SWEETS for KIM A Low Calorie Text Editor

ENERG LDY #10 SET UP FOR 10 MSEC DELAY
JSR WAIT LOOP FOR THAT LONG
LDY #0 SEND 0'S TQ OUTPUT PORT
STY PORT TO TURN OFF MAGNET CURRENT
RTS RETURN TO CALLER
WAIT LDX # 200 NO. TIMES THRU INNER LOOP
LoopP DEX DECREMENT INNER LOOP COUNT
BNE LOOP LOOP UNTIL COQUNT IS O
DEY DECREMENT OUTER LOGP COUNT
BNE WAIT LOOP UNTIL COUNT IS O
RTS RETURN TO CALLER

Listing 1a: A segment of 6502 assembly language code used to demonstrate
SWEETS, a Simple Way to Enter, Edit and Test Software. SWEETS is a
small text editor and assembler which operutes on hexadecimal code and
which is designed to fit in the KIM-1's T K byte small memory while leaving
room for the user’s programs. The key sequence for editing is shown in table
7bh.

OOOOOOOOOOOOOE
PPOEOROOEOOE®O® -

(=]
o
o
o

Table Ta: The sequence of keys used to enter the program in fisting 1a when
using the SWEETS editor and assembler. The right side of the tuble shows
the resulting LED readout seen at each step. Notice that un entire instruction
is entered and displayed at one time.

62 BYTE February 1978

Dan Fylstra
22 Weitz St #3
Boston MA 02134

If you would like to experiment with
microcomputers on a limited budget, the
MOS Technology KIM-1 is an excellent
choice. For $245, it comes preassembled
with, ameng other things, a 6502 micro-
processor, a read only memory monitor,
an audio cassette interface, 1 K bytes of
programmable memory, and its own special
peripheral: a 23 key keyboard plus a 6 digit
LED display. The monitor lets you load a
machine language program byte by byte
from the keyboard, and once loaded the
program can be saved on tape via the audio
cassetle interface, The KIM-1 manual shows
how you can “hand-transiate” an assembly
language program into the absolute hexa-
decimal form required for keyboard entry.

This is fine for very small programs, but
the process of hand translation gets rather
tedious after you've assembled a few hun-
dred bytes of code. And, worse, once you've
painstakingly worked out ail the subroutine
call addresses and branch displacements
and keyed the whole program in, you in-
variably find that you've forgotten some-
thing. Often, instructions must be inserted
or deleted in the middle of the program,
which throws everything off by a few bytes.

The obvious solution to this problem s
to obtain a text editor and assembler pro-
gram for the 6502. But, alas, such a program
probably needs more than the 1 K bytes of
memaory provided on the KIM-1, and, more
seriously, it requires an alphabetic charac-
ter terminal device such as a Teletype. What
if you can't afford the extra peripherals
and memory? Are you doomed to spend
most of your microcomputing hours keying
in the same program over and over again?

Maybe not. Perhaps we can avoid most

G a o 0 0

of the tedium by concentrating on those
features of a text editor and assembler
which we really nced. Although we'll be
limited by the KIM-1 keyboard to hexa-
decimal instruction entry, perhaps we can
provide an automatic way to insert and
delete instructions and to fix up all those
subroutine call addresses and branch dis-
placements. And perhaps by limiting our-
selves to these features, we'll be able to cram
the ‘‘editor and assembler” inlo some
fraction of the KIM's 1 K of memory.

This is the purpose of SWEETS. SWEETS
is an example of a program invented to fit
an acronym: [t stands for Simple Way to
Enter, Edit and Test Software. If you own
a KIM-1 and have grown tired of absolule
machine language programming, now you
can step up to “symbolic hex’'! While it's
not as convenient as a real text editor and
assembler, SWEETS can save you a lot of
time and index finger soreness.

SWEETS Functions

Under the control of the KIM-1 monitor,
the 6 digit LED display normally shows you
the address and data ol a single byte of
memory. You can enter dala using the
hexadecimal keys, but this causes the data

Table 1b: The procedure used in SWEETS to locate and delete an instruction,
in this case the superfluous instruction LDY #0 (A000 in hexadecimal code),
The rest of the program is moved up in memory and the next instruction is

then displayed, as shown.

0200 AG OA
0202 20 e
0205 B8C 00
0208 60

0209 A2 ce
0208 CA

Q20C DO FD
020E 88

Q20F DO F8
0211 60

ENERG LDY =10
02 JSR WAIT
17 STY PORT
RTS
WAIT LDX =200
LOOP DEX
BNE LOOP
DEY
BNE WAIT
RTS

Listing 1b: The ebsolute hexadecimal form of the program segment shown
in listing Ta after removal of the LDY #0 instruction (see table 1b) and
execution of the SWEETS assembler [shown for purposes of comparison
in the format of an ordinary assembler output listing).

64 BYTE Mebruary 1978

previously in the displayed byte of memory
10 be destroyed.

Under the control of SWEETS, however,
an entire instruction of one, two or three
bytes in length is displayed on the LEDs at
any given time, An instruction can be
inserted just before the displayed instruc-
tion by pressing the AD key followed by
from 2 to 6 hexadecimal keys. When this is
done, the instruction just entered appears on
the display; the old instruction and every-
thing following it in the program area have
been moved down to make room. Similarly,
pressing the DA key causes the currently
displayed instruction 1o be deleted, and
cverything following this instruction in the
program arca is moved up to eliminate the
slack space.

Successive instructions can be examined
by pressing the + key, which advances to
and displays the next complete instruction.
And 1o go back to a previous point, or to
find an arbitrary point in the instruction
sequence, you can press the GO key fol-
Jowed by a two byte (four hexadecimal
digit) search pattern. SWEETS will scarch
for the first instruction(s) whosc initial two
bytes match the search pattern, and then
will display this as the current instruction.

This much of SWEETS can be used by
itself; but so far we're still burdened by the
need to calculate and adjust subroutine call
addresses and branch displacements. To
lift this burden, we can use hexadecimal
“labels.” A label is a 3 byte “pseudo-
instruction” with an opcode of hexadecimal
FF. The second byte is the “'label number,”
any hexadecimal value, and the third byte
is ignored. A label is inserted in the hexa-
decimal instruction scquence at each point
where an alphabetic label appears in a
normal assembly listing. When we key in a
subroutine call, jump, or relative branch in-
struction, we cnter the destination label
number as the sccond byte of the instruc-
tion, in place of a branch displacement or
absolute address. As we insert and delete
instructions, the ““label"” pscudo-instructions
move up and down in memory along with
the rest of the code.

When we're ready for a test run of the
edited program, we can use the KIM-1
monitor to exccute the SWEETS “assem-
bler.” This program removes the label

MO

Ea

SCAN

ADKEY l

GOKEY

STPKEY

MOVEUP

REDEND

DETLEN

l

ADVANC

]]

MYDOWN

ADVEND

ROBYTE ADVANC

DETLEN —l

ROBYTE OETLEN

Hpttly

SCan

Figure 1: The subroutine calling tree structure of SWEETS, CMD, the control routine, maintains the LED dispiay and scans
the keyboard for a command key (by means of SCAN) and transfers to one of the four command processing subroutines,
ADKEY, DAKEY, GOKEY or STPKEY. These routines perform the editing functions with the aid of three other subroutines:
DETLEN (which determines instruction lengths), MVDOWN, and MOVEUP (which move portions of edited program down

and up in memory, respectively).

66

BYTE February 1978

pseudo-instructions from the instruction
sequence, and replaces label references in
branch, jump and subroutine call instruc-
tions with the proper branch displacements
or absolute addresses. Then the edited pro-
gram is ready for a test execution. (Since
the test is likely to fail, leading to further
changes in the edited program, we should
always dump the program on the audio
cassette in ‘‘symbolic hexadecimal” form
before cxecuting the SWEETS assembler.
Then we can reload it later, replacing the
program in memory which has been con-
verted to absolute machine language.)

As an example, suppose that you wished
to enter the program segment shown in
listing Ta, which is taken from an earlier
BYTE article of mine (see “‘Selectric Key-
board Printer Interface,” June 1977 BYTE,
page 46). Table 1a shows the keys you
would press and the resulting instructions
displayed on the LEDs by SWEETS. You
might then notice that the instruction
LDY #0 is superfluous after the call to
subroutine WAIT, so you would search for
and delete this instruction as shown in
table 1b. Finally you would execute the
SWEETS assembler, leaving the contents
of the program area as shown in listing 1b.

Of course, we will pay some penalty for
use of these features of SWEETS, since we
will have less memory available for the
program to be debugged while SWEETS
itself is loaded and running. But larger

programs usually can be divided into seg-
ments, and loaded, ‘“assembled,” and de-
bugged that way. Also, since the SWEETS
hexadecimal editor and assembler run
separately, we can conserve memory space
by loading the assembler from tape when-
ever we want to use it, overlaying the
editor in memory and reloading it from
tape in a similar way when we need it again.

Although SWEETS is a useful tool in
its present form, you will undoubtedly want
to customize it for your own purposes. But
to customize SWEETS you've gat to under-
stand exactly how it works, so let's lake a
look at the overall design of SWEETS
before puzzling over its realization in 6502
assembly language.

The SWEETS Editor

The subroutine calling trec in figure 1
gives you a quick, ‘‘top-down’ overall look
at the SWEETS editor. CMD, the control
routine, maintains the LED display and
scans the keyboard for a command key
(using SCAN) and then transfers to onc of
the command processing routines: ADKEY,
DAKEY, GOKEY and STPKEY. These
routines perform the editing functions with
the aid of three critical subroutines: DET-
LEN, which determines the length of an
instruction in bytes based on its opcode;
MVDOWN, which moves a portion of
the edited program down in memory to
make room for an inserted instruction;

Figure 2: Three 16 bit
pointers are used to man-
age the edited program
area. BEGAD points to the
beginning of the program
area; ENDAD points to
the focation immediately
beyond the end of the
program area, and CURAD
points to the currently
displayed instruction.

1780
1782
1784
1786
1788

1789

178C
178E

1784
1786

BEGAD

CURAD

ENDAD

;SET CURAD = BEGAD

BEGIN

; CURAD =
ADVANC

ADRET

;ENDAD =
ADVEND

ADRET1

: ENDAD =
REDEND

REDRET

LDA
STA
LDA
STA
RTS

BEGAD
CURAD
BEGAD+1
CURAD+1

EDITED
PROGRAM
AREA

.

LLOW-ORDER BYTE
HIGH-ORDER BYTE
RETURN TO CALLER

CURAD + BYTES, COMPARE TO ENDAD

cLC
LDA
ADC
STA
LDA
ADC
STA
Cmp
BMI

LDA
CmP
RTS

CURAD
BYTES
CURAD
CURADH
#0
CURAD+1
ENDAD+1
ADRET
CURAD
ENDAD

ENDAD + BYTES

CLC
LDA

ENDAD — BYTES

SEC
LDA
SBC
STA
B8CS
DEC
RTs

ENDAD
BYTES
ENDAD
ADRET1
ENDAD+1

ENDAD
BYTES
ENDAD
REDRET
ENDAD+1

CLEAR CARRY
LOW-ORDER BYTE

HIGH-ORDER BYTE

COMPARE HI-ORDER

COMPARE LO-ORDER
RETURN TO CALLER

CLEAR CARRY
LOW-ORDER BYTE

CHECK CARRY
INCREMENT HI-ORDER
RETURN TO CALLER

SET CARRY
LOW-ORDER BYTE

CHECK CARRY
DECREMENT HI-ORDER
RETURN TO CALLER

Listing 2: Four utility subroutines used by SWEETS to manipulate three
16 bit pointers which point to the beginning of the program area, the /oca-
tion just beyond the end of the program area, and the currently displayed

instruction.

68 BYTE February 1978

and MOVEUP, which moves a portion of
the program up in memory lo eliminate the
empty space created when an instruction
is deleted.

The edited program arca is managed with
the aid of three 16 bit pointers: BEGAD,
which points to the beginning of the pro-
gram area; ENDAD, which points just
beyond the end of the program area; and
CURAD, which points to the currently
displayed instruction. This layoul is shown
in figure 2. Whenever a new instruction
becomes the ‘‘current” one, subroutine
DETLEN is called fo determine its length
in bytes, and this value is saved in the
variable BYTES.

The most basic functions we need in
SWEETS are some utility routines to
manipulate these 16 bit pointers on an 8
bit machine such as the 6502. The rou-
tines we need are shown in listing 2. The
most important one s ADVANC, which
advances the current instruction pointer
CURAD to the next instruction, and tests
to see if the end of the program area has
been reached. As we shall see later, STPKEY,
the command processing routine for the
+ key, is basically just a call to ADVANC.

Another basic function is the subroutine
DETLEN, which we've already mentioned.
It is shown in listing 3. The logic of Lhis
routine clearly depends on the system of
cncoding opcodes on the 6502: in most
cases (DETLEN tests for the exceptions),
the low order hexadecimal digit of the
opcode tells us the instruction length. For
example, all opcodes of the form x5 rep-
resent two byte instructions, while all
opcodes of the form xC represent three
byte instructions.

The heart of the SWEETS editor lies
in the subroutines MOVEUP and MVDOWN,
which are shown in listings 4a and 4b. The
main concern in these routines is that we
must be careful not to move a byte up or
down to a location which contains another
byte that will be moved later. For MOVE-
UP, we must move bytes starting at CURAD
and proceeding down to ENDAD, while
for MVDOWN, we must move bytes in the
opposite direction, as shown in figure 3.

So far we haven't faced the issue of how
to control our one and only peripheral,
the KIM-1 keyboard and LED display.

RTS
BYTE2,22,1,2221

=0
(CURAD)Y PICK UP OPCODE
#1 ASSUME LENGTH IS 1
b TEST FOR 'BRK’
DETERM
$40 TEST FOR 'RTI"
DETERM
* $60 TEST FOR 'RTS”
DETERM
% ASSUME LENGTH IS 3
$20 TEST FOR "JSR’
DETERM
#$1F STRIP TO 5 BITS
#8819 TEST FOR ABS, Y
DETERM
$OF STRIP TO 4 BITS

TO TABLE INDEX
LENTB,X LENGTH FROM TABLE
BYTES SAVE N ‘BYTES'

RETURN TO CALLER

.BYTE1,2,1,1,3333

Listing 3: DETLEN, a 0080 A0 00 DETLEN LDY
; ; 0082 B1 E4 LDA
SUPI’OU{IZ'?E Wh.”:h deter gogd AC 01 DETLN1 LDY
mines instruction length 0086 ©C3 00 cMP
based on op code. o088 FO 19 BEQ
0o8A C& 40 CmP
008C FO 15 BECQ
Q08E €9 80 CMP
0090 FO 11 BEQ
0092 A0 03 LDY
0094 €9 20 CMP
0096 FO 0B BEQ
0098 29 1F AND
00gA C2 18 CMP
Q09C FO 05 BEQ
00%E 29 OF AND
QDAD AA TAX
00A1 B4 A6 LDY
00A3 84 E8 DETERM STY
Q0A5 B0
00A6 02 02 02 LENTB
00AS 01 02 02
00AC 02 01
00AE 01 02 o1
0081 01 03 03
ooB4 03 03
1787 AB E4 MOVEUP LDA CURAD START MOVE FROM
17B8 85 E6 STA MOVAD BEGIN OF PROGRAM
17BB AbB ES LDA CURADH SEGMENT {CURAD)
17BD 856 E7 STA MOVADH
178F A4 E8 UPLQOOP LDY BYTES AMOUNT TO MOVE
17C1 B1 ES LDA {(MOVAD},Y FETCHBYTE
17C3 A0 00 LDY #0
17C5 N E6 STA {MOVAD),Y STOREBYTE
17C7 A5 EB LDA MOVAD CHECK FOR
17C9 A6 E7 LDX MOVAD+1 END OF MOVE
17CB C5 E2 cMP ENDAD LOW-ORDER BYTE
17CD DO 04 BNE INCMOV
17CF E4 E3 CPX ENDAD+ HIGH-ORDER BYTE
17D1 FO 09 BEQ MVURET
17D3 E6 E6 INCMOV INC MOVAD INCREMENT LO-CRDER
1705 OO E8 BNE UPLQOP
1707 E6 E7 INC MOVAD+1 {NCREMENT HI-ORDER
17D B8 CLV
17DA 50O E3 BVC UPLOOP BACK TC MOVE MORE
170C 60 MVURET RTS RETURN TO CALLER
00B6 A5 E2 MVDOWN LDA ENDAD START MOVE FROM
00B8 85 E& STA MOVAD END OF PROGRAM
00BA A5 E3 LDA ENDAD+1 SEGMENT {ENDAD)
Q0BC 85 E7 STA MOVAD+H1
DOBE AD 00 MVLOOP LDY #0
opco B1 E6 LDA {(MOVAD}Y FETCHBYTE
00C2 A4 E8 LDY BYTES AMOUNT TO MOVE
00c4 91 E6 STA {MOVAD},Y STOREBYTE
00C6 AB E6 LDA MOVAD CHECK FOR
00C8 A6 E7 LDX MOVAD+1 END CF MOVE
00CA C5 E4 CMP CURAD LOW-ORDER BYTE
00CC DG 04 BNE DECMOV
00CE E4 ES5 CPX CURAD+l HIGH-ORDER BYTE
00D8 FO 0D BEQ MVDRET
Q0D2 38 DECMOV SEC SET CARRY
0003 E9 01 SBC #1 DECREMENT LO-ORDER
00D5 85 E6 STA MOVAD
00D7 8A TXA
00D8 E9 00 SBC #0 DECREMENT HI-ORDER
00DA 85 E7 STA MOVAD+1
ooDC B8 CLV
00DD 50 DF BVC MVLOOP BACK TO MOVE MORE
00DF 60 MVDRET RTS RETURN TGO CALLER
Listings 4a and 46: Subroutines MOVEUP and MVDOWN, which form the
heart of the SWEETS editor. MOVEUP moves a given program segment
Starting at address CURAD and ending at address ENDAD upward in mem-
ory (toward decreasing addresses) by the amount stored in BYTES, MV-
DOWN performs the same operation downward by the amount stored in
BYTES,
70 BYTE February 1978

Fortunately, several routines arc provided
for this purpose in the KIM-1 monitor; the
source listings for these routines are available
on request from MOS Technology. In the
SWEETS assembly code listings, we have
underlined references to KIM-1 monitor
subroutines and variables for easy identi-
fication. We will use the KIM-1 subroutine
SCANDT, which lights up the LEDs momen-
tarily and checks to see if a key Is pressed,
and the subroutine GETKEY, which returns
a numeric value in the accumuiator telling
us which particular key has been pressed.

The six LED digits display the contents
of three successive bytes in memory, de-
noted POINTH, POINTL and INH in the
KIM-1 monitor. Unfortunately, the order
of these bytes is the opposite of the normal
order of the bytes in an instruction in
memory, so we must reverse the order as
the first step of our subroutine SCAN
{listing 5). The main additional complica-
tion in this routine is the need to 'debounce”
the keyboard’s bare contact switches in
softwarc. Since SWEETS performs its
operations so quickly relative to a mechani-
cal event, the key from the last operation
invariably is stift pressed when we come
back to the keyboard loaking for the next
command. Also shown in listing 5 is sub-
routine RDBYTE, which cails SCAN to read
two successive hexadecimal digits from the
keyboard.

With all of this machinery in place, the
Lop level logic is straightforward. The con-
trol routing, CMD routine, and the com-
mand processing routines are shown in
listings 6a, 6b and 6¢. The most complicated
of the processing routines is ADKEY. it
determines how many bytes to read for the
inscrted instruction, and displays cach byte
as it is entered; then it copies (in reverse

Figure 3: Correct pro-
cedures for moving pro-
grams in SWEETS. Figure
3a shows that the upper-
most focation must be
moved first when trans-
ferring a section of pro-
gram upward. Otherwise,
some locations couwld be
inadvertently destroyed.
Figure 3b shows the anal-
ogous situation for a down-
ward movement of code.

00 SCAN JSR

fa}

ENDAD

DETLEN

DETERMINE LENGTH
. COPY INSTRUCTICN TO DISPLAY AREA,
. REVERSING ORDER OF INSTRUC. BYTES

=0
LDX BYTES
SCOPY LDA (CURADIY INSTRUCTION BYTE
STA INH-1,X TO DISPLAY AREA
INY
DEX
BNE SCOPY
. LOGIC TO ‘DEBOUNCE' KEYBOARD CONTACT
01 SCAN1 JSR CAN3 WAIT UNTIL LAST
BNE SCAN1 KEY IS RELEASED
01 SCAN2 JSR SCAN2
BEQ SCANZ WAIT FOR NEW KEY
o JSR SCANZ
BEQ SCAN2 BUT REJECT JITTER
iF JSR GETKEY GET CODE FOR KEY
RTS RETURN TO CALLER
; SET UP PARMS AND CALL KIM-¥ DISPLAY SCAN
SCAN3 LDY BYTES
LDX =
LDA = $7F
17 STA PADD SET UP DATA DIRECT
1F JSR SCAND1 CALL KiM-1 ROUTINE
RTS RETURN TO CALLER
. RDBYTE READS TWO HEX DIGITS, RETURNS BYTE
;) VALUE IN ACCUMULATOR, IF A NON-HEX DIGIT
; KEY IS5 PRESSED, IT RETURNS THE KEY CODE
; INTHE ACCUMULATOR AND N FLAG = 0
01 RDBYTE JSA SCANY GET FIRST KEY
CMP =810 ISIT A HEX DIGIT?
BPL RDRET NO, RETURN
ASL A SHIFT OVER 4 BITS
ASL A
ASL A
ASL A
STA TEMP SAVE FIRST DIGIT
01 JER SCAN1 GET SECOND KEY
CMP =810 ISIT A HEX DIGIT?
BPL RDRET NO, RETURN
ORA TEMP
LDX = §FF SETNFLAG =1
RORET RTS RETURN TG CALLER

Listing 5: Subroutines SCAN and RDBYTE. SCAN displays the instruction
at location CURAD, scans the keyboard for a depressed key, and places the
code for that key in the accumulator. RDBYTE calls SCAN to read two
successive hexadecimal digits from the keyboard.

72

BYTE February 1978

order) the new instruction bytes from the
display to the program area, If you've under-
stood everything so far, you should have
little trouble following the code for these
top level functions. More important, once
you're familiar with the basic SWEETS
design, you can easily add customized top
level routines of your own.

The SWEETS Assembler

None of the editor routines just dis-
cussed were concerncd with the processing
of the hexadecimal “‘labels” described
earlier as one of the features of SWEETS.
This is because, as far as the editor is con-
cerned, a label is just another 3 byte instruc-
tion. Labels take on a special meaning cnly
when the SWEETS assembler is invoked.

The assembler operates in two passes over
the program area. On the first pass, the
assembler searches for “instructions’ with
an opcode of hexadecimal FF (the labels).
When one is found, the second byte of the
instruction {the fabel number} is moved
to the end of the program area, and the
current instruction address is also deposited
there {figure 4a). The label instruction is
then deleted using MOVEUP to take up the
stack space. This process continues until
all of the labels have been removed and
stored in the “symbo! table” at the end of
the program area (figure 4b). Since the
labels are (by design) three bytes long, we
gain the space for the symbol table when

0148 20 2F 01

O14F 20 2F o1

0168 20 80 00
0168 20 89 17

0198 20 B? 17
019E 20 AR 17

o144 200 2F 01

arAg8 20 84 00

(a)

GOKEY

JSA EGIN
. LOOP SEARCHING FOR 2-BYTE MAT!
0

GOLOCP

B
GONEXT JSR
J!

CMD
GCMD

ERROR

ERR1

LDY
LDA
cmpP
BNE
INY

ROBYTE

B

{CURADLY
POINTH
GONEXT

(CURAD),Y
POINTL
CMD
DETLEN
ADVANC
ERROR
GOLOOP

GET FIRST BYTE

OF SEARCH PATTERN
SAVE IN DISPLAY
GET SECOND BYTE
QF SEARCH PATTERN
SAVE IN DISPLAY
CURAD := BEGAD
CH

COMPARE 18T BYTE
AGAINST PATTERN

COMPARE 2ND BYTE
AGAINST PATTERN
MATCH, NEXT CMD
DETERMINE LENGTH
ADVANCE TQ NEXT
MATCH NOT FOUND?
CONTINUE SEARCH

WAIT FOR A KEY
TEST FOR VARIOUS
COMMAND KEY CODES

OPERATOR ERROR.
SET UP HEX 'EE’
IN DISPLAY AREA

CALL KIM-1 ROUTINE
UNTIL KEY RELEASED

; STPKEY ADVANCES TO THE NEXT INSTRUCTION

STPKEY

JSR
BPL

BMi

ADVANC
ERROR
cMD

ADVANCE TO NEXT
CHECK FOR ADVANCING
PAST END OF PROGRAM

: DAKEY DELETES THE CURRENT INSTRUCTION

DAKEY

fc)

; READ OPCO
ADKEY

JSR
JSR
CcLv
8vC

DE, DETERMINE INSTR
JSA ROBYTE

BPL
STA

MOVEUP
REDEND

cMD

GCMD
POINTH

ISR DETLN1
: READ REST OF INSTRUCTION INTO

COUNT
COUNT
ADSET
RDBYTE
GCMD
POINTL
COUNT
ADSET
RDBYTE
GCMD

STA INH
: MOVE CODE DOWN T3 MAKE ROOM

ADSET

JSR

MVDOWN

JSR ADVEND
. INSERT INSTRUCTION INTO NEW SP,
LDY =0

INSERT

LDX
LDA
sTA
DEX
INY

cey

BNE
BEQ

-2
INH X

{CURAD)Y

BYTES
INSERT
CMD

MOVE UP REST OF PROG
ADJUST ENDAD UPWARDS

UCTION LENGTH

ACCEPT OPCODE UNLESS
NON-HEX KEY PRESSED
SAVE IN DISPLAY
DETERMINE LENGTH
DISPLAY

SAVE LENGTH

1-BYTE INSTRUCTION
READ SECOND BYTE
NON-HEX KEY PRESSED

2-BYTE INSTRUCTION
READ THIRD BYTE
NON-HEX KEY PRESSED

MOVE CODE DOWNWARD
ADJUST ENDAD DOWN
ACE

FETCH FROM DISPLAY
STORE INTO PROGRAM

UNTIL ENTIRE INSTRUCTION
IS INSERTED

Listing 6: Processing routines used in the SWEETS editor. Listing 6a shows
GOKEY, which searches the program for a given 2 byte pattern and makes
this the current instruction. It can also search for labels. The CMD (for
“command") routine, listing 6b, waits for a command key to be pressed
and transfers to the processing routine for that key. If an invalid key is
pressed, “EEEEEE" is displayed. ADKEY (listing 6¢) accepts a new instruc-
tion, inserts it, and shifts the code following it downward to make room.

74 BYTE February 1978

we delete the labels from the instruction
sequence.

On its second pass through the program
area, the assembler searches for subroutine
call, jump and relative branch instructions.
When one of these instructions is found, its
second byte, normally a label number, is
used to search for a matching label in the
symbol table. Assuming that the label is
found in the table, the corresponding actual
address is inserted into the second and third
instruction bytes for jump or subroutine
call instructions, or a branch displacement is
calculated and inserted for relative branch
instructions (figure 4¢), Since at times we
may wish to enter instructions with an
actual address or displacement rather than a
label number, no substitution is made if the
label is not found in the symbol table.

The assembly source code for the SWEETS
assembler is presented in listings 7a, 7b and
7c. The subroutine FINDLB is used by pass
2 of the assembler to look up labels in the
symbol table. Note, too, that the assembler
uses some of the editor’s subroutines:
DETLEN, ADVANC, REDEND, and MOVE-
UP. The addresses shown in the assembly
code listing are designed to allow the as-
sembler to overlay the main part of the
editor without destroying those editor
subroutines which the assembler must usc.

Some Operating Hints

Except for subroutine call addresses,
each SWEETS routine is relocatable: it will
exccute properly no matter where it is loaded
in memory. The assembled code shown here
is designed to provide the largest possible
contiguous area (512 bytes at hexadecimal
addresses 200 to 3FF) for editing and
assembling programs. This has the disad-
vantage of breaking up SWEETS into four
pieces: one in page zero, two in page one,
and one starting at address 1780 (which
makes it a bit cumbersome to load piece by
piece from audio cassette). The SWEETS
routines could be consolidated, however,
to provide two or mare noncontiguous areas
for program editing.

In general, when starting up SWEETS,
or after reloading a “symbolic hexadecimal’
program from tape, you musL slore the
proper values in BEGAD, CURAD and
ENDAD. Then, of course, you merely key
in the CMD routine starting address and
press GO. The assembler, which can be
started up in the same way, automatically
returns control to the KIM-1 monitor;
the editor can be interrupted at any point by
pressing RS (reset). Avoid using the ST

Figure 4: Mechanics of pass
1 of the SWEETS assembler
are shown in figure 4a. The
assembler first searches for
“instructions” having an op
code of hexadecimal FF
(the labels). When one is
found, the second byte of
the instruction, which is
the label number, is moved
to the end of the program
area and the current instruc-
tion address is afso de-
posited there. The label
instruction is then deleted
using subroutine MOVEUP.
Figure 4b is a continuation
of the process shown in
figure 4a, showing that
alf of the labels have been
arranged in a symbol table
at the end of the program
area. A typical resuit of
pass 2 of the SWEETS as-
asembler is shown in figure
4c. Here a jump instruction
has been modified so that
the actual address of the
destination appears in bytes
2 and 3 of the instruction,
and the actual branch
displacement has been
cafculated and inserted for
a relative branch instruc-
tion. In general, this pass
takes care of all jump,
subroutine call, and re-
fative branch instructions.

76 BYTL Febrvary 1978

{a)

0206

0230

0238

0240

2

02086

0230

0238

0240

fc)

0208

0230

o238

0240

e | o | oo
awe | o1 [oo
fe | oz | oo
e | o [oo
a0 02 02
06 o2 o1
ame | o5 | o2
BEQ | o8

BEGAD 00EO, OCE?
ENDAD 00E2, 00E3
CURAD 00E4, 00ES
CMD 0172
ASSEM 011¢

Table 2: Locations of
the varfables BEGAD,
ENDAD, CURAD, CMD
and ASSEM. BEGAD,
CURAD and ENDAD
must be set up by the
user to point to the
area of memory which
will hold the edited pro-
gram. CMD is the entry
point to the SWEETS
editor, and ASSEM is
the entry point to the
SWEETS ussembler.

{stop) key repeatedly, since this may cause
the stack to grow in length to the point
where it could destroy one of the SWEETS
routines. The special address information
you need is summarized in table 2.

Once you have SWEETS up and running,
you can use il to develop improvements to
SWEETS itself. In order to do this, you will
have to edit code in the program area which
is designed to run in another areaof memory.
One way to facilitate this is Lo add a 16 bit
offset to jump and subroutine call addresses
as they are resolved in pass 2 of the assem-
bler. Another addition to SWEETS would be
a small routine to save ENDAD at the end
of the program arca, set up the starting and
cending addresses for the KIM-T audio
cassette dump routine, and then transfer
control directly to this read only memory
routine to carry out the tape dump
operation.

One of the peculiarities of SWEETS is
that it tends to make itself obsalete. This is
because of our insatiable desire to do more
with our personal computers. As soon as
you find that writing a 512 byte program
isn't so tedious anymore, you'll immedi-
alely want to write a 1024 byte program
{at least), and then you’ll be stretching the
capabilities of SWEETS and the KIM-1,
In a sense, SWEETS, as its name suggests,
s an enticement: It helps develop Lhe
market for assemblers. But why not give
it a try? It's a fol sweeler than absolute
hex.

0118

EC
01

EQ

FINDLE

FDLQOP

FDRET
FDNEXT

00

17
17

17

01

1]

1c

ASSEM

ASLOOP

ASNEXT

RSLOOP

JMPJISR

CHKBR

RSNEXT

(a)

(CURAD),Y
SFF
LABELS

=

FDRET

(TABLE),Y
FDNEXT
(TABLELY

(TABLE)LY
#1

FDLOOP

(6)

fc)

PICK UP LABEL
SYMBOL TABLE INDEX

NO LABELS IN TABLE
DOES LABEL MATCH?

WE HAVE A MATCH
GET HI-ORDER ADDR
INTO X REGISTER

GET LO-ORDER ADDR
INTO A REG., Y=1
RETURN TO CALLER

ADVANCE TO NEXT
SYMBOL TABLE ENTRY

UNLESS END OF TBL

BEGIN CURAD := BEGAD
ENDAD ENDAD + 615 JUST

#6 BEYOND UPPERMOST
TABLE LABEL IN TABLE

$FF

LABELS BEGINNING TBL INDEX
ENDAD+1 ADJUST TABLE DOWN BY
TABLE+ 256 FOR INDEX BASE
DETLEN DETERMINE LENGTH

PICK UP OPCODE

#0
(CURAD),Y
#$FF 1SIT A LABEL?

ASNEXT
(CURAD),Y YES, GET LABEL NO
LABELS GET TABLE INDEX
(TABLELY DEPOSIT LABEL IN TBL
CURADH HI-ORDER ADDRESS
(TABLE}Y DEPOSIT IN TABLE
CURAD LO-ORDER ADDRESS
(TABLE),Y DEPOSIT IN TABLE
LABELS SAVE NEW TBL INDEX
MOVEUP MOVE UP PROGRAM
REDEND ADJUST ENDAD UPWARD
ASLOOP BACK FOR NEW LABEL
ADVANC TO NEXT INSTRUCTION
ASLOOP UNTIL ENDAD REACHED
BEGIN CURAD := BEGAD
DETLEN DETERMINE LENGTH
=0
(CURAD),Y PICK UP OPCODE
= $20 JSR INSTRUCTION?
JMPJSR
= $4C JMP INSTRUCTION?
CHKBR

ADVANCE TO LABEL
FINDLB LOOKUP IN TABLE
RSNEXT LABEL NOT FOUND
(CURAD)Y LO-ORDER ADDRESS
(CURAD).Y HI-ORDER ADDRESS
RSNEXT TO NEXT INSTRUC
= $1F
= $10 BRANCH INSTRUC?
RSNEXT

ADVANCE TO LABEL
FINDLB LOOKUP iN TABLE
RSNEXT LABEL NOT FOUND
CURAD DEST. — SOURCE
#2 DEST. —SOURCE -2
{CURAD)Y = DISPLACEMENT
ADVANC TO NEXT INSTRUC
RASLOOP BACK TO EXAMINE IT
START TO KiM-1 MONITOR =

Listing 7: The assembly
source code for SWEETS.
Subroutine FINDLB (list-
ing 7a) is used during
pass 2 of the assembler
to look up labels in the
symbol table. FINDLB
looks wup the [label at
CURAD, Y and returns
with Y=I, X=the high
order part of the address,
A = the lower part of the
address, and Z=0. 7 is
set equal to 1 if the labe!
is not found. Listing 7b
shows pass 1 of the
assembler during which
fabels are collected and
stored with their addresses
at the end of the program.
Listing 7c is pass 2. Dur-
ing this pass, the operands
of the branch, jump and
JSR instructions are con-
verted from fabel refer-
ences to displacements or
actual addresses. Note that
jump indirect operands are
not converted.

BYTE February 1978 77

