BY STEVE WHEELER
P.0.Box 15

U. S. Naval Facility Antigua
FPO Miami 34054

The Apple II computer contains in its firmware a 16-bit
pseudo-machine called SWEET-16. A subroutine call to
SWEET-16 causes all following code to be interpreted as in-
structions to the 16-bit pseudo-machine until a return to
6502 instruction (RTN) is encountered. SWEET-16 is a
powerful adjunct to the Apple II computer, and several
programs have been written for the Apple containing SWEET-
16 code, including programs to renumber or to recover in-
teger BASIC programs. Up until now, only Apple has had an
assembler which would recognize SWEET-16 mnemonics,
which meant that all other programmers have been forced
to hand-assemble SWEET-16 code, and insert it into their
programs as hex data. The following program is a modifi-
cation to the cassette version of the S-C Assembler II which
gives it the capability to recognize and correctly assemble
SWEET-16 mnemonics.

How It Works

The assembler is a line-oriented, fixed-field assembler.
Each line in the program is copied from the text file into a
buffer at $0200 prior to assembly. This program grabs con-
trol from the main assembler at location $1477, by replacing
the instruction there with a hook to the SWEET- 16 assembly
routines. The branch to a jump is necessary to avoid distur-
bing the instruction at $1479. What this does is cause these
routines to take control if the entry in the instruction field
of the line being assembled is not recognized as a pseudo-
op or a 6502 instruction mnemonic.

The mnemonic is then compared with entries in the in-
struction table. Spaces are ignored, with one exception which
is covered in the section on program limitations. If there is
a match, a type byte is used to determine which routine(s)
will be used to produce the final opcode, and to return to
the main assembler at the proper point.

The instruction table format is as follows: the letters in
the mnemonic are in ASCII code with the high bit set on the
last character only. No space characters are included. The
mnemonic is followed by an opcode byte, and then by a
type byte. The end of the table is signified by table entries
of $FF,

Quick and Dirty
Routines for the Sweet-16

Routines Used in the Main Assembler

As written, these routines will work only with the cassette
version of the S-C Assembler II. The following explanation
is for those who wish to adapt the routines to another as-
sembler.

GTCH — This routine loads the accumulator with a character
from the line buffer, and converts the character to true
ASCII (high bit clear). The Y register is used as the index
into the buffer. Location $06 is used to store the value of
Y between calls. Before returning, the character in the ac-
cumnulator is compared to a space, the carry flag is
cleared, and Y is incremented and stored into $06.

BLD — This routine updates the location counter, and builds
the file of assembled code if called during pass #2. The
value in the X register is used to determine which pass is
in progress.

BYT1 — This is the entry point for single-byte opcodes.

BYT2 — This is the entry point for branch instructions. This
returns to the main assembler just after an opcode would
have been obtained, and just before the calculation of the
relative displacement.

BYT3 — This is the entry point used for the SET opcode.
It is the second instruction of the subroutine which handles
the .DA pseudo-op.

NOPE — This is the return point if a match is not found. It
prints the error message “BAD OPCODE AT LINE”,
aborts the assembly, and returns the assembler to com-
mand mode.

How To Use the Program

Before assembling this program, one patch must be made
to the assembler. Location $1010 must be changed from $1C
to $1E to move the start of the symbol table past these
routines. If this is not done, the program will be stored on
top of its own symbol table, and the assembly will be aborted.

Page 24
386

Dr. Dobb’s Journal of C: Calesth

& Orthod

Box E, Menlo Park, CA 94025 Number 39

The following mnemonics are recognized:

Non-register operations Register operations
BC ADDR
BK CPR R
BM1 DCRR
BP INR R
BR LD R
BS LD @R
BZ LDD @R
RS POP @R
BM POPD @R
BNC SET R
BNZ ST R
BNM1 ST @R
RTN STD @R

STP @R
SUB R

Spaces within a mnemonic are ignored. The register number
is specified by one ot two decimal digits following the ‘R’ for
a register operation.

Limitations of the Program

These routines were designed as a minimal add-on to an
existing assembler. As such, there are no error checks written
into ther. The following are “gotchas™:

1. The subroutine REG, which calculates the register number
for a register operation, assumes that the first character
following the ‘R’ is a number, a space, or an end of line
token. If the second character is not one of those, it is
treated as a number, and the previous character is assumed
to be a ‘1’. This means that ADD R 3, ADD R%3, ADD
R13, ADD R03, and ADD RQC will all produce the op-
code ‘AD’,

2. The assembler requires a fixed-format line, and assumes
that a particular index into the buffer will point to the first
character of the operand. This feature has been sidestepped
for the SET instruction, but not for branches. This means
that a two-character branch mnemonic must be followed
by two spaces before the branch destination, a three-char-
acter branch mnemonic must have one space between it and
the destination, and the four-character branch mnemonic
(BNMI) must be immediately followed by the destination,
with no intervening spaces.

3. Do no put a comma between the SET mnemonic and its
operand. Just leave a space between them. Example:

SET R4 BUFF

These are the limitations that I know of. If anyone dis-
covers other flaws, or comes up with a fix for these, I
would appreciate hearing about them.

Good Points
1. Since these routines only produce the opcode, the host
assembler handles all operands. Therefore, operands in

Number 39 Dr. Dobb’s Journal of Comp Cali

branches and the SET instruction can be decimal, hexa-
decimal, or labels.

2. Where else can you get an assembler which handles SWEET -
16?7

Final Comments

If the above limitations are respected, assembly of SWEET -
16 code is correct and almost uneventful. I say almost be-
cause [nearly knocked my Apple off the table the first time
the routines worked correctly, and I still have to stifle a grin
whenever I use them.

These routines are basically a “quick and dirty”’ implemen-
tation of a SWEET-16 assembler. Since I have only a few
months of experience with assembly language, writing them
was anything but quick. My purpose in publishing them is
simple: I'm hoping that similar routines, suitably improved,
will be incorporated in future assemblers for the Apple II
computer. It’s time that assemblers for the Apple were capable
of recognizing and assembling ALL instructions which the
Apple can execute.

I would also like to dedicate this program (Why not? It’s
done for books.) to Chris Johnson, who gave me my start in
assembly language programming, and who provided the
original idea for this program.

References

The Apple II computer is produced by the Apple Computer
Company of Cupertino, California. The S-C Assembler II is
available from S-C Software, P.O. Box 5537, Richardson,
Texas 75080. The definitive article on SWEET-16 originally
appeared in the November 1977 issue of BYTE magazine.

& Or ia, Box E, Menlo Park, CA 94025 Page 25

387

