Floating Point Routines for the 6502

by Roy Rankin, Department of Mechanical Engineering,
Stanford University, Stanford, CA 94305
(415) 497-1822

and

Steve Wozniak, Apple Computer Company
770 Welch Road, Suite 154

Palo Alto, CA 94304

(415) 326-4248

Editor’s Note: Although these routines are for the 6502, it
would appear that one could generate equivalent routines for
most of the “traditional” microprocessors, relatively easily,

by following the flow of the algorithms given in the excellent
comments included in the program listing. This is particularly
true of the transcendental functions which were directly modeled
after well-known and proven algorithms, and for which, the
comments are relatively machine-independent.

These floating point routines allow 6502 users to perform
most of the more popular and desired floating point and
transcendental functions, namely:

Natural Log - LOG

Common Log - LOG10

Exponential - EXP

Floating Add - FADD

Floating Subtract - FSUB

Floating Multiply - FMUL

Floating Divide - FDIV

_Convert Floating to Fixed - FIX
Convert Fixed to Floating - FLOAT

They presume a four-byte floating point operand consisting of
a one-byte exponent ranging from -218 through +127, and a
24-bit two’s complement mantissa between 1.0 and 2.0.

The floating point routines were done by Steve Wozniak,
one of the principals in Apple Computer Company. The
transcendental functions were patterned after those offered by
Hewlett-Packard for their HP2100 minicomputer (with some
modifications), and were done by Roy Rankin, a Ph.D. student
at Stanford University.

There are three error traps; two for overflow, and one for
prohibited logarithm argument. ERROR (1DQ6) is the error
exit used in event of a non-positive log argument. OVFLW
(1E3B) is the error exit for overflow occuring during calcula-
tion of e to some power. OVFL (1FE4) is the error exit for
overflow in all of the floating point routines. There is no
trap for underflow; in such cases, the result is set to 0.0.

All routines are called and exited in a uniform manner:
The argument(s) are placed in the specified floating point
storage locations (for specifics, see documentation pre-
ceeding each routine in the listing), then a JSR is used to
enter the desired routine. Upon normal completion, the
called routine is exited via a subroutine return instruction (RTS).

Note: The preceeding documentation was written by the Editor, based
on phone conversations with Roy and studying the listing. There is a
high probability that it is correct. However, since it was not written
nor reviewed by the authors of these r the p i
tation may contain errors in concept or in detail.

- JCW, Jr.

August, 1976

Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, Box 310, Menlo Park CA 94025

Orwr—

115+
ExPoNENT

l I I i I L i '

In the Exponent:
00 Represents -128

7F Repfesents -1
80 Represents O
81 Represents +1

FF Repr'esents +127

IEmetnr“r]'rwa's ca:+:.£m£~?' Mlnm’.*un |

n | méd O\ nt2 ne3
/ b

k"

e

!

i

f
1M,516-. BYTE OF MANTISSA:

S

A TS G SN B
76 5 4 3 2 1 0
PRESUMED DECIMAL. POINT
O+
1€~
JULY 5. 1976

BASIC FLOATING POINT ROUTINES
FOR 6582 MICROPROCESSOR
BY R. RANKIN AND S. WOZNIAK

CONSISTING OF:
NATURAL LOG
COMON LOG
EXPONENTIAL (E¥KX)
FLOAT FIX
FADD FsuB
FHUL FDIV

FLOATING POINT REPRESENTATION (4-BYTES)
EXPONENT BYTE |
MANTISSA BYTES 2-4

MANTISSA: TWO"S COMPLIMENT REPRESENTATION WITH SIGH IN
MSB OF HIGH-ORDER BYTE. TMANTISSA IS NORMALIZED WITH AN
ASSUMED DECIMAL POINT BETWEEN BITS 5 AND 6 OF THE HIGH-ORDER
BYTE. THUS THE MANTISSA 1S IN THE RANGE L. TO 2. EXCEPT
WHEN THE NUMBER IS LESS THAN 23%x(-128),

EXPONENT: THE EXPONENT REPRESENTS POUERS OF TWO. THE

REPRESENTATION 1S 2°S COMPLIMENT EXCEFT THAT THE SIGN

BIT (BIT 7) 1S COMPLIMENTED. THIS ALLDWS DIRECT COMPARISION

OF EXPONENTS FOR SIZE SINCE THEY ARE STORED IN INCREASING

NUMERICAL SEQUENCE PANGING FROM $08 (-128) TO SFF (+127)

(% MEANS NUMBER 1S HEXADECIMAL) .

REPRESENTATION OF DECIHAL NUMBERS: THE PRESENT FLOATING
POINT REPRESENTATION ALLOWS DECIMAL MUMBERS IN THE APPROXIMATE
RAHGE OF 184#(-38) THROUGH 1B##(38) WITH & TO 7 SIGNIFICANT

HEE X EE XXX REEEE XL R EE R XL ER X XXX EE NN E X R R

DIGITS.
ana3 ORG 3 SET BASE PAGE ADPESSES
8883 EAR SIGN NOP
8004 EA %2 HOF
B0gS 0@ fA BE 12 BSS 3
BBOE ER X HOP
6005 @8 ga B0 11 655 3 HMANTISSA |
8gac E BSS 4 SCRATCH
0810 4 ESS 4
oe14 T BSE 4

Page 17

207

8els
(1

AS 89
Fa 82
18 81

28 1C

R
84

BSHRARRBAIRL

20 88
A2 83

Page 18

1E
¢

1D

#

SEXP BSS 4 ibC1 BD CD
INT BSS | 1DC4 95 84
1DC6 CA
1DC7 10 FB
. ORG 51088 STARTING LOCATION FOR LOG e ars
* NATURAL LOG OF MANT/EXP1 WITH RESULT IN MANT/EXP1 1pcc 68
*
LOG Lpa m IDCD 7E 6F
BEQ ERROR 20 ED
BPL CONT IF_ARG>B DK 1DD1 88 SR
ERROR BRK ERROR ARGC =8 82 7a
* 1005 7F 58
CONT ISR SWAP MOVE ARG TO EXPABNTZ. 0o oo L) ¢ B9 8C
12 0o LDA X2 HOLD EXPONENT 1009 B8 52
B8 40
SET EXPONENT 2 TO @ (580) 10D B1 AB
COMPLIMENT SIGN BIT OF ORIGINAL EXPONENT 86 49
SET EXPONENT INTO MANTISSA 1 KOR FLOAT 1DE1 88 6
B pL¥+3 88 66
CLEAR MSB OF MANTISSA 1 [C B . JUES 7F 4@
CONVERT TO FLOATING POINT L 00 28
4 BYTE TRANSFERS
1E68
COPY MANTISSA TO 2
SAVE EXPONENT IN SEXP
LOAD EXP/MANTI WITH SORT(2) 1E60 A2 B3
1EB2 BD D8
1EB5 95
1587 CA
Z-SORT(2) 1E08 10 F8
4 BYTE TRANSFER 1E8R 20 77
SAVE EXP/MANTI AS T 1E8D A2 B3
1EBF BS B8
LORD EXP/MANTI WITH Z 1E11 95 18
1E13 CA
LOAD EXPARNT2 UITH SORT(2) IE14 18 F9
IEI6 20 EB
IE19 AS 8A
IEIB 8BS IC
JSR FADD Z4SORT(2) 1EID 38
LDX =3 4 BYTE TRANSFER IEIE E9 7C
™R LDA T.X 1E28 RS B9
STR X2.X LOAD T INTO EXP/MRNTZ 1E22 E9 08
DEX 1E24 18 1S
BPL T2 1E26 18
JSR FDIV Te(Z-5ORT(2))/(Z450RT(2)) 1E27 RS BA
LDX =3 4 BYTE TRANSFER €29 69 78
MIT LDA XI.X 1E28 RS 89
STA T.X COPY EXP/MANTL TO T AND 1E2D €9 88
STA X2.X LOAD EXP/MANT2 WITH T 1E2F 10 BB
DEX 1E3L A9 BB
BPL MIT 1633 A2 83
JSR FMUL T*T E35 95 B9
JSR SWAP MOVE TeT TO EXP/TRNT2 1E37 CA
LDX =3 4 BYTE TRANSFER IE38 10 F8
MIC LDA C.X 1E3R
STA X1.X LoAD
L) EXPARNTI WITH C _——
BPL HiC
JSR FSUB TaT-C IE3C 20 2C
LDX =3 4 BYTE TRANSFER 1E3F A2 83
M2MB LDR MB.X 1E41 BS 18
STR X2.% LOAD EXP/HANTR WITH 1B IE43 95 pa
DEX 1E45 CAR
BPL 12MB IE46 18 F9
JSR FDIV B/ (TT-C) 1E48 20 4A
LDX =3 4 BYTE TRANSFER 1E48 A2 B3
M2Al LDA AI.X IE4D B5 88
STA X2, % LORD EXPMANTZ WITH Al IE4F 95 18
DEX 1ES1 95 B4
BPL tM2A1 1E53 CA
JSR FADD MB/ (TWT-C) A1 1E94 18 F7
LDX =3 4 BYTE TRANSFER 1IES6 28 77
MeT LDA T.X 1ESS R2 B3
STR X2.X LOAD EXPAANTZ WITH T 1ESB BD DC
DEX 1ESE 9584
BPL M2T 1E6® B85 08
JSR FMUL (MB/(THT-C)+A1) AT 1E62 95 18
LDX =3 4 BYTE TRANSFER 1E64 CA
M2MHL LDA MHLF.X 1E65 1B F4
STA X2.X LOAD EXP/HANT2 WITH FHLF (.5) 1E67 28 58
DEX 1E6A A2 03
BPL M2rHL 1E6C BD EB
JSR FADD +.5 1EEF 95 B4
LDX =3 4 BYTE TRANSFER 1E71 CA
LDEXP LDA SEXP.X 1E72 10 F8
STR X2.% LOAD EXP/MANT2 WITH ORIGINAL EXPONENT 1€74 20 9D
X 1E77 A2 83
BPL LDEXP 1E79 B5 @8
JSR FADD HEXPN 1E7B 95 14
LDX =3 4 BYTE TRANSFER 1E7D BD E4
ME2 LDA LE2.X 1E88 95 88
STR X2.X LOAD EXP/MANTZ WITH LN(2) 1€82 85 18
DEX 1E84 95 @4
BPL MLE2 1€86 CA
JSR FMUL #LNC2) 1E87 18 FB
RTS RETURN RESULT IN MANT/EXP1 1689 20 77
" 1E8C 28 IC
* COMON LOG OF MANT/EXP1 RESULT IN MANT/EXP1 1E8F A2 83
» IE91 B5 14
LOGI8 JSR LOG COMPUTE NATURAL LOG 1E93 95 @8
LDX =3 1ESS CR
Dr. Dobb’s Journal of C Calisthenies & Orthodonti

CONVERT CONTENTS OF EXP/MANTL TO AN INTEGER

1 Lia LDA LN1B. X
STA X2.X LOAD EXPARNTZ WITH 1/LNC1B)
DEX
BPL L1B
IF JSR FHUL LOGIB (X) SLNCX) ALNC18)
RTS
*
LN12 DCM 8.4342945
R22 DCM 1.4142136 SORT(2)
LE2 DCH B.69314718 LOG BASE E OF 2
A1 DCM 1.2920874
-3 DCH -2.6398577
c DCHM 1.6567626
MHLF pCM 8.5
»
ORG $1E88 STARTING LOCATION FOR EXP
*
* EXP OF MANT/EXP1 RESULT IN MANT/EXP1L
*
P LDX =3 4 BYTE TRANSFER
1E LDA L2E.X
STR X2.% LDAD EXP/MANTZ WITH LOG BASE 2 OF E
DEX
BPL EXP+2
1F JSR FHUL LDG2(E)&X
LDX =3 4 BYTE TRANSFER
FSA LDA XI.X
STA Z.X STORE EXP/MANTL IN Z
DEX
BPL FSA SAVE Z=LN(2)*xX
IF JSR FIX
LDA Hi+l
STA INT SAVE RESULT AS INT
SEC SET CARRY FOR SUBTRACTION
SBC =124 INT-124
LDAR Mi
SBC =B
BPL OVFLW OVERFLOW INT>=124
cLe CLEAR CARRY FOR ADD
LDA Mi+1
ADC =120 ADD 128 TO INT
LDA I
ADC =B
BPL CONTIN IF RESULT PQSITIVE CONTINUE
LDA =B INT¢<-128 SET RESULT TO ZERD AND RETURN
LDX =3 4 BYTE MOVE
ZEROD STA X1.X SET EXP/MANT1 TO ZERO
DEX
BPL ZERO
RTS RETURN
*
OVFLY BRK OVERFLOW
L
1F CONTIN JSR FLOAT FLOAT INT
DX =3
ENTD LDA Z.X
STR X2.% LOAD EXP/TRNT2 WITH Z
DEX
BPL ENTD
1IF JSR FSUB Z=2-FLOATCINT)
LDX =3 YTE MOVE
ZSAV LDA XI.X
STR Z.X SAVE EXP/MANTI IN 2
STR X2.% COPY EXP/MANT TO EXP/MANT2
DEX
BPL ZSAV
1F JSR FruL 2%z
LDX =3 4 BYTE MOVE
1IE LAZ LDA AZ,X
STA X2.X LORD EXP/MANT2 WITH A2
LDA X1.X
STA SEXP.X SAVE EXP/MANTI AS SEXP
DEX
BPL LAZ
1F JSR FRDD ZHZHAZ
LDX =3 4 BYTE MOVE
1E LB2 LbA B2.X
STA X2.% LOAD EXP/MANT2 WITH B2
DEX
BPL LB2
IF JSR FDIV T=B2/(Z42+A2)
LDX =3 4 BYTE MOVE
DLOAD LDA Xi.X
STA T.X SAVE EXPARNTI AS T
1E LDbA C2.%
STA X1.X LOAD EXPARNTI WITH C2
LDA SEXP.X
STA X2.X LOAD EXP/MANTZ WITH SEXP
DEX
BPL .DLOAD
IF JSR FHUL 2¥ZHC2
IF ISR SWAP MOVE EXP/MANTIL TO EXP/TMRNTZ
LDX =3 4 BYTE TRANSFER
LT LDA T.X
STA X1.X LDAD EXPAMANTI WITH T
DEX

Box 310, Menlo Park CA 94025

August, 1876

1ES6 18 F9 BPL LTHP

IE98 20 4R IF JSR FSUB C2424Z-B2/ (242 +02) * ADD EXP/MANTI AND EXP/TANTZ RESULT IN EXP/MANTL
1ESE A2 B3 LDX =3 4 BYTE TRANSFER *
1ESD BD EB 1€ LDD LDA D.X IF58 AS B4 FADD LDA X2
1ERB 95 B4 STR X2.X LOAD EXPARNTZ WITH D IF52 C5 88 CHP X1 COMPARE EXP1 WITH EXP2
1ER2 CR DEX IF34 DA F7 ENE SWPALG IF UNEQUAL. SWAP ADDENDS OR ALIGH MANTISSAS
1EAZ *18 F8 BPL LDD IF56 28 88 1F JSR ADD ADD ALIGNED MANTISSAS
1EAS 20 58 IF JSR FADD D4C2x2%Z-B2/(Z4Z+A2) IF59 5@ E3 ADDEND BVC NORM NO OVERFLOW. NOMALIZE RESULTS
1EA8 28 IC IF JSR SUAP MOVE EXPAMANTI TO EXP/HANTZ IFSB 78 @5 BVS RTLOG OV: SHIFT MANT1 RIGHT. NOTE CARRY IS CORRECT SIGN
1EAB A2 83 LDX =3 4 BYTE TRANSFER IFSD 5@ BD ALGNSW BCC SWAP SWAP IF CARRY CLEAR. ELSE SHIFT RIGHT ARITH.
IEAD BS 18 LFR LDA 2. IFSF RS 89 RTAR LDA M1 SIGN OF MANTI INTO CARRY FOR
IEAF 95 @8 STA X1.X LOAD EXP/HANTL WITH Z IF61 8A AsL A RIGHT ARITH SHIFT
1681 CA DEX IF62 EG 88 RTLOG INC X1 INCR EXP1 TO COMPENSATE FOR RT SHIFT
1EB2 18 F9 BPL LFA IF64 Fa 7E BEQ OVFL EXP1 OUT OF RANGE
1EB4 28 4A IF JSR FSUB ~Z+DIC2HIHT-B2/ (ZHRTHA2Y IF66 A2 FA RTLOG1 LDX =SFA INDEX FOR 6 BYTE RIGHT SHIFT
1EB7 A2 83 LD =3 4 BYTE TRANSFER IF68 A9 88 ROR1 LDA =588
1EBS BS 18 LF3 LDA Z.% 1IFGA B0 81 BCS RORZ
1EBE 95 B4 STA X2.X LOAD EXP/MRNTZ WITH Z IF6C oA AsSL A
1EBD CA DEX IF6D 56 OF RORZ LSR E+3.X JSIMILATE ROR E+3.X
1EBE 18 F9 BFL LF3 IF6F 15 oF ORA E+3.X%
1ECB 28 9D IF JSR FDIV 2/ xwx) IF?1 95 oF STA E+3.X
1EC3 A2 83 LDX =3 4 BYTE TRANSFER 1F73 E8 INX NEXT BYTE OF SHIFT
1ECS BD ES 1D LDI2 LDA MHLF.X 1F74 D8 F2 BNE RORL LOOP UNTIL DONE
IECB 95 B4 STA X2.X LOAD EXP/MANTZ WITH .5 1F76 69 RTS RETURN
1ECA CA DEX *
1ECB 18 F8 BPL LDI2 *
1ECD 28 S5O IF JsR FADD +2/ (wrk) +.5 * EXP/AANTI % EXP/MANTZ RESULT 1N EXPANTL
1ED8 38 SEC ADD INT TO EXPOMENT WITH CARRY SET *
1EDL A5 I1C LDR INT TO MULTIPLY BY 1F77 28 8D IF FHUL JSR MDI ABS. VAL OF THE (NT1. MANT2
1ED3 65 €8 ADC X1 2RK(INT+L) IF7A 65 08 ADC X1 ADD EXPL TO EXF2 FOR PRODUCT EXPONENT
1EDS 85 08 sTA X1 RETURN RESULT TO EXPONENT 1F7C 28 CD IF JSR MD2 CHECK PRODUCT EXP AND PREPARE FOR, MUL
1ED? 68 RTS RETURN ANS=(.5+2/(-Z+D+C2424Z-B2/ (Zigp IF7F 18 cLe CLEAR CARRY
1ED8 88 SC L2 DCM 1.4426950409 LOG BASE 2 OF E IF89 20 66 IF MULI JSR RTLOG! MANTI AND E RIGHT.CPRODUCT AND MPLIER)
55 1E 1F83 98 B3 BCC MuL2 IF CARRY CLEAR. SKIP PARTIAL PRODUCT
1EDC 86 57 R2 DCM B7.417497202 1F85 29 80 1IF JSR ADD ADD MULTIPLICAN TO PRODUCT
6A E1 :Egg 83 MIL2 DEY NEXT MUL ITERATION
1EED 89 4D B2 DM 6179722695 18 F5 BPL MUL1 LOOP UNTIL DONE
3 1D ZHDIIBKINTHD. yegp 46 o3 MDEND LSR SIGN TEST SIGN (EVEN.ODD)
1EE4 7B 46 c2 DCM 83465735983 IFED 98 AF HORHMX BCC NORM IF EXEN, NORMALIZE PRODUCT. ELSE COMPLEFENT
FR 78 IFEF 38 FCOMPL SEC SET CARRY FOR SUBTRACT
1EEB 83 4F D DCM 9.9545957821 1F98 A2 83 LDX =83 INDEX FOR 3-BYTE SUBTRACTION
A3 B3 1F92 A9 @9 COMPLI LDA =588 CLEAR A
* 1F94 FS 88 SBC X1,% SUBTRACT BYTE OF EXP1
* 1FS6 95 68 STA X1.X RESTORE IT
* BASIC FLOATING POINT ROUTINES 1F98 €A DEX NEXT MORE SIGNFICANT BYTE
* IF93 DB F7 BNE COMPL1 LOOP UNTIL DONE
1Feg ORG $1FBB ‘START OF BASIC FLOATING POINT ROUTINES 1FSB F8 BC BEQ ADDEND NORMALIZE (OR SHIFT RIGHT IF OVERFLOW)
1F80 18 ADD CLC CLEAR CARRY *
1Fa1 A2 02 LDX =582 INDEX FOR 3-BYTE ADD *
1Fa3 BS 89 ADDI LDA MI.X * EXPAMANT2 # EXPAIANTI RESULT IN EXP/TANTL
1FBS 75 85 ADC M2. % ADD A BYTE OF MANT2 TO MANTI *
1FB7 95 89 STA MI.X IFSD 28 8D IF FDIV JSR MDI TAKE ABS VAL OF MANTI. MANT2
1Fas CA DEX ADVANCE INDEX TO NEXT MORE SIGNIF.BYTE IFR@ ES 88 SBC %1 SUBTRACT EXP1 FROM EXP2
1FBA 18 F7 BPL ADDI LOOP UNTIL DONE IFR2 28 CD IF JSR MD2 SAVE AS BUOTIENT EXP
1FOC 68 RTS RETURN 1FAS 38 DIVI SEC SET CARRY FOR SUBTRACT
1FBD 86 83 MDI ASL SIGN CLEAR LSB OF SIGN IFR6 A2 82 LDX =562 INDEX FOR 3-BYTE INSTRUCTION
IFBF 28 12 IF JSR ABSWAP ABS VAL OF MANT1. THEN SUAP MANTZ2 1FA8 B5 85 DIVZ LDA M2.X
IF12 2499 ABSUAP BIT M1 MANTI NEG? IFRA F5 oC SBC E.X SUBTRACT A BYTE OF € FROM MANT2
IF14 18 85 BPL ABSWP1 NO.SWAP WITH MANT2 AND RETURN IFAC 48 PHA SAVE ON STACK
IFI6 28 &F IF JSR FCOMFL YES, COMPLIFENT IT. IFAD €A DEX NEXT MORE SIGNIF BYTE
IFI9 E6 83 INC SIGH INCR SIGN. COMPLEMENTING LSB IFRE 18 F8 BPL DIV2 LOOP UNTIL DONE
IFIB 38 ABSUP1 SEC SET CARRY FOR RETURN TO MUL/DIV 1FB8 A2 FD LDX =§FD INDEX FOR 3-BYTE CONDITIONAL MOVE
* 1FB2 68 DIVZ PLA PULL A BYTE OF DIFFERENCE OFF STACK
* SUAP EXP/MANTI UITH EXP/MANT2 1FB3 98 82 BCC DIV4 IF MANT2<E THEN DONT RESTURE MANT2
* 1FBS 95 es STR M2+3.X
IFIC A2 04 SUAP LDR =504 INDEX FOR 4-BYTE SLAP 1FB7 E8 DIV4 INX HEXT LESS SIGNIF BYTE
IFIE 94 8B SWAP1 STY E-1.X 1FBS DB F8 BNE DIV3 LOOP UNTIL DONE
1F20 BS 87 LbA Xi-1.X SUAP A BYTE OF EXP/MANTI UITH 1FBA 26 B8 ROL M1+2
1F22 B4 83 LDY X2-1,% EXPARNT2 AND LEAVEA COPY OF IFEC 26 BA ROL MI+1 ROLL QUOTIENT LEFT. CARRY INTO LSB
1F24 84 87 STY X1-1.X MANT1 IN E(3BYTES). E+3 USED. IFBE 26 83 ROL M1
1F26 95 83 STA X2-1.X% IFCé B6 87 ASL M2+2
1F28 CA DEX ADVANCE INDEX TO NEXT BYTE IFC2 26 86 ROL M2+1 SHIFT DIVIDEND LEFT
iF23 DB F3 BNE SWAP1 LODP UNTIL DONE.
1F28 68 RTS
* 1FC4 26 85 ROL M2
* IFC6 B8 IC BES OVFL OVERFLOU IS DUE_TO UNNORMALIZED DIVISOR
* 1FC8 88 DEY NEXT- DIVIDE ITERATION
* CONVERT 16 BIT INTEGER IN MICHIGH) AND MI+1(LOW TO jrca pe DA 8NE DIVI LOOP UNTIL DONE 23 ITERATIONS
X RESULT IN EXP/MANTI. EXP/MANT2 UHEFFECTED F.P. 1IFCB F@ BE BEQ MDEND NORMALIZE QUOTIENT AND CORRECT SIGN
* 1FCD 86 B8 M2 STX MI+2
* IFCF 86 Bn STX Mi+1 CLR MANTL (3 BYTES) FOR MUL/DIV
1F2C A9 BE FLOAT LDA =$BE iFD1 86 89 STX i
IF2E 65 88 STA X1 SET EXPN TO 14 DEC 1FD3 B8 8D BCS OVCHK IF EXP CALC SET CARRY. CHECK FOR OVFL
1F38 A9 o8 LDA =0 CLEAR LOW ORDER BYTE IFDS 30 04 Ml MD3 IF NEG NO UNDERFLOL
1F32 85 8B STA MI+2 1FD7 68 PLA POP OHE
1F2a FB 98 BEQ HORM NORMALIZE RESULT 1FD8 68 PLA RETURN LEVEL
1F36 C6 88 NORMI DEC X1 DECREMENT EXP1 1FDS 98 B2 BEC MORMX CLEAR X1 AND RETURH
IF38 86 BB ASL H1+2 IFDB 49 g8 MDI EOR =$80 COMPLIMENT SIGN BIT OF EXP
1F3a 26 BA ROL M1+1 SHIFT MANTI (3 BYTES) LEFT IFDD 85 @8 STR X1 STORE IT
1F3C 26 89 ROL M, IFDF RB 17 LDY ss17 COUNT FOR 24 MUL OR 23 DIV ITERATIONS
1F3E R5°89 NORM LDA MI HIGH ORDER MANTI BYTE IFE1 68 RTS RETURN
1Fa8 en ASL A UPPER TUO BITS UNEQUAL? IFE2 18 F7 OVCHK BPL MD3 IF POS EXP THEN NO OVERFLOW
1F41 45 83 EOR M1 1FE4 B8 OVFL BRK
1F43 38 84 BMI RTS1 YES,RETURN WITH MANTI NORMAL IZED *
iF45 @S 88 LDA X1 EXPL ZERD? *
1F47 DB ED BNE NORML ND. CONTINUE NORMRLIZING * CONVERT EXP/MANTL TO INTEGER IN M1 (HIGH) AND MI1+1(LOW
1F43 68 RTS1 RTS RETURN * EXP/TRNT2 UNEFFECTED
* *
* 1FES 20 SF IF J5R RTAR SHIFT MANTI RT AND INCREMENT EXPNT
* EXP/MANT2-EXP/HANL RESULT IN EXP/MANTI IFES RS 88 FIX LDA X1 CHECK EXPONENT
* IFER €9 BE CIP =SBE 15 EXPONENT 147
iF4n 28 8F IF FSUB JSR FCOMPL COMPL MANT1 CLERRS CARRY UNLESS ZERO IFEC D8 F7 BNE FIX-3 NO,SHIFT
IFAD 28 SD IF SWPALG JSR ALGNSW RIGHT SHIFT MANTI OR SWAP WITH IFEE 68 RTRN RTS RETURN
MANT2 ON CARRY Enp
August, 1976 Dr. Dobb’s Journal of Computer Calisthenics & Box 310, Menlo Park CA 94025 Page 19

209

A 16-BIT FLOATING POINT PROPOSAL

In past weeks, I have talked to several members of the
CACHE about “tiny languages.” I'keep hearing, “T'd use it
if it only had floating point.” Having written three languages
miyself, I can understand this. Nobody seems to realize that
32 bits are a lot more than twice as hard to work with as 16.

As a compromise I propose 16 bit floating point. The
format I have worked out gives 3 significant digits with an
exponent of -15 to +15 (decimal). Proposed format:

b v
exrolenT MANTISSIA
MS = MANTISSIA SIGN
ES= EXPONENT SIGN
Idon’t have the time .or ambition to write this now,
but I would be happy to swap ideas with anyone interested.

Bob Van Valzah (312) 852-0472 (Home)
1140 Hickory Trl. (312) 971-2010 Ext. 231
Downers Grove, IL 60519 (Work)
S P e T T

6800 MOTOROLA FOR SIMULTANEOUS
NUMBER CRUNCHING AND ANTENNA
POINTING

Dear Sir, 17 Nov. 1976

Two of us here in the Northern Virginia area are interested
in using a micro for some number crunching (with a peri-
pheral calculator chip) and antenna pointing for satellite
work (simultaneously). The 6800 Motorola line of chips
looks like it will fill the bill due to the superior I/O con-
figuration possible. The 8080 kinda misses the boat. So I
am interested in all kinds of homebrew hardware for 6800
line compatible with SWTP line.

Sincerely,
Ellis Marshall, W4JK Rt.1,Box 158
Front Royal, VA 22630

FREDDIE’S FOLLY
by Jim Day

Frugal Freddie bought a video board kit from a local com-
puter store a couple of months ago. He saved a few bucks by not
busying sockets for the ICs. “Who needs "em?” he said. “T’Il just
solder everything.” The board worked fine for a few weeks,
then developed a hardware glitch that Freddie hasn’t been able to
track down. He took it back to the computer store and asked
them what it would cost to fix.

“Well now,” said the repairman, “If this thing had sockets,
I'd probably find the trouble in a few minutes by random sub-
stitution. But with everything soldered down to the board,
there’s no telling how long it might take. Why, it could end up
costing you more than the price of the kit!”

One can avoid duplicating Freddie’s folly by socketing
everythin| S X i g

Socket it to 'em, Freddy
L T

HAMATIC NOTE IN BYTE

According to a letter in the (excellent) November issue of Byte,
hams who are also interested in computer phreaquery should tune to
3.865 MHz (LSB) on Thursdays at 2300 GMT “for a good time.”

ERRATA FOR RANKIN’S 6502
FLOATING POINT ROUTINES

Dear Jim, Sept. 22, 1976
Subsequent to the publication of “Floating Point Rou-

tines for the 6502” (Vol. 1, No. 7) an error which I made in
the LOG routine came to light which causes improper results
if the argument is less than 1. The following changes will
correct the error. ;
1. After: CONT ISR SWAP (1D07)

Add: A2 00 LDX=0 LOAD X FOR HIGH BYTE OF

EXPONENT
2. After: STA M1+1 (1D12)
Delete: LDA=0
STA M1
Add: 10 01 BPL *+3 IS EXPONENT NEGATIVE
CA DEX YES, SET X TO $FF
86 09 STX M1 SET UPPER BYTE OF
EXPONENT

3. Changes 1 and 2 shift the code by 3 bytes so add 3 to the

addresses of the constants LN10 through MHLF wherever

they are referenced. For example the address of LN10 changes

from 1DCD to 1DDO0. Note also that the entry point for

LOG10 becomes 1DBF. The routine stays within the page

and hence the following routines (EXP etc.) are not affected.
Yours truly,

Roy Rankin Dept. of Mech. Eng.

Stanford University

COMPLETE 8080A FLOATING POINT PKG FOR
$7.50 AND NEW CASSETTE DATA FORMAT
STANDARD TO BE PROPOSED

Dear Editor: Sept. 21, 1976

In response to Paul Holbrook’s letter in the September
issue, regarding the need for a cassette data format stan-
dard, I would like to inform you that a standard with
software has been developed; the Mohler standard will be
published in an upcoming issue of Inferface.

The standard allows for various types of data formats
and is expandable, so new ones can be added. It is also
universal enough for the format to be independent of
cassette interface hardware and processor type. We hope
to make the Mohler cassette format a standard in the
computer hobbyist industry.

I would also like to inform readers that I have devel -
oped a single-precision floating poirit software package for

Nov./Dec., 1976

354

the 8080A (6-7 digits of precision). The' package includes
add, subtract, multiply, divide, and utility programs to
convert from ASCIT BCD to binary and binary to packed
BCD. It takes up about 1200 bytes and is relatively

fast, e.g., 2.5 msec worst case time for multiply.

Also nearing completion is a scientific function package
which includes square root, sine, cosine, exponential,
natural logarithm, log base ten, arc tangent, hyperbolic
sine, and hyperbolic cosine. This package is to be used
with the floating point package and takes up less than
1K bytes, It also has six digits of accuracy.

The floating point package is now available for $7.50.
Included are manual, paper tape, and complete annotated
source listing. The scientific package will also be $7.50.
Both packages may be ordered for a reduced price of
$10.00. To obtain one or both, send your name, address,
and the appropriate amount to:

Burt Hashizume

P.O. 172

Placentia, CA 92670

Dr. Dobh's Journal of Computer Calisthenics & Orthodontia, Box E, Menlo Park, CA 94025

Page 57

