6 505050 .BYTE ¥150,X'50,X'50 ;"
1049 4749 00000000 .BYTE X'00,X'00,%'00,X'00

1050 474D 505078 .BYTE X'50,X'50,%X'F8 ; #
1051 4750 50F85050 CBYTE X'50,X'F8,X'50,X150

1052 4754 207840 .BYTE X'20,X'78,X'A0 s $
1053 4757 7028F020 .BYTE X'70,X'28,X'F0,X'20

1054 4758 CBC810 ,BYTE X'C8,X'c8,X'10 ; ¢
1055 L7SE 20409898 JBYTE X'20,X'40,X'98,X'98

1056 4762 40A0A0 .BYTE X'40,X'A0,X'A0 ;&
1057 4765 40489068 JBYTE X'N0,X'AB,X'90,X'68

1058 4769 303030 .BYTE X'30,%730,¥%'30 2
1059 L76C 00000000 LBYTE X'00,X'00,X'00,X'00

1060 4770 204040 .BYTE X'20,X740,X'40 =
1061 4773 40404020 LBYTE X'40,X'40,X'40,X'20

1062 U777 201010 .BITE X'20,X'10,X'10 s)
1063 U7TA 10101020 .BYTE X'10,X'10,X'16,X'20

1064 4T7E 20A8T0 .BYTE X'20,%748,X'70 ;o
1065 4781 20704820 LBYTE X'20,X'70,X'a8,Xx'20

1066 4785 002020 .BYTE A'00,X'20,5'20 s+
1067 4788 FB202000 .BYTE X'F8,X'20,X'20,X'00

1068 478C 000000 .BYTE X100,%'00,X'00 %
1069 478F 30301020 .BYTE X'30,X%'30,X'10,X'20

1070 4793 000000 .BYTE X'00,X'00,X'00 H
1071 4796 FB000000 .BYTE X'F8,X'00,X'00,X'00

1072 4794 000000 .BYTE X100,X'00,X'00 i«
1073 479D 00003030 .BYTE X'00,%'00,%'30,X'30

1074 4TAT 080810 .BYTE X'08,X'08,%710 3
1075 4744 20408080 JBYTE X'20,X'40,%'80,%'30

1076 4748 609090 .BYTE X'60,X'90,X'90 ;0
1077 UTAB 90909060 .BYTE X'90,X'90,X'90,X"'60

1078 4TAF 206020 .BYTE X120,%'60,X120 i1
1079 47B2 20202070 .BYTE X'20,X'20,X'20,X'70

1080 47B& TO8B10 .BYTE X'70,%'88,X'10 ;2
1081 47B§ 204080F8 .BYTE X'20,X'40,%'80,X'F8

1082 478D 708808 .BYTE X'70,X'88,x708 1 3
1083 47c0 30088870 LBYTE X'30,X'08,%'88,X'70

1084 47cH 103050 .BYTE %'10,X730,X'50 R
1085 47c7 90FB1010 .BYTE X'90,X'FB,X"10,X'10

1086 4rCB F88OFO .BYTE X'F8,%'80,X'FO 4 5
1087 47CE 080806F0 JBYTE X'08,X'08,X'08,%'F0

1088 4702 T0B0OBO .BYTE X170,X180,%'80 i 6

1089 47D5 FO888870 .BYTE X'F0,X'88,X'88,X°70 21A

VMBAS BASIC/VM PATCHES

CHARACTER FONT TABLE

1090 47D9 F80810
1091 47DC 20408080
1092 U7EC 708888
1093 47E3 70888870
1094 UTE7 708888
1095 47EA 78080870
1096 UTEE 303000
1097 47F1 00003030
1098 47F5 303000
1099 L7F8 30301020
1100 47FC 102040
1101 Y7FF 80402010
1102 4803 0DOOF8
1103 4806 00FB0000
1104 4804 402010
1105 480D 08102040
1106 4811 708808
1107 4814 10200020
1108 4818 708808
1109 4818 68ABA8DO
1110 481F 205088
1111 4822 B88r88B888
1112 4826 Fousyd
1113 4829 70u8UBFO
1114 482p 708880
1115 4830 80808870
1116 4834 FOLBUB
1117 4837 UBLBLBFO
1118 LB3B FBB080
1119 1I83E F0B080F8
1120 4842 F88080
1121 4845 F0OB0B0BO
1122 L4849 708880
1123 484c BBBBBETO
1124 4850 588888
1125 4853 FE888888
1126 4857 702020
1127 4854 20202070
1128 4858 381010
1129 4867 10109060
1130 4865 889040
1131 4868 C0A0S088
1132 486Cc 808080
1133 486F 808080F8
1134 4873 B88pBAE
1135 4876 48588888
1136 4874 8888c8
1137 487D 48988888
1138 488171 708888
1139 4884 88888870
1140 4888 F08888
1141 L4888 F0O8080BC
1142 488F 708888
1143 L1892 88AB9068
1144 4896 FO8588

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
-BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
_BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

X'F8,X108,X'10
X'20,%'40,%180,X'80
X170,%188,X188
X'70,X'88,X'88,X770
X'70,X188,%'88
X'78,X108,%'08,X'70
X'30,%'30,X'00
X'00,X'00,X'30,X'30
X'30,%X'30,X100
X'30,X'30,X710,%'20
X'10,X'20,X140
X'80,X'40,X'20,%'10
X100,%X'00,X'F8
X'00,X'F8,X'00,%'00
X'H0,X120,%" 10
X'08,X"10,X'20,X'40
X'70,%'88,%'08
%110,X'20,X'00,X'20
X'70,%X'88,%'08
X'68,X148,X748,X'D0
X'20,X'50,%188
X'88,X'F8,X'88,x'38
X'FO,X'L8, X148
X'70,%'48,X'48,XFO
X'70,X'88,%x'80
¥'80,%'80,%188,x170
X'FO,X"48, X748
X148, X148, K48, X F0
X'F8,%180,X'30
X'FO,X*80,X'80,X'F8
X'F8,X'80,X180
X'F0,X'80,X'80,X'80
X'70,X'88,X180
X'BB,X'88,X'88,X'70
X'88,%188,%'88
X'F8,X'88,%788,1'88
170, 20,X120
Xr20,X'20,%'20,%'70
X'38,X110,%110
X*10,X°10,X'90,X'60
X'88,%'90,X1A0
X'C0,X'A0,X190,X'88
¥180,%780,%'30
X'80,X'80,%'80,X'F8
X188,X708, X148
X'n8,X'88,%188,x'88
%'88,x"88,x'¢8
X1a8,x'58,x788,x'88
X'70,X788,%188
X'88,%188,%188,X170
¥'F0,X'38,%'88
X'F0,X'80,X'80,X'80
X'70,%X'88,%38
X'88,%'48,X'90,%'58
X'FO,X'88,%'38

B
LESS

THAN

GREATER THAN

s

=]

218

VMBAS BASIC/VM PATCHES

CHARACTER FONT TABLE

1145 4899 FOAD9088
1146 489p 788080
1147 4BAD TO0BOBFO
1148 48A4 FB2020
1149 L8AT 20202020
1150 uBAB 888888
1151 4BAE 88888870
1152 U8B2 888888
1153 U8B5 50502020
1154 48B9 888888
1155 UBBC ABABDBSS
1156 48c0 888850
1157 48¢3 20508888
1158 48CT 888850
1159 48CA 20202020
1160 48CE F80810
1161 48p1 204080F8
1162 48D5 704040
1163 48D 40404070
1164 48DC 808040
1165 Y48DF 20100808
1166 L8E3 701010
1167 L8E6 10101070
1168 LUBEA 205088
1169 LBED 00000000
1170 48F1 000000
1171 48F4 000000F8
1172 48F8 C06030
1173 48FB 00000000
1174 UBFF 000020
1175 4902 5088F888
1176 4906 0000F0
1177 4909 4B7048F0
1178 490D 000078
1179 4910 80808078
1180 4914 0000F0
1181 4917 4BuB48FO
1182 491B O0OCF8
1183 491E 80E0BOF8
1184 4922 000078
1185 4925 BOE0B080
1186 4929 000078
1187 492c 80988878
1188 4930 000088
1189 4933 88r88888
1190 4937 000070
1191 4934 20202070
1192 493E 000038
1193 4941 10105020
1194 49u5 000090
1195 4948 AOC0A090
1196 4g4c 000030
1197 494F 8080BOFS
1198 4953 000088
1199 4956 DBA8BBE8S

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.BYTE
.BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

X'FO,X"A0,X'90,X'88
X'78,%'80,%'80
X'70,X108,X'08,X'FO
X'F8,X'20,X'20
X'20,X'20,X'20,X'20
X'88,%'88,x788
¥'88,%'88,%'88,X'70
X'88,X'88,x'88
X'50,%'50,X'20,%'20
X'88,x'88,%'88
X'AB,X'A8,X'D8,X'88
X'88,X'88,%X'50
%'20,X'50,%'88,Xx'88
X'88,X'88,X'50
X'20,%'20,X'20,X'20
X'F8,%108,X'10
X'20,X'40,X'80,X'F8
X'70,X140,X140
X'40,X'40,X'40,X'70
X'80,X'80,X'40
X'20,%'10,X'08,x'08
X'70,X110,X110
X'10,X'10,X110,%X'70
X'20,X'50,X'88
X'00,X'00,X'00,X100
X'00,%'00,X"00
%'00,%*00,X'00,X'F8
X'CO,X'60,X'30
X'00,X'00,X'00,X'00
X'00,X100,X'20
%'50,%'88,X'F8,x'88
X'00,X'00,X'FO
X'48,X'70,X 48,X'FO
X'00,X*00,X'78
¥'80,X'80,%"80,X'78
X'00,X'00,X'FO
X148, X148, X 48, X'FO
X'00,X'00,X'F8
X'80,X"E0,X'80,X'F8
X100,X'00,X'F8
X'80,X'E0,X'80,X'80
X'00,X'00,X'78
X'80,X"'98,%'88,X'78
X'00,X'00,X'88
X'88,X'F8,X'88,x'88
X100,X'00,X'70
X'20,%X720,X'20,X"70
X'00,X'00,X'38
X'10,X'10,X'50,X'20
X'00,X'00,X'90
X'AD,X'CO,X"AD,X'90
X'00,X100,X'80
X'80,%'80,%X'80,X'FB
X'00,X'00,X'88
X'D8,X'A8,%188 %188

Y

z

LEFT BRACKET
BACKSLASH
RIGHT BRACKET
CARROT
UNDERLINE
GRAVE ACCENT
A (LC)

B (LC)

¢ (Lc)

D (LC)

E (LC)

F (LC)

G (LC)

H (LC)

I (LC)

J (LC)

K (LC)

L (LC)

M (LC)

22A

VMBAS BASIC/VM PATCHES

CHARACTER FONT TABLE

1200 4954 000088
1201 495D ¢8A89888
1202 4961 000070
1203 4964 88886870
1204 4968 000OFO
1205 496B 8BF08080
1206 496F 000070
1207 4972 88A89068
1208 4976 0000F0
1209 4979 88FOA090
1210 497D 000078
1211 4980 807008F0
1212 4984 0000F8
1213 4987 20202020
1214 498B 000088
1215 49BE 88888870
1216 4992 000088
1217 4995 88885020
1218 4999 000088
1219 499c 88480888
1220 4940 000088
1221 4943 50205088
1222 4947 000088
1223 49AA 50202020
1224 49AE 0000F8
1225 U9B1 1020L40F8
1226 U49B5 102020
1227 U49B8 60202010
1228 U49BC 202020
1229 UYBF 20202020
1230 49c3 L02020
1231 49C6 30202040
1232 49CA 104840
1233 49CD 00000000
1234 49D1 285048
1235 49D4 50A850a8
1236

1237 0000

NO ERROR LINES

END:

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

X'00,X'00,X'88
X'c8,%'a8,%'98,x'88
X'00,X'00,X' 70
%'88,%'38,X'88,X'70
X'00,X'00,X'FO
X'88,X'F0,X'80,X'80
X'00,X'00,X'70
X'88,X'A8,X'90,X'68
X'00,X'00,X'FO
X'88,X'F0,XTAC, X190
X'00,X'00,X'78
X'80,X'70,X'08,X'FO
X'00,X'00,X'F8
X'20,X'20,X'20,X'20
X'00,X'00,X'88
X'88,x'88,x788,x'70
X'00,X'00,X'88
X'88,%x788,X750,%'20
X'00,%'00,%'88
X'88,X'A8,%"D8, X' 88
X'00,X'00,X'88
X'50,X'20,X'50,%'88
X'00,%'00,X'88
X150,X120,X'20,X'20
X'00,X'00,X'F8
X'10,X'20,X'40,x'F8
X'10,X'20,x120
X'60,X'20,X'20,X'10
X'20,X'20,X'20
X'20,X'20,X'20,X'20
X'40,%120,%X'20
X'30,X'20,X'20,X'40
X'10,X'A8,X'L0
¥'00,%'00,X'00,X'00
X'AB,X'50,X'A8
X'50,X'A8,X'50,X'A8

I

Z

LEFT BRACE

(LC)
(Le)
(Lc)
(LC)

(Le)

VERTICAL BAR

RIGHT BRACE

TILDA

RUBOUT

228

MAINPR

KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE

1740
1741
1702
1703
0032
0005

fol¢]o]v}

0200
0203

0206
0207
0208
0209
020A
020C
020F
0211
0214
0217
0214
0z21¢C
021F
0222
o2zl
0227
0229
022B
022E

4co6o2
Ucr202

98

48

8a

48
A901
2c4017
D006
205A1E
49802
AD4IT
29E0
8Du117
ADO31T
093C
8p0317
AQ32
4205
20AF02
ADE103

SYSPA
SYSPAD
USRPB
USRPBD
RPTRAT
DBCDLA

ANKB:

ANKBO :

ANKB1:
ANKB2:

.PAGE 'KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE'
¥%¥MODIFIED FOR KIM BASICH¥###

THIS SUBROUTINE SCANS AN UNENCODED KEYBOARD MATRIX CONNECTED
TO THE KIM-1 APPLICATION CONNECTOR. USER PERIPHERAL PORT B
BITS 5 (MSB) THROUGH 2 (LSB) ARE CONNECTED TO A ONE-OF-16
DECODER (74154) WHICH DRIVES THE KEYSWITCH COLUMNS.

SENSING OF THE ROWS IS BY A PORTION OF THE KIM ON-BOARD
KEYBOARD CIRCUITRY WHICH USES SYSTEM PERIPHERAL PORT B BITS
0 - 4.

WHEN CALLED, THE ROUTINE SITS IN A LOOP WAITINC FOR A KEY TO
BE PRESSED. WHEN 4 KEY IS PRESSED (EXCEPTING SHIFT, CONTROL,
REPEAT), THE ROUTINE RETURNS WITH KEY CODE IN ACCUMULATOR.
BOTH INDEX REGISTERS ARE RETAINED.

THE ROUTINE IMPLEMENTS TRUE 2-KEY ROLLOVER, KEY DEBOUNCING,
AND REPEAT TIMING. ONE RAM LOCATION IS REQUIRED, ITS INITIAL
CONTENT IS INSIGNIFICANT.

SHIFT LOCK IS SUPPORTED, IT ONLY AFFECTS LETTERS MAKING IT
EFFECTIVELY A "CAPS LOCK" KEY.

SHIFT LOCK SHOULD BE RELEASED WHEN USING THE KIM MONITOR.
GERMANIUM DIODES SHOULD BE WIRED IN SERIES WITH ALL MODE
MODIFYING KEYS TO AVOID THE "PHANTOM KEY"™ EFFECT. THESE
INCLUDE: SHIFT, CONTROL, REPEAT, AND SHIFT LOCK.

= X' 1740 ; SYSTEM PORT A DATA REGISTER

= X171 ; SYSTEM PORT A DIRECTION REGISTER

= X11702 ; USER PORT B DATA REGISTER

= X'1703 ; USER PORT B DIRECTION REGISTER

= 50 ; REPEAT PERIOD, MILLISECONDS

= 5 ; DEBOUNCE DELAY, MILLISECONDS

.= Xr0200 ; PUT INTO KIM RAM UNUSED BY BASIC
JMP ANKB ; DISPATCH VECTOR KEYBOARD ROUTINE
JMP CNTLC ; DISPATCH VECTOR CONTROL/C ROUTINE
TYA ; SAVE THE INDEX REGISTERS

PHA

TXA

PHA

LDA i1 ; TEST KIM TTY/KEYB SWITCH

BIT X'1740

BNE ANKBO ; CONTINUE WITH KEYBOARD IF IN KEYB POSIT.

JSR X'1ESA
JMp ANKB10
LDA SYSPAD
AND #X'EO
STA SYSPAD
LDA USRPBD
ORA #X13C
STA USRPBD
LDY #RPTRAT
LDX #DBCDLA
JSR WATMS
LDA ANKBT1

GET A TTY CHARACTER IF IN TTY POSITION
GO ECHO IT AND RETURN

SET UP DATA DIRECTION REGISTERS

SET SYSTEM PORT A BITS 4-0 TO INPUT

SET USER PORT B BITS 5-2 TO QUTPUT

INITIALIZE REPEAT DELAY
INITIALIZE DEBOUNCE DELAY
WAIT 1 MILLISECOND

GET KEY ADDRESS LAST DOWN

23A

MAINPR
KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE

56 0231 20B602 JSR KEYTST : TEST IF ADDRESSED KEY STILL DOWN
57 0234 BOOC BCS ANKBY ; JUMP IF UP

58 0236 A931 LDA #%'31 ; TEST STATE OF REPEAT KEY

59 0238 20B602 JSR KEYTST

60 023B BOEC BCS ANKE1 ; LOOP BACK IF REPEAT KEY IS UP

61 023D 88 DEY ; DECREMENT REPEAT DELAY

62 023E DOE9 BNE ANKB1 ; LOOP BACK IF REPEAT DELAY UNEXPIRED
63 0240 F029 BEQ ANKBT ; GO OUTPUT REPEATED CODE

64 0242 cA ANKB4: DEX ; DECREMENT DEBOUNCE DELAY

65 0243 DOE6 BNE ANKB2 ; G0 TEST KEY AGAIN IF NOT EXPIRED
66

gg ¥ PREVIOUS KEY IS NOW RELEASED, RESUME SCAN OF KEYBOARD
69 0245 EEE103 ANKB5: INC ANKBT ; INCREMENT KEY ADDRESS TO TEST

70 0248 ADE103 LDA ANKBT1

71 024B CY3F CMP #X13F ; SKIP OVER SHIFT

72 024D FOF6 BEQ ANKBS

73 024F €933 CMP #1133 ; SKIP OVER CAPS LOCK

74 0251 FOF2 BEQ ANKBS

75 0253 C92E CMP #X12E ; SKIP OVER CONTROL

76 0255 FOEE BEQ ANKBS

77 0257 €931 CMP #X131 ; SKIP OVER REPEAT

78 0259 FOEA BEQ ANKBS

79 025B A205 LDX #DBCDLA ; INITIALIZE DEBOUNCE DELAY

80 025D ADE103 ANKB6: LDA ANKBT1 ; TEST STATE OF CURRENTLY ADDRESSED KE®
81 0260 20B602 J3R KEYTST

82 0263 BOEO BCS ANKBS ; GO TRY NEXT KEY IF THLS ONE IS UP
B3 0265 20AF02 JSR WATMS ; WAIT 1 MILLISECOND IF DOWN

84 0268 CA DEX ; DECREMENT DEBOUNCE DELAY

85 0269 DOF2 BNE ANKB6 ; GO CHECK KEY AGAIN IF NOT EXPIRED
86

87 : TRANSLATE AND OUTPUT A KEY CODE

88

89 026B AEE103 ANKBT: LDX ANKBT1 ; GET BASIC ASCII CODE FROM TABLE
90 0256E BC4103 LDY ANKBTB, X ; INTO INDEX Y

91 0271 A92E LDA #X'2E ; TEST STATE OF CONTROL KEY

92 0273 20B602 JSR KEYTST

93 0276 BOOG BCS ANKBS ; SKIP AHEAD IF NOT PRESSED

94 0278 98 TYA ; CLEAR UPPER THREE BITS OF CODE IF
95 0279 291F AND #XIF ; CONTROL PRESSED

96 027B Lc9802 JMP ANKB10 ; IGNORE SHIFT AND GO RETURN

97 027E A93F ANKB8: LDA #X'3F ; TEST STATE OF SHIFT KEY

98 0280 20B602 JSR KEYTST

99 0283 9010 BCC ANKB9 ; SKIP AHEAD IF PRESSED

100 0285 4933 LDA #X133 ; TEST STATE OF CAPS LOCK KEY

101 0287 20B602 JSR KEYTST

102 0284 98 TYA : RETRIEVE PLATN CODE FROM Y

103 028B BOOB BCS ANKB10 ; GO RESTORE REGISTERS AND RETURN IF Ci
104 ;. LOCK KEY I3 UP

105 028D C961 CMP X161 ; IF DOWN, TEST IF CODE I3 A LETTER
106 028F 9007 BCC ANKB10 ; NO, GO RETURN

107 0291 C97B CMP #X178

108 0293 B0O3 BCS ANKB10 ; NO, GO RETURN

109 0295 BD9103 ANKBG: LDA ANKBTB+80,X ; FETCH SHIFTED CCDE FROM TABLE

110 0298 48 ANKB10: PHA ; SAVE CHARACTER CODE

23B

MAINPR

KIM=-1

11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE

0299
029B
029D
029F
0241
0243
0244
02A5
02A8
02AB
02AC
024D
02AE

02AF
02B1
02B3
02B5

02B6
02B8
02BA
02BC
02BF
02co
o2c1
oz2cz
02¢cs
ozcT
02ca
02CB
02CE
02p0
02Dp1
02p2
0205
0208
02DB
02DC
02DD
02DE
02DF
02E0
02E3
02E6
02ET
02E9

CS0F
D006
A514
45FF
8514
68

BA
BC0201
9D0201
68

AR

68

60

A9cC8
E901
DOFC
60

€950
9005
Ag00
8DE103
48

84

48
ADO217
29C3
8p0217
BA
BD0201
2890TF
04

0A
0po217
8poz17
BD0201
4a

4a

4a

4a

AA
ADHO1T
3DEDO2
18
E900
68

ANKB11:

WAIMS:
WAIMS1:

H
H
H
H
KEYTST:

KEYTS1:

CMP
BNE
LDA
EOR
STA
PLA
TSX
LDY
STA
PLA
TAX
PLA
RTS

#X10F
ANKB11
X' 14
X'FF
X114

X1102,%
X102, %

TEST IF THE CODE IS CNTL/O
SKIP IF NOT

; TOGGLE OUTPUT ENABLE BIT IN BASIC

RESTORE A

RESTORE Y FROM STACK
SAVE CHARACTER CODE IN STACK WHERE Y WAS
RESTORE X

RESTORE CHARACTER CODE IN A
RETURN

WAIT FOR ONE MILLISECOND ROUTINE

LDA
SBC
BNE
RTS

#200
#1
WATMS1

H

WAIT FOR APPROXIMATELY 1 MILLISECOND

KEY STATE TEST ROUTINE

ENTER WITH ADDRESS OF KEY TO TEST IN ACCUMULATOR

LEAVES BOTH INDEX REGISTERS ALONE

SETS ANKBT1 TO ZERO IF ILLEGAL KEY ADDRES3 AND TESTS KEY ZERO
RETURNS WITH CARRY FLAG ON IF NOT PRESSED, OFF IF PRESSED

CMP
BCC
LDA
STA
PHA
TXA
PHA
LDA
AND
STA
TSX
LDA
AND
ASLA
ASLA
ORA
STA
LDA
LSRA
LSRA
LSRA
LSRA
TAX
LDA
AND
CLC
SBC
PLA

#80
KEYTS1
0
ANKBT1

USRPB
#X7C3
USRPB

X102,
#X10F

USRPB
USRPB
X1102,X

SYSPA
MSKTAB, X

#0

TEST IF LEGAL KEY ADDRESS
SKIP AHEAD IF SO

SET TO ZERO OTHERWISE
UPDATE ANKBT1

SAVE A ON STACK

SAVE X ON STACK

CLEAR USER PORT B BITS 2-5

RESTORE KEY ADDRESS FROM STACK

ISOLATE LOW 4 BITS OF KEY ADDRISS
POSITION TO LINE UP WITH BITS 2-5

SEND TO USER PORT B WITHOUT DISTURBING
OTHER BITS

GET KEY ADDRESS BACK

RIGHT JUSTIFY HIGH 3 BITS

USE AS AN INDEX INTO MASK TABLE

GET SYSTEM PORT A STATUS

SELECT BIT TO TEST AND SET CARRY FLAG
ACCORDINGLY

RESTORE X FROM STACK

24A

MAINPR

KIM-1

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE

02EA
02EB
02EC

02ED
02F1

02F2
02F5
02F7
02FA
02FD
02FF
0302
0304
0307
0309
030B
030E
0310
0312
0315
0317
0319
031C
031E
0321

0323
0325
0328
0324
0328
032D
032F
0332

0334
0337
0339
033B

033D
033E

AA
68
60

01020408
10

ADH 11T
29E0
8p4117
ADO317
093C
800317
A92E
20B602
BO3Y
A93B
20B602
902F
4915
20B602
9016
A91Y
8DE103
A92c
20B602
BOTA

A91D
20B602
BOFY
38
B010
A915
CDE103
F009

8DE103
AS14
49FF
8514

18
60

MSKTAB:

CNTLC:

CTLA:

CTLODN:

CTLCNO:

TAX

PLA ; BESTORE A FROM STACK

RTS ; RETURN

_BYTE X'01,X'02,%'0U,x'08 ; MASK TABLE FOR KEYTST
.BYTE X'10

TEST FOR CONTROL/C ROUTINE

RETURNS WITH CARRY SET IF CONTROL AND C KEYS DOWN, RETURNS
WITH CARRY OFF IF NOT

ALSO TESTS IF CONTROL AND O KEY STRUCK, IF SO TOGGLES THE
CONTROL/0 FLAG TN BASIC

ALSO TEST IF CONTROL AND S KEYS DOWN, IF SO WAITS UNTIL
CONTROL AND Q KEYS ARE DOWN AND RETURNS

PRESERVES BOTH INDEX REGISTERS

LDA SYSPAD
AND #X'E0
STA SYSPAD
LDA USRPBD
ORA #X'3C
STA USRPBD
LDA #X'2E
JSR KEYTST
BCS CTLCNO
LDA #X' 3B
JSR KEYTST
BCC CTILCYS

SET UP DATA DIRECTION REGISTERS
SET SYSTEM PORT A BITS U-0 TO INPUT

; SET USER PORT B BITS 5-2 TO OUTPUT

TEST STATE OF CONTROL KEY

GO TO "NO" RETURN IF NOT PRESSED
TEST STATE IF "C" KEY

GO TO "YES" RETURN IF PRESSED

LDA #X115 3 TEST STATE OQF "O" KEY

JSR KEYTST

BCC CTLODN ; BRANCH IF IT IS DOWN

LDA #x 1L ; SET ANKBT1 OFF OF O CODE IF NOT SEEN

STA ANKBT1
LDA #X'2C
JSR KEYTST
BCS CTLCNO

TEST IF S KEY I3 DOWN (CNTL/S = XOFF)

GO TO CONTROL C FAIL [F NOT

IF CNTL S TS SEEN, HANG IN A LOOP UNTIL
CONTROL Q IS SEEN (CNTL/Q = XON)

LDA #X'1D TEST "Q" KEY

JSR KEYTST

BCs CTLA ; LOOP UNTIL IT IS SEEN

SEC ; WHEN SEEN, EXIT TO CONTROL C FAILURE
BCS CTLCNO ; WITH CARRY FLAG ON

LDA #X115 ; CONTROL O IS DOWN, TEST IF IT WAS DOWN
CMP ANKBT1 ; PREVIOUSLY

BEQ CTLCNO ; DO NOTHING IF DOWN PREVIOUSLY, GO TO

CONTROL C FAIL RETURN

STA ANKBT1 SET ANKBT1 TO O CODE

LDA X114 FLIP QUTPUT CONTROL FLAG WHEN CONTROL O
EOR #X'FF IS PRESSED

STA X1k AND EXECUTE CONTROL C FAIL

CLC ; "NO" RETURN, CLEAR CARRY

RTS ; RETURN

24B

MAINPR
KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE

221 033F 38 CTLCYS: SEC s "YES" RETURN, SET CARRY

222 0340 60 RTS ; RETURN

223

224 § ASCII CHARACTER CODE TRANSLATE TABLE

225

226

227 ; UNSHIFTED SECTION

228 0341 SF5E3A2D ANKBTB: .BYTE X'SF,X'5E,X'3A,X'2D ; BS CARRET : -

229 0345 30393837 .BYTE X'30,X'39,X'38,X'37 ;009 8 7

230 0349 36353433 JBYTE X'36,X%'35,X'34,X'33 16 5 4 03

231 034D 32311BAO JBYTE X'32,X'31,X'1B,X'A0 12 1 ESC (AUX H)

232 0351 TFOASCSB .BYTE X'TF,X'0A,X'5C,X'5B ; DEL LF BACKSLASH

233 0355 TO6F6975 .BYTE X'7T0,X'6F,X'69,X'75 ;P OIU

234 0359 79747265 .BYTE X'79,X'T4,X'72,X'65 ;Y T R E

235 035D 77710941 JBYTE X'77,X'71,X'09,X'A1 ; W Q@ HT (AUX L)

236 0361 060D5D40 .BYTE X'06,X'0D,X'5D,X'40 ; HEREIS CR [

237 0365 3B6C6BAA .BYTE X'3B,X'6C,X'6B,X'6A 53 LK J

238 0369 68676664 .BYTE X'68,X'67,X'66,X'64 ;s H G F D

239 036D 73610042 .BYTE X'73,X'61,X'00,X'A2 ;7 S A CIL (AUX SHIFT)
240 0371 00002000 .BYTE X'00,X'00,X'20,X'00 ; (RIGHT BLANK) REPAT SP LOCK
241 0375 2F2E2C6D .BYTE X'2F,X'2E,X'2C,X'6D ;4 ., M

242 0379 BE627663 .BYTE X'6E,X'62,X'76,X'63 ;N BV C

243 037D T787A0000 .BYTE X'78,X'7A,X'00,X'00 ; X 2z (LEFT BLANK) SHIFT
24l 0381 80818283 .BYTE X'80,x'81,X'82,%'83 ; (AUx o 1 2

245 0385 8858687 LBYTE X'84,X'85,%'86,x'87 ; (AuX 4 5 6 7)

246 0389 B88898A8B .BYTE X'88,X'89,X'84,X'8B ; (AUX8 9 A4 B)

247 038D BCBDBESF .BYTE X'8C,X'8D,X'8BE,X'8F ; (AUXC D E F)

248

249 ; SHIFTED SECTION

250

251 0391 5F7E2A3D .BYTE X'5F,X'7E,X'2A,X'3D ; BS TILDA * =

252 0395 30292827 .BYTE X'30,X'29,X'28,X'27 ;0) (o

253 0399 26252423 .BYTE X'26,X'25,X'24,X'23 ;& 308 &

254 039D 22211BA3 .BYTE X'22,X'21,X'1B,X'A3 ;" ! ESC (AUX H)

255 03A1 TFOATCTB .BYTE X'TF,X'0A,X'7C,X'7B ; DEL LF VERTBAR

256 03A5 504FL955 .BYTE X'50,X'4F,X'49,X'55 i PO I U

257 03A9 59545245 .BYTE X'59,X'54,X'52,X'45 ;Y T R E

258 03AD 575109A4 .BYTE X'57,X'51,X'09,X'A4 ;W Q HT (AUX L)

259 03B1 060D7DEO ,BYTE X'06,X'0D,X'7D,X'60 ; HEREIS CR GRAVEACCENT
260 03B5 2BYCHBUA .BYTE X'2B,X'UC,X'4B,X'UA i+ L K J

261 03B9 UBLTLELY LBYTE X'48,%'U7,X'U6,X'44 i 6 F D — —
262 03BD 53410045 .BYTE X'53,X'11,X'00,X'A5 i S A CTL (AUX SHIFT)
263 03C1 5F002000 .BYTE X'5F,X'00,X'20,%'00 ; (RIGHT BLANK) REPAT SP LOCK
264 03C5 3F3E3C4D JBYTE X'3F,X'3E,X'3C,X'4D ;7 0 LM

265 03C9 4EL25643 .BYTE X'4E,X'42,X'56,X'43 i N BV C

266 03CD 58540000 .BYTE X'58,X'5A,X'00,X'00 : X Z (LEFT BLANK) SHIFT
267 03D1 90919293 .BYTE X'90,X'91,X'92,%X'93 ; (AUXO0 1 2 3)

268 03D5 94959697 .BYTE X'94,X'95,%'96,X'97 ; (AUX W 5 6 7)

269 03D9 98999A9B .BYTE X'98,X'99,X'94,X'9B ; (AUXB 9 A B)

270 03DD 9CYDIESF .BYTE X'9C,X'9D,X'9E,X'9F ; (AUXC D E F)

271

272 03E1 00 ANKBT1: .BYTE © ; STORAGE OF CURRENTLY SCANNED
273 ; KEY NUMBER

274

275 0000 .END
NO ERROR LINES 25A

MAINPR
KIM-1 PARALLEL ASCII KEYBOARD ROUTINE

.PAGE 'KIM-1 PARALLEL ASCII KEYBOARD ROUTINE'

2 ; #REREMODIFTED FOR KIM BASICH¥*¥#

3 H THIS SUBROUTINE WALITS FOR A KEY TO BE PRESSED ON A PARALLE!
4 H KEYBOARD CONNECTED TO PORT A ON THE KIM-1 APPLICATION

5 : CONNECTOR. IT RETURNS WITH THE ASCII CODE IN THE ACCUMULAT
6 ; WHEN A KEY IS PRESSED.

7 H

8) THE KEYBOARD IS ASSUMED TO PRESENT 7 BIT ASCII TO PORT A BRI
9 i 0 (LSB) THROUGH 6 (MSB). TEHE STROBE MAY BE EITHER A "KEY
10 ; PRESSED" LEVEL STRCBE OR A PULSED STROBE.

11 £ PROPER OPERATION OF THE CONTROL/C ROUTINE HOWEVER REQUIRES
12 ; DATA LATCH IN THE KEYBOARD FOR PROPER OPERATION WITH A PULS
13 H STROBE.

14 3

15 - A "CAPS LOCK" FEATURE HAS BEEN INCLUDED. IF CNTL/R IS PRES
16 : CAPS LOCK WILL BE TURNED ON. IF CNTL/T IS PRESSED CAPS LOC
17 ; WILL BE TURNED OFF. WHEN CAPS LOCK IS ON, ALL LOWER CASE
18 : LETTERS ARE TRANSLATED TO UPPER CASE; THE NUMBERS AND SPECI
i9 ; CHARACTERS ARE UNAFFECTED.

20 :

21 : TRUE DATA AND POSITIVE-GOING STROBE ARE ASSUMED. HOWEVER B
22 i CHANGING THE DATA/STROBE INVERSION MASK AT MASK, ANY

23 i COMBINATION OF TRUE/FALSE POSITIVE/NEGATIVE CAN BE ACCOMODA
24 H

25 H IF THE TTY/KEYBOARD MODE SWITCH ON TEE KIM IS IN TTY POSITI
26 : TNPUT IS TAKEN FROM THE TELETYPE PORT USING KIM'3 TTY INPUT
27 i ROUTINE. HOWEVER CNTL/C, CNTL/O, CNTL/S, AND CNTL/Q ARE ST
28 H ACTIVATED FROM THE PARALLEL KEYBOARD.

29

30

31 1700 USRPA & Xr1700 ; USER FORT A DATA REGISTER

32 1701 USRPAD = X'1701 ; USER PORT A DIRECTION REGISTER

33

34 0000 .= X'0200 ; PUT INTO KIM RAM UNUSED BY BASIC

35

36 0200 4C0602 JMP ANKB ; DISPATCH VECTOR KEYBOARD ROUTINE

37 0203 4cepo2 JMP CNTLC ; DISPATCH VECTOR CONTROL/C ROUTINE

38

39 0206 98 ANKB: TYA ; SAVE THE INDEX REGISTERS

40 0207 48 PHA

41 0208 84 TXA

42 0209 48 PHA

43 0204 A901 LDA #1 ; TEST KIM TTY/KEYB SWITCH

4y 020c 2¢4017 BIT X'1740

45 020F DOOS BNE ANKBO ; CONTINUE WITH KEYBOARD IF IN XEYB POS
46 0211 20581E JSR X' 1554 ; GET A TTY CHARACTER I# IN TTY POSITIO
47 0214 4c2ro2 JMP ANKE3 ; GO ECHO IT AND RETURN

48 0217 A900 ANKBO: LDA #0 s SET UP DATA DNIRECTION RER

49 0219 BDOI1T STA USRPAD ; SET USER PORT A FOR INPUT

50 021C ADDO17 ANKB1: LDA USRPA ; TEST STATUS . PREZ

51 021F 4DBAO2 EOR MASK ; PERFORM SELFCT

52 D222 30F8 BMI ANKB1 ; IF PRE3SED, WAIT UNTI.

53 0224 AD0O17 ANKB2: LDA USRPA ; WHEN RELEASED, WATT UNTL

54 0227 4DBAO2 EOR MASK

55 0224 10F8 BPL ANKB2

MAINPR
KIM-1 PARALLEL ASCII KEYBOARD ROUTINE

56 022C 8DBCO2 STA ANKBT1 ; SET LAST STATE OF STROBE

57 022F 297F ANKB3: AND #XTF ; CLEAR OUT STROBE BIT AND

58 0231 48 PHA : SAVE CHARACTER CODE

59 0232 CYOF CMP #X'0F ; TEST IF THE CODE IS CNTL/O

60 0234 DOOG BNE ANKBY ; SKIP IF NOT

61 0236 A514 LDA X4 ; TOGGLE OUTPUT ENABLE BIT IN BASIC
62 0238 49FF EOR #X'FF

63 023A 8514 STA X4

64 023C €912 ANKBL: CMP #xXr12 ; TEST IF CNTL/R

65 023E DOOT BNE ANKB5 ; SKIP IF NOT

66 0240 A9FF LDA #X'FF ; SET CAPS LOCK FLAG IF SO

67 0242 8DBBO2 STA CAPSLK

68 0245 D009 BNE ANKB6

69 0247 C914 ANKB5: CMP #xr 14 ; TEST IF CNTL/T

70 0249 DOOS BNE ANKB6 ; SKIP IF NOT

71 024B AG00 LDA 0 ; CLEAR CAPS LOCK FLAG IF SO

72 024D 8DBBO2 STA CAPSLK

73 0250 ADBBOZ ANKB6: LDA CAPSLK : TEST STATE OF CAPS LOCK FLAG

74 0253 FOOC BEQ ANKB11 ; DO NOTHING IF OFF

75 0255 68 PLA ; IF ON, TEST IF CODE IS A LOWER CASE
76 0256 C961 CMP #5161 ; LETTER

77 0258 9006 BCC ANKB10 ; JUMP IF NOT

78 0254 CY7B CMP #X'78

79 025C BOO2 BCS ANKB10 ; JUMP IF NOT

80 025E 29DF AND #3 ' DF ; TURN OFF BIT 5 IF A LOWER CASE LETTER
81 0260 L8 ANKB10: PHA

82 0261 68 ANKB11: PLA ; RESTORE A

83 0262 BA TSX

84 0263 BCO201 LDY X1102,X ; RESTORE Y FROM STACK

85 0266 900201 STA X'102,X ; SAVE CHARACTER CODE IN STACK WHERE Y WAS
86 0269 68 PLA ; RESTORE X

87 026A AA TAY

88 026B 68 PLA ; RESTORE CHARACTER CODE IN A

89 026C 60 RTS ; RETURN

90

26A

MAINPR
TEST FOR CONTROL/C ROUTINE

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
1M1
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

026D A900
026F 8D0117
0272 ADOO1T
0275 4DBAC2
0278 297F
0274 €903
027C FO34
027E €913
0280 DOOE
0282 AD0OO17
0285 4DBAO2
0288 297F
0284 c911
028C DOF4
028E FO17
0290 CYOF
0292 D013
0294 ADOO17
0297 4DBAO2
0294 4980
029C 0DBCO2
029F 3006

0241 A5
02A3 49FF
0245 8514
02AT7 ADO017
0244 YDBAOZ
02AD 8DBCO2
02BO 18
02B1 60
02B2 ADOO17
02B5 8DBCO2
02B8 38
02B9 60

02BA 00
02BB 00
02BC 00

0000

NO ERROR LINES

i
’
H
i
)
B
H
3

CNTLC:

CNTLC1:

CNTLCZ2:

CTLCNO:
CTLCYS:

MASK:
CAPSLK:
ANKBT1:

.PAGE 'TEST FOR CONTROL/C ROUTINE'

TEST FOR CONTROL/C ROUTINE

RETURNS WITH CARRY SET IF CONTROL AND C KEYS DOWN, RETURNS
WITH CARRY OFF IF NOT

ALSO TESTS TF CONTROL AND O KEY STRUCK, IF SO TOGGLES THE
CONTROL/C FLAG IN BASIC

ALSO TEST IF CONTROL AND 3 KEYS DOWN, IF SO WAITS UNTIL
CONTROL AND Q KEYS ARE DOWN AND RETURNS

PRESERVES BOTH INDEX REGISTERS

BNE CNTLC?2
LDA USRPA

JUMP AHEAD IF NOT
IF SO, WAIT UNTIL CNTL/Q IS SEEN

LDA #0 ; SET UP DATA DIRECTION REGISTER

STA USRPAD ; FOR INPUT

LDA USRPA ; LOOK AT KEYBOARD DATA IRREGARDLESS O
EOR MASK

AND #X'TF ; STATE OF STROBE

CMP #X'03 ; TEST IF CNTL/C

BEQ CTLCYS ; GO TO CNTL/C SUCCESS IF SO

CMP #X'13 ; TEST IF CNTL/S

EOR MASK

AND #X'TF

CMP #Xr 1

BNE CNTLC!

BEQ CTLCNO GO TO CNTL/C FAILURE RETURN
CMP #X'0F TEST TF CNTL/0

GO TO CNTL/C FAILURE RETURN IF NOT
COMPARE LAST STATE QF STROBE WITH

BNE CTLCNO
LDA USRPA

EOR MASK CURRENT STATE OF STROBE
EOR #x'80
ORA ANKBT 1 ; IF PREVIOUSLY OFF AND NOW ON

FLIP THE SUPPRESS OUTPUT FLAG IN BAS
OTHERWISE EXECUTE A& CTL/C FAILURE RE

BMI CTLCNOC

LDA X'k ; FLIP OUTPUT CONTROL FLAG WHEN CONTRC
EOR #X'FF ; 1S PRESSED

STA X'14 ; AND EXECUTE CONTROL C FATL

LDA USRPA ; "NO" RETURN, UPDATE LAST STATE OF 51
EOR MASK

STA ANKBT1

cLe ; CLEAR CARRY

RTS : RETURN

LDA USRPA ; "YES" RETURN, UPDATE LAST STATE OF
STA ANKBT1 ; STROBE

SEC ; SET CARRY

RTS ; RETURN

.BYTE 0 ; MASK FOR TRUE DATA AND POSITIVE STRC
.BYTE 0 ; CAPS LOCK FLAG, ON TF NON-ZERO

_BYTE 0 ; STORAGE FOR CURRENT STATE OF STROBE
.END

26B

Hal Chamberlin
29 Mead St.
Manchester NH 03104

Software
Kkeyboard
Interface

with a pittance of hardware !

I ‘Il bet you're thinking,
Oh sure, another scheme
using some obscure surplus
keyboard that will be sold
out by the time | get around
to this project.” Not so! This
keyboard (manufactured by
Datanetics Corp. of Fountain
Valley CA) is offered by at
least a half-dozen mail-order
houses and is a current pro-
duction item. But at $20 each
(the most common price),
these outfits are not doing us
any favors; their cost is prob-
ably less than $10 each. An
auxiliary keyboard the same
style as the main unit is also
available for less than $10
and can be used in this pro-
ject for function keys, etc.
Why are these keyboards
so cheap? The reason cer-
tainly is not lack of
mechanical or electrical
quality. They are unusually
rigid one-piece construction
of one-sixteenth-inch-thick
Bakelite plastic, ribbed into a
honeycomb form, with an
overall depth of one-half
inch. Each cell contains a
contact arrangement with no
fewer than four parallel con-
tacts mounted inside a rugged
plastic plunger. The contacts
effectively reduce bounce and
insure a long, error-free life.
Finally, a keybutton is

pressed onto the plunger,
sealing the cell from dust and
liquids.

One reason for the low
cost is the one-piece base
casting and cell structure. As
| understand, the initial cost
of the mold was borne by a
huge quantity contract with
Digital Equipment Corpora-
tion. However, the other
reason is that the keyboard is
devoid of any encoding elec-
tronics. This is the problem
whose solution will be
addressed in this article.

Besides the keyboard, the
only other hardware this pro-
ject requires is asingle 74154
TTL integrated circuit (1-
of-16 decoder), which costs
less than two dollars, and
some wire. Only four of the
1/0 port bits on the KIM’s
application connector are
used, and even these may be
used for other purposes when
typing is not actually being
done. Standard two-key roll-
over operation (which will be
described later) is provided,
and a full uppercase and
lowercase ASCI| character set
is available. Even the repeat
key works and has a program-
mable rate. The auxiliary key-
board is also supported with
codes from its keys being
identified by having the

eighth bit set to a one. Even
though some of the KIM’s
built-in keyboard circuitry is
utilized, there is no conflict
(with one small exception)
between the built-in keypad
and the new alphanumeric
keyboard. A slight amount of
additional circuitry using an-
other IC may be added to
have the break key function
as an interrupt.

A software routine of ap-
proximately 350 bytes does
all of the key scanning and
code translation. This, in fact,
is how the on-board KIM
keypad is handled, with the
difference being that the
scanning software is in the
KIM monitor ROM. If a code
other than ASCII is desired,
such as EBCDIC or Baudot, a
translate table in the software
may be easily altered. This
table can be changed to suit
different application pro-
grams, such as ASCIlI for
running Tiny BASIC or
Baudot for an automated
RTTY application. The com-
plete assembled and tested
program is given at the end of
this article.

Keyboard Scanning Theory

Nearly all keyboards in
common use with more than
a few keys use some kind of

scanning logic to detect key-
switch closures, eliminate
contact bounce, and generate
unique key codes. In opera
tion, scanning logic sequen-
tially tests the state (up or
down) of each individual key
in the array. When a key is
found in the down position,
its code is determined and
sent out. In order to avoid
the code’s being sent out
more than once for each key
depression, the scanning is
stopped while the key is
down and resumed when it is
released. Typical scanning
rates range from 20 to 500
complete scans per second of
the approximately 60 keys in
an average array.

Besides being a simple and
inexpensive method of having
a single logic circuit monitor
the states of 60 individual
keys, scanning also can cope
with simultaneous key de-
pressions. When someone is
typing at substantial speed it
is a common occurrence for
more than one key to be
down simultaneously. For
example, consider rapid
typing of the word THE. The
T would first be pressed,
followed shortly thereafter
by a finger of the other hand
pressing the H. Next the T
would be released and the E
would be quickly pressed
with another finger of the
same hand. Subsequently, the
H would be released followed
by the E, which completes
the triad. A scanning key-
board would actually send
the proper THE sequence to
the computer, with no addi-
tional logic or buffer register
required.

In order to understand
how this works, let us ex-
amine the detailed sequence
of events. Initially, no keys
are pressed, and the scanning
circuitry is running at full
speed. When the T is pressed,
the scanner eventually finds
it, sends the T code and
stops. As long as the T is held
down, the scanner is stopped
and testing the T key. While
waiting for the T to be re-
leased, the typist presses the
H, but the scanner is not
aware of it. When the T is

% Reprinted by permission of Kilobaud Microcomputing Magazine. All rights reserved.

finally released, the scanner
takes off again but is im-
mediately stopped when it
sees that the H key is down.
After sending the H code it
waits for the H to be released,
and so on.

If the typist is sloppy (or
unusually fast) it is possible
for even the E key to be

pressed before the T is
released, resulting in three
keys being down simul-

taneously. In this situation,
two keys are pressed while
the scanner is waiting for the
T key to be released. When
scanning is resumed, two keys
are down. The scanner will
see the one that is closest to
T in the scanning sequence
and send that code next. The
closest key might very well be
the E, resulting in an error.
This action on multiple key
depressions is termed two-key
rollover and is found on most
computer terminals and other
equipment used by casual
typists. Some word-
processing machines and
other equipment used by pro-
fessional typists have N-key
rollover logic, which responds
only to the order of key
depression, regardless of how
many keys are down simul-
taneously or the order in
which they are released.
Either special keyswitches or
more complex scanning logic
can be used to achieve N-key
rollover. This keyboard inter-
face is capable of N-key roll-
over with a more complex
scanning program.

The scanning method can
also easily take care of key-
switch contact bounce. When
a closed contact is found,
scanning is stopped, but
sending of the code is de-
layed. If the contact should
open during the delay, the
closure is ignored and scan-
ning is resumed without
sending the code. If the
momentary closure was really
due to contact bounce, the
key will be seen again on the
next scan. If the closure is
solid for the entire delay
time, the code is sent. In
addition, noise on contact
opening may be rejected by
requiring that the contact re-

main continuously open for a
delay period before scanning
is resumed. Typical values of
debounce delay are one to
five milliseconds.

Now, how is scanning cir-
cuitry typically imple
mented? One simple scheme
for up to 64 keys would be to
have an oscillator drive a 6-bit
binary counter. The output
of the counter would drive a
decoder network having 64
separate outputs. All but one
of the decoder outputs would
be off, with the one on cor-
responding to the binary
number in the counter. As
the counter counts, each of
the 64 decoder outputs
would be turned on in se-
quence. For scanning a key-
board, each decoder output
would be connected to one
side of a keyswitch contact as
shown in Fig. 1. The other
sides of the contacts would
all be connected together.
This signal would be a zero
except when a keyswitch was
closed and that particular
switch was addressed by the
counter and decoder. With
proper wiring between the
decoder and the switch array,
the 6-bit content of the
binary counter while it is
addressing a closed key can
be the actual desired code of
that key! Thus encoding is
automatic with a scanning
keyboard. Unfortunately, the
shift and control keys of a
typical keyboard complicate
coding matters somewhat,
but the basic concept is still
valid.

Actually the scanning logic
and switch wiring can be
simplified greatly from the
above conceptual model by
arranging the keys in a
matrix. Taking the same
64-key array, let us wire the
keys in a matrix of eight rows
and eight columns with a
signal wire for each row and
column. The contacts of a
switch will be wired across
each intersection, as shown in
Fig. 2. Using the same 6-bit
counter, let us connect three
of the bits to a one-of-eight
decoder and the other three
bits to an 8-input multi-
plexer. A multiplexer is a

logic circuit that has several
signal inputs, some binary
address inputs and one out-
put. In operation, one of the
signal inputs is logically con-
nected to the output
according to the binary code
at the address inputs. The
single output of the multi-
plexer is the addressed-key-
closed signal as before. With
matrix connection of the
keys, the scanning logic grows
in proportion to the square
root of the number of keys,
instead of directly.

As the scanning counter
counts, the decoder activates
one column of the matrix ata
time and the multiplexer se-
quentially examines each row
for a closed switch trans-
ferring the column signal over
to a row. When a closed
switch is found, the counter
contains a unique code for

the switch as before. Al-
though it is still possible for
this code to be the actual
desired keycode, the scram-
bled key layout of a typical
keyboard would make the
matrix wiring quite messy.
Typically a read only mem-
ory is used to translate the
scramble code from the scan-
ner into the end-use code the
computer system needs. This
same ROM also takes care of
the shift and control keys,
which are wired in directly.

Connection to the KIM

All of the previously de-
scribed functions of scanning
hardware can also be easily
performed by software, along
with an output and an input
port. The most straight-
forward approach to simulate
matrix scanning hardware
would be to use an 8-bit

-
6} p—————®
3 CODE Yy .
o fp—s"s
i
i
2® - 2% 1
| '
24 H
i
6 23 23 !
8IT) 64 H KEY
COUNT 27 G oE ! PRESSED
i
z I
|
- 1
coek ¢ 2° !
[|
< o—e
P] —
|
l —_sts
o
l KEY ARRAY
SCAN B
CONTROL
Fig. 1. Basic keyboard scanner.
NPTy
2 8-WAY DECODER
2% a 0
S
2% \X 7
PR S ! ! €
6
BiT 2}
NT
cov S . KEY
8-wAY PRESS
MULTI-
2 — 3 PLEXER
20
ok ” 2
i
22 o 50
al
I - |
SCAN
CONTROL - —

Fig. 2. Matrix keyboard scanner.

Keyboard point-to-point wiring.

output port with software to
simulate the one-of-eight de-
coder and an 8-bit input port
with software to simulate the
8-input multiplexer. The
counter, of course, would be
just a memory location that is
incremented to perform the
scanning. Unfortunately, in
the case of the KIM this
would utilize all of the built-
in ports and then some.

A look at the KIM manual
will reveal that much of the
circuitry for the on-board
keypay has signals brought
out to the application edge
connector. In particular,
seven bits of an internal input

connected internally to the
on-board keypad and seven-
segment displays, but when
the KIM monitor is not
running (user program
running) they are completely
free for use as an input port.
Of course, when the monitor
/s in control, these inputs
must not be driven by ex-
ternal circuitry, or inter-
ference with the keypad and
display will result. If this port
is connected to the rows of a
key matrix and no keys are
pressed, then nothing is
driving the row wires; they
are just hanging. Thus, when
using the KIM monitor, one

typing on the external key-
board so any interference is
completely avoided.

At this point, one could
use an 8-bit output port on
the KIM to drive the key
matrix and handle up to 56
keys without any interfacing
circuitry. If you do not need
the one full 8-bit port, and a
limited character set (some
missing symbols) is sufficient
for your needs, then this can
indeed be done. However, on
my system the 8-bit port is
connected to a digital-to-
analog converter (for playing
music) and two of the seven
bits on the other port are
motor controls for two cas-
sette recorders. This leaves
five bits for selecting the
column to be scanned. The
solution is to use four of
these bits and an external
1-0f-16 decoder to drive up
to 16 columns. Combined
with seven rows, up to 112
keys could be scanned.

Fig. 3 shows the connec-
tions to the KIM and the
matrix hookup of the keys.
Note that the optional 19-key
keyboard is included. The
arrangement of keys in the
matrix was chosen mostly for

port are available. These are would not expect to be simplicity of wiring, with
A-16 ————— —
A-13
a2
PR —
s —
A —
PINS ON KiM-|
APPLICATION
CONNECTOR
//
!/
L.
RN S S S
ROW O ~ -7[5\ - - MN 55 a-21
It Ll‘ A
Le & S N 8
— LN a,
Row - |us ' > u"L of} ane
[N
PN R S S
o o o, o -
Row 2 aux [cTL) CL.; HERE A
SHIF] IS
M j\ g h N
ROW 3 fgar et e R(;'cnr‘ms}'"f T A2
a BLANK BLANK
ST N e he D=
ROW 4 e e 2\ LN 5 a-20
*KEY G:N 19 PINS ON KiM-!
KEVEORRD ConnECTOR "
[oe] coL coL coL coL coL coL coL cou
15 4 13 2 4 3 2 ' o

Fig. 3. Complete KIM-1 alphanumeric keyboard interface schematic.

100

proper coding taken care of
with translation software.
The one exception is the
wiring of the O-F keys on the
auxiliary keyboard. They are
in order with the O key in
column 0, 1 key in column 1,
etc. This would simplify a
scanning routine that uses
just those 16 keys. The
74154 decoder needs about
35 milliamps of +5 volt
power. This should not strain
any decent power supply for
the KIM, but could be re-
duced to a mere 10 milliamps
if a 74L.S154 was substituted.

Note that the two shift
keys are both wired into the
matrix at row 3, column 15.
The key labeled SHIFT on
the auxiliary keyboard is
intended to be relabeled and
used for a less redundant
function. The shift lock can
be connected across the other
two shift keys, but a problem
arises in doing so. If it is left
in the lock position when
using the KIM monitor, there
can be interference between
the add-on keyboard and the
KIM keyboard. If the shift-
lock function is desired, and
the requirement that it be
unlocked before using the
monitor is not judged to be
bothersome, then the shift-
lock key may be wired in.

Wiring the little tabs
sticking out of the back of
the keyboard should not be
difficult. They are stiff
enough and long enough to
be wire-wrapped, too, if care
is taken. Actually, this would
be an ideal use of a Vector
wiring pencil, which should
get the job done in about 30
minutes. If hand wiring and
soldering must be done, how-
ever, it is permissible to use
bare bus wire for the row
wiring and insulated wire for
the columns. The purist can
mount the 74154 IC in a
socket on a piece of perf-
board, but there is no reason
that it cannot be glued to the
bottom or side of the key-
board and wired directly.

The little circuit in Fig. 4
can be added to allow the
Break key to be used as an
interrupt. The KIM board
would respond to this key in

the same manner as the ST
key on the built-in keypad
and return to the monitor.
However, if the nonmaskable
interrupt (NMI) vector s
changed at 17FA and 17FB,
the interrupt could jump to a
specific point in the user’s
program instead. The re-
sistors, capacitor and 7413
Schmitt trigger IC debounce
the break key to prevent
multiple interrupts. The
diode in series with the out-
put simulates an open-
collector output so that
normal ST key operation is
not affected. Preferably, the
diode is a germanium type
such as a IN34 or 1N270, but
a silicon unit will generally
work OK.

Scanning Program

The program in Fig. 5 is
the heart of the add-on key-
board system and is respon-
sible for most of its features.
Although shown assembled
for locations 0200-035C
(hexadecimal), it may be
modified for execution any-
where by changing those loca-
tions marked with an under-
line in the object-code
column. One temporary
storage location is required
on page 0. Its initial value
when the keyboard is first
used in a user program is not
important, but thereafter it
should not be bothered. The
routine may be interrupted
with no ill effects, but it is
not reentrant (that is, it may
not be called by an interrupt-
service routine if it was itself
interrupted) due to the
temporary storage location
just mentioned. This tempo-
rary location is at 00EE (just
below the KIM reserved area)
in the listing shown but may
be easily moved elsewhere.

Using the program is quite
simple. It is called as a sub-
routine whenever a character
from the keyboard is needed.
The contents of the registers
when called are not impor-
tant. When called, the routine
waits until a key is pressed

(except for code, shift or
repeat). When a key is
pressed, its code is loaded

into the accumulator and a

102

return taken. For maximum
flexibility, the contents of
the index registers are not
disturbed by the routine.

Before you get into the
program logic, perhaps a
word should be said about
the assembly language. The
assembler used to prepare the
listing is a modified version of
the National Semiconductor
IMP-16, which, in turn, is
similar to the PACE
assembler. In most respects,
the syntax conforms to that
recommended by MOS Tech-
nology. The major difference
is that hexadecimal constants
are denoted by X’ instead of
$. The use of a # before a
constant or symbol specifies
the immediate addressing
mode. The assembler auto-
matically distinguishes
between zero page and
absolute mode addressing ac-
cording to the numerical
magnitude of the address —
zero page if between 0000
and 00FF and absolute other-
wise. The various indexed and
indirect addressing modes are
represented in the same way
as with the MOS Technology
assembler.

The overall logic of the
keyboard subroutine closely
parallels that described for a
hardware keyboard scanner.
The first step when it is
entered is to save the index
registers on the stack. Next,
the direction registers for the
input and output port bits are
set up. Note that only the
direction bits for the port bits
actually used are changed; the
others are left unchanged.

P
BREAK KEY -l
~—

QE-6

Fig. 4. Optional break-key interface.

When the subroutine is
entered, an assumption is
made that the last key
pressed is still down. This is
certainly a valid assumption
since a return from the pre-
vious invocation of this sub-
routine occurred immediately
when a key was pressed, and
it is unlikely that processing
of that character by the
calling program took very
long. ANKBT1 is the tempo-
rary storage location men-
tioned earlier. Functionally,
it is equivalent to the counter
in a hardware keyboard scan-
ner. It always addresses a key
in the matrix, and in this case
it points to the key that was
last pressed and had its code
sent.

Thus, after saving the
registers and setting up the
ports, a loop is entered in
which the keyboard routine is
waiting for this last-pressed
key to be released. While in
this waiting loop, the status
of the repeat key is con-
tinually interrogated. If the
repeat key is continuously
down while the last-pressed
key is also continuously
down for the repeat period,

an exit is taken from the loop
and the key code is sent
again. Note that the repeat
period, RPTRAT, is a para-
meter that may be changed;
in this case it is set to 50
milliseconds, giving a
moderately fast repeat rate of
approximately 20 characters
per second.

An internal subroutine,
KYTST, is used to actually
test the state of a key. It is
used by loading the address
of the key to be tested into
the accumulator, and then
calling it. When it returns, the
carry flag will be on if the
key is up, and off if it is
down.

The other exit from this
waiting loop, of course, is
sensing that the last addressed
key has been released. A de-
bounce delay (DBCDLA) is
included to insure that the
key is interpreted to be up
only when it has been con-
tinuously up for the de-
bounce delay period. This
will prevent noisy contacts
from generating multiple
characters.

At this point, scanning of
the keyboard resumes.

Fig. 5. KIM-1 alphanumeric keyboard scan and encode routine.

WOV EWN

17 0000

19 1740 SYSPA

.PAGE 'KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE'
THIS SUBROUTINE SCANS AN UNENCODED KEYBOARD MATRIX CONNECTED
TO THE KIM-1 APPLICATION CONNECTOR. USER PERIPHERAL PORT B
BITS 5 (MSB) THROUGH 2 (LSB) ARE CONNECTED TO A ONE-OF-16
DECODER (74154) WHICH DRIVES THE KEYSWITCH COLUMNS.

SENSING OF THE ROWS IS BY A PORTION OF THE KIM ON-BOARD
KEYBOARD CIRCUITRY WHICH USES SYSTEM PERIPHERAL PORT B BITS
0 - 4.

WHEN CALLED, THE ROUTINE SITS IN A LOOP WAITING FOR A KEY TO
BE PRESSED. WHEN A KEY IS PRESSED (EXCEPTING SHIFT, CONTROL,
REPEAT), THE ROUTINE RETURNS WITH KEY CODE IN ACCUMULATOR.
BOTH INDEX REGISTERS ARE RETAINED.

THE ROUTINE IMPLEMENTS TRUE 2-KEY ROLLOVER, KEY DEBOUNCING,
AND REPEAT TIMING. ONE RAM LOCATION IS REQUIRED, ITS INITIAL
CONTENT IS INSIGNIFICANT.

.= X'200 ; START PROGRAM AT LOCATION 0200 (HEX)

= X"1740 ; SYSTEM PORT A DATA REGISTER

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

39
io
1
42
43
4y
45
16
y7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
61
65
66
67
68
69
70
71
72

T4
75
76
77
78
79

81
82
83
8y
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

104

174
1702
1703
0032
0005

00EE

0200
0201
0202
0203
0204
0207
0209
020C
020F
0211
0214
0216
0218
021B
021D
0220
0222
0224
0227
0229
022A
022¢C
022E
022F

0231
0233
0235
0237
0239
023B
023D
023F
0241
0243
0245
0248
0244
024D
024E

0250
0252
0255
0257
025A
025C
025D
025F
0262
0264
0267
0269
026A
026D
0270
0271
0274
0277
0278
0279
027A

0278
027D
027F
0281

98

48

8A

48
ADY4117
29E0
8D4117
ADO317
093¢
8D0317
A032
A205
207802
ASEE
208202
BOOC
£931
208202
BOED
88
DOEA
F022
CA
DOE7

E6EE
ASEE
C93F
FOF8
C92E
FOFUY
C931
FOFO
A205
ASEE
208202
BOET7
207802
CA
DOF3

AGEE
BCBDO2
A92E
208202
B006
98
291F
4c7002
A93F
208202
9004
98
4c7002
BDODO3
BA
BCO201
900201
68

AA

68

60

A9C8
E901
DOFC
60

SYSPAD
USRPB

USRPBD
RPTRAT
DBCDLA
ANKBT1

ANKB:

ANKB1:
ANKB2:

ANKBY :

ANKBS:

ANKB6 :

ANKBT :

ANKBB :

ANKB9 :
ANKB10:

WAIMS:
WAIMS1:

TYA
PHA
TXA
PHA
LDA
AND
STA
LDA
ORA
STA
LDY
LDX
JSR
LDA
JSR
BCS
LDA
JSR
BCS
DEY
BNE
BEQ
DEX
BNE

PREVIOUS KEY IS NOW

INC
LDA
CMP
BEQ
CMP
BEQ
CMP
BEQ
LDX
LDA
JSR
BCS
JSR
DEX
BNE

X"iTu
X*1702
X'1703
50

5

X'EE

SYSPAD
#X'EO
SYSPAD
USRPBD
#X'3C
USRPBD
#RPTRAT
#DBCDLA
WA1IMS
ANKBT1
KEYTST
ANKBU
#X'31
KEYTST
ANKB1

ANKB1
ANKB7

ANKB2

ANKBT1
ANKBT1
#X'3F
ANKBS
#X'2E
ANKBS
#X'31
ANKBS
#DBCDLA
ANKBT1
KEYTST
ANKBS
WAIMS

ANKB6

SYSTEM PORT A DIRECTION REGISTER
USER PORT B DATA REGISTER

USER PORT B DIRECTION REGISTER
REPEAT PERIOD, MILLISECONDS
DEBOUNCE DELAY, MILLISECONDS

TEMPORARY STORAGE LOCATION ADDRESS

SAVE THE INDEX REGISTERS

3 SET UP DATA DIRECTION REGISTERS
SET SYSTEM PORT A BITS 4-0 TO INPUT

SET USER PORT B BITS 5-2 TO OUTPUT

INITIALIZE REPEAT DELAY
INITIALIZE DEBOUNCE DELAY

WAIT 1 MILLISECOND

GET KEY ADDRESS LAST DOWN

TEST IF ADDRESSED KEY STILL DOWN
JUMP IF UP

TEST STATE OF REPEAT KEY

LOOP BACK IF REPEAT KEY IS UP
DECREMENT REPEAT DELAY

LOOP BACK IF REPEAT DELAY UNEXPIRED
GO OUTPUT REPEATED CODE

DECREMENT DEBOUNCE DELAY

GO TEST KEY AGAIN IF NOT EXPIRED

RELEASED, RESUME SCAN OF KEYBOARD
; INCREMENT KEY ADDRESS TO TEST

SKIP OVER SHIFT

SKIP OVER CONTROL

SKIP OVER REPEAT

INITIALIZE DEBOUNCE DELAY
TEST STATE OF CURRENTLY ADDRESSED KEY

GO TRY NEXT KEY IF THIS ONE IS UP
WAIT 1 MILLISECOND IF DOWN
DECREMENT DEBOUNCE DELAY

GO CHECK KEY AGAIN IF NOT EXPIRED

TRANSLATE AND OUTPUT A KEY CODE

LDX
LDY
LDA
JSR
BCS
TYA
AND
JMP
LDA
JSR
BCC
TYA
JMP
LDA
TSX
LDY
STA
PLA
TAX
PLA
RTS

ANKBT1
ANKBTB, X
#X'2E
KEYTST
ANKB8

#X'1F
ANKB10
#X'3F
KEYTST
ANKB9

ANKB10
ANKBTB+80, X

X'102,X
X'102,X

3 GET BASIC ASCII CODE FROM TABLE
5 INTO INDEX Y
TEST STATE OF CONTROL KEY

SKIP AHEAD IF NOT PRESSED

CLEAR UPPER THREE BITS OF CODE IF
CONTROL PRESSED

IGNORE SHIFT AND GO RETURN

TEST STATE OF SHIFT KEY

; SKIP AHEAD IF PRESSED

; RETRIEVE PLAIN CODE FROM Y

; GO RESTORE REGISTERS AND RETURN
; FETCH SHIFTED CODE FROM TABLE

RESTORE Y FROM STACK
SAVE CHARACTER CODE IN STACK WHERE Y WAS
RESTORE X

RESTORE CHARACTER CODE IN A
RETURN

WAIT FOR ONE MILLISECOND ROUTINE

LDA
SBC
BNE
RTS

#200
#1
WATMS1

; WAIT FOR APPROXIMATELY 1 MILLISECOND

KEY STATE TEST ROUTINE

ENTER WITH ADDRESS OF KEY TO TEST IN ACCUMULATOR

LEAVES BOTH INDEX REGISTERS ALONE

SETS ANKBT1 TO ZERO IF ILLEGAL KEY ADDRESS AND TESTS KEY ZERO

Scanning is accomplished by
incrementing ANKBT1 and
calling KEYTST to look at
the state of the newly
addressed key. Note that the
shift, code and repeat keys
are specifically skipped in the
scan sequence. Also note that
another function of KEYTST
is to detect an illegal key
address and set ANKBT1 to
zero if an illegal address
occurs. Such an illegal address
would normally occur after
testing the last key in se-
quence, so the forced reset to
zero would start another
scanning cycle. If a key is
found depressed, another
loop is entered that verifies
that it is continuously de-
pressed for the debounce de-
lay interval before it is de-
clared to be really pressed.

Once a newly pressed key
has been found (or the con-
ditions for a repeated char-
acter have been satisfied), the
key code must be generated.
First, the current key address
in ANKBT1 is translated into
a plain unshifted character
code by using it as an index
into the first part of the code
table. Next, the state of the
control key is tested. If it is
down, only the lower five bits
of the translated code are
retained, and an exit is taken.
If control is up, then the shift
key is tested. If it, too, is up,
an exit is taken. If the shift
key is down, however, the
code is retranslated using the
second part of the code table.
Note that with a code like
ASCII, with logical bit pairing
(unshifted and shifted codes
differ by only one bit), the
second half of the code table
might be replaced with a little
more programming to make
the adjustments necessary on
shifted characters.

Finally, the two index
registers are restored and a
return taken. Note that some
playing around with the stack
was necessary to preserve the
character code in A while the
other registers were restored.

The key state test routine,
KEYTST, takes a key address
in A and tests if the cor-
responding key is pressed.
After checking for a valid key

address, and correcting it if
not, the lower four bits of the
address are sent to the port
bits that have the 1-of-16
column decoder connected to
them. These four port bits are
updated without affecting
any of the other bits on the
same port. After the column
address is sent out, the re-
maining three upper bits of
the key address are used to
access a '‘mask table,” which
selects one of the five signifi-
cant row input bits to test.
Then the input port that
senses the five rows is read
and tested against the mask.
The zero or nonzero result is
transferred to the carry flag,
which won’t be destroyed
during the register restore
sequence.

The code translate table is
divided into two parts. The
first is for unshifted codes;
the second is for shifted
codes. The characters are in
matrix-wise order, starting
with row 0, column 0, going
through the columns on row
0, proceeding to row 1, and
so forth, ending with row 4,
column 15. The table given is
for ASCIl on the main key-
board. The blank or oddly
marked keys are assigned to
useful ASCII control codes
such as CR for the key
marked CLR. The 0-F keys of
the auxiliary keyboard be-
come 80-8F for lowercase
and 90-9F for uppercase. The

remaining three auxiliary
keys are assigned codes AO-
A5. The table may be

changed freely to reflect the
user’s choice of convenient
control codes or to accommo-
date a completely different
character code.

Building this keyboard
interface for the KIM should
prove to be a worthwhile
one-evening project. Besides
saving a substantial amount
of money, it serves as a good
learning tool and an excellent
example of how software can
substitute for hardware, offer
a lot of extra features and
still be easy to use. The basic
concepts can be easily applied
to expanding other low-cost
microcomputer trainer
boards.m

108
109
110
m
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
14y
145
146
7
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

0282
0284
0286
0288
0284
028B
028¢C
028D
0290
0292
0295
0296
0299
029B
029C
029D
0280
0243
0246
02A7
0248
02A9
02AA
02AB
02AE
02B1
02B2
02BY4
02B5
02B6
02B7

0288
02BC

02BD
02C1
02C¢5
02C9
02¢cp
02D1
02D5
02D9
02DD
02E1
02E5
02E9
02ED
02F1
02F5
02F9
02FD
0301
0305
0309

030D
0311
0315
0319
031D
0321
0325
0329
032D
0331
0335
0339
033D
0341
0345
0349
034D
0351
0355
0359

0000

€950 KEYTST:
9004
A900
85EE
48

8A

48
AD0217
29C3
8D0217
BA
BD0201
290F
0A

0A
0D0217
800217
BD0201
4A

LA

4a

YA

AA
AD4017
3DB802
18
E900
68

AA

68

60

KEYTS1:

01020408 MSKTAB:
10

085E3A2D ANKBTB:
30393837
36353433
32311BA0
TFOA5CSB
TO6F6975
T9T4T265
T77109A1
060D5D40
3B6C6B6A
68676664
736100A2
00002000
2F2E2C6D
6E627663
78740000
80818283
84858687
88898488
8C8DBEBF

085E2A3D
30292827
26252423
22211BA3
TFOATCTB
S04F4955
59545245
575109A4
060D7D60
2BUCUBUA
4BLTHEUY
534100A5
00002000
3F3E3C4D
4E425643
58540000
90919293
94959697
98999498
9CIDIEIF

NO ERROR LINES

CMP
BCC
LDA
STA
PHA
TXA
PHA
LDA
AND
STA
TSX
LDA
AND
ASLA
ASLA
ORA
STA
LDA
LSRA
LSRA
LSRA
LSRA
TAX
LDA
AND
CLC
SBC
PLA
TAX
PLA
RTS

.BYTE
.BYTE

ASCII

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
-BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

#80
KEYTS1

ANKBT1

USRPB
#X'C3
USRPB

X'102,X
#X'0F ;

TEST IF LEGAL KEY ADDRESS
SKIP AHEAD IF SO

SET TO ZERO OTHERWISE
UPDATE ANKBT1

SAVE A ON STACK

SAVE X ON STACK

CLEAR USER PORT B BITS 2-5

RESTORE KEY ADDRESS FROM STACK

ISOLATE LOW 4 BITS OF KEY ADDRESS

; POSITION TO LINE UP WITH BITS 2-5

USRPB
USRPB
X'102,X

SYSPA
MSKTAB, X

#0

X'01,X'02,X'04,X'08
X'10

SEND TO USER PORT B WITHOUT DISTURBING
OTHER BITS

GET KEY ADDRESS BACK

RIGHT JUSTIFY HIGE 3 BITS

USE AS AN INDEX INTO MASK TABLE

GET SYSTEM PORT A STATUS

SELECT BIT TO TEST AND SET CARRY FLAG
ACCORDINGLY

RESTORE X FROM STACK

RESTORE A FROM STACK
RETURN

MASK TABLE FOR KEYTST

CHARACTER CODE TRANSLATE TABLE

X'08,X'5E,X'34,X'2D
X'30,X'39,X"'38,X'37
X'36,X'35,X'34,X'33
X'32,X'31,X'1B,X'A0
X'TF,X'0A,X'5C,X'5B
X'70,X'6F,X'69,X'75
X'79,X'74,X'72,X'65
X'77,%X'71,X'09,X' A1
X'06,X'0D,X'5D,X'40
X'3B,X'6C,X'6B,X'6A
X'68,X'67,X'66,X'64
X'73,X'61,X'00,X' A2
X'00,X'00,X'20,X'00
X'2F,X'2E,X'2C,X'6D
X'6E,X'62,X'76,X'63
X'78,X'7A,X'00,X'00
X'80,X'81,X'82,X'83
X'84,X'85,X'86,X'87
X'88,X'89,X'8A,X'8B
X'8C,X'8D,X'8E,X'8F

X'08,X'5E,X'24,X'3D
X'30,X'29,X'28,X'27
X'26,X'25,X'24,X'23
X'22,X'21,X' 1B, X' A3
X'TF,X'0A,X'7C, X' 7B
X'50,X'4F,X'49,X'55
X'59,X'54,X'52,X'45
X'57,X'51,X'09, X" Al
X'06,X'0D,X'7D, X' 60
X'2B,X'4C,X"4B, X" 4A
XT48, X' 4T, X 46, X 4k
X'53,X'41,X'00,X'A5
X'00,X'00,X'20,X'00
X'3F,X'3E,X'3C,X'4D
X'UE,X'42,X'56,X'43
X'58,X'54,X'00,X'00
X'90,X'91,X'92,X'93
X'94,X'95,X'96,X'97
X'98,X'99,X'9A,X'9B
X'9C,X'9D,X'9E, X' OF

UNSHIFTED SECTION
BS CARRET : -

1 ESC (AUX H)
EL LF BACKSLASH C
0 I U
T R E
Q HT (AUX L)
EREIS CR 3 €
L K J
G F D
A CTL
RIGHT BLANK)

(AUX SHIFT)
REPAT SP

HXEN~WT-r WECTON

SHIFT

SHIFTED SECTION

BS CARRET * =
o)

& % %

" 1 ESC (AUX H)
DEL LF VERTBAR {
P O I U
Y T R E
W Q HT

HEREIS CR }
+ L K J

(AUX L)
GRAVEACCENT

(AUX SHIFT)
REPAT SP

SHIFT

105

