Interfacing the 68000

to an AIM 65

a number of reasons the most famous are only three,

the 8086, the Z8000 and the Motorola MC68000. We
have been hearing a lot about what they can and cannot do; as
a matter of fact, boards employing one of such CPUs did not
have too much luck.

This recalls to memory what happened years ago: every-
body realized that the Z80 was more powerful than the 8080,
but an upgrading kit for 8080 machines simply did not sell.
The reason was not the lack of Z80 software, because the Z80
can run 8080 software. It was that the user was not willing to
spend money for something maybe better but not *“‘useful.”

Nowadays we have to ask ourselves how useful is a 16-bit
CPU; we feel it is not for the computer consumer, the one who
buys a computer just to play games or little more. There is a
range of applications requiring more computational power
than what is currently available on 8-bit CPUs. When we say
“computational power,” we do not only mean an extended in-
struction set or the capability of running standard programs
ten times faster: all those aspects have to be considered as a
whole, along with all the hardware facilities. Many concepts
developed for the old mainframes are becoming prominent in
microsystem design: can you imagine a multi-task, multi-
processor system without the test-and-set instruction and the
user-supervisor environment? Even the hobbyist with little
background can successfully experiment with concurrent pro-
gramming on a fairly small system, provided he has the right
CPU to start with.

We think that a good 16-bit CPU has enough power to
handle fairly sophisticated, concurrent programming. Among
the available devices, the MC68000 is a good choice. Besides
its nice hardware structure, the following points are to be
taken into account:

1) Its instructions are powerful but limited in number. We feel
that a large instruction set does not necessarily make a pro-
cessor more powerful, it may instead confuse the program-
mer.

2) The instruction set is microprogrammed; it may be im-
proved without changing the overall structure.

3) Its pipelined structure is optimized for speed.

4) It is asynchronous; this feature allows for easy interfacing
with all kinds of devices and peripherals,

The 68000 has some drawbacks, too:

1) It does not provide a dynamic memory refresh like the
Z8000; this is a really handy feature, even if software re-
fresh is an alternative.

2) Its most interesting supporting chips are not scheduled to
be available in the near future.

3) Like most of its competitors, there is not too much soft-
ware available if we exclude that delivered from Motorola
for their boards and development systems (which, in any
case, are quite expensive).

T oday there are several 16-bit CPUs on the market; for

Luca Fusina and Claudio Granuzzo

Luca Fusina, Via Mocenigo 8, Verona 37100, Italy.
All the article content may be used for any non-commercial
purpose.

Nowadays it seems that what really interests the computer
consumer is software. He does not care too much about the
underlying hardware, he is most concerned about the programs
he can run on his machine. At most he considers the interface
capabilities of his computer, but usually he even does not
know the internal hardware structure. In our opinion there are
still some people interested in system design: people who like
to experiment with new devices. The tool for this kind of
work is called a development system. After the hobbyist elimi-
nates the ones that are too expensive, what is left is an evalua-
tion system which basically is a single board equipped with a
CPU and a handful of switches and LEDs. Experimenting
with such boards is time consuming and not rewarding at all in
any case. There must be a better solution.

The Idea

Almost all of the computer enthusiasts around already
own a microcomputer. Why not use our own system to control
a 680007 In this article we will describe this hardware and
software implementation on a Rockwell AIM 65. For the read-
er who is unfamiliar with this machine we will summarize its
features. It is a single board based on the 6502 with a
QWERTY keyboard, a 20-column thermal printer and an al-
phanumeric display, 4K byte of RAM, an 8K byte ROM moni-
tor, a 4K byte ROM assembler, and 2 Versatile Interface
Adapter chips for 1/O and expansion. We had to make only a
few trivial hardware changes.

We have said, indeed, that we are going to control our
68000, but which way? We want to be able to control it dur-
ing each read or write cycle (from now on simply cycle), in
real time, changing the mode of operation according to neces-
sity among all the ones available to our system. Furthermore,
we want to be able to manipulate during each cycle all the
68000 control signals; this way we can simulate interrupts,
multi-processing and so on.

The Hardware

All we needed to implement our idea was nine eight-bit
I/O ports and a couple of decoders. The 68000 became a peri-
pheral connected to the AIM bus at a certain address. On the
AIM expansion connector we found all we needed: the 8-bit
bi-directional data lines, the 16-bit address lines, and two con-
trol signals: R/W and 02 which are used for synchronizing
R/W operations. Figure 1 (page 15) shows the block diagram of
the interface; Figure 2 (page 16) is the schematic. For all the
6502 timings, the reader can refer to the 6502 hardware manual,

From now on we assume the reader understands 68000
hardware and software details; refer to the MC68000 user’s
manual for a complete description of this processor.

As the 68000 is asynchronous, we can control each cycle us-
ing the signal DTACK, which stands for data transfer acknow-
ledge. When the 68000 wants to perform a read or a write, it
asserts the AS signal and waits for DTACK. At this point our
AIM program can do all it has to, and when finished it asserts
DT ISK by writing to location $8XXB, signaling the 68000 to
continue. IC 20 (a 74LS74 flip-flop) takes care of negating
DTACK when 68000 negates AS.

All 68000 signals are interfaced to the AIM through six
DM81LS95 buffers and three 74LS373 latches. The 68000
interface is seen by the AIM as a 1Kbyte memory. The 6502

12

8

Dr. Dobb’s Journal, Number 63, January, 1982

can address up to sixty-four 1Kbyte pages and the board can
be located anywhere inside them, provided there are no con-
flicts with the AIM 65 requirements. This is accomplished with
a DM8131 six-bit comparator (IC 10). To select the right page
the user must supply the appropriate logic levels to the com-
parator inputs. In our implementation the board is located at
$8000. Inside this address space there are sixteen meaningful
locations, from address $8XX0 to address $8XXF. Only
twelve are, however, actually used and only the first nine are
used to interface the 68000, by means of selecting one of the
1/O ports. Selection 10 (signal in Figure 2, address $8XX9)
is used to control the line. Number eleven is not con-
nected. Number twelve asserts DTACK (signal Y11 in Figure
2, address $8XXB). Refer to Figures number 3,4, 5 (page 17)
for a detailed explanation about how the ports are arranged.
Note that with this hardware it is not possible to use the M
command of the AIM monitor inside the board space.

There are two 68000 signals not connected to any port:
VMA (valid memory address) and E (enable). Motorola imple-
mented these signals to maintain compatibility with existing
6800 peripherals. In our opinion it is better to use them as test
points. The user can easily add one additional port to the
interface to monitor them under program control.

The network of open collector inverting gates connected
to the 555 timer and the $8XX9 selection is used to interface
correctly the 68000 HALT and RESET signals, which are bi-
directional. Two LEDs can be used to monitor their logic
levels. The board performs an automatic power-on reset; a
manual reset is also provided, as well as software HALT and

RESET control.

The Software

Before entering into program details, it may be a good
idea to lay down its objectives:

Run-time control of the dynamic evolution of each
68000 instruction step using the AIM keyboard. It is possible
to execute a program stopping the 68000 every cycle, or to
execute any number of instructions consecutively; a dynamic
switch between these two modes is possible, too.

Run-time control of the 68000 input control signal (IC
19, #74L8374 latch). The AIM 65 keyboard can be used to
supply a byte to be stored in that latch. We called this feature
“dummy memory.”

Output on display/printer of each 68000 cycle including
addresses, data and control signals coming out from the
processor.

Dynamic allocation of memory. 68000 memory is seg-
mented and each segment base address can be located any-
where inside the AIM free RAM. If the 68000 is doing a read,
it is possible to enter data from keyboard; if it is doing a write,
it is possible to do a data display. This way no effective mem-
ory operations are done.

Use of all AIM 65 peripherals and utilities under 68000
program control. We defined that a 68000 segment cannot
be greater than 64Kbytes (in automatic mode). If a write is
performed inside the first 256 bytes of the last 1Kbyte page
available to a segment (address $00FCXX) it is assumed that a
6502 subroutine call is made. The 68000 lower data byte is
loaded in the 6502 accumulator. The 68000 upper data byte
is used to index a table of pointers to 6502 subroutines. On
return, the 6502 -accumulator is copied into two locations, one

inside the 68000 user data segment and the other inside its
supervisor data segment.

The 68000 is operated cycle by cycle by the program in
Listing 1, p. 36. As the program currently running evolves,
whatever happens is shown on the display/printer or whatever
is connected to the AIM 65. Various instruction combinations
can be tried, and the operation of the 68000 becomes clear.

The five objectives that we have so far discussed are im-
plemented in a program 519 bytes long. The user has to select
the operating mode by storing an appropriate value in a con-
trol byte, CONTRL. Each bit controls a mode as explained
below.

If bit 0 is set, after printing the 68000 address the AIM 65
program requests a byte from the keyboard. It will be stored
in the latch connected to the 68000 input control signals.

If bit 1 is set, manual mode is selected, otherwise auto-
matic mode is assumed. Manual mode corresponds to the
dummy memory R/W mode previously discussed; in the auto
mode, R/W is performed from memory.

If bit 2 is set, before issuing the DTACK signal the user is
requested to validate all operations performed during the
current cycle by entering a carriage return. This is also called
step mode, Any other character will repeat the current cycle.
No such validation check is made if bit 2 is cleared.

If bit 4 is set, fast mode is selected. When this mode is
selected 68000 cycle status output is suppressed. This allows
for fast 68000 program running, as a great deal of the AIM
housekeeping time is spent reporting things on display/printer.

The previous modes can be mixed together. Fast mode
overrides all the others. When it is set, the other modes are
used to select the mode that will be entered upon error. Dy-
namic mode changing can be accomplished by executing a
68000 instruction that stores a new value in the control varia-
ble. Thus, a 68000 program can put itself in Step mode.

Memory segmented is implemented using two tables,
FCTAB and MAXADD. They specify the AIM 65 base ad-
dresses of each 68000 segment and their extension. These lat-
ter values must be supplied, and they must be consistent with
the former ones. Of course, each 68000 segment starts from
location $0000000.

Final Thoughts

We have so far discussed how to build from scratch a small
development system for Motorola’s 16-bit processor, the
MC68000. The underlying concepts are quite general, and it
should not be difficult to implement our idea using the read-
er’'s own computer instead of our AIM 65. The ones familiar
with this machine will have already noted that the accompany-
ing program was not listed with the 20-column thermal printer
available on the AIM board, and that the assembler was modi-
fied.

In fact, besides using the AIM 65 as an experimental com-
puter, we use it as our “‘big” system. Anyone who is interested
and wants more information about how we did it may write to
the authors. Let us now report the impressions about the
MC68000 that we gained using the board we have here pre-
sented. We appreciated most the power and simplicity of its
instruction set. Some things shocked us, though. For example,
you can try to execute a CLR to memory and see what hap-
pens. Before clearing the desired locations, the processor reads
them. This, of course, wastes time and has no usefulness. Any-

Dr. Dobb’s Journal, Number 63, January, 1982

13
9

way, summing up all the againsts and fors, it proved to be a
superior processor. After executing just a few programs, the
user accustomed to 8-bit microprocessors will no longer be
satisfied with them.

The MC68000 architecture is a bit different from standard
8-bit machines. The reader who will use our board might then
have some problems. Let us give some hints that may prove
useful.

The 68000 has a pipelined structure. This means that it
fetches one or more words before actually executing the in-
struction. These words, which may be subsequent instructions,
are printed and displayed. Such a thing may lead one to think
that the processor is not executing properly; on the contrary,
it is doing its job. Again, during stacking operations, words
may not be stacked following the address ordering; the overall
stacking procedure is still correct,

The MC68000 is a 16-bit machine, therefore it addresses
by words. Instructions must start on even boundaries. If the
user specifies the initial PC to be at an odd address, the 68000
will enter an address error exception. If the supervisor stack
point also starts at an odd address, well, you will be in trouble.

There are, of course, many other things that should be said,
but it may be more interesting to explore the 68000 world
yourself,

Concluding, we would like to point out that everything
we have said so far is not restricted to a particular machine,
Some readers will like to experiment with a different CPU, say
the Z8000, and we think they will not have too many prob-
lems adapting our ideas to their needs. After a few weeks of
experimenting with our board, the need for more sophisticated
software may arise. It should not be too difficult to write a
cross assembler using AIM BASIC. This would eliminate the
need for hand compiling all the 68000 instructions. Again, it is
possible to slightly modify the hardware to let the 68000 have
an independent life, without passing through the AIM for
executing its instructions.

Italy is not that far away; anyone who wants to write us
to exchange opinions about computers is encouraged to do so.

L 2]}
(Figures 2-6 on pages 16 and 17)
(Listing begins on page 36)

CONTROL
BUS OUT

CONTROL
BUFFER

CONTROL
BUS IN

CONTROL
LATCH

68000 Control Board Block Schematics
by Luca Fusina and Claudio Granuzzo

DATA
BUFFERS

6502
AND LATCHES DATA BUS

ADDRESS
BUS

ADDRESS
BUFFERS

DECODED

DTACK
STEP
CONTROL AS
CLOCK

LINES

6502 ADDRESS
AND CONTROL BUS

BOARD SELECTION
AND DECODING

LOGIC

Figure 1

Dr. Dobb’s Journal, Number 63, January, 1982
0

85 DATA BuS

65 DATA BUS

L] ~E-CEEEEFEERE|
JURCEEE:ECECESttteet
i | L]
i al ey
3 L
= —r
4 2 [w
: o
l E ":'\
P
‘ 3 s 2 %
1y83ITT =R]
1 ': om0]%, P K
i 4 TECTIES & Py
) ==L T L
ryvvvy vvuy e
=1 & Ygpr
F 3%
nta Y
s 3 L3 = A PP
L] : mm -
EEEEE N FEEFEEL 233 + 333333
I D i T L] Tadtetadi-t g AT 9cded=2 2 >
SENgNa ¥ l‘_\:“% SESHE T £ Hiw SESIE B f ’|_:_
LR P oo mn LR PUPY Y) TrfaZesed ® 3 atasctat < L
T T TTT 1T]
W " |d4didan il " Efddam H s =y
pl -'-]—'- 3l v g.,%-
= = s
< 5 3 TV : o
Yo » & m
1% i
1% - 9
S ¢

o aue

A

ik

-y

rEEEEEEEEEH

| TR

13I3RAZARARTARITITICAT

IIRARLRL:

000¢9 X

(15T

nesaddty

| 1

At

ﬁ
lg
Lo
am
Brita

I3
I.‘I
3
b
o s—-&"
L]
IQ'T
L8

mx

"L
Iﬁ.l
ey

n HiS82 un

ra0L BuUS

88 -

anp

CLAUDIO GRANUZLD

Schematic of MC68000/AIM 65 interface.

by Luca Fusipa

16

Dr. Dobb’s Journal, Number 63, January, 19&_2_
1

68000 On-Board Selections

68000 Input Control Signals

(IC19)
Bit No. on AIM Data Bus Signal
ADO BGACK bus grant ack
AD1 BERR bus error
AD2 N.C. (not connected)
AD3 VPA valid peripheral
address
AD4 BR bus request
ADS IPLO interrupt priority
level 0
AD6 IPL1 interrupt priority
level 1
AD7 IPL2 interrupt priority
level 2
Figure 5

Address (Hex) Selection
8XX0 68000 lower 8 data bit (WRITE)
8XX1 68000 upper 8 data bit (WRITE)
8XX2 68000 output control signals
(refer to Figure 4)
8XX3 68000 input control signals
(refer to Figure 5)
8XX4 68000 lower 8 address bit
8XXS5 68000 middle 8 address bit
8XX6 68000 upper 7 address bit
8XX7 68000 lower 8 data bit (READ)
8XX8 68000 upper 8 data bit (READ)
8XX9 HALT
8XXA N.C. (not connected)
8XXB DTACK
Figure 3
68000 Output Control Signals
(IC22)
Bit No. on AIM Data Bus Signal
ADO WRITE write
ADI DS lower data strobe
AD2 UDS upper data strobe
AD3 AS address select
AD4 BG bus grant
ADS FC2 function code 2
AD6 FC1 function code 1
AD7 FCo function code 0
Figure 4

Meaning of the fields in the AIM listing of the 63000
program:

Data:
68000 Data Bus

Optional Field1:

Byte stored in the 68000
Control Input Lines
Optional Field2:

0000

M=Manual Mode, Else Blank

000000

Address:
68000 Address Bus

‘i R/W Code:
RW/WW=R /W Word
WH/RH=R /W High byte of a
Word
RL/WL=R/W Low Byte of a
Word

RW

SP

68000 Function Code:

SP Supervisor Program

UP User Program

SD = Supervisor Data

UD = User Data

1A Interrupt Acknowledge

Figure 6

(Listing begins on page 36)

Dr. Dobb’s Journal, Number 63, January, 1982
q2

68000/AIM 65

(Listing, text begins on page 12)
(See Figure 6, page 17 for meaning of fields in Listing)

H)-H01 00 00 00 00

4 CONTROL WODE T0 AUTO AND
/3 0ADY N4 Y

w)-200

<G J

& 0N 000000 0000 ——————— uer bETCH

S Fe.peIEd

R .
WOUE.W MO.SK SWITCH 10 USER PROGRAH

s &4 000004 0000

SFORM 000DOC 4671 ——qop FETCHED BUT NOT EXECUTED (FBNE)

UP RW 0000OC 30FC

o & MOVE W #8100, $FCO0.L LINK ALH SUBROUTINE READBYTE

EXEC KEADETIE THE HYTE SHOWN
ENTERED WETH THL

HOVE .8 0000.L 000 I.L

IN THE DATA FIFLD WAS
AIM KEVROARD)

KEAD 10C. GOUO
E LOC, 0001 (MODE CONTROL LOC.)
et 8 DO0n 4 T——NOP NOW THE NODE I CHANGED: 1T IS REQUESIED A BYIE T0 BE
UP kM 000020 7F4E71 =———yop GTOKED ON TWE 4BD00 CONTROL INPUT LINES (LEV. & INT.)
§0 W D00OFC FFOO STACK PC LOW (CNTRL BYTE=SFF. INT. CLEARED)

— 0 P T
1A WM FBFFFC FFH 0068 ————————

Ih A5 FUNCTION CODE=IA.
SO WM 0DOOFR FFOOOU ——F STACK STATUS

IN HANUAL MODE: VECT

5 0O0OFA 1 ESCAPE FROM THE PROGRAH TO

CH)=BO1 05 DO 00 0O THANGE HODE: NOW WITHOUT THE
0801 04 COMTHOL BYTE

ME ARE
“

— STACK PC_HI
T FETGH INT. WOL. AUE ARL TN WAK. PODE A% oE
ARE OUT OF SUP. DATA SEGHENT
NANUAL MODE AS WE ARE OUT THE SUP. PROG. SEB
FEME. WANUAL HODE
UNSTACK PARANE TERS

oooorc oote 3
u AL S——— WACK 10 USER PROGRAN

000020 4E71 NOP

000022 4E71 NoP
UP RM DODO24 4E71 —rte
UP KW 000026 4E71 ——yop
H)BO1 04 00 00 00 KOl HODF TO MANUAL AND.
</» 0801 0 g
*1-200 UM
@ I

S° KU QODOOD M Q000 ~p————————%5P VEITH
SP RW 000002 H 1000
0000 —J—————————¥C IEIH

TMOVE.W SR SWITCH TO USER PROGRAH

SF KW 000004
5P kW 000004
SF KM 004000
S WM 004002

FETCHED BUT NOT EXECUTFD (FBNE)

HoP
CLRLL 870004

4288 FLEAR LOC. $7000-%7003

08

4E71 HoP

FEEE KEADS THE | OWG WOKD (UNUSERUL)
FFFF

4471 Nor

CLEAR | OHG WOKRD

000,00 SET DATA REG. 0

—Hor
THouE . ke
2000

"
H
n
W
"
"
"
"
H 7
H
"
2 W
0
"
"
"
"
"
W CoFC NULU.M W4, 00 14 BIT MULTIPLICAT IO
o a0 J
K 33c0 HOVE.4 DO, $8000.1 SHOU DO CONTENTS
A 0000
¥ w000
D 4E71 Now
H 8000 THE RESULT OF AULU. 1S $HUOD
K 4E74 wop
" sorc DIV DO KO FEKD DIVIDES WHAT HAFPENS NOMT
" anon J
HAEZ1 —nop Fan
M 4026 e —————TAGK FC: ZPKO DIVI ERCEFTION
" Goas
H a0on TACK STATS
M DUOD ————————WEADS ZFKO DIVINE VEITOR
H 9000
0 o4t 73 m RETURN FRON LACEP 1TON
[S Fh
H 0004 (MSIACK FAKARETIRS
: W 0000
W 4024
PRt — ALK (6 UTER ROUMA
6 W 33C0 MO - 130 satIa0. | WO DD CONTENIS AFIEK THE
H 0000 £ikn BIVIOF
n 6000
" w71 Nor
00 K B0 T1DID WoT AN
UP R4 DO4DZE N 4E71 —Nor
FAGE 01
Pass 2
0000 uoou
oont - 0oon i® MCABOOO INIERFACING PROGRAN -
o0z 0000 e .
noo3 - onno o
G004 0000 « WRITTEN BY LUCA FUSINA AND CLAUDIO GRANUZZO =

'

0005 0000

G0z o000 $1F WORE A507 USER SUBROUTINES ARE ADDED. THFIR FXACT
0013 N0 UMBER MIIST BE SPECIFIED

[P HAXROU- 2

oIA 0NN FHOARD RASE ADDRESS

0014 0000 BRDADD: $B000

019 00N SATH 45 HONITOR SUBROUTINFS EQUATES

0020 (00 CRLOW-$FA1A 1OUTPUT CR.LF

0021 0000 BI ANK -$EBIE TOUTPUT A BL ANK

0022 0000 NUHA-$E A&4 TOUTPUT A BYTE AS TWO HEX CHAR
0023 0ona QUTPUT=$E97A TOUTPUT A CHAR.

1024 000D RBYTF=$E3FD IREAD TWO HEX CHAR. FROM KEYBOARD
25 0000] AND PACK THEM IN ONE BYTE
0026 000D RFAD=$E93C TREAD ONE CHAR.

0034

0097
03k
D09

041
42
g

0044
004t
0044
Y

0049
0050

0800
0500

o500
GO0
[y

[y
00F
0k
ok g

0OOFF
Fi
GOF F

DOFF
0801

0801
0R01
0801
8000

#00%
B00A

BO0A
AN0R

EO0B
0200
0201

Fase 03

0206

020C

n348

0249

[

DOFS
ADO10H
2908
FOO03
402603

ADD2AN

pED
4
Py
40
an

AR

BDEAOA
2074F9
BDE 703
2074E7
2036k 8

ADNZEB0

080T
207AEF
BDDFOA
2O7AET
203EFA

ADO4BN
04

ASFD.
ADOSHD
R

it
ADAHI

FUSER MAY SHECIFY THESE VAR. ADDR.; IF SEGHFNT ADDR.
FARE CHANGED. THESE ADDR. WUST BE ACCORDINGLY DEFINED
800

SAURALL JREFER 10 THE CAI SUB ROUTINE

+500

SAVFAS SRFFFR TO THE CALSUB ROUTINF

OTNIER TO START ADDR. OF 8502 SUBR. ADDR. TABLE
LOC IHP el
5 FOLLOMINGS ARF USFD AS POINTER FOR
FINDIRFET 6702 ADDRFSSING
o = FHIGH BYTE OF A POINTER USED
1 FOR ARODD TO KWEMORY OPERATIONS
k1 1LOW BYTE OF POINTER
ARE USED TO SAUVE THF AB000 ADDR.
SAUHL !
SOVEN
SAVEN
1MODE (ONTROL UARTABLE. THF ADDR. OF TH1S UAR.
/MUST BE INSIDE USER DATA SFGMENT. S0 A 3000

IPROGRAN CAH CHANGE

CONTRL
PTHE FOLL. ARE THE EOARD ADDR.7 REFER T0 THF TEXT
IHARDWARE DESCRIPTION FOR THE THEIR MEANING
«=BRDADD
on
T
DI
N
cour
ADDL
ABDH
ADDH
oL
Crres
DoW
wswe
HALT
RES
.1
oracK
MHHAR SEL
LDA WeF
STA COUT JCLEAR 48000 INPUT SIGN.
1 00P ISR CRLOM
WAITAS LDA CIN
ND
ANE WATTAS IWAIT FOR ADDR. SIROBE
1DA CONTEL
AND WA PSPEEDY MODE CONTROL BIT
REG OUTFC
JNP FAST

FOUTPUT &AOON FUNCTION CODE

U1 CUNDEF TNED) , 2 (UNDEF INED) . UP (USER
ROGRAK) . 6P (SUPFRUISOR PROGRAM) .
PUDCUSER DATA) SO(SUPERVISOR DATA).
CUNDEF INED) . TACTNTERRIUPT ACK.)
ouIFe LDA CIN

AND HX11100000
ISR A

L8k
LSk
18k
TAX
1A

EEEY

TABFC. X
ISR OUTRUT
LDA TABFC#1.X
ISR OUTPUT
JSK RLANK

ONTPUT ABOOD R/W CODE

MM CWR1TE MORD) . RMIRFAD WORD) ,WH(WRITE HIGH
BYTE) . WL(MRTTE (OW BYTE)RL(READ LOW BYTE),
TRH(READ HIGH RYTE).UN(UNDEF INED)

OUTR DA CIN

AND K7
asl a4

TAxX

LDA TABRWL X
JSR OUTEUT
LDA TABRMWL+1.X
ISk OUTPUT
JSR BLANK

10UTPUT 6RO00 ADDRESSES

SWE HULTTPLY BY TWO TO CONUFRT FROH
:AROUD WORD ADDR. TO BYTE ADDR
OUTADD 1 DA ADDL

asl A
STA SAVEL
LDA ADDN
ROL

STA SAVEN
1 DA ADDH
Kol

36

Dr. Dobb’s Journal, Number 63, January, IWE
29

0259 ASFF STA SAVEH 0279

2 L3GIIE, prACK
020 20460A 15K HUMA 0280

ABUREG i u\» Mnt‘x
025E AGFE LDA SAVE 0281 4Cnan

(A0 PO46EA 15R HUMA

0267 AGFD LDA SAUFIL

P41 PO4AER JSRHUMA

TFAST ALTO HODE: NO OUTPUT 1S PERFORMED

0267 203EER ~JSR I ANK
15ve: sB000 ADDR.

ADOSBO FAST DA ADDL PHULTIPLY BY TWO
0157 0268 ADOIOB INCHD LDA CONTRL nn AsI
91 AND M1 MITH THIS BIT SET A BYTE 15
ENTERFD FRON KEYBOA
: T0 CONIROL THE ABOOD INPUT SGN. Pane 04
Fone BEQ NOCKD
20F0ET JSR RBYTF (2BY 0332 OB s1A FO
BDO3AO STA COUT n2%0 0334 ADOZAN 1DA ADDH
ADDIOR NouMo LOA CONTAL 0291 0337 24 ol A
2902 AND THANUAL OR AITO KODE CNTR. BIT 0292 033 BOFE STA SAVEN
U172 0D FeD W Mt 0293 0338 ADDARU LDA ADDH
0330 ROL A
Pase 04 033F F003 BEG FAST1 $EKIP IF SFG. 16 LESS THAN 64K
0340 ALTANZ OUTFY WP OUTER ERR.: OUTPUT CYCIE STAT.
0343 MEMORY SEGHENTATION SECTIONI ON ERROR
027¢ TMANUAI MODE1 READ FROH KEYROARD, 0343 FSTANDARD CYULE HANDLING IS ENTERED, AND
0176 027F FHEMORY WRITE TO DISPLAY/PRINTFR ONLY NAA3 3FAST WODE 1S RE-ENTERED MEXT CYCLE
0177 0R7F A%4D MANUAL LDA K$4D 0343 ADOZAN FAST1 LDA CIN
0178 0281 207AE9 1SR OUTPUT J0UTRUT *M 0346 29E0 48000 FUNCTION (ODE
0179 0284 PO3EER ISR BLANK 0748 4A
0180 0287 ADOZAN LDA CIN 0349 4n
0181 upeA 2901 AND W1 1EST 68000 R/ 034A 40
0182 028E DONF BNE READM 0348 4A
0140 4a
IE WRITE OUTPUT 48000 DATA BUS 0340 AR
ADD 18N WRITFH (DA DIH D34F FOO7
2046k ISR NUMA 0350 FOEE JSKIP IF INTA
ADOOBI 1A D1l 0352 ABFE
204414 ISR NUMA 0354 C9FC 16502 SUBROUTINES CALL
0189 129A 401703 NP TSER 0356 FO4A
0346 ASFE
0191 029D $IF READ. GET TWO BYTES FROW KEYBOARD AND PUT THFH 0354 DDONO4 GNP MAXADD X
0192 0290 JON THE 48000 TNEUT DATA LATCHES oo oy e J0UT OF SFB. RANGE ERR.
1% Do GUEReD NEane aal ReTE 03ISF 18
0194 0740 ADOABN stA 0360 7DFEN3 foc FCTAB.X 1ADD SFG. OFFSFT
0195 0263 20FDE3 S8 RevTE 0363 ASFC S5TA
N196 0248 BDO7BH STA DOL 0945 ADDING LbA E'N
0197 07A% 401703 JNP TSER 0348 2901 AND W1 1TEST 48000 R/W
03sA D022 RNE READF
0200 0240 JAIT0 MODE: B/ FRON KeNOR 034c JEAST HEMORY WRT
0U01 02AC ADOZED AUTO LDA 0360 ADNZRD WRITE DA CIN
0I6F 2902 aND 2 158000 UDS
0203 N2AF TMEMORY SEGMENTATION SECTION: IF OVERFLOW 0371 boo7 RNF NOUNSF
0204 02AF SFRROR OR INTA STATE SWITCH TO MANUAL HODE 0373 A URFUBE LDY WO
0205 02AF 29E0 FCADD AND WX11100000 0375 ADO1E0 1 DA DIH
0206 0281 4R LSK A 0378 91FR STA (FOI.Y
0207 0287 4A 0374 ADOZBO NOUDSE 1 DA CIN
0208 0283 44 0170 2904 AND W4 158000 LOS
0209 0204 44 037F D007 BNF NOLDSF
0RT 44 0381 A0 WRFLDS LDY #1
0285 AA 0383 ADOOBO 1DA DI
17 0287 EOO7 0384 FIFR STA (FD).Y
0213 0289 FOC4 158000 HAS ACK. AN INTERRIPT 0366 ADORBD NI DEb L 0A DTACK
0215 0288 ASFF 0388 4enens ane waltas
0215 0280 DNCO PREGMENT GREMTER THAN 84K.
Gira PR AGHE LDA SAVFNH 038E ILART AENORY WEAD
0247 0201 C9FC CHP WSFC 14502 SUBROUTINE CALL lF wnnn Qa8 Aonn HESE g
0218 0203 [ADDR. 1S EQUAL TO %OOFC 0370 BAFE ”‘ﬁ (FD), V.
0215 0203 D003 BNE LABN n392 ADDAAN STA DO
0220 0205 4CA203 M CALSUR 0344 0395 A0DT 1oy w1
0221 02CA DDONNG LABD CHP MAXADD, X U34S D397 DIER LBA RO
BOB2 BCS HANUAL FERR. IF SEGMENT 1S Sie D Ghofen T8 /0L
' OUT OF ITS RANGE
" oo
70FB03 ADC FCTAR, X 5ADD SEG. OFFSFT 10 FFFECTIVE Fame L
! 4800 ADDR..7 /86 TE BELECT [THE 0347 03%C ADOBR 1A DTACK
RIGHT KEMORY LOCAITONS TN THF 0348 0I9F RS0 P WATTAS
3 AIH HEHOR'(SPARF s &
8uEr STA F1
0230 0283 ASFD LR FLL vane 14507 SURROUTINFS HANDLER. &BO0D UPPER
0953 0 :DATA BYIE IS THE INDEX TO THE SUBROUTINES
Fase 05 0342 TADDRFSS TABLE: 48000 LOWFR
0342 DATA BYTF IS 10ADED IN THE 4502 ACK.
0931 0205 BGFR s1A FO 0342 10N RFIURN THE 6507 ACC. 15 COPIFD IN
0232 0207 ADNZAD LOA CIN 032 5TWD | OTATIONS SPECTFIFD BY THE USEI
0733 0208 2901 AND W1 TEST 68000 R/M 03A2 AUEAN IS LOTATED IN THE USER DATA SEGHFNT!
0234 020C B2 HNE READA 0342 iSAUFAS IS LOCATED IN THE SUPERUTSOR
037 IDATA SFGHENT
0238 0R0F JAUTO VRITE 1N MENORY 03A2 ADOZAD FALSUB 1 DA CIN
0237 020E ADNZHO WRITA LDA 03A% 2901 AND W1 PTEST 48000 R/W BECAUSE
0238 061 2902 D a2 1TEST 68000 UPPER DATA STR 0387 FOn3 BEQ CALSUT FONLY WRITF IS AlLOMED
0239 02E3 DOOA BNE NOUDS 03AS 4C7FO2 MR M HANUAL
03AC ADO1BO CALSUI LDA DIM
0241 0265 JWRITE UPPEK DATA BYTE 03GE C902 (WP WMAXROU 3SUBR. ADDR. TABLE OVERFLOW
0265 AOON WRILDS LDV OO N3R1 BOFE HES ERR
GHE7 ADOABO 104 DIW 0383 04 ASL A
02EA 91FB STA (FO),Y 03R4 AR '
OZEC P04blA 158 NUMA 0385 BOD40A I DA TABSUB, X
02EF ADOZB0 NOUDS LDA CIN 8 1A LOCIHR
027 2904 AND W4 FTEST 68000 LOMER DATA STROBE n38A EDDSO3 DA TABSUB+1.X
02F5 DODR BNE NOLDS UKD BIFH STA LOCINE+1
03KF ADOOBO DA DIL
02F 6 INRITE 48000 LOWER DATA BYTE 0ar2 200103 1SR WP SUB
072F8 ADDT WRILDS 1DY Wi 03C5 BNOODE STA SAVEAU
02FB ADODRD LoA DIL 03C8 8000 STA SAVEAS
02K 918 S1A (FO), Y 03CE ADORBU Lba DTACK
02FD 2046EA JBR 03CE 4C04DZ M LOOP
0300 401703 NOLDS WP TSER
0301 ACFADD MPSUR JMP (LOCJNP)
0303 JREAD & VORD FRON HENORY
0303 ADDD READA LOY
0305 BIFE Lba <Py
0307 @noaan STA DOM 0384 DaAN4 7A502 SUBR. TABLE
0308 204684 ISR NUMA 0381 0304 4AEA TARSUR . HORD NUA
0300 AONY LoY w1 U3HA 03NS FDED MORD RBYTE
030F B1FB LDA (FO) .Y
0311 800780 STA DOL nags nave $6BO00 R/W CODES
0314 2046kA JSR NUHA Wiy 0IDR 5757 TARRML .BYTF " WWRWMLRLWHRHUNIN®
0391 03kR 1 4RO00 FUNCTION CODES
uzan 03/ 3TF STEP MODE IS SELECTED, WAIT FOR A CHAR. FROM 0392 IR 45T TABFC .BYIF UTU2UPSPUDSDUITA’
026y 1317 IKEYBOARD: IF IT IS NOT A CR DO NOT IS0}
0270 0317 JDTAUK, AND REPEAT THE CICLE 0394 036 SEGHENT START ADDR.. EXPRESSED IN PAGES OF 25
0771 0317 ADOAOR TSFR DA CONTRL 0493 03FH S EACH. IISER MAY CHANGE THESE VALUFS: TF
n272 0318 2904 AND #4 FSTEP HODE CONTROL AIT 0396 0B Thk DOEE 50 ME WAS TO CHANGE ALL THE RELATED
0273 ¢ FO0A 8F6 DTA 0397 wakA SUARTABIE ADDRESSES (SEE [0P OF PROGRAM).
0274 0IME 203CES ISR READ 0390 038 IHE MAT MAVE TO CHANGE VALUES TN THE KAXADD
027% 0321 CHOD £he Naoh
0276 W Fon3 8 A i
T/ U AT0602 JHE LOOP {Continued on next page)
Dr. Dobb’s Journal, Number 63, January, 1982 3

30

68000/AIM 65

(Listing continued, text begins on page 12)

Pase 08

0405
0406
0407

0421

0424
0426

FRRORS

HAXKOU

038
03F8
03F9
[
03FR
oaFc

03FD
03FE
03FF

n4on
0400
n4on
0400
0400

0407

0408
0408

- onoo

. NIFR

00
00
ot
04
o8

05
00
oo

04
0z
04
o1
on
[

3TABLE. 100
cTAB T

SUNDFF INED
SUNDEF INED
TUSER PROGR
ISUPERVISOR PROGRAH
TUSER DATA

FSUPERVISOR DATA
$UNDEF INED
SCINTA)

INUMBER OF PAGES AVAILABIE TO EACH SEGMENT,
SUSER MAY CHANGE THESE VALUES: HOMEVER THEY
FHUST RE CONSTSTENT WITH THE SEGHENTS START

JADDRESSES JUST DEF INED
HAXADD TE

sossrvano

FEND OF PROGRAN

JEND

BEDADD As ANOO cRLOW
oneny

FUSER PROGRAH (1K)

FSUP. PROGRAM (512 BYTES)
FUSER DATA (1K)

FSUP. DATA (256 BYTES)
PUNDEF INED

FCINTAY

At EA13 BLANK A1 FETE
As EIFD READ A1 E93C
At DOFA Fn At O0FB
Al ODFE SAVEM A1 OOFF
Ar 8001 CIN A1 8002
At 8005 *ANDH A1 AONS
A 800Y RES AL BOOA
Ar 0204 WAITAS At D209

At 0308 TABFC At 03F8

38

Dr. Dobb’s Journal, Number 63, January, 1982
o

