Don Rindsberg
The Bit Stop

PO Box 973
Mobile AL 36601

Here’'s HUEY!

. .. super calculator for the 6502

hat hobbyist wouldn’t

like to have available
the calculating power of
FORTRAN in his system?
Here is HUEY, written for
the 6502 microprocessor,
which does arithmetic with
precision better than an IBM
360/370 or Univac 1108,
unless they pull a dirty trick
and switch to double-pre
cision mode. What’s more,
HUEY (please don’t call him
Hewlett) operates from your
ASCIl keyboard like a cal-
culator; will output through
your routines to a TV screen
or Teletype; is prepro-
grammed to do trig functions,

exponential functions and
other goodies; and is pro-
grammable for many other
functions (financial, ac-
counting, mathematics,
engineering, etc.) you would
like to call at the press of a
single key. Further, the
routines can be called as sub-
routines by your own pro-
grams if you need the
precision or the functions
HUEY provides.

All this is contained in
2.58K of memory, with
optional expansion to 3K by
addition of your own func-
tions.

The complete hexadecimal

natural and common logs, listing of the program is given
1006 4C.xx,yy A jump to your input routine,
xx is ADL, yy is ADH.

1009 4C xx,yy A jump to your output routine.

100C 5C Choice of default character.

100D 2A Choice of exponent symbol.

100E 09 Number of digits entered or
displayed. Enter number
between 02 and OD.

100F 08 Choice of back space code.

1010 00 Expansion.

1011 01 Delay time for typewriter
carriage return. Use 01 for
shortest time. FF for longest.

FF gives 0.3 sec for 1 MHz clock.

1012 1B Character used to TAB to
exponent,

1013 00 Expansion.

Program A.

in Table 1. The basic program
occupies addresses 1000
through 19FF, but you will
wish to reserve 1A00
through 1BFF if you intend
to add other functions. The
program uses page zero ex-
tensively for arithmetic
registers and memory regis-
ters, and you should avoid
using addresses 0020 through
009F for your video routines
or other programs. The pro-
gram itself sets all these loca-
tions at the values it wants, so
there is ‘no extensive entry
into page zero required be-
fore the program can be used.
Arithmetic overflow, division
by zero, logs of negative
numbers and other no-nos
divert the program to soft-
ware breaks. If you set your
IRQ vector to go to address
1164, a break will give you an
error code on your display.
This code, shown in Table 2,
is simply the address of the

Code
14F9
157D
15C7
16E6
176F

Description

break, plus two. The error
code will be followed by a
string of zeros on the next
line.

Entering the Program

For ease of entry, all of
the basic user options in the
program are contained in the
first few bytes of the listing.
Program A will allow you to
select the options and provide
entry to your input/output
routines. Although the
accesses to your input and
output routines appear to be
jumps, in all cases they orig-
inate deep within the inner
workings of the program as
jumps to subroutines. So,
when your input or output
routine is through doing its
thing, however long it takes,
it must end with op code 60
(return from subroutine).
Just to be safe, set Y to zero
just before returning, al-
though | thought this kind of
bug was exterminated prior
to printing.

The request by the pro-
gram to output a character is,
in all cases, preceded by
instructions within the pro-
gram to place the ASCII
character in the accumulator
of the microprocessor. Simi-
larly, when it asks for an
input, it expects its ASCII
equivalent to be in the
accumulator. Your routines
should restore the stack
pointer, since the stack has
what your mail should have
on the upper left corner —
namely, the return address. If
you have Tiny BASIC,
identical inputfoutput rou-
tines can be used.

Press Go, Start, or Whatever
Your initialization rou-
tines can do whatever you
like (clear the TV screen, set
the IRQ vector or turn on the
coffee), but when they are
finished, there should be a

Overflow in Exponent calculation.

Square root of negative number.

Natural log of negative number or zero.
Floating point overflow {number too large).
Division by zero.

Table 2. Error codes.




1002
1212
1620
1830
1640
1@5@
1660
1070
1080
1050
187G
188¢
18Co
1eDe

10F2

ac
a7
18
20
B8
a7
2B
80
DB
EA
13
&0

20
10
26

44
8F
16
ES
13
28
29
Fo
38
6@
36
21
85
oF
(Y]
(4]

52
20
Fg
17
58
20
A2
Ba
AS
EA
68
68
8@
[[]
15
95

10 4C
1B 08
S8 AS
84 SF
20 86
D@ 83

92 13
SD 13

AQ OE

D8 68
21 62
55 0@
D8 A®
CA E8

11 EA
$4 13
69 50
16 Bg
D8 28
94 13
86 BS
@1 oA
TF 85
60 28
A2 TF
29 19
80 a6
20 00
18 A5
20 Ca

1B 1@
AD 8@
60 85
A9 81
10 AQ
4C ES
3A B2
A5 SE
CS 81
b2 17
85 9D
20 eo
A9 18
4F 8A
o8 03
42 19

Fo @C
48 29
36 @s

88 D@
A2 29
AS OE
58 29
@D 85
C6 6F

EA EA
AS 8O
cS 5@
50 ES
1C 16
AS 40
67 15
57 6E
20 A5
8F 16
A@ QFE
18 F@
aa oa
88 AS
22 6%
10 FB

4C 09 20
AZ 20 20
33 28 87
85 SE EA
@0 DB 2%
1@ C9 24
3D ES 2F
38 ED O
38 D2 21
38 BO F1
26 34 17
11 AS 9D
85 4F 20
29 FC 85
AS 81 18
AS 30 20

28 13 11
7E AA BD
44 BB 06
BB @38 AS
F@ @3 4C
az 13 D@
85 SA 68
4A 4A 44
25 10 60
84 EA EA
o¢ 60 00
o8 2o oe
SB 92 8@
81 AB 86
6A E@ FF
oe¢ 99 08

77 16 66
D53 14 F8
6A 15 DE
2¢ 09 02
20 00 2A
F2 12 F9
3F 15 46
DD 11 E4
B> 58 95
A2 @6 BS
94 28 CA
B5 58 95
81 91 95
S1 91 ca
94 57 CA
o¢ e oo

AD 00 84
71 AS 20
9D 16 A5
28 5F 16
71 28 AE
20 %2 13
85 5F A2
7F AZ BF
20 AE 13
95 00 E8
FA 60 18
A0 07 208
85 6F F8
18 F@ 81
6F 56 0@
D@ EF EA

AS 71 28
85 20 4A
D8 s@ @b
98 20 A8
A2 20 AD
85 68 A9
20 95 20
15 6E 95
78 38 8A
B8 50 F3
F8 18 BS
21 38 CA
20 81 4@
22 85 2F
78 A5 21
62 02 38

4C 00
94 13
17 2@
EA EA
7F CD
S8 E7
85 SD
18 CS
18 20
C6 SE
20 o1
BD CC
28 11
4E 4C
6D OE
29 1@

38 E6
29 12
4c 9@
F2 85
23 13

AE
85
[51]
91
AQ
20
11
11
BO

1]
58
79
60
g9
A3

21
F@
AB
DB
71
85
26

EA
FA
21
AS
09
88
E8
a9

65

20

2A
Sa
20
a9
Fo
80
co
1D
BO
19
2]
20
12
E6
SE
Do

A2
AB
20
28
A2
A2
A2
ce
7
16
23
6@
2]
21
AS
85

AB
23
14
16
AB
9@
AS
D@
EA
B4
95
o8
66
2]
A2
6@

1500
1510

15F@

15F@

a8

96

$D
AE
AQ
D@
82

30
02
(3]

10
F8
48
17

85

Table 1. Complete hex listings of program.

E6
1e

12
34
EA
32
32
20
02
e
D4
De
E@

20

95
20

FB

SE
D@
12
1F
&0
60
60
AS
20
73
a5
71
4A
20
AA
4E

@2
Da
a8
2E
@2
@8
D4
12
12
12
12
16

ca
22
ac

8
68
12
[
2A
DoC
80
21
1]
@0
2]
1
2g
a5
D8
29

6@

53
oa
D4

D8
12
2z
20
12
23]
12
12
12
18

oe

o8
86
26

c8
12
12
26
20
20
20
53
24
ee
08
1]

&0
60
60

2A
97
)
19
46
18

71
A2
30
2B
A%

c8
(4]
D4

12
1]
12

D2

1z

o1
12
12
12
eo

38
50
80
00
2C
60
[+
a1
98
69
99

80
38
A2
8E

10
94
F3
28

ES
B@
65
F3
F7
F5
A2
DA
B2
cs
CA

29
60
99
BS

28
4c
2D
18
3F
oF
AS
29
28
4F
A3

26
02
12

28
[5]

B1
60

09
51

97
20
52
80
Fo

46
ES
25
85

F17
38
60
CA

70
a1
20
46
Fo
217
26
Fo
4%

DB

1c
09
12

12
@2
20
29
oz
@2
a2
49
12
2o
D@
1]

&0
A2
A2
De
16
25
2a
20
94
BC
48
36
BE
8@
o]
F8

AS
EA
2
oA
F8

16
os
86
3E
2D
20
20
10
8a
85

SE
D4
08
CE
ae
[54)
20
Z4
12

£

03
12
FE
41
4]
oe

6D 68
E@ 7C
20 08
00 28
81 64
85 95
38 AS
20 85

2% AS

[:12)

1]
@3
a3

29

2 D4

>
20
82
D@
bo
02
L

12
12

06
26
22
32
EQ
@0
20
20
D8
D2

[:12]
[51]

95




RECALL X
(ENTER)

ROLLUP RECALL M

T T T

z z 2 - z

Y Y Y;‘:Y

X X X X
M/

Fig. 1. Stack operations.

0020-26 X-register

0027-2D E-register

002E Exponent

002F Integer

0030-36 Y-register

0037-3D Memory M1

003E Temporary used by In and line output

003F Temporary used by line output

0040-46 Z-register

0047-4D Memory M2

004E/4F String pointer

0050-56 T-register

0057-5D Memory M3

005E Counter

005F Counter

0060-66 U-register

0067-6D V-register and scratch

Q06E/6F Temporary for decimal conversion

0070-7F Main decimal register D

0080-8F Decimal scratch and line buffer

0090 20 (JSR op code)

0091/92 Address of next routine

0093 60 (RTS op code)

0094 Sign

0095/96 Return address

0097 Counter

0098 Exponent

0099 Flag for SORT

009A Temporary used by break routine

009B Counter

0oac (Expansion)

009D Last key

009E/9F Line buffer pointer

Table 3. Page zero assignments.
ADDRESS DATA FUNCTION
1526 83 Sets Z key to call address 1B80
1B80 EA Recall pi
1B81 08 Divide
1B82 12 Move stack down after arithmetic
1B83 32 Set up to call string as subroutine
1B84 EO Square root string
1B85 00 End
Program B.

jump to HUEY’s point of
COLD START at address
1000. HUEY will set the
stack the way he likes, clear
his registers in page zero, out-
put a line of zeroes and out-
put a colon, which is his way
of telling you that he's
waiting for you to press a
key. The screen or typewriter
should look like this:

96

0.00000000* 00

By the way, to keep the
program short, | had to limit
HUEY’s vocabulary to
scientific notation. That
means all entries should have
the decimal point after the
first digit, and the number
that follows the star is the

ARITHMETIC
OPERATION
e.g. divide

T<:T
2 Z
h 4
X

/

power of ten that multiplies
the first part.

OK, let us determine what
1 divided by 3 is, and we will
then go on to more glamor-
ous experiments. Press 1;
press P (to enter the positive
number you have just pressed
into the X-register). Your
display will now show:

1P
1.00000000* 00

Note that HUEY has forced
you to use scientific notation
by typing a decimal point
immediately following your
1, and has displayed the con-
tents of the X-register. HUEY
displays the X-register after
every function, just like your
$9.95 pocket calculator (at
this point you may ask why
you paid 100 times this
amount for your system, but
read onl).

Next, press 3, and then P,
The display should now show
3 in our notation. Now, let us
divert for one moment to
check our work. Let’s press K
to see what the HUEY stack
of four registers contains. The
display should be as follows,
except thatthe X, Y, Zand T
are not actually displayed.

K

0.00000000* 00
0.00000000* 00
1.00000000* 00
3.00000000* 00

X <N

HUEY has just displayed the
X, Y, Z and T registers in
reverse order to enable you to
examine them more natu-
rally. The entry of 3 into X
pushed the previously entered
1 into the Y-register. Now
press / to divide Y by X, and
the display should show
3.33333333%-01, which

means 0.333333333 in ordi-
nary terms, since the minus
01 exponent indicates the
decimal point moves one
place to the left.

Let's re-examine the stack
at this point by pressing K.
Note that both dividend and
divisor are lost in the arith-
metic process, and that Z has
moved to Y; in the process T
remains unchanged, but is
duplicated in Z.

(K

0.00000000* 00
0.00000000* 00
0.00000000* 00
3.33333333*-01

These features of the stack
may or may not have any-
thing to do with HUEY's
name. The stack operations,
by the way, are outlined in
Fig. 1. For clarity of display
on a TV screen or typewriter,
the ROLL operation has been
reversed from that used by
hand calculators of similar
name. You may load up to
four numbers into the stack
and then perform your arith-
metic functions by combina-
tions of rolls, X/Y exchanges,
stores in memory, recalls,
interspersed with arithmetic
commands; and any time you
have lost track of what is in
the stack, just press K. All
arithmetic operations are
done on X and Y, without
losing Z and T. There is no
need to clear the stack regis-
ters; just enter new numbers,
and the old ones disappear
off the top.

Want to enter an exponent
without entering all those
zeros? Press ESC (or whatever
ASCII key you have selected
for this function at 1012) and
HUEY will fill in the zeros
for you. Negative numbers?
Just press N instead of P to
enter your number as a nega-
tive value. Negative ex-
ponents? Subtract your
desired negative value from
100 and enter the result. For
example, if you want to enter
-09 as an exponent, enter 91.
HUEY will echo the value he
read so you can be sure. In
this case, the echoed ex-
ponent will read -09. Back



X-register 0020-0026

E-register 0027-002D

Y-register 0030-0036

Memory M1 0037-003D

Z-register 0040-0046

Memory M2 0047-004D

T-register 0050-0056

Flags, etc.

Memory M3 0057-005D

U-register 0060-0066

V-register 0067-006D

D-register (decimal) 0070-007F

B Decimal scratch 0080-008F

Flags, counters, and pointers 0090-009F

Fig. 2. Page zero memory map.

space works on both the
number and the exponent, if
you make a mistake, or you
can press @ to clear your
entry.

Sample Calculation

Suppose you have the area
of a circle and want the
radius. Simply use the se-
quence in Example 1.

If you have many values of
radius you wish to calculate,
you can preprogram, say, the
Z key to do the entire oper-
ation with one keystroke,
after the area is entered, as
shown in Program B.

With these modifications
to the program, you simply
press number keys for the
area, press P to enter as a
positive number, and then
your magic key Z. Repeat for
as many calculations as you
like. This simple illustration
probably does not warrant
preprogramming, but it illus-
trates the power of the sys-
tem for more complicated
calculations.

If you reset your system
for any reason, you can re
enter HUEY at address 1003
for WARM START, which
will not destroy the contents
of the arithmetic registers.

HUEY recognizes, as
functions, ASCII entries 2A
through 2F (which includes
the arithmetic functions) and
3A through 5A (all the upper-
case letters and a few punc-
tuation marks). All other
ASCIIl entries are rejected,
excepting, of course, the
numbers and the special back
space and tab functions. Pre-
programmed functions are
listed in Table 5. ‘

Unused keys can be used
for other functions. | have

98

calculated such diverse things
as compound interest, hyper-
bolic functions, 99-term
power series and others by
adding 12-60 byte programs
to page 1A.

Numbers are limited in
size to about 1.00000000*
37.

The Inner Workings

The arithmetic operations
occupying page 16 are a
floating point package
originally printed in ODr.
Dobb’s Journal, but the
package has been modified to
use 47-bit arithmetic instead
of the original 23-bit. (IBM
single precision is 24 bits and
Univac is 27.) Our 47 bits
gives a precision to arithmetic
operations of about 13
equivalent significant figures
in decimal. The algorithms
for In, exp. sin, cos, tan and
arctan can be counted on for
eight-place accuracy, with the
trig functions limited to the
range 0-90 degrees or 0-pi/2
radians. Square root is per-
formed with accuracy equiv-
alent to the arithmetic oper-
ations.

The high precision is, of
course, obtained at some
sacrifice of speed, but this
program is intended for the
person who has some serious
calculating to do, and not for
the game-player who is
satisfied with a number sys-
tem allowing no fractions and
having numbers limited to
-32K to +32K.

The routines limiting the
speed are the conversion of
decimal to binary (page 14)
and conversion of binary to
decimal (page 13). This can
be observed by the slowness
of entry and display of very

X DWAPZO

down to fill in; T is
cated in Z:

- e

The following operate
leaving the other
registers
does bomb it):

N-HOOrF"TOMmMO >

stack up one notch:

Right Arrow
Left Arrow
u

\2

W

The following functions are
associated with number entry
and stack manipulation:

Enter as positive number into X

Enter as negative number into X

Clear entry (use before P or N pressed)
Display stack contents

Roll the stack up (X to Y, Y to Z,
Zto T, TtoX)

Exchange X and Y

The following operate on X
and Y and leave the result in
. X, with the stack dropping

Xadded to Y

X subtracted from Y
X multiplied by Y

Y divided by X

unchanged (arctan

Antilog X (base 10)

Cos X (radians)

Exponent (e raised to the X power)
Log X (base 10)

Inverse of X (1/X)

Natural logarithm of X

Square root of X

Sin X {radians}

Tan X (radians)

Arctan X

The following functions are

associated with memory and,
in the case of recalls, push the

Table 5. Preprogrammed functions.

dupli-

on X,
stack

Store X in M

Recall M into X

Recall pi into X {3.141592654)
Recall e into X {2.718281828)
Recall log e into X (0.434294481}

KEY ACTION
Number Keys  Area
P Enter as positive number
u Recall pi
/ Divide to get A/pi
Q Take square root
Example 1.

large and very small numbers,
e.g., 1.00000000%-37.

Memory Registers

Although only one
memory (M1) is prepro-
grammed for keyboard

access, two other registers,
M2 and M3, are used by the
program to store intermediate
results. In addition, the stack,

which appears to the user to
be four registers, is actually
six registers X, Y, Z, T, U and
V. The two extras are used to
simplify restoring the con-
tents of the four “visible”
registers. Register E is used
by the floating point package.
All of these registers are
7-byte binary registers. All
arithmetic is done in X, Y




and E, and their original con-
tents are stored elsewhere if
restoration is desired.

In addition, register D is a
16-byte register that holds a
number formatted in decimal,
and register B acts as a line
buffer and scratchpad. Fig. 2
shows the register locations in
page zero. You can set up
other registers in page zero if
necessary.

Constants, such as pi, 0, 1

and SQRT2, are squeezed refer to the address table
into available space through- occupying the first half of 1A80 32
out the program. Each con- page 12, where the address of %ﬁg; BO
stant requires seven bytes, the subroutine or memory is 1A83 32
and is in binary (hex) form. picked up. After the current j4g2. A8 Calmve
Other constants you may micro is executed, the pro- 1233 113%
need, such as the tax rate on  gram picks up the next, until 1488 08 Die
incomes over $150,000, can it reaches 00. After the }ﬁgg ,1,?,
be stored anywhere in your execution of a string of
memory, and can be accessed microinstructions, a common
by way of empty slots in the output string (located at
Address Constant Value (hex)
12F2 0 00 00 00 00 00 00 00
12F9 1 80 40 00 00 00 00 00
14C0 -1 7F 80 00 00 00 00 00
14C7 2 81 40 00 00 00 00 oo
14CE 3 81 60 00 00 00 00 00
1531 5 82 50 00 00 00 00 00
1538 -7 82 90 00 00 00 00 OO
153F 10 83 50 00 00 00 00 00
1546 e 81 5 FC 2A 2C 51 BE
154D pi 81 e84 8 ED 51 10 B2
11BA In2 7F 58 B9 0B FB E8 EB
11¢C1 log e 7E BF 2D EC 54 9B 92
11c8 SQRT 2 80 B5A 82 79 99 FC E4
11B3 4 82 40 00 00 00 00 0O
11AC 0.5 7JF 40 00 00 00 00 00
152A 1+ 80 40 00 00 00 00 20
Table 4. Preprogrammed constants.
address table. The location 1808) is called by the main- bly to start at address 4080

and hex values of the pre-
programmed constants are
shown in Table 4.

What Happens When You
Press a Key?

When a function key is
pressed, the ASCIl value is
used to look up a coded
address in the table starting at
1500. The coded address
refers to every fourth address
in pages 18, 19, 1A and 1B. |
have preprogrammed func-
tions in the first two of these
pages, leaving pages 1A and
1B for your own functions.
At selected addresses in pages
18 and 19 are strings of
microinstructions, each string
ending in 00 to signal the end

of the string. In turn, each
microinstruction refers to a
subroutine call instruction, a
recall memory instruction or
a store instruction. If bit 7 of
the microinstruction is 1, a
memory register is recalled to
X. If bit O is a 1, then X is
stored in a memary register.
Otherwise, the microinstruc-
tion is decoded as a sub-
routine call. In all cases, the
middle bits (1-6) of the micro

line program. This exit string
recalls a rounding constant a
little bigger than 1, multiplies
by X, converts the product to
decimal, outputs the scien-
tific format and restores the
original contents of the stack.
Note that rounding is applied
only to the number being
displayed and not to any
binary registers, so that
accuracy
the purist, rounding can be
easily disabled, but | hate to
decode a string of nines!

A common entrance string
is called by the mainline pro-
gram, but it is not required at
present and is disabled by the
00 at address 1800.

Because of the unique

method of assembly of this
program, that is, completely
by hand, anyone wishing to
reassemble to another
memory location should
work in whole pages, since
some portions must stay in
the same relative position on
the page. Reassembly to start
at address 4000, say, is
relatively easy, but reassem-

of microinstructions at
address 1A80, At 1514, the H
position in the table, enter
82. This 82 is derived from
80, the ADL of the string
address, plus 2, the page off-
set from the base page 18.
Now, enter a suitable string
of microinstructions such as
in Program C to solve your
equation.

Set up to call a string as subroutine
Call exponent string to get e**X
Enter (make a duplicate copy in ¥)
Set up to call string as subroutine
Call invert string to get e**-X

Move stack down after arithmetic
Recall number 2

Move stack down after arithmetic
End

Program C.

is maintained. For_

would be quite a chore.

A Sophisticated Example
When you have seen what
the basic program will do,
you may wish to calculate
other functions. Let's say you
want to preprogram for
sinh(X), obtained by using
the equation in Example 2.

sinh{X) = (e**X - e**-X)/2

Example 2.

Suppose you wish to use the
H key for this function, and
you wish to enter the string

With this short string, you
can get sinh{X) each time the
H key is pressed, or whenever
the string is called by another
string. Strings can be de-
bugged by replacing any
micro with 00 to stop the
action at that point, and then
pressing K to examine the
stack.

A complete manual giving
the details of this system, and
including a documented
listing of the program, is
available from The Bit Stop,
P.O. Box 973, Mobile AL
36601, for $20 postpaid.
Tapes are also available.

Encoding by use of micro-
instructions makes for a
memory-efficient system,
since each can call a machine-
language subroutine using
only one byte. Further, these
microinstructions can set up
loops to repeat a string as
many times as desired, and
can even call other complete
strings as subroutines. All
these features are illustrated
in the arctan routine, which is
about 60 bytes long, but
results in calling some 200
machine-language subroutines
before execution is complete.

My thanks go to Felton
Mitchell, who got me off my
can to write this, and who
very kindly dumped off the
hard copy. ®

99



