Troubleshooters’ Guide

You’re hesitant about tackiing repair and interfacing problems?
if so, this will point you in the proper direction and get you started.

Ralph Tenny
P O Box 545
Richardson TX 75080

One of the fascinating
phenomena about com-

puters is that they can do
things—almost anything—
automatically, provided the
machinery to accomplish a
given task is available and can
be run and controlled by elec-
trical signals. All such
computer-controlled machines
are called peripherals, no mat-
ter what their function is. Most
of us routinely use such
peripherals as TTYs or TVTs,
audio cassettes and printers.
Depending on whether you
bought a system or built kits,
you spent various amounts of
time getting those peripherals
to work with your computer.
You were probably furnished
detailed instructions for
operating the TTY or TVT and
cassette with your computer,
and the necessary electrical
connections ({interface cir-
cuitry) were already designed
and ready to use. Finally, it is
almost certain that the soft-
ware for your computer already
had provisions to operate the
peripherals necessary to make
the computer functional. These
things are necessary for any
computer system—interface,
software and “how to"”—but

40

the information may not always
be available when a peripheral
made by cne manufactureristo
be used with a computer from
another manufacturer. In the
case of surplus eguipment
such as a Baudot TTY, there
may be no instructions or soft-
ware available.

The Big Picture

Regardless of the cir-
cumstances, let's assume you
are having trouble with a com-
puter peripheral (otherwise why
are you reading this?). The
troubleshooting approach
needed will vary with the type
of computer and hardware
that's involved.

The computers avaiiable to
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most hobbyists will be one of
two types—those with
isolated, or aceumutator, in-
putioutput (IIO) such as the
8080 and 2650, or those with
memary-mapped /O such as
the 6800 and 6502. Accumula-
tor I/O machines have special
input and output instructions,
while the memory-mapped
computers use standard
memory instructions such as
LOAD and STORE to service
beth memory and peripherals.
In order for this to happen, such
peripherals are assigned
memory addresses; this will
limit the total amount of
memory available. However,
since most microcomputers
will address either 32K or 64K
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Fig. 1. Baudot code timing.
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Fig. 2. Chart of some Baudot codes.

words of memory, it would take
a lot of peripherals to make a
dent in the available memory
space!

The best troubleshaooting
method also depends upon
which type of peripheral is in-
volved—whether it is a device
to input or output data or if it
controis something. In general,
controllers are a bit easier to
troubleshoot because their in-
put signals (combinations of
bits on the input lines) are less
numerous than those for data-
handling devices. Also, it is
likely that the interface connec-
tions will be simpler for the con-
troller than for the data
peripheral.

The final consideration will
be software; detailed instruc-
tions must be available to
enable the computer to pro-
duce the proper signals to drive
any peripheral. Most manufac-
turers of hobbyist equipment
furnish software for peripher-
als they produce. If surplus
equipment is involved, there
may be no software available
unless someone has also made
a kit available to interface the
machine to a microcomputer.
Note that If appropriate soft-
ware is available, it will depend
strictly upon a properly func-
tioning interface of a particular
design.

Successful troubleshooting
of computer peripherals re-
quires careful study of the
system-~from microcomputer
architecture through the
mechanical and electrical
details of the peripheral and in-
terface. You are probably
familiar with your computer, 5o
let's begin with the peripheral,
giving it a thorough inspection
to be sure it is totally func-
tional. Operate all controls, and
supply electrical signals if ap-
propriate. Proceed to the inter-
face circuitry only if these tests
are successful.

Be sure the interface is
capable of reliably and safely
producing all the signals need-
ed by the peripheral. Relay con-
tacts or semiconductor switch-
es {power transistors, SCRs or
Triacs) must be able to handie
the voltages and currents in-
volved. A stuck relay or defec-



tive Triac won't hack it—all
systems must be GO! Power
supplies must be able to handie
the load. If the computer power
supply is used, be sure there.is
reserve capacity and that ths
computer power bus isn't re-
ceiving power glitches caused
by the peripheral.

Now, consider the software,
Let's take the case where the
software is for a different com-
puter system. Break it down in-
to modules so that only one
peripharal operation at a time
is addressed. Determine what
changes must be made to per-
form the same function on your
computer, and make changes
as necessary. Finally, combine
the modified modules to check
out the entire systern—com-
puter port, Interface and pe-
ripheral—in a simple loop or
repetitive  fashion that ad-
dresses all desired peripheral
functions. At this point, you
should have mastered the
system well enough so you can
create application software to
make the peripheral do useful
tasks as a part of the whole
system.

Serial Data Testing

Now, let's examine an actual
problem. My KIM-1 has soft-
ware (monftor ROM) and an in-
terface to drive an ASR-33 Tele-
type directly; but how about
operating my Model 15 Baudot
TTY? All | have is documenta-
tion for KIM and a service
manual for the Model 15—no
software and no interface cir-
cuitry. | want the Model 15 to
serve only as a printer, so there
is no need to interface the
keyboard; KIM would drive the
printer mechanism using
whatever data | wish to feed it.
The keyboard was useful in
checking out the machine ini-
tially, but the interfaca will be
much simpler if the keyboard is
not involved.

The first step in planning this
project is to understand how
the machine works. The print
mechanism operates when cur-
rent through a selector magnet
is interrupted in a certain code
pattern. Fig. 1 is a timing
diagram of the Baudot code for-
mat, and Fig. 2 is a chart of
Baudot codes for the hexadec-

imal and TTY control charac-
ters needed. Note that a
Baudot machine has no SHIFT
Key, but that it has LETters and
FiGures keys. (The five-level
code will select only 32 keys,
but by arranging for numbers,
symbols and punctuation
marks to be uppercase—FIG-
ures mode— the print set is ex-
panded to 58 codes.)

Look agaln at Fig.1 and note
that the Baudot code consists
of a start bit, five code bits and
an extra-length stop bit. That
stop bit could be troublesome
to make, so let's modity the
code format as shown in Fig.
3—that is, substitute two
regular-length stop bits for the
longer cne. Previously (Fig. 1),
the character time was 163 ms,
now it is 176 ms—only 8 per-
cent slower. The resulting
simplification of software and
hardware makes the trade-off
entirely acceptable.

Now, how can KIM drive the
Model 157 KIM has a 20 mA cur-
rentloop derived from a5V sup-
ply, which is entirely inade-
quate to switch the 80 mA cur-
rent derived from the high-
voltage supply of the Model 15
(Fig. 4). Of course, it is possible
to add some external circuitry
to adapt KIM to Model 15, but
KIM’s software is still a prob-
tem.. KIM’s lookup table is for
hexadecimal to ASCI, and the
self-adjusting timer, which pro-
duces the proper output bit
rate, requires the keyboard for
setup. It is easier to build a sim-
ple interface for the Model 15
and drive it from the standard
KIM output lines.

Fig. 5 is a simple CMOS cir-
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Fig. 5. Parallei-to-serial driver fer Model 15 TTY (with test
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Fig. 6. Completed Mode/l 15 interface.

cuit that accepts parallel data
and will shift it out to the Model
15 through two transistors. Q1
matches the CMOS output to
the higher drive requirements
of 02, which is a high-voltage
unit to switch the current lcop.
1C1 is a shifi register, and 1IC2A
is a free-running oscillator with
a period of 22 ms. IC2B is a
pulse generator that causes
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Fig. 3. Modified Baudot code timing.

FRINTER
MAGNE T

"o}

| SUUUPPRNND SN W,k

SWITCH
{KEYBOGARD CH
EXTERNAL)

Fig. 4. Common Mode! 15 current-loog supply.

the shift register to ioad data
from the five input switches,

A cycle of operation works
this way: push-button switch
SwhA trips IC2B, and data is
loaded into 1C1, including a 1
on pins 1 and 7 and 0 an pin 15.
As soon as the ioad pulse ter-
minates, data is ready to shift
out as ¢locked by IC1A. When
the 0 loaded by pin 15 reaches
the output, Qt and Q2 turn off,
preducing a start pulse for the
Model 15. As the remainder of
the data is shifted out, 1s are
shifted in via pin 11, the serlal
input pin. Thus, after loaded
data is shifted out, Q1 and Q2
remain turned on, waiting for
the next data to be loaded.

The proper test method for
this interface is to set the
switches to the Baudot codes
for R{01010) and Y (1G101) alter-
nately. Carefully adjust the fre-
quency of IC2A until proper op-
eration is obtained, then try
other characters. The circuit in
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Photo 1. Instruction (LDA 8000) causes Address Bit A15 to go high
_as the instruction is executed; this defines a unique strobe to
furnish sync for an oscilloscope.

Fig. 5 has now become a tested
interface for the Model 15.

Although it was designed
with KIM in mind, it can easily
be adapted to any computer.
Fig. 6 shows the KIM output
port attached to the interface;
note that PAO (least significant
bit of the port) replaces IC2B.
Data can be written out to the
port on pins PA1 through PAS,
and the PAQ can be toggled
({turned on and off) to load the
data.

Software to operate the inter-
face can take many forms,
depending upon how the
printer needs to work with a
main program. For checkout, a
short test routine is best. Fig. 7
is a flowchart and Fig. 8 is the
KIM program. Note how the
software is intimately related
to the hardware.

Begin with the pin assign-
ments of the output port: PAOIis
the least significant bit (LSB),
so it can be toggled with INCre-

INITIALIZE
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—
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COUNTER

}___
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NTERFACE

I

INCREMENT
COUNTER

ExIT

Fig. 7. Flowchart for test program.
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Label Op. Arg. Comments
TEST LDA #$3F Select mask for port.
STA PADD Set mask in port control register.
LDX #800 Zero index register as counter.
PRINT LDA BUFFER, X Get first data byte.
STA PAD Set data in port.
STROBE INC PAD Toggle PAQ to load data
DEC PAD into interface.
INX Set index for next data byte.
CPX END Test for last byte.
BEQ OUT Done? If so, exit.
WAIT LDA #SF0 Set time in
STA TIMER programmable timer.
TIME BIT TIMER Timer done?
BPL TIME No, go back and check again.
BMI PRINT Yes, print again.
ouT BRK Stop computer after printing last byte.
Fig. 8. Short test program writes data from location BUFFER to
interface.

ment and DECrement instruc-
tions. The data buffer has the
organization shown in Fig. 9,
where X stands for “‘don’t
care,” or unused, bits. Bit 0
(LSB) is always 0, so the
load/shift pin of IC1 is always
low for shifting until new data
is to be loaded.

Let's follow through the pro-
gram after a brief comment on
parts of the setup. At label
TEST, 3F is loaded to the port.
Ones loaded into the Data
Direction register (PADD) turn
the corresponding port lines in-
to outputs, while Os create in-
puts. So 3F makes bits PAO
through PA5 outputs as re-
quired for the interface. Output
data is stored at a group of ad-
dresses named BUFFER, and
the location named END con-
tains data specifying how
many words of data BUFFER
contains.

The location named TIMER is
aprogrammable timer that sets
bit PB7 low when time is up. So,
when the progam is entered at
TEST, the port is set up and
register X is zeroed to make a
counter. Data is loaded at
PRINT, stored, and then IC1 is
loaded by STROBE. Register X
is incremented and tested; the
routine at WAIT marks time un-
til IC1 completes a print cycle.

If the last byte has been
printed, the BRK instruction at
OUT stops the computer. By
now, it is even more apparent
that software and hardware
must work in exact harmony if
any computer-controlled task
is to be successfully com-
pleted!

The example above may
seem contrived and simple, but
it illustrates the most impor-
tant points about debugging
peripherals and their interface
circuitry: Never try to debug
malfunctioning equipment with
an applications program.
Always break up the task into
as many modules as possible.
It's OK to fire up a peripheral
with furnished software if and
only if you are dealing with a
turnkey package in which the
software and hardware were
created for each other. Then if
it doesn't run, follow the sug-
gestions and examples above.

Let's return to the point
where manual and electrical
testing of a peripheral seems to
prove the mechanism func-
tional. | will assume that you
understand the signals and
power that must be furnished
by the interface. If you don't,
stop until you find out! If the in-
terface furnishes power, sub-
stitute a similar load and write a

BITS | BiT4

BIT3 | 81T2 | BITI o

Fig. 9. Data buffer organization for loading Model 15 interface.



Photo 2. Using the sync shown in Photo 1, Data Bit 2 is examined
for proper data activity and timing (see text for details).

short program that turns on the
power and then halts the com-
puter (or loops while waiting for
a Reset signal). Measure the
voltage across the substituted
load to be certain power is real-
ly being delivered. Check for
switch closures with an ohm-
meter. Do each function of the
interface the same way until it
all checks out.

Scope Techniques

Data transfers or special
signal patterns are harder to
check. The neat way to do this
is to use a digital analyz-
er—about $2K worth. Not too
many of us have one, so there
must be another way. The next
easiest way to troubleshoot is
to use an oscilloscope. Due to
the short time any particular
word of data stays on the data
bus—just one part of a
machine cycle, which may be
less than a microsecond—the
scope must have a triggered
sweep. Even then, it is difficult
to find a trigger signal that trig-

Instruction

1. LDA $8000 Load accumulator absolute

Type Instruction

gers only when (or just before)
the data to be checked appears
on the data bus. It is sometimes
possible to make the computer
generate a unique strobe short-
ly before outputting a data
byte. For example, Fig. 10 is a
short program that generates a
unique address (LDA 8000 sets
bit A15 high) and then moves
data to the address bus,
generates a short delay and
repeats. When the scope is trig-
gered by bit A15 going high, it is
possible to examine the data
bus bit by bit and verify that the
proper data is appearing.
Photo 1 shows bit A15 of the
address bus going high at the
first statement of the program
in Fig. 10 (LDA #8000). When
this signal is used as a trigger
for the scope, it is possible to
examine the data bus and
watch for the data to appear.
This is shown in Photo 2. The
exact details of what follows
will be pertinent only to the
MCS 6502, which is the pro-
cessor used in the KIM-1 micro-

2. LDA #3A5 Load accumulator Immediate 2

3. STA Port

Data Bit
Binary value

Store accumulator absolute 4

7

Example 1.

DB7 DB6 DB5 DB4 DB3 DB2 DB1

1 (] 1 0 0

Exampile 2.

Cycles
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Photo 3. Heavy capacitative loading of buffered address line pro-
duces slow-rising leading edges and undershoot on trailing

edges.
Label Op. Arg. Comments
TRIG LDA 38000 Set address bit A15 high as strobe,
LDA #SAS Get data for ourput.
STA PORT Send data to port.
LDX #SF0 Set up index register as counter.
COUNT DEX Decrement counter,
BNE COUNT Loop back if counter not zero.
BEQ TRIG Start over after counter reaches zero.

movement.

Fig. 10. Short program generates scope trigger to verify data

computer, and a similar analy-
sis will have to be made for
each different uP.

In Photos 1 and 2, the time-
base speed is such that one
machine cycle takes one
horizontal division on the
scope face. Keep that in mind,
and it will then be possible to
analyze when the data should
appear on the data bus. The
next step is to count machine
cycles through the program
(see Example 1).

Since the absolute address
appears only in the last cycle of

4 (use last cycle only)

DBO
1 0 1

the first instruction, Photo 1
shows that ending cycle.
Counting forward six more
cycles (six divisions on the
scope graticule in Photo 2), we
see that a data bit comes high
in that cycle. The subject of
Photo 2 is Data Bit line 2, which
should be a 1 according to the
data loaded in instruction 2.
The bit pattern with a data byte
of A5 is shown in Example 2.
Thus we see that Data Bit 2
should be a 1, checking other
bits on the data bus showed
that the correct data was ap-
pearing at each pin.

To summarize the procedure
for checking data (or address)
bit on computer bus lines,
begin by creating a software
strobe or other means of sync
for the scope. Set the scope
time base so that one machine
cycle occupies one horizontal
division of the scope graticule.
Analyze the program to deter-
mine the number of machine
cycles required to bring the
data to the bus; remember that
this analysis depends upon
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Photo 4. High resistive loading (partial short to ground) reduces
address line amplitude to below logic 0 levels.

Fig. 11. Selective decoding gives unique event to check program

Address lines A15

Address

branching.

Fig. 12. Simpie CMOS one-shot makes LED blink slowly from

cpaniz(2)

repetitive triggers.
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Fig. 13. Flip-flop records infrequent triggers.
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STROBE OUT DURING
DECGDED ADDRESS

”
LED

thorough knowledge of the
machine timing and the
number of cycles each instruc-
tion takes. Finally, determine
where (on the scope graticule)
the data should appear, and
look at each line on the bus to
verify correct operation.

Photo 3 shows a buffered ad-
dress line that has heavy
capacitive loading. Note that
rising edges are heavily round-
ed, and that falling edges have
undershoot with a slow
recovery. Photo 4 shows the
same address line with a heavy
resistive load; note that the
amplitude is drastically re-
duced and obviously will not
meet the voltage levels re-
quired to operate either TTL or
MOS circuits. Any device driven
by the line shown in Photo 3 will
probably show erratic or false
address decoding; the
waveform of Photo 4 will prob-
ably cause a driven device to
consider this address bit a 0 at
all times. In either case, faulty
addressing will be the symp-
tom and a scope would be
needed for proper diagnosis.

Other Tools

It is often possible to use in-
genuity and planning to do
much troubleshooting with a
voltmeter or other static in-
dicator. Also, If your system
has a front panel with address
switches and status lights, the
pattern on the lights may offer
helpful hints. if data fails to ap-
pear at the expected place, it
can be very helpful to know that
the subroutine that moves the
data wasn't called by the main
program. How? If the subrou-
tine happens to be in a little-
used page of memory, some-
times it is possible to see the
address LEDs on the front
panel flicker as the subroutine
is accessed. A program loop
can be used to enhance the
brightness of the LEDs.

In a similar vein, checking
certain address bits with a
logic probe (a “'pulse catching"”
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feature is necessary) can reveal
that the computer is accessing
certain parts of memory. If no
single unique address bit is in-
volved, a simple two-IC circuit
(Fig. 11) will decode enough of
the address to generate a
unique pulse each time the
memory accesses the decoded
address. This pulse will then
trigger the logic probe so that it
blinks. If a logic probe is not
available, hook up a one-shot
(Fig. 12), which will make a
blinking light, and trigger it
from the decoder of Fig. 11.

The decoder of Fig. 11 works
this way: It can decode 14 ad-
dress lines, but the choice of
these lines will depend both on
the address to be decoded and
on other parts of the program
with similar addresses to be ex-
cluded. Example 3 shows some
hex addresses and possible
decoding connection choices.
N represents a NAND input
line, O is a NOR connection,
and X indicates lines left open.

The object is to make the
best use of the available gate
inputs so that only addresses
within the subroutine are de-
coded, while no addresses in
the main program are decoded.
This will ensure that the decod-
er will develop an output only
when the subroutine is ad-
dressed.

Finally, a simple flip-flop
(Fig. 13) can be triggered by the
address decoder. This is par-
ticularly useful for checking on
events that happen infrequent-
ly, such as monitoring switch
closures. Select an address
within the program section that
reacts to the switch closure;
then close and open the switch.
If the flip-flop is set by the
decoder, all is well. Use a volt-
meter to check the Q output of
the flip-flop, or use a transistor
driver to turn on an LED. Check
both states—be sure the flip-
flop is set by the computer's
response to the switch closure
and that it stays reset as long
as the switch stays open.®



