Hal T. Gordon
University of CA, Berkeley
Berkeley CA 94720

Instruction Sets

Examined and Compared

The second part of this article starts with a look at on-chip and off-chip registers.

The “thinking power” of
most CPUs is primarily
in the on-chip registers, to
which the logic elements have
fast direct access, while mem-
ory locations (more slowly
accessible via the address and
data buses) serve primarily
for storage. A large fraction
of the instruction set (54
percent in the 8080) involves
on-chip register manipula-
tions. In one-chip LS| de-
signs, there is a limit to the
size and number of on-chip
registers. The 2650 has 87
bits in its registers, the 8080
has 96, and the Z-80 “more-
is-better” philosophy in-
creased this to 208 bits.

The 6800 took the bold
step of reducing the on-chip
registers to 72 bits (and the
6502 carried the stripping-
down to a record low of 56
bits!). It would be fascinating
to know the arguments used
by the 6800 designers to per-
suade Motorola executives to
go along with this revolution-
ary departure from conven-
tional design. One of them
must have been that the loss
of on-chip power could be
compensated by adding (to
the simple memory-increment
and -decrement types present
in the 8080 set) nine new
instruction types that directly
modify or test memory loca
tions (CLR, COM, NEG, TST,
ASR, ROR, ROL, ASL and
LSR), using them as “off-chip

174 Microcomputing, April 1980

registers.”’ The 6502 designers
backtracked, omitting the
first five of the 6800 direct-
memory instructions
(presumably because they did
not think they were valuable
enough).

The big problem with
doing ‘'thinking” in external
memory is that, although you
now have a plethora of reg-
isters to work with, access to
them is slow. If | had to
guess, | would say that this is
what led to the creation of
zero-page instructions (where
the op code Jimplies page
zero, so that only one address
byte is needed). The 256
bytes of zero-page function as
a bank of external registers.
The concept is extended to
its utmost by the 6502, in
which 33 percent of the op
codes involve zero-page.

The Z-80 designers, intent
on maximizing the power of
their set in every possible
way, also saw the advantages
of direct-memory ("off-chip
register”’) operations. As with
the 6502, they decided that
not all the 6800 types were
worth including. They did
add all the 6800 shift and
rotate instructions, plus the
branch-carry rotates of the
8080 and the new RRD and
RLD types, plus single-bit
testing, setting and resetling
instructions. Since the
BCDEHL registers often serve
as on-chip memory, most of

these instructions were also
implemented for them.

The overall gain in both
on-chip and off-chip power is
spectacular, although the
speed (because of multibyte
op codes) is not. The zero-
page concept (which needs
one-byte op codes) cannot be
implemented, but with so
many on-chip registers it is
not needed. The Z-80 does its
“‘fast thinking’’ on-chip.

Most CPUs have one
primary accumulator,
endowed with an exception-
ally rich repertoire of opera
tions, and a number of sec-
ondary ones with fewer and
often different functions
(sometimes, as in the stack
pointer, quite specialized).
The 6800 is unique in having
two nearly equal primary
accumulators. This means
that the many op codes (56)
that confer power on one are
duplicated for the other.

There are also five op
codes involving interaction
between A and B, and three
that are restricted to A, so
that 61 percent of the whole
set involves the accumulators.
Although this uses up much
of the supply of one-byte
codes, it allows a kind of
approximation to 16-bit oper-

ation. The existence of a
16-bit index register and
16-bit stack pointer also

suggests that this idea was in
the minds of the designers.

This concept was totally
abandoned by the 6502,
which went to the extreme of
Spartan 8-bit simplicity (even
its stack pointer was cut to
eight bits by having stack
instructions imply page one)
and did everything possible to
enhance the power of its one
accumulator, Although its
two auxiliary registers (X and
Y) can do data transfers, they
have almost no “thinking
power’’ and serve largely as
index registers for the many
addressing modes of the
accumulator, Half of the
6502 op codes involve the
accumulator, mostly inter-
actions with external memory
(especially the zero-page “off-
chip registers’’).

The 6502 is by far the
most “extroverted’’ of all
designs, since only 17 percent
of its instructions command
purely on-chip operations.
You can recognize a 6502
machine-code listing by the
high frequency of 2-byte
instructions. The same opera-
tion coded for the 8080 will
use mostly 1-byte instruc-
tions.

Although the Z-80 has a
duplicate set of the 8080
registers on-chip, this is quite
different from the 6800
concept. Only one set is “on-
line” at a given moment, The
last two precious new Z-80
one-byte op codes are used to
exchange sets, one for the AF



register-pair, the other for the
BCDEHL registers. Although
the exchange of registers is
not novel (the 8080 has three
instructions of this type), the
new Z-80 exchanges are an
advanced feature. In effect,
you can quickly insert an
alternate processor into the
system in a state of readiness
for a different or more com-
plicated task.

The Signetics 2650 — less
well-known but no less re-
markable than the other chips
— is so different in its organi-
zation that it is almost in
another dimension. | would
guess that the basic decision
was to have seven very ver-
satile accumulators. As noted
above for the 6800, con-
ferring power heavily drains
the supply of one-byte op
codes. This was partly solved
by organizing the six second-
ary accumulators into two
banks of three, selected (not,
as in the Z-80, exchanged) by
setting or resetting one bit
(RS) in a status register.

Once the concept of using
status bits as auxiliary in-
struction bits (creating a nine-
bit op code) had ““broken the
ice,”” it was probably easy to
use two more status bits (WC
and COM) to modify the
operation of many instruc
tions and to take the even
more radical step of using the
three high-order bits of the
memory address to specify
the addressing modes. Al-
though the remaining 13 bits
address only 8K, the address
space is raised to 32K by
having four selectable 8K
banks. This is an anticipation
of the ““memory-bank-shift-
ing” trick now coming into
use to expand memory
beyond the 65K Ilimit in
other systems.

Having burned so many
bridges, the 2650 designers
went on to an on-chip stack
(eight 15-bit registers
“‘pointed to’’ by three status-
register bits) that automati-
cally stores return addresses
for subroutines and inter-
rupts. Although Adam
Osborne refers to this as
“primitive,” it allows ex-
tremely fast operation (a

2650 subroutine call takes
only three cycles, compared
to six for the 6502, nine for
the 6800 and 17 for the 8080
and Z-80).

There is enough register
power so that nothing at all is
done exclusively on memory
locations. Zero-page is not
used as off-chip registers, but
reserved for fast access to
interrupt-servicing subrou-
tines, or for short programs
accessed by either branch- or
jump-to-subroutine op codes
that /mply zero-page (only
one address byte needed).
The wealth of original, so-
phisticated ideas in the 2650

(usually non-program) mem-
ory location for the operation
of that op code. All designs
have this mode. It is good for
occasional communication
with single locations any-
where in memory, but having
to specify an absolute address
every time a memory opera
tion is needed would be
extremely inefficient.

In the 8080, the major
addressing mode is one in
which the op code implies
that the correct memory ad-
dress is stored in the HL
register-pair (this may have
been done by a previous load-
immediate into HL), causing

“The wealth of original, sophisticated
ideas in the 2650 will profoundly
influence future designs.”

will profoundly influence

future designs.

Addressing Modes

Although everyone agrees
that well-designed addressing
modes make programming
more efficient, it seems to be
hard to explain exactly why
(and, with some of the trick-
ier modes, even how!). Pro-
gram memory locations are
addressed consecutively by
moving the program counter
into the address register.

If the program byte is an
op code, it is moved into the
control register, and the pro-
gram counter auto-increments
to pick up the next program
byte. Some op codes cause
the next one or two program
bytes to be “interpreted as
data,”’ i.e., to be moved into
some other on-chip register (s)
where (depending on what
logic networks were set by
the op code) they may be just
stored or used in an opera-
tion. This is immediate ad-
dressing.

If the op code commands
loading of the next two data
bytes into the address reg-
ister, this will provide direct
addressing of a unique

the content of HL to be
moved into the address reg-
ister. A sequence of 1-byte op
codes can now access the
memory location specified in
HL by implying that the
memory address is in HL
While the 8080 can also store
16-bit addresses in its BC and
DE registers, these allow only
moves between the primary
accumulator and memory.
Arithmetic and logical opera-
tions between the accumu-
lator and memory locations
are possible only with HL
addressing (that’s the reason
for the exchange instructions
between other registers and
HL). The awkwardness of
interaction with memory is
one of the major weaknesses
of the 8080, and the reason
why other designs (always
excepting the Z-80) have not
adopted the implied mode.

In the 6800 there is a
16-bit “index register’” (X)
that resembles HL in that it
can be loaded-immediate and
incremented or decremented.
However, op codes that imply
X-addressing must be fol-
lowed by a ‘displacement”
byte, which is added to the
“’base-address” in X to gen-

erate the true address trans-
ferred to the address register.
This ““indexed” access to a
memory location requires
two program bytes, instead of
only one in the 8080 mode.
The gain is that any location
in the address range from X
to X+255 can be accessed.
The difference is analogous to
that between the limited
moves of a pawn in chess and
the freer moves of a rook.

If the displacement byte
were always zero, the 6800 X
would work exactly like the
8080 HL. The 6800 X also
shows a close analogy with its
zero-page addressing; if X
were set to 0000, X-ad-
dressing would be indistin-
guishable from zero-page
addressing. In actual use,
X-indexing allows any 256
consecutive locations in mem-
ory to be accessed by what is,
in effect, a 1-byte direct ad-
dress, with the added feature
that the base address can be
incremented or decremented
by 1-byte instructions. It is a
powerful mode, and the Z-80
designers liked it so well that
they added two 16-bit index
registers (1X and 1Y) to their
chip. Unfortunately, their use
(including increment and
decrement) requires 2-byte
op codes, and even 3-byte
ones with the bit-manipula-
tion codes, so operation is
less code-efficient and slower
than the 6800 X-addressing.
Even so, it is a major en-
hancement relative to the
8080.

Zero-page addressing exists
in the 6800 and 6502 {and in
the 2650, in a different
form). Since a ““zero-page” op
code /mplies that the high-
order (page) address must be
set to 00, only the low-order
byte need be specified in the
instruction; this is a combina-
tion of implied and direct
addressing. Stack addressing
in all designs implies that the
address exists in the stack
pointer, a specialized but effi-
cient use of the implied
mode.

Both the 6502 and the
2650 use only eight-bit index
registers, which contain the
equivalent of the displace

Microcomputing, April 1980 175



ment byte of the 6800;
instructions that use them
need a 16-bit base-address.
The op code must be fol-
lowed by two direct-address
bytes (except in the 6502
zero-page-indexed mode,
where only one is needed
since page zero is implied), to
which the index-register value
is added to generate the true
address.

In an indexed loop, the
instruction can access con-
secutively (by index-register
increment or decrement) no
more than 258 locations
because the index ‘“‘wraps
around.”” However, the index
can do double duty as a
loop-counter and can control
the address of any number of
instructions (accessing
different memory areas)
within the loop. Very com-
plex operations are possible.

The B8-bit indexing elim-
inates 16-bit on-chip base-
address registers (of which
there can only be a limited
number) by having base
addresses specified in the
program locations (following
each indexed instruction op
code). Not only the address-
range is restricted (to 256
consecutive locations), but so
is the base-address; although
you can write a RAM pro-
gram that will modify its own
addresses, this is a dangerous
game, and not possible for a
program in ROM.

This limitation of direct-
indexed addressing is over-
come in the 6502 and 2650
by indirect-indexed ad-
dressing (absent in the 8080,
Z-80 and 6800, although
these sets can emulate it).
The true base-address of an
indirect-indexed op code is
stored in two contiguous
RAM locations that function
asa 16-bit "off-chip register.”
The op code must be fol-
lowed by two direct-address
bytes (cut to one in the 6502
because page zero is a/ways
implied) that specify the loca-
tion of the “‘off-chip address
register” in RAM, The opera-
tion picks up this “indirect”
address (first the low, then
the high) and adds the index
value (in the on-chip index

176 Microcomputing, April 1980

register) to generate the true
memory address.

Although fully automatic,
all this work takes time, so
execution is slower (by two
cycles in the 2650, but only
one in the 6502) than direct
indexing. But the addressing
capability is now limitless,
since the “indirect address
register” is modifiable at will.
In fact, this is a device that
allows you to create in RAM
as many 16-bit base-address-
remembering registers as you
may require, and is con-
ceptually similar to the
6800/6502 transformation of
zero-page locations into &bit
"off-chip registers.” Although
access to them is slow, the
supply is far greater than that
available on-chip, even in the
Z-80.

This may be why Adam
Osborne believes that 8-bit
indexing is ‘‘more powerful”
than the 6800/Z-80 16-bit
indexing mode, However, it
seems to me that there are
complex trade-offs such that
16-bit indexing will be faster
and more efficient in some
operations,

In every design, the pro-
gram counter is a potential
16-bit base-address register,

structuring; most of its
power is lost if the program is
“frozen” in ROM, and this
may be an instance where the
2650 designers’ imagination
simply ran wild!

The Status Register

It is possible for a “think-
ing”’ instruction to be en-
coded so that it will cause a
program skip, branch or jump
if its operation yields a
special state (such as all the
bits in a register becoming
zero). The DJNZ (Decrement
B and jump relative if B#0)
of the Z-80 is of this type.
However, if every possible
“thought”” were to be co-
encoded with every possible
“‘action,” the instruction set
would become very complex.
It is more practical to cause
each “thinking operation” to
set or reset one or more
status flag bits to control the
operation of subsequent jump
instructions.

Although these bits are
usually independent, it is con-
venient to have them in a
status register. One reason is
that whenever a running pro-
gram is interrupted, its cur-
rent status must be saved
(usually in the stack) because

“There are also ‘non-testable’ flags
that control the operation of
non-jump instructions.”

and all (except the 8080) use
it as such in relative-branch-
ing. Only the 2650 extends
the concept of PC-relative
addressing to other instruc-
tion types, which can access
memory locations in the
program area by a one-byte
address (added to the pro-
gram counter).

There is some operational
resemblance to the zero-page
concept, but programs carry
their “personalized off-chip
registers” along with them
wherever they may be located
in memory. This extraor-
dinary mode needs careful

the interrupt-servicing pro-
gram may alter some status
flags; before the interrupted
program is reentered, the
prior status must be restored
for it to work properly. Also,
it is often useful to check the
cantent of the status register
when you're tracking down
bugs in a program.

There are variations in the
status flags used by different
designs. The common ones
are the all-bits zero flag, the
sign flag (set if bit 7 of a
register is set to 1 by an
operation) and the carry flag
(a kind of “ninth” bit, set or

reset by a variety of arith-
metic or shift or rotate in-
structions). The 8080 also has
a parity flag (set if the num-
ber of 1 bits following an
operation on a register is
even, and otherwise reset);
the Z-80 retains this flag but
assigns to it two quite differ-
ent meanings (parity in non-
arithmetic operations, but
overflow in arithmetic ones)
that in practice never con-
flict.

The 6800, 6502 and 2650
have no parity flag, but all
have the overflow flag (set if
there is a carry out of bit 6 in
“signed binary arithmetic,”
where only bits 0 to 6 are
numeric, bit 7 being the sign
flag, + if 0 and - if 1). In all
but the 2650 (as usual, some-
what eccentric) these flags
(zero, sign, carry, parity and/
or overflow) are individually
"testable’” by a pair of in-

structions (jump-if-flag-set
and jump-if-flag-reset).
There are also “non

testable’” flags that control
the operation of non-jump
instructions. In the 8080 only
the auxiliary carry (out of bit
3 in arithmetic operations),
which is useful for decimal
arithmetic, is in the status
register. Other flags (such as
the interrupt-inhibit, which
disables the interrupt pin of
the processor) remain in-
visible on-chip. Unlike the
testable flags, which are auto-
matically set or reset by
“‘thinking’’ operations, the
non-testable ones are set or
reset only by special instruc-
tions.

However, there are also
special instructions to set or
reset some of the testable
flags. Thus you find (in all
but the 2650, which has
unusual instructions for pro-
gram control of any or all
flags) a specific set-the-carry
instruction, highlighting the

major role played by the
carry in ““thinking” opera-
tions. The 6800 and 6502

also have a clear-the-carry,
but the 8080/Z-80 have a
complement-the-carry (set it
if clear and clear it if set).
The 8080 CMP A instruc-
tion (very little used, since it



compares the accumulator to
itself!) could be used to clear
the carry (but also set the
zero) flag; this is one of many
possible examples of how
“missing” instructions can be
emulated.

In most designs, the
testable flags are not affected
by move instructions. In the
6800, most moves affect the
zero, sign and overflow flags.
The advantage is that a pro-
gram '‘learns” something
about a bit-pattern whenever
it handles it. The disadvan-
tage is that these flags be-
come highly “volatile,” so
that a status from a previous
“thinking’’ operation is lost
even though it may be needed
later. The 6502 design com-
promised: Only the zero and
sign flags are affected, and
only by moves into the on-
chip registers.

Nevertheless, status-saving
is very important. The 6502
has instructions that push or
pull the status register
directly into or out of the
stack. The 6800 status-save is
more awkward, since the
status register content must
go through the accumulator
to get into or out of the
stack, The 2650 status-save is
similar (but since it lacks a
conventional stack, the save is
in some other memory loca
tion). The 8080/Z-80 cannot
save only the status register;
their PUSH and POP instruc-
tions must simultaneously
{and slowly) save and restore
the accumulator.

The many
instructions are, in effect,
'“set-flags-if” instructions.
Much of the art of program-
ming consists of using these
in many different ways (rang-
ing from the obvious to the
fiendishly clever) so that each
of an infinite variety of pos-
sible conditions gets trans-
lated into some unique status
of from one to four testable
flags (with no more than 16
distinct conditions able to
exist at a given moment). For
truly complex operations,
this is very restrictive; this
limitation is overcome by
constructing in memory
specific decision tables for

“thinking’

178 Microcomputing, April 1980

each problem, using as many
bits as may be necessary, and
creating switching networks
of far greater complexity
than those within the CPU,
and acting like “off-chip
status registers.””

One of the more promising
innovations is the use of
status bits to alter the inter-
pretation of an op code. This
is exemplified by the
“decimal flag bit" in the
6502 status register. When
this bit is set, all 16 add-and-
subtract op codes do auto-

units.

Those who have read the
articles on Microelectronics in
Scientific American (Septem-
ber 1977) know what a fan-
tastic technical achievement a
VLSI chip represents. The
intellectual achievement of
creating a superior VLS| CPU
chip will be far more formi-
dable. The Z-B0 strikes me as
an awkward first try, a neces-
sary first stage of a new learn-
ing curve. The 8080 (follow-
ing an amazingly fast learning
curve up from the 4004) was

“Most of the creative ferment
of the past decade was fostered
by small companies.”

matic decimal-adjusting. In
effect, this bit doubles the
number of arithmetic op
codes. Other designs need a
decimi!-adjust instruction
after each add or subtract
instruction so that arithmetic
loops run more slowly.

The Signetics 2650 uses its
WC status bit to cause its add,
subtract and rotate instruc-
tions to work either with the
carry (WC set) or without it
(WC clear). This kind of
enrichment of an instruction
set is likely to be more widely
adopted than the Z-80 multi-
byte op codes. Its implemen-
tation requires a lot of
thought, since program-
setting of status bits becomes
a nuisance if it has to be done
frequently!

Things to Come

The 8080 and its rivals
were made possible by LSI
technology, although the
Z-80 is an early product of
the new era of VLSI (very
large-scale integration). VLSI
is now primarily being used
for designs that combine a
CPU, 1/0, ROM and some
RAM all on a single chip
(Intel 8048, Mostek 3870,
etc.). These are special-pur-
pose controllers aimed at a
mass market of millions of

a work of creative genius in
LSI. By comparison, the Z-80
is only an immense add-on,
achieving much greater power
but losing in elegance. This is
hard to define: Many ele-
ments, all essential, all
precisely right, fit into one
perfect entity. The Taj Mahal
is elegant; the Pentagon is
not.

Everyone knows that no
existing design even comes
close to being the ultimate
one, and that far superior
ones will become available in
the near future. Before trying
to guess (I have no insider
knowledge!) what they will
be like, we may wonder
whether it is possible for
giant corporations to harbor
and nurture the highly crea-
tive and individualistic minds
to whom we owe the revolu-
tionary microprocessor
designs. Most of the creative
ferment of the past decade
was fostered by small com-
panies. Intel has become a
giant, Zilog is backed by
giants, MOS Technology was
taken over by Commodore,

Signetics by Philips Eind-
hoven,
Although large organiza-

tions can provide large re-
sources, they are directed by
an entirely different kind of

mentality. It can be argued
that giantism crushes crea-
tivity (in the automotive
field, where do we find front-
wheel drive with CVCC and
rotary engines?) and replaces
genuine value with shiny
packaging and advertising.

Another crucial question
is: Has VLS| made the 16-bit
CPU the wave of the future?
Here we have already seen the
major minicomputer manu-
facturers (DEC and Data
General) trying to counter
the threat of major 1C manu-
facturers (especially Texas
Instruments) by downshifting
to single-chip CPUs, such as
the LSI-11 and microNova, in
the hope that their highly
developed operating systems
and other software will give
them a decisive competitive
advantage.

Anyhow, it seems to me
that Intel will probably not
do any major redesign of the
8080 (beyond the enhance-
ment at the electronics level
in the 8085). The effective
power will be enhanced by
new LS| support chips (i.e.,
the 8275 CRT-controller and
8279 KB-1/0 interface) that
relieve the CPU of much
drudgery, freeing it for think-
ing. The familiar stacks of PC
boards, loaded with armies of
chips, are on the verge of
obsolescence. If Intel should
decide to compete against the
Commodore PET, etc., its
entry could be based on a
mere handful of chips, with a
price/performance ratio that
would be hard to beat.

As | stated at the start of
this article, there are not
many tasks that the 8080
instruction set cannot do very
well, so resting on these
laurels may well be the right
strategy (and the Intel execu-
tives have so far proved to be
skillful strategists). Although
| have not carefully studied
the 8048 design, which has
many resemblances to the
8080, it is likely to be a
strong contender at the lower
level. This leaves the new
16-bit 8086, which | expect
to be as revolutionary as the
8080 was, simply because it is
sure to be very far up on the



learning curve of micropro-
cessor design.

In anticipation of the
8086, it is a certainty that
Intel competitors are engaged
in intensive design efforts,
which may not be crystallized
until the full power of the
8086 is known. The Z-80
designers (who were the 8080
designers), at last free of their
desire to retain compatibility
with the 8080, are sure to try
to create something in VLSI
that will not only be big but
also wonderful. The dilemma
is: Should you go whole-hog
for 16-bit operation (mini-
computer-style) or allow
variable-bit-operation (as the
TMS 9900 does)? Many oper-
ations don‘t really need 16
bits.

By now, most people
know that the 6502 design
arose from the discontent of
some 6800 designers. They
retained some 6800 elements,
dropped others and added
new ones, but left 105 op
codes unused (consciously
labeling them for “future
expansion’’). That this set —
in an obviously unfinished
state — can compete effec
tively with more complex
ones proves the overriding
importance of architecture
and speed over mere size.

It is hard to guess what
direction the VLS| expansion
of the 6502 will take, since so
many options are wide open.
Nevertheless, the ‘‘“feel” of
the 6502 suggests that it will
not add as many new on-chip
registers as the Z-80. Its ex-
treme one-accumulator orien-
tation suggests that this will
be expanded to allow many
16-bit operations. If the orig-
inal designers are still in-
volved, its new instructions
are likely to add quite gen-
eralized power, not like the
specific subroutine type of
the Z-80 block move or
search.

Motorola has already done
some enhancing of the 6800,
though neither the 6801 nor
the 6802 is a major upgrading
of the kind that competitive
pressures will eventually re-
quire. If | were a Motorola
executive (luckily for them

180 Microcomputing, April 1980

I'm not!), | would be wonder-
ing whether the twin-accumu-
lator concept, which would
have to be retained in a
compatible upgrading, s
viable. As for the 2650, that |
(and surely many others)
admire its ingenuity cuts very
little ice since it has not sold
well, and Philips executives
must be pondering its fate.

In the next few vyears,
imponderables such as the
economic climate and the
intuition of executives will
play a more important role
than the brilliance of de-
signers (in whose honor |
wrote this article). Peering
somewhat farther into the
future, | think it likely that
the creative genius of the
Japanese, who have been
making giant strides in com-
puter technology, will be
entering the picture.

Existing designs have
enough momentum so that
they will persist for quite a
while. Some differences be-
tween them were revealed in
the BASIC timing com-
parisons by Rugg and Feld-
man (June and October 1977
Kilobaud)., Such tests may
reveal more of the moronic
nature of BASIC than of the
ultimate power of a micro-
processor. The efficiency of
even the finest instruction set
gets degraded by older,
human-oriented high-level
languages like BASIC or
FORTRAN. Only a stupen-
dously large and costly
optimizing compiler program
can translate them into effi-
cient machine language.

In a talk at the 1977
WESCON, Carol Anne Ogdin
referred to these older lan-
guages as ‘‘dinosaurs” and
stressed the superiority of
newer ones such as PASCAL
and FORTH. The micro-
computer revolution will not
be completed until the gap
between computer language
and human language is
bridged, even though the gap
between personal computers
and megacomputers is nar-
rowing rapidly.

Professional programmers
(a very special breed) now
function as the language

bridge, and have not vyet
succeeded {though IBM tried)
in writing computer programs
to replace themselves! Unless
human language evolves into

less ambiguous, perhaps they
never will; but it is the next
great challenge to creativity.
What's the good of having a
genie at your beck and call, if
you can't tell it what to do? ®

something more logical and

An early view of the next generation. The above was
completed before any of the new designs had mate-
rialized. Several are now available, but it is not pos-
sible here to do any in-depth evaluation. With thou-
sands of possible op codes, the 8086 looks impos-
sibly complex to me. It will encounter competition
from 16-bit rivals such as the Zilog Z-8000 and Mo-
torola M-68000, and other manufacturers may risk
entry into a small and overcrowded market. All
these hardware marvels lack the tested software
that can make them useful.

One hint that the day of the 8-bit machine is not
over is the forthcoming Intel 8088, a dual 8-bit pro-
cessor on one chip that will include much of the ad-
vanced thinking of the 8086. Intel executives ap-
parently decided they needed something better
than the 8080/8085 to stay competitive in the low-
cost microcomputer market.

A formidable competitor is the Motorola 6809,
with enhancements so great that | feel its perfor-
mance will, in most areas, excel that of all older
designs. It retains the twin accumulators of the
6800, but some instructions use A and B as if they
were one 16-bit accumulator. It adds a second in-
dex register (Y, exactly like the 6800 X) and a second
stack pointer (U, similar to the 6800 S but never
used for automatic storage of return addresses or
registers). Both stack pointers can also serve as in-
dex registers.

This is part of an enrichment of addressing
modes. However, as in the Z-80 the modes must be
specified by a second op-code byte, sacrificing
speed for power. Probably to compensate for this
loss, the fast “zero-page” addressing mode has
been made more flexible: the “page” address is
stored in a new 8-bit programmable *‘direct-page
register,” so that any page in memory can be ad-
dressed as if it were the 6800 zero-page.

Also, direct-page addressing, needing only one
op-code byte and one address byte, has been made
indexable as in the 6502. PC-relative addressing, as
in the 2650, is implemented, together with “long”
(16-bit) PC-relative branching, so that programs can
be written to run anywhere in memory. Many of the
valuable ideas of 6800 competitors have been
adopted and extended.

| have not seen the full 6516 instruction set,
which is said to use only one-byte op codes. This
will often mean higher speed, but 105 new op codes
cannot yield as much capability as the much
greater increase in the 6809. In the coming genera-
tion, we may see several chips with very different
instruction sets, none so superior that it can crush
all others. The older designs, however, have be-
come obsolete.




