Interfacing the 68000

to an AIM 65

a number of reasons the most famous are only three,

the 8086, the Z8000 and the Motorola MC68000. We
have been hearing a lot about what they can and cannot do; as
a matter of fact, boards employing one of such CPUs did not
have too much luck.

This recalls to memory what happened years ago: every-
body realized that the Z80 was more powerful than the 8080,
but an upgrading kit for 8080 machines simply did not sell.
The reason was not the lack of Z80 software, because the Z80
can run 8080 software. It was that the user was not willing to
spend money for something maybe better but not *“‘useful.”

Nowadays we have to ask ourselves how useful is a 16-bit
CPU; we feel it is not for the computer consumer, the one who
buys a computer just to play games or little more. There is a
range of applications requiring more computational power
than what is currently available on 8-bit CPUs. When we say
“computational power,” we do not only mean an extended in-
struction set or the capability of running standard programs
ten times faster: all those aspects have to be considered as a
whole, along with all the hardware facilities. Many concepts
developed for the old mainframes are becoming prominent in
microsystem design: can you imagine a multi-task, multi-
processor system without the test-and-set instruction and the
user-supervisor environment? Even the hobbyist with little
background can successfully experiment with concurrent pro-
gramming on a fairly small system, provided he has the right
CPU to start with.

We think that a good 16-bit CPU has enough power to
handle fairly sophisticated, concurrent programming. Among
the available devices, the MC68000 is a good choice. Besides
its nice hardware structure, the following points are to be
taken into account:

1) Its instructions are powerful but limited in number. We feel
that a large instruction set does not necessarily make a pro-
cessor more powerful, it may instead confuse the program-
mer.

2) The instruction set is microprogrammed; it may be im-
proved without changing the overall structure.

3) Its pipelined structure is optimized for speed.

4) It is asynchronous; this feature allows for easy interfacing
with all kinds of devices and peripherals,

The 68000 has some drawbacks, too:

1) It does not provide a dynamic memory refresh like the
Z8000; this is a really handy feature, even if software re-
fresh is an alternative.

2) Its most interesting supporting chips are not scheduled to
be available in the near future.

3) Like most of its competitors, there is not too much soft-
ware available if we exclude that delivered from Motorola
for their boards and development systems (which, in any
case, are quite expensive).

T oday there are several 16-bit CPUs on the market; for
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Nowadays it seems that what really interests the computer
consumer is software. He does not care too much about the
underlying hardware, he is most concerned about the programs
he can run on his machine. At most he considers the interface
capabilities of his computer, but usually he even does not
know the internal hardware structure. In our opinion there are
still some people interested in system design: people who like
to experiment with new devices. The tool for this kind of
work is called a development system. After the hobbyist elimi-
nates the ones that are too expensive, what is left is an evalua-
tion system which basically is a single board equipped with a
CPU and a handful of switches and LEDs. Experimenting
with such boards is time consuming and not rewarding at all in
any case. There must be a better solution.

The Idea

Almost all of the computer enthusiasts around already
own a microcomputer. Why not use our own system to control
a 680007 In this article we will describe this hardware and
software implementation on a Rockwell AIM 65. For the read-
er who is unfamiliar with this machine we will summarize its
features. It is a single board based on the 6502 with a
QWERTY keyboard, a 20-column thermal printer and an al-
phanumeric display, 4K byte of RAM, an 8K byte ROM moni-
tor, a 4K byte ROM assembler, and 2 Versatile Interface
Adapter chips for 1/O and expansion. We had to make only a
few trivial hardware changes.

We have said, indeed, that we are going to control our
68000, but which way? We want to be able to control it dur-
ing each read or write cycle (from now on simply cycle), in
real time, changing the mode of operation according to neces-
sity among all the ones available to our system. Furthermore,
we want to be able to manipulate during each cycle all the
68000 control signals; this way we can simulate interrupts,
multi-processing and so on.

The Hardware

All we needed to implement our idea was nine eight-bit
I/O ports and a couple of decoders. The 68000 became a peri-
pheral connected to the AIM bus at a certain address. On the
AIM expansion connector we found all we needed: the 8-bit
bi-directional data lines, the 16-bit address lines, and two con-
trol signals: R/W and 02 which are used for synchronizing
R/W operations. Figure 1 (page 15) shows the block diagram of
the interface; Figure 2 (page 16) is the schematic. For all the
6502 timings, the reader can refer to the 6502 hardware manual,

From now on we assume the reader understands 68000
hardware and software details; refer to the MC68000 user’s
manual for a complete description of this processor.

As the 68000 is asynchronous, we can control each cycle us-
ing the signal DTACK, which stands for data transfer acknow-
ledge. When the 68000 wants to perform a read or a write, it
asserts the AS signal and waits for DTACK. At this point our
AIM program can do all it has to, and when finished it asserts
DT ISK by writing to location $8XXB, signaling the 68000 to
continue. IC 20 (a 74LS74 flip-flop) takes care of negating
DTACK when 68000 negates AS.

All 68000 signals are interfaced to the AIM through six
DM81LS95 buffers and three 74LS373 latches. The 68000
interface is seen by the AIM as a 1Kbyte memory. The 6502
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can address up to sixty-four 1Kbyte pages and the board can
be located anywhere inside them, provided there are no con-
flicts with the AIM 65 requirements. This is accomplished with
a DM8131 six-bit comparator (IC 10). To select the right page
the user must supply the appropriate logic levels to the com-
parator inputs. In our implementation the board is located at
$8000. Inside this address space there are sixteen meaningful
locations, from address $8XX0 to address $8XXF. Only
twelve are, however, actually used and only the first nine are
used to interface the 68000, by means of selecting one of the
1/O ports. Selection 10 (signal in Figure 2, address $8XX9)
is used to control the line. Number eleven is not con-
nected. Number twelve asserts DTACK (signal Y11 in Figure
2, address $8XXB). Refer to Figures number 3,4, 5 (page 17)
for a detailed explanation about how the ports are arranged.
Note that with this hardware it is not possible to use the M
command of the AIM monitor inside the board space.

There are two 68000 signals not connected to any port:
VMA (valid memory address) and E (enable). Motorola imple-
mented these signals to maintain compatibility with existing
6800 peripherals. In our opinion it is better to use them as test
points. The user can easily add one additional port to the
interface to monitor them under program control.

The network of open collector inverting gates connected
to the 555 timer and the $8XX9 selection is used to interface
correctly the 68000 HALT and RESET signals, which are bi-
directional. Two LEDs can be used to monitor their logic
levels. The board performs an automatic power-on reset; a
manual reset is also provided, as well as software HALT and

RESET control.

The Software

Before entering into program details, it may be a good
idea to lay down its objectives:

Run-time control of the dynamic evolution of each
68000 instruction step using the AIM keyboard. It is possible
to execute a program stopping the 68000 every cycle, or to
execute any number of instructions consecutively; a dynamic
switch between these two modes is possible, too.

Run-time control of the 68000 input control signal (IC
19, #74L8374 latch). The AIM 65 keyboard can be used to
supply a byte to be stored in that latch. We called this feature
“dummy memory.”

Output on display/printer of each 68000 cycle including
addresses, data and control signals coming out from the
processor.

Dynamic allocation of memory. 68000 memory is seg-
mented and each segment base address can be located any-
where inside the AIM free RAM. If the 68000 is doing a read,
it is possible to enter data from keyboard; if it is doing a write,
it is possible to do a data display. This way no effective mem-
ory operations are done.

Use of all AIM 65 peripherals and utilities under 68000
program control. We defined that a 68000 segment cannot
be greater than 64Kbytes (in automatic mode). If a write is
performed inside the first 256 bytes of the last 1Kbyte page
available to a segment (address $00FCXX) it is assumed that a
6502 subroutine call is made. The 68000 lower data byte is
loaded in the 6502 accumulator. The 68000 upper data byte
is used to index a table of pointers to 6502 subroutines. On
return, the 6502 -accumulator is copied into two locations, one

inside the 68000 user data segment and the other inside its
supervisor data segment.

The 68000 is operated cycle by cycle by the program in
Listing 1, p. 36. As the program currently running evolves,
whatever happens is shown on the display/printer or whatever
is connected to the AIM 65. Various instruction combinations
can be tried, and the operation of the 68000 becomes clear.

The five objectives that we have so far discussed are im-
plemented in a program 519 bytes long. The user has to select
the operating mode by storing an appropriate value in a con-
trol byte, CONTRL. Each bit controls a mode as explained
below.

If bit 0 is set, after printing the 68000 address the AIM 65
program requests a byte from the keyboard. It will be stored
in the latch connected to the 68000 input control signals.

If bit 1 is set, manual mode is selected, otherwise auto-
matic mode is assumed. Manual mode corresponds to the
dummy memory R/W mode previously discussed; in the auto
mode, R/W is performed from memory.

If bit 2 is set, before issuing the DTACK signal the user is
requested to validate all operations performed during the
current cycle by entering a carriage return. This is also called
step mode, Any other character will repeat the current cycle.
No such validation check is made if bit 2 is cleared.

If bit 4 is set, fast mode is selected. When this mode is
selected 68000 cycle status output is suppressed. This allows
for fast 68000 program running, as a great deal of the AIM
housekeeping time is spent reporting things on display/printer.

The previous modes can be mixed together. Fast mode
overrides all the others. When it is set, the other modes are
used to select the mode that will be entered upon error. Dy-
namic mode changing can be accomplished by executing a
68000 instruction that stores a new value in the control varia-
ble. Thus, a 68000 program can put itself in Step mode.

Memory segmented is implemented using two tables,
FCTAB and MAXADD. They specify the AIM 65 base ad-
dresses of each 68000 segment and their extension. These lat-
ter values must be supplied, and they must be consistent with
the former ones. Of course, each 68000 segment starts from
location $0000000.

Final Thoughts

We have so far discussed how to build from scratch a small
development system for Motorola’s 16-bit processor, the
MC68000. The underlying concepts are quite general, and it
should not be difficult to implement our idea using the read-
er’'s own computer instead of our AIM 65. The ones familiar
with this machine will have already noted that the accompany-
ing program was not listed with the 20-column thermal printer
available on the AIM board, and that the assembler was modi-
fied.

In fact, besides using the AIM 65 as an experimental com-
puter, we use it as our “‘big” system. Anyone who is interested
and wants more information about how we did it may write to
the authors. Let us now report the impressions about the
MC68000 that we gained using the board we have here pre-
sented. We appreciated most the power and simplicity of its
instruction set. Some things shocked us, though. For example,
you can try to execute a CLR to memory and see what hap-
pens. Before clearing the desired locations, the processor reads
them. This, of course, wastes time and has no usefulness. Any-
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way, summing up all the againsts and fors, it proved to be a
superior processor. After executing just a few programs, the
user accustomed to 8-bit microprocessors will no longer be
satisfied with them.

The MC68000 architecture is a bit different from standard
8-bit machines. The reader who will use our board might then
have some problems. Let us give some hints that may prove
useful.

The 68000 has a pipelined structure. This means that it
fetches one or more words before actually executing the in-
struction. These words, which may be subsequent instructions,
are printed and displayed. Such a thing may lead one to think
that the processor is not executing properly; on the contrary,
it is doing its job. Again, during stacking operations, words
may not be stacked following the address ordering; the overall
stacking procedure is still correct,

The MC68000 is a 16-bit machine, therefore it addresses
by words. Instructions must start on even boundaries. If the
user specifies the initial PC to be at an odd address, the 68000
will enter an address error exception. If the supervisor stack
point also starts at an odd address, well, you will be in trouble.

There are, of course, many other things that should be said,
but it may be more interesting to explore the 68000 world
yourself,

Concluding, we would like to point out that everything
we have said so far is not restricted to a particular machine,
Some readers will like to experiment with a different CPU, say
the Z8000, and we think they will not have too many prob-
lems adapting our ideas to their needs. After a few weeks of
experimenting with our board, the need for more sophisticated
software may arise. It should not be too difficult to write a
cross assembler using AIM BASIC. This would eliminate the
need for hand compiling all the 68000 instructions. Again, it is
possible to slightly modify the hardware to let the 68000 have
an independent life, without passing through the AIM for
executing its instructions.

Italy is not that far away; anyone who wants to write us
to exchange opinions about computers is encouraged to do so.

L 2]}
(Figures 2-6 on pages 16 and 17)
(Listing begins on page 36)
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68000 On-Board Selections

68000 Input Control Signals

(IC19)
Bit No. on AIM Data Bus Signal
ADO BGACK bus grant ack
AD1 BERR  bus error
AD2 N.C. (not connected)
AD3 VPA valid peripheral
address
AD4 BR bus request
ADS IPLO interrupt priority
level 0
AD6 IPL1 interrupt priority
level 1
AD7 IPL2 interrupt priority
level 2
Figure 5

Address (Hex) Selection
8XX0 68000 lower 8 data bit (WRITE)
8XX1 68000 upper 8 data bit (WRITE)
8XX2 68000 output control signals
(refer to Figure 4)
8XX3 68000 input control signals
(refer to Figure 5)
8XX4 68000 lower 8 address bit
8XXS5 68000 middle 8 address bit
8XX6 68000 upper 7 address bit
8XX7 68000 lower 8 data bit (READ)
8XX8 68000 upper 8 data bit (READ)
8XX9 HALT
8XXA N.C. (not connected)
8XXB DTACK
Figure 3
68000 Output Control Signals
(IC22)
Bit No. on AIM Data Bus Signal
ADO WRITE  write
ADI DS lower data strobe
AD2 UDS upper data strobe
AD3 AS address select
AD4 BG bus grant
ADS FC2 function code 2
AD6 FC1 function code 1
AD7 FCo function code 0
Figure 4

Meaning of the fields in the AIM listing of the 63000
program:

Data:
68000 Data Bus

Optional Field1:

Byte stored in the 68000
Control Input Lines
Optional Field2:

0000

M=Manual Mode, Else Blank

000000

Address:
68000 Address Bus

‘i R/W Code:
RW/WW=R /W Word
WH/RH=R /W High byte of a
Word
RL/WL=R/W Low Byte of a
Word

RW

SP

68000 Function Code:

SP Supervisor Program

UP User Program

SD = Supervisor Data

UD = User Data

1A Interrupt Acknowledge

Figure 6

(Listing begins on page 36)
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68000/AIM 65

(Listing, text begins on page 12)
(See Figure 6, page 17 for meaning of fields in Listing)
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0180 0287  ADOZAN LDA CIN 0349 4n
0181 upeA 2901 AND W1 1EST 68000 R/ 034A 40
0182 028E  DONF BNE READM 0348 4A
0140 4a
IE WRITE OUTPUT 48000 DATA BUS 0340 AR
ADD 18N WRITFH (DA DIH D34F  FOO7
2046k ISR NUMA 0350 FOEE JSKIP IF INTA
ADOOBI 1A D1l 0352 ABFE
204414 ISR NUMA 0354 C9FC 16502 SUBROUTINES CALL
0189 129A 401703 NP TSER 0356 FO4A
0346 ASFE
0191 029D $IF READ. GET TWO BYTES FROW KEYBOARD AND PUT THFH 0354 DDONO4 GNP MAXADD X
0192 0290 JON THE 48000 TNEUT DATA LATCHES oo oy e J0UT OF SFB. RANGE ERR.
1% Do GUEReD  NEane aal ReTE 03ISF 18
0194 0740 ADOABN stA 0360  7DFEN3 foc FCTAB.X  1ADD SFG. OFFSFT
0195 0263 20FDE3 S8 RevTE 0363 ASFC S5TA
N196 0248  BDO7BH STA DOL 0945 ADDING LbA E'N
0197 07A% 401703 JNP TSER 0348 2901 AND W1 1TEST 48000 R/W
03sA D022 RNE READF
0200 0240 JAIT0 MODE: B/ FRON KeNOR 034c JEAST HEMORY WRT
0U01 02AC ADOZED  AUTO  LDA 0360 ADNZRD  WRITE DA CIN
0I6F 2902 aND 2 158000 UDS
0203 N2AF TMEMORY SEGMENTATION SECTION: IF OVERFLOW 0371 boo7 RNF NOUNSF
0204 02AF SFRROR OR INTA STATE SWITCH TO MANUAL HODE 0373 A URFUBE LDY WO
0205 02AF  29E0 FCADD  AND WX11100000 0375 ADO1E0 1 DA DIH
0206 0281 4R LSK A 0378 91FR STA (FOI.Y
0207 0287 4A 0374 ADOZBO  NOUDSE 1 DA CIN
0208 0283 44 0170 2904 AND W4 158000 LOS
0209 0204 44 037F D007 BNF NOLDSF
0RT 44 0381 A0 WRFLDS  LDY #1
0285 AA 0383 ADOOBO 1DA DI
17 0287 EOO7 0384 FIFR STA (FD).Y
0213 0289 FOC4 158000 HAS ACK. AN INTERRIPT 0366 ADORBD NI DEb L 0A DTACK
0215 0288 ASFF 0388 4enens ane waltas
0215 0280 DNCO PREGMENT GREMTER THAN 84K.
Gira PR AGHE LDA SAVFNH 038E ILART AENORY WEAD
0247 0201 C9FC CHP WSFC 14502 SUBROUTINE CALL lF wnnn Qa8 Aonn HESE g
0218 0203 [ ADDR. 1S EQUAL TO %OOFC 0370 BAFE ”‘ﬁ (FD), V.
0215 0203 D003 BNE LABN n392  ADDAAN STA DO
0220 0205  4CA203 M CALSUR 0344 0395 A0DT 1oy w1
0221 02CA  DDONNG LABD  CHP MAXADD, X U34S D397 DIER LBA RO
BOB2 BCS HANUAL FERR. IF SEGMENT 1S Sie D Ghofen T8 /0L
' OUT OF ITS RANGE
" oo
70FB03 ADC FCTAR, X 5ADD SEG. OFFSFT 10 FFFECTIVE Fame L
! 4800 ADDR..7 /86 TE BELECT [THE 0347 03%C  ADOBR 1A DTACK
RIGHT KEMORY LOCAITONS TN THF 0348 0I9F RS0 P WATTAS
3 AIH HEHOR'( SPARF s &
8uEr STA F1
0230 0283 ASFD LR FLL vane 14507 SURROUTINFS HANDLER. &BO0D UPPER
0953 0 :DATA BYIE IS THE INDEX TO THE SUBROUTINES
Fase 05 0342 TADDRFSS TABLE: 48000 LOWFR
0342 DATA BYTF IS 10ADED IN THE 4502 ACK.
0931 0205 BGFR s1A FO 0342 10N RFIURN THE 6507 ACC. 15 COPIFD IN
0232 0207 ADNZAD LOA CIN 032 5TWD | OTATIONS SPECTFIFD BY THE USEI
0733 0208 2901 AND W1 TEST 68000 R/M 03A2 AUEAN IS LOTATED IN THE USER DATA SEGHFNT!
0234 020C B2 HNE READA 0342 iSAUFAS IS LOCATED IN THE SUPERUTSOR
037 IDATA SFGHENT
0238 0R0F JAUTO VRITE 1N MENORY 03A2 ADOZAD  FALSUB 1 DA CIN
0237 020E  ADNZHO  WRITA  LDA 03A% 2901 AND W1 PTEST 48000 R/W BECAUSE
0238 061 2902 D a2 1TEST 68000 UPPER DATA STR 0387 FOn3 BEQ CALSUT FONLY WRITF IS AlLOMED
0239 02E3  DOOA BNE NOUDS 03AS  4C7FO2 MR M HANUAL
03AC ADO1BO  CALSUI LDA DIM
0241 0265 JWRITE UPPEK DATA BYTE 03GE C902 (WP WMAXROU  3SUBR. ADDR. TABLE OVERFLOW
0265 AOON WRILDS LDV OO N3R1 BOFE HES ERR
GHE7 ADOABO 104 DIW 0383 04 ASL A
02EA  91FB STA (FO),Y 03R4 AR '
OZEC P04blA 158 NUMA 0385 BOD40A I DA TABSUB, X
02EF  ADOZB0  NOUDS  LDA CIN 8 1A LOCIHR
027 2904 AND W4 FTEST 68000 LOMER DATA STROBE n38A  EDDSO3 DA TABSUB+1.X
02F5  DODR BNE NOLDS UKD BIFH STA LOCINE+1
03KF  ADOOBO DA DIL
02F 6 INRITE 48000 LOWER DATA BYTE 0ar2 200103 1SR WP SUB
072F8  ADDT WRILDS  1DY Wi 03C5  BNOODE STA SAVEAU
02FB  ADODRD LoA DIL 03C8 8000 STA SAVEAS
02K 918 S1A (FO), Y 03CE  ADORBU Lba DTACK
02FD 2046EA JBR 03CE 4C04DZ M LOOP
0300 401703 NOLDS WP TSER
0301 ACFADD  MPSUR  JMP (LOCJNP)
0303 JREAD & VORD FRON HENORY
0303 ADDD READA  LOY
0305 BIFE Lba <Py
0307 @noaan STA DOM 0384 DaAN4 7A502 SUBR. TABLE
0308 204684 ISR NUMA 0381 0304 4AEA TARSUR . HORD NUA
0300 AONY LoY w1 U3HA 03NS FDED MORD RBYTE
030F  B1FB LDA (FO) .Y
0311 800780 STA DOL nags  nave $6BO00 R/W CODES
0314 2046kA JSR NUHA Wiy 0IDR 5757 TARRML  .BYTF " WWRWMLRLWHRHUNIN®
0391 03kR 1 4RO00 FUNCTION CODES
uzan 03/ 3TF STEP MODE IS SELECTED, WAIT FOR A CHAR. FROM 0392 IR 45T TABFC  .BYIF UTU2UPSPUDSDUITA’
026y 1317 IKEYBOARD: IF IT IS NOT A CR DO NOT IS0}
0270 0317 JDTAUK, AND REPEAT THE CICLE 0394 036 SEGHENT START ADDR.. EXPRESSED IN PAGES OF 25
0771 0317 ADOAOR  TSFR DA CONTRL 0493 03FH S EACH. IISER MAY CHANGE THESE VALUFS: TF
n272 0318 2904 AND #4 FSTEP HODE CONTROL AIT 0396 0B Thk DOEE 50 ME WAS TO CHANGE ALL THE RELATED
0273 ¢ FO0A 8F6 DTA 0397 wakA SUARTABIE ADDRESSES (SEE [0P OF PROGRAM).
0274 0IME  203CES ISR READ 0390 038 IHE MAT MAVE TO CHANGE VALUES TN THE KAXADD
027% 0321 CHOD £he Naoh
0276 W Fon3 8 A i
T/ U AT0602 JHE LOOP {Continued on next page)
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68000/AIM 65

(Listing continued, text begins on page 12)

Pase 08

0405
0406
0407

0421

0424
0426

FRRORS

HAXKOU

038
03F8
03F9
[
03FR
oaFc

03FD
03FE
03FF

n4on
0400
n4on
0400
0400

0407

0408
0408

- onoo

. NIFR

00
00
ot
04
o8

05
00
oo

04
0z
04
o1
on
[

3TABLE. 100
cTAB T

SUNDFF INED
SUNDEF INED
TUSER PROGR
ISUPERVISOR PROGRAH
TUSER DATA

FSUPERVISOR DATA
$UNDEF INED
SCINTA)

INUMBER OF PAGES AVAILABIE TO EACH SEGMENT,
SUSER MAY CHANGE THESE VALUES: HOMEVER THEY
FHUST RE CONSTSTENT WITH THE SEGHENTS START

JADDRESSES JUST DEF INED
HAXADD TE

sossrvano

FEND OF PROGRAN

JEND

BEDADD  As ANOO cRLOW
oneny

FUSER PROGRAH (1K)

FSUP. PROGRAM (512 BYTES)
FUSER DATA (1K)

FSUP. DATA (256 BYTES)
PUNDEF INED

FCINTAY

At EA13 BLANK A1 FETE
As EIFD READ A1 E93C
At DOFA Fn At O0FB
Al ODFE SAVEM A1 OOFF
Ar 8001 CIN A1 8002
At 8005 *ANDH A1 AONS
A 800Y RES AL BOOA
Ar 0204 WAITAS At D209

At 0308 TABFC At 03F8
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