
S O F T W A R E R E V I E W ---

ACTxx Cross Assemblers

From SORCIM, 2310 Lundy Avenue,
San Jose, CA 95131

Requires CP/M 1.4 or better
with 32K of RAM

S175 each
Reviewed by Steve Newberry

For some time now I have urged that
microprocessor manufacturers should
make 8080-hosted cross-assemblers for
their processors available if they are really
interested in selling chips (instead of de
velopment systems). For every develop
ment system capable of producing code
for a given processor, XYZ, there are at
least ten 8080/Z80-based systems run
ning on CP/M, and I leave it to you to
guess at the number of 8080/Z80 prod
ucts that have been developed on these
systems.

Alas, to no avail. Cross-assemblers
that have been offered in the past have
generally been written in ANSI Fortran
and only been accessible on the maxi
computers — at nontrivial hourly rates.
The motives for such a policy may have
seemed plausible at the time, but the
practical consequences have proven to be
less than ideal. In order to do develop
ment work for the XYZ processor one
had to have either access to an XYZ de
velopment system running the resident
assembler or to a mainframe (usually a
370) running the cross-assembler. Either
approach imposed an initial overhead (for
rental fees alone!) o f such magnitude that
hundreds (thousands?) of projects which
might have been developed for the XYZ
were never undertaken. One may certain
ly speculate about the consequent loss of
sales (and jobs!) which might have
resulted.

Fortunately, the small software houses
are beginning to address themselves to
this need, and it is now possible to pur
chase 8080-hosted cross-assemblers for
all the major micros except the Z8000
and the MC68000.

Sorcim, the producer of Pascal/M
and Supercalc, has for nearly two years
been distributing a family of cross
assemblers which run on the 8080 under
CP/M and generate code for 8080, Z80,
6502, 6800, 8086/8088, and 6809. The
family is called ACT (“Assembly Coded
Translator”), and each assembler package
is called ACTxx (where “xx” is one of:
80, 65, 68, 86, or 69). The current release,
Version 3.5, consists of a CP/M-compatible,
8 -inch diskette and a 70-plus page User’s
Reference Manual. The ACTxx diskette

contains seven files (eight in the case of
ACT80):

ACTxx.COM — assembler
DOCOPxx.asm — source file contain

ing all ACTxx mnemonics
IPARAMS.acd — file of definitions

common to all assemblers
ACD/EG.asm — example dem onstrat

ing use of LINK pseudo-op
UTIL.acd — utility subroutines (ACT-

80 only)
DATTIM.com — sets Date and Time

for ACTxx listing header
INSTALLA.sub — copies ACT sys

tem to system disk under CP/M
INSTALLC.cmd — copies ACT sys

tem to system disk under CDOS
The manual is punched for a three-hole
binder. There is no index, but the Table
of Contents is intelligently done, and all
the information is conveniently accessi
ble. The command line to CP/M invoking
ACTxx follows the same protocol as that
of Pascal/M, for example:

A>ACT80 < filenam e> < c r >
assembles < filenam e>, puts the (abso
lute) hex file on the selected disk under
the name < filename>.hex, and doesn’t
give you a listing unless you ask for it.

Assembly is extremely rapid. I used
RELOC.ASM (from the CPMUG library)
as a benchmark and timed ACT80 against
the CP/M assembler ASM. (ASM is really
fast.) RELOC is a 10K file which ASM
assembled in 16 seconds as compared to
18 seconds for ACT80. (The tests were
run on a 4 MHz Z80 with a double-density
8-inch floppy disk.) That means that the
very substantially increased power of
ACT80 over ASM (macros, many pseudos)
is purchased at about a 10% increase in
assembly time. (MAC also ran the same
job in 18 seconds.)

Although the other cross-assemblers
were not compared for speed, they should
be comparable because of the way in
which they are implemented. The whole
macro expansion portion is constant from
one assembler to another; the only thing
that changes is the table containing the
pseudo instructions, the target machine
mnemonics, and the corresponding ma
chine codes.

8080-Resident and Z80
Cross-Assembler

ACT80 will assemble both for the
8080/8085 and for the Z80. Originally,

the assembler had been produced for
Sorcim in-house use in writing Pascal/M.
Since the programmers were already
familiar with the mnemonics for CDC
mainframes, the Sorcim mnemonics ini
tially had a distinctively CDC-like flavor.
When it was decided to market the ACT
family o f cross-assemblers, the mnemonics
were extended to include the entire Intel
set (including the ’85 RIM and SIM in
struction). The Zilog set is still only
partially represented, although there are
“ Zilog-like” mnemonics which complete
the Z80 instruction set. However, the
Sorcim mnemonics regard movement be
tween registers as moves (MOV), but
memory-register moves as loads (LD),
register-memory moves as stores (STO),
and constant-register moves as load-
constants (LK).

In other words, Z80 programs writ
ten on ACT80 can be assembled with
only a little massaging (a few macros in
ED or WM), by translators which recog
nize the standard Zilog set of mnemonics,
but transforming source programs in the
Zilog notation to the Sorcim set is rather
tedious.

6502 Cross-Assembler
Turning to the other cross-assemblers,

we find that ACT65 recognizes the MOS
Technology mnemonics with only three
exceptions, and these are trivial to trans
late in either direction:
(1) MOS Technology encloses address ex

pressions in round parentheses where
Sorcim uses square brackets.

(2) Some 6502 assemblers use a single
prefixed quote-m ark (apostrophe) to
signal a one-character string. Sorcim
requires that all strings be enclosed
between balanced quote-pairs.

(3) In the Sorcim assemblers, the symbols
“ < ” and “ > ” are only used as bi
nary operators, and the correspond
ing unary operators are “ low ” and
“ high.”

6800 Cross-Assembler
The ACT68 mnemonics are a com

patible superset o f the Motorola 6800 set,
and only minor differences exist in ex
pression evaluation and pseudos:
(1) ACT68 observes normal operator

precedence.
(2) ACT68 requires that quote marks

demarcating character strings be

108
478

Dr. Dobb’s Journal, Number 82, August 1983

paired (as in the ACT65 case noted
above).

(3) ACT68 does not support
NAM (use TITLE instead)
MON
OPT (use LIST instead)

(4) ACT68 requires that comments be
preceded by semicolon (or asterisk if
in column one).

8086/8088 Cross-Assembler
To appreciate the difference between

the Intel and the Sorcim 8086/8088 as
sembler mnemonic sets, it is helpful to
know something about the structure of
the Intel assembler MCS-86.

In designing a mnemonic instruction
set, one usually attem pts to strike a bal
ance between two desirable but mutually
incompatible ends: (1) a small simple fast
assembler program, and (2) a small simple
easily learned set o f mnemonic operator
names.

When the instruction set is small to
begin with, the problem is fairly tractable,
but as the instruction set grows, it be
comes necessary to resort to the device of
“ operator overloading” to keep the dis
tinct mnemonics down to a reasonable
number. This means that the assembler
must be capable of recognizing that an
operator can take several different cate
gories of operand and be able to distin
guish these categories correctly.

For example, the Zilog mnemonics
for the Z80 compress all the LOAD,
LOADCONSTANT, STORE, and MOVE
operations into the single mnemonic
“ LD,” and give to the assembler the re
sponsibility o f distinguishing between
registers and memory and constants, as
well as operand lengths (byte versus
word). This makes for a larger, more
complex (expensive), slower assembler,
but also makes it much easier for the pro
grammer to learn the machine.

The designers of the Intel MCS-86
assembler saw fit to “ make a virtue of
necessity” by making the MCS-86 assem
bly language a strongly typed language.
Thus, in MCS-86 (as in Pascal and Ada)
the assembler looks up the number of
bytes assigned to a variable every time
that variable is accessed in the source
code, and checks that only arguments of
the same length may be acted upon by a
single operation. (There is an override,
but it is not relevant here.) Aside from
enforcing an additional level of assembly
time error checking, this also permits the
large instruction set o f the 8086 to be
compressed into a much smaller, highly
overloaded set of mnemonics.

Sorcim adheres to the Intel mne
monics almost as nearly as can be accom
plished w ithout actually going over to
the strongly typed restrictions of MCS-
86. This is largely accomplished by dis
tinguishing word from byte operations

through a “ B suffix” convention. In
effect, the programmer learns (alm ost)
the same set of mnemonics, but is required
to inform the assembler when byte
operands are forthcoming by suffixing
the letter “ B” to the operator mnemonic.
Thus, an ADD instruction is applied to
byte (rather than word) operands by
writing ADDB. The other differences are
(1) ACT86, like its siblings, also differen
tiates between register-register MOVes,
register-memory STOres, and memory-
register LoaDs; and (2) the “ destination,
source” ordering of operands is reversed
in the case of the STOre instructions.

Here again, the practical consequences
are that it is easy to transport ACT86
source code to MCS-86 (by defining
macros to delete all the “ B suffixes,”
replace the LD and STO, etc.) but rather
tedious to port in the other direction.

6809 Cross-Assembler
The remarks concerning ACT68 apply

here as well. There are two additional
pseudos: SETDP (sets the assembler’s
pseudo Direct Page Register), and FAIL
(synonym for ERR). ACT69 also does
not support the Motorola REG pseudo.
Otherwise the Sorcim mnemonics are a
compatible superset of the Motorola
standard.

Features Common to
All Members of the Family

Command line options allow you to:
specify the disk drive to which the hexfile
will be sent (or you may send no hexfile
at all), specify the destination of the list-
file (lineprinter, console, diskdrive, or no
listfile), set page size (defaults to PS=58),
set line length (defaults to SL=140),
specify either of two flavors of cross
reference map (default lists globals only),
specify library files to be linked in with
the program, and specify the origin (ORG)
at which the program is to be loaded. The
manual is very clear about how to specify
these options.

The pseudos include the standard set
you’d expect to find: DB, DW, DS, ORG,
EQU, SET, PAGE (or EJECT), TITLE,
SPACE, the conditional assembly controls
IF, ELSE, ENDIF, a toggle (LIST) to
control listings (invaluable in debugging
macros), END, LINK (approximately
equivalent to SINCLUDE or MACLIB),
MACRO/ENDMACRO, and several built-
in macros. Macros may take up to nine
parameters and may be tested.

In addition to these are several
pseudos which call for special comment.
LOC permits you to assemble a chunk of
code to LOAD at a different address than
that at which it is to execute, load it at
the ORG address, then move it to the
LOC address and execute. This sort of
thing arises when programs or pieces of
programs in ROM need to be moved to
RAM for execution, or in writing transient

device drivers which are to be relocated
to lie just beneath the operating system.
You may not use LOC very often, but
when you do need it you’ll bless the de
signer o f ACT for having provided it.

Another nice touch is VFD. This
permits you to write your own assembler
(for some other processor) in an intelli
gent manner. Of course, the macro facil
ity would allow you to grind out an
assembler by writing a separate macro for
every possible opcode — but this would
entail writing out hundreds (or even thou
sands!) of separate macros. VFD permits
you to specify arbitrary bit-fields within
a byte. In this way you can construct
your assembler the way it should be done:
as a fixed pattern of bits for each generic
opcode, with variations in particular b it
fields specifying the source/destination
operands. (To find a feature like this in a
$175.00 assembler is extraordinary!)

The file IPARAMS.acd is a library
file o f symbol definitions: EQU’s for the
standard ASCII control characters and
the CP/M system-call functions and
magic entry-points. I found it convenient
to edit in an “ END” statem ent and adopt
the convention that all programs are ter
minated With a “ LINK IPARAMS.ACD”
statement. The file UTIL.acd (found only
in the ACT80 package) contains several
flavors of string move/compare, block-fill,
and other commonly used functions.

Another thing I like about these as
semblers is their ability to treat all letters
as though they were upper case w ithout
forcing lower-case to upper-case con
version on the listing. I t’s much easier to
read a listing when it looks like the origi
nal source! The ACT assemblers also allow
you to use and “ # ” as separa
tion (“ break”) characters. ACT treats
the underline as a “ ghost” character
(it is not significant). Thus, you can write
variable names and labels as things like
“ i te r a t io n _ # ” or “ error.exit” . All this
makes it convenient to write very read
able source and to generate very readable
listings. And that means tim e and money
saved in development and maintenance.

Sorcim also provides the same packages
for a variety o f other chips besides the
8080. Contact them for details. —Ed.

Dr. Dobb’s Journal, Number 82, August 1983
479

