Robert J. Cotter
The Johns Hopkins
School of Medicine
Baltimore MD 21205

The EIf EPROMmer

Got the Giant Board? Then an EPROM programmer is easy.

f you bought the Giant Board

and the 4K memory board for
your EIf 1, then you can build a
simple EPROM programmer
with only a few inexpensive ICs,
transistors and resistors. Then
you can store all those home-
made programs, your own
monitor system or Tiny BASIC;
and your computer will be ready
to run your programs as soon as
the power switch is turned on.

The Giant Board makes it
easy since it contains a latched
output port that can be con-
nected to your programmer and
a ROM monitor system for ac-
cessing the programs you will
write onto your EPROM. The 4K

ELF IT BUS

board is necessary to provide an
area to load your program for
copying.

Also, it provides latched and
buffered high-order address bits
you will need to address the 1K
EPROM memory and for select-
ing between EPROMSs. The high-
order bits can be brought down
to unused pins on your 88-pin
bus, so that you can conve-
niently build your programmer
on a board that plugs directly in-
to the EIf bus.

The EPROM programmer de-
scribed here uses two EPROM
sockets: one for programming
and one for reading. In the pro-
gramming mode, the EPROM is

*5V

164) ac F*D—

R P

1561

of 7973

2

252V
300ma

12 &V
300mz

e J“

63V
300ma

¥

i

63v
300ma

tI

—)

p! o
1

33004F

?

i

22004F

J:;;,'
]

2n3058 s

20K

5y

T
L=

-2 GND

Fig. 2. Power supply schematic

GIANT BDZRD
oUTPUT PORT
——a 00 (8}

)

>
(52
(a8}
(44)
(40
(36
(85)

83

2708
EPROM
SOCKET

1)

uz)

i

u3)

(68) N2

(32) TPR

2

na)

27V

Fig. 1. EPROM programming circuit.

76 Microcomputing February 1980

treated as an output device;
while in the reading mode it be-
comes a randomly accessible
memory. The advantage of this
approach is that the READ sock-
et can be used not only to verify
that a program has been loaded
correctly, but also to run the pro-
grams stored on your EPROM.

Programming the 2708 EPROM

Fig. 1 shows a schematic of
the programming circuit. The
address lines (A0 to A9), the tim-
ing pulse (TPB), the I/0 select
line (N2) and Q come directly
from the EIf bus. The pin con-
nections are shown in paren-
theses. The data lines (DO to D7)
are available on the Giant Board
on a 14-pin DIP socket.

If a similar socket is mounted
on the programmer, then a
14-pin ribbon cable connector
can be used to connect this out-

SET & OF
PROGRAM LOGPS

SET BEGINNING CF
BAQGRAM AREA

LATCH ADDRESS ANO
0ATA ON QUTRUT PORT

INCREMENT ADDRESS
REGISTER

DELAY 12
MICROSECONDS

TURN ON PROGRAM PULSE
FOR 1000 MICRCSECONDS

DELAY €
MICROSECONDS

Fig. 3. Program loop tlowchart.

put port to your circuit. Other
connections include =5V, +12
V and 27 V. A power supply that
provides these voltages is
shown in Fig. 2.

How It Works

In the programming mode,
chip select/write enable (CSIWE)
is held high at +12 volts by di-
rect connection to the 12 volt
supply. (This is pin 20 on the 2708
EPROM socket.) Addresses are

placed sequentially (from 000 to
3FF) onto the EPROM whenever
N2 and TPB are high. A 67 out-
put instruction is used to raise
N2. The 7475 four-bit latch latch-
es its outputs as the enable
pulse at pins 4 and 13 falls.
Therefore, N2 must be ANDed
with TPB so that this pulse goes
low when correct addresses are
presented to the 2708.

The 67 instruction was chos-
en since this also controls the
output port on the Giant Board.
This instruction, therefore,
loads and latches the correct
data bits onto the EPROM at the
same time as the address bits.

Twelve microseconds after a
particular address and data
have been latched onto the
2708, the Q line goes high and
turns on the 27 volt program
pulse to write the data at that lo-
cation. A timing loop holds this
pulse on for 1 millisecond. When
the program pulse goes low, the
next address and new data are
placed on the EPROM and the
sequence is repeated for all
1024 locations. When all loca-
tions have been written once,
this defines a program loop,
which must be repeated 100
times to ensure that the data
has been correctly written in. A
flowchart demonstrating this
sequence of events is shown in
Fig. 3.

Program A shows the hexa-
decimal listing for programming
the 2708 EPROM. In step 2, note
that the area to be copied is lo-
cated from 0400 to O7FF. If you

location bytes steps.
00 F8 6A A1 1
03 F8 04 B2 2
06 FB8 00 A2
09 E2 3
0A 67 4
o8 cace 5
oD 3 6
0E FB 3B A3 7
n 2 8
12 83]
13 3An 10
15 7A 1"
16 [e2) 12
17 92 13
18 FBO8 14
1A 3A0A 15
ic 21 16
10 B1 17
1E 3A 03 18
20 00 19

comments

set pregramming loop counter
set beginning address of
area to be copied

M(R2) = MX

latch DATA and ADDRESS onto
output port; R2 + 1
delay

turn on program pulse
load 38 into register 3
R3 -1

R30-~D
GOTOMiftD#00

turn off program pulse
delay

R21-D

R2.1 x OR08
GOTOOQD if D # 00

R1 -1

R10-D
GOTOO03ifD+00
STOP!

Program A. Hex listing for programming the 2708 EPROM.

134) 07

(38) 06

(42) DS

B

146) D4

1501 D3

154) D2

581 oI

(62) DO

(64) a0
(80) Al
(56) A2
(52) A3
(48) a4 J\ 2708
N8 3| eproM |
(4a) a5 -
N2 ol 2 18 J

(40) A6 v—%

PN ' i
(36) A7 S

I/ 23
T ——
@3 a9 =

si2v
% 1)
PROG_ TE/WE
CHERE
'
(73) Al ‘—E 47K
3

(11 a2 e——3

(30) WAD e

Fig. 4. Circuit modification.

wish to use this program to copy
a different 1K area, then the
starting address, 0400, can be
changed, as long as the bottom
ten bits of this address are all
0Os.

Also, when the 2708 is erased,
it contains 1s in all locations.
Therefore, if you are not copying
all 1024 locations, the remaining
spaces should be filled up with
FFs, so that you can add other
programs later. For example, |
entered my programming pro-
gram into locations 0400 to
0420, filled locations 0421 to
O7FF with FFs and now have an
EPROM that will program other
EPROMSs. Having the two sep-
arate sockets makes this pos-
sible,

Verifying and Using
Your EPROM

By adding one more IC and a
new socket to your board, you
can verify your program or use
your EPROM as a read-only
memory. The schematic is
shown in Fig. 4. (Address lines
AQto A7 use the same buffers as
in Fig. 1) In this socket, the

PROGRAM pin is grounded and
CS/WE is pulled low by A14,A12
and MREAD. This makes its
location 4000 to 43FF. The 2708
data outputs can be connected
directly to the EIf bus, since
these outputs are Tri-state.

You can verify that the pro-
gram has been loaded correctly
by using the Elf's monitor on the
Giant Board. Load the program,
CO0 FO 00, to get into the mon-
itor. Press the RUN switch and
load 01 40 00 to examine the
memory starting at location
4000. Each time you press and
release the input switch you will
alternately observe the low-
order address bits and the data
bytes on the hex display. If the
first dozen or so bytes are cor-
rect, then you have most likely
made a correct copy, and you
should then try to run the
EPROM programs.

To run a program starting at
the first location, load CO 40 00
and press the RUN switch. You
c¢an run a program at any other
location by loading C0O and the
correct address from 4000 to
43FF.

Microcomputing February 1980 77

Some Comments

When you build your EPROM
board, you might consider
building several READ sockets.
You can then select between
EPROMSs by decoding part or all
of the upper address bits (A10to
A15). A circuit foraccomplishing
this for a 4K EPROM memory is
shown in Fig. 5. The 74C154 de-
coder decodes A10 to A13 and
produces valid outputs when
A14 is high and A15 is low. The
selected outputs themselves
are low and are gated with
MRD to produce a positive pulse
for selecting the correct
EPROM. Only four of the 16 pos-
sible outputs are used. The 7406

0000-0FFF 4K RAM #1
i 1000-1FFF 4K RAM #2
| 2000-2FFF 4K RAM #3
| 4000-43FF 1K EPROM
i 4400-47FF 1K EPROM
1 4800-4BFF 1K EPROM
| 4C00-4FFF 1K EPROM
| FO00-FOFF ROM monitor

| Table 1. EIf Il memory ai-
location.

inverter then pulls CS/WE low
to read the EPROM. This partic-
ular inverter must be used, since
it has a high voltage, open col-
lector output.

When locations for the
EPROMs are selected, ad-
dresses beginning with F (FO00
is the ROM monitor) and any
RAM address must be avoided.
Table 1 shows one possible ar-
rangement of memory locations
for the EIf |1, if the five EIf bus
sockets are occupied by three
4K RAM boards, the Giant Board
and the EPROM board as de-
scribed here.

There are several inexpensive
EPROM programmers currently
on the market. The September
1978 issue of Kilobaud features
an excellent article by James
Grina on a 2708 programmer for
the KIM-1 (“Super Cheap 2708
Programmer,” p. 100). His ap-
proach is to generate the ad-
dresses for the EPROM using
three 4-bit 74193 counters,
thereby eliminating the need for
bringing out the ten address
lines.

In order to use this circuit on
the EIf Il, another output port (in
addition to the input and output
ports available on the Giant
Board) has to be constructed.
This port would be used to pro-
duce the program pulse, set the
CS/WE state and increment and
reset the counters.

This approach is also used by
an EPROM programmer devel-

oped by Optimal Technology,
which uses three I/O ports when
connected to the COSMAC VIP.
However, | chose the method
described in this article because
the high-order addresses were
readily available, and once they
were brought onto the board, |
had the possibility of randomly
(and not sequentially) accessing
the EPROM. B

ro CsrwE

:D-»’—Doz——a £PROM 1)

w12y

74C154

. = EPROM (2]

s1ev

P —

MRD

e EPROM (3)

2V

EPROM (4]

T40€

4001

Fig. 5. 74C154 decoder circuit.

