Hal T. Gordon
University of CA, Berkeley
Berkeley CA 94720

Instruction Sets
Examined and Compared

Ever wonder how the 8080, Z-80, 6800, 6502 and 2650 differ from each other? Some obser-
vations about this question resulted from research that went into the following article.

he capability of a micro-

computer system largely
resides in the instruction set
of its CPU chip, although
support chips, peripherals and
skillful programming are
needed for the full realization
of this capability. Even users
who program only in high-
level languages ultimately rely
on the power of an instruc-
tion set, since the interpreter
or compiler programs they
need must be written in the
machine language of a spe-
cific microprocessor.

In volume Il of his /Intro-
duction to Microcomputers,
Adam Osborne presents de-
tailed summaries of the in-
struction sets of many micro-
processor designs, and three
articles by Lance Leventhal in
Kilebaud (July, August and
September 1977) contain use-
ful discussion of sets at a
more general level. It seems
to me that none of these ever
quite comes to grips with the
question: What is it that
makes one set more or less
versatile than another?

Although Osborne encodes
a simple benchmark program
in each of many sets, he
rightly stresses that this is not

an adequate criterion for
overall evaluation, If this
were done for a much larger
and more diverse set of test
programs (including complex
ones), you would have
empirical criteria of capa-
bility: (1) Which instruction
set encodes them (on the
average) with the fewest pro-
gram bytes? (2) Which runs

of CPUs and systems, and the
more-or-less educated guesses
of experts (who are not al-
ways in agreement),

This article is a nonexpert
view, based on a long
standing fascination with
instruction sets. | look upon
these as intellectual works of
art that reflect not merely the
technical experience but the

“People have favorite friends, books,
tools and games. Using an instruction
set is very much like playing a game.”

fastest? (3) Which requires
the least programming and
debugging time?

Since all these criteria are
highly dependent on pro-
gramming expertise, they
ought to be first measured for
a group of experts (to esti-
mate the true potential of
each set) and then for a group
of amateurs (to estimate per-
formance at the user level). It
is unlikely that this objective
testing will ever be done. All
we shall have to go by are the
claims of the manufacturers

192 Microcomputing, March 1980

imagination and personality
of their creators.

Before going on, | should
answer two questions, First,
do the differences between
instruction sets really lead to
significant differences in per-
formance? Unguestionably
they do, but — since per-
formance is a complex con-
cept, and each design has its
unique strengths, and the
instruction set is by no means
the only design element that
determines performance — we
cannot easily rank chips in

order of performance. There
is one exception: The Z-80
will always perform as well as
or better than the 8080,
Second, do | have a per-
sonal bias? Yes, | prefer the
simplicity of the 6502. This
does not mean that this set is
the “best” or that | am un-
able to appreciate others (the
Z-80 is certainly more capa-
ble) or that | think everyone
should react as | do. On the
contrary, many users will find
other sets more attractive.
People have favorite friends,
books, tools and games. Using
an instruction set is very
much like playing a game.
Many different designs
exist. A/l can do everything,
and do it very well. In such
circumstances, the fact that
one may excel the others in
many ways ceases to be an
overriding consideration, and
subjective factors (hard to
explain to a computer!) can
enter in, If power were the
sole determinant, the PDP-8
mini would have vanished
when the PDP-11 was
created, and the Z-80 would
by now have obliterated the
8080. 1 expected this to
happen, not realizing that if

you have all the capability
you need, why bother to get
more?

Instruction Op Codes

When the control unit of a
CPU “reads” an instruction
operation code from a pro-
gram, it copies its bit-pattern
into its control register.
There, it triggers a complex
logic-network of gates,
causing specific, planned
modifications of the bit-
pattern in one or more on-
chip registers and/or external
memory locations. On-chip
operations run at lightning
speed (propagation delays
measured in nanoseconds).
Communication with external
locations, enabled by a clock
signal, is slower because the
bus lines have longer paths
and higher capacitances.

Although the number of
possible operations encodable
in logic-networks is extremely
large, there is a practical limit
to the number that can be
fitted into one LSI chip.
Every microprocessor de
signer gives much thought to
selecting only the ones he
believes will be very useful.

Another design goal is to
have one-byte op codes (of
which, with eight bits, there
can be no more than 256) to
minimize the time involved in
accessing program memory.
Most existing designs do not
use all the 256 possible eight-
bit patterns as op codes (the
8080 uses 244, the 6800 uses
197, the 6502 uses only 151).
However, some of the unused
patterns will be executed by
the control unit of the CPU;
such “illegal” instructions
may yield odd or even useful
results.

There are three fundamen-
tal types of instructions: (1)
those that simply move
(actually, copy) a bit-pattern
from one location into anoth-
er; (2) those | shall refer to as
“thinking operations” that
modijfy or analyze bit-pat-
terns; and (3) those that
cause a jump or branch to an
instruction other than the
next one in sequence. Many
types are so useful that aff
sets have them (e.g.,, MOVEs

or logical ANDs between an
on-chip register and any ex-
ternal memory location).
Other types are omitted in
some designs, or in all but
one,

The strength of the Z-80
largely rests on its having the
greatest variety of types,
omitting relatively few of
those present in other designs
and adding many unique
ones. No one will deny that
the Z-80 set is more capable
than that of the 8080, since it
includes all of the 8080 in-
structions and adds to it
many useful others. The in-

both program bytes and exe-
cution time (especially in
loops). Also, if a program is
relocated in memory, every
address has to be altered.

In the sets of the 6800 and
6502, there are only relative
branch-on-condition instruc-
tions, whose op codes require
only one address byte (inter-
preted as a signed binary
number that is added to the
program counter) but are
limited to leaps in the range
of +127 to -128 from the
current program counter
address. It is possible (though
not efficient) for 6800/6502

“The value of relative-branching is proved
by the fact that Z-80 designers used
six of their eight new one-byte op codes
to create relative-branch instructions.”

clusion of an older set, how-
ever, is not wholly positive
since you retain not only its
strengths but also its weak-
nesses. Also (as Adam Os-
borne has pointed out), the
8080 set uses 244 of the
possible 256 one-byte op
codes.

To enlarge the set, the
2-80 needs 382 two-byte and
62 three-byte op codes that
load and run more slowly.
This is one reason why the
Z-80 needs a faster clock and
high-speed memory. Four of
the 12 bit-patterns not used
in the 8080 set are used by
the Z-80 as the first byte of
its multibyte op codes, while
the remaining eight are used
as new one-byte op codes.
How the Z-80 designers used
this precious residue of fast
codes is a valuable lesson in
what really enhances a set, as
we shall shortly see.

Strange as it may seem, an
instruction type can be too
powerful. The 8080 set has
eight jump-on-condition in-
structions that allow the pro-
gram to leap to any location
in memory, but require a
two-byte (absolute) address.
Since these are among the
most often-used instructions,
such addressing increases

programs to emulate the long
8080 conditional leaps by
combining a conditional
branch with their uncon-
ditional jump-absolute in-
struction, but in actuality this
is almost never necessary.

For example, the 2K ROM
monitor of the MOS Tech-
nology KIM-1 has 752 in-
structions. Of these, 31 (4.1
percent of the total) are
jump-absolutes, not one of
which is conditional. The
range limit of the 103 rela-
tive-branch instructions (13,7
percent of the total) is easily
handled by careful program
structuring (i.e., locating
every block so that it lies

within the range of the
branchings to it).
If we compare the

687-byte 8080-Simulator Pro-
gram by Lee Stork (Septem-
ber 1977 Kilobaud), we find
that 14 (5 percent) of its 283
instructions are unconditional
jumps and 39 (13.8 percent)
are conditional ones. Of the
latter, 26 are within a + 127
range, and most (probably
all) of the others could be
brought within this range by
program restructuring (al-
though in an 8080 program
there is no reason to do so).

The value of relative-

branching is proved by the
fact that Z-BO designers used
six of their eight new one-
byte op codes to create rel-
ative-branch instructions. One
of these is unconditional, like
the BRA (BRAnch) of the
6800 set, a fast short-range
replacement for the 8080
JMP. It is interesting that the
6502 — with its vast supply
of unused op codes — did not
include a BRA. It can easily
emulate it (at the cost of one
more byte) by a “forced
branch’’: clear a flag, then
branch-if-flag-clear. Neither
the 6502 nor the Z-80
adopted the 6800 BRS (un-
conditional relative-branch-
to-subroutine). In fact, BRA
and BRS can in no way elim-
inate their two-byte address
equivalents (JMP and JSR),
the essential long-leap instruc-
tions of the 6800/6502 sets.

Conditional jump (or
branch) instructions occur
frequently in programs be-
cause they are the decision/
switching points. A simple
condition, indicated by a sin-
gle status flag bit, has two
instructions: jump-if-flag-set
(to 1) and jump-if-flag-reset
(to 0). Two or more flag bits
show a complex condition.

Many instructions alter
more than one flag. For ex-
ample, the COMPARE in-
struction, in effect, subtracts
the content of some location
X from the content of the
accumulator A, but alters
only the status register. If A
< X, the carry flag is set by
the 8080, Z-80 and 6800,
while if A = X the carry is
cleared (but in the 6502 the
carry status is the exact
opposite). 1t A = X, the zero
flag is set. Only the 6800 has
single instructions that (by
testing two flags) branch if A
> X (BHI) or A < X (BLS).
The others need a sequence
of two instructions.

For example, to jump to
the address HAWAII if A <
X, the 8080 needs a JC
HAWAII followed by a JZ
HAWAII, while the 6800
needs only a BLS HAWAII.
The Signetics 2650 COM-
PARE does not involve the
carry, but two condition-code

Microcomputing, March 1980 193

bits set to 00 if A = X, 01 if
A>X and 10if A< X It
therefore needs two branch
instructions to act on either
AZXorAsX.

It is noteworthy that four
of the six new Z-80 relative-
branch instructions test the
carry and zero flags, allowing
it to react to the most impor-
tant conditions much faster
than the 8080. The other
addition (DJNZ) decrements
the B register and branches if
it is not zero, allowing this
register to efficiently control
loops.

The 8080 set also includes
eight conditional jump-to-
subroutines and eight con-
ditional returns. It is hard to
tell how useful these are. All
16 CALLs in the Lee Stork
program referred to above,
and three of its four returns,
are unconditional. Such
instructions are not indispens-
able since the 6800/6502 get
along well without them.
However, the Signetics 2650
has six conditional subroutine
calls (three absolute and three
relative) and one conditional
return.

All sets have the classic
“thinking instructions”: the
logical AND, OR and exclu-
sive OR that compare two
bit-patterns on a bit-by-bit
basis (always eight indepen-
dent comparisons) and the
arithmetic add, subtract and
compare that treat the bit-
pattern as a binary number.
All have some rotate instruc-
tions that allow another kind
of bit analysis and modifica-
tion. The 6800 and 6502 also
have arithmetic and logical
shifts. The Z-80 includes
everything, plus two tricky
new ones (RRD and RLD).

I shall not attempt to
explain the varied construc-
tion and use of these opera-
tions. | feel that all sets have
enough power to do the most
important and often-used
things efficiently, and can, if
necessary, emulate anything
they lack by using a sequence
of instructions.

One problem with all sets
is that some instructions will
rarely or never be used. For
example, how often are the

seven MOV R,R 8080 instruc-
tions (that move the content
of one of the on-chip registers
into the same register!) ever
used in programs? This is one
reason the mere number of
instructions is not an ideal
index of power.

The 6502 has one of the
smallest sets, but even so, 37
(24%) of its 151 instruction
op codes are not used in the
KIM-1 ROM monitor. The
percentage of non-utilization
is likely to be much higher
for the giant Z-80 set,
especially since many of its
new instructions are better
than equivalent ones in its
8080 subset. However, the
statistics of usage frequency
(except for zero usage) are
likely to be misleading.

Some instructions are
essential, even though not
often used, while others may
be frequently used simply

(also for psychological
reasons) not fully exploited,
at least until one programmer
breaks the ice. | recently dis-
covered an example of such a
“‘programmer mental block’
involving the BIT instruction
(absent in the 8080, present
in different forms in the
6800, 6502 and Z-80). This is
a logical AND between the
primary accumulator (the on-
chip register involved in the
greatest number of instruc-
tions) and another location,
which alters only the status
register (whereas the conven-
tional AND replaces the bit-
pattern in the accumulator by
the ANDed pattern).

Users of AND or BIT
think of one of the two bit-
patterns as a “mask” to clear
or test bits in the other
pattern. For example, if the
bit-pattern being tested is
X0X0X0X0, a mask of

“The 6502 has one of the smallest sets,
but even so, 37 (24 percent) of its 151
instruction op codes are not used in the
KIM-1 ROM monitor.”

because more effective ones
are not present in the set.
Programmers learn to make
do with whatever is available,
and even tend to adopt a
“mental subset” of instruc-
tions that they like — even
when a task could be pro-
grammed as well or better by
using less-favored instruc
tions.

Experts can recognize pro-
grams written by amateurs,
because they fail to use the
full power of the set, and
may even recognize a pro-
gram written by a fellow-
expert by its characteristic
skillful exploitation of some
instruction types. As with
English writing, each tends to
develop an individual style
because every set is rich
enough to allow one to “‘say”
the same thing in a great
variety of ways.

Not only do some instruc-
tions get neglected; others are

194 Microcomputing, March 1980

01010101 will set the zero
flag, thereby revealing that
bits 0, 2, 4 and 6 were all
zero.

The 6800 BIT has both
immediate addressing (ob-
viously to test an unknown
bit-pattern in the accumu-
lator by the mask of the
program operand byte) and
memory addressing (to test
bits in a memory location by
a mask previously loaded into
the accumulator). In the
6502 set the BIT-immediate
is omitted, creating the false
impression that BIT can now
only test bits in memory (al-
though BIT logic neither
knows nor cares where the
“‘mask’’ is).

As far as | know, the first
violation of this "test only
bits in memory”’ rule — based
on a mask concept existing
only in the human mind —
was in the 6502 Tracer pro-
gram by Larry Fish (August

1977 Kilobaud), which used
masks preset in memory loca-
tions to test bits in the
accumulator. This is very
useful, though not quite as
fast or convenient as the
6800 BIT-immediate.

BIT is interesting as a
specialized instruction that
can easily be emulated by the
conventional AND (although
not exactly in its enhanced
6502 version, which also sets
the overflow flag equal to bit
6 of the memory location),
but will save some bytes and
time in a program. The de-
signers of the Signetics 2650
did not include BIT in its set.
Instead, they added the
unique TMI instruction,
which also nondestructively
compares the bit-pattern in
an on-chip register with an
immediate-operand bit-
pattern.

If all the ones in the
operand are also ones in the
register, two “condition-
code’’ bits in a status register
are cleared. TMI is a kind of
“reverse-BIT'* that can test
any ‘“internal pattern’” of
ones, instead of “internal
patterns’” of zeros. It s
harder to emulate with con-
ventional logic, since the
tested pattern must be com-
plemented before being
ANDed with the mask.

A set with both TMI and
BIT would have no peer in its
bit-analysis capability. This
statement may come as a
shock to admirers of the Z-80
who know that it has no less
than 80 distinct BIT instruc-
tions in its arsenal! Although
the Z-80 BIT has the same
name, it is a less powerful
instruction because it can test
only single bits, not internal
patterns of zero bits. The
6800/6502 BIT operates
between two locations, Either
one may contain a mask of
any of the 256 possible eight-
bit patterns, The Z-80 BIT
operates on a single location
without an explicit mask (the
single-bit being tested is
implied in the op code).m

Next time, we’ll continue our
examination of instruction
sets.

