Tinkering with Tiny BASIC

How to add four new and useful commands to Tom Pittman’s brainchild,

plus some tips on using USR.

DECIMAL HEX USE

0037-0033 0020-0021 START OF BASIC PROGRAM (POINTER)
0034-0035 0022-0023 END OF USER MEMORY (PCOINTER)
0036-0037 002L-0025 END OF BASIC PROGRAM (POINTER)
0038-0039 0026-0027 TOP OF BASIC STACK (POINTER)
0040-0041 0028-0029 CURRENT LINE NUMBER

004 2-0043 002A-002B I. L. PROGRAM COUNTER

0044-0045 002C-002D BASIC POINTER

0046-0047 002E-002F SAVED POINTER

0048-0127 0030-007F LINE INKPUT & EXPRESSION STACK
0128-0129 0080-0081 RANDOM NUMBER SEZD

0130-0181 0082-00B5 VARIABLES: 2 bytes each in order

A @ 0130-0131
B ® 0132-0133

7 & 0180-0181

0191 OOBF OPT COLUMN COUNTER & TAPE MODE

0256 0100 TEST FOR BREAX ROUTINE

0512 0200 COLD START-TINY BASIC

0515 0203 WARM START-TINY BASIC

0518-0520 0206-0208 JMP TO GET CHARACTER

0521-0523 0209-0208 JMP TO PRINT CHARACTER

0526-0526 020C-020E JMP TO BREAK TEST

0532 0214 READ MEMORY BYTE SUB (PEEX)

0536 0218 STORE MEMORY BYTE SUB (POKE)

2616 0970 START OF IL CODE

2816 0800 BASIC PROGRAM STARTS HERE-NORMAL

2897 0B51 START OF SCRATCH-PAD AREA IN MY
MODIFIED TINY BASIC

3072 0coo BASIC PROGRAM STARTS HERE-MODIFIED

6016-6118 1780-17E6 KIM: EXTRA USEABLE MEMORY

7168 1C00 KIM: START OF KIM MONITOR

7739 1E3B KIM: PRINT HEX BYTE

7838 1E9E KIM: PRINT SPACE

78k0 1EAO KIM: PRINT ASCIT CHARACTER

7720 1E5A KIM: INPUT ASCII CHARACTER

8093 1F9D KIM: INPUT HEX BYTE

Table 1. Tiny BASIC decimal reference chart.

5 REM ENTER HEX BYTE, PRINT DECIMAL EQUIVALENT
1o PRINT "ENTER HEX BYTE *
20 LET X = USR (8093)

30 PRINT" *3
Lo PRINT X
50 END

Listing 1.

88 Microcomputing, November 1980

Michael L. Bugg
396 Birdcage Walk
Manstield, OH 44903

This article describes the USR function
of Tiny BASIC and shows you how to
add a few new commands to facilitate writ-
ing programs so you can replace the USR
function in many instances with more
understandable coding. | have also includ-
ed some information and hints | found use-
ful in tinkering with Tiny BASIC (both in
modifying it and using it).

| bought a KIM-1 several years ago, but,
being an avid do-it-yourselfer, | never
thought | would ever buy software. | became
tired of keying in programs and accidentally
wiping them out by miscalculating a rela-
tive branch or missing a byte.

Tom Pittman’s Tiny BASIC solved these
problems. For those of us with small sys-
tems, it has to be the best software buy
around. It fits quite comfortably in my 4K

%o m; _ENTER HEX am ?RIHT DECIMAL EQUIVALENT 5 REM ENTER 2 HEX BYTES, PRINT DECINAL EQUIVALENT
gg gn}r UﬁT?gogg))(srusn(vaje) %E E%i:; zEgIS};ﬂfeggélgl‘Ssﬁm?}) 0*USR(7838)
Listing 2. Listing 3.
memory, with room enough for my limited
collection of games. (I plan on expanding LAnASZER ST HEX ZECTNAL X 2
the memory sometime, but for now, Tiny A 65 b1 130
BASIC is it.) 4 2,5’7 ‘;; }%f‘
D 68 uh 136
Using USR E &9 L5 138
One feature of Tiny BASIC that provides E 7 ¥ 12
unlimited versatility is the USR function. H 72 48 140
However, it was some time before | actually } ;130 :2 {ﬁg
realized its potential. At first, | was hesitant K 75 4B 150
to use it, due in part to having to calculate # —7;—‘} tg {gg
the addresses (and any other normally hex N 78 4E 156
numbers) into decimal. However, using 0 " L 158
KIM's built-in subroutines, you can program 4 o » 159
KIM-1 (in Tiny BASIC) to perform the hex to 8 gg 2 ley
decimal conversion for you. T 84 sk 168
The USR function is simply a machine- v 85 55 170
language subroutine call. A language such ¥ g? 23 e
as Tiny BASIC is capable of performing X 88 8 176
almost anything you want it to do, but in ‘é SZ 22 {SS
some instances a machine-language sub- 0 L8 30
routine is more expeditious. So, Tiny's USR é ‘;g 212-
is the way to break out of BASIC and ex- 3 51 33
ecute a machine-language subroutine M 3 3
directly. 3 2'; g?
Listing 1 shows a simple Tiny BASIC pro- 8 56 38
gram written for KIM using the USR func- 9 it 2
tion. (Other systems require adjusting the : :g 2
address, which this program jumps to.) This ‘/ :Z :;:
program uses one of KIM's built-in ROM . 46 28
monitor subroutines: the input hex byte RETURN 13 L
routine (GETBYT in the KIM-1 monitor as- . .
sembly listing). With this subroutine, labigjz0ecimatequivaiants:

Listing 1 converts a hex byte into its
decimal equivalent.

Line 10 prints the instruction to the
operator. In line 20, the variable X is made
equal to whatever value is in the system ac-
cumulator upon return from the subroutine
addressed by the following USR function. In
this case, the value is the hex byte value ob-
tained by packing two hex digits entered on
the terminal keyboard. (Typing on the
keyboard produces an ASCll-code byte for
each digit entered, so this routine converts
and packs them into one byte for each two
entered, with the resultant byte in the ac-
cumulator register.)

When Tiny gets to this USR, it will jump to
decimal address 8093, which is 1F9D in hex,
the start of the GETBYT subroutine (remem-
ber: Tiny uses decimal numbers, so you will
need to know the decimal equivalent of the
address being jumped to). When Tiny gets
here, the computer waits for the operator to
punch in two hex digits on the keyboard.
After the second key is accepted, the data
is packed and returned to Tiny, where the

variable X becomes this hex value.

Line 30 simply prints a space to separate
the hex entry from the computer's upcom-
ing response. A semicolon at the end of the
line keeps everything on the same line. Line
40 prints the value held in variable X
Although we entered a hex value, Tiny
BASIC prints its decimal equivalent. Thus,
we have a program to convert from hex into
decimal.

Listing 2 does exactly the same thing as
Listing 1. Line 10 prints the instruction to
the operator. In line 20 the PRINT command
tells Tiny to print the value of the expres-
sion that follows. First, it evaluates the ex-
pression. USR (8093) comes first, so we
jump to this address (just as before) to get
the hex input.

The subroutine returns control back to
Tiny, and the program continues. So far, the
expression's value is the hex number we
entered on the keyboard. The second half of
the expression in line 20 starts out by sub-

tracting zero times the value of USR (7838),
which is the same as subtracting nothing.
This assures that our previous value ob-
tained will be left unchanged.

Now Tiny jumps to the subroutine at
decimal 7838 (hex 1E9E). This is the system
monitor's print-a-space subroutine (OUTSP
in the KIM monitor listing). Keep in mind
that the hex byte was already printed when
we entered it through the terminal. When
this second USR is executed, a space is
placed just after the hex byte. Following
this, we again return to Tiny, and, being at
the end of the expression, the resultant
value is finally printed. Since we zeroed out
the second USR (assuming that the data
returned in the accumulator will be useless
and unknown), it has no effect on the ex-
pression's value, and our original hex
number remains to be converted into
decimal and printed.

This program shows what you can do
with the USR function to save a little

Microcomputing, November 1980 89

memory space. By combining operations
onto fewer program lines in this fashion, we
can save that precious space in super small
systems, where every byte counts.

Computing Two-Byte Addresses

Most addresses in the computer take two
bytes to define, so we need to make the ex-
pression equal to a value of four hex digits
entered. By modifying line 20 of Listing 2,
we can create a program to convert out
known hex addresses into decimal, ex-
pedite writing out those USR functions and
have Tiny BASIC do our work for us.

The modification is shown in Listing 3.
Note that because the subroutine called by
USR (8093) only accepts one byte at a time,
we must call it twice to get what we need.
The first call obtains the most significant
byte (MSB), so we multiply it by 256, which

eftectively shifts it into the proper position
so Tiny evaluates it the way we want. The
next call produces the least significant byte
(LSB), which we add to what we already
have. Finally, a call is made (as in the
previous program) to print the space. The
value is printed in decimal.

Using this decimal address calculator (as
well as any other program using such
subroutines), you must enter all four hex
digits (or two for the earlier programs), in-
cluding any leading zero. Also, because it is
a machine-language subroutine (outside of
Tiny BASIC), no input prompt is offered, and
you don't have to hit the return key after
entering the input. You may, of course, in a
PRINT statement preceding such an input,
cause a prompt of any sort to be printed.

| have used this program to work up a
chart of often-used decimal addresses

20 57838

USR(I)-USR(S)-2)

5 REM HEX RELATIVE BRANCH CALCULATOR
6 REM I= INPUT HEX SUB S= PRINT SPACE SUB
10 1=8093

30 PRINT "ENTER 'TO' THEEN 'FROM' ADDRESSES (2HEX BYTES EACH) *
Lo 2= USR(7739,0,256%USR(1) +USR(I) +USR(S)-256*USR(I)-USR(I)-

us Ef{’é USR(7739 PRINTS HEX BYTE

Listing 4.

(Table 1). Also, a list of decimal values for
some of the commonly used ASCII charac-
ters is convenient for testing data in the in-
put butfer (Table 2). These tables, as well as
this article, deal mainly with Tiny BASIC as
run on a KIM-1 system starting at hex ad-
dress 0200. For other addresses at which
Tiny may be loaded, or other systems not
having the monitor routines as listed, you
would have to modify the program (but with
the decimal address conversion program,
this should be no problem).

Table 2 contains a column with decimal
values times two. Tiny stores its variables in
an address equivalent to the ASCII value of
the variable name (alpha-character) dou-
bled. For example, the location of variable A
in hex is 82 (the ASClI value of Ais 41, which
doubled is 82) or 130 (65 times two) in
decimal.

Machine-Language Programming

Tiny BASIC's ability to stay together even
if 1 make a programming mistake, along
with KIM's built-in monitor subroutines,
proves to be a great aid in machine-
language programming. You can first pro-
gram and debug complicated algorithms in
BASIC and then translate them into
machine language. It's easier to delete an
instruction or modify the program in BASIC

than to rewrite a machine-language pro-
gram to make a few changes. Once the pro-
gram works properly, you can put it into
machine language with Tiny helping out.
Tiny BASIC can do your relative branch
calculations for you. Listing 4 shows how.

Listing 4 accepts two four-digit hex ad-
dresses, automatically separates them with
a space, and then prints the relative branch
operand in hex. To conserve space, | used
variables for the input (I) and print space (S)
subroutine addresses. Table 3 summarizes
the features of the USR function.

The USR functions are commonly used
for two subroutines built into Tiny for
reading and storing a memory byte, as
PEEK and POKE in other BASICs. Although
these are useful, they have one drawback:
they can be difficult to follow if there are
multiple USRs nested within USRs. If |
review a program | had written some time
ago, it takes me awhile to figure out what |
had done. So, | decided to make Tiny a little
bit bigger.

Adding @ and &

To make writing programs more
understandable when imitating the PEEK
and POKE functions of other BASICs, |
modified Tiny to include a couple of new

operators — @ (for one-byte numbers) and &
(for two-byte numbers). Adding these to
Tiny is easy.

Consider the following program line us-
ing standard Tiny BASIC syntax:

P = P - 0+ USR (538, USR (534, 46), 13)
This stores a carriage return (decimal 13) in
the memory location pointed to by the line
pointer (decimal 46). This is used to input
string data by fooling Tiny into thinking it
has come to the end of the line so that the
next time an INPUT command occurs a
prompt will be issued and the next input will
be accepted.

Consider the following line:

LET@ @ 46 = 13

This does exactly the same thing as the
previous line with the USR operation in it.
This line affects no variables (normally, a
USR will when used as above, so we used
the “multiply by zero" trick to avoid it, such
as might be necessary in a program where
all variables are dedicated to something
else), takes up far less program memory
space and is simpler to understand at a
glance.

This line uses two separate operations:
the LET@ and the @ functions. These are
referred to as indirection operators (from
Tom Pittman’s Tiny BASIC Experimenter’s

3rd EXPRESSION.

FORMAT: USR (expressian)

or: USR (expression, expression)

or: USR {expression, expression, exprassion)
USE machine-language subroutine call

jumps 1o the address delined by the lirst
expression (in decimal)

2nd EXPRESSION: if included, is deposited into the
processor's index registers
—most signiticant byte goes into X ndex
— least significant byte goes into Y-index
—(remember, all expressions become lwo-byte values)

ifincluded, 15 deposited into the
processor's accumulator register (8 bits only)

— mo: gnificant byte is lost

—least sign ficant byte goes into accumulator
EVALUATION upon return to Tiny BASIC from the machine.

language subroutine the USR tunclion becomes

a lwo-byte value which is dependent upon

the following:

—Y-register value becomes most significant byte

—accumulator becomes least significant byte

This may be expressed as:

value of USR = 256 * (X-reg) + Accum
SUMMARY USR (address. X and Y index registers, accumulator)

USING TINY BASIC'S BUILT-IN SUBROUTINES.
— READ BYTE (PEEK): USR(532, Address)
STORE BYTE (POKE). USR(536. Address. Data)

Table 3. USR function summary.

PRINT @ D
LET® 1000 = A

Table 4. Using @ and LET @ operations.

USR (eC. USR (seD. 9), @2)

+~ Reader Service index—page 241

_SUPERBRAIN

32K or 64K (Double or Quad Density units
available). Uses two Z-80 CPU’s. Commercial-
type terminal with 12"° monitor. Dual double
density minifloppies. Over 350 kilobytes of
storage (twice that with quad density drives).
Two serial RS232 ports, 1/0 ports standard.
Expandable with optional S-100 S-100 inter-
face. Comes with CP/MTM 2.2 operating sys-
tem. MiniMicroMart includes BASIC inter-
preter and can supply a wide range of CP/M
Development and Application software.

w/32K Double Density, List $2995 . $2685

w/64K Double Density, List $3345 $2883
w/64K Quad Density, List $3995 $3595
64K Special Quad Version $3395

INTERSYSTEMS

formerly ITHACA AUDIO

DPS-1, List $1795

LIMITED TIME $1299*

The new Series || CPU Board features a 4 MHz
Z-80A CPU and a full-feature front panel. 20-
slot actively terminated motherboard, with 25
amp power supply (50/60 Hz operation, incl.
68 cfm fan).

COMPLETE SYSTEM with InterSystem 64K
RAM, 1/0 Board w/priority interrupt and
double density disk controller board. Full 1-year

warranty, List $3595 ONLY $2895*

Above less disk controller, $3195. $2539*
* Limited Time offer expires Sept. 15, 1980.

HEWLETT-PACKARD
HP-85A

Desk-Top

Computer

w' 3 Call
‘ l'l rlvrr’v O L W P’ice’

l‘illllll'l! |\ \\\

F.0.B. shipping point. All prices subject to change and all
offers subject to withdrawal without notice. Advertised prces
are for prepaid orders. Credit card and C.0.D. 2% higher.
C.0.D. may require deposit.

- WRITE FOR FREE CATALOG
- - -
MiniMicroMart
1618 James Street
Syracuse, NY 13203 (315) 422-4467

Microcomputing, November 1980 91

304

SPECIAL™* *SPECIAL
TRS-80 ADD ON DRIVES
IMMEDIATE DELIVERY

SINGLE SIDED $225.00
DOUBLE SIDED $345.00

COMPLETE SYSTEMS
SINGLE SIDED $365.00
DOUBLE SIDED $485.00

INCLUDES:

MINI DISK DRIVE
FUSED POWER SUPPLY
VENTED CABINET
CABLE

90 DAY WARRANTY
FACTORY ASSEMBLED
FACTORY TESTED

THESE ARE NEW 5" FD's

INTERFACE, INC
20932 CANTARA ST
CANOGA PARK, CA 91304
(213) 341-7914

VISA AND MASTER CHARGE ACCEPTED

w151

SUPERIOR SOFTWARE PACKAGES
FORTHE

DISK BASED TRS-S 0+

SMARTTERM *$79.95
UNQUESTIONABLY THE BEST
SMART TERMINAL PACKAGE
FOR THE TRS-80
*True Break Key
*Auto Repeat (Typomatic) keys
*Programmable ‘soft’ keys
*Forward/Reverse Scrolling
Muitipage Display
sTransmit from Disk File, Screen
or Bufter
sReceive to Disk File, Buffer or printer
*Multi Protocol Capability
SPOOL.-80 ® $39.95
A TRUE DISK-TO-PRINT DESPOOLER
FOR THE TRS-80
*Print Disk Files While Running
Other Programs
sPrints Compressed Basic Files
*Includes RS-232 Driver for
Serial Printers

CALL US FOR YOUR CUSTOM
SOFTWARE REQUIREMENTS ~ ~ 253

MICRON, INC. Model Il

10045 Waterford Drive Versions
Ellicott City, MD 21043 Available
(301)461-2721 Soon

*TRS-80 is a Trademark of Tandy Corp.

Kit), for a poke (store) and a peek (read), LET X = @ @46
respectively. This line causes the byte at which will cause variable X to take on what-
the address stored at decimal 46 to equal ever character the input line buffer pointer

13. This is a form of indirect addressing. (decimal address 46) is pointing to.
To alter a specitied memory byte, you
How Indirection Works must add a new keyword, LET@, to Tiny.

Suppose we want to print the value of the Just as betore, the number following the @
data at address location 1000. We must sign specifies the decimal address whose

enter the command byte will be set. LET@ 1000 =0 will set ad-

PRINT@ 1000 dress 1000 to zero.

This prints the data at line 1000. The @ and LET @ operations can be used
You may have an indirect indirection op- in most any combination (see Table 4).

eration: Since these two operations don't exist in

0285 LSB of BASIC program starting address
narmally 00
I left this unchanged

028C MSB of BASIC program starting address

normally 0B
| changed this to 0C

097D-C97E This becomes jump to new LET& and LET@
normaily 88.-4C
change to 39-90

0A91-DA92 This becomes jump to new & and @
normally C1-2F
change to 38-C9

Table 5. Tiny BASIC moditication changes.

45 56 A6 ‘LET& BC LET® "LET&" TEST FOR
2 N 122 SET

LN 122 SET
JS EXPR GET BYTE
ot
us GO0 SET ADDRESS
SP
LN 129 L ADDR
BC & =z TEST FOR EQl SIGN
JS EXPFR GET VALUE
DS
BE # TEST IF LINE ERD
us co DO IT
sk co
E
by EQUAL STGN
GET VALU
TEST IF LINE END
us G0 Do IT
SP
nX END OF THI
Dh LET BC BACK "LET" TEST FOR L
BV * 2
BC * = JAL SICN
BE * TEST IF LINE END
sV PUT INTO VARTABLE
NX END OF THIS
1BACK J GOTO CK TO ORIGINAL CODIN
:NEW BN F40 THIS REPLACES WHAT WAS
WIPED OUT TN ORIGTNAL
B TEST FOR &
YES, SET ML AD
GET BYTE ADDRE:
GO DO IT
RETURN
P41 TEST FOR @
YES, SET ML ADDRESS
GET BYTE ADDRESS
GO DO IT
RETURN
+RET

GO BACK TO ORIGINAL
[+

037D 39

OASL 39

): 98

80

18

oBj0 80
0B4O 30 B

0BsC 23

Listing 5.

92 Microcomputing, November 1980

The days of complicated, unreliabls,
dynamic RAM sre gone:

INTRODUCING

the ultrabyte memory board

9 5 complete kit
with 16K memory
L]

Netronics consistently offers innovative products at un-
beatable prices. And here we go again — with JAWS,
the ultrabyte 64K S100 memory board

ONE CHIP DOES IT ALL

JAWS solves the problems of dynamic RAM with a
state-of-the-art chip from Intel that does it &//. Intel's
single chip 64K dynamic RAM controller eliminates
high-current logic parts . . . delay lines . . . massive
heat sinks . . . unreliable trick circuits.

REMARKABLE FEATURES OF JAWS

Look what JAWS offers you: Hidden refresh . . . fast
performance low power consumption . . . latched
data outputs . . . 200 NS 4116 RAMs on-board
crystal . . . 8K bank selectable

fully sm:kele:l
d for

Tiny BASIC, they must be added to it.

There are two ways of accomplishing
this. The first, and best, way is to insert the
coding for them into the existing interpreter
at the proper points and move the following
coding down with the jump addresses and
adjust them accordingly. The way | do it is
to blot out a part of the existing program
with a jump to the new routines (which are
tacked on at the end of Tiny BASIC) and
have them jump back to pick up where the
original coding left off. This takes a couple
more byles, but it sure beats recalculating
all those jumps.

Tiny BASIC is part machine language and
part intermediate language (a kind of
macro-instruction programming). The modi-
fications take place in the intermediate
language (IL).

To help Tiny run faster | expanded it to in-
clude a two-byle indirection operator. It
works just like the @ and LET@, except it
gets and puts two bytes at a time. | use the
& sign to indicate this function. This makes
manipulating large amounts of data per-
form faster and simplifies handling vari-
ables and other values (all are two bytes). If
a program had LET@ X = A and variable A

was greater than 255, then part of that value
would be lost (you just can't store a 16-bit
value in an eight-bit byte). For timing com-
parisons, see Table 6.

How & and LET & Work

Suppose Z = 1. Each variable of Tiny is a
two-byte value. So, in Z, the MSB is zero and
the LSB is one. LET& 50 = Z will make the
combined bytes 50 and 51 equal to Z. Thus,
the MSB (0) will be deposited into location
51, and the LSB (1) will be put into location
50 (Tiny BASIC uses them backwards, just
like the addresses in the 6502 machine-lan-
guage operands: LSB comes first, then
MSB).

Besides variable handling, BASIC pro-
gram line numbers could be altered this
way. Tables and arrays are a natural for this
type of function.

To get my Tiny BASIC to learn these new
things, | put the new coding at hex address
0B00 and beyond. This is where the BASIC
program is normally put, so | changed the
portion of Tiny that determines where the
BASIC program starts. It can start just after
the last byte of new coding, but | prefer to
have it start at the beginning of the next

solder mask on both sides of board
8080, 8085, and Z80 bus signals . . . works in Explorer,
Sol. Horizon, as well as all other well-designed S100
computers.
GIVE YOUR COMPUTER A BIG BYTE OF MEMORY
POWER WITH JAWS — SAVE UP TO $90 ON
INTRODUCTORY LIMITED-OFFER SPECIAL PRICES!
UNDECIDED? TRY A WIRED 18X JAWS N YOUR COMPUTER ON OUR

SIDE CONNECTICUT CALL

CALL TOLL FREE 800-243.7428 I
]
l

From Connacticut Or For Assistence, (203) 3549375
IRANETRONICSE:25cs:
DEVELOPMENTLTD)
333 Litchfield Road, New Milford,CT 06776 |
Please send the items checked below: Dept. K11 |
L] JAWS 16K RAM kit. No. 6416, $199.95.*
[JAWS 16K RAM fully assembled, tested, burned in,
No. 6416W, $229.95 *
7 JAWS 32K RAM kit, !N;smz (reg. price $329.95).

No 6432W (reg. price SZ’ﬁB 95) SKBIAI. PRICE
$339.95.

L2 JAWS 48K RAM kit, No 6448, (reg. price $458.95),
SPECIAL PRICE $399.95.*

] JAWS 48K er assembled, tested, burned in, No.
BA48W. lreu price $509.95), SPECIAL PRICE
$449.95.

) JAWS 64K RAM kit, No. 6464, (reg. price $589.55),
SPECIAL PRICE $499.95.*

) JAWS 64K RAM fully assembied, tested. burned in,
No. 84B4W, (reg. price S849.95), SPECIAL PRICE
4559.95.*

"] Expansion kit, JAWS 16K RAM module. to expand
any of the above in 16K blacks up to 64K, No. 16EXP.
§129.95.*

*All prices plus $2 postage and handling. Connecticut
residents add sales tax

Total enclosed: S

] Personal Check

C]VISA

[] Money order or Cashiers Check
[] MASTER CHARGE (Bank No

(Bank No.)
Eccl. No. — Exp Date 2
Print Name = e
Address T
City
Slall Zip S

1 _-. Send me more re information

94 Microcomputing, November 1980

PUT

NOP NOP
LDY$EZ

($c2 = 0)

STORE MSB ADDRESS
5B ADDRESS

.Y GET BYTE-1

.Y GET BYTE-2

SAVE Al

JDRESS M3B
LSB

1 INTO ACCUM

2).Y PUT BYTE -1

.Y PUT BYTE-2

C2 4B CA Bl C2 AA 6
EA Al E2 4B 8A 91 C2

Listing 6. Source listing for machine-language coding.

ve four p

same duties in t).e\r own WAy,

USR_and LET
TET M=0
LET N=0
) LET P=USR{536,N,0)
NsN+2 LET N=N+1
GOTO 110 |IF <20 GOTO 110 IF N<20 GOTO 110
MeM-1 MMl
) GOTO 100 | IP M <20 GOTO 100 | IF M<20 GOTO 100
PRINT "END" “END" PRINT “END"
END NL BEND
TIME = 23 SECONDS ‘Tltﬂ?—: = 1B SECONDS | TIME = 9 SECONDS TIME = 21 SECONDS

This serves to

things up in different ways. If a
h as character atrings) the LET&

Table 6. Timing comparison tests.

page of memory (0C00 in my system) to
allow room for array storage or extra vari-
ables without interference between them
and the BASIC program. (This eliminates
the chances of strange things happening
when a program overwrites itself.)

If you are wondering why | put the new
coding starting where | did, rather than
directly after the existing program (original-
ly ending at hex 0ACS). | put a multiple-
statements-per-line modification (see 6502
USER NOTES, no. 13) in this gap. After a lit-
tle work, Tiny BASIC doesn't act quite so
tiny!

If you want to start Tiny loading the
BASIC program farther down to allow room
for its new growth, you can alter 0285 and
028C (this will avoid the need to enter
through the warm start and set the param-
eters each time you start out). Hex address
028C holds the memory page number. | set
this to OC, as opposed to 0B in the original.
Address 0285 holds the LSB of the starting
address (normally 0). | left this unaltered.

Listing 5 contains the new coding for all
of these new operations (for the IL coding),
and Listing 6 shows the additional machine
coding needed to accommodate it. Finally,
Table 5 shows the necessary patches to the
existing coding. Again, these addresses are
for BASIC starting at 0200. For other start-

line, clear screen and cursor home.

Al 0972 hex Tiny issues X-on after print-
ing the colon prompt. Replace this with your
choice of line or screen clear. (I use line
clear) If screen clear is used, when Tiny
gives me an error code and the CRT is at the
bottom line, the following colon and control
code would be printed on the top line, there-
by wiping out the error code before it can be
read.

When inserting the code, you must alter
it: set the highest bit to one. Thus, if your
desired control code is 06, it must be set to
86 to insert Tiny.

The control code following the INPUT
prompt (?) is located at 09DD hex. Again,
observe the above instructions on setting
the high bit to one.

Al addresses 0A03-0A08 hex are four
bytes that are printed preceding a LIST

ing addresses you will need to determine
the changes. After you have made this
modification, refer to Table 7 to remind you
how to use the new operations.

Uncluttering Your CRT

Along with printing the input prompts (:
and ?) and preceding a LIST operation, Tiny
BASIC outputs control codes (X-on and
X-off). If your system has a CRT for readout
and thus has no need for these control
codes, you can replace these control codes
with screen control codes to make the

display more readable (without the need for
extra output routines to take care of busi-
ness).

My TVT doesn't scroll up as it fills the
screen, so after the cursor reaches the end
of the page, the following output causes the
cursor to wrap around to the top again, writ-
ing over what was previously there. Some-
times, this becomes quite confusing when
one line ends in the middle, leaving the re-
mains of an old line after it. Because of this,
| replaced some of Tiny's control codes with
the desired screen control functions: clear

at the decimal address

LET@

LET&
at the decimal address

@ ONE-BYTE FETCH (PEEK)— whose value is the byte

& TWO-BYTE FETCH (PEEK)—whose value is the
combination of the two bytes at the decimal
address following the & sign (LSB) and at one
plus that address (MSB)

ONE-BYTE STORE (POKE)—stores a byte at the
decimal address following the @ symbol

TWO-BYTE STORE (POKE) — stores a two-byte value
and at one plus that address (MSB)

The addresses specified in the above operations may

be any valid expression accepted by Tiny BASIC, including

other similar operations, USR functions, etc

Table 7. @, LET@, & and LET& operations summary.

following the @ symbol

following the & sign (LSB)

operation. These are normally all zeros, but
| first insert a cursor-home control, followed
by a clear-screen character. This way, the
LIST starts automatically at the top of the
screen and clears any previous clutter.

Also, within a program, a simple LIST Z
command will clear the entire screen and
put the cursor at the home position, with Z
being equal to any number greater than the
highest line number currently in memory.
This causes nothing to be listed, so this bit
of housekeeping clears the way for a clear
screen so that any following output will be
uncluttered. At these addresses, do not set
the high bit to one as the previous ones
were; simply load them as is.

Using Tiny BASIC

To squeeze long programs into small
memory areas:

® Use no spaces in the programs. The pro-
grams will be difficult to read, but you will
save a byte of memory for each space you
don't use.
e Use abbreviations; for example, PR for
PRINT or variable character for an often-
used large number.
o Eliminate inessential words, for example,
LET, THEN.

To speed up Tiny BASIC:
eUse variables, which are interpreted
faster than numerals.
eUse the word LET. (You must decide
whether speed or memory space is more im-
portant.)
o Put often-used routines into low memory.
Give them the lowest line numbers.

These ideas should help you develop
your own techniques to make your pro-
grams shorter and easier to write.

