The G

Peter Boyle
1337 Adams
Denver CO 80206

he $35 audio cassette

recorder has become
the standard medium for pro-
gram storage on small micro-
processor systems. Initially,
using audio recorders to store
programs was an after-
thought. Many systems did
not have any tape interface at
all and those that did used it
in the most trivial way,
usually just copying memory
out to the tape byte for byte.
It was enough that the
scheme worked at all. This
attitude is changing rapidly.
The audio cassette recorder
has become a member in
good standing of the class of
mass storage devices, along
with digital tapes and floppy
disks.

By wusing higher speeds,
controlling the stop-start
switch and using multiple
drives one can use audio cas-
sette recorders for many of
the tasks normally performed
by more expensive devices.
All that is required is that the
subject of cassette software
be taken seriously. This is
what | propose to do.

Specifically, the topic here
will be restricted to the
subject of saving the contents
of areas of memory on cas-
sette tape, and later copying
the tape back into memory.

General cassette tape usage

116

ory Details of

Cassette Storage

for other types of data is a
subject which needs develop-
ment, but that will have to be
cavered another time.

Terminology

For convenience, here are
a few terms. | will call the
program to handle cassette
tape the cassette handler,
even though this program is
not a device handler in the
strict sense. The handler has
two parts. The part which
writes out the memory con-
tent is the saver and the part
which reads this data back in
is the foader. The collection
of data on the tape which the
saver creates is one type of
cassette tape file. A file of
this type would be called a
save or memory image file.

In some systems, where
audio tape was originally con-
ceived as the basic mass

storage medium, there may.

exist a special form of the
loader, called a bootstrap
loader. The bootstrap loader
is a minimal version of the
full loader which is used to
read in the entire handler.
Since the form of a bootstrap
loader should be determined
by the details of the complete
handler (rather than the other
way around), the specifica-
tions of the bootstrap loader
are best left until the handler
details are clearly defined.
Most microcomputers have
some form of monitor pro-
gram. This is a program which
is resident (in memory) at all
times. It provides the basic
user interface. Usually the
cassette tape handler is part
of this monitor program.

Naturally, the monitor pro-
gram, or perhaps only the
bootstrap loader part of it,
can be in read-only memory
(ROM), and hence imme-
diately available when a
system is turned on.

The Problem

The cassette handling rou-
tines that come with com-
mercial systems tend to be
rather trivial. They are
usually written for a very
specific saving and loading
task, with apparently no
thought at all given to ver-
satility.

In order to develop some
thoughts on better cassette
read-write software, | will
review some of the software
I've seen and then go into the
alternatives. After that there
will be some comments on
the implementation details of
a more correct set of cassette
read and write routines.

Since | own a KiM-1
which is based on the MOS
Technology 6502, | will draw
some examples from the
6502. However the discussion
will apply equally to other
microcomputer systems.

The Digital Group System

In many ways, particularly
in some hardware aspects, the
Digital Group systems are a
real pleasure. Their 6502
monitor program, however, is
an excellent example of the
limitations typical of cassette
handling software. Their
tape-read routine is on a
ROM and it assumes that the
file it loads will go into
memory starting at location

HO (I will use a preceding
“"H"” to differentiate numbers
that are written in hexa-
decimal). The program loader
further assumes that the pro-
gram it loads will start at
H500. This means that the
ROM routine cannot be easily
used to load some other part
of memory. What is worse,
programs have to be written
with a hole at H500 so that a
jump to the actual starting
address can be placed there.
That’s not all. The timing is
software loop controlled and
these loops are in a 1702A
PROM which runs at less than
full speed. Thus this timing is
difficult to duplicate in any
other system or in normal full
speed memory.

There are three lessons to
learn from the limitations of
the Digital Group monitor.
First, cassette software
should never assume that the
bytes on tape correspond to
some predetermined locations
in memory. The location and
number of bytes in the load
should be part of the data
that is saved on the tape.
Second, the starting address
of the loaded program should
be saved on the tape. Third,
whenever possible, external
timing standards should be
used.

The KIM-1

The KIM-1 is another
interesting system. The KIM
at least allows saving and
restoring any area of
memory, and it uses an ex-
ternal timer for timing, but it
does not provide any self-
starting mechanism at the end

In the following article Peter Boyle offers some criticisms of
the cassette software supplied by a couple of the more popular
manufacturers . . . and also puts forth some worthwhile ideas
on how this software should be written. If you're not into
developing cassette software at the moment, let me

suggest you read the article and pick up on some of his
techniques in memory management and software

memory protection. — John.

of a load. This means that the
starting address must be
stored elsewhere, such as on a
handy match book cover.
Naturally in the course of
events the files and their
starting addresses tend to get
separated.

Although the KIM cassette
handler is a little slower than
| would prefer, the cassette
interface hardware is excel-
lent. It is capable of 1200
baud (bits per second) rates,
but the KIM ROM runs it at
133 baud. As soon as some
additional memory was added
to the KIM, | found the slow
speed intolerable.

There is a more important
limitation in the KIM soft-
ware, which is shared by most
of the cassette handlers | have
seen. The memory copied out
to the tape in a single write
must be one continuous
block and correspond to
sequential memory addresses.
Thus the entire write is
specified by only two ad-
dresses, the upper and lower
limits of the area of memory
to be written out. That means
that in order to write out two
or more sections of memory
which are in different places
it is necessary to either write
multiple files or copy out the
in-between sections as well.

For an example of why
this is a severe limitation,
consider a typical KIM pro-
gram. It will consist of several
sections which are widely
separated in the address
space. It starts at, say, H200
in order to begin above the
stack. It uses HO to HFF
(page 0) to store constants
and commonly used variables
and it requires that the inter-
rupt vectors at H17XX be
correctly set up. Between
page HO and page H17 there
is 6K of memory space. To

write all that as a single file
requires writing all the in-
between pages, most of which
are not even implemented
memory on the KIM.

The primary lesson from
the KIM monitor is that, for
one reason or another, com-
puter programs tend not to
be contiguously arranged in
the address space. Clearly,
cassette software should not
assume that they are con-
tiguous.

Features of
Cassette Handlers

Save Time Control

So far | have discussed the
things that should be speci-
fied at the time the cassette
tape file is written, and hence
what sort of information
besides the data bytes them-
selves should be written onto
the tape. Basically, these were
the starting address of the
program and the load address
information. In particular, we
saw that it would be nice if
this load address information
allowed a tape file to load
any word or words in
memory, independent of the
addresses of these words, and
even if the addresses did not
follow in numerical sequence.

There are a few other
items that a good cassette
handler would include in file,
things like the name of the
file, the type of file, and
perhaps even the date on
which it was created.

Load Time Control

At the other end of the
process — when the file is
read back in — it might be
nice to be able to exercise
some control. It's fairly
obvious that we may need to
override the original load
specifications. Thus the
loading program should
provide a mechanism for

loading into a different place
in memory and for starting at
an address other than that
saved with the program. The
option of loading into a loca-
tion which is specified at load
time is particularly important
in simple systems where a
cassette handler might be
used to store data other than
programs. This is because
data other than programs can
usually be relocated to
another place in memory and
still be meaningful. Programs,
on the other hand, usually
contain references to absolute
addresses that would be
meaningless if the program
were moved to some other
part of memory.

It would also be nice if,
while reading, the read pro-
gram scrupulously avoided
modifying any words other
than those it actually read in.
If this precaution is taken,
then one file may overlay the
current memory content,
essentially adding to it. This
can be useful, for example, in
loading a debug routine
which is only required with
other programs during devel-
opment.

Another feature a loader

would be wise to imagine the
actual operation of such a
system. Imagining the actual
use of a program often shows
up problems that more
general thoughts about it do
not. This is also a good time
to introduce a possible set of
commands for controlling the
handler.

Let’s assume that a device
with Teletype-like capability
is available, since that is an
easy to understand reference
point. Let’s also assume that
the cassette handler is on
ROM so that the details of
bootstrapping a particular
machine can be ignored.

Loader Commands

So now we turn on the
power. The cassette handler
starts automatically. We set
up the tape with the program
we want to load, start the
tape and type “R" for
“read.” The loader program
reads the new program into
the same locations we wrote
it from and starts it up. The
read command needs no
further specifications since
the load addresses and the
starting address were read
from the tape file itself.

The $35 audio cassette recorder
has become the standard medium for

program storage on

small microprocessor systems.

should have is the ability to
load only a part of the entire
file — for example, only those
routines that load into
memory addresses from
H2000 to H2200 from a pro-
gram file that could load
from H2000 to H2FFF. This
feature is very handy for
stealing subroutines written
into one program for use in
another.

Commands

At this point we have
listed some of the desirable
features of a cassette read and
write program for program
storage. Before considering
the implementation details it

Fine. Suppose we only
wanted part of it? In that
case, we could precede the
“R"” command with a com-
mand specifying the highest
and lowest addresses that the
loader can load into. This
could be “"Lxxxxyyyy”
(where xxxx and yyyy are
hex addresses). The loader
would then ignore any data
from the tape that would
have loaded into an address
higher than the upper limit or
lower than the lower limit.

Suppose we did not want
to start it after loading; for
example, if we had loaded
only part of a program? To
handle that case we could

17

have a separate read com-
mand that did not start after
the load, but which was in
other respects the same as
‘“R’', perhaps “A"” for
append.

To provide the ability to
load into a different location
we could have a "Bxxxx"
command which sets up a
base address for the load.
This base address might func-
tion as follows. If a load
address from the tape falls
within the limits set up by
the “L” command, and the
“B" command was used, then
the base address is used
instead of the address given
on the tape. Bytes from the
tape that normally would not
be loaded into an address
between the limits would be
ignored.

So much for the loader
part of the handler. The
scenario of its use seems clear
and simple. Now let’s turn to
the saver part of the handler.

Saver Commands

Suppose that we have a
program in memory that we
wish to save. It would be nice
to have a command analagous
to the “R’ command, say
W', which simply wrote out
the program in memory.
Obviously, however, we do
have to specify what parts of
memory constitute the pro-
gram and hence what needs
to be written out. lgnoring
for now the problem of
internal representation of this
information, what is the
easiest way to specify it?
Handled carelessly, this could
be a cumbersome detail. A
program can consist of bits
and pieces from all over the
address space. Specifying
each piece to be written every
time a write is made could
become a nuisance.

There are some ways to
avoid this nuisance. Note that
the contents of memory most
probably came from one or
more loads from other tape
files. We could preserve the
information specifying which
locations in memory were
loaded. In the default case
when only the W’ command
is given we can write back out

118

exactly those bytes we read
previously.

The information saved
during a load can be thought
of as specifying which loca-
tions in memory are of
interest. Perhaps we should
call it the memory control
data (MCD), and use it as the
primary means of specifying
specific areas of memory.

An MCD which was auto-

matically updated by
multiple loads would take
care of copy operations,

slight modifications of pro-
grams, and combining two or
more parts of programs into
one. This would cover most
situations, but not all. There
is still a need for a way to
specify a write which is not
just a combination of pre-
vious reads. This could be
implemented by a command
which modifies or extends
the preserved information,
specifying which bytes were
loaded.

We obviously must have
an “'M"" command, say
“Mxxxx,yyyy" which would
mark the memory between
address xxxx and yyyy as
important. Associated with
this we will need a way to
reset the MCD to a null value.
Perhaps “K" for kill.

So far there are seven com-
mands. These are summarized
as the first seven in Fig. 1.
Naturally, the computer for
which the cassette handler is
to be written will probably
already have a system mon-
itor program. If so, the actual
syntax of the commands will
probably be chosen to be
compatible with the existing
software.

Implementation

So, to write a cassette tape
handler we must write three

subprograms: the loader,
which executes the “R" com-
mand; the saver, which

executes the “W"” command;
and the command decoder
which interacts with the out-
side world via the Teletype,
accepts commands, and
executes them. The loader
may be split into two parts,
the bootstrap and the frills.

A bootstrap for a system

R — Read a file into memory
set bit map and start it.

W — Write the file specified
by the bit map.

Append a file. Same as R,

except do not start it.

K -

Bxxxx —

Kill {reset) the bit map.
Force base address for

the load to Hxxxx.

LXXXX,YYYY — —
Mxxxx,yyyy —

Set upper and lower load limits.
Mark the pages between Hxxxx

and Hyyyy on the bit map.

Pxxxx,yyyy —

Protect the pages between Hxxxx

and Hyyyy.

OXXXX,yyyy —

Open (unprotect) the pages between

Hxxxx and Hyyyy.

Fig. 1. The keyboard commands that could be used to control the

handler described in the text.

with this type of cassette
handler would consist of the
basic loader subroutine and a
simple routine to call the
loader and then jump to the
starting address of the pro-
gram loaded. Probably the
bootstrap would not contain
any of the optional control
functions, but would allow
for them after the entire
loader had been input.

The command decoder is
quite straightforward, so we
need not go into it here. The
other parts will depend upon
the representations, both on
the tape and in memory, that
we choose for the loading
data. That is what we will
consider next.

Memory Segments

How can a thing like the
MCD be implemented? The
obvious approach would be
to keep a table of memory
segments. Each table entry
would consist of two bytes
for the lower address of the
segment and two bytes for
the upper address. This
scheme has two problems.
The first is that the “M"
command described above is
messy to implement with a
segment table arrangement.
This is because a new addi-
tion to the MCD would have
to be checked against the
existing table entries and
overlaps or duplications
resolved. The second problem

is purely aesthetic. As my
friend Paul is wont to say,
“There are only three nice
numbers in computing, none,
one, and as many as you like.”
The number of memory seg-
ments allowed would be none
of these, because the space
we allocated for the memory
segment table would be
limited. However large we
made it, it would still be
possible to have too many
memory segments. Imagine
the annoyance that a ‘““too
many memory segments’
error would cause!

Bit Maps

If not a memory segment
table, what then? Here is a
solution that | like.

Limit the memory seg
ments that can be written to
multiples of 256 bytes (1
page). For each possible page,
assign a bit as a flag which,
when on, indicates that the
corresponding page of
memory should be written
out when a “W"” command
is given. Since there are at
most 256 possible pages we
need only 32 bytes to store
these 256 bits. This block of
32 words | will call the bit
map of the current memory
usage.

The bit map scheme allows
any conceivable segmentation
arrangement and is easy to
update to reflect multiple
loads or added segments as

specified by the “M” com-
mand. All we have to do is set
those bits which correspond
to the pages which are
affected.

This arrangement for the
MCD is similar to one which
is used in the PDP/8 oper-
ating system. They call it a
core control block.

The section of the code of
the handler which deals with
the bit map requires a little
thought. One way to proceed
is to write a subroutine
which takes a memory page
number in a register, say the
accumulator, and returns two
things: The number of the
word in the bit map which
contains the corresponding
bit, and a mask word with the
appropriate bit set. Fig. 2isa
flowchart of a routine which
performs this task. It returns
the number of the word in X
and the bit mask in the
accumulator. Now in order to
mark a page in the bit map
we call the subroutine and
“OR"™ the mask with the
appropriate bit map word. To
test to see if a particular page
is marked we call the subrou-
tine and “AND" the mask
with the bit map word. If the
‘““AND’" gives a nonzero
result, then the page was
marked.

Memory Protection

In the actual implementa-
tion of a cassette handler
there is a programming diffi-
culty that will have to be
dealt with. The problem is
this: There are some words of
memory which the cassette
loader must not be allowed to
overwrite. In machines where
I/0 is implemented as
memory addresses, the most
obvious locations we must
protect are the 1/0 ports.
Since the loader is reading in
from the cassette port it
obviously must not write into
that port. The other 1/0 ports
probably should not be over-
written either.

In any case, the entire bit
map must not be overwritten
because the load time bit map
will be different from the
write time bit map whenever
the current load is an overlay

to earlier loads. If the bit map
were overwritten, it would be
changed to the value that
existed at the time of the
write, and this could be incor-
rect.

Besides areas of memory
which must not be read by
the loader there are other
areas which need never be
saved or reread. Memory
addresses corresponding to
nonexistent memory, read-
only memory, and the stack
area are examples.

For simplicity the entire
problem could just be
ignored. The user would then
be expected to know what
was going on and never mark
certain areas in the MCD bit
map. This is not a very nice
solution since it requires
knowledge of exactly where
in memory the bit map and
other special things are kept.

It would be much nicer to
take care of this in the
handler code itself. One way
to do this would be to intro-
duce another bit map. This
map would keep track of
those pages of memory that
are to be protected, that is
those pages that the user
wishes to automatically
exclude from any read or
write.

Of course, there will have
to be some commands to
manipulate the protection bit
map, since this feature is
quite general and would have
applications other than the
obvious one of preventing
errors produced by over-
writing certain memory ad-
dresses. If the protection bit
map reflects the currently
implemented memory, it
could be useful in a variety of
other programs for run-time
storage allocation. By com-
paring the protection bit map
and the MCD bit map, a
program could even deter-
mine which areas of memory
are currently unused. The
protection bit map could also
be used to specify complex
partial reads of files. The
possibilities seem endless.

In keeping with the other
commands we could have a
“P"" command similar to the
“'M’" command suggested

BACK FROM
THE STACK

“ano® wWiTH

STORE NV
¥

DECREMENT
v

Fig. 2. This routine takes a memory page number in the accumulator
and returns the corresponding bit map offset in X and the bit mask in

the accumulator.

earlier. "Pxxxx,yyyy’" would
protect the pages between
address Hxxxx and Hyyyy.
Similarly ""Oxxxxyyyy"”
would open, that is un-
protect, the pages between
Hxxxx and Hyyyy.

Different systems and even
different programs on the
same system may need to
protect different areas of
memory. Since it is incon-
venient to reset the entire
protection map, it should be
possible to load it from an
existing file. Here is a
potential problem to avoid.
In general the MCD bit map
will be protected while the
protection bit map itself will
not be protected. Since the
protection scheme described
so far works only on whole
pages, it follows that the
MCD bit map and the protec-
tion bit map will have to be
stored in different pages of
memory.

File Structure

At this point | would like
to briefly touch on the ques-
tion of the format of the file
that the saver creates. The
arrangement of the MCD in
memory as a 32-byte block
does not mean that the way
to format the actual tape file
is as a 32-byte MCD followed
by the corresponding pages of
data bytes. | made this
mistake in my first version, so
| know!

These are the reasons why

this is a bad idea. First, it
takes a bit of computing time
to unpack a bit from the
MCD. If the blocks on the
tape are directly contiguous,
there may not be enough
time during the stop bit of
the last character of a
256-byte page to set up for
the next page. The second
reason it is a bad idea is that
it is an unnatural (if not
impossible) way for an assem-
bler or compiler program to
format its output. The bit
map scheme cannot be used
unless you know, before you
start the write, which pages
you are going to write. Since
you don't always have this
information, a system stan-
dard cassette file format
should not require that you
do.

The format to use instead
is something of an open ques-
tion, and there is much to be
said on the subject. Perhaps
the simplest format is one
used by most paper tape
loaders: some number of
records where each record
consists of an address to
begin the load at, a byte
count, the actual bytes, and
then a check byte or word.
This format is not all encom-
passing, but, whatever the
detail of the format, the MCD
should be decoded into the
actual page addresses and
these actual addresses written
onto the tape instead of the
bit map itself. ®

119

