Hal Chamberiin
29 Mead St,
Manchester NH 03104

Software
Kkeyboard
Interface

with a pittance of hardware !

I ‘Il bet you're thinking,
“Oh sure, another scheme
using some obscure surplus
keyboard that will be sold
out by the time | get around
to this project.” Not so! This
keyboard (manufactured by
Datanetics Corp. of Fountain
Valley CA) is offered by at
least a half-dozen mail-order
houses and is a current pro-
duction item. But at $20 each
(the most common price),
these outfits are not doing us
any favors; their cost is prob-
ably less than $10 each. An
auxiliary keyboard the same
style as the main unit is also
available for less than $10
and can be used in this pro-
ject for function keys, etc.
Why are these keyboards
so cheap? The reason cer-
tainly is not lack of
mechanical or electrical
quality. They are unusually
rigid one-piece construction
of one-sixteenth-inch-thick
Bakelite plastic, ribbed into a
honeycomb form, with an
overall depth of one-half
inch. Each cell contains a
contact arrangement with no
fewer than four parallel con-
tacts mounted inside a rugged
plastic plunger. The contacts
effectively reduce bounce and
insure a long, error-free life.
Finally, a keybutton is

98

pressed onto the plunger,
sealing the cell from dust and
liquids.

One reason for the low
cost is the one-piece base
casting and cell structure. As
| understand, the initial cost
of the mold was borne by a
huge quantity contract with
Digital Equipment Corpora-
tion. However, the other
reason is that the keyboard is
devoid of any encoding elec-
tronics. This is the problem
whose solution will be
addressed in this article.

Besides the keyboard, the
only other hardware this pro-
ject requires is a single 74154
TTL integrated circuit (1-
of-16 decoder), which costs
less than two dollars, and
some wire. Only four of the
1/0 port bits on the KIM’s
application connector are
used, and even these may be
used for other purposes when
typing is not actually being
done. Standard two-key roll-
over operation (which will be
described later) is provided,
and a full uppercase and
lowercase ASCII character set
is available. Even the repeat
key works and has a program-
mable rate. The auxiliary key-
board is also supported with
codes from its keys being
identified by having the

eighth bit set to a one. Even
though some of the KIM’s
built-in keyboard circuitry is
utilized, there is no conflict
(with one small exception)
between the built-in keypad
and the new alphanumeric
keyboard. A slight amount of
additional circuitry using an-
other IC may be added to
have the break key function
as an interrupt.

A software routine of ap-
proximately 350 bytes does
all of the key scanning and
code translation. This, in fact,
is how the on-board KIM
keypad is handled, with the
difference being that the
scanning software is in the
KIM monitor ROM. If a code
other than ASCII is desired,
such as EBCDIC or Baudot, a
translate table in the software
may be easily altered. This
table can be changed to suit
different application pro-
grams, such as ASCIl for
running Tiny BASIC or
Baudot for an automated
RTTY application. The com-
plete assembled and tested
program is given at the end of
this article.

Keyboard Scanning Theory

Nearly all keyboards in
common use with more than
a few keys use some kind of

scanning logic to detect key-
switch closures, eliminate
contact bounce, and generate
unique key codes. In opera-
tion, scanning logic sequen-
tially tests the state (up or
down) of each individual key
in the array. When a key is
found in the down position,
its code is determined and
sent out. In order to avoid
the code’s being sent out
more than once for each key
depression, the scanning is
stopped while the key is
down and resumed when it is
released. Typical scanning
rates range from 20 to 500
complete scans per second of
the approximately 60 keys in
an average array.

Besides being a simple and
inexpensive method of having
a single logic circuit monitor
the states of 60 individual
keys, scanning also can cope
with simultaneous key de-
pressions. When someone is
typing at substantial speed it
is a common occurrence for
more than one key to be
down simultaneously. For
example, consider rapid
typing of the word THE. The
T would first be pressed,
followed shortly thereafter
by a finger of the other hand
pressing the H. Next the T
would be released and the E
would be quickly pressed
with another finger of the
same hand. Subsequently, the
H would be released followed
by the E, which completes
the triad. A scanning key-
board would actually send
the proper THE sequence to
the computer, with no addi-
tional logic or buffer register
required.

In order to understand
how this works, let us ex-
amine the detailed sequence
of events. Initially, no keys
are pressed, and the scanning
circuitry is running at full
speed. When the T is pressed,
the scanner eventually finds
it, sends the T code and
stops. As long as the T is held
down, the scanner is stopped
and testing the T key. While
waiting for the T to be re-
leased, the typist presses the
H, but the scanner is not
aware of it. When the T is

finally released, the scanner
takes off again but is im-
mediately stopped when it
sees that the H key is down.
After sending the H code it
waits for the H to be released,
and so on.

If the typist is sloppy (or
unusually fast) it is possible
for even the E key to be

pressed before the T s
released, resulting in three
keys being down simul-

taneously. In this situation,
two keys are pressed while
the scanner is waiting for the
T key to be released. When
scanning is resumed, two keys
are down. The scanner will
see the one that is closest to
T in the scanning sequence
and send that code next. The
closest key might very well be
the E, resulting in an error.
This action on multiple key
depressions is termed two-key
rollover and is found on most
computer terminals and other
equipment used by casual
typists. Some word-
processing machines and
other equipment used by pro-
fessional typists have N-key
rollover logic, which responds
only to the order of key
depression, regardiess of how
many keys are down simul-
taneously or the order in
which they are released.
Either special keyswitches or
more complex scanning logic
can be used to achieve N-key
rollover. This keyboard inter-
face is capable of N-key roli-
over with a more complex
scanning program.

The scanning method can
also easily take care of key-
switch contact bounce. When
a closed contact is found,
scanning is stopped, but
sending of the code is de-
layed. If the contact should
open during the delay, the
closure is ignored and scan-
ning is resumed without
sending the code. If the
momentary closure was really
due to contact bounce, the
key will be seen again on the
next scan. If the closure is
solid for the entire delay
time, the code is sent. In
addition, noise on contact
opening may be rejected by
requiring that the contact re-

main continuously open for a
delay period before scanning
is resumed. Typical values of
debounce delay are one to
five milliseconds.

Now, how is scanning cir-
cuitry typically imple-
mented? One simple scheme
for up to 64 keys would be to
have an oscillator drive a 6-bit
binary counter. The output
of the counter would drive a
decoder network having 64
separate outputs. All but one
of the decoder outputs would
be off, with the one on cor-
responding to the binary
number in the counter. As
the counter counts, each of
the 64 decoder outputs
would be turned on in se-
quence. For scanning a key-
board, each decoder output
would be connected to one
side of a keyswitch contact as
shown in Fig 1. The other
sides of the contacts would
all be connected together.
This signal would be a zero
except when a keyswitch was
closed and that particular
switch was addressed by the
counter and decoder. With
proper wiring between the
decoder and the switch array,
the 6-bit content of the
binary counter while it is
addressing a closed key can
be the actual desired code of
that key! Thus encoding is
automatic with a scanning
keyboard. Unfortunately, the
shift and control keys of a
typical keyboard complicate
coding matters somewhat,
but the basic concept is still
valid.

Actually the scanning logic
and switch wiring can be
simplified greatly from the
above conceptual model by
arranging the keys in a
matrix. Taking the same
64-key array, let us wire the
keys in a matrix of eight rows
and eight columns with a
signal wire for each row and
column. The contacts of a
switch will be wired across
each intersection, as shown in
Fig. 2. Using the same 6-bit
counter, let us connect three
of the bits to a one-of-eight
decoder and the other three
bits to an 8-input multi-
plexer. A multiplexer is a

logic circuit that has several
signal inputs, some binary
address inputs and one out-
put. In operation, one of the
signal inputs is logically con-
nected to the output
according to the binary code
at the address inputs. The
single output of the multi-
plexer is the addressed-key-
closed signal as before. With
matrix connection of the
keys, the scanning logic grows
in proportion to the square
root of the number of keys,
instead of directly.

As the scanning counter
counts, the decoder activates
one column of the matrix at a
time and the multiplexer se-
quentially examines each row
for a closed switch trans-
ferring the column signal over
to a row. When a closed
switch is found, the counter
contains a unique code for

the switch as before. Al-
though it is still possible for
this code to be the actual
desired keycode, the scram-
bled key layout of a typical
keyboard would make the
matrix wiring quite messy.
Typically a read only mem-
ory is used to translate the
scramble code from the scan-
ner into the end-use code the
computer system needs. This
same ROM also takes care of
the shift and control keys,
which are wired in directly.

Connection to the KIM

All of the previously de-
scribed functions of scanning
hardware can also be easily
performed by software, along
with an output and an input
port. The most straight-
forward approach to simulate
matrix scanning hardware
would be to use an 8-bit

ey
63— —y
KEY CODE 62 s
6l 554
2% 2%
24 It
& 23 23
BIT 64
KEY
COUNT 22 22 gégone PRESSED
2! 2!
CLOCK. 2° 20
B .
P S T
e
!
XEY ARRAY
SCAN -
CONTROL
Fig. 1. Basic keyboard scanner.
m
2 8-WAY DECODER
o
2 4
"
7
5
s
. KEY
8-WAY PRESS
MULTI
—— 3 PLEXER
2
9,2 51 50

I‘}

Fig. 2. Matrix keyboard scanner.

Keyboard point-to-point wiring.

output port with software to
simulate the one-of-eight de-
coder and an 8-bit input port
with software to simulate the
8-input multiplexer. The
counter, of course, would be
just a memory location that is
incremented to perform the
scanning. Unfortunately, in
the case of the KIM this
would utilize all of the built-
in ports and then some.

A look at the KIM manual
will reveal that much of the
circuitry for the on-board
keypay has signals brought
out to the application edge
connector. In particular,
seven bits of an internal input

connected internally to the
on-board keypad and seven-
segment displays, but when
the KIM monitor is not
running {user program
running) they are completely
free for use as an input port.
Of course, when the monitor
/s in control, these inputs
must not be driven by ex-
ternal circuitry, or inter-
ference with the keypad and
display will result. If this port
is connected to the rows of a
key matrix and no keys are
pressed, then nothing is
driving the row wires; they
are just hanging. Thus, when
using the KIM monitor, one

typing on the external key-
board so any interference is
completely avoided.

At this point, one could
use an 8-bit output port on
the KIM to drive the key
matrix and handle up to 56
keys without any interfacing
circuitry. If you do not need
the one full 8-bit port, and a
limited character set (some
missing symbols) is sufficient
for your needs, then this can
indeed be done. However, on
my system the 8-bit port is
connected to a digital-to-
analog converter (for playing
music) and two of the seven
bits on the other port are
motor controls for two cas-
sette recorders. This leaves
five bits for selecting the
column to be scanned, The
solution is to use four of
these bits and an external
1-0f-16 decoder to drive up
to 16 columns. Combined
with seven rows, up to 112
keys could be scanned.

Fig. 3 shows the connec-
tions to the KIM and. the
matrix hookup of the keys.
Note that the optional 19-key
keyboard is included. The
arrangement of keys in the
matrix was chosen mostly for

port are available. These are would not expect to be simplicity of wiring, with
e
A3
a2
A-t
A-a
Al
PINS ON Kiti-1
APPLICATION
CONNECTOR
| *
I S S S S VR S S S S S
& 8 LY L a, 4, LN a8 L. LW L s LN .
Row-o = JEsc | R TS R R N T) [~ [Bs Azl
H 1 2 3 4 5 6 7 8 9 0 A
fo N o [T To T fo ™
3 LY a, 2 a, a, L A L N -
ROW | : TAB |Q w E R T Y U 1 0 4 ({ LF DEL Ao
C
hox S S S 8 S
oy A o, L o 8, o, o, o, L% o, e
Row 2 AUX |CTL A S D F G H J K L + M) CLR [HERE azy
SHIET i @ |3 is
b S s - o
. LN LN -~ LN LY a, L% LW . LN -
ROW 3 N EHIRT [LEFT |2 i CH 3 G R G B o e LT Arzz
a BLANK i i’ BLANK
e N* fox he N b hx he hx he b s F,. h %
3, 5 3, V. A a | o LN 9 ‘
RO 4 E D C B A 19 8 7 6 5 4 3 2 ! el #ng0
®KEY ON 19 PINS ON_KiM-1
KEY AUXILARY { r APPLICATION
KEYBOARD | | CONNECTOR
coL <oL coL coL coL &
! e % 2) !OL CgL COL cOL cOL C%L coL L coL ("l coL
Fig. 3. C lete KIM-1 alj ic keyboard interface sch ic.

100

proper coding taken care of
with translation software,
The one exception is the
wiring of the O-F keys on the
auxiliary keyboard. They are
in order with the 0 key in
column 0, 1 key in column 1,
etc. This would simplify a
scanning routine that uses
just those 16 keys. The
74154 decoder needs about
35 milliamps of +5 volt
power. This should not strain
any decent power supply for
the KIM, but could be re-
duced to a mere 10 milliamps
if a 7415154 was substituted.

Note that the two shift
keys are both wired into the
matrix at row 3, column 15,
The key labeled SHIFT on
the auxiliary keyboard is
intended to be relabeled and
used for a less redundant
function. The shift lock can
be connected across the other
two shift keys, but a problem
arises in doing so. If it is left
in the lock position when
using the KIM monitor, there
can be interference between
the add-on keyboard and the
KIM keyboard. If the shift-
lock function is desired, and
the requirement that it be
unlocked before using the
monitor is not judged to be
bothersome, then the shift-
lock key may be wired in.

Wiring the little tabs
sticking out of the back of
the keyboard should not be
difficult. They are stiff
enough and long enough to
be wire-wrapped, too, if care
is taken. Actually, this would
be an ideal use of a Vector
wiring pencil, which should
get the job done in about 30
minutes. If hand wiring and
soldering must be done, how-
ever, it is permissible to use
bare bus wire for the row
wiring and insulated wire for
the columns. The purist can
mount the 74154 IC in a
socket on a piece of perf-
board, but there is no reason
that it cannot be glued to the
bottom or side of the key-
board and wired directly.

The little circuit in Fig. 4
can be added to allow the
Break key to be used as an
interrupt. The KIM board
would respond to this key in

the same manner as the ST
key on the built-in keypad
and return to the monitor.
However, if the nonmaskable
interrupt (NMI) vector s
changed at 17FA and 17FB,
the interrupt could jump to a
specific point in the user’s
program instead. The re-
sistors, capacitor and 7413
Schmitt trigger IC debounce
the break key to prevent
multiple interrupts. The
diode in series with the out-
put simulates an open-
collector output so that
normal ST key operation is
not affected. Preferably, the
diode is a germanium type
such as a TN34 or 1N270, but
a silicon unit will generally
work OK.

Scanning Program

The program in Fig. 5 is
the heart of the add-on key-
board system and is respon-
sible for most of its features.
Although shown assembled
for locations 0200-035C
(hexadecimal), it may be
modified for execution any-
where by changing those loca-
tions marked with an under-
line in the object-code
column. One temporary
storage location is required
on page 0. lts initial value
when the keyboard is first
used in a user program is not
important, but thereafter it
should not be bothered. The
routine may be interrupted
with no ill effects, but it is
not reentrant {that is, it may
not be called by an interrupt-
service routine if it was itself
interrupted) due to the
temporary storage location
just mentioned. This tempo-
rary location is at 00EE (just
below the KIM reserved area)
in the listing shown but may
be easily moved elsewhere.

Using the program is quite
simple. It is called as a sub-
routine whenever a character
from the keyboard is needed.
The contents of the registers
when called are not impor-
tant. When called, the routine
waits until a key is pressed
(except for code, shift or
repeat). When a key is
pressed, its code is loaded
into the accumulator and a

102

return taken. For maximum
flexibility, the contents of
the index registers are not
disturbed by the routine.

Before you get into the
program logic, perhaps a
word should be said about
the assembly language. The
assembler used to prepare the
listing is a modified version of
the National Semiconductor
IMP-16, which, in turn, is
similar to the PACE
assembler. In most respects,
the syntax conforms to that
recommended by MOS Tech-
nology. The major difference
is that hexadecimal constants
are denoted by X' instead of
$. The use of a # before a
constant or symbol specifies
the immediate addressing
mode. The assembler auto-
matically distinguishes
between zero page and
absolute mode addressing ac-
cording to the numerical
magnitude of the address —
zero page if between 0000
and 00FF and absolute other-
wise. The various indexed and
indirect addressing modes are
represented in the same way
as with the MOS Technology
assembler.

The overall logic of the
keyboard subroutine closely
parallels that described for a
hardware keyboard scanner.
The first step when it is
entered is to save the index
registers on the stack. Next,
the direction registers for the
input and output port bits are
set up. Note that only the
direction bits for the port bits
actually used are changed; the
others are left unchanged.

Fig. 4. Optional break-key interface.

When the subroutine is
entered, an assumption is
made that the last key
pressed is still down. This is
certainly a valid assumption
since a return from the pre-
vious invocation of this sub-
routine occurred immediately
when a key was pressed, and
it is unlikely that processing
of that character by the
calling program took very
long. ANKBT1 is the tempo-
rary storage location men-
tioned earlier. Functionally,
it is equivalent to the counter
in a hardware keyboard scan-
ner. It always addresses a key
in the matrix, and in this case
it points to the key that was
last pressed and had its code
sent.

Thus, after saving the
registers and setting up the
ports, a loop is entered in
which the keyboard routine is
waiting for this last-pressed
key to be released. While in
this waiting loop, the status
of the repeat key is con-
tinually interrogated. If the
repeat key is continuously
down while the last-pressed
key is also continuously
down for the repeat period,

an exit is taken from the loop
and the key code is sent
again. Note that the repeat
period, RPTRAT, is a para-
meter that may be changed;
in this case it is set to 50
milliseconds, giving a
moderately fast repeat rate of
approximately 20 characters
per second.

An internal subroutine,
KYTST, is used to actually
test the state of a key. It is
used by loading the address
of the key to be tested into
the accumulator, and then
calling it. When it returns, the
carry flag will be on if the
key is up, and off if it is
down.

The other exit from this
waiting loop, of course, is
sensing that the last addressed
key has been released. A de-
bounce delay (DBCDLA) is
included to insure that the
key is interpreted to be up
only when it has been con-
tinuously up for the de-
bounce delay period. This
will prevent noisy contacts
from generating multiple
characters.

At this point, scanning of
the keyboard resumes.

Fig. 5. KIM-1 alphanumeric keyboard scan and encode routine.

WO EW N -

SYSPA

.PAGE

'KIM-1 ALPHANUMERIC KEYBOARD SCAN AND ENCODE ROUTINE'

THIS SUBROUTINE SCANS AN UNENCODED KEYBOARD MATRIX CONNECTED

TO THE KIM-1 APPLICATION CONNECTOR.

USER PERIPHERAL PORT B

BITS 5 (MSB) THROUGH 2 (LSB) ARE CONNECTED TO A ONE-OF-16
DECODER (74154) WHICH DRIVES THE KEYSWITCH COLUMNS.
SENSING OF THE ROWS IS BY A PORTION OF THE KIM ON-BOARD
KEYBOARD CIRCUITRY WHICH USES SYSTEM PERIPHERAL PORT B BITS

0 -4

WHEN &ALLED, THE ROUTINE SITS IN A LOOP WAITING FOR A KEY TO

BE PRESSED.

WHEN A KEY IS PRESSED (EXCEPTING SHIFT, CONTROL,

REPEAT), THE ROUTINE RETURNS WITH KEY CODE IN ACCUMULATOR.

BOTH INDEX REGISTERS ARE RETAINED.

THE ROUTINE IMPLEMENTS TRUE 2-KEY ROLLOVER, KEY DEBOUNCING,

AND REPEAT TIMING.
CONTENT IS INSIGNIFICANT.

.= X1200

= X'1740

ONE RAM LOCATION IS REQUIRED, ITS INITIAL

; START PROGRAM AT LOCATION 0200 (HEX)

; SYSTEM PORT A DATA REGISTER

20 171
21 1702
22 1703
23 0032
2k 0005

26 00EE

29 0200
30 o02c1
31 0202
32 0203
33 0204
34 0207
35 0209
36 020C
37 020F
38 0211
39 021k
40 0216
41 0218
42 0218
43 021D
43 0220
45 0222
46 02214
47 0227
48 0229
49 o224
50 022C
51 022E
52 022F

56 0231
57 0233
58 0235
59 0237
60 0239
61 023B
62 023D
63 023F
64 0241
65 0243
66 0245
67 0248
68 0244
69 024D
70 024E

T4 0250
75 0252
76 0255
77 0257
T8 0254
79 025C
80 025D
81 025F
82 0262
83 0264
84 0267
85 0269
86 026A
87 026D
88 0270
89 0271
90 0274
91 0277
92 0278
93 0279
94 027a

98 027B
99 027D
100 027F
101 0281

98

48

84

48
AD4I1T
29E0
8D411T
ADO31T
093C
8D0317
A032
A205
207802
ASEE
208202
BOOC
A931
208202
BOED
88
DOEA
Foz2

DOET7

E6EE
ASEE
C93F
FOF8
CY2E
FOFY
c931
FOF0
A205
ASEE
208202
BOET
207802
CA
DOF3

AGEE
BCBDO2
A92E
208202
B0O6
98
291F
4c7002
A93F
208202
9004
98
4c7002
BDODO3
BA
BC0201
900201
68

68
60

A9C8
E901
DOFC
60

SYSPAD
USRPB

USRPBD
RPTRAT
DBCDLA

ANKBT1

ANKB:

ANKB1:
ANKBZ :

ANKBY :

ANKBS:

ANKB6 :

ANKBT :

ANKBS :

ANKBY :
ANKB10:

WATMS :
WATMS1:

TYA
PHA
TXA
PHA
LDA
AND
STA
LDA
ORA
STA
LDY
LDX
JSR
LDA
JSR
BCS
LDA
JSR
BCS
DEY
BNE
BEQ
DEX
BNE

PREVIOUS KEY IS NOW

INC
LDA
CMP
BEQ
CMP
BEQ
CMP
BEQ
LDX
LDA
JSR
BCS
JSR
DEX
BNE

X7l
X'1702
X'1703
50

5

X'EE

SYSPAD
#X'E0
SYSPAD
USRPBD
#X13C
USRPBD
#RPTRAT
#DBCDLA
WATMS
ANKBT1
KEYTST
ANKBY
#%131
KEYTST
ANKB1

ANKB1
ANKBT

ANKB2

ANKBT1
ANKBT1
#X'3F
ANKB5
#X'2E
ANKBS
#X'31
ANKBS
#DBCDLA
ANKBT1
KEYTST
ANKB5
WATMS

ANKB6

SYSTEM PORT A DIRECTION REGISTER
USER PORT B DATA REGISTER

USER PORT B DIRECTION REGISTER
REPEAT PERIOD, MILLISECONDS
DEBOUNCE DELAY, MILLISECONDS

TEMPORARY STORAGE LOCATION ADDRESS

; SAVE THE INDEX REGISTERS

SET UP DATA DIRECTION REGISTERS
SET SYSTEM PORT A BITS 4-0 TO INPUT

SET USER PORT B BITS 5-2 TO OUTPUT

INITIALIZE REPEAT DELAY
INITIALIZE DEBOUNCE DELAY

WAIT 1 MILLISECOND

GET KEY ADDRESS LAST DOWN

TEST IF ADDRESSED KEY STILL DOWN
JUMP IF UP

TEST STATE OF REPEAT KEY

LOOP BACK IF REPEAT KEY IS UP
DECREMENT REPEAT DELAY

LOOP BACK IF REPEAT DELAY UNEXPIRED
GO OUTPUT REPEATED CODE

DECREMENT DEBOUNCE DELAY

GO TEST KEY AGAIN IF NOT EXPIRED

RELEASED, RESUME SCAN OF KEYBOARD
; INCREMENT XEY ADDRESS TO TEST

SKIP OVER SHIFT

SKIP OVER CONTROL

; SKIP OVER REPEAT

INITIALIZE DEBOUNCE DELAY
; TEST STATE OF CURRENTLY ADDRESSED KEY

GO TRY NEXT KEY IF THIS ONE IS UP
WAIT 1 MILLISECOND IF DOWN
DECREMENT DEBOUNCE DELAY

GO CHECK KEY ACAIN IF NOT EXPIRED

TRANSLATE AND QUTPUT A KEY CODE

LDX
LDY
LDA
JSR
BCS
TYA
AND
JMP
LDA
JSR
BCC
TYA
JMP
LDA
TSX
LDY
STA
PLA
TAX
PLA
RTS

ANKBT1
ANKBTB, X
#X12E
KEYTST
ANKB8

#X'1F
ANKB10
#X'3F
KEYTST
ANKB9

ANKB10
ANKBTB+80, X

X1102,X
X102,

GET BASIC ASCII CODE FROM TABLE
INTO INDEX Y
; TEST STATE OF CONTROL KEY

SKIP AHEAD IF NOT PRESSED

CLEAR UPPER THREE BITS OF CODE IF
CONTROL PRESSED

IGNORE SHIFT AND GO RETURN

TEST STATE OF SHIFT KEY

SKIP AHEAD IF PRESSED

RETRIEVE PLAIN CODE FROM Y

GO RESTORE REGISTERS AND RETURN
FETCH SHIFTED CODE FROM TABLE

RESTORE Y FROM STACK
SAVE CHARACTER CODE IN STACK WHERE Y WAS
RESTORE X

RESTORE CHARACTER CODE IN A
RETURN

WAIT FOR ONE MILLISECOND ROUTINE

LDA
SBC
BNE
RTS

#200
#1
WATMS1

; WAIT FOR APPROXIMATELY 1 MILLISECOND

KEY STATE TEST ROUTINE

ENTER WITH ADDRESS OF KEY TO TEST IN ACCUMULATOR

LEAVES BOTH INDEX REGISTERS ALONE

SETS ANKBT1 TO ZERC IF ILLEGAL KEY ADDRESS AND TESTS KEY ZERO

Scanning is accomplished by
incrementing ANKBT1 and
calling KEYTST to look at
the state of the newly
addressed key. Note that the
shift, code and repeat keys
are specifically skipped in the
scan sequence. Also note that
another function of KEYTST
is to detect an illegal key
address and set ANKBT1 to
zero if an illegal address
occurs. Such an illegal address
would normally occur after
testing the last key in se-
quence, so the forced reset to
zero would start another
scanning cycle. If a key is
found depressed, another
loop is entered that verifies
that it is continuously de-
pressed for the debounce de-
lay interval before it is de-
clared to be really pressed.

Once a newly pressed key
has been found (or the con-
ditions for a repeated char
acter have been satisfied), the
key code must be generated.
First, the current key address
in ANKBT1 is translated into
a plain unshifted character
code by using it as an index
into the first part of the code
table. Next, the state of the
control key is tested. If it is
down, only the lower five bits
of the translated code are
retained, and an exit is taken.
If control is up, then the shift
key is tested. If it, too, is up,
an exit is taken. If the shift
key is down, however, the
code is retranslated using the
second part of the code table.
Note that with a code like
ASCII, with logical bit pairing
(unshifted and shifted codes
differ by only one bit), the
second half of the code table
might be replaced with a little
more programming to make
the adjustments necessary on
shifted characters.

Finally, the two index
registers are restored and a
return taken. Note that some
playing around with the stack
was necessary to preserve the
character code in A while the
other registers were restored.

The key state test routine,
KEYTST, takes a key address
in A and tests if the cor-
responding key is pressed.
After checking for a valid key

address, and correcting it if
not, the lower four bits of the
address are sent to the port
bits that have the 1-of-16
column decoder connected to
them. These four port bits are
updated without affecting
any of the other bits on the
same port. After the column
address is sent out, the re-
maining three upper bits of
the key address are used to
access a '‘mask table,” which
selects one of the five signifi-
cant row input bits to test.
Then the input port that
senses the five rows is read
and tested against the mask.
The zero or nonzero result is
transferred to the carry flag,
which won‘t be destroyed
during the register restore
sequence

The code translate table is
divided into two parts. The
first is for unshifted codes;
the second is for shifted
codes. The characters are in
matrix-wise order, starting
with row 0, column 0, going
through the columns on row
0, proceeding to row 1, and
so forth, ending with row 4,
column 15. The table given is
for ASCII on the main key-
board. The blank or oddly
marked keys are assigned to
useful ASCIl control codes
such as CR for the key
marked CLR. The 0-F keys of
the auxiliary keyboard be-
come 80-8F for lowercase
and 90-9F for uppercase. The
remaining three auxiliary
keys are assigned codes AQ-
AB. The table may be
changed freely to reflect the
user’s choice of convenient
control codes or to accommo-
date a completely different
character code.

Building this keyboard
interface for the KIiM should
prove to be a worthwhile
one-evening project. Bésides
saving a substantial amount
of money, it serves as a good
learning tool and an excellent
example of how software can
substitute for hardware, offer
a lot of extra features and
still be easy to use. The basic
concepts can be easily applied
to expanding other low-cost
microcomputer trainer
boards.®

108
109
110
11
112
113
114
115
116
7
118
19
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
1
142
43
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

0282
0284
0286
0288
0284
0288
028¢C
028D
0290
0292
0295
0296
0299
029B
029C
029D
0240
0243
0246
02AT7
0248
0249
02AA
02AB
02AE
02B1
02B2
02B4
02B5
02B6
02B7

02B8
02BC

02BD
o02c1

02C5
02C9
02CD
02D1

02D5
0209
02DD
02E1

02E5
02E3
02ED
02F1

02F5
02F9
02FD
0301
0305
0309

030D
0311
0315
0319
031D
0321
0325
0329
032D
0331

0335
0339
033D
0341

0345
0349
034D
0351

0355
0359

0000

€950 KEYTST:
9004
4900
85EE
48

84

48
AD0217
29C3
800217
BA
BDO201
290F
0A

oA
ope217
8p0217
BD0201
4A

ha

LA

LA

AA
ADUO1T
3DB802
18
E900
68

AA

68

60

KEYTS1:

01020408 MSKTAB:
10

085E3A2D ANKBTB:
30393837
363531433
32311BA0
TFOASCSB
TO6F6975
T9T47265
TT710941
060D5D40
3B6C6B6A
68676664
73610042
00002000
2F2E2C6D
6E627663
787A0000
80818283
81858687
88898488
8CBDBESF

085E243D
30292827
26252423
22211BA3
TFOATCTB
S0LF4955
59545245
575109A4
060D7D60
2BUCHBYA
LBLTHELY
53410045
00002000
3F3E3C4D
4E425643
58540000
90919293
94959697
98999498
9CYDIEIF

NO ERROR LINES

CMP
BCC
LDA
STA
PHA
TXA
PHA
LDA
AND
STA
TSX
LDA
AND
ASLA
ASLA
OR&
STA
LDA
LSRA
LSRA
LSRA
LSRA
TAX
LDA
AND
CLC
SBC
PLA
TAX
PLA
RTS

.BYTE
.BYTE

ASCII

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

#80
KEYTS1
#0
ANKBT1

USRPB ;
#X1C3
USRPB

X'102,X%
#X'0F ;

USRPB
USRPB
Xr102,X

SYSPA
MSKTAB, X

#0

TEST IF LEGAL KEY ADDRESS
SKIP AHEAD IF SO

SET TO ZERO OTHERWLSE
UPDATE ANKBT1

SAVE A ON STACK

SAVE X ON STACK

CLEAR USER PORT B BITS 2-5

RESTORE KEY ADDRESS FROM STACK

ISOLATE LOW L4 BITS OF KEY ADDRESS
POSITION TO LINE UP WITH BITS 2-5

SEND TO USER PORT B WITHOUT DISTURBING
QTHER BITS

GET KEY ADDRESS BACK

RIGHT JUSTIFY HICH 3 BITS

USE AS AN INDEX INTO MASK TABLE

GET SYSTEM PORT A STATUS

SELECT BIT TO TEST AND SET CARRY FLAG
ACCORDINGLY

RESTORE X FROM STACK

; RESTORE A FROM STACK

; RETURN

X'01,X'02,X'04,X'08
X110

; MASK TABLE FOR KEYTST

CHARACTER CODE TRANSLATE TABLE

X'08,X'SE,X"34,X'2D
X'30,X'39,X"38,X'37
X'36,X'35,X'34,X'33
X'32,X'31,X"1B,X'A0
X'TF,X'04,X'5C,X'5B
X'70,X'6F,%'69,X'75
X'79,X'74,X172,X'65
X'77,X'71,X109,X'A1
X'06,X'0D,X'5D,X'40
X'3B,X'6C,X'6B,X'64
X'68,X'67,X'66,X'64
X'73,X'61,X100,X'A2
X'00,X'00,X'20,X'00
X'2F,X'2E,X'2C,X'6D
X'6E,X'62,X'76,X'63
X'78,X'74,X'00,X'00
X'80,X'81,X'82,X'83
X'84,X'85,X'86,X'87
X'88,X'89,X'8A,X'8B
X'8C,X'8D,X'8E,X'8F

X'08,X'5E,X'28,X'3D
£'30,X'29,X'28,%'27
X'26,X'25,X'24,X'23
X'22,X'21,X'1B,X'A3
X'TF,X'0A,X'7C,X' 7B
X'50,X'4F, X149, X155
X'59,X'54,X'52, X' 45
X'57,X'51,%'09, X' Al
X'06,X'0D,X'7D,X'60
X'2B,X'4C, X' 4B, X1 4A
X'U8,X1HT, X1 U6, X1 4l
X'53;X'41,X'00,X'A5
X'00,X'00,X'20,X'00
X'3F,X"38,X'3C, X' 4D
X'HE,X"H2,X'56,%143
X'58,X'54,X'00,%'00
X'90,X'91,X'92,X'93
X'94,X'95,%'96,X197
X'98,X'99,X'94,X'9B
X'9C,X'9D,X'9E, X' 9F

UNSHIFTED SECTION

BS CARRET : =

09 8 7

6 5 4

2 1 ESC (AUX H)

DEL LF BACKSLASH C

P OIU

YT

W Q HT (AUXL)
HEREIS CR 13

; L EJ

H G F D

S A CTL (AUX SHIFT)
(RIGHT BLANK) REPAT SP
/., M

N BV C

X 7 (LEFT BLANK) SHIFT
(aux 0 1 2 3)

(AUX 4 5 6 7)

(AUX 8 9 4 B)

(AUXC D E F)

SHIFTED SECTION

S CARRET * =
[

T ow
——

$ o+
ESC (AUX H)
LF VERTBAR {

&
c

I

R E
HT (AUX L)

} GRAVEACCENT

=
»orBoHo
H
%)
a

(AUX SHIFT)
LANK) REPAT SP

=
v

g
A
=

SHIFT

HMED~UDS mER YYD

B)

2
6 T
A
E F)

