Robert L, Kurtz W6PRO
#4 Santa Bella Rd.
Rolling Hills CA 90274

World of the Brass Pounders:
Receive Morse Code the Easy Way

Microcomputing and amateur radio make an exciting combination, if you haven’t already
an excellent example of what we mean.

discovered it. This Morse code reader is

Agreat feature of a personal-
computing hebby is that it
can be used to work with other
hobbies. A case in point Is this
little program to decode and
print out Morse code. | original-
ly wrote this in machine lan-
guage for my KIM system,
where It took up less than one

page, and finally decided to try
it in BASIC.

Even though the program
looks simple, it has some
unusual surprises, such as sell-
adaptlve adjustment for
changes In code speed. In addi-
tion, the influence of changes
in dash or dot length is welght-

ed so that they must occur flve
or six times in succession be-
fore the computer decldes that
there has been a bona fide
speed change. As a result, an
occaslonal ‘“‘bad” character
will not mess up your copy; the
printout is extremely stable and
the copy Is relatively foolproof.

RESTORE
DIM A§(188)

15 B=@

88 C=((4*C)+B)/5
180 B=@

111 B=B+1@

140 GOSUB 380
151 B=B+1@

188 PRINT " “;
198 GoTo 14
388 DA=DA*2
318 D=DA+DO

349 PRINT AS(D):
350 DA=@:DO=8

1 REM MORSE CODE READER - WRITTEN BY R. KURTZ — W6PR@

2

3 PRINT CHR$(26):REM CAN DELETE - PUTS CURSOR AT TOP OF PAGE
5

6 FOR N=1 TO 10B:READ AS(N):NEXT N
13 A=PEEK(5888) AND 1
11 IF A=1 THEN 1@

28 A=PEEK(5888) ARD 1:B=8+18
3@ IF A=1 THEN C=((5%C)+(2%B))/6:D0O=2%DO:DA=2*DA:DO=DO+1:GOTO 108
4@ IF B<(.5*C) THEN
5@ DO=2*DO:DA=2*DA:DA=DA+1l
68 A=PEEK(5888) AND 1:B=B+10
70 IF A=@ THEN GOTO 68

29

118 A=PEEK(5888) AND 1

12¢ IF A=@ THEN GOTO 15
138 IF B<(,5*C) THEN GOTO 1180

158 A=PEEK(5888) AND 1

168 IF A=8 THEN GOTO 15
178 IF B<(2*C) THEN GOTO 150

338 IF D>183 THEN D=1@@

SR]

s
4,-,3,-,=, =2

Program listing.

.U,R,W,D,X,6;0,H,V,F,-,L,-,P,J,B,X,C
=i=rmeme=a=e= 1,64,/ 0=
=8y =080y i m e, ?

34

The program also detects the
end of the word and prints out a
space, if required.

The program's memory
needs are minor—just a little
over 1K of RAM Is required, The
program is written in Microsoft
BASIC on the KIM computer,
but should operate with any
relatlvely fast BASIC. From a
hardware standpoint, if your
CRT or printer will go to 300
baud, this program will provide
excellent copy of Morse code,
up to 15 or 20 words per minute.
If your terminai operates up to
1200 baud, It will follow the
Morse transmisslons to well
over 30 words per minute.

Loading the Program

Input the prograrn exactly as
written, even though some of
the Instructlons may seem re-
dundant. 1t is written this way
to save operating time—a very
important consideration when
you are dealing with fast-acting
dots and dashes.

Lines 10, 20, 60, 110 and 150
instruct a PEEK to location
5888 (decimal). In the KIM com-
puter, this is a peripheral input
address at 1700 (hex). This loca-
tlon reads a totalof eight Input
ports as an seight-bit word.

The AND 1 on lines 10, 20, 80,
110 and 150 assures that the
computer s only reading the
port to which the incoming
Morse is connected. Obviously,

INVTIALIZE

WAIT FOR
"KEY DOWN"

=

.

STORE_"DOT"

% DOT
nEGSTER

UPDATE
DASK-TIME

NEASURE,
KEY -UP™
TimME

(WEIGHTE D)

Fig. 1. Simplitied tlow diagram.

this must be changed to fit your
particular system.

In addition, the program
assumes that when a dot or a
dash occurs, a logic 0 appears
on the input port. This is in
agreement with a “key down”
shorting the Input port to
ground, and also in agreement
with the hardware Interface cir-
cuit described iater. If your
hookup provides a logic 1 dur-
Ing a dot and a dash, then ilnes
11, 30, 70, 120 and 160 must be
changed so that all {F A=1
statements shouid read IF
A =0, and vice versa.

Program Description

Fig. 1 ts a simplified flow
diagram of the program. The
initializatlon routine (lines 1
through 6) sets the lookup table
that will permit the printout of
the proper character. The pro-
gram then walts for a key down
to occur (lines 10 and 11). The
first part of the operating pro-
gram (lines 20 through 80) mea-
sures the length of time that
the Key Is down and compares
this with the stored value for
the length of a dash.

If the key is raised in less
than one-half of the stored
dash time, the computer writes
a dot into the dot register (line
30) and goes to the second part
of the operating program.

If the key remains down
longer than one-half of the
dash time, a dash Is stored in

the dash reglster (iine 50), and
the value of the dash time Is up-
dated with a one-to-four weight-
ing (line 80). This is accom-
plished by multiplying the old
value of the dash time by four,
adding the new value, and then
dividing by five. As a result, the
stored vaiue of the dash time
cannot change drastically from
character to character, and the
copy is not susceptibie to er-
rors from erratic sending habits.

The second part of the pro-
gram (llnes 100 through 150)
measures the length of time the
key Is up. if it’'s up less than
one-half of the dash length, the
program assumes that the
character is not complete and
no printout is provided (see
lines 100 through 130). if the
key Is up longer, the program
Jumps to iine 300, the print-
character subroutine. if the key
is up longer than twice the dash
length, the program assumes
that a word is complete and a

+ov

First period: Input a dash.
2 times dash register
2 times dot register
Add 1 to dash register

2 times dash reglister
2 times dot register
Add 1 to dot register

Third périod: Input a dot.
2 times dash register
2 times dot register
Add 1 to dot register

2 times dash pegister

Answer: D = 11,

EXAMPLE: D= —@® @

Inltial conditions: Dot register = Q, Dash register = 0.

=2

= 2

=1
Summary: dash register = 1, dot reg/ster

Second period: Input a dot.

Summary: dash register = 2, dot register = 1

Summary: dash register = 4, dot register = 3.

End of Character—determine lookup number for D.
=2x4 = 8.
Add dot register and dash register

Example 1.

x0
x0

i H

0.
0.
+0=1 ¢

]
o

2x1 =2
2x0=0.
1+0=1.

2x2 = 4,
2x1 =2
1+2=3

=8+3=11.

1. If the input signal is a dash:

A. Double the values in the dot and dash registers.
B. Add 1 to the dash register (see line 50).

2. If the input signal Is a dot:

A. Double the values in the dot and dash registers.
B. Add 1 to the dot register (see line 30).

3. If the character Is completa:

A. Doubie the value In the dash register.
B. Add the dash and dot registers to obtain the lookup

number,

C. Clear the dot and dash registers.

Table 1.

“'space” Is printed (lines 170
and 180).

Lookup Table

The heart of the program Is
the aigorithm that counts the
dots and dashes and develops
anumber used to ook up the ac-
tual character to be printed. In
other words, each combination
of dots and dashes in Morse
code has a discrete number
that commands a given charac-

ter to be printed. This algorithm
has three condltlons as listed
in Table 1,

Steps 1and 2 keep repeating
untll the eharacter is complete.
When the program detects a
key-up period ionger than one-)
haif of a dash iength, It is as-
sumed that the character is
complete and step 3 Is accom-
plished (fines 300 to 430). The
manner In which the lookup
number for the letter D is

12K ilon 12K
”
i 'y 'ﬁb LED
34
160K pli 567 1o 10 PA-O ON KIM
3 #] E
' 82K
INPUT o) e 08 l N 22
a7
h-4 $ <z
d “RESPY

Fig. 2. Interface clrcuit.

RELATIVE

TR A T S
3 E

a5

9.;-:';._.
EXY

MICRO-Z

Fig. 3. Circuit board.

formed is shown in Example 1.

Intertace Hardware

Fig. 2 shows a typical circuit
for connecting your radio re-
ceiver to the computer. The
NPN transistor is an R/C
coupled audio amplifier con-
nected to a type 567 phase-lock
loop circuit. The free-running
frequency of the phase-iock
loop is set by the values of the

capacitor and resistor con-
nected to pins 5 and 6 of the
567, and is approximately 2000
Hz. The capacitors on pins 1
and 2 of the PLL adjust the
bandwidth to about 100 Hz, and
the LED serves as a tuning in-
dicator—that is, it will start
blinking when the signal is in
the center of this narrow band-
pass.

This circuit is compatible

with the program, as written, in
that the output signal goes to a
logic 0 when a dot or a dash oc-
curs. The circuit shown s not
my original idea, but has ap-
peared in numerous publica-
tions; you may have your own
favorite circuit that you would
like to use. As long as you main-
tain the same output logic (a 0
for a dot or dash), there wlll be
no problem.

Incidentally, the circuit has
another unique application.
Since it is only activated by
audio signals over a fairly nar-
row band, it can also be used to
key an audio oscillator set to
any frequency desired. When
Morse CW comes in amidst a
jumble of other signals, the
phase-lock loop picks out the
signal you want and keys the
audio oscillator...and that is
all you hear. A full-scale outline
of the circuit board is shown in
Fig. 3.

Adjusting the Program
One of the advantages of

writing this program in BASIC
Is the ease with which the com-
putation constants can be
changed. For instance, you
may wish to experiment with
different algorithms to detect
whether a key-down signal is a
adot or a dash . . . to take care
of “swing-fisters.” This can be
accomplished easily by chang-
ing the factor in fine 40 from
(.5*C) to (.25*C) or (.75"C). By
the same token, the constants
in lines 111 and 151 can be
changed to provide more lee-
way for the formation of char-
acters and spaces.

One final note for KIM users:
The 8K Microsoft BASIC is ex-
cellent and may be obtained
from Micro-Z Co., Box 2426, Roll-
ing Hills CA, for $100. In ad-
dition, a full kit of parts for the
interface circuit, circuit board,
Morse-code reader listings in
both BASIC and machine lan-
guage, and instructions on how
to connect It to an audio oscil-
lator are avallable from Micro-Z
Co. for $16.50 postpaid. R

