Larry Fish
123 E. Arkansas
Denver CO 80210

Troubleshoot
Your Software

... a trace program
for the 6502

Here’s a rather significant piece of software for you
6502-types. It should make your software debugging a real fun
exercise (who am | kidding?). A little note of caution is in
order. Larry mentioned that he did assemble the program by
hand, therefore the format isn’t directly compatible with MOS

Technology’s Cross Assembler . ..

right? — John.

ETURN TO
R

[e |

I

Fig. 1. Program flowchart.

112

| guess there’s only one,

ne of the most frus-
Otra‘ting parts of pro-
gramming is the program that
doesn’t do what it is sup-
posed to do. This is especially
true with machine language
programs where a single
misplaced bit in a forgotten
register can destroy a whole
program. The usual arsenal of

debugging tools include
setting break points,
examining memory, and

careful analysis. These tech-
niques are fine if you have
lots of time and patience, but
there is a simpler method:
Tracer.

QOverview

Tracer is a program that
provides a simple, straight-
forward method of debugging
faulty programs. It allows
you to single-step execute
each instruction in a program

software control.
Tracer prints each address,
each instruction, and after
each execution, prints the
contents of the registers. All
branches and jumps are fol-
lowed or not followed in
exactly the same manner as
normal program execution.
The Tracer program also
allows you to skip ahead,
executing any number of
instructions at almost full
speed. This allows you to skip
past subroutines and long
program loops.

Most tracer or emulator
programs are exceedingly
long and complex since they
must duplicate in software all
hardware functions of the
CPU. Large chunks of mem-
ory must be used to imitate
addressing modes, follow
branches and duplicate in-
structions. Tracer, on the
other hand, is simple and
requires only 300 bytes of
memory.

The secret to Tracer's
simplicity is the hardware
timer that is available on the
TIM, KIM-1, and JOLT
ROMs. This timer is tied
directly to the CPU clock and

under

can be set to interrupt the
CPU anywhere between one
and 262,144 clock cycles.
Tracer uses this clock to
control the CPU's execution
of each instruction.

The program uses a dum-
my Program Counter, Stack
Pointer, X, Y and Status
Registers. At the beginning of
a trace run the user types
values into these registers.
With each single execution
the Program Counter and
register values are loaded into
the CPU. The timer is then
set and the CPU jumps to the
target instruction in the pro-
gram being debugged. At this
point, the timer goes off and
CPU is interrupted mid-
instruction. The processor as
a part of its normal interrupt
sequency finishes the instruc-
tion, saves the program
counter and status register,
and jumps back to Tracer,
which finishes the process of
saving the resulting registers.
In this way Tracer steps its
way through the target pro-
gram.

Operation

Once Tracer is started it
types a P character. This is a
request for the starting ad-
dress and register values of
the program to be debugged.
The user simply types in
these values in the following
order: Program Counter,
Status Register, Accumulator,
X register, Y register, and
Stack Pointer. Tracer auto-
matically supplies spaces
between each value typed.
After the Stack Pointer is
typed, Tracer prints the first
address and one, two, or
three bytes of instruction.
Tracer is now ready for a
command. The following
commands control the execu-
tion of the trace sequence:
Typing a G command causes
the program to execute a
single instruction. Typing an
E command causes the pro-
gram to escape from the cur-
rent trace sequence so that
new values maybe loaded.
Typing an S command allows
the program to skip ahead at
nearly full speed from the
current location to a preset

1. .1 Q0 00 00 Q0 EF

2. .G

3. P 7000 00 00 00 0O FA

4. 7000 85 F9 G 22 00 00 00 FA
5. 7002 A9 23 G 20 23 00 00 FA
6. 7004 DO 55 G 20 23 00 00 FA
7. 705B 85 FE G 20 23 00 00 FA
8. 705D D8 G 20 23 00 00 FA
9. 70SE 4A G 21 11 00 00 FA
10. 705F 86 FA E

11. P 7000 00 00 00 Q0 EA

12. 7000 85 F9 57058

13. 20 23 00 00 FA

14. 70SB 85 FE G 20 23 00 00 FA
15. 705D D8 G 20 23 00 00 FA
16. T7OSE 4A E

17. P4

18. .

Example 1. Tracer execution. User
numbers are added for clarification.

location.

Example 1 will clarify the
usual trace sequence.

Lines 1 and 2 are the
starting procedure used by
the TIM and JOLT ROMs.
Tracer begins on line 3. When
the program is started, Tracer
responds with a Carriage
Return, a Line Feed, and
prints P followed by a space.
The user then types in the
program counter of the first
address in the target program.
This is followed by the Status
Register, the Accumulator, X
register, Y register and the
Stack Pointer. As you can
see, Tracer is now set to begin
execution at address 7000,
with all registers set to 00 and
the Stack Pointer set to FA.
After the Stack Pointer is
typed in, the program prints
another Carriage Return and
Line Feed, then prints the
Program Counter of the first
location and one, two, or
three bytes of instruction.
The program is now waiting

input material is underlined. Line

for a command. Typing a G
as illustrated in line 4 causes
Tracer to execute a single
instruction, print the result-
ing registers and print the
new Program Counter value
and instruction bytes.
Spacing is automatically set
for one, two, and three byte
instruction. Lines 4 through 9
illustrate a short trace se-
quence. Notice that the
register values change in
response to certain instruc-
tions. Also, in lines 6 and 7
Tracer follows an 85 byte
forward branch.

Line 11 illustrates the use
of an E command to restart
the sequence with a new
address and/or new register
values. When E is typed the
program prints P and the user
types in the new values.

An S command allows the
execution to skip ahead at
almost full speed, without
printing registers, instruction
bytes, or the program
counter. This is accomplished

(as in line 12) by typing S
and then typing the stop loca-
tion. This must be the address
of the first byte of an instruc-
tion, otherwise the program
will run away with unpredict-
able results. If you wish to
escape from Tracer back into
the TIM or JOLT monitor,
type an E command, then a
Carriage Return (lines 16, 17
and 18). A period indicates
that you are back in the
monitor.

Debugging Hints: Natu-
rally, the exact debugging
procedure depends on the
program and the nature of
the fault. Bad programs give
clues. They will often execute
parts of the routine correctly
before blowing up. The usual
trace procedure involves
starting Tracer at a point in
the program that is clearly
ahead of the fault. It is then a
simple matter to single step
until an error is found. If the
error is subtle, think out what
each instruction is supposed
to do; then carefully watch
the registers after each in-
struction.

Branches are a common
source of problems. They can
be tested by typing an E
command and running
through the branch with both
branch and nonbranch con-
ditions. Check to see that the
branch lands on the first byte
of the intended instruction.

Tedious subroutines in-
volving hundreds of steps
away from the main body of
the program can be handled
using the skip command. By
setting Tracer to skip to the
first instruction immediately
following the subroutine call,
Tracer will execute the sub-
routine at almost full speed
and return with all of the
registers set by the subrou-
tine.

Input and output routines

present special problems for
the skip command. For
example, if you use the S
command to skip through a
subroutine that inputs a char-
acter from the keyboard, the
character loaded will be
incorrect. This is caused by
the fact that Tracer does not
execute at full speed (about
12,000 instructions per
second in the skip routine)
and time constants used by
the input routines are altered.
If the correct character must
be used to test a portion of a
program, it can be hand
loaded by resetting a register
or loading the character
directly into memory. Similar
speed-related problems can be
handled in the same way.

Tracer is written to run
directly on an MOS Tech-
nology 6502 TIM or JOLT
system having at least 300
bytes of memory starting at
location 1F00 hex. It also
uses the 55 bytes of unused
memory on the 6530 (TIM-
JOLT) chip. Adapting the
program to KIM-1 systems
should be a simple matter
since KIM has two timers.
Just change the input and
output subroutine calls and
the timer address. Tracer
could be rewritten for any
system that has a hardware
timer (the flowchart in Fig. 1
should prove an aid in such
an effort). For systems that
don't have built-in timers,
MOS Technology has several
timer-port combinations for
under $20. Also possible is
some kind of TTL flip-flop
counter to interrupt the pro-
cessor after several cycles.
Further information on pro-
gramming and addressing the
MOS Technology timer can
be found in MOS Tech-
nology’s hardware and soft-
ware manuals and in the
JOLT manual. ®

Program Listings — Tracer. (Note: Not all zero page locations are consecutive.)

Loecation Content
00D6 00
00D7 00
00D8 00
00D9 00
00DA 00
00DB 00

s Label
XPCL
XPCH
XSTA
XACC
XX
XY

Inst.

Operand

Comments

:Storage for Program Counter
;Accumulator, Stack Pointer
:and XY and Status Reg.

113

00DC
00DD
00DE
00DF
00E0
00E1
00E2

00E6

00F4
00F5

1F00
1F02
1F05
1F07
1F0A
1F0C
1FOE
1F11
1F13
1F16
1F19
1FiC
1F1F
1F21
1F24
1F27
1F2A
1F2B
1F2D
1F2F
1F32

1F34
1736
1F38
1¥F3A
1F3B
1F3D
1¥3F
1F41
1F43
1F45
1F47
1F49
1F4B
1F4D
1F4F
1F51
1F53
1F55
1F57
1F59
1F5A
1F5B
1F5C

1F5E
1F60
1F62
1F64
1F67
1F68
1F6A
1F6C
1F6E
1F7D
1F72
1F75
1F78
1F7A
1F7D
1F7E
1F80
1F83

114

F4

FF

FF

FF

72

73
1iF

13

FF
73

Xsp
BITO
BITO12
BIT2
BIT3
BIT4
BITT7

FLAG

STO
SPACER

;MAIN BODY OF PROGR%{I

;Bit Masks

;Flag to indicate multiple
idnstructions (FF=clear)

:Stores # of bytes used by opcode
:Used to calculate #of spaces
:after opcode printout

{Note 00E6, D0F 4 & OOF5 are
:within TIM’s zero page but

sare unused by TIM

BEG LDA #oc JInitialize vectors and FLAG
STA UINT
LDA #1F
STA gINTfl
LDA HFF
STA FLAG
JSR CRLF (TIM) :Input PC,8,A.X,Y, & SP
LDA wpr
JSR WRT (TIM)
JSR SPACE (TTM)
JSR RDOA (TIM) :Input 2 byte hex address
JSR ALPC
LDY 00

P1 JSR SPACE (TIM)
JSR RDOB (TIM) ;Read one hex byte
STA(Y) XSTA JIndexed store of reg.
INY :Count
CPY #o5 iTest for 5 reg. loaded
BNE P1 iLoop until done
JSR PPC :Print Program Counter
LDA(Y) XPCL iPick up opeode of 1st

;This routine calculates the
by each opcode

sinstruction through indirect
;pointer
number of bytes required

BEQ 1BYTE :Tests for BRK inst,

CMP $60 ;Test for RTS

BEQ 1BYTE :Branch if true

NOP

BIT BIT3

BEQ HALFOP

BIT BIT2

BNE 3BYTE :Branch if 3 Byte op

BIT BITO

BEQ 1BYTE :Branch if 1 Byte op

BIT BIT4

BEQ 2BYTE :Branch if 2 Byte op

BNE 3BYTE :Branch if 3 Byte op
HALFOP BIT BITO12

BNE 2BYTE :Branch if 2 Byte op

BIT BIT4

BNE 2BYTE ;Branch if 2 Byte op

BIT BITT

BNE 2BYTE :Branch if 2 Byte op
3BYTE INX :Count #of Bytes
2BYTE INX
1BYTE INX

STX STO iSave count

;This routine prints the opcode and operand
sand a variable number of spaces according to the #of bytes

LDA F07 :Initial spacer
STA SPACER
P2 LDA(Y) XPCL ;Load op index indirect
JSR WROB (TIM) :Print it
INY :Count
CPY STO Test if done
BEQ Al :Branch when done
DEC SPACER :Subtract three spaces
DEC SPACER
DEC SPACER
JSR SPACE (TIM)
JMP P2 :Loop
Al LDX SPACER :Routine prints spaces
A2 JSR SPACE (TIM)
DEX ;Count spaces
BNE A2 :Loop until done
JSR coM :Input and process commands
JSR SPACE (TIM)

;This routine sets up the registers to execute the single
sinstruction. The TIM timer is used to interrupt the CPU
is0 that only one instruction is executed.

