Computer music synthesis in two parts.

Simulation

Of Musical Instruments

he use of microcomputers for
Tleaching, composing, transcrib-
ing and playing music is rapidly
becoming a major application arca.
New synthesizer boards, music pro-
grams, and integrated systems with
music capability are among the new
products highlighted in the micro-
computer field. It is now common for
university and even high school
music departments to acquire a
quantity of microcomputers solely
for musical purposes. It is even get-
ting to the point where it is hard to
find a microcomputer owner without
some kind of music program, even if
it only plays kazoo-like music
through a built-in two-inch speaker.

The Computer Music Field

Since any complete discussion of
microcomputer music is impossible
within the confines of a magazine for-
mat, this article deals with a much
narrower subject area. First, how-
ever, we need to characterize the
ficld somewhat to see how the topics
of musical instrument simulation and
software digital synthesis fit in.

Computer music syslems cover a
broad range of sophistication, appli-
cation, capability, sound quality and
cost. At one extreme, we have the
limited-range, tinny, one-voice,
“gee whiz" type of system men-
tioned earlier that can be set up for a
dollar's worth of parts and a program
whose listing would not even fill a

page.

By Hal Chamberlin

At the other extreme, we have ex-
perimental computer music systems
in some universities that have a range
beyond human perception, quadra-
phonic sound quality exceeding that
of the best recording equipment, vir-
tually unlimited synthesis capabili-
ties and practically infinite voice
count at a cost (if measured by indus-
trial standards) in the millions. Using
a microcomputer, you can set up a
system with reasonably wide range,
good sterco sound quality, good syn-
thesis flexibility and 32 voices for a
few thousand dollars. The important
point is that there is a definite need
for systems addressing these ex-
tremes and many points in between.

The simple one-voice systems are
certainly the most common and are
fully adequate for teaching elemen-
tary music concepts as well as for im-
pressing friends and neighbors. In
fact, they are probably preferred for
getting started because their very
simplicity makes them easy to learn
and use. Since only pitch and timing
can be controlled, there are only two
variables to worry about. Harmony,
timbre, envelope and dynamics are
either absent or predetermined.

Nole that this type of music system
is casily implemented cither purely
in software using timed loops, which
toggle an output port bit, or through a
combination of softwarc and hard-
ware where control bytes are sent to
a simple divide-by-N counter which
may even be part of the I/O interface

chip used by the computer. With this
level of system, you either quickly
outgrow it and move on or are con-
tent to file the program alongside the
Lunar Lander and Star Trek cas-
settes.

The next step up is generally either
a synthesizer board or an inexpensive
eight-bit digital-to-analog converter.
The synthesizer board is a set of
several oscillators which at a mini-
mum are programmable for pitch
and amplitude. (There are a couple of
very sophisticaled single-voice syn-
thesizer boards, but they are intend-
ed to be used in multiples.)

The simplest type of synthesizer
board has three square-wave oscilla-
tors with pitch and amplitude regis-
ters for each and sometimes an over-
all volume control. Typically, these
boards are implemented using pro-
grammable timer integrated circuits
as the oscillators (normally intended
for use in process-control-oriented
microcomputers) and discrete cir-
cuitry for the volume control func-
tion.

Recently, General Instrument in-
troduced a synthesizer chip that has

Hal Chamberlin is vice president of Research and
Development for Micro Technology Uniimited,
Box 12106, Raleigh, NC 27605. Active in electron-
ic sound synthesis since 1966 and in computer mu-
sic synthesis since 1970, he has authored numer-
ous magazine arficles and has recently published a
book entitled Musical Applications of Micropro-
cessors,

Microcomputing, January 1987 53

taﬁ

-
—+

/

t
7T by

]
17 11174

VOLTAGE |

mnus|EnEEEEm) If]
: ¥ t!i i \‘I_ETIIMEX‘\—. i ‘IT- 1

~

l‘\:

7;; L 1_

15 4 j—

HH R

S

{
A EESSuNEE
I

1 J I I I i

Fig. la. Desired audio waveform.

the three oscillators and the volume
control circuitry integrated on a
single chip along with a noise genera-
tor useful for limited percussion ef-
fects. These chips, usually in trios for
a total of nine voices, are appearing in
the latest batch of synthesizer boards.
Prices range from a little over $100 to
nearly $300 with little connection
between capability and price.

With these synthesizer boards, the
computerist musician gains a great
deal of flexibility, since he can play
complex chords and control dynam-
ics and tone envelopes. As a result,
these boards are a great deal more
difficult to master, although you can
choose to ignore some of the vari-
ables initially.

There is one serious shortcoming,
however: all synthesizer boards in
this class produce square waves ex-
clusively. (One three-voice board on
the market has the capability of com-
bining two of the voices into a single
variable width rectangular wave,
which increases the tonal variety
somewhat.) Square waves have a
rather sharp, yet hollow, sound that
most closely resembles that of a
kazoo. By suitable control of the am-
plitude envelope, you can produce
continuous organ-like tones and per-
cussive plucked-like tones, but the
basic character of square waves re-
mains.

With the proliferation of this type
of board in recent months (and its
constant demonstration at computer
shows), the public may very well
come to associate square wave sound
with computers, just as a piano is
associated with its own tone color,
This would be unfortunate indeed,
since the ultimate value added by
computers in music is a wider range
of timbres than any other instrument.
Nevertheless, there is sufficient ex-
pressive power available so that the
difference between a piece pro-
grammed by a novice and one pro-
grammed by an experienced musi-
cian is readily apparent.

54 Microcomputing, January 1981

111 1

Fig. 1b. Raw DAC output.

Music systems based on these syn-
thesizer boards seem to satisfy many
users whose goal is to learn music,
enjoy transcribing music into the
computer and even perform simple
composition. They typically will not
satisfy a musician attempting to do
serious performance work with the
computer.

Much more sophisticated syn-
thesizer boards with programmable
waveforms are also available in the
$500 to $2000 price range. These
overcome the lack of tonal variety of
the square wave boards by providing
programmable waveforms, usually
with provisions for a different wave-
form for each voice.

An important consideration that
will be discussed later is whether the
board allows dynamically variable
waveforms; that is, the ability to
smoothly alter the waveform while a
note is being played with it. This is a
requirement for many effects such as
the “wah” of a muted trombone,
and, as might be expected, the less
expensive units do not provide for it.
In either case, the tonal variety is far
greater than the square wave units
and is sufficient to satisfy many musi-
cians as well as casual users.

On the other side of the hard-
ware/software fence are music sys-
tems based on digital-to-analog con-
verters (DAC). As we shall see later, a
digital-to-analog converter simply
translates numbers into voltages. A
very rapid string of numbers pro-
duces a rapidly varying voltage; that
is, an audio waveform.

In theory, appropriate software can
calculate the necessary number se-
quence to produce literally any
sound. The capabilities of a music
system based on a digital-lo-analog
converter are determined solely by
the sophistication of the software in-
volved rather than the capabilities
designed and frozen into a hardware
synthesizer. DAC boards also tend to
be less expensive. A good eight-bit
DAC board sells for less than $70,

Fig. 1c. DAC output filtered by ideal low-pass
filter.

while an experimental homebrew
unit can be put together for half the
price of a movie ticket.

The remainder of Part 1 will de-
scribe how sound gencration soft-
ware works in a DAC-based system.

Numbers to Sound

The fundamental principle behind
digital sound synthesis is that a string
of numbers from a computer pro-
gram may be converted into a high-fi-
delity audio signal. As you might ex-
pect, the rate at which the numbers
are supplied and the precision of the
numbers both determine the fidelity
of the resulting sound. In synthesis
applications, fidelity's usual defini-
tion, i.e., faithfulness to the original,
does nol apply, since there is no origi-
nal. Instead, fidelity is used to refer to
the frequency range that can be pro-
duced and the relative freedom from
undesired noise and distortion.

Fig. 1 shows how a DAC can pro-
duce a smooth audio waveform from
a string of numbers and the errors in-
volved. The grid in the figures repre-
sents time in the horizontal direction
and voltage in the vertical direction.
Fig. 1a shows a greatly magnified
drawing of a small portion of a typical
audio waveform. Notice that it wig-
gles and curves through the figure
without regard for the grid. In Fig. 1b
we have the raw output of a DAC be-
ing fed the string of numbers repre-
senting the waveform in Fig. la.

Each vertical grid line represents
the point in time that the DAC re-
ceives a new number; thus, it stands
to reason that the DAC outpul can on-
ly change up or down at vertical grid
lines. Each horizontal grid line repre-
sents a possible numerical value that
the DAC can receive. For example,
an eight-bit DAC can only accept 256
(28) different numbers, so the com-
plete grid for such a DAC would have
256 horizontal grid lines. As a result,
the DAC output can only dwell at a
horizontal grid line. Needless to say,
the smoothly curved waveform of

T T e e
T Hi -—rl—f—qi—‘ f I N
S A O e A
* -4 N —- 7‘1 AT Nt

I gBLe S En JuNEERNAEREE: RO N
—_— INELYA it AT eal
T H P M T R N
T ﬂ EJ_t_ \ = i aEEERERSE! ——+—l—al|§
t - | I Y
EESENEERESENSEEAEEN |l immanEEEsEmssmmmswsmsi
[Eedieisagsasareanasan, mamammsAsSRSAmaRRERS]

Fig. Id. Filtered DAC oulpul at lwice the sample
rate.

Fig. la is severely distorted in shape
by this two-dimension quantization
imposed by the DAC.

In Fig. 1c we have passed the raw
DAC output through an ideal low-
pass filter. Usually such a filter is
described as allowing all frequencies
below a certain cutoff frequency to
pass through while blocking those
above it. Here, however, we are us-
ing it to smooth the DAC output into
something that more closely resem-
bles Fig. la.

As you can see, the filter does a nice
job of smoothing the curve between
the vertical grid lines (that is, be-
tween new numbers from the com-
puter). Closer examination, however,
reveals that when the curve crosses a
vertical grid line, it is also precisely
on a horizontal grid linc as well.
Thus, since it is still constrained by
the horizontal grid, there is still some
error remaining. The only way to
reduce this error is to make the hori-
zontal grid lines denser by adding sig-
nificant bits to the numbers and the
DAC.

HIGH FREQUENCY CUTOFF Khz

2 4 & 8 0 _1z2 M & 8 20
T -
9 n.
s o w3
w z
=4]" &
& 2
2 - s |75
5 " 5 o7] 2
E :ei 3 . % 1u g
= @
ge s e s A
) 20 » e
g 4 . ig, &
e z
2 "z
5

ob—1 4 L N

5 10 15 20 25 30 35 40 45 80

SAMPLE RATE KHz

POOR LONG DISTANCE TELEPHONE
GOOD LONG DISTANCE TELEPHONE
GOOD A-M RADIO

$ 80 PORTABLE CASSETTE

§$200 MI-FI CASSETTE

GOOD F-M RADIO

CONSUMER REEL-TO-REEL TAPE
PROFESSIONAL REEL - TO- REEL TAPE
PROFESSIONAL DIGITAL AUDIO
REAL- TIME MICROCOMPUTER DIGITAL SYNTHESIS
DELAYED PLAYBACK MICROCOMPUTER
DIGITAL SYNTHESIS

Seom~vmoawn_

Fig. 2. Required DAC resolution, sample rate
and data required for varying degrees of fidelity.

Fig. le. Filtered DAC output at twice the resolu-
tion and sample rate.

Comparing Fig. 1c with Fig. 1d, it
should be apparent that the horizon-
tal spacing of vertical grid lines de-
termines the shortest waveform wig-
gle that can be reproduced. Since the
horizontal direction is time, this is the
same as saying that the horizontal
spacing limits the highest audio fre-
quency that can be reproduced. In
particular, it takes at least two grid
lines to reproduce one cycle of a sine
waveform, so it follows that the high-
est audio frequency must be equal to
or less than one-half of the rale at
which numbers are fed to the DAC.
Actually, you can go this high only
when an ideal low-pass filter is used
to do the smoothing.

With a practical low-cost filter,
audio frequencies should be kept to
40 percent or less of the DAC update,
or sample rate. If higher frequencies
are attempled, the filler cannot prop-
erly smooth the waveform and an un-
pleasant distortion called alias distor-
tion occurs. Note that there is no low-
frequency limit when producing
sound with a DAC; you can go clear
down lo dc if desired.

No matter how dense the vertical
grid lines become, the waveform ac-
curacy is always conslrained by the
horizontal grid line spacing. This con-
straint leads to background noise and
distortion that cannot be filtered out.

Fig. le illustrates the effect of add-
ing another bit of precision to the
DAC and the numbers it receives. In
terms of audio noise level, adding the
bit reduces noise by six decibels, a
significant but not dramalic amount.
In most cases the noise itself is basi-
cally white, resembling somewhat
the sound of ocean surf.

Fig. 2 shows how the fidelity of var-
ious combinations of sample rate
{horizontal grid spacing} and DAC
resolution (vertical grid spacing)
compares with familiar audio de-
vices. Also shown are contours of
constant data rate (total kilobytes per
second) to give an idea of required

system speed.

The important points are that fre-
quency range and background noise
level are independently adjustable
system parameters and that greater
fidelity is accompanied by a higher
data rate. Note that it is considerably
less expensive in terms of data rate to
reduce the noise level than it is to in-
crease the high-frequency limit. The
two stars in Fig. 2 represent the two
software digital music synthesis sys-
tems that will be discussed in this ar-
ticle.

Where the Numbers Come From

The real trick in a DAC-based mu-
sic system, then, is to compute the
string of numbers, or samples, repre-
senting the desired sound and then
send it to the DAC at the required
rate. In all of the cases that will be
considered here, the sample rate will
be constant because that assumption
greatly simplifies the computations.
Conversely, when the rate is as-
sumed to be constant, it must be to
rather close tolerances to avoid exces-
sive jitter noise.

At this point you can choose lo go in
either of two directions. In real-time
digital synthesis, the samples are
computed at the rate required by the
DAC and sent to it immediately. The
advantage, of course, is that the
sound is heard in its final form as the
program is running. The disadvan-
tage is that practical sample rates are
relatively high, which means that a
very efficient program using an un-
complicated synthesis technique run-
ning on a fast microcomputer is re-
quired.

The other choice is delayed play-
back digital synthesis, where the
computed samples are first written
onto a mass storage device at relative-
ly low speed and then later reread
and played through the DAC at the
necessary high speed. The advan-
tages here are that the synthesis pro-
gram can be more accurate (and thus
slower), any synthesis technique of
any complexity can be utilized, and
the higher sample rates and DAC res-
olutions necessary for high fidelity
can be utilized. The main disadvan-
tages are a rather long delay between
program execution and audible re-
sults and the necd for a large capac-
ity, high-spced mass storage system.

It is also possible to combine the
two philosophies—real time tor com-
position and experimentation with
the orchestration and delayed play-
back for a high-fidelity final result.

Microcomputing, January 1981 5§

ONE CYCLE OF WAVEFORM

WAVEFORM TABLE

ADORESS | CONTENTS
o [}
1 &7
2 79
3 al
P 92
s 93
6 | as
7 | -7
8 -55
9 -64
10 -60
" -80
12 -93
13 -86
14 -27
) 14

Fig. 3. Example waveform table.

The emphasis in this article will be on
the real-time lype of system, since
that is of interest to most people at
this time.

It should be noted that the software
techniques that will be described ac-
tually perform the same functions as
the hardware programmable wave-
form synthesizer boards mentioned
earlier. In fact, a study of the history
of computer music reveals that the
techniques were developed first in
software and then later implemented
in hardware when it became practi-
cal to do so.

Let's begin by choosing a micro-
processor, a sample rate and a DAC
word size and then determine what
can be done within those constraints.

The microprocessor will be a 6502
because of its usage in a large number
of computers (PET, Apple 1, Atari,
KIM-1, SYM-1, AIM-65, OSI and
Mattel, to name a few) and its effec-
tive high speed in this application (at
a standard 1 MHz, approximately 60
percent faster than a 2 MHz 8080 or
7-80). About the lowest sample rate
of interest is 8 kHz. This would allow
audio frequencies up to a little
beyond 3 kHz, which is just below
the highest note on the piano key-
board. More important, it might limit
the high harmonics of many instru-
mental sounds and thus give them a
somewhat muffled character. Never-
theless, it is high enough to be useful.

Needless to say, the DAC word size
will be eight bits because of the
microprocessor chosen. This would
give an audible but acceptably low
background noise level with a DAC
having true eight-bit linearity and a

56 Microcomputing, January 1981

good low-pass filter.

Using the 8 kHz sample rate means
that the time between samples is a
mere 125 us, or around 40 machine-
language instructions per sample.
Clearly you cannot write the program
in BASIC, use the SIN function to
compute samples, use floating-point
arithmetic or even perform a simple
multiply operation and get a sound
sample computed in 125 us, much
less several for multi-part harmony.
Although there are simple (and thus
fast] methods of computing saw-
tooth, triangle and square wave sam-
ples directly, only three different
waveforms would not be very much
variety.

The answer is to compute the
waveform ahead of time and put the
results in a waveform table. The
music playing program then merely
looks up the waveform samples in
the table—an operalion that takes
almost no time on a 6502—and sends
them to the DAC. Since the wave-
form is precomputed, even a very
slow BASIC program is acceptable
for computing it.

A waveform table is nothing more
than a string of byles in memory
where each byte isa sample along the
stored waveform. For simplicity,
which means speed, waveform tables
will be made 256 bytes long, or one
memory page. The 256-byte content
of the waveform table represents ex-
actly one cycle of the stored wave-
form. Fig. 3 aids in understanding the
rclation between a waveform and its
image in the table. For illustration
purposes the table length is assumed

3200 3201 3202 3203

to be 16 bytes, but the same princi-
ples hold for the 256-byte length.

Now let's see how a music synthe-
sis program might look up, or scan,
the waveform table to produce
sound. In its simplest form, scanning
consists of reading the first entry,
sending it to the DAC, reading the
second entry, sending it to the DAC,
elc., in a loop. When the end of the
table is recached, it is necessary to
wrap around to the beginning for the
next cycle of the waveform.

If you did this at an 8 kHz rate with
a 256 entry table, approximately 31
scans would be performed each sec-
ond, which corresponds to 31 wave-
form cycles per second, a very low
frequency note indeed. For higher
frequency notes the scanning could
be altered so that every other entry
was read, which would give 62 Hz,
every third for 93 Hz, etc. Although
not intuitively obvious, skipping

INCREMENT

POINTER

Fig. 4. Waveform table scanning.

32F8 32FC 32FD 32FE 32FF

WAVEFORM i
TABLE
1 A
0040 IF 0041 1
FRACT! & ETH
—_— RACTIONAL BAKT | INTEGER FAR
INCREMENT iz o
ADD INCREMENT TO THESE
DoAT Bi 0043 PI 0044 PP
TABLE FRACTIONAL PART | INTEGER PART] WAVEFDRM PAGE
POINTER
OINTE | a2
USE THESE FOR
INCIRECT ADDRESS
ADDRESS CODE ASSEMBLY STATEMENT EXECUTION TIME
0200 AS a2 Lpa PF ADD FRACTIONAL PART 3
INCREMENT T
0202 &5 40 apc IF FRACTIONAL PART OF POINTER 3
0204 85 42 sTa PF 3
0208 A5 43 Loa Pl ADD INTEGER PART OF 3
INCREMENT TO INTEGER PART
0208 65 41 ape n OF POINTER WITH CARRY 3
0204 W5 az B 3] 3
020¢ 81 43 Loa (PLLY DO THE TABLE LOOKUP 5
EGISTER Y+0, A HAS 23
TABLE ENTRY WHEN DONE

Fig. 5. Table scanning on the 6502.

waveform table entries does not con-
tribute to distortion if the tabulated
waveform conforms to certain rules
that will be discussed later.

Fig. 4 aids in understanding the
scanning process. Here the example
16-point waveform table has been
bent into a circle, which is one way to
view the wrap-around process men-
tioned earlier. The arrow represents
the waveform table pointer, which
contains the contents of a machine
register or memory location. The
bracket represents the value of the
waveform table increment, which in-
dicates how far the table pointer is
advanced every 125 us sample peri-
od.

Thus, if the increment is one, the
pointer will take on values of 0, 1, 2,
..., 14,150, ... (0-255 in real life|
and give us a low note. If the incre-
ment is 3, the pointer will go through
the sequence 0, 3, 6,9, 12, 15, 2, . ..
and give us a three-times-higher note.
Thus, the increment is proportional
to the pitch of the synthesized tone.
Note that in this case successive trips
around the table are not exactly the
same. Again, this does not lead to dis-
tortion if the waveform meets certain
requirements.

Returning to the real case of a 256
point table, it is apparent that the fre-
quency resolution of 31 Hz when us-
ing integral waveform table incre-
ments is not sufficient for most musi-
cal applications. What is neceded is
the ability to specify an increment
with a fractional part such as 7.04 to
produce a precise A below middle C.
This is quite possible but requires
that the waveform pointer also take
on a fractional part, which leads to a
problem. How should the table be
read when the pointer says ‘'read the
78.645th entry’'?

A sensible answer would be to look
at both the 78th and 79th entries and
then interpolate between them. Un-
fortunately, even simple linear inter-
polation is fairly complex (requires a
multiply), which meansit is slow. For
real-time digital synthesis on a micro-
computer, we will be forced Lo ignore
the fractional part of the pointer
when reading the table but include it
when adding the increment to com-
pute the next value of the pointer.
Taking this shortcut leads to a distor-
tion called interpolation noise, which
is significant but generally tolerable.

Now how might a program seg-
ment be set up to manipulate the
pointer, increment and table to gen-
erate sample values for the DAC? Fig.

AOOF DAC = X'AOOF ; OUTPUT PORT ADDRESS WITH DAC
3000 WAVITB = X'3000 ; WAVEFORM TABLE FOR VOICE 1
3100 WAV2TB = X'3100 ; WAVEFORM TABLE FOR VOICE 1
3200 WAV3ITB = X'3200 ; WAVEFORM TABLE FOR VOICE 1
3300 WAVATB = X'3300 ; WAVEFORM TABLE FOR VOICE 1
0000 = a ; STORAGE STARTS AT PAGE O LOCATION O
0000 00 VIPT: .BYTE 0 ; VOICE 1 WAVE POINTER, FRACTIONAL PART
0001 00 .BYTE 0 i INTEGER PART
0002 30 .BYTE WAVITB/256 ; WAVEFORM TABLE PAGE ADDRESS FOR VOICE 1
0003 0 V2PT: .BYTE 0 ; SAME AS ABOVE FOR VOICE 2
0004 00 .BYTE 0
0005 31 .BYTE WAV2TB/256
0006 00 V3PT: .BYTE 0 ; SAME AS ABOVE FOR VOICE 3
0007 00 .BYTE 0 H
0008 32 .BYTE WAV3TB/256
0009 00 V4PT: .BYTE 0 ; SAME AS ABOVE FOR VOICE 4
000A 00 .BYTE 0
000B 33 .BYTE WAV4TB/256
000C 0000 VIIN: .WORD 0 ; VOICE 1 INCREMENT (FREQUENCY PARAMETER)
0COE 0000 V2IN: .WORD 0 i VOICE 2
0010 0000 V3IN: .WORD O ; VOICE 3
0012 0000 V4IN: .WORD 0 ; VOICE &
0014 o0 DUR: .BYTE 0 ; DURATION COUNTER
0015 B6 TEMPO: LBYTE 182 ; TEMPO CONTROL VALUE, TYPICAL VALUE FOR
; 4:4 TIME, 60 BEATS PER MINUTE, DURATION
; BYTE = 48 (10) DESIGNATES A QUARTER NOTE
H 4 VOICE PLAY SUBROUTINE
H ENTER WITH VARIOUS TABLE POINTERS ALREADY SET UP
H LOOPS TEMPO®DUR TIMES
0300 .2 X'0300
0300 A000 PLAY: LDY 0 ; SET Y TO ZERO FOR STRAIGHT INDIRECT
0302 A615 LDX TEMPO 3 SET X TO TEMPO COUNT
; COMPUTE AND OUTPUT A COMPOSITE SAMPLE
0304 18 PLAYY: CLC 3 CLEAR CARRY
0305 B101 LDA (VIPT+1),Y ; ADD UP 4 VOICE SAMPLES
0307 7104 ADC (V2PT+1),Y ; USING INDIRECT ADDRESSING THROUGH VOICE
0309 7107 ADC (V3PT+1),Y ; POINTERS INTO WAVEFORM TABLES
030B 7104 ADC (V4PT+1),Y ; STRAIGHT INDIRECT WHEN Y INDEX = O
030D BDOFAQ STA DAC 3 SEND SUM TO DIGITAL-TO-ANALOG CONVERTER
0310 A500 LDA VIPT ; ADD INCREMENTS TO POINTERS FOR
0312 650C ADC V1IN ; THE 4 VOICES
0314 8500 STA VIPT 3 FIRST FRACTIONAL PART
0316 A501 LDA VIPT«1
0318 650D ADC V1INe1
031A 8501 STA VIPT+1 ; THEN INTEGER PART
031C A503 LDA V2PT 3 VOICE 2
Listing 1. Core sound generation routine for organ-like music

5 shows the arrangement of a wave-
form table, its pointer and its incre-
ment in memory. For illustration pur-
poses, the wavelorm table is assumed
to be in memory from 3200-32FF,
which is page 32, while the pointer
and increment are kept in memory
page zcro for fast access. The incre-
ment is a two-byte value with an in-
teger byte and fraction byte as men-
tioned above. The decimal equiva-
lent of the increment value shown is
11.633. The pointer is actually a
three-byte value.

The most significant byte is the
page number (32) of the waveform
table and normally remains constant
but can be changed to select a differ-
ent waveform. The middle byte is the
integer byte of the pointer into that
table, while the least significant byte
is the fractional part of the pointer.

Every sample period (125 us) the
increment is double-precision added
to the integer and fractional parts of
the pointer, and the pointer is re-

placed with the result. Any overflow
is simply ignored, since it is merely
an indication of wrap-around from
the end to the beginning of the wave-
form table. Actual table lookup is ex-
tremely simple in the 6502; you
simply use the rightmost two bytes of
the pointer (the waveform table page
address and the integer part of the
pointer) as the indirect address of an
indirect load instruction. Thus, only
one instruction is needed to look up
in the waveform table. The 6502
machine-language code shown re-
quires only 23 us to do all of this.

Since the 23 us figure is consider-
ably less than the 125 us allowable,
you can have several waveforms,
pointers and increments for several
simultancous tones. There is enough
time to handle four tones with some
left over for housekeeping. You could
also have fewer voices and a higher
sample rate, or more and a lower
rate.

There are two ways to combine the

Microcomputing, January 1981 §7

four table-lookup values into a single
eight-bit value for the DAC. One is to
simply add them up and send the sum
to the DAC, which is the equivalent
of audio mixing. When this is done
the waveform table values must have
been adjusted when the table was
computed to avoid overflow (which
can lead to horrendous distortion)
when the four voices are added up.

The other method is to immediate-
ly send each value to the DAC when
it is found and let the low-pass filter
smear them together, thus effecting
mixing. One disadvantage of this ap-
proach is that the dwell time of each
voice in the DAC must be the same or
there will be differences in loudness
among the voices. Another disadvan-
tage is that certain DAC distortions
are accentuated, although they are
usually not significant at the eight-bit
level. It is also a simple matter to
have two DACs and direct two voices
to each for an approximation to
stereo.

Listing 1 shows the core sound gen-
eration routine used in a digital syn-
thesis program first published in
1977. It is capable of generating four
tones simultaneously, where each

tone can use a different waveform
table. It uses the "add-em-up'' tech-
nique of mixing the four voices into a
single sample value for the DAC. A
separate routine is expected to slore
the appropriate values in each of the
four increments for the desired
pitches and also set TEMPO and
DUR for the desired duration of the
chord.

Each time through the main loop
takes 115 us and represents one sam-
ple period, thus the sample rate is 8.7
kHz. Also, each time through the loop
decrements a copy of TEMPO, which
is held in the X register. When X
decrements to zero, it is restored
from TEMPO, and DUR is decre-
mented directly in memory. If DUR
also decrements to zero, the chord is
complete and a return to the setup
routine is taken. Thus, the total chord
duration is proportional to the prod-
uct of TEMPO and DUR. This prop-
erty makes it possible to change the
speed of the music without recoding
it.

Note the presence of time-equaliz-
ing instructions at TIMWAS so that
the loop time is the same whether or
not register X decrements to zero.

This is necessary to eliminate jitter
distortion mentioned earlier.

The setup routine would look at
coded music in memory to determine
what successive values of the four in-
crements, DUR and possibly TEMPO
should be to produce the desired
music. Typically, music data would
be set up in memory as a set of five
bytes for each musical "event'' (note
or chord) in the piece. The first byte
would be the duration, while the
other four would represent the de-
sired pitch of each of the four voices.

A note frequency table would be
used to determine the proper two-
byte value of the increment from the
one-byte pitch code. This routine
must also be as fast as possible
because sound generation is stopped
when it is in control. If the flow of
samples is stopped for too long, an
objectionable click between notes is
introduced. See references for a fur-
ther explanation of the setup routine.

Next month we will continue our
discussion of synthesizing multiple
tones using waveform table data, ex-
plore the capabilities of existing DAC
software and examine some of the
prospects for the fulure.l

gureet
3“;-%55 i

58 Microcomputing, January 1981

