LETTERS
(continued from page 12)

fastest and just about the handiest
editor under ten fingers (if it isn't,
just redefine your macros the instant
you think of something better). Just
take the compiler and all-purpose
resident macro program as bonuses.

Now, the importance of speed is
simply that we want to work at pro-
gramming, not at running an editor.
Like a fine sound system, a good edi-
tor should be transparent. When 1
write while v <= maxv do, I don't
think of the keys I press, only of the
statement I'm producing. It should be
the same when I want to move that
statement, to indent it and what fol-
lows, or simply to erase the line—or
to find it in a 2,000-line file. What no
one wants is to sit and look at the edi-
tor editing.

Which brings us to WordStar im-
printing. I got imprinted with Word-
Star because my mother imprinted

me with ten fingers. For the first two
days, it may be easier to use an editor
that has F3 for “delete word” and
shift-F3 for “delete line,” but after
those two days, only a WordStar-
style editor gives you a chance to get
to the point at which you only have
to think “delete line” and not notice
the actual fingerwork needed to do
it—because it doesn’'t demand that
your hands leave the typing position.

Hunt-and-peck chickens may not
understand this, but there is a world
beyond the barnyard, you know.
The WordStar commands aren’t
meant for the user’s manual but for
the user’s hands. They're the natural
extension of sheer speed because
they remove another nontranspar-
ent interface between your mind
and the program text.

So, my ultimate editor is simply the
Turbo Pascal editor with a good mac-

; (Body of subroutine)

;Data field of preceding instruction

ENTRY STX SAVEX ;Save
LDX §$FF ;Restore
SAVEX EQU *-1
RTS

[X]

[X]

Example 1: A fast method for saving and restoring registers

TXBLOCK STX _TXLENGTH

STA _TXADDR

STY _TXADDR+ 1

LDX #-1

LDY 40

STY _TXSUM
TXBLOOP1 LDA $FFFF,Y
_TXADDR EQU *-2
TXBLOOP2 BIT HWREADY

BPL TXBLOOP3

STA HWDATA

EOR #$FF
_TXSUM EQU *-1

STA _TXSUM

INY

CPY §#$FF
_TXLENGTH EQU *-1

BNE TXBLOOP1

LDA _TXSUM
TXBLOOP3 DEX

BNE TXBLOOP2

;Set block length
;Set block address

;Init timeout

;Init block index
;Reset TXSUM accum.
TFitst,
;Address portion of LDA
instruction

;Check if Tx port is ready

; (N)Check timeout

; (Y)Tx the byte

;Accum TXSUM

;Data portion of EOR instruction
;Update running XOR sum

;End block?

;Data portion of CPY instruction
; (N)Continue sending

;Send the checksum

;Timeout expired?
; (N)Continue sending
; (Y)Return timeout error

(0=256)

get byte to send

Example 2: An actual 6502 code fragment

ro program plus several-document
capacity, windowing, wordwrap for
comments, block-limited search-and-
replace with more complex specifi-
cation capacity, and files greater
than 64K. But never at the price of
speed or the WordStar keyboard
coede. Don’t mistake us far-voyaging
mallards for clay pigeons.

Philippe Ranger

6120 Hutchison

Montreal, Canada H2V 4C2

6502 Hacks

Dear DDJ,

When I read Mark Ackerman’s 6502
Hacks” (February 1987), I was both
surprised and delighted that, in this
world of 68000s and hypercubes,
there is still anyone left who would
spend the time and effort to write a
good article about 6502
programming.

But, before anyone’s programs
start crashing, let me correct Mr.
Ackerman on two related points.
First, the software interrupt instruc-
tion (BRK) uses the IRQ (maskable in-
terrupt) vector, not the NMI (nonmas-
kable interrupt) vector. But to make
matters even worse, the BRK instruc-
tion pushes its address+2 on the re-
turn stack. In order to return to the
opcode immediately following the
BRK, the return address on the stack
must be dug up and decremented be-
fore returning (very messy).

Second, and more important, is
that the RTI (return from interrupt)
instruction is not functionally com-
patible with the sequence PLP (pull
processor), RTS (return from subrou-
tinel. The RTI instruction pulls the
processor status byte and then con-
tinues execution at the address
pulled from the stack, increments
the address by 1, and then continues
execution at the adjusted address.
This compensates for the fact that
the JSR pushes the address of the
next opcode-1.

The reason for this lies in a quirk of
the 6502 opcode processing. To exe-
cute the JSR instruction, the proces-
sor first fetches the opcode and the
low byte of the address. It then
pushes the current program counter
(which is now pointing to the third
byte of the instruction) and, finally,

122
494

Dr. Dobb’s Journal, June 1987

fetches the high byte of the address.
So, the address that gets pushed on
the stack is always one byte shy of
the next instruction. In contrast, the
interrupt acknowledge sequence
will only happen between instruc-
tions, so the progam counter is al-
ways pointing to an opcode when
the interrupt return address is
pushed.

In his coverage of self-modifying
code, I think Mr. Ackerman missed
one very useful trick. I often save
registers (because they are so very
scarce) by storing their contents in
the data portion of a load instruction
located at the end of the routine [see
Example 1, page 122]. It takes 5 bytes
of code but is absolutely the fastest
method of saving and restoring a reg-
ister (six cycles total) and both the in-
struction and data storage are local-
ized in the subroutine.

To demonstrate variations of the
trick, I have included a program-
ming fragment of an actual routine
[see Example 2, page 122]. The rou-
tine transmits, over an extremely fast
synchronous communication port, a
block of data (from 1 to 256 bytes) fol-
lowed by the exclusive-ORed sum of
the block. It must also make sure that
the port is not “hung” by keeping a
decaying timer in the X register. The
routine is passed the address of the
block in registers A and Y and the
length of the block in X. When the
loop is cooking, it can transmit a byte
every 27 cycles.

Of course, I won't tell you what
product this code is running in (the
labels have been changed to protect
the innocent), for fear that someone
wouldn’t buy our system if they
knew I programmed this way on a
regular basis.

James Bucanek

C-Si Systems

572 W. Pima

Coolidge, AZ 85228

DDJ

Dr. Dobb’s Journal, June 1987

123
495

