o, v s e
§.qu) <° %, ° <
A q PEIRAR N CEE. N
\ Q G OO G 5 %
s ¢ 2o A
R + 9 S T Al <3 e
- 2
%
’ A e %
Micro-AUDLE
« '
S for the
B #x
RSN
(N Q- ®
S ;
Q0 ",
000"
e 8502
[N
Q‘C’,oqg :
N2
QA
: Ao
o oy o > SRR
) “?\b‘%-. 'ﬁzz’b u‘*}. = B SN "® %*@ N
Ao N W <% o
O .. £V6 o > 9
AP0% . Ve 3
N PR SACTEL ; <
- e, & o ¢
% Q’b\q,Q-'. 'L{ZQQ?‘ A S S E M B L E R Q}\Q @«’G‘e" }.&Q\Qﬂb Q&;\}Q
‘?:)‘-‘ 0‘2%"’)06'. Q) Q_?% N N C}‘%\?'
% Qg‘;ﬁo;_ < %02\\@ 5 bg@g@% p
7, o o 1 A,

% % e | DISASSEMBLER |ob Sore W o
Q 0% %() . Q‘\:L LN &% N &‘& C;e'
&R s ool PCR UG
B @, ngog bf:"'ﬂl‘?‘* S R

2.
et % o X N &S
% % o EDITOR o Lot Oe®
>, g % * 2O 5 »
& \S;A% ® o> " {\ (\\). Cﬁ;
dx%(o«.»’ * ¢ \'pv»: b o O
. @’ 0__» o 0 \3‘0." rngewc 'o?’ ~ A ,_.;, 65%6 W
o5 + . & oS0t Tl B N 1 N
%% 2a s e oS0, Beeh ™ OO NS
d;)'? 1 Ly - 5 % e QQQ”\Q’.' T %QQ 'LG - - O G‘?’\\
o .
¥ % »ﬁ{ff}é 2% 2 = Q()Q‘gqﬁ‘;') . fﬁﬁ%} A0 By Peter Jennings .1:5\‘“
& %j PN % SCros § Micro-Ware Ltd
AN ? @ ANV S\ -
7, A EERY) PN O e AR
% SN Nl T 5
A e Tac S Q w9 W 40,
Lt 9 kY ENCHRIIF I 40"
s «ﬁoé}, % 2N @w@ Q\o", Q’,L{\" - ¢0 4,40 e
R, o e T, RN SNE A XA
%3, ‘?%{v,\ 2. B % Q%Q" & B ¢ "7’0@0 X
RN = & o N0 el © AR &
L B0 oo O . fgtea CAIRNOXCY
n Dbz < 20 Tt A%, A5

Micro-ADE

for the

5502

ASSEMBLER

DISASSEMBLER

EDITOR

By Peter R. Jemnings

© Copyright, 1977. All rights reserved.

Micro-Ware Ltd 27rrsrerooxe roap, TORONTO, ONTARIO, CANADA. MAE 2.2.

TABLE OF CONTENTS

System Description
System Entry

THE

THE

EDITOR

Command Mode

Editor Commands
ADD
CLEAR
DELETE
END
FIX
INSERT
LEST
MOVE
NUMBER
WHERE

Cassette Commands
GET
SAVE
REPRODUCE

Other Commands
BLOCKMOVE
PAGE
EXECUTE

ASSEMBLER
Source Format
Data Format

The LABEL

The
The
The
The
Assembler

INSTRUCTION

ADDRESS MODE

ARGUMENT

COMMENT

Operating Instructions

Object Format
Symbol Table

The TABLE Command
Assembler Entry Addresses

16
16
17

18
19
19

21
23
24
26
26
28
28
29
30

TABLE OF CONTENTS (Continued)

THE DISASSEMBLER

The DISASSEMBLE Command
EXAMPLE PROGRAM
Setting up the Micro-ADE System

The Jump Table

Terminal Devices

Page 17 References

Memory Allocation

CASSETTE CONTROL
Assembling with Manual Cassette Control

INPUT AND OUTPUT ROUTINES
HEX DUMP OF MICRO-ADE
ERROR MESSAGES

MICRO-ADE COMMANDS

SYSTEM DESCRIPTION

The Micro-ADE system 1is designed for wuse with any 6502
microcomputer and consists of three major programs as well as a
number of wutility programs. The major programs are an
assembler, a disassembler, and a text editor.

The assembler is used to create machine executable code for the
6502 from a symbolic input source program. Small programs can
be created and tested directly in memory. Larger programs may
be written using cassette tapes for source input and object
output.

The disassembler is used to list executable 6502 machine cocde
in the symbolic assembler source format. Symbols are generated
if they are defined in the symbol table.

The text editor is used to create source programs in the format
required for the assembler. It contains the necessary routines
for easy manipulation of text data in memory or from cassette
files.

The minimum system configuration for full use of all Micro-ADE
features consists of a 6502 CPU, 8K of random access memory, 2
cassette recorders with start/stop control, and an ASCII
input/output device. It is possible to use all parts of the
system in a restricted way with 1less memory and a single
manually operated cassette recorder.

Scurce

| Micro-ADE

Symbol Object.
Table

SYSTEM ENTRY

Before executing the program, the NMI vector ($17FA, $17FB on
the KIM) may be initialized to return control to the Micro-ADE
editor at the warm-start entry point ($2031 in version 1.0) so
that a hardware interrupt such as the [ST] key on the KIM, may
be used to break the program.

Initial entry into the Micro-ADE system is made via the
cold-start entry point {Address $2000 in version 1.0). A1l
hexadecimal values will be preceded by a dollar sign throughout
this manual. The editor CLEAR command 1is automatically
executed, and the system will prompt "NEW?". If you respond
with Y or YES, the source workspace will be cleared and
formatted for new data entry. Micro-ADE will indicate this
condition by displaying "CLEAR", and will then issue the ready
prompt (-=).

KIM

0000 23 206060

2000 D8 G

NEW?YES (1)

CLEAR

{r) will be used to indicate the carriage return throughout
this manual.

You are now in the editor command mode. Any valid command may
be entered.

At this point, if you are using cassette files, the input tape
should be loaded onto cassette 1, and it should be turned on in
PLAY position. A blank tape should be loaded onto cassette 2,
and it should be turned on in RECORD position. Always check
your tape reccorders for proper operation before continuing
further.

THE EDITOR

EDITOR COMMAND MODE

The editor and command mode for the Micro-ADE system indicates
that it is ready to accept commands by printing a hyphen (-).
Commands must begin in the first column after this prompt.
They may be abbreviated to a single letter, or a single word of
any length may be wused. The first argument may begin
immediately at the end of the command unless it is a
hexadecimal argument beginning with one of the letters A
through F. One or more spaces must separate these arguments
from the GET, SAVE, XEQ, or REPRODUCE command. The second and
third arguments are delimited by commas. Finally, the command
input string must be terminated with a carriage return. The
following are valid commands:

-L10(r)
-LIST10(r)

o], 0010(r)
-L 10,30(r)

DEL and ctl-E

Command lines may be edited using the DEL (NUL or RUBOUT) key
to delete the last character entered. The ctl-E character also
operates in command mode to allow you to copy the previously
entered command again. For example, if you have entered "-SAVE
A3,2000,3000(r)", and the operation has been carried out, Yyou
may now type c¢tl-E to the input prompt, and the command will be
returned to the input buffer, It is possible to delete parts
of the command before typing RETURN to begin execution. This
feature 1is particularly useful for making multiple copies of a
file.

EDITOR COMMANDS
A The ADD Command

The ADD command is used to add new lines to the end of the
source file. Upon typing ADD to the editor command prompt,
Micro-ADE will respond with the line number of the next new
line of source. You may now type data into workspace,
terminating each line with a carriage return. After each line,
Micro-ADE will prompt with the line number of the next line to
be added. When you have completed your final 1line, and
terminated it with a carriage return, respond to the next new
line prompt with the Micro-ADE end of data character @ (340),
and a carriage return.

-ADD(r)

0110: THIS IS A NEW LINE(r)

0120: THIS IS THE NEXT NEW LINE(r)
0130: é(r)

C The CLEAR Command

The CLEAR command may be used at any time to delete all the
data 1in the workspace and format it for new data. Upon typing
CLEAR to the command prompt, Micro-ADE will respond with the
question "NEW?". This prevents the accidental clearing of the
workspace by a typing error. If you respond Y or YES to the
prompt, the workspace will be cleared of all data and prepared
for new data entry. It is usually a good idea to <clear the
workspace before 1loading a new file from cassette. When the
Micro-ADE system is entered from the cold-start entry point,
the CLEAR command is automatically executed.

~-CLEAR()
NEW?YES(r)
CLEAR

D The DELETE Command

The DELETE command is used to delete one or more consecutive
lines of source. Typing D i causes the editor to delete the
line with number i. Typing D i,j causes the editor to delete
the block of lines beginning with line i and ending with line

i If there are a large number of lines to be deleted, this
command may require several seconds to execute. When the
deletion is complete, the editor ready prompt will be
displayed.

-DELETE 20,40(r)

E The END command

The END command is used to determine how much memory of the
allocated source workspace is remaining. Micro-ADE responds to
the END command with the absolute address and line number of
the last line of source.

~END(r)
2FCA 1990

F The FIX Command

The FIX command is used to fix or modify a single 1line and
insert new lines immediately after it. After typing FIX i,
Micro-ADE will print line i and prompt with the 1line number.
You may now type in a new line, or you may edit the existing
line with the ctl-E and DEL keys.

The ctl~E character causes the editor to copy the existing line
from the current character to the end of the 1line. A RETURN
may then be used to end the edit sequence. If there is nothing
to be changed in the line you are FIXing, type c¢tl-E and RETURN
tc leave the line unchanged.

The DEL key causes a backspace of the input buffer over the
previous character. Deleted characters may be returned again
by use of the ecti-E.

‘For example, to replace the third character from the end of a
line, one may type ctl-E,DEL,DEL,DEL, the new character, ctl-E,
RETURN. The REPEAT key available on many terminals makes this
a very fast method of line editing.

After you have typed RETURN, Micro-ADE will prompt with a new
line number one higher than the previous one. You may continue
to insert new lines at this point until you have completed your
modification of the source. When you are completely finished

= 10 =

with your editing, type the end of data character (8) and a
RETURN. The NUMBER command should be used as soon as possible
after inserting new lines.

-FIX 2500(r)

2500: LINE 2410

2500: (ctl~E)LINE 2410(DEL)(DEL)(DEL)S(ctl-E)(r)
2501: @(r)

-L 2500(r)

2500: LINE 2500

I The INSERT Command

The INSERT command 1is wused ¢to insert one to nine new lines
between two existing lines. Upon typing INSERT i, Micro-ADE
will respond with a new line number equal to i-§. You may now
enter new data in the space immediately before 1line 1,
terminating each new 1line with a carriage return. When you
have inserted as many lines as you wish, enter the end of data
character (€), followed by RETURN. The NUMBER command should
be executed as soon as possible after new 1lines have been
inserted. ‘

If, due to a previous FIX or INSERT, there is not a space of
nine lines at the point where you wish to insert a new line, it
is necessary to renumber before executing the INSERT command.

~-INSERT 100(r)

0091: AN INSERTED LINE(r)
00G2: AND ONE MORE(r)
0093: &(r)

-NUMBER(r)

L The LIST Command

The LIST command is used to display the file at the terminal as
it has been entered. LIST may have 0,1, or 2 parameters, LIST
alone causes Micro-ADE to list the entire file., L i, causes
the editor to list only line number i, and Li,j causes the
editor to 1list 1line i and 3ll subsequent lines up to and
including line j. The BREAK key may be used at any time to
interrupt the 1listing procedure and return you to the command
prompt.

= T, =

-LIST 300,310(r)
300: THIS IS LINE 300
310: THIS IS LINE 310

M The MOVE Command

The MOVE command is used to change the order of existing 1lines
by moving one or more of them to another location. If used
with two parameters, MOVE i,i, the single line j will be moved
to a new position immediately before 1line 1i. If three
parameters are used (M i,j,k), the block of 1lines beginning
with 1line j and ending with 1line k will be moved to a new
location immediately before line 1i.

If a large block of lines is being moved, this command may take
a few seconds to execute. All of the inserted 1lines will be
numbered 0000 after the move. It 1is necessary to use the
NUMBER command as soon as possible after a move to renumber the
lines in proper sequential order,

-L 10,40(r)

0010: TEN

0020: TWENTY
0030: THIRTY
0040: FORTY
-MOVE 20,30,40(r)
-LIST 10,%0(r)

0010: TEN
0000: THIRTY
6000: FORTY

0020: TWENTY
=N(r)

- 12 -

N The NUMBER Command

The NUMBER command may be used at any time to renumber 2all
lines in the workspace in a sequence of tens, starting at line
number 0010. This command should always be wused as soon as
possible after executing the INSERT, FIX, or MOVE commands to
prevent accidental errors which may occur from having two lines
with the same number. ¢

W The WHERE Command

The WHERE command is used to locate the absolute address of a
particular line. This may be necessary to correct errors
caused by a program bug, or a bad cassette read, if the editor
cannot follow the non-asc!i characters created, or if it is
necessary to delete a line with the end of file character in
it.

=WHERE 30(r)
210A 0030: THIS IS LINE 30

= B% -

CASSETTE COMMANDS
G The GET Command

The GET command is wused ¢to 1load a file into memory from
cassette tape. It must be followed by the hexadecimal
identification of the file.

When Micro-ADE receives a GET command it switches on the input
cassette recorder (cassette 1) using the remote input jack.
The recorder should first be prepared in PLAY position with the
appropriate cassette loaded and cued.

Read Status Indicator

As the read operation begins, the right hand digit of the KIM
LED display will show the status of the read. When searching
between data files, the random cassette noise will be displayed
as a slowly oscillating set of random characters, If there 1is
data present, Dbut it is not being loaded, the display will be
less bright and show an 8. When the cassette read software
detects the stream of sync characters at the beginning of the
data block, it will display the "sync locked" pattern (Y W
Finally, as the data is being loaded into memory, it will
display the "data loading™ pattern (&). If the display is
motionless or blank when the GET command is first executed, the
cassette recorder 1is not working properly. By watching the
patterns on the LED it is usually possible to judge the status
of the cassette read operation, and to detect the source of
possible errors. :

False ID

If an attempt is made to read a cassette file with an incorrect
ID, the false ID read from the tape will be typed at the
terminal for your information. Micro-ADE will then ignore the
data, and continue to search for the correct block.

Multiple Files

Provision has been made to automatically read multiple files
from the same cassette, provided that they were written with
sequential identifiers. The command GET A1,Al4(r) will cause
Micro-ADE to search for file A1, load it, search for A2, load
it, and so on until A4 has been loaded into memory. If a read
error of any kind occurs during a cassette load, the read
routine reverts to the search operation. This allows 7you ¢to
rewind the cassette and make a second read attempt. If you are
unsure of the reliability of your cassette, it may be advisable
to record two copies of each file. If an error occurs in

s A

reading the first copy, the routine will automatically revert
to the search operation and read the second copy when it comes
to it.

Load 1 file Attempt to load At Load files A1, A2
with ID A1 but A2 is on tape A3 and Al

-GET A1(r) -GET A1(r) -GET A1,Al(r)

= A2 -

As soon as the data has been successfully loaded intoc memory,
Miero-ADE will turn off the cassette and return you to the
editor command mode.

Since the BREAK key is disabled during cassette read operations
it is necessary to wuse either the [RS] or ([ST] keys to
interrupt the program. If the NMI has been set up to return to
the editor, the [ST] key will return you directly to the editor
command mode.

The SAVE Command

The SAVE command is used to write a file to the output cassette
(cassette 2). Before executing the SAVE command, the recorder
should be prepared with a blank cassette properly cued, and
left in the RECORD position. Immediately after the SAVE
command has been entered, the system will turn on the output
cassette recorder and print the start and end addresses of the
file at the terminal.

Source Files

Source files may be saved using the SAVE or S x commands. The
S command without parameters will cause the system to save the
- resident source file with the same ID as the last file accessed
{presumably the read operation of the same file before
editing). The start address of the saved file will be the
first address of the memory allocated to the source. The end
address will be determined by the location of the end of file
record at the end of the source program. If the SAVE x command
is used, the ID of the saved file will be X, where x may be any
two digit hexadecimal value.

= 15 o

Data Files

The general three parameter form of the SAVE command may be
used to save files of data or source from anywhere in memory.
S x,a,b causes the system to save a block of data from address
a to address b-1 with ID = x. This data file may be 1loaded
again wusing either the GET command or the usual KIM cassette
load routine at $1873.

-3 77,2000,3000 will save the Micro-ADE program.

-3 will save the current source file with its old ID.

-

-3 F7 will save the current source file with ID = F7.

The REPRODUCE Command

The REPRODUCE command is used to reproduce a source file from
the 1input cassette on the output cassette., This is a very
handy feature of Micro-ADE for editing a multiple file source.

Entering R x will cause the system to execute a GET x command
followed immediately by a SAVE command. Thus, the file with ID
= X Will be loaded from the input cassette player and written
to the output cassette player.

Multiple Files

The command R x,y will cause the set of files with the
sequential identification x,x+1,...,¥y to be copied to the
output cassette,.

It is important to remember that this command can only be used
to reproduce source files because the save parameters are
generated from the data, not from the read operation.

-R A1,A9 will reproduce files A1, A2, ... AQ

- 16 =

OTHER COMMANDS
B The BLOCKMQOVE Command

The BLOCKMOVE command may be used to move a page or 1less of
data from one memory location to another. The command B a,b
will cause the relocation of the data from address a through
a+FF to the new location b through b+FF. If less than a full
page of data is to be moved, a third parameter, the number of
bytes, can be added. B a,b,x will cause the movement of the
block [a,a+x-1] to the new area [b,b+x-1].

Overlapping blocks

Because of the manner in which the BLOCKMOVE command operates,
it 1is not possible to move a block to a lower address than its
initial position if the end of the new block will overlap the
start of the old block. To perform this move, it would be
necessary to move the data to an unused page first, and then
move it from there to the new locaticon. It is possible to move
overlapping blocks to a higher address. Remember, however,
that if more than one page is to be moved, the highest page
must be moved first or the overlap will write over some of the
unmoved data.

-B 200, 3E00 will cause the data from [200,2FF] to
be relocated to [3E00,3EFF]

-B 300,3F00,40 will cause the data from [300,33F] to
be relocated to {3F00,3F3F]

P The PAGE Command

The PAGE command may be utilized by users with CRT terminals in
order to break up all output into 16 line blocks. By typing
PAGE, the Page Mode is either set or reset depending upon its
status immediately before the command was entered. When in
Page Mode, the system counts the number of lines which have
been displayed (including input 1lines). When this number
reaches 16, the system will pause and wait for a key to be
pressed. Usually a space or other non=-printing character 1is
entered, and the output continues. This feature is especially
useful for 1long searches with the LIST command, or for
examining the output from the assembler on a CRT.

= L e

When the system pauses for an input at the 16th line, it is
possible to escape from Page Mode by entering the ESCAPE
(ALT-MODE) key. The system will reset the Page Mode flag and
continue the output without interruption.

-PAGE

X The XECUTE Command

The XECUTE command is used to execute programs directly from
the editor command mode. If no address is entered after an X
command, the system will execute the assembler.

If an address parameter is used with the X command, the system
will JUMP to that address and begin executing the user program.
The wuser program can return to the editor command mode by
executing a JMP to the restart entry point, or a BRK
instruction if the IRQ vector was not changed. The restart
address is $2031 in version 1.0.

-X will execute the assembler.

-X 200 will execute a program at $0200.

THE ASSEMBLER

The Micro-ADE assembler is designed to make programming the
6502 microcomputer as easy as possible. A source program must
first be created using the text editor and following the format
described below. If the program is short, it can reside in the
memory space allocated for source and be executed in memory.
If it is long, it must be broken into segments which are stored
on cassette tape.

Upon execution, the assembler translates the source statements
you have written into machine instructions which will execute
on the 6502 microcomputer. This is a two step process. During
pass one, the assembler reads the source statements from
memory, or in blocks from the cassette, and generates a symbol
table which consists of all the symbols defined by the wuser,
and their hexadecimal equivalent addresses or data. This table
is stored in memory. During the second pass, the assembler
reads the source statements and references the symbol table to
generate the object code which 1is machine executable. The
object code is saved in memory or in short blocks on the output
cassette. ‘

Once the program has bzen assembled, if there were no errors
flagged by the assembler, the user can load the object code to
its execution address and test it for operation.

SOURCE FORMAT

The input data for the assembler 1is formatted in ©blocks of
variable 1length records. Each record contains a two byte hex
line number, followed by O to 64 bytes of data, and terminated
by a carriage return ($0D).

The source data is located in a previously defined area of
memory consisting of at least one 256 byte page. Each block of
data consists of a variable number records and 1is terminated
. with an end of file record consisting of a line number and the
end of data character (@ = $40). The € character is reserved
in the Micro-ADE assembler, and may not be used except as the
end of file indicator.

An initial carriage return is located in the first location of
the source block. This byte is defined by the edifor when
executing the CLEAR command.

- 19 -

The source data format is shown below:

[s00]nn 0 to 64 data bytes[son[nln data s0d]n n $40 $0D]

DATA FORMAT

Each source statement for the assembler can be divided into
five fields. These are the label, the instruetion, the address
mode, the argument, and the comment.

Each field is delimited by a single space ($20), except for the
address mode. In many cases, a field may not be present. If
S0, its absence must be shown by the leaving of a single space.
It is important to remember that since spaces are used as
delimiters, the number of spaces left between each field is
critical.

The format of each statement is:

LABEL [b| INSTRUCTION | ADDRESS MODE B ARGUMENT ¥, COMMENT

THE LABEL FIELD

Any program statement may be identified with a symbolic 1label.
A label can contain from one to six alphabetic characters. No
special symbols or numerals may be included in a symbol in this
assembler. The label must always begin in the first column of
the record. It is important to remember that symbols must be
unique. That is, any symbol must be defined only once in a
given vprogram. The assembler will flag a duplicate symbol
error if an attempt is made to create two identical symbols,

If the symbol is used as a label on any line, other than one
containing the define symbol pseudo instruction (%), the symbol
will be equated to the current address as calculated by the
assembler for that line. The define symbol instruction may be
used anywhere in a program to define a symbol in terms of a
special address or hexadecimal constant. If a reference 1is
made to a symbol as an argument at any point in a program, the
assembler will automatically substitute the equivalent address
or hexadecimal constant for the symbol.

Although most symbols may be defined anywhere in a program,
symbols referring to page zero addresses must normally be
defined before they are used in order that the assembler can
correctly calculate the number of bytes required for the
instruction on the first pass. If it is necessary to define a

AND

BCC
BCS
BEQ

STA

TSX

et] - N — — 3 ~ ~~ —~
= § -~ = = o o s-; E %
X X X X X X X X
X X X X X X X X
X X X X
X
X
X
X X
X
X
X
X
X
X
X
X
X
X
X X X X X X X X
X X X
X X X
X X X X
X
X
X X X X X X X X
X X X X
X
X
X
X
X
X X X X X X X X
X X X X X
X X X X X
X X X X
X
X X X X X X X X
X
X
X
X
X X X X
X X X X
X
X
X X X X X X X X
X
X
X
X X X X X X X
X X X
X X X

ETl R e

SHAON SSRIATY NV SNOLLIMLLSNI

= P21 =

page zero symbol after its first wuse, you can use the Z
addressing mode instead of allowing the assembler to
automatically update an absolute addressing mode. See the
Address Mode section for further details of this topic.

It is generally considered good programming practice to define
all data symbols at the beginning of the program. This keeps
them together for easier editing or relocation and prevents the
possibility of referencing a page zero symbol before it is
defined.

Valid symbol usage Invalid symbol usage
DATA LDA X DATA1 LDA X3

TEST = %03 TEST SBCIM $G3

SUB ¥ TEST +01 TEST+1 = DAT A

INSTRUCTION FIELD

The second field of each source data record is the instruction
field. It must always be separated from the last character of
the label by exactly one space. If no label 'is present, the
instruction field will always begin in column two.
Instructions consist of three character mnemonics for 6502 CPU
operations. These mnemonics are exactly the same as the MOS
Technology instructions found on the reference card, or in the
Programming Manual with the single exception of +the jump
indirect instruction., This is represented for the Micro-ADE
assembler as a separate instruction, JMI, instead of as a JMP
with a special address mode. A complete table of instructions
and the valid address modes for each is shown below.

PSEUDO INSTRUCTIONS

There are three pseudo instructions which may be used in the
Micro-ADE assembler. These are: "ORG", which is used to define
the origin address for the program; "¥", define symbol, which
.is wused to define a symbol directly; and "=", define byte,
which is used to define a byte directly.

ORG

The ORG instruction is used to define the origin address for
the program being assembled. It should always be placed at the
beginning of any program. If a label is placed on the ORG
statement, it will become part of the header 1line printed at
the top of each page. Any valid argument may be used to define

- 22 -

“the origin address, and comments may be placed on the line in
the usual way.

Normally, the ORG instruction should only be used once in a
program. If it 1is necessary to redefine the origin in the
middle of a program, the new origin must be the first statement
of a NEW cassette file. The addreses saved with a cassette
object block, which allow it to be loaded to the correct
location, are based upon the ORG statement, and therefore must
be wunique for each block generated. One object bloeck is
generated for each source block.

EDITOR ORG $2000 VERSION 1.C (77.07.01)

* The DEFINE SYMBOL Instruction

The define symbol instruction, ¥, may be used at any point to
define the label field as equivalent to the following argument
field. Once defined, symbols may be wused 1in any type of
instruction as an argument. The assembler will substitute the
hexadecimal value defined for the symbol. The program address
is not altered by a define symbol instruction. This is the
only type of statement (other than a comment) which may precede
the ORG statement.

ZERO * $0000 defines the symbol ZERO as equivalent to $0000
THREE * ZERO +03 defines THREE as equivalent to $0003
QMARK # '? defines the symbol QMARK as equivalent to $3F

= The DEFINE BYTE Instruction

The define byte instruction, =, is used to directly define a
single byte of memory. It is usually used to construct a data
table. The argument following may be symbolic, hexadecimal, or
ASCII.

$33 defines the current byte as $33
2 defines the current byte as $3F

Hu

R
ADDRESS MODE

The address mode consists of zero, one, or two characters
immediately following the instruction field. No space is
required before the address mode field. Since the address mode
is often implied directly by the instruction, it may in some
cases be omitted. If no mode is given, and the instruction is
not a relative branch, an implied register operation, or a

pseudo instruction, the absolute mode is assumed.
The valid address modes are:

A Accumulator addressing. The instruction operates on the
accumulator.

IM Immediate. The operand of the instruction is the argument
following. The argument may be any valid symbolie,
hexadecimal, or ASCII constant.

AX Absolute indexed by X. The operand of the instruction 1is
the address represented by the argument added to the value
of the X index. 1If the argument represents a page Zero
location, and if a valid page zero instruction exists, the
assembler will automatically substitute the 2ZX address
mode.

ZX The operand of the instruction is the sum of the address
represented by the argument and the value of the X
register. The high byte of the address will be ignored and
the effective address will always be in page zero.

AY Absolute indexed by Y. The operand is the address
represented by the argument plus the value of the ¥ index.
If the argument 1s in page zero, and a valid zero page
instruction exists, the ZY mode will be automatically used
by the asembler.

ZY Zero page indexed by Y. The address of the argument is
added to the Y index to form the effective address in page
zero.

IX Indexed Indirect. The argument address is added to the X
index which points to a location in page zero. The memory
location pointed to by the page zero address calculated and
the subsequent location is used as the operand for the
instruction.

IY Indirect Indexed. The argument points to an address in
page zero. The contents of that memory location and the
subsequent location are added to the Y register to form the
effective address of the operand.

- 24 -

Absolute. Absolute indexing is the default mode. The
effective address is given directly by the argument. If
the argument is a page zero location, the assembler will
automatically substitute the appropriate zero page address
mode.

Z Zero Page. The argument is assumed to be an address in
page zero. The contents of this memory location are the
argument for the operation. If the argument is not a page
zero address, the high byte will be ignored.

Relative. Relative instructions cause a branch to within
128 bytes of the current address. Since this type of
instruction is weasily distinguished from all others, the
address mode need not be explicitly defined.

Implied. Implied addressing requires no specification
because the operand of the instruction 1is an internal
register and is defined by the instruction itself.

Indirect. There is no indirect mode in the Micro-ADE
assembler. The JMP indirect instruction is replaced by the
JMI instruction which has an absolute address mode. The
JMI instruction sets the program counter to the contents of
the memory location pointed to by the argument and the
subsequent location.

The assembler will flag most common address mode errors.
Although it will not detect illogical use of an address mode
(e.g. ASLIM), it will always detect illegal but logical address
mode misuse (e.g. LSRAY).

THE ARGUMENT FIELD

The argument field 1is wused to define +the operand for an
instruction or a pseudo instruction. There are three basic
types of arguments which may be used with the Micro-ADE
~assembler. These are symbolic, hexadecimal, or ASCII.

Symbolic Arguments

Symbolic arguments are symbols defined elsewhere in the
program. The equivalent address or data is substituted for the
symbol in the object code. If the symbol refers to a page zero
address, it should be defined before it is used. If it is not
a page zero address, it may be defined anywhere in the program.

- 25 -

Modified Symbolic Arguments

In order to conserve the memory required for the saving of the
symbol table, or in order to access part of a data table, it is
sometimes necessary to define an argument in terms of a symbol
with an offset. Offsets may be defined by appending a positive
or negative value to the symbol. A single space should be left
between the symbol and the operator (+ or =-). The offset
itself is a two digit hexadecimal value between 00 and FF. It
must be exactly two characters long. For example, 1f BUFFER
has been defined by a define symbol statement as being
equivalent to address $0100, then BUFFER +03 may be wused to
represent address $0103.

If a symbol is referred toc by an immediate operation, the low
byte of the symbol is used as the operand. It may be necesary
in some cases to reference the high byte of a symbol in order
to set up an indirect table reference. This may be
accomplished by appending a "/" symbol to the symbol. A single
space should be left between the symbol and the slash. An
example of the use of this operation is shown below:

0020: KIM * $1Cco0 | 0200 KM * $£1C00

0030: LDAIM KIM 0200 A9 00 LDATM KIM

0040: STA NMI 0202 8D FA 17 “STA NMI

0050: LDAIM KIM /256 0205 A9 1C LDAIM KTM /256
0060: STA NMTI +01 0207 8D FB 17 STA NMT +01

(The 256 shown after the slash is actually a comment.)
Hexadecimal Arguments

Hexadecimal arguments are identified by a dollar sign as the
first character of the argument field. The following hex
constant may be one or two bytes in length. Offsets may not be
used with hexadecimal arguments.

Sample arguments would be: $0100 $0D
Character Arguments

ASCII arguments are identified by a single quotation mark (')
as the first character in the argument field. A single
character may be defined, the hexadecimal value of which, will
be used as the operand for the instruction.

For example: = 'A CMPIM 'Y

Note that the @ character may not be used as an argument in
this way because of its special end of file significance. Use
$40 to represent the @ character if necessary.

<26 =

THE COMMENT FIELD

The 1last field of a source statement is the comment field. It
may be of any length provided that the I/0 buffer does not
overflow. The comment is separated from the argument by a
single space. If the line is a comment only, it must begin in
column four.

In general, comments may include any printable or non-printing
character with the exception of the end of file character.
Comments may not begin with the symbol modification characters
+,~, Or /.

ASSEMBLER OPERATING INSTRUCTIONS

Once you have prepared a source program in the prescribed
format shown above, you may execute the assembler to check for
errors and prepare the object code for execution.

Enter the assembler from the editor command mode by typing X or
XEQ. Micro-ADE will respond "PASS 1", and request an input
file ID.

-X
PASS 1
ID=

I1f the source has been saved on cassette, and is not resident
in memory, enter the ID of +the cassette file. If several
blocks are saved sequentially on cassette with sequential
identification, they can be read as a group by entering the
first ID, a comma, and the last ID. Micro-ADE will then read
each block, assemble it, increment the ID, read the next block,
and so on until the last block of records has been assembled.
If the source is resident in memory already, enter the ID= 0O0.
This will cause the assembler to skip the cassette read step
and proceed directly to the first pass of the assembly.

Resident Source Single Cassette File Four Files with
ID A1,A2,A3,Al

=X -X -X

PASS 1 PASS 1 PASS 1

ID= 00 ID= A1 ID= A1,Al

Note that since ID = 00 is used to indicate a resident file, a
source file should never be saved with this ID.

- 27 -

PASS 1

As each block is assembled through pass one, errors detected by
the asembler will be flagged, and the offending source line
printed. When the assembler has completed the block, it will
again prompt for an ID. If there are more blocks of source to
be read, enter the ID of the next block. If this was the last
file, respond with a RETURN to signify the end of the source
program. The symbol table has now been compiled. Micro-ADE
will proceed to pass two.

PASS 2

Immediately, the assembler will prompt "PRINT?". If you wish
to have a listing of the program printed at your terminal,
respond with a Y or YES. If not, respond with N or a RETURN.

The assembler will now ask for a "SAVE ID=". If you wish the
object code generated to be saved on cassette enter a valid ID
{01 to FF). After the code has been assembled, the object will
be automatically written to the output cassette with the
appropriate addresses for a direct load for execution. If you
do not wish to save the object code at this time, respond with
a carriage return,

If there are multiple input files, the ID of the output object
block will be incremented each time a new input file is read.
The resulting group of object blocks may then be loaded wusing
the GET x,y command in the editor.

The assembler is now ready to execute pass two. It will prompt
for the input ID once again. This should now be entered
exactly as for pass one. Remember to rewind the input cassette
first.

Examples continued from above.

ID=(r) _ ID=(r) ID=(r)

PASS 2 PASS 2 PASS 2
PRINT?YES(r) PRINT?(r) PRINT?NO(r)
_SAVE ID=(r) SAVE ID=23(r) SAVE ID=zA1(r)
ID= 00(r) ID= 00(r) ID= A1,Al(r)

(A listing will
be printed)

Error flags will be printed with the offending source statement
regardless of the response given to the PRINT query.

- 28 -

At the end of the assembly you will be returned to the editor
command mode. If any errors were flagged, they should be
corrected in the source file, and the program reassembled
before attempting execution.

If no errors were detected during both passes of the assembler,
rewind the output cassette, and place it on the input cassette
player. Then, load the object code from cassette using the GET
command. If the source was in a single block, you may move the
object code to its execution address wusing the BLOCKMOQVE
command .

OBJECT FORMAT

The object code generated by the assembler is stored in an area
of memory allocated to it. This allows you to write programs
which are larger than the available memory when the source, and
even the assembler are in the system. Each time a new source
block 1is read, the object code pointers are reset and the new
object code is written over the old object. For this reason,
the object code must be saved in short blocks corresponding to
each cassette load. This operation is carried out
automatically by the assembler if you are using automatic
cassette control.

The object saved on cassette is ready to be loaded using either
the KIM cassette load program, or the Micro-ADE GET command,

If only a single source file was used, the entire object
program will be resident in the object memory area. If it was
ORGed for execution at that address, you may execute the
program immediately. Otherwise, you can use the BLOCKMOVE
command to move it to its execution address. This 1is also a
convenient way to write short patches to existing programs
using the assembler.

THE SYMBOL TABLE

-The symbols defined by the assembler, and their two byte
hexadecimal equivalents are stored in a reserved area of memory
called the symbel table. The symbol table is also used by the
disassembler to label addresses and symbolically define
arguments,

The symbols are saved in a packed ASCII format which allows
three characters to be packed 1into two Dbytes, This 1is
accomplished by stripping each character of the three most
significant bits leaving only the five 1low order bits which

- 29 -

define the character 1itself. It is because of this packing
operation that only the characters A through Z are allowed in
symbols. Each six character symbol requires four bytes for the
symbol, plus the ¢two following bytes for the hexadecimal
equivalent value. Using this scheme, more than 170 symbols can
be packed into 1K of symbol area.

The symbol table may be listed at the terminal in either
alphabetical or address order. The table in alphabetical order
can be used to avoid duplication when defining new symbols, or
as a reference when defining symbols external to another
program. The symbol table in address order is useful when
defining overlays or looking for unused areas of page zero for
expansion of a program.

3 & The TABLE Command

The command T, or T@# will cause Micro-ADE to print the symbol
table in alphabetical order. The starting and ending addresses
of the table are also given for your information.

TABLE 1

The command T1 will cause the printing of the symbol table in
address order, :

TABLE 2

The command T2 is wused to determine the starting and ending
addresses of the symbol table. This is useful for determining
how c¢lose the table is to overflowing, or for determining the
exact table location for saving it on cassette.

TABLE 3

If you have saved the symbol table on cassette at the time of
assembling a program, it is easy to reload it again if you wish
to use the disassembler. Once the table has been loaded using
the GET command, it is necessary to set the end of symbol table
parameter so that the disassembler will search the table
correctly. This may be accomplished with the T3,a command,
"where a is the new address of the end of the table. The
previous address of the end of the table will be printed,

- 30 -

ASSEMBLER ENTRY ADDRESES

It is possible to execute the assembler from addresses other
than the normal start address in order to recover from a user
error, or to use the assembler in a non-standard way. These
are described below.

BAD CASSETTE READ

If a cassette will not read properly, return to the editor
using the NMI ([ST] key on KIM). Very often, there will be 2
single bad byte which has caused & checksum error. This may be
corrected using the editor. Once done, you may save the clean
copy, and resume the assembly from the point where you left
off, by executing IDAS ($2608 in version 1.0). The assembler
will prompt for an 1ID. Sinece the source is now resident,
respond with 00, and continue the assembly as usual. This
method may be used in pass one or pass two,

ADDITIONS TO SYMBOL TABLE

If you wish to add to an earlier symbol table, rather than
create a new one, you may execute OLDST ($2601) without
resetting the symbol table parameters. The assembler will
operate normally. This method is useful for assembling small
patches or new programs which reference a large earlier program
without having to define a large number of external symbols.

CONTINUE ENTRY

If an error occurred during an asembly which caused a break in
execution, you may wish to continue from the point where you
left off in order to check the source for syntax errors, etc.
{The object code generated will not be executable}. The
assembler will continue from a BREAK with the next source
statement if ERRTRY ($266C) is executed.

PASS 2 ONLY

If you have previously assembled =a program, and the symbol
table was saved, you may reassemble the second pass only in
order to print a listing. Load the symbol table manually,
remembering to reset the end of table address, and execute
PASTWO ($26E6). This is only possible if no changes have been
made to the source program.

PRINT ONE BLOCK ONLY

If you wish to 1list only one section of a long multi-file
program, this can be accomplished as follows. When prompted
for the 1ID, hit the BREAK key. Then, execute PASTWO ($26E6)
and change your response to the "PRINT?" prompt. Respond to
the ID prompt with the correct next file. This method may be
used to set or reset the print flag.

THE DISASSEMBLER

A useful program for debugging or modifying programs when the

source listing 1is not available 1is a disassembler. The
disassembler reads object code and interprets it into 6502
assembler instructions where possible. The symbol table 1is

searched for addresses and arguments in order that lines may be
labelled and arguments interpreted symbolically.

Z The DISASSEMBLE Command

The Z command is used to execute the disassembler. There are
three modes of use. Z a,b will cause a disassembly of the data
from address a to address b without a pause. If you are wusing
a CRT, it is more convenient to disassemble a fixed number of
lines at a time. Z a will disassemble from address a, until
16 lines have been displayed. The system will then pause for a
keyboard input. The space bar will cause the program to
continue. Typing RETURN will cause the program to return to
the command mode. If you now type the command Z, without
parameters, the disassembler will resume disassembly from where
it left off.

Symbols

If the program you are disassembling is the last one assembled,
the symbol table will already be initialized, and the
disassembly listing will have all symbols interpreted. If not,
you will have to create a new symbol table. If the symbol
table was saved from the assembly of a program, you can reload
it with the GET command. The table end address must then be
defined using the T3 command.

If you wish to create a new symbol table, use the assembler to
do so. Symbols may be defined using the define symbol (%)
pseudo instruction. Only one pass of the assembler is
required. Use the BREAK key to exit from the assembler at pass
two.

If the disassembler runs slowly and interprets symbols with
.unusual names, the end of the symbol table has not been
initialized properly. Type X to the command prompt, then BREAK
to return. The assembler will initialize the table, and the
disassembler will now operate correctly.

Relocation
A disassembler can make the relocation of most programs very

easy. Three byte instructions stand out clearly from the code.
Change the high byte for each of these instructions and you

- 32 -

have done most of the work. Then, look carefully through the
code for indirect operations. Find out where the page zero
addresses used have been defined and make the necesary changes.
Further changes are usually not necessary, but if they are, 1it
may be neccessary to single step through some of the code to
detect unusual programming tricks that the author has used.

Patches

If you wish to <change a single subroutine, address, or a
special <character, an easy way to locate most references to it
is to define it as a symbol with a highly visible name, such as
XXXXXX. Then, disassemble the entire program. The occurrences
will be easily seen.

EXAMPLE OF A DISASSEMBLY

-7 2DF0,2E29

2DF0 84 Fi OUTCH STYZ YTMP
2DF2 86 F5 STXZ XTMP
2DF4 C9 0D CMPIM $000D
2DF6 DO 1E BNE NOCR
2DF8 A6 63 LDXZ PMODE
2DFA DO 13 BNE NOPG
2DFC E6 64 INCZ COUNTL
2DFE DO OF BNE NOPG
2E0C 20 2B 2E JSR INCH
2E03 €9 1B CMPIM $001B
2E05 DO 04 BNE ON
2E07 A9 FF LDATM $OOFF
2E09 85 63 STAZ PMODE
2E0B A2 FO ON LDXIM GANG
2EOD 86 6U STXZ COUNTL
2EOF A9 OA NOPG LDAIM $000A
2E11 20 16 2E JSR NOCR
2E14 A9 OD LDATM $000D

2E16 20 AQ 2E NOCR JSR OUTPUT
2E19 2C 4G 17 BRKTST BIT $1740

2E1C 10 05 BPL BREAK
2E1E A6 F5 LDXZ XTMP
2E20 A4 F4 LDYZ YTMP
2E22 60 RTS

2E23 2C 40 17 BREAK BIT $1740
2E26 10 FB BPL BREAK

2E28 4C 31 20 JMP RESTRT

KIM
29FF 20 F2
00F2 O FF. set up the
00F3 OD 17FA NMI vector
17FA 00 31,
17FB 1C 20.
17FC 00 2000
2000 D8 G execute from $2000
NEW?Y

Respond Y to clear workspace
CLEAR '
-ADD

ADD new data
0000: SHORT MESSAGE PROGRAM

3 Input f

0010: EXAMPL ORG $020C T
0020: INDCT * $0066 PHOg
0030: OUTCH ¥ $2DFO0 PRINT CHAR i
0040: LDAIN MESSG line 0010 -delete
0050: STA INDCT was used to backspace
0060: LDAIM MESSG /256 over a typing error
0070: STS INDCT +01 .
0080: LDYIM $00 Note spacing of label,
0090: LOOP LDAIY INDCT instruction, and argument
0100: JSR QUTCH
0110: INY
0120: BNE LOOP
0130: CPYIM 02
0140: JMP %2031
0150: MESSG = 'H
0160: = 'I
0170: @ @ end of data input
-X .

execute the. assembler to check for syntax errors
PASS 1
I1D=00 .

ID= 00 --resident source
EAIERXREEEHCEDS0040 LDAIN MESSG Address mode!
HERIRRETEXXC0TS>0070 STS INDCT +01 Instruction!
iD=

‘ a carriage return indicated the last tape

PASS 2
PRINT? KO not worth printing yet
SAVE ID= a carriage return indicated-no save
1D=00 00 - resident source
RERERRRERRECEDSO00U0
0040: 0200 00 00 00 “LDAIN MESSG
ﬂi********l(o7>oo7o .
0070: 0207 00 00 0C STS INDCT +01
*****’*****<A8>0130
%30: 0214 00 00 00 CPYIM 02 Argument !

EXAMPLE PROGRAM

F carriage return indicated the end

- 33 =

~FIX 40

0040: LDAIN MESSG
0040: LDAIM MESSG
0041: @

-F70

0070: STS INDCT +01
0070: STA INDCT +01
0071: 8

-F 130

0130: CPYIM G2
0130: CPYIM #@2
0131: @

-X

PASS 1

ID=00

ID=

PASS 2

PRINT? Y

SAVE 1ID=

iD=00

EXAMPL

0000:

001G: 0200

0020: 0200

0030: 0200

0040: 0200 A9 17
0050: 0202 85 66
0060: 0204 A9 G2
0070: 0206 85 67
0080: 0208 AD 00
0090: 0204 B1 66
0100: 0206C 20 FO 2D
0110: 020F C8
0120: 0210 DO F8
0130: 0212 CO Q2
0140;: 0214 4C 31 20
0150: 0217 48
0160: 0218 Hug9g

ID=

-X 200

HI HIt g-

-M 140,120

=N

Fix line 40.

Fix line 70.

Fix line 130.

Execute assembler again.

Print a listing this time.

Use ctl-E and 7 deletes, type M, ctl-E.
No need to insert more lines ~ @ to end fix

Type to STA, then use ctl-E to the end.

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 01

SHORT MESSAGE PROGRAM

EXAMPL ORG $0200
INDCT ¥ $0066
OUTCH * $2DF0
LDAIM MESSG
STA INDCT
L.DAIM MESSG
STA INDCT
LDYIM $00
1..00OP LDAIY INDCT
JSR QUTCH
INY
BNE LOOP
CPYIM $02
JMP $2031
MESSG = 'H
= 'I

g-%LI n-1 M-HE@Ps g- %i%iEp M-% M-): p-L

PRINT CHAR

/256
+01

Listing
looks
OK.

%L1

Execute Program
at $0200,
C'C&TPL) g-)iT

Program failed.
Rearrange lines.
Mumber lines.

-1120, 150
0120: INY
0130: CPYIM $02 List corrected - 35 -
0140: BNE LOOP
0150: JMP $2031 section of source.
-X
PASS 1
1D=00
Execute assembler again.
ID=
PASS 2
PRINT?
SAVE ID= B0 Save object with ID = BO
ID=00
ID=
-X 200 Execute program.
HI Success!
-3 E1
3600 3713 Save source as El.
-7 200
Disassemble from address 0200.
0200 A9 17 EXAMPL LDAIM $0017
0202 85 66 STAZ INDCT
02C4 A9 02 LDAIM 3$0002
0206 85 67 STAZ $0067
0208 A0 00 LDYIM 30000
0204 B1 66 LOOP LDATY INDCT
020C 20 FO 2D JSR OUTCH
020F C8 INY
0210 CO 02 CPYIM $0002
0212 DO F6 BNE - LOOP
0214 4C 31 20 JMP $2031
0217 48 MESSG PHA Even tables can
0218 49 20 EORIM $0020 look like program
021A 48 PHA sometimes.
021B 4Q FH EORIM $0OQF4
021D AOQ 0OC LDYIM $0000
T Print the symbol table.

SYMBOL TABLE 3000 301E
EXAMPL 0200 INDCT 0066 LOOP 020A MESSG 0217
OUTCH 2DFO

-T1

SYMBOL TABLE 3000 301E
INDCT 0066 EXAMPL 0200 LOOP 020A MESSG 0217
QOUTCH 2DFO

- %6 -

SETTING UP THE MICRO-ADE SYSTEM

Once you have 1loaded Micro-ADE into your sytem, there are a
number of parameters which may have to be initialized before
you can use the program.

The JUMP Table

The following subroutines are external to Micro-ADE and must be
defined for each system.

Address Routine KIM TIM or JOLT Other

2EQH4 PACKT 4C 00 1A 4C A9 2E 4C A9 2E

2E97 READ 4C AC 2E JMP to your own cassette read
2EQGA WRITE 4c 32 2F JMP to your own cassette write
2E9D INPUT 4C 5A 1E 4C E9 72 ASCII input
2EAQ OUTPUT 4C A0 1E Uc ce6 72 ASCII output
PACKT

PACKT is a KIM subroutine which 1is used to pack two ASCII
characters into a hexadecimal byte. It is called twice, with
the ASCII input in the accumulator each time., After the second
call, the hex byte is returned in the accumulator and in
location SAVX. If the ASCII character is a valid hexadecimal
value, the Z-flag is set before returning. If not, the Z-flag
is reset. The X register must be preserved. Many systems will
already have such a routine in their operating system which may
be used. If not, the routine below can be used. Since the
CREAD and CWRITE routines cannot be used by systems other than
KIMs, this area of memory is available for patches and
expansion. Alterations must be made to the editor, because
SAVX is accessed directly by some operations.

READ

This is a subroutine which is used to input the source and data
files from cassette tape. The routine will read a file with a
hexadecimal identification passed in ID ($0062). The address
to which the data is written is part of the file itself. When
a successful read 1is c¢ompleted, the subroutine returns. No
registers need be saved.

WRITE

This is a subroutine which is used to output source or object
files to <cassette tape. The program saves a file with
identification ID ($0062) as it exists in memory from address
SAL, SAH ($17F5,$17F6) to EAL, EAH ($17F7, $17F8) and writes
the start address SALX, SAHX ($0061, $0062) onto the tape for
disposition when loading.

The CREAD and CWRITE routines also turn on the cassette
recorders using the PIA on the KIM. If these routines are not
used, the initialization of the cassette control at address
$2043 should be replaced with 8 NOPs,

- 37 -

READ and WRITE may be replaced with calls to any mass storage
device capable of storing ¢the data and reloading it in the
required format. Paper tape, floppy disk, or other media may
easily be wused. A disk oriented version of Micro-ADE is
currently being developed.

INPUT

The INPUT subroutine polls a keyboard device and returns with
ASCII data in the accumulator. Mark, space, even, or odd
parity may be used. No registers need be saved. A 1line feed
is sent to the output routine each time a carriage return is
entered. Otherwise, all echcing is assumed to be external to
the Micro-ADE system.

OUTPUT

The OQUTPUT subroutine prints the ASCII character passed in the
accumulator on a display device. The data is passed with bit 7
equal to zero., No padding is provided for carriage returns., A
line feed is automatically sent with each carriage return,

TERMINAL DEVICES

It seems that every terminal available today has one or two
non-standard features. In order to allow each user to adapt
the Micro-ADE package to his own hardware, we have provided the
source listing for all of the key I/0 functions. The comments
will allow you to change the backspace character, remove
printing control character, or unnecessary rub-cuts of
nonprinting control characters, change the delete function, use
your own BREAK test, or completely modify the line input buffer
to suit your own taste.

End of File Character e

If you wish to change the end of file character from € to
something else, such as ctl-D, the locations to <change are:
$201F, $20E3, $2134, $215D, $23B0, $247C, $249D, and $24FC.

Page length

The assembler currently prints a form feed character ($0C) to
- S8tart a new page. This character is located at adress $29FE.
It may be replaced with a return ($0D) or a null ($00).

The number of 1lines per assembler page is specified as 58 by
the $C8 at address $2A36. This byte may be changed to suit
your printer.

The number of lines per disassembly for a CRT is specified as
16 by the $F0 at address $2308.

The number of lines per page in PAGE MODE is specified as 16 by
the $F0 at $2EO0S8.

Page 17 References

Since version 1.0 of Micro~ADE is set up to use KIM monitor
routines, it was necessary to pass some parameters in page 17
locations. The cross reference table below will enable you to
replace all of these addresses with the equivalent for your
system.

SYMBOL ADDRESS REFERENCES FUNCTION _

SAVX 17E9 206F 2091 2096 used by PACKT

SAL 17F5 21C6 21EE 26C3 used by CWRITE

SAH 17F6 21D0 21F3 26C9 used by CWRITE

EAL 17F 7 21CB 26D0 used by CWRITE

EAH 17F 8 21D5 26DT7 used by CWRITE

IRQ 17FE 203B 2678 change to your IRQ
17FF 2040 267D or FFFE, FFFF

PIA 1702 2045 cazsette control
1703 2048 PIA port

The PACKT Subroutine

0010: 2EA9 PACKT ORG $2EAQ TT.06.29

0020:

0030: 2EAS SAVX * $0065 TEMPORARY DATA
0031:

0040: 2EA9 C9 47 CMPIM $47 TOO HIGH?
0050: 2EAB BO 1B BCS RET

0060: 2EAD C9 30 CMPIM $30 TOO LOW?

0070: 2EAF 90 17 BCC RET

0080: 2EB1 C9 40 CMPIM $40 LETTER?

0090: 2EBR 90 02 BCC N

0100: 2EB5 69 08 ADCIM $08 MAKE IT HIGHER!
0110: 2EB7 29 OF N ANDIM $0F REMOVE GARBAGE
0120: 2EB9 AR TAY HIDE HEX DIGIT
0130: 2EBA A5 65 LDA SAVX GET FIRST HALF
0140: 2EBC OA ASLA SHIFT

0150: 2EBD OA ASLA IT

0160: ZEBE OA ASLA OVER

0170: Z2EBF 0A ASLA TO LEFT

0180: 2ECO 84 65 STY SAVX SAVE 1IT

0190: 2EC2 05 65 ORA SAVX PUT THEM TOGETHER
0200: 2ECH 85 65 STA SAVX SAVE WHOLE BYTE
0210: 2EC6 A0 00 LDYIM $00 CLEAR Z

0220: 2EC8 60 RET RTS RETURN

0370:

0380: PATCHES TO EDITOR

0390: 206F ORG $206F

0400: 206F 85 65 STA SAVX

0410: 2071 EA NOP

0420:

0430: 2091 ORG $2091

Q440: 2091 05 65 ORA SAVX

0450: 2093 EA NOP

0460: 2094 85 18 STA Lo

Q470: 2096 84 65 STY SAVX

0480: 2798 EA NOP

- 39 -

MEMORY ALLOCATION

The Micro-ADE system (version 1.0) uses the following areas of
memory:

Page O 0010 to Q064 data
O0FC to OOFF temporary data
Page 1 0100 to 0140 input buffer
01EQC to O1FF stack
Page 17 17E9 to 17FF see above
Page 20-2F 2000 to 2FFF Micro-ADE program

The program from $2000 to $2FFF is pure code. Once
initialized, it may be executed in protected memory, or placed
in ROM. The program will not change any data in this area
during execution.

MEMORY ALLOCATION TABLE

The areas of memory to be used for the various files associated
with the Micro-ADE system are allocated by a table at address
$2EAT3. In this case, $3600 to $3FFF has been allocated as the
source, $3000 to $35FF has been allocated as the symbol table,
and $0200 upward has been allocated for object code.

Address Definition Allocation

2EA3 SOURCM = $35 SOURCE -1

2EAY SOURCE = $36 First page of source code.
2EAS SOURCF = $40 Last page of source +1.

2EAB SYMBOL = $30 First page of symbol table.
2EAT SYMF = $36 Last page of symbol table +1.
2EA8 OBJECT = $02 First page of object code.

The amount of memory allocated to each file will depend upon
the memory available in your system as well as your personal
programming style, The allocation shown above has proven to be
ideal for writing programs of up to U400 bytes without the use
of cassettes, and of up to 3K without overflowing the symbol
table. The object allocation should always be approximately
one fifth the size of the source area to prevent the
possibility of overflow.

-40_

CASSETTE CONTROL

Micro-ADE is designed to be used with two computer controlled
cassette recorders. Cassette 1 is wussd for input to the
system, and cassette 2 is used for output from the system.
These cassettes are turned on and off by the computer using the
REMOTE 1input jack available on most recorders. The schematic
for a simple interface between the KIM-1 PIA port and the
cassette recorders is shown below.

+5V
[AUTO _]

AN

pombreen] 3304; L —>
: - X —>
G i REMOTE
PB3 :

.

Cassette Control Interface
(1 for each recorder)

PB2 controls Cassette 1 Parts List
PB3 controls Cassette 2 1 7404 IC

2 §V,2008 spst reed relays
2 10&,1W resistors

2 3308, .5W resistors

2 .1vF, 100V capacitors
2 spst switches
2 LEDs
optional

- 41 -

ASSEMBLING WITH MANUAL CASSETTE CONTROL

Although the assembler is designed to operate most efficiently
using two computer controlled cassette recorders, it is
possible to wuse the system with as little as as one manually
operated recorder.

The patches shown below will cause the system to print "R" when
it is ready to read from a cassette, and "W", when it is ready
to write to a cassette. It will then wait for a RETURN to
indicate that the cassette recorder has been started. When the
read or write operation is complete, Micro-ADE will type "X",
and pause once again to allow you turn the recorder off. In
addition to the patches below, the editor program should have
the following code replaced with 8 NOP instructions: Address
2043: A9 O0C 8D 03 17 8D 02 17.

2EAF A9 52 CREAD LDAIM 'R
2EB1 20 FO 2D JSR OUTCH
2EBY 20 2B 2F JSR INCH
2F 24 ORG $2F2A
2F2A A9 58 OKRD LDAIM 'X
2F2C 20 FO 2D JSR OUTCH
2F2F 20 2B 2E JSR INCH
2F 35 ORG $2F35
2F35 AG 57 CWRITE LDAIM 'W
2F37 20 FO 2D JSR OUTCH
2F34 20 2B 2E JSR INCH
2F98 ORG $2F98
2F98 20 8C 1E JSR INIT
2F9B A9 58 LDAIM 'X
2F9D 20 FO 2D JSR OUTCH

2FAQ 4C 2B 2E JMP INCH

I0

0G10:
0020:
0030:
00H0:
0050:
0060:
0070:
0080:
0060:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
0200:
0210:
0220:
0230:
0240:
0250:
0260:
0270:
0280:
0290:
0300:
0310:
0320:
0330:
0340:
G350:
0360:
0370:
0380:
0390:
0400
0410:
0420:
0430:
044G
0450:
0460:
0470:
0u4BO:
0490:
0500:
0510:
0520:
0530:
0540:
0550
0550:

2DCS

2DC5
2DC5
2DC5
2DC5
2DC5
2DC5
2DC5

2DC5
2DC5
2DCs
2DC5
2DC5
2DC5
2DC5

2DC5

2DC5

2DC5
2DC5
2DC5
2DC5
2DC5
2DC5
2DC5
2DC5
2DC5
2DCs
2DC5
2DC5
2DC5
2DC5
2DC5

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 01

FRERBEREERRERRRERBREXRANNERIERPIRBLUGR

rexx® TNPUT AND OUTPUT ROUTINES ##us

%#%%% FOR THE MICRO-ADE SYSTEM ##uxzg
EHRARERREE AR AR AR B R RN RBRAFRNENRR

I0 ORG

BLO

N

SALX
SAHX
ID
PMODE
COUNTL

Wode W M ok kK

GANG
TIC
COUNT
T™P
YTMP
XTMP
TRIB

W ok Wk ok W K

BUFFER *
RESTRT *

$2DC5

$0010
$0015
$0060
$0061
$0062
$0063
$0064

$00F0
$00F 1
$00F2
$00F3
$00F Y
$00F5
$00FE

$0100
$2031

TT.06.24

POINTER T0 WORKSPACE
LINE NUMBER
FILE EXECUTION ADDRESS

FILE ID
PAGE MODE FLAG
LINE COUNT

CWRITE PULSER
CWRITE TIMER
CWRITE COUNTER
TEMPORARY STORAGE

9 "
g ¥t

CYCLE COURTER
INPUT/OUTPUT BUFFER
EDITOR WARM ENTRY ADDRESS

KIM ROM AND PIA ADDRESSES

SBD
CHKL
CHKH
VEB
SAL
SAH
EAL
EAH
INTVEB
CHKT
INCVEB
RDBYT
RDCHT
RDBIT
INIT

W oW K N Ok M ook ok ok M X Ok K X

$1742
$17ET
$17E8
$17EC
$17F5
$17F6
$17F7
$17F8
$1932
$194C
$19EA
$19F3
$1A24
$1A41
$1E8C

PI& LOCATION
CHECKSUM

VOLATILE EXECUTION BLOCK
TAPE 3TART ADDRESS

TAPE END ADDRESS

INIT VEB SUBROUTINE
CHECK SUM SUBROUTINE
INCREMENT VEB SUB
READ BYTE SUBROUTINE
READ CHAR SUBROUTINE
READ BIT SUBROUTINE
RESET ALL PIAS

0870:
0580:
0560:
Q6GO:
GE10:

0620:

05630:
QR¥D:
0650:
0660:
0&T0:
0680:
0650
0700
0710:
0720:
0730:
0740:
0750:
0760:
G770:
0780:
0790:
0800:
0810:
0820:
0830:
0840
085C:
0860
G870:
0880
08390:
G900
0910:
0920:
0630
Qogu0:
0g50:
0640:
6970:
oean:
0990
1600;
1010:
1020:
1030:
1040
1050
106G:
ID=G2

0010:
0020C:
003C:
00ug:
005C:
0060:

2nC5
2DC7

2DC9
2DCC

2DCD
2DCE
2DCF
2DD0
2DD1
2DD2
2DbD5
2DD5

2DD8
2DDA
2DDB
2DbDD
2DDF
2DE1

2DE3
2DE5

2DET
2DE9

Z2DEB

MICRO-WARE ASSEMBLER 65%XX-1.0 PAGE 02 - 43 -

AS
A6

20
8a

48
4a
44

LT
20
68
29

c9
18
30
69
69
DO

A9
DO

AS
DO

20

16
15

Ch 2D

D8 2D

0A

02
07

0b

5E
09

oD
05

C9 2D

¥RRXEX%% INPUT AND OUTPUT ROUTINES ¥RRE¥%us
SUBROUTINE TO PRINT THE CURREMT LINE NUMBER

NOUT LDA N +01 GET HI N
LDX N GET LO N...PRINT THEM

SUB TO PRINT 2 HEX BYTES
FIRST BYTE IS IN A
SECOND BYTE IS IN X

HEXAX JSR HEXOUT PRIRT ACCUMULATOR
TXA GET BYTE IN X ... PRINT IT

SUBROUTINE TO PRINT 1 HEX BYTE
INPUT IS IN ACCUMULATOR

HEXOUT PHA SAVE INPUT
LSRA GET
LSRA UPPER
LSRA NYBBLE
LSRA
JSR HEX PRINT UPPER NYBBLE
PLA GET INPUT BACK

ANDIM $0OF GET LOWER NYBBLE

SUBRQUTINE TO PRINT 1 HEX CHARACTER
INPUT CHAR IS IN ACCUMULATOR

HEX CMPIM $0A LETTER OR NUMBER?
CLC CALCULATE ASCII
BMI HEXA IF IT IS A& NUMBER!
ADCIM 307 ADD T TOQ LETTER

HEXA ADCIM $30 AND 30 7O BOTH
BNE OUTCH THEN PRINT IT

SUBROUTINE TO PRINT A BACKSPACE
IF YOUR TERMINAL CAN'T-CHANGE THE SF TO
ANOTHER CHARACTER TO INDICATE DELETES

BACKSP LDAIM $5F BACKSPACE CHARACTER
BNE OUTCH PRINT IT

SUBROUTINE TO PRINT CARRIAGE RETURN
AND LINE FEED

CRLF LDAIM $0D GET CR CHARACTER
BNE OQUTCH AND PRINT IT

SUBROUTINE TO PRINT 2 HEX BYTES
FOLLOWED IMMEDIATEDLY BY A SPACE

HEXSP JSR HEXAX PRINT 2 HEX BYTES

I0

0070:
0080:
0090:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
0200:
0210:
0220:
0230:
02L40:
0250:
0260:
0270:
0280:
0290:
0300:
0310:
0320:
0330:
03H40:
0350:
0360:
g370:
0380:
0390:
0400:
0410:
0L20:
0430:
oL40:
gLU50:
QU60:
- 0470:
0480:
0490:
0500:
0510:°
0520:
0530:
0540
0550:
0560:
0570:
0580:
0590:
0600:
0610:
0620:

2DEE

2DF O

2DF 2

2DF Y4
2DF6

2DF 8
2DFA
2DFC
2DFE

2E00
2E03
2E05
2EQT
2E09

2E0B
2EQD

2EQF
2EN

2E14
2E16

2E19
2E1C

2E1E
2E20
2E22

2E23
2E26
2E28

2E2B
2E2D
2E2F
2E32
2E3H
2E36

2E38

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 02

A9

2C
10

AB
Al
60

2C
10
yc

86
84
20
29

DO
A9

20

Fu
5
0D
TE

63

64
oF

2B
1B
ol
63

FO
64

0A
16

0D
A0

ug
G5

F5
Fy
50
31

2E

2E

2E

13

AT

20

2E

SUBROUTINE TO PRINT A SPACE
OQUTSP LDAIM ! LOAD SPACE IN A

SUBROUTINE TO PRINT AN ASCIT CHARACTER
INPUT CHARACTER IS IN THE ACCUMULATOR

OUTCH STY YTMP HIDE Y
STX XTMP AND X
CMPIM 30D IS THIS A CARRIAGE RETURN?
BNE NOCR SKIP LF IF NOT

LDX PMODE CHECK PAGE MODE FLAG

BNE NOPG SKIP IF NOT ON

INC COUNTL ADD 1 TO LINES PRINTED
BNE NOPG SKIP IF NOT END OF SCREEN

JSR INCH PAUSE UNTIL INPUT OF ANY KEY
CMPIM $1B WAS ESCAPE KEY ENTERED?
BNE ON IF NOT CONTINUE IN PAGE MODE
LDAIM $FF TURN OFF PAGE MODE
STA PMODE

ON LDXIM $FO RESET LINE COUNTER

STX COUNTL TO -16

NOPG LDAIM $0A PRINT A LINE FEED
JSR NOCR (REMOVE IF YOUR TERMINAL HAS AUTO

LDAIM $0D THIS WAS A CR, REMEMBER
NOCR JSR OUTPUT SO PRINT IT

ROUTINE TO TEST FOR BREAK DURING I/O

BRKTST BIT $1740 TEST INPUT PORT OF PIA
BFL BREAK TIF BIT 7=0

LDX XTMP SEEK HIDDEN X
LDY YTMP AND HIDDEN Y
RTS AND ITS ALL CVER

BREAK BIT $1740 WAIT UNTIL KEY
BPL BREAK IS RELEASED
JMP RESTRT THEN GO TO EDITOR

ROUTINE TO INPUT AN ASCITI CHARACTER
RETURNS IT IN ACCUMULATOR

INCH STX XTMP HIDE X
STY YTMP AND Y
J3R INPUT CALL USER INPUT ROUTINE
ANDIM $7TF STRIP PARITY BIT
CMPIM $0D WAS IMPUT A RETURN
BNE NOCRIN IF NOT ITS COK

LDAIM $0A PRINT A LF WITH CR INPUT

10

0630:
0640:
0650+
G660:
ID=03

0010:
0020:
G030:
0040:
0050:
0060:
0070:
0080:
0090:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
0200:
0210:
0220:
0230:
0240:
0250:
0260+
0270:
0280:
0290:
0300:
0310:
0320:
0330:
0343:
0350:
0360:
0370:
0380
0390:
0400:
0410:
QL20:
0430:
o440:
0450:
0460:
0470:
0480:
0ug0:
0500:
0510:
0520:

2E3A
2E3D
2E3F

2EU1
2EN3
2EL6
2ELS

2EH44
2E4D
2ELE
2E50

2E51
2ES3
2ES55
2E58

2E5B
2E5D
2ESF

2E62
2E6Y
2E66
2E67
2E69
2E6B
2E6D
2E6F

2E70

2ET3
2E76
2ET8
2ETA
2ETD
2ETE
2E80
2E82

2E84
2E86
2E89
2E8A
2E8D
2E8E
2E8F

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 04

20
Ag
DO

AQ
B9
48
20
68
c8
c9

AO
GD
D8

00
2B
TF
07

E3
F3

5¢C
06
E7
b1

05
11
00

0D
09

3A
D8
op
EC

E3
Q0
oD
c9
FO
3A

F1
BF

00

Fo

oD

2E

2E

2D

2D

01

2D
01

2D

01
2D

JSR OUTPUT
LDAIM 30D
NOCRIN BNE BRKTST

= i =

SKIP THIZ IF AUTO LF OW TERMINAL
REPLACE CR AGAIN FOR RTS
RETURN ¥IA BREAK TEST

SUBROUTINE TO FILL BUFFER FROM

KEYBOARD INPUT

BUFIN LDYIM $00

INB JSR INCH
CMPIM $7F
BNE ONIN
JSR BACKSP
DEY
BPL INB
BRK

ONIN CMPIM 3$5C
BNE OKB
JSR CRLF
JMP BUFIN

OKB CMPIM $05
BEQ OVR
STAAY BUFFER
CMPIM $0D
BEQ ENDBU
INY
CPYIM $34
BMI INB
LDAIM $0D
BNE OKB

ENDBU RTS

OVR JSR BACKSP

ovX LDAAY BUFFER
CMPIM $0D
BEQ INB
JSR OUTCH
INY
CPYIM $3A
BNE ovX
BEQ INB

SUBROUTINE TO PRINT

PRBUF LDYIM $00
PRNTB LDAAY BUFFER
PHA
JSR OUTCH
PLA
INY

CMPIM $0D

RESET BUFFER COUNTER
GET CHARACTER INPUT
WAS IT A DELETE?
IF MOT, CARRY ON

BACKSPACE

I BUFFER

IT RIGHT THIS TIME
BACKED UP TOQ FAR!

PRINT A
BACK UP
AND GET
ERROR=-

(BACKSLASH) WILL
DELETE WHOLE LINE
PRINT RETURN AND LV
AND START OVER

WAS IT A CTL-E?
YES~--GO TO OWR FUNCTION
JUST AW ORDINARY CHARACTER TO SAVE

WAS THIZ THE END?

YES, SO GET OUT OF HERE
INCREMENT POINTER

ALLOW ONLY 58 CHARS +6 PROMPT=64
STILL SOME ROOM FOR MORE

FORCE CR TO END LINE

PRINT IT AMD PUT IN BUFFER

ALL DOHNE

CANCEL THE CTL CHAR (THIS MAY NOT BE
NECESSARY ON SOME TERMINALS)

GET CHARACTER TN BUFFER

Is IT THE END?

IF SC--GO GET NEW ADDITION
SHOW HIM WHAT IT 13

ON TO NEXT CHARACTER

BUT DON'T GET CARRIED AWAY!
KEEP GOING

LET HIM FIX IT UP

BUFFER
LIMIT

THE BUFFER

RESET THE POINTER

GET A CHARACTER

HIDE IT TEMPORARILY

PRINT IT

SEE¥ TIT BACK

POINT TO NEXT CHARACTER

WAS THAT THE END OF THE BUFFER?

I0

0530:
0540:
0550:
0560
0570:
0580:
0590:
0600:
0610
0620:
0630:
0640
0650:
0660:
0670:
0680:
0690:
0700:
0710:
0720:
0730:
0740:
G750:
0760:
0770:
0780:
0790:
0800:
0810:
0820:
0830:
08L0:
0850:
iD=04

0010:
0020:
0030:
0040:
005G:
0060:
6070:
0080:
0090:
G100:.
0110:
0120:
0130:

. 01480:

0150:
0160:
0170:
0180:
0190:
0200:
0210:
0220:
0230:

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 05

2E91 DO F3
2E93 60

2E94 4C 00 1A
2EQT7 UC AF 2E
2E9A 4C 35 2F
2E9D 4C 5A 1E
2EAD UC AOD 1E

2EA3 35
2EAY 36
2EAS HO

2EA6 30
2EAT 36

2EA8 02

2EA9 20 CD 2D
2EAC 20 EE 2D

2EAF AD 02 17
2EB2 29 FB
2EB4 8D 02 17

BNE PRNTB NO, THERE MUST BE MORE
RTS YES, SO RETURN

RERE ERREEEERE RERNRENRE
¥*¥¥%% USER SPECIFIED ADDRESSES #¥%%x

REER RREREXREN NXAXBERER
PACKT JMP $1A00 A KIM SUBROUTINE TC PACK ASCII ﬁ%&o
READ JMP CREAD THE CASSETTE READ SUBROUTINE
WRITE JMP CWRITE THE CASSETTE WRITE SUBROUTINE
INPUT JMP $1E5A THE KEYBOARD INPUT ROUTINE
OUTPUT JMP $1EAQ0 THE PRINTER OUTPUT RCUTINE
DEFINITION CF SOURCE LOCATION

SQURCM = $35 SOURCE - 1
SOURCE = $36 SOURCE AREA OF MEMORY STARTS HERE
SOURCF = $40 AND ENDS JUST BELOW HERE

DEFINITION OF SYMBOL TABLE LOCATION

SYMBOL = $30 SYMBOL TABLE STARTS HERE
SYMF = $36 AND JUST BELOW HERE

DEFINITION OF OBJECT LOCATION
OBJECT = $02 THE OBJECT WILL BE ASSEMBLED TO HERE

RERRERERFURBARRE LR R R RN R RRERERRFRRRRERERARARREN

¥%e#x gTM CASSETTE READ AND WRITE ROUTINES ##&k#
EERERR R E R AR R R R RN RN AREIE R R RARRXARRENRRRREDR

CASSETTE READ ERROR (INCORRECT ID)

ERID JSR HEXOUT PRINT THE WRONG ID,
JSR OUTSP SPACE AND THEN START OVER

%xE%% CASSETTE READ SUBROUTINE ®#¥¥¥

VERY SIMILAR TO THE READ ROUTINE

IN THE KIM ROM.

THE LED DISPLAY OF INCOMING DATA ADAPTED
FROM VUTAPE, A PROGRAM BY JIM BUTTERFIELD
FROM THE KIM-t USER NOTES.

CREAD LDA $1702 TURN ON CASSETTE #1 BY
ANDIM $FB CHANGING BIT 2 TO
STA $1702 ZERO IN PIA PORT B

I0

0240;
0250:
0260:
0270:
0280:
0290:
0300:
0310:
0320:
0330:
0340:
0350:
0360:
0370:
0380:
0390:
0u400:
0u10:
0420:
0u430:
MELIH
oLl
0u4s50:
0U60:
o470:
0u480:
o481:
0490:
0500:
0510:
0511:
0520:
0530:
05L0:
0550:
0560:
0570:
0571:
0572:
0580:
0590:
060G:
0610:
0611:
0620:
0630:
0640:
0650:
0651:
0660:
0670:
068G:
0690:
0691:
0700:
0710:

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 06 - 47 -

2EBT7
2EB9

2EBC

2EBD
2EBF
2EC2

2EC5S
2ECT

2ECA

2ECD
2ECF
2ED1
2ED3

2ED6
2ED8

2EDA
2EDD
2EEQ
2EE2

2EEM
2EET
2EEQ

2EEB
2EEE
2EF1
2EF 4
2EFT
2EFA

2EFD
2EFF
2F02
2F 04

"2F06

2F09
2F0B
2F0C

2FOE
2F 11
2F 14
2F17

2F1A
2F1D

AS
8D

D8

A9
8D
20

A9
8D

20

46
05
85
8D

c9
DO
20
8D

co
DO

20
DO

20
20
8D
20
20
8D

TF
41

8D
EC
32

13
42

i1

F3
F3
F3
40

16
FO

24
40
24
Fe

F3
62
BE

F3
4c
ED
F3
4C
EE

02
24
2F
14

9u

BF
F1

yc
EC
EA
FD

F3
E7

17

17
1A

17

1A

17

19

18

2E

SYNC

TST

LOADIT
READIT

ENDRD

LDAIM
STA

CLD

LDATM
STA
JSR

LDAIM
STA

JSR

LSRZ
ORAZ
STAZ
STA

CMPIM
BNE

JSR
STA
CMPIM
BNE

JSR
CMP
BNE

JSR
JSR
STA
JSR
JSR
STA

LDXIM
JSR
CMPIM
BEQ

JSR
BNE
DEX
BNE

JSR
JSR
JSR
JMP

JSR
cMP

$7F
$17H1

$8D
VEB
INTVEB

$13
SBD

RDBIT

T™P
TMP
TMP
$1740

$16
SYNC

RDCHT
$1740
$2A
TST

RDBYT
ID
ERID

RDBYT
CHKT
VEB
RDBYT
CHKT
VEB

$02
RDCHT
Y
ENDRD

PACKT
SYNC

READIT

CHKT
VEB
INCVER
LOADIT

RDBYT
CHKL

TURN ON THE KIM LED DISPLAY
BY SETTING THE DD REG

JUST TO MAKE 3URFE
SET UP VEB

TO SAVE DATA

(IN KIM ROM)

TURN ON INPUT FORT FROM CASSETTE HARD

START READING A BIT AT A TIME

"SHIFT IT INTO TMP

AND SAVE IT
PLACE IT OW THE LED

IS IT A SYNC CHARACTER?
IF NOT, KEEP TRYING

IN SYNC, READ A CHARACTER
DISPLAY IT OM LED
IS IT THE START OF DATA?
IF NOT, LOOP AGATIN

READ THE TAPE ID
IS THIS THE RIGHT TAPE?
PRINT IT IF WRONG

READ THE START ADDRESS
INCLUDE IT IN CHECKSUM

+01 AND SAVE IT IN VEB

READ THE HI PART OF ADDRESS
INCLUDE IN SUM

+02 SET IT UP IN VEB

START TO LOAD DATA AS
ASCIT CHARACTERS

END OF DATA SYMBOL

SO WIND TIT UP

PACK THE ASCII INTO HEX

ERROR IN CHARACTER READ NOT = HEX
COUNT TO TWO

READ SECOND HALF

ADD TO CHECKSUM

STORE VIA VEB

INCREMENT STORE ADDRESS
AND READ NEXT BYTE

READ CHECKSUM FROM TAPE
COMPARE TO CALCULATED

I0

0720:
0730:
OT40:
0750:
0751:
0760:
077C:
0780:
0790:
0791:
iD=05

0010:
- 0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
0100:
0110:
0120:
G130:
0140:
0150:
0160:
0170:
0180:
0190:
0200
0210:
0220:
0230:
0240:
0250:
0260:
G270:
0280:
0290:
0300:
0310:
0320:

0330::

0340:
0350:
0360:
G370;
0380:
0390:
ou00:
o410:
QL20:
0430:
0440
0450:
QU60:

2F20
2F22
2F 25
2F28

2F2A
2F2D
2F2F
2F32

2R35
2F 38
2F3A

2F3D
2F 3F
2Fh2

2F 45
2F 47

2F49
2F 4B

2FUE

2F50
2F52

2F55
2F57

2F5A
2F5C

2F5F
2F61
2F6U
2F66

2F69
2F6C
2F6F
2F72
2F75
2F78
2F7B
2FTE

2F 80

MICRO-WARE ASSEMBLER 65XX-1.0 PAGE OT7

DO

CcD
Do

AD
09
8D
4c

AD
29
8D

A9
8D
20

A9
85

AQ
8D

A2

A9
20

A9
20

A5
20

AS
20
AS
20

20
20
20
AD
CcD

ED
90

A9

A8

E8
AC

0z
o4
02
8C

02
F7
02

AD
EC
32

27
FO

BF
43

FO

16
A3

24
C6

62

60
AF

AF

EC
AF
EA
ED
F7
EE

E9
2F

19
17
17

17
1E

17
17

17

2rF

2F

2F

2F
2F

17
2F
19
17
17
17
17

BNE
JSR
CMP
BNE

OKRD LDA
ORAIM
STA
JMP

SYNC AND START OVER IF WRONG

RDBYT GET SECOND HALF OF SUM

CHKH AND DO THE SAME —
SYNC WITH IT

$1702 TURN OFF CASSETTE

$04 BY SETTING BIT 2

$1702 OF THE PORT

INIT RETURN VIA INIT (RESET ALL PORTS)

#X¥%® KTM CASSETTE WRITE SUBROUTINE #¥*x#

ADAPTED FROM
AS PUBLISHED

CWRITE LDA
ANDIM
STA

LDAIM
STA
JSR

LDAIM
STAZ

LDATIM
STA

LDA
JSR

LDAZ
JSR
LDAZ
JSR

DUMPTA JSR
J3SR
JSR
LDA
CMP
LDA
SBC
BCC

LDAIM

SUPERTAPE BY JIM BUTTERFTELD
IN KIM-1 USER NOTES (V I,N 2)

$1702 TURN ON CASSETTE #2
$F7 BY SETTING BIT 3 = 0
$1702 1IN PIA PORT B

$AD SET UP
VEB VEB FOR SAVE
INTVEB

$27 SET FLAG
GANG FOR SBD LATER

$BF TURN ON
$1743 OUTPUT TO CASSETTE

$FO SEND 240 SYNC PULSES (OPTIMUM # DEPEW
ON RECORDER START/STOP TIME)

$16 SYNC CHARACTER

HIC OUTPUT X TIMES

$2A SEND START OF DATA CHAR
CUTCHT

D GET ID
QUTBT AND SEND AS A BYTE

SALX SEND EXECUTION ADDRESS
OUTBTC WITH CHECKSUM CALCULATION
SAHX HI PART TOO

QUTBTC

VEB GET A BYTE OF MEMORY
OUTBTC SEND AND CHECKSUM IT
INCVEB POINT TO NEXT BYTE
VEB +01 CHECK FOR END
EAL AGAINST EAL

VEB +02 AND

EAH EAH

DUMPTA AGAIN IF NOT END

$2F SEND END OF DATA CHAR

I0 MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 08

.49
0470: 2F82 20 C6 2F JSR OUTCHT AS CHAR
0480:
0490: 2F85 AD ET7 17 LDA CHKL SEND
0500: 2F88 20 B2 2F JSR OUTBT CHECKSUM
0510: 2F8B AD EB8 17 LDA CHKH LC AND
0520: 2F8E 20 B2 2F JSR QUTBT HI
0530: 2F91 A2 02 LDXIM 302 AND SEND 2
0540: 2F93 A9 04 LDAIM $04 EOT CHARS
0550: 2F95 20 A3 2F JSR HIC
0560:
0570: 2F98 AD 02 17 LDA $1702 TURN OFF CASSETTE
0580: 2F9B 09 08 ORAIM $08 BY SETTING BIT 3
0590: 2F9D 8D 02 17 STA $1702 OF THE CONTROL PORT
0600: 2FAO0 4C 8C 1E JMP INIT RESET ALL PORTS
0610:
0620: SUBROUTINE TO SEND X CHARACTERS TO TAPE
0630:
0640: 2FA3 86 F1 HIC S5TXZ TIC SAVE THE COUNT
0650: 2FAS 48 HICA PHA AND THE CHARACTER
0660: 2FA6 20 C6 2F JSR QUTCHT SEND THE CHAR
0670: 2FA9 68 PLA AND GET IT BACK
0680: 2FAA C6 F1 DECZ TIC TO SEND AGAIN
0690: 2FAC DO F7 BNE HICA UNTIL COUNT = O
0700: 2FAE 60 RTS
0710:
0720: SUB TO SEND CHARACTER WITH CHECKSUM CALCULATION
0730:
_0740: 2FAF 20 4C 19 OUTBTC J3R CHKT ADD CHAR TO. SUM
0750:
07601 SUB TO SEND BYTE AS TWO ASCII CHARS
0770:
0780: 2FB2 48 OUTBT PHA SAVE BYTE
0790: 2FB3 44 LSRA GET
0800: 2FBY LA LSRA UPPER
0810: 2FB5 L4A LSRA NYBBLE
0820: 2FB6 4A LSRA
0830: 2FB7 20 BB 2F JSR HEXT AND SEND IT
0840: 2FBA 68 PLA RETURN BYTE
0850:
0860: SUBROUTINE TC SEND ONE HEX CHAR AS ASCII
0870:
0880: 2FBB 29 OF HEXT ANDIM $0F CLEAN UP DATA
0890: 2FBD C9 OA CMPIM $0A CHANGE TO ASCIT
0900: 2FBF 18 CLC BY ADDING
0910: -2FCO 30 02 BMI HEXAT
0920: 2FC2 69 07 ADCIM $07 37 TO A...F
0G30: 2FCY4 69 30 HEXAT ADCIM $30 AND 30 TO 0...9
I1D=06
0010:
0020: SUBROQUTINE TO SEND ONE 8 BIT BYTE
0030:
o040: 2FCH AO 08 OUTCHT LDYIM $08 ETIGHT BIT COUNT
00%0: 2FC8 84 F2 STYZ COUNT
0060: 2FCA A0 02 TRY LDYIM $02 START AT
0070: 2FCC 84 FE STYZ TRIB 3600 HERTZ

0080: 2FCE BE FC 2F ZON LDXAY NPUL NUMBER OF HALF CYCLES
0090: 2FD1 48 PHA SAVE THE CHAR

I0 MICRO-WARE ASSEMBLER 65XX-1.0 PAGE 09

0100:

0110: 2FD2 2C 47 17 Z0ONA BIT $1747 WAIT FOR END OF CYCLE
0120: 2FD5 10 FB BPL ZONA IN TIGHT LOOP

0130:

0140: 2FD7 B9 FD 2F LDAAY TIMG SET UP TIMER

0150: 2FDA 8D 4y 17 STA $1744% FOR THIS PULSE

0160: ‘

0170: 2FDD A5 FO LDAZ GANG CHANGE STATE

0180: 2FDF 49 80 EORIM $30 OF QUTPUT

0190: 2FE1 8D 42 17 STA $1742 PORT

0200:

0210: 2FE4 85 FO STAZ GANG AND SAVE STATE

0220: 2FE6 CA DEX DONE ALL CYCLES?
0230: 2FET DO E9 BNE ZONA NO-THEN SEND ANOTHER
0240:

0250: 2FE9 68 PLA RETRIEVE BYTE

0260: 2FEA C6 FE DECZ TRIB ONE MORE GONE

0G270: 2FEC FO 05 BEQ SETZ THE LAST ONE, TOO
0280: 2FEE 30 07 BMI ROUT EVEN THE LAST ONE WENT
029G:

0300: 2FF0 4A LSRA ANOTHER BIT. TO THE CARRY
0310: 2FF1 90 DB BCC Z0N IF IT IS NOT SET
0320: 2FF3 AC 00 SETZ LDYIM 8GO0 SWITCH TO 2400 HZ
0330: 2FF5 FO D7 BEQ ZON ALWAYS

0340:

0350: 2FFT7 C6 F2 ROUT DECZ COUNT ONE BIT SENT

0360: 2FF9 DO CF BNE TRY BUT MORE TO GO

03706: 2FFB 60 RTS ALL OVER, GO HOME
0380: '

0390: TIMING TABLE

0400:

0410: 2FFC 02 NPUL $02 TWO PULSES

C420: 2FFD C3 TIMG $C3 THE RIGHT TIME

0u430: 2FFE 03
o4u0: 2FFF TE

$03 3 PULSES
$7E AND ENQUGH TIME

0450:

OL60: IF YOUR RECORDER CANNOT HANDLE THIS SPEED,
0470: YOU CAN SLOW DOWN BY CHANGING NPUL AND NPUL+02
0480; TO ONE OF THE FOLLOWING: 03 04
0490: 06 09
0500: (THIS IS THE KIM ROM SPEED) ocC 12

ID=

Hex Dump of Micro-ADE

00 01 02 03 04 05 06
2000: D8 20 ET7 2D A9 FF 85
2010: F4 23 A9 0D 20 2F 24
2020: 91 10 20 OD 25 A5 11
2030: 27 20 E7 2D A2 FF 9A
20L0: 8D FF 17 A9 OC 8D 03
2050: 20 41 2E AS 00 A2 06
2060: 01 C9 41 30 03 E8 DO
2070: E9 17 E8 BD 0G0 01 €9
2080: FO 1B 20 94 2E DO 15
2090: FA OD E9 17 85 18 8C
20A0: A5 18 99 1A 00 A5 19
20BO: B8 C6 17 DO G8 A5 1A
20C0: C9 41 DO 2C 20 96 24
20D0: A9 OD AC 00 91 10 20
20EQ: 76 24 C9 40 FO 05 20
20F0: C9 4C DO 06 20 67 23
2100: 24 F8 A5 15 38 E9 10
2110: 01 20 41 24 A5 15 C5
2120: 48 A5 16 48 20 B2 24
2130: 20 76 24 C9 40 DO DB
2140: 24 A5 15 85 1A 85 1B
2150: C9 4E DO 19 20 F4 23
2160: C9 OD DO F3 20 3F 24
2170: 06 20 A0 23 4C 31 20
2180: DO 09 20 67 23 20 AQ
2190: U4F 24 A5 11 A6 10 20
21A0: 20 A6 21 4C 31 20 A6
2180: 00 85 1B AD Al 2E 85
21C0: 69 00 85 1F A5 1B 8D
21D0: 8D F6 17 A5 1F 8D F8
21E0: 1F A6 1C 20 EB 2D C6
21F0: 17 85 60 AD F6 17 85
2200: A4 22 A5 1A 85 18 A5
2210: 1B 85 1A A5 1E 85 1D
2220: 4F 24 FO 01 00 A5 15
2230: 22 20 0D 25 20 0D 25
2250: 10 A5 13 85 11 20 B2
2250: 20 76 24 A6 17 EO 02
2260: 1A A5 1D 6% 00 85 1D
2270: BO 18 A2 FB B5 20 95
2280: 14 85 1B A5 1D 85 1E
2200: A5 18 85 1A A5 19 85
22A0: 1A u4C 17 22 C9 58 DO
22B0: 25 A5 1D 85 1B 6C 1A
22c0: 85 63 A9 FO 85 64 DO
22D0: 20 97 2E E6 62 A5 1B
22E0: 10 20 96 24 A5 11 A6
22F0: 20 C9 5A DO 36 Ab
2300: 1A 85 3D A5 1D 85
'2310: DO OD E6 18 30

2320: 3D C5 1B A5 3E E5

23h0: 2E 20 AC 21 E6 1A A5
2350: DO 14 Al 1C A6 1B A5
2360: 1D 98 DO F8 FO B7 GO
2370: A9 99 85 1E 85 1B 20
2380: A5 1B C5 15 A5 1E E5
2390: FO 2D 20 EE 2D 20 DE
23A0: 20 4F 24 10 33 60 AQ
23B0: 40 DO F5 60 84 14 A5
23C0: B1 10 00 91 10 20
23D0: A5 12 85 10 A5 13 85
23E0: 1E F1 10 BO C1 60 A5
23F0: 00 85 11 60 A9 FF 85

Copyright, 1977.

o7

23

O =0T M
JI O - o ~3WUnim -3

20

SN PN e T B TyY)
cCOoO=TUON E0mO

o
o]

7] =2 = =2 a2 T) = QO = N 3
s Neslwinle-TmR _dNolwio-=1N] Lo/

O St Ot ()= = D
S = Q) I OO0 I ONE= OO0 'T)

O = = T = 0o
M=o =O

20

£ - I TN 00 =~ N 5 00
oI C0 £ 00 OV BT

85

Micro-Ware Limited.

Y2 = T 00— N -
O 2O ENO0-

O OITf s [\ —h —2 2 b
00 T G I TN TN

- 52 -

2400:

27EQ:
27F0:

11

WOMNNWEO -
=S EUI-1TIo0OouUIN —

fo]
(o,

TINDTTIEE S o 2T
WO-NEMANewO00

[olelelloalalvialalNelabfvivEstaln ot o]

MNNIE—=SEPOOTIGTM=2UTOTWO O

FA

PRNANOONNEZO 2N
EOVNIO=TOI0O

ENOTOTN TN TIAE ON -

20

=S EENRPOOE®RSONNEO

24

ENONOOTION =T
N~ OO = O~

FO

P EOWMNNEE =2 3w 2O =
UINON=~OO =0 000 O IENWWIIO

oW S -t
EEEOO——O
I EWN =~
EOO OO0
PO OMNN £ —
~N @O T =0 O

43

= O EF NN —
OO0 OO =00

B SN TING =0 - U -
EEWWoOo O OAWD OWIWO =N
S ETOWINW EJW
£ EOND o N oL

38

ORI GO N &
QRO ONC OGO T O

QMO OWU 00w W
SO OO OO0 0O

98

S snUie
OEFEOOOXEY

VRw oo 0

- 54 -

2C00:
2C10:
2C20:
2C30:
2Cu0:
2C50:
2Ch0:
2C70:
2C80:
2C90:
2CAQ:
2CB0:
2CCO:
2CDO:
2CEQ:
2CFG:
2D00:
2D10:
2D20:
2D30:
2D40:
2D50:
2D60:
2D70:
2D80:
2D90:
2DA0:
2DBO:
2DCO:
2DDO0:
2DEQC:
2DF0:
2E00:
2E10:
2E20:
2E30:
2E40:
2E50:
2E60:
2ET70:
2E80:
2E9Q:
2EAQ:
2EBO:
2ECO:
2EDO:
2EEQ:
2EFO:
2F00:
2F10:
2F20:
2F30:
2F40:
2F50:
2F60:
2FT0:
2F80:
2F90:
2FAQ:
2FBO:
2FCO:
2FDO:
2FEOQ:
2FF0:

O ETION BN — —
OO > o =73 YoM

c8

[T D) =t =3 () e =2 LD = (T Q)
oW OVWOWTO =D

OITITINO N b s = b) o2 B 2 2
OO0 Ce) O~ G O =T = =

DO
g4

=]
1]

CO O 00 YD O B = " (O (7]
IOy IGO0 O OLECON

A9

T TIO0 = — e O — 2 O Y

[l
LT O 30 11 T o~ O T = |

O
[N]

26

3B

68

9E

D4

07

23

6F

A4

A8

-E2

Fb6

EDITOR ERROR MESSAGES

INSERTION OVERFLOW. An attempt has been made to insert 10
lines in a 9 line space.

ATTEMPT TO MOVE BEYOND THE END OF FILE. An illegal 1line
number has been used in the MOVE command.

SOURCE FILE LIMIT EXCEEDED. An attempt has been made to
store data beyond the allocated source file.

COMMAND SYNTAX ERROR. The command entered cannot be
recognized.

COMMAND PARAMETER SYNTAX ERROR. An illegal character has
been used in a command parameter.

ATTEMPT TO MOVE BEGINNING OF FILE. The command executed
did not operate properly because of a syntax error in the
file. Check the first one or two lines of the file for
duplication after this error is flagged.

ASSEMBLER ERROR MESSAGES

INSTRUCTION SYNTAX ERROR. The instruction field does not
contain a valid instruction or pseudo instruction.

ILLEGAL ADDRESS MODE. The address mode used is not wvalid
with this instruction.

DUPLICATE SYMBOL. An attempt has been made to redefine a
symbol,

SYMBOL TABLE OVERFLOW. Too many symbols have been defined.

UNDEFINED SYMBOL. A symbol which has not been defined has
been used as an argument.

ADDRESS MODE SYNTAX ERROR. The address mode field does not
contain a valid address mode.

BRANCH OUT OF RANGE. A relative branch has been attempted
beyond the legal range.

If Micro-ADE is relocated, the error numbers may change.

Miero-ADE COMMANDS

EDITOR COMMANDS

A
c

L

L

L1,

Ii

Di

Di,]

Fi

Mi,J

M ;3%

N

Wi

E
CASSETTE

X
X,y

X
X,a,b
X

X,y

WL QO

ADD new lines to current source file.

CLEAR and format the workspace.

LIST all lines at the terminal.

LIST line i at the terminzal.

LIST lines i through j at the terminsl.

INSERT new lines before line i.

DELETE line i.

DELETE lines i through j.

FIX line 1. Print it and prompt for edit.

MOVE line j to immediately before line i,

MOVE lines } through k to immediately before line i.
NUMBER all lines in increments of 10.

WHERE. Print the absolute address of line 1i.

END. Print the absolute address and number of the last

COMMANDS

GET file with ID = x from Cassette 1.

GET a group of files with ID = x, x+1, ... ,¥.

SAVE a source file with the last used ID.

SAVE a source file with ID = x.

SAVE a data block from address a2 to b-1 with ID = x.
REPRODUCE a source file with ID = x.

REPRODUCE a group of source files with ID = x,x+1,...y.

OPERATING COMMANDS

Set or reset PAGE MODE.
EXECUTE the assembler.

" EXFEUTE address a.

Print the symbol TABLE in alphabetical order.

Print the symbol TABLE in address order.

Print the symbol TABLE start and end addresgses.

Set the symbol TABLE end address to 3.

BLOCKMOVE 256 bytes from address a to address b.
BLOCKMOVE x bytes from address a to address b.
DISASSEMBLE continuously from address a to address b.
DISASSEMBLE 16 lines from address a.

DISASSEMBLE 16 lines from last address disassembled.

line

Where a and b are hexadecimal addresses, i,j, and k are decimal line

numbers,

and x and y are 1 byte hexadecimal constants.

