M&a 19,1980

Micro .. .nolc 4

APEX-65 USER' s MANUAL

VERY PRELIMINARY

This preliminary manual and version 1.0 of APEX-65 :is being sent t

you may make some use of the K-1013 Disk Controller boar:! and
before the final distribution version is ready. Only a subset
features are provided and none of the anticipzced disk utility p

generalized file copy) are provided. The most seriovs shortcoming
is that the system "overlays" are not overlayed -fre

Instead locations 4800-5CFF in the User RAM are used o kéep-the o

Nevertheless one should be able to effectively load ar%y ~ave machine -

grams, BASIC programs, and aim
built up on your diskettes with version 1.0 of APEX-65

will be
final version so you can start building a library now.

May, 1980

text editor test -with . BX as it is.

Jimited

0 you.now so that
your disk drives
of the promised
rograms (such as
of this version

isk like they will be.

:rlays resident.
language pro-
Any files

readable. by the

10.

11.

12.

13,

‘2*

FIRST TIME POWER-UP USING APEX-65

FOLLOW THESE INSTRUCTIONS CAREFULLY!
Read the copyright notice at the front of this manual.
Read the disk handling cautions at the front of this manual.

Have you really read them? Its important!
Insure that you have thoroughly checked out: operation of the
controller according to the instructions in the controller ma

Insure that your disk controller is jumpered as follows:
A. System RAM at address $8000

B. User RAM at address $4000

C. No interrupts

Insure that you have at least 2K bytes of RAM starting at $20
COPYF program). We recommend our K-1016 RAM board addressed
2114 RAM chips from the AIM when starting external RAM at 000

If a K-1008 Visible Memory is available, jumper it for 6000-7
Power up the AIM-65. Leave the printer on.
Insert the cassette with the loader program into your recorde

be sent a ROM chip to install on the disk controller board wh
loader program in it. :

K-1013 disk
nual.

00 (used by the
at 0000 (Remove the
0.)

FFF.

r. Later you will
ich has the

Load the file called APEXL from cassette tape according to instructions in the

ATIM-65 manual. (It is recorded three times in case a bad spo
one of them unreadable.)

Insert the APEX-65 Distribution Diskette into drive 0.

Using the AIM monitor, begin execution at $0000. This is the
APEX bootstrap loader. The disk should "elick" and show acti
seconds, after which two ")' characters should appear on sepa
printer, like this:

>
>

You are now in the APEX monitor. The "M on the display is a
enter a command. (Note that the AIM monitor uses a " " for t
character allowing one to distinguish which is in control.)

FILES 0 with a carriage return.

Type The printer

t on the tape makes

address of the
vity for about two
rate lines on the

prompt for you to
he prompt

should list several

- 3 —

g
e

7

et g

file names, beginning with APEX
activity, too.

The disk
The ")" indicates readiness 4
another command.
11. If all has gone smoothly so far, insert
blank disk into drive 1 and close the door.
now make a copy of the system.
12, Type

FORMAT 1 1002
This tells the system to Format the disk in d
and give it a serial number of 1002. The ser
is arbitr%&, but every disk should have a uni
number (4 hex digits).
identify each disk.

This number is used 1
A sticker should later 1

to the label on the disk with this number for

identification (don't write on the disk with
or pencil!)., Formatting the disk erases even
on the disk (including any GUARDED files), an
writes timing information on each track, Eve
you buy "pre-formatted" diskettes, you must
every disk before using it with APEX. The pn
will prompt you with the message,

ARE YOU SURE?
Answer with YES. The disk in drive 1 will sh
for about half a minute, When the MONITOR P
is printed, type

COPYF APEX.Z _
This will copy the operating system nucleus f

drive O to drive 1.

13. 1In a like manner, type:
COPYF OVL.Z
14. Type '
COPYF SYSERRMSG,Z
15. Type

COPYF STARTUP.J

will show
o0 accept

a new

We will

rive 1,

rial number

que
0 uniquely
e applied
visual

a pen
ything

d

n if
FORMAT
inter

ow activity
ompt

rom

.....L’.....

16, Type
COPYEF COPYF
17. Type
FILES 1 ,
Verify that the first file listed is APEX.Z,
there are 5 files corresponding to the 5 file
on drive 0. If your FILES O command shows a
file called VMT, type
COPYF VMT
to copy that file to drive 1.
18, Type
CLOSE 0 1
to close drives O and 1. Remove the distribu
from drive O and store it in its envelope in
place. You now should have a duplicate disk
can
19.

the

use.,

Remove the disk from drive 1, @&nd poweré
system. Power back up the system, insert
disk into drive 0, and "re-boot" by begin
execution at £9F00 using the AIM MONITOR., Th
system should come up as it did for the distr
diskette., It might be a good idea to make ad

backup copies of the system using the same pr

new

It is only necessary to copy the system files

disks which will be used in drive 0. If you

planning to use the disk in drive 1, you may

FORMAT it and CLOSE it.

NOTE: When making copies of the system, you

FORMAT the disk and COPYF APEX.Z immediately.
is not sufficient to merely ERASE all the fil

a disk and then COPYF APEX.Z, nor can you do
other COPYF's before doing the COPYF APEX.Z,

and that
5

a safe
which you

down
the

ning

[$%]

ibution
ditional
pcedure.
onto
are only
just

must

It

es on

tion diskette

APEX-65 MONITOR

Executing the Bootstrap loader ($9FQ

causes the operating system meory image to be
into memory from disk.

executed.
- dialog is begun with the user,
called the APEX MONITOR,

This program

normally used; however, depressing ESC will ex

to the AIM monitor.
the APEX Monitor,
command entry in the APEX monitor is ">V,

Unlike the AIM Monitor, the entire command 1lin

must be typed by the user, fterminated by a

carriage return, before any action takes place

COMMAND EDITING

The following characters may be used

edit commands as they are typed:

DEL, CNTRL-H Backspacel charg

CNTRL-X Delete entire 1lin
ESC Escape to AIM Mon

F3 (while in AIM Monitor only) Escap
Carriage Return End of command

5 Comment. Any ch
"s" are ignored.
Command abbreviag
description beld
blank Seperator betwee

and arguments (7

Then a file of command
called STARTUP.J is read and all commands on i
On reaching end-of-file, an interac

The AIM monitor is n

Depressing #3 will re-ent
The Prompting character fon

0)
loaded
S

t are
tive
is

ot

it

er

to

cter.

e (start over)
itor

e to APEX.

aracters after
ion. See
‘Wc

n command
equired).

COMMANDS

There are two types of commands in A

User-Commands and Built-in commands,

are provided automatically., User commands are
added by writing an assembly-language program
defining it as a command using the built-in SA
command. In the following section, only built
will be discussed, so the term "comma

will be understood to mean "built-in command"',

commands

To improve readability and ease the
process, APEX commands consist of full words (
which suggest their mééﬁ;éé. However, any bui
command can be abbreviated using the "!" chara
Thus,

ASSIGN

ASST!

AS!
are all equivalents for the ASSIGN command. O
characters need be typed before the "!" 4o uni

identify the command you want.

ARGUMENTS

Most commands require one or more ar

besides the command keyword. These arguments
system what entities the command is to operate
For example, the command
- FORMAT 1 1002

has two arguments,
to format and the second tells what VSN (seria
to write on the disk, Arguments are usually s
by blanks (not commas!). Any number of blanks
Sometimes arguments are optional. In order t

uniform method of describing the requirements

Built-in

The first argument tells wi

PEX-65:
commands
easily
and

VE

~in

nd”

learning
usually)
Lt=in

cter.

nly enough .

quely

cuments
tell the

on,

1ich drive
]
[§

| number)
rparated

o have a

e

[

ind options

may be used.

TYPES OF ARGUMENTS

e F

for commands, the following notation is adopted to

describe the command syntax:

1. Angle Brackets, "<{", and ">»", are used to
words describing the kind bf entry required.
2. Square brackets, "[" and "I", are used to
optional parameters, which may be included or
omitted, as desired.

enclose

enclose

5. Elipses, "...", are used to indicate an arpitrary

number of repetitions of the preceeding argument(s).

4. Symbols not enclosed in angle brackets are
literal symbols which must be typed exactly as
5. Curly brackets, "{" and "}" are used to en
each of several mutually exclusive choices, on
of which must be selected.

EXAMPLE: 1If we were to use the syntax descrip
to describe some BASIC statements, then they m

look like this:

GOTO {line-numbery

shown.,.
close
e

tions above
ight

ON <§xpressioﬁ7 GOTO <ﬁinemn$%ggg?klgEgayumbef7}.;]

FOR <(variable = <expressiom A[STEP

1e File names: File names identify logically
entities on disk, and may consist of from 2 to
characters, optionally followed by a "." and a
one character file extension. The first chara

a file name must be alphabetic; the remaining
may be alphabetic, numeric, or the special cha
(underline)., The underline character is usefu
improving readability, The file extension may
alphabetic or numeric, If the "," and file ex

is omitted, a default file extension of ",C" i

<bxpressio@ﬂﬁDO

complete
12

cter of

characters
racter, " "
L for

be

tension

S

£y

assumed by the system. Examples of legal file names are:

A2
MY3RDFILE.A
HIS_STUFF.T
OLD_X_Y DATA.8
YANK
The file extension is intended to provide the

user with

an indication of the kind of file., Although the
system does not enforce any particular conventiion, the

following extensions are suggested in the interest of

uniformity:

A Assembly language source

B BASIC compiler source (planned |[for future)

g Command (User-defined)

D Data

G Graphics file (future)

H Hex file 3

J Job file (i.e., 1list of commands)

L Listing

dh Text file

X Executable code other than command

Z System file

5 ATIM BASIC file
The user may devise other codes as needed., Ngte that
if the file extension is not ".C", then it must be

given explicitly,

2., CHANNELS:

TO BE CONTINUED - - -

" is permitted.

APEX 65 DISK OPERATING SYSTEM

HARDWARE REQUIREMENTS

"system" RAM at
used).

en executed and

AIM 65, power supply, K-1013 Floppy Disk Controller with APEX
$8000, additional 8K RAM at $4000 and Visible Memory at $6000 (if
STARTUP INSTRUCTIONS

See "First Time Power-up Using APEX-65
EDITING CHARACTERS

"DEL" key or cntrl-H = BACKSPACE

"ESC" key escapes back to normal AIM 65 monitor

"F3" key escapes from AIM 65 monitor to APEX command mode

"CNTRL-X" control shifted X key deletes the entire line

"CNTRL-L" control shifted L key erases the screen if VM has be

in APEX command mode
APEX COMMANDS
SYNTAX DESCRIPTION

Angle brackets "< " and "D " enclose words describing the kind
required. Square brackets "[" and "J" enclose optional argument
brackets "$ " and "3 " enclose several choices, one of which must
Ellipses '"..." indicate that an arbitrary number of repetitions of

COMMANDS (GENERAL)

of entry

s. Curly

be selected.
the argument(s)

Built in commands may be abbreviated using "!". Thus "AS!", "ASSIG!", and
"ASSIGN" are all equivalent. User defined commands may not be abbreviated. If a
command is to have arguments, they must be separated by one or more blanks (NOT
COMMAS). Anywhere a numeric value is indicated, such as for <fROM?, (TO),
<CHANNEL), etc. below, a numeric expression can be substituted. Numbers without a
prefix are assumed to be HEXIDECIMAL; the hex prefix "$" can also be used. Decimal
values must have a "." prefix. Operators are A T U -Por. B AL

(backslash = remainder).

As an example, a legal {FROM> argument could be:
6000 -.10000 +34

The character ";" is the comment character for commands and any characters

after it are ignored.

PRESENTLY IMPLEMENTED COMMANDS

1. ASSIGN CHANNEL f(DEVICE?}f(FILES? r(DRIVE#}]} ...

2. FREE {CHANNEL) .. .

3. OPEN <DRIVE#D

- Jj—

APEX COMMANDS

EXAMPLES :
ASSIGN 6 C

Assigns channel 6 to the consloe (I.E., the keyboard on inpu
display/printer on output, or the Visible Memory CRT if VM h

ASSIGN 5 MYTEXT.T

Assigns channel 5 to a file (MYTEXT.T) on drive 0.
either '"nmew file" or "old file".

file you wanted, just do it again.
is already assigned.

The sys
If you made a mistake and

It is acceptable to assi
It is also acceptable to assign severa
same file or device. Assigning a file always positions it
data in the file. Channels 0, 1, and 2 are used by the syst
be reassigned until you have a good understanding of the sys

ASSIGN 4 C 7 YOURS.5:1

Assigns channel 4 to the console and channel 7 to a file (YO
The ".5" file extension is recommended to denote AIM 65 ROM
will recall the AIM basic command is '5").

EXAMPLE :
FREE 6 4 9

This command frees channels 6, 4, and 9 from their prior ass

EXAMPLES :
OPEN 1
OPEN1 O
Note that upon cold startup drive 0 is opened by the system.

be opened
"FORMAT", which can be performed on a closed drive (do NOT
APEX MASTER distribution diskette!!!). The OPEN/CLOSE comm
when changing diskettes or shutting down operations.

on many other systems, only entire diskettes. If you forget

before removing it from the dirve, you will get a system err
At this point you have 2 choig
i. Put the old disk back in and close it (be sure to ge

next operation on that disk.

or you will kill it), or

ii. you can repeat your command in which case you will n
If you select the latter, no harm wi

error message.
you had:

You do

t and the AIM 65
as been executed).

tem will respond
did not get the

gn a channel which
1 channels to the
to the begining of
em and should not
tem.

URS.5) on drive 1.
BASIC programs (you

ignments.

Other drives must

ORMAT the

ds are needed only
not open files, as
to close a disk
or message on your
es:
t the right one

by an open command before any disk operation on tgem except for

ot get another
11 be done unless

= P12 =

a. An assigned disk file (not freed) on the old disk and

b. The last operation on that disk was a write (not read)

program (not system program); otherwise the disk will

4. CLOSE <DRIVE#), ..
EXAMPLE :

CLOSE 1

Closes the diskette in DRIVE 1. See the OPEN command above.
be closed before removal from the drive.

5. SAVE < FILENAME}BDRIVE)]E < ENTRY)J <rro[= < Aux. FROMDJ(TO) ...

EXAMPIES:

SAVE MYFILE 300 4D5

from a user
be complete.

A diskette should

Saves a memory block (which can be used as a user command) from $0300 to $04D5
on drive 0 (or the default drive as defined by the drive command).

SAVE RALPH PROG.X: 0 400=2000 400+.100

Saves 100 (decimal) bytes of memory starting at $0400. However, if this file

is subsequently loaded by GET or executed by a PROG command, i
starting at address $2000 instead of $0400, because the "=" de
auxilliary load address AUX.FROM

6. GET KFILED[: < DRIVE}] [= <AUR.FROMD]
EXAMPLES :

GET PROG
BET MYTEXT.T=2000

b

t will be loaded

signates and

Loads the file MYTEXT.T into memory at address $2000 instead of the load

address specified when the file was saved.

7. DRIVE <DRIVE#D
EXAMPLE :

DRIVE 1

Changes the default drive to DRIVE 1. Thereafter, any file names which do not

specify a drive explicitly will reference DRIVE 1.

8. ERASE <FILE>[(DRIVE#)]...

9. GUARD FILED[KDRIVES] ...

100

11.

120

13.

FILES <{DRIVEE) ...

=

EXAMPLES:

ERASE MYDATA
ERASE PROG.C :1 YOURDATA.T HISSTUFF

EXAMPLE :
GUARD MY_GOODIES

This sets the software WRITE/ERASE/RENAME/TRUNCATE disable on
which must exist at the time of the command execution.

uncuARD FILEY[K DRIVERY ...
EXAMPLE :
UNGUARD MY GOODIES HISSTUFF:l

This removes the software WRITE/ERASE/RENAME/TRUNCATE disable
files. :

EXAMPIE:
"FILES 0
This prints the list of file names on DRIVE 0 and a summary.

command is only partially implemented and does not show all t
eventually.

STATUS
EXAMPLE :
STATUS
Shows a list of the current channel assignments and a summary

on the system drive. Note that this commands is not fully imp
present form.

FORMAT <DRIVE#)
EXAMPLE :

FORMAT 1

the named files,

from the named

Note that this
hat it will

of the file sapce
lemented in its

This command formats the disk currently in DRIVE 1, *#%#%%* CAUTION *%%*%

This command is not fully implemented and does not give you a

chance to change

your mind, so be careful! Note that GUARD nor anything else will protect your

files from an inadvertent FORMAT command!

14.

150

16.

17.

.....'gl__

AIM5 -
EXAMPLE :

AIM5
This command enters the AIM 65 BASIC ROM from APEX. To save a| file from BASIC,
type SAVE, and respond with "U" to the prompt from the AIM 65.| In response to
the APEX prompt "FILE=", enter FILE :DRIVE# » e.g. "STARTREK.5:1". To load,
respond with "U" and a filename to the BASIC prompt after a load command. To
exit BASIC, depress the ESC key and then the "F3" key to get back to APEX.
AIME
EXAMPLE:

AIME
This command enters the AIM 65 EDITOR from APEX. You may save |EDITOR files on
disk by responding as in BASIC above to the AIM 65 "L'" and "R" commands. After
exiting to the AIM 65 monitor, "F3" puts you back into APEX.
SET ¢ FROM)E(VALUE)} { < smmc)} ..
EXAMPLE :

SET 400 FF
Sets memory address $0400 to S$FF.’

SET 202D .65 20 $21 "ABC" 0 0
Sets $202D to $41 (65 decimal), $202E to $20, $202F to $21, $2030 through $2032
to $41, $42, $43, and $2033 and $2034 to $00. '
puMP <FROMD[KTOS]

EXAMPLE :

DUMP 100
Will display the contents of location $0100 through $0107 in H
Non-printable ASCII characters (including blanks) will be chan
the ASCII part of the dump.
but can be altered.

DUMP 100 1000

Dumps memory from $0100 to $1007.

X and ASCII.

ed into "." on

The default number of bytes dumped per line is 8

18.

19.

20.

21.

UNPROTECT
EXAMPLE :
UNPROTECT

This command removes the write protect from system-reserved m
this command is not fully implemented. The write protect is

emory. Note ...
not implemented

except for reading from disk to memoyr and from the SET command. UNPROTECT

allows you to set system-reserved memory which will otherwise
message. The write protect hardware is not used.

BEGINOF { CHANNEL) ...
EXAMPLE :

BEGINOF 6 7

give an error

This command positions the files associated with channels 6 and 7 to the

begining-of-data in the file.

ENDOF ¢ CHANNEL) ...
EXAMPLE ¢

ENDOF 9
T£i§ coﬁménd positions the files associated with channel 9 to
in the file.
GO <ADDRESS)
EXAMPLE :

GO 1000
This starts execution of a program at address $1000. This co

implemented. Note that entry to the program is made by a JSR
a RTS will provide a simple way to retrun to APEX monitor.

the end-of-data

mmand is not fully
so that exectuing

APEX
ASSEMBLY LANGUAGE INTERFACE GUIDE

=17 —

APEX ASSEMBLY LANGUAGE INTERFACE GUIDE

INTRODUCTION

This section discusses methods by wh
user-written assembly language programs may
communicate with the outside world through t
i@ﬁX-65 operating system, and take advantage
utility functions provided by the operating
By using the functions described here, the
assembly-language programmer can greatly red
program development time and effort.

Most operating systems provide a deg
support for assembly-language programming by
providing the addresses of entry points to ¢
systems subroutines which the user can call
perform I-0 or other functions. APEX-65 doe
do this, but instead provides a much more po
tool called the Supervisor Call . (SVC). SVC
are usually found only on large mainframe co
and some minis,

In the following discussion, an unde
of 6502 assembly language programming is pre

HOW SVCs WORK

A Supervisor call (SVC) consists of
($00) instruction followed by a one-byte num
which tells the Supervisor what function is
These SVC numbers are listed in Table I . Y
think of the SVC as a two-byte subroutine ca
the second byte tells which pre-defined syst
subroutine is to be called.

In order to use SVCs, a user program

first enable the Supervisor by setting the S

enable flag, SVCENB, at address $00A0, to $8

ich

he
of
system,

uce
ree of

ertain
upon to
s not
werful
's

mputers

rstanding
sumed ,

a BRK

ber
desired.
ou may
11, where

°SUOTSIB A

_;Hupma uT pepTaoad oq TITM SOAS oaow Luel °asTT Axeutwtisad ® ST STUJ *TLONx

- 18-

(Tetoeds) xfx‘y 1v¢x , U0TIoUNg JISATIC TOIIUOD O-I (qo$) <1

Xfan‘an - , SIaIIng Q-1 weashs autrIo((Do) <t

A x*x‘9n‘on TeWTos(0% QN UT anTe)p 8poouy (20$) 1L

X x‘xfon‘on X8 01 Of UT anTejp apoouy (vo$) oL

x0‘véxon Snéx‘x A . O UT anTep TEUTOS(9P0oa(&

x0‘v*x‘on Snxx 0N UT anTep XoH 8pooa(8
L (uwinyex e3eTaIEO ON)

= i1k ' (x) Teuueyp uo Furazs andang L

= In‘x‘x (x) Teuueyp oz sulr 3unding 9

AD*Rfx‘y anx (x) Teuueyp woxy surtT anduf e

- VX , (x) Teuueyp o3 e3Lq gndang ¥

IOy % (¥)Teuueyp woay o3£q qndur €

- - Touueyo 0% oFessaw sutTutr andang 2

*Teuuryo 04 andqno a3essaou

= - SUTTUT /M JOQTUO| XHJY 0% UInlay L

- = , I0QTUOY ALY 0% UIngay 0

*SHoy peudangey *s5ey sseq : UoT4d [d088(] F OAS
i (5048)

SNOTIONANL YIGWAN TTIVD HOSIAHIINS
T 979Vl :

(A (

-1%-

Failure to enable the Supervisor will result
the user program simply returning to the MON
at the first intended SVC, Note that the
SVCENB flag must be set to $80 by the user-p

in
ITOR

rogram,

and will not work if set by the SET command
the MONITOR.

Usually some typé of argument is pas
the Supervisor and/or re#urned to the user p
Arguments may be passed in three ways:

1. In the 6502 registers:

2, In a set of "pseudo-registers" in

3. In-line, following the SVC,
Although almost all of the SVCs communicate
the first two methods, the first SVC we shal
uses the third method, inline arguments.

DISPLAYING TEXT MESSAGES USING SVC 2

7 The first use of SVCs we will examin
displaying a message (outputting a string of
on a channel, This function is so essential
deserves our first attention. It is best il

by an example,
SVC EXAMPLE #1: OUTPUT INLINE MESSAGE TO CHA

PROBLEM: Write a program to display the mess
"HELLO THERE." on the console.,

SOLUTION:

SVCENB = $A0 3 ADDRESS OF SVC ENABLE F
GREET LDA #$80
STA SVCENB ;ENABLE SVCS

(Continued...)

from
sed to
rogram,
page O;

using only
1 examine

e is
bytes)
that it
lustrated

NNEL,

age

LAG

— D s

BRK s SVC...

.BYTE 2 3 ...#2 = INLINE ME

.BYTE 2 5 MESSAGE TO GO TO

.BYTE '"HELLO THERE,

.BYTE 0 ;3 TERMINATOR OF MES

RTS . RETURN TO MONITOR
EXPTANATION:

The program begins by enabling SVCs

2]

SSAGE
CHANNEL, 2

SAGE AND SVC

OR CALLER

(Note:

once enabled, SVCs remain enabled until disabled by

writing a $00 into SVCENB. It is advisable

to

disable SVCs when not needed, although our example

program did not do this,)

The BRK instruction

together with the first .BYTE 2 instruction form

the SVC., According to Table |

and the detailed
description of SVC 2, the Supervisor expects

to find

in-line parameters giving the channel and message.,

The second .BYTE 2 instruction therefore is
- channel number over which the message is to
output. Channel 2 was selected because it i
assigned by default to the console display.

course, it could be assigned to a file or ot

device.,
message is defined. The message can be any
of bytes terminated by a $00. This $00 alsd
the arguments passed to the Supervisor. The
will output the message over channel 2 and +
return control to the RTS instruction. Note
Supervisor will restore all registers befors
returning control to the user program,
big benefit during debugging since you may f
place SVC 2 inline-message outputs anywhere
program without fear of side-effects to regi
For all SVCs, only the registers indicated o
all other registers are restored.

Note that the SVC 2 function does 109

any carriage return automatically;

After the channel is designated, the

This

if you w

the
be

LS

of
her

number
terminates
supervisor
hen
that the

is a
reely
in your
sters.
hange

t output
ant to

output control characters, you

explicitily in the message, as
SVC EXAMPLE #2: INLINE MESSAGE

PROBLEM: Repeat example 1 but

before the message.

must include

illustrated

ON A NEW LIN

output a car

them

below,

riage return

SOLUTION:
SVCENB = $A0
;
GREET IDA #$80
STA SVCENB ; ENABLE SVCS
‘BRK . | 5. SVC... | ‘
BYTE 2 ;...#2 = INLINE MESSAGE
.BYTE 2 ; CHANNEL 2
<BYTE 13 3 13=$0D= ASCII CARRIAGE RETURN
.BYTE '"HELLO THERE.,'
<BYTE 0 ; TERMINATOR
RTS
A final caution on SVC 2 usage =--= the most

common errors are (1) forgetting to enable

q

-

VCs3;

(2) Forgetting the channel argument; (3) Forgetting

the zero-byte terminator,

BASSING ARGUMENTS TO SUPERVISOR IN 6502 REGISTERS

The above examples passed arguments t

o the

Supervisor in-line. ' A much more common method of

parameter-passing ié the use of 6502 register

SVC EXAMPLE 3: CHARACTER INPUT-OUTPUT
PROBLEM: Write a program which reads a streq
from channel 5 until a "," character is encou
or End-of-File is encodﬁgpred. Display a mes

indicating which of these two events happened

Assume channel 5 has been previously assigned td
a valid file or device,
SOLUTION:
SVCENB = $40
;
STRMIN IDA #$80
STA SVCENB ; ENABLE SVCS
NEXTCH 1IDX #5 ; CHANNEL 5
BRK i BVC.ww "
JBYTE 3 3 eee#3 = INPUT BYTE FRO&TCHANNEL(X)
BCS EOFENC 3 BRANCH IF END-OF-FILE ENCOUNTERED
CMP #', ; ELSE SEE IF "." ENCOUTNERED
BNE NEXTCH ; IF NOT, KEEP LOOKING
BRK ; ELSE svc...
.BYTE 2 3 ee.#2 = OUTPUT INLINE MESSAGE

(Continued...)

Se

m of bytes
ntered,
sage

~2 32—

.BYTE 2 ; ON CHANNEL 2
.BYTE 13 ; CR
.BYTE th, " ENCOUNTERED.
.BYTE 0 s TERMINATOR
RTS F e
EOFENC BRK : BVU4.s
.BYTE g ; #2 = OUTPUT INLINE| MESSAGE
JBYTE 2 ; ON CHANNEL 2
.BYTE 13 s CR
.BYTE 'E-0-F ENCOUNTERED."*
.BYTE 0 ; TERMINATOR
RTS
EXPLANATIQN:

*This programiilluStrates a number of aspects
of SVC usage. The line 1abelled NEXTCH is used to
load the channel number into X, which is in turn
passed to the Supervisor. Table | and the
descriptions of each SVC tell what registers
are needed for passing arguments to the Supervisor,
and which registers are used to return results tb the
Vcalling program, Here we learn that the SVC|3 function
returns the character read from the channel in the A
register, and sets the Carry flag only if End-of-File
was encountered. End-of-File is an important concept.
The EOF flag (CY) is set only if no more characters
can be read from the channel., This occurs when

CNTRL-Z is entered from the keyboard (assuming that

-_Z\l"

channel 5 was assigned to the keyboard), or
when no data remains in the file (assuming channel
5 was assigned to a file)., You should always
take care to check for End-of-File when doing

input, so that your programs are device-independent

and can therefore read from keyboard, file or
another device with equal ease, In our example,

once we have ascertained that EOF was not encountered,
we check to see if the "," character was encountered.
If not, we read another character. The SVC 2

is used to display an inline message once one of the

two possible terminating conditions is reached.

WHY USE SVCS?

Before examining SVC usage in more detail,
lets review why SVCs are preferred to System
Subroutine calls:

1. SVCs are address-independent., This means

that future system upgrades which change addresses of
system routines will not adversely affect programs

That

using SVCs. It also means that, for example,ﬂa
program on an AIM computer with APEX at $8000 can
be moved to a KIM system with APEX at $EO00O land run
without any modification, This would be impossible
using subroutine calls.

2, SVCs use less memory., Two bytes is

cheaper than three!

%3, SVCs handle registers in a uniform fashion,

—~—

- s

Registers are preserved by the Supervisor ex

returning values to the calling program,
a lot of unnecessary saving and restoring of

4, SVCs are easier to debug.;llf an

is detected by the supervisor, the prégram W
abort and APEX will display the exact addres
offending SVC, the values of all registers 2
time of the SVC, and an error message explai
difficulty. More than 50 error messages are
defined to isolate errors. Illegal or unimp

SVCs are also trapped in the same manner.

PASSING ARGUMENTS TO SUPERVISOR IN PSEUDO-RE

Th

cept when
is saves
registers,
error

i1l

s of the

t the

ning the

lemented

GISTERS

.Often addresses or other 16=bit info
needs to be passed to Supervisor for process
function. The 8-bit 6502 registers are not
for this purpose, so a set of eight pseudo-1
are provided in page zero, as shown in figury
"Registers" UO through-U6 are 16 bits wide;
24 bits wide and is dedicated for file posit
as we shall see later, Note that if SVCs an
enabled, these pseudo-registers are not used
any purpose whatsoever by the system and may

as ordinary memory. For many SVCs, the Suy

pseudo registers. Most I-O functions, for ¢

»

B

expects to find certain values passed in the

rmation
ing a
adequate
egisters
e | .
U7 is
ioning,

e not

| for-
r be used

rervisor

»xample,

-26-

Pseved- RegseERS

ADIR, Low BYIE gy BYTE

0000 : vo
0002 | U
Bo0Y | U2
000 | U3
eO008 | v &
6609 | Vs
00 C | Y
OO00E | :

"F’T%JUY‘?—

)

pass the address of the input buffer in U5
address of the output buffer in U6. The ex
requirements are explained with each SVC de
Certain SVC functions also return informati
pseudo-reégisters. For example, SVC 12 ($0C
US and U6 to the addresses of the default s
input and output buffers, respectively,

TEXT PROCESSING

A large class of problems deal with
output of strings or lines of characters., S
The 6502 Ind
addressing mode is utilized heavily in these
applications. In general, U5 (for input) or
U6 (for output) addresses the start of a buf
containing the current line of interest, and
Y register is used to address the particulan
of interest within the line. Normally the d
system line buffers are used, but the user m
select other buffers if desired. An example
introduce text-processing concepts.

SVCs are provided for support.

3

SVC EXAMPLE 4: LINE-ORIENTED I-O

PROBLEM

text from channel 5 to channel 6 until End-o
is reached.,

Write a program to copy lines of i

SOLUTION:

SVCENB = $A0

Us = $oA ;s PSEUDO REG. U5
U6 s $0C ; PSEUDO REG. U6
COPY56 1IDA #8$80

(Continued,..)

or the
act
scription,
on in the
) sets
ystem

input and
everal
irect, Y

fer

the
character
efault
ay

will help

nput
f-File

= 7. B

ENABLE SVCS

STA SVCENB :

BRK s SV .

.BYTE 12 ; 12 = SET U5,U6 TO SYS. BUFS.
NEXT LDX #5 ; CHANNEL 5 FOR INPUT

. BRK s SVC... ‘

.BYTE 5 3 +..5 = INPUT LINE

BCS EOFENC ; BRANCH IF END~OF-FILE

TAY ; ELSE SAVE CHAR. COUNT IN Y...

TAX 5 «..AND X TOO
LOOP DA (US),Y ; COPY INPUT BUF. CONTENTS...

STA (U6),Y ; +..TO OUTPUT RBUF.

DEY

BPL TOOP 5 «..UNTIL WHOLE LINE COPIED

TXA ; THEN RECALL CHAR. COUNT

TAY 3 «asT0 Y

BRK ; SVC...

.BYTE 6 5 «e.6 = OUTPUT| LINE

JMP NEXT ; REPEAT FOR NEXT LINE

 EOFENC RTS ; RETURN ON END+OF-FILE

EXPLANATION:

Since this program is substantially more complex
than would be necessary had we used the byteroriented
SVCs already illustrated, you might well wonder why

line-oriented SVCs were used instead,

The

eason is that

inputting an entire line allows the user to use the
Backspace (Del), CNTRL-X, etc. keys to edit the line,
assuming channel 5 is assigned to the Console (keyboard).

SVC 3 returns control to the calling program
each time a key is pressed;
the Supervisor until an entire line has been

immediately

SVC 5 does not return from

installed

in the buffer (and possibly was edited using Backspace,

etc,.),

The example program starts by setting up U5 and
U6 as buffer addresses, using the SVC 12 fundtion.

-2 §—

An SVC 5 is used to input a line into the bu
by U5, and End-of-File is checked. Note tha
SVC 5 function returns the character count i
A register and the Y register as 0 (therefor
to index the first character of the line).
input line is copied character by character
output buffer, and the line is output over c
Note that the SVC 6 function requires the ch
count to be passed in the Y register.
An alternative method to copying the
chéracter—by-character would be to simply co
contents of U5 to U6 and then issue an SVC 6
however, you will want to perform some funct
input rather than just copying it to another
anyway, so the method illustrated is more ve

NUMERIC I-O USING SVCS

You may be surprised to. note that no
provided to directly input or output numeric
Instead, a combination of two SVCs must be u
perform this function. This turns out to be
versatile since you can then input or output

from memory as well as channels.

t the

n the

e ready
The

into the
hannel 6,
aracter

buffer
py the
. Normally,
ion on the
channel

rsatile,

SVCs are
values,
sed to
more

N

values

ffer addressed

All I-0 is assumed to consist of ASC]
for purposes of this discussion,

[T characters
Decoding is the
operation of scanningna string of numeric characters

and returning the value they represent (in binary).
Ehcdding is the inverse function, which accey
binary value and generates a string of ASCII
The 1
examples will illustrate these operations.

pts a
characters

in a buffer which represent its value. 'ollowing

SVC EXAMPLE 5: READ HEXADECIMATL INPUT

= B0

PROBLEM: Write a subroutine to read a hexad

ecimal
number from channel 5 and return its value in

Pseudo-register U0 (low byte in $0000, high byte

in $0001).

SOLUTION:

SVCENB = $A0

:

HEXIN IDA #%$80
STA SVCENB : ENABLE SVCS
BRK : SVC...
.BYTE 12 s 12 = SELECT SY
IDX #5 ; CHANNEL 5
BRK s SVC...
.BYTE 5 ; INPUT LINE ON
BRK s SVC...
.BYTE 8 i ...8 = DECODE
RTS |

EXPLANATION

The enabling of SVCs and selection of

buffers should be familiar. In practice, the

S. BUFS.

CHANNEL 5

HEX VALUE TO UO

default
se

two functions would only be performed once during

program initialization, and would probably nc
of the HEXIN routine, making it even simpler,
SVC 5 function inputs a line into the buffer
by U5, as seen before., The SVC 8 function se
the buffer (starting with the character point
Y, which is O in our case since SVC § always
¥=0) for a hex value. Note that any number

t be part
The

addressed

arches

ed to by

returns

of

leading blanks may preceed the number, and that the

number may have any number of characters, so
the represented value does not exceed $FFFF,
example, "OOD7 W, ® oD7 ", and "D7 " will

long as
For
all

e B

be acceptable, The SVC 8 function keeps sca
the number until a non-hex character is enco

2B7,2 " will return UQ
When control is returned to the calling prog

Thus, for example, "

T register points to the delimiter (for exam
comma above), and the A register holds the 4
encountered. This can be very useful when s
In additi
Carry flag is returned to the caller as a "v

data encountered" flag,

a line containing several values.

Although our sample
routine did not include it, it is easy to ch
the CY and if not set, then no valid hex dig
were in-the line prior to the delimiter (or
end-of-line), Note that if end-of-line is e
the A register will contain $00.

nning
untered,
= $02B7.
ram, the
ple, the
elimiter
canning
on, the
alid

eck
1ts

1

ncountered,

TO BE CONTINUED - - -

APEX-65 INTERIM MEMORY MAP
NOTE: This is a pre-release version of APEX-65,
Not all features have been implemented.

Address
$0000-0010

$00A0

$00A1=00FF
$0100-01FF
$0200-4800
$4800-53FF
$5400-5BFF

$5C00-5CFF

$5D00-5FFF

$6000-7FFF
$8000-85FF
$8600-9EFF
$9F00-9FEP
$9FPG-OFFF
$AO00-FFFF

Description

Pseudo-registers U0 through U7,
if SVCs are enabled, otherwise,

Used only
user-RAM,

SVCENB. SVC-enable flag, settable by user
programs, See Assembly Language Interface
guide,

Page O system-reserved RAM, and
Stack and AIM RAM,
User RAM, (COPYF utility uses §

Interim System Ram for "overlay

Ul

Interim Visible\Memory'Terminal
driver routines, if supplied.,

AIM RAM,

2000-2900)

1
®

(vMT)

APEX default I-0 line buffers(input buffer

at $5000-5C52, output buffer at

Optional DMA buffers if system]

5053),

s modified

to allow more than three simultaneous

files to be active. Otherwise,

Visible memory board, if VMT is

unused .

used,

Protected DMA buffers for system,

Protected APEX-65 system nucleus
Bootstrap loader ROM,
Disk Controller I-0 ports.
AIM-65 ROMs,

