Dedicated
Controllers

... there is money to be made

Michael J. Myers
Ann Arbor MI 48105

Mike’s article demonstrates
that there are money-making
opportunities out there in
dedicated controller applica-
tions. And ... the hobbyist
should be taking advantage of
the situation and doing some-
thing about jt. His article
should stimulate some
thought along these lines, and
if nothing else, get you busy
with some experimenting so
you'll be ready for that
money-maker when it comes
along. — John.

84

A re you tired of playing
games? Try some
machine language program-
ming on your 8080, 6800, or
6502 and make some money
with it! Let me start my story
at the beginning.

About two years ago | was
approached to design a pro-
cess controller on a con-
sulting basis for a small
company producing special
film processors. They don‘t
have enough electronics work
to warrant having an elec-
tronics shop, or even a full-
time technician.

The problem was to se-
quence a number of valves
and pumps to control a

Fig. 1. Process controller front panel.

custom film processor. The
process is rather slow, taking
a period of up to an hour.
The customer needed a pro-
grammable sequencer that

could cause the valves and
pumps to operate in a prepro-
grammed time sequence. The
programming was to be
straightforward, as the pro-

cess to be run might change
frequently. Capability to con-
trol four or five processors
simultaneously was also re-
quired.

The First, Non-micro Version

At the start of the project
we looked at microprocessors
(the 8008 was just getting
into general use), and on the
basis of my experience with
digital logic and inexperience
with microcomputers, | de-
cided to go the hard-wired
logic route. The description
of this first unit, which fol-
lows, is presented for the
purpose of illustrating the dif-
ferences in complexity and
ease between the hard-wired
and microcomputer ap-
proach. The hard-wired
version is still in daily use by
the customer and operating
faithfully.

| chose CMOS logic and
memory so battery backup
could be provided. The
memory capacity is 256
16-bit words. Since most of
the users are not familiar with
hexadecimal notation, and
thumbwheel switches are
available in Binary-Coded
Decimal (BCD), the words are
divided into four BCD digits.
There are three types of in-
structions, with variations on
one of them: Fig. 1 is an
illustration of the controller
front panel.

A Select instruction is
identified by the first digit, as
are the others. The second
digit identifies one of ten
output ports. Each output is
a 4-bit latched type. The
third digit specifies the out-
put to be present at the port
(a 9 specifies the 4 bits to be
1001, etc.). The last digit of a
select instruction specifies
one of three conditions. Zero
means “‘end this step at the
programmed time.” The digit
1 indicates a wait for a condi-
tion to be present, even if the
programmed time is reached
(used, for example, in a wash
step in which wash is con-
tinued until the impurity of
discharge water reaches alow
level, measured by its con-
ductivity). The number 2
means ‘‘proceed on an ex-

ternal signal”, even if the
programmed time has not yet
been reached.

The second type of com-
mand is a time instruction.
The first digit indicates the
time units to be counted;
seconds, ten seconds, or
minutes. The last three digits
indicate how many intervals
are to be counted. For ex-
ample, the code for ten
seconds, followed by 036,
would indicate a time of 360
seconds, or six minutes, dur-
ing which to hold the output
specified in the select instruc-
tion.

The third type of instruc-
tion is a jump, consisting of
the jump code and a three-

digit address to which to
jump.
Because programming

takes some time, and some of
the sequences are used fre-
quently, provision is made for
ten subroutines stored in
PROM. Each subroutine is
thirty-two words long and is
stored in a pair of 8223
fusible link programmable
memory chips. These are ac-
cessed by jumping to ad-
dresses 300 to 309. LED dis-
plays are provided for current
memory location, program-
med time for this step,
elapsed time for this step, and
the output selected by the
select code previous to the
current time instruction.

As the project developed,
interfaces were designed to
drive nine solenoid valves and
three pumps. Each interface
uses two output ports; one
for the valve information and
one for the pumps. Valves
operate one at a time, and are
specified by one decimal digit
(zero is an all off code). The
three pumps each have a bit
assigned to indicate their
status, either on or off, and
therefore may operate in-
dependently.

The finished programmer
has ten different printed cir-
cuit card designs, and
eighteen cards total. There
are about 200 CMOS and
TTL integrated circuits. It
took two months of evenings
and two solid weekends to
wire it, and about as long to

LOW TO LOW FOR
“woLo”

0
"EMERGENCY STOP”

o5 [
INPUT PORT ‘8"

KIM=)

OUTPUT PORT A"
5706 85 84 83 828 8O

HIH l

{ OF 10 DECODER
ENABLE

sglojok !xl)l- sll Te]s

LOw EnABLE

TRANSFORMER
(SOLATED
TRIAC SWITCH

TRANSFORMER
(SOLATED
TRIAC SWITCH

OTHER TRIACS

TRIAC SWITCH
- @ |

86 TRIAC SWITCH

AC LINE

SOLENOID
VALVE NO. 9
=

SOLENOID
VALVE NO.8
S

@)

®)

Fig. 2. KIM-based process controller block diagram.

get it all debugged. It was
delivered in January, 1976,
and has operated since with
no failures.

Recently | received a call
from the customer asking
about more programmers. We
discussed a simpler version,
able to drive only one proces-
sor, and the possibility of a
duplicate of the original.

Calling on KIM for the 2nd
Version

| have been eyeing the
growing use of microcom-
puters for some time, and was
beginning to feel that if |
didn’t get some hands-on ex-
perience with one, | would
soon be obsolete. | went to
the local computer store and
came home with a KIM-1
board.

My previous experience in
programming was essentially
having written a few pro-
grams for an HP-65 program-
mable calculator. | eagerly
started reading the MOS
Technology programming
manual and KIM-1 user
manual, which gives a sample
program and instructions for

using the tape cassette inter-
face and the self-contained
hex keyboard. After a few
puzzles things started to
make sense, and | was able to
do some simple operations,
like add two two-digit num-
bers and store the results in

memory.
The KIM interval timer
looked like a natural for

making a clock program, so |
started on one.

I could see that this
machine could easily do the
sequencer job and immedi-
ately wrote my customer
asking for a purchase order
for some hours of my time to
study the application of KIM
for his use and to come up
with some operating pro
grams. Figuring that this was
as good a way as any to learn
the KIM, | started program-
ming.

After a week of evenings |
had a program that went
through a table of data con-
taining desired output condi-
tions and times in a fixed
repeated four-word format
of: 1. output condition; 2.
hours; 3. minutes; 4. seconds.

85

| connected some LEDs with
buffers to an output port and
verified operation of the pro-
gram. A long look at the KIM
monitor program (well docu-
mented in the user manual)
gave me a clue as to how to
display the time on the KIM.
After a few false starts that
was accomplished, and |
wrote the customer again.

A few days later | received
a call telling me that a pur-
chase order was on the way
for my time and one system
to be assembled with con-
nectors compatible with the
interfaces, and a cassette re-
corder checked for compat-
ibility with KIM. He said,

INTIALIZE
POINTER

ELAPSED |
TIME, 10

START /4 SEC
INTERVAL
TiMeR

I

INCREMENT
ARTER

SECOND
COUNTER

POINTER

—’“LI 1

or1sPLAY

LOOP UNTIL
INTERRUPTED

no

L

“Fine on the program, but
how hard would it be to
incorporate the hold feature
of the original unit? Also it
would be nice to have a
choice of going through the
sequence once, or for a pro-
grammed number of times.”

Back to the drawing
board. Another couple of
evenings and the following
were incorporated. After the
last desired step, program 00
to turn all outputs off. Then:

1. EE for unconditionally
ending the program after one
time through the sequence.

2. BB for branch to begin-

NTERVAL

IMER
INTERRUPT

FLac
> Jume 10
owi TR
DISPUAY
Vo s
eamon €xit WoRMAL ENO
OisPLAY FrrE » ves
SOUND ALARM
U2
TAROR €NO P
- o Reser
—————— o] /,— STacx —
7 PonTER
| smance o ¥ s ~o omre
| scenwne |
et i >
4 /// YES
P .
0 -1(’ DECREMENT -
Coos o, R
| COUNT
J
Tes
INCREMENT e
ELAPSED orsanLe
s euT N Senst
I ~o
mEser GeT new
QUARTER CuTPUT DaTA
SECOND FROM TABLE
COouUnTER VT 1T

Fig. 3. Flowchart of controller program.

86

ning and continue to repeat
the sequence until manually
stopped.

3. BC for branch to the
beginning counted. The count
for the desired number of
repeats to be placed in the
next location. This count is
decremented once each time
through the sequence. When
it reaches zero the operation
terminates.

It occurred to me that the
KIM tape load routine has
two possible endings. When
the tape loads correctly, the
display indicates 0000XX; if
there is an error, it displays
FFFFXX. A look through the
monitor listing shows that a
jump to the appropriate ad-
dresses will cause either of
these two actions. Any nor-
mal ending of the operation
will leave the display showing
0000XX.

KIM’s second input/
output port uses pin B7 for
the interval timer interrupt
output, and pin B6 is not
brought out (refer to Fig. 2).
B5 therefore is now pro-
grammed to cause the pro-
gram to hold at the end of a
step, even though the time
has elapsed, as long as B5 is
held low. During this con-
dition the display is blanked.

B4 is proggammed as an
emergency stop input when it
is pulled low, for example, by
a "“machine jammed’’ signal
from a limit switch. The se-
quence terminates and KIM
displays FFFXX and sounds
an alarm,

The KIM system has one
bad habit: When in monitor
mode or when power is first
applied, all 1/0O lines revert to
being inputs until otherwise
instructed by the program.
That sounds like a good idea
except for one problem.
There are pull up resistors, so
all the inputs go high, looking
like outputs that are on.
Since only three bits are re-
quired to control three
pumps, the last bit of output
port A (B7) is used as a low
enable. That is, it must be
made low by the program to
enable the interface outputs.

At this point | am re-
serving the B port bits 0-3 for
the more complex multiple
output interface unit. Bits 2-0
will select interface 0 to 7
and bit 3 will be a strobe to
latch the data from the A
outputs into the interface
selected.

The Controller Software

Fig. 3 is a flowchart of the
controller routines. The list-
ings are shown in Program A.
The data table started out to
be all of page 2 of the KIM
memory. | later found out
how to increment my base
address for the indirect, Y
addressing, and added all of
page 3 as well. A maximum
of 127 steps and a termina-
ting code may therefore be
programmed.

Note that the times are
total elapsed. The timer does
not reset to zero at the end of
the previous time interval.
Also, the Initialize routine
only reenters values that are
changed as the program runs.
Several constants must be set
up for proper operation.
These will be on the program
cassette and so will not be of
concern to the user. These
locations and values are:
HRL,00; MINL,40; SECL,40;
INDLO,00. (The program list-
ing has been verified by en-
tering it by hand from the
listing, and testing its opera-
tion.)

Program B is a sample of
the programming required by
the user to get data into the
system during initialization.
After this is done the first
time it isn't necessary to go
through these steps again be-
cause the program and this
data are recorded on the cas-
sette.

Some Closing Thoughts
This program might be of
interest to anyone wanting to

“run the house” on their
computer. If, for example,
the last step ends at

23:59:59, a 24 hour clock is
set up. The BB instruction is
used to keep it running.

Eight outputs are then
available to: 1. Switch the
thermostat between day and

Addr Data
0200 00
0201 00
0202 01
0203 00
0204 OF
0205 00
0206 02
0207 00
0208 FO
0209 00
020A 03
020B 15
020C 00
020D BC
020E 09

Program B. Sample user program to sequence outputs.

Comment

SET ALL OUTPUT BITS TO ZERO

HOURS FOR THIS STEP =0

MINUTES = 1

SECONDS = 0

SET OUTPUT B7 TO B4 OFF, B3 TO BO ON
HOURS STILL ZERO

MINUTES =2

SECONDS =0

SET OUTPUT B7 TO B4 ON AND B3 TO BO OFF
HOURS =0

MINUTES = 3

SECONDS =15

OUTPUTS ALL OFF

START OVER AGAIN (REPLACES HOURS DATA)
COUNT 9 TIMES THROUGH, THEN STOP

night modes; 2. Turn on the
coffee pot in the morning; 3.
Turn on the radio, alarm,
tape player, etc.; 4. Control
the yard or front porch light;
5. Control a night light; 6.
Control an attic fan, shutting
it off at an appropriate time
late at night; 7. Control lights
around the house in a ran-
dom-looking manner while
you are away. You can use a
96 hour cycle and have the
lighting pattern repeat every
four days; 8. Program the TV
to shut off at a predeter-
mined time. I’'m certain you
can think up others.

| would like to emphasize
a few points. | now have no
1/0 device other than the
KIM display and hex key-
board. My system consists of
a KIM board and a power
supply. Yes, it did get to be a
pain to reenter a couple of

gram and $450 for the pack-
aged and tested KIM system.
Additional units will cost
$450 each. Additional pro-
grammed features as they
come to the customer’s mind
will be supplied on the basis
of an hourly charge for pro-

hundred hex digits with the
keyboard just to add a CLD
instruction near the top of
the program, but it's really
not all that bad.

The original hard-wired
programmer cost my
customer $5000, plus a trip

to the plant for installation
and training. This time he will
get a packaged KIM-1 system,
a cassette recorder/player,
several cassettes (each a prere-
corded copy of the operating
portion of the program), a
complete program listing, and
operating instructions for re-
cording his end program and
data on a cassette. When the
same process is to be run, he
only has to load from a cas-
sette. This convenience elimi-
nates the need for a sub-
routine in PROM. Total cost
this time will be a one-time
charge of $600 for the pro-

gramming.

What would a duplicate of
the original cost? | already
have the PC board negatives
and extensive wiring lists and
corrected schematics, so of
course there would be a re-
duction in cost. The labor,
however, is a very large item,
and | would have to charge
$3000 or so.

At this point, you are
saying, “‘Great! Here's a guy
that has been designing cir-
cuits for a long time telling us
how easy it is to make money
with a computer. I'm no
engineer. How can | do it?""

Frankly | think it is easier
than any of us imagine. There
are lots of companies that are
not in the electronics business
(believe it or not). Some of
these are not in a position to
be able to support full-time
electronics people. The
microcomputer field is
moving so fast that most
companies don’t yet realize
what can be done. Spread the
word. Go find an application
and go to it! “Where do |
begin to look?’ you say. Con-
tact a nearby small university
or college. Likely customers
are people doing research in
chemistry, psychology, physi-
ology, music schools,
language departments, small
medical facilities.

Go talk to some of these
people. Arrange a brain-
storming session. Listen to
what they need. Tell them
what can be done. Maybe
you'll have to work free the
first time around, but you
don’t get paid for playing
games either. And in my
opinion it is just as much fun!
Who knows, maybe you (or 1)
will find an application that
will lead to a whole new
business ... opening up a
whole new area for the appli-
cation of microprocessor
technology. The time is right
now. The applications far ex-
ceed the number of people
with the knowledge to make
them work. ®

Program A. Listing for process controller program (continued on following page).

Addr B1 B2
000A A9 00
000C 85 01

000E 85 02
0010 85 03
0012 85 09
0014 8D 00
0017 8D FF
001 A A9 02
0o1C 85 08
001E A9 10
0020 85 00
0022 A9 2C
0024 8D FE
0027 A9 FF
0029 8D 01

002C A9 17

002E 18

002F E9 00
0031 DO FB
0033 A9 F4
0035 8D OF
0038 06 00
003A 20 75
003C A4 09

003E B1 07

B3

17
17

17

Label Oper. Operand Comment
INIT LDA #800
STA HR THESE INSTRUCTIONS RESET CLOCK TO ZERO
STA MIN
STA SEC
STA YBUF INITIALIZES Y TO START OF DATA TABLE
STA PAD SET OUTPUT PORT DATA TO ALL ZERO
STA IRQHI SET UP HI BYTE OF INTERRUPT VECTOR
LDA #3802
STA INDHI HI BYTE OF INDIRECT BASE ADDRESS
LDA #s10
STA CNT INITIALIZE QUARTER SECOND COUNTER
LDA #s2¢
STA IRQLO LO BYTE OF INTERRUPT VECTO"
LDA #$FF
STA PADD DEFINES OUTPUT PORT A AS OUTPUT
INTR LDA #5117 INTERRUPT TO HERE
CORR cLC THIS IS A TIMING LOOP TO CORRECT THE TIME
SBC #800 PER INTERRUPT TO BE % SECOND
BNE CORR
LDA #3Fa COUNT FOR INTERVAL TIMER (COUNTS 244 X 1024
STA TIMER MICROSECONDS, 144 SHORT, LOOP CORRECTS)
ASL CNT SHIFT CNT LEFT
BCC INT6 BRANCH IF NOT FOUR COUNTS
LDY YBUF
LDA IND.Y GET FIRST OUTPUT DATA FROM TABLE

87

0040
0043
0044
0046
0048
004A
004C
004E
0050
0052
0053
0055
0056
0058
005A
005C
005F

0081

0062
0065
0067
0069
006C
006D
006F
0071
0073
0076
0077
0079
007B
007D
0080
0081
0083
0085
0087
0089
008C
008E
0091
0093
0095
0098
009A
009C
009E
009F
00A0
00A2
00A4
00A6
00A8
00AA
00AB
00AD
00AF
00B1
00B3
00B4
00B5
00B6
00B8
00BA
00BC
00BE
00co
ooc2
00C5
ooc7
00CA
oocc
00CF
00D1
00D4

Address

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009

88

00

07
EE
12
BB
11

13

07

07
03
25
FF

0A
01

9A

07
02
03
9A

07
03
03
9A

01
FB
02
FA
03
F9
1F
10
02

B6
00
00
29

Label

CNT
HR
MIN
SEC
HRL
MINL
SECL
INDLO
INDHI
YBUF

17
19 END
RESTART
00
CHR
00
CMIN
00
CSEC
00
ADVANCE
HOLD
17
Lor
17
17
INCR
INCR1
INT4
INT6
DPLY
1F
17
00
STOP
17
19

Sequencer Program
Locations Used
Comment

FOUR COUNTER, COUNTS QUARTER SECONDS

STA

INY

LDA
CMP
BEQ
CMP
BEQ
CMP
BNE
INY

LDA

SBC
STA
BNE
JMP
LDX
TXS
Jmp
cMmp
BEQ
JMP
INY
LDA
CcMP
BEQ
JMP
INY
LDA
cMP
BEQ
JMP
INY
cPY
BNE
INC
LDA
STA
LDA
BIT
BEQ
LDA
STA
STY
LDX
LDA
SED
SEC
ADC
STA
ADC
BCC
STA
DEX
BNE
LDA
STA
LDX
TXS
CLD
cLl
LDA
STA
LDA
STA
LDA
STA
JSR
LDA
BIT
BEQ
JmMP
LDA
STA
JMP

PAD

IND,Y
#SEE
END
#sBB
RESTART
#sBC
CHR

IND,Y

#s00
IND.Y
RESTART
MONITOR
#sFF

INIT
HR
CMIN
INCR

IND,Y
MIN
SEC
INCR

IND.Y
SEC
ADVANCE
INCR

#s00
HOLD
INDHI
#$00
PBD(KIM)
20
PBD
LOP
IND,Y
PAD
YBUF
#s03
#s00

HR-1, X
HR-1, X
HRL-1. X
INT4
HR-1, X

INCR1
#s10
CNT

#SFF

MONITOR

CLOCK CURRENT TIME IN HOURS
CLOCK CURRENT TIME IN MINUTES
CLOCK CURRENT TIME IN SECONDS
HOUR LIMIT: 100+ LIMIT CAUSES CARRY
MINUTE LIMIT INITIALIZED TO 40
SECOND LIMIT, INITIALIZED TO 40

LO BYTE BASE ADDRESS FOR IND,Y ADDRESSING
HI BYTE BASE ADDRESS FOR IND,Y ADDRESSING

SAVE Y LOCATION

APPLY DATA TO OUTPUT PORT

GET HOURS DATA, TIME TO END THIS STEP
TEST FOR END PROGRAM FLAG
IF EQUAL GO TO END ROUTINE
TEST FOR “BRANCH TO BEGINNING” FLAG

TEST FOR “BR. TO BEGIN., COUNTED” FLAG
IF NOT COMPARE HOUR

GET LOOP COUNT FOLLOWING BC FLAG

SET BORROW FLAG

SUBTRACT 00 WITH BORROW (SUBTRACT 1)

RETURN DECREMENTED LOOP COUNT TO BC FLAG+1

BRANCH IF LOOP COUNT NOT ZERO

TAPE LOAD ROUTINE NORMAL EXIT, DISP. 0000XX

RESET STACK POINTER, ADVANCED BY INTERRUPT
SUBSTITUTES FOR RTS INSTRUCTION

GO TO INITIALIZE (NORMAL PROGRAM START POINT)

COMPARE PROGRAMMED TO ELAPSED HOUR

IF HOURS EQUAL CHECK MINUTES

IF NOT, INCREMENT CLOCK

GET MINUTES DATA

COMPARE MINUTES PROGRAMMED TO ELAPSED
IF EQUAL CHECK SECONDS

IF NOT, INCREMENT CLOCK

GET SECONDS DATA

COMPARE PROGRAMMED TO ELAPSED
IF EQUAL GET NEW OUTPUT DATA

IF NOT, INCREMENT CLOCK

Y HAS CARRIED IF ZERO
IF NO CARRY GO TO HOLD
IF CARRY INCREMENT INDHI (ADVANCE PAGE)

DISABLES DISPLAY IN HOLD MODE

MASK TO TEST PBD 5

TEST PBD 5

IF LOW, HOLD IN LOOP

IF NOT, GET NEXT OUTPUT DATA
UPDATE OUTPUT

SAVE Y

THESE STEPS ADVANCE CLOCK 1 SECOND

ADD 1 TO SEC (FIRST LOOP) MIN (2ND) HR (3RD)
PUT BACK IN PROPER CLOCK LOCATION

ADD SECL (1ST LP) MINL (2ND) HRL (3RD)

IF NO CARRY, DONE INCR CLOCK, LEAVE LOOP
IF CARRY, SEC=0 (1ST) MIN=0 (2ND)

CLOCK INCREMENT LOOP AGAIN
RELOAD 4 COUNTER FOR INTERRUPTS

RESET STACK POINTER, OTHERWISE WOULD REQUIRE
RTI INSTRUCTION

CLEAR DECIMAL MODE

CLR. INTERRUPT MASK

START DISPLAY ROUTINE

MONITOR BUFFER FOR LEFT TWO DIGITS

MIDDLE TWO DIGITS

RIGHT TWO DIGITS

MONITOR SUBROUTINE, SCAN DISPLAY

MASK TO TEST PB4

BIT TEST PB4

IF PB4 LO, GO TO ERROR STOP

RETURN TO DISPLAY LOOP UNTIL INTERRUPTED

DISABLE OUTPUT
TAPE LOAD ROUTINE, ERROR EXIT, DISP. FFFFXX

