(B

Complex Pseudorandom Sequences
from Interlaced Simple Generators

BY H. T. GORDON

College of Natural Resources
University of California
Berkeley, CA 94720

© 1979, H. T. Gordon

My first effort at generation of a sequence of pseudo-
random numbers (DDJ # 32) was primarily aimed at mini-
mizing the fime required to generate successive 8-bit binary
numbers. The basic logic outputs a non-repeating sequence
(NRS for short) of all 256 possible numbers. This “core”
sequence can be transformed into a limited number of variants
by simple mathematical operations. Such variations can be
concatenated to yield a longer NRS. However, this logic entails
a great sacrifice of the quality of the numerical sequence, that
is easily recognizable as non-random and is not difficult to
decipher.

Interest in random-number generation has been increasing
in the microcomputing community. Bungay and Martin
(KILOBAUD # 28, p. 46) designed a hardware generator con-
trolled by a “noisy” clock, that is said to yield a “truly”
random sequence of 8-bit numbers. Timing was not given,
but was implied to be slow although fast enough for use with
a BASIC interpreter. The unpredictability of the next number
in the sequence, however, disqualifies such generators for some
important applications, e.g. “hashing” algorithms or crypt-
ography.

All this has tempted me to create more complex generator
logic, so that the output will be a closer approximation to
“true”” randomness. Since the instruction sets of 8-bit micro-
processors are inefficient for “number-crunching”, complexity
is achieved by interlacing the output of n independent simple
generators, The concept is probably not novel, although its
value for enhancing the quality of a pseudorandom sequence
is not common knowledge (I did not find it in the elaborate
discussion of random numbers in Knuth’s Seminumerical
Algorithms, perhaps because it’s too simple.) An interlacing
algorithm is easy to implement in microprocessor code, and
makes possible a planned synthesis of very diverse numerical
outputs with extremely long NRS.

Number 40 Dr. Dobb’s Journal of C Cali

Simulation of ““True” Randomness

Although I have no expertise in probability theory, a few
principles are demonstrable at an elementary level:

1. The occurrence of any sequence of 256 all-different
numbers is wildly improbable, even though the number of
possible sequences of this type is 256 factorial, for which
Stirling’s approximation gives the astronomical number
243 X 10°2%, This is dwarfed by the total number of all
possible sequences, 2562%¢ or 3.23 X 10°!¢, The prob-
ability of an all-different sequence is an infinitesimal 7.5
X2 and no self-respecting simulation should ever
generate such a sequence! Other kinds of sequences have
immensely higher probability, that can be calculated from
formulas for permutations and combinations. There are so
many types of sequences that it is impractical to do such
calculations for any significant fraction of them. For the
type consisting of 192 different numbers, of which 64 are
duplicated, there exist 1.03 X 10°7? possible sequences,
and the probability of occurrence (immeasurably higher
than that of the all-different sequence!) is still a ridicul-
ously low 4.2 X 105, The maximum probability (still
abysmally low) for this type is near 187 different numbers,
with 1.6 X 10°7% possible sequences. This analysis, inade-
quate though it is, suggests that generator design should aim
at a zero-order heterogeneity (defined as Hoin my previous
DDIJ article) near 187.

2. The probability that any given 8-bit number will not be
the next number in a random sequence is 255/256, roughly
0.99609, and that it will not occur in the next # numbers
is (99609)*. In a one-page sequence, the probability that a
given number will not occur is 0.3672; therefore the prob-
ability that it will occur is only 0.6328 — very far from
certainty! The probability of its occurrence rises to 0.8652
for 2 pages (512 consecutive numbers), 0.9505 for 3 pages,

& Or

Box E, Menlo Park, CA 94025 Page 33

437

and 0.9818 for 4 pages. I am unable to imagine program
logic that would even approximate these specifications,
even if it were inordinately complex. One can guess that
realistic logic should try not to include every possible 8-bit
number in any 3-page (or even longer) output sequence.
This accords with an H, value of 187, that would exclude
69 of the possible numbers from any one sequence page.
3. One could extend the above line of reasoning to the 16-bit
level, viewing 2 successive outputs as one number. The
probability of occurrence of any one of the 65536 possible
numbers is of course very low, and the calculations would
be tedious. One can guess that only a fraction of the pos-
sible numbers will occur even if the NRS exceeds any
realistic limits. On the other hand, frequence recurrence
of the same number is improbable. The proper strategy may
be to fry to generate as many different numbers as one can,
and generate as long an NRS as one is likely ever to require.

An Experimental Generator Algorithm

Logical complexity is a perilous sea. More program and
working memory, worse timing, diminishing returns, poor
predictability, formidable testing problems, and the many
other evils that complexity so generously bestows!

My program MIXSIM (cf. listings, 6502-coded) presents
one way of interlacing the output of n simple generators (each
one yielding a different sequence of the 256 different 8-bit
binary numbers) into a synthesized sequence with an NRS of
n(256)*, or more than 50 million if n = 3. The interlacing
logic is not very complex. Location MEMEX “remembers”
the value of the X index register that selected the generator
used in the previous subroutine call. This is reloaded into X
and decremented to shift control to the next lower generator
in the sequence. If MEMEX was zero, however, the X register
is RESET. In the example X becomes 02, and generator G,
always outputs its “next number”, resetting MEMEX to 02
just before exit. The next call will use X = 01. It first loads
the previous G, output into the accumulator, and if this was
not zero branches to the normal generator logic to output
the “next number” of the G; sequence (resetting MEMEX to
01). If the previous G, was zero, normal G, generator logic
will be bypassed and the output will be created by a “pseudo-
generator”. The LDA RND+2 X instruction is an “antibug”
that guards against a double-bypass of normal generator
logic. It loads the content of the mext higher location to
test whether it is also zero. When G, is being tested, it is
trying to load the “previous output” of the non-existent Gj,
that will in reality be a non-zero constant used by the logic
of Gy. The BEQ is therefore not executed, and a “pseudo”
number is fabricated by loading the previous G, output and
forced-branching to DEJUM, that complements the 7 low-
order bits. Since the G; “seed” is unchanged, the effect is
to offset (or desynchronize) the G, and G, generators. The
frequency of normal G, output is 255/256 that of the always-
normal G, output. Therefore G, and G; will not both re-
initialize until G, has output 256° numbers, and G, has out-
put 255 X 256 normal and 256 pseudo numbers.

The logic also desynchronizes the G, generator, in a more
complex way. The guard instruction ensures that all pseudo
G, outputs will be followed by a normal G,. Since 1/256 of
the normal G, outputs will be 00, 255 pseudo G, outputs will
occur for every 2562 G, outputs, together with (255 X 256) +
1 normal G, outputs. Simultaneous re-initialization of all 3
generators therefore will not occur until 256° G, numbers
have been output. The other generators will have output
as many numbers, but 2562 G; and 255 X 256 G, outputs
will have been “pseudo”.

The Logic of the Simple Generators

Although MIXSIM uses an X-indexed version of my earlier
SIMRND generator, because I feel it has a near-optimal
balance of speed, simplicity, and output heterogeneity, other
types of generators might interlace as well. One requirement
of interlacing is that each of the generators yield a distinctly
different sequence of the 256 different numbers; otherwise
the same number will show recurrence at regular intervals.
The variant sequences are produced in MIXSIM by appending
my earlier ADDRND module. The base location for the 3
addends is RND+3. Since all the variants have low hetero-
geneity in the low-order bits, this is improved by appending
the “jumbling” module SIMJUM, with the added advantage
that its DEJUM instruction can be used by the pseudo-
generator logic.

Many distinct versions of MIXSIM are possible. The G,
addend location (RND+3) can be any one of 255 numbers,
since 00 is excluded to ensure unconditional operation of the
G, logic. The G; addend can be any one of 255 numbers,
since 00 is allowed, and the G, addend can be any one of 254
numbers. Since every permutation of addends yields a distinct
long sequence, more than 16.5 million versions are possible.
Perhaps some of these will yield a “better-looking” long
sequence than others. I instinctively feel that addends with
quite different bit-patterns are preferable, but instinct is far
from an infallible guide in the jungles of complexity!

The Possibility of Greater Complexity

As one seeks to improve sequence quality by more complex
logic, the number of possible ways becomes even larger and
the difficulty of foreseeing flaws becomes greater. I see no way
of creating a sequence that will satisfy the specifications of
“true” randomness that I lightly touched on earlier in this
note. What may be fabricable is a sequence that would be
extremely difficult to decipher. MIXSIM is not. Its G, output
appears regularly as the first of every sequence-of-three, and
repeats after every 3 X 256 outputs. One fairly simple way
of correcting this would be to add (following the RESET
instruction) my earlier INCRND module, to increment the
G, seed location at the start of each full G, sequence. This
will increase the NRS of G, to 256* and (if there are no
pitfalls!) the long-sequence NRS to billions of numbers.
Checking this out would be tedious, even if the INCRND
logic is not applied to any of the other generators, to avoid
augmenting the number of initialization states beyond 256%.

Page 34
438

Dr. Dobb’s Journal of C: Cali

& Orthod

Box E, Menlo Park, CA 94025 Number 40

A less interesting approach would be to modify MIXSIM
to use 4 (or more) different generators. This would retain the
transparency of the G, output, but (if problem-free) greatly
lengthen the NRS. One could of course go to higher levels
of interlacing, with additional logic that would interlace the
output of generators of the MIXSIM type. I remain skeptical
that the resulting output could withstand even moderate
analysis without revealing its pseudorandomness, even if
the generating logic becomes undecipherable.

Some Rough Tests of the MIXSIM Output Sequence

If the initial state of MEMEX is 02, with seeds (Go, G,
G,) of 00, 01, 02 and addends of $59, $A6, 00, and 10 suc-
cessive sequences of 256 numbers are run, the zero-order
heterogeneity (Hy) ranges from 176 to 184, with a mean
of 180.7 and standard deviation of 3.13. Numbers that occur
only once (in a set of 256) range from 106 to 120, mean
114.8 and s.d. 5.96. Numbers that are duplicated range from
52 to 60, mean 56.5, s.d. 3.10. Numbers that are triplicated
range from 8 to 11, mean 9.4, s.d. 1.07. Even an analysis
as simple as this is sufficient to prove pseudorandomness
(or so it seems to me!)

A different analysis involved running MIXSIM contin-
vously, counting the number of each of the 256 possible
8-bit outputs until one of them was output 256 times. With
the same initial states used in the previous test, this test
routine terminated after outputting the number $4C 256
times. All other numbers occurred from 190 to 194 times.
The egregious surplus of a unique number among the over
49000 numbers in the long sequence is glaringly non-random.
This odd result led me to change the seeds to 11, 22, 33 (with
the same addends). This run yielded 256 $C8 values, with all
other numbers occurring from 213 to 217 times. The “pre-
ferred number” is therefore determined by the values selected
for the seeds. Changing the addends to 57, A6, 00 had no
notable effect, $C8 still being preferred. Since the funda-
mental logic cannot cause such a preference in the entire
NRS, I presume that the “preferred” number changes in
various short sequences, but have not bothered to test this
thoroughly. I did run MIXSIM in an endless loop for about
25 minutes, using the same initial conditions as in the first
paragraph of this section, to get it about half-way through
its NRS. When halted, MEMEX was 02 and the seeds had
become 06, E3, 8D. Running the second test routine from
that point yielded $10 as the “surplus” number, with the
others occurring from 198 to 201 times. The inherent mono-
tony of the output was revealed by one run of the first test
routine, giving an H, of 183 with 119 once-occurring num-
bers, 55 duplicates, and 9 triplicates. So even an amateur
cryptanalyst would know a lot about MIXSIM even from a
sequence as short as 512 numbers! It’s not that this zype of
sequence is so improbable. There are 4.8 X 10%7% possible
sequences of 118 singles, 57 duplicates, and 8 triplicat
This type is therefore 10000 times more probable than the
duplicates-only seq I dealt with at the beginning of this
note. What is incredible is that even 2 of them should occur
in a truly random numerical sequence, let alone that all se-
quences should be of the same type! The simplicity of the

Number 40 Dr.Dobb’s J

al of C Cali

underlying logic is transparent. A clever analyst (and any large
organization is likely to have at least one brilliant analyst)
would have no trouble deciphering it. Mere length of the NRS
represents no genuine challenge. As with the simple generators
I discussed in DDJ #32, the problem is the creation of herero-
geneity.

The interlacing logic module is too simple to be undecipher-
able, but that was not its goal. It is fast, adding only about 16
cycles to the mean timing per output (that totals about 45
logic-only cycles). The cost in memory locations is greater:
38 program-logic and 7 working bytes. The output does re-
present a closer approximation to true randomness, since it
consists of nearly 200,000 successive one-page sequences
that are all different and of a type that is 105* times more
probable than the 256-different-number sequences of its
underlying simple generators.

The next step may be much more costly and yield dimin-
ishing returns. It ought to be based on a much more detailed
analysis of sequence probability, perhaps beyond the 256-
byte level, so one will know what kinds of sequences need to
be synthesized. Merely avoiding monotony of single-page
sequences is not enough. The question is: what kind of variety
is most probable?

Some Thoughts About the Role of DDJ

Few journals would dream of publishing this kind of dis-
quisition on tiny algorithms, Computer scientists will deem it
“trivial”, a favorite pejorative computerese word. Mathe-
maticians would (quite rightly) deprecate the lack of gener-
ality and abstract thinking. On the other hand, many amateurs
might find neither the purpose nor the presentation crystal-
clear. DDJ is for in-between types, like me. Feedback in res-
ponse to some earlier articles has revealed a fascinating variety
of human personalities, of the inventive type, most of them,
not surprisingly, interested in useful code, often with a prac-
tical goal and a concern for optimal timing, re-enforcing my
belief that it really matters, and that small modules have their
own uses. This restores morale that sometimes erodes when I
compare my haikus with the Homeric software epics I see
everywhere!

A few correspondents are more interested in concepts
than code, and some even empathize with the traces of ideal-
ism that at times surface in whatever I write. I suspect that
latent idealism is at the heart of DDJ and sustains its open-
to-all, unstructured and unhierarchic outlook, that contrasts
so vividly with the Weltanschauung of the commercial or sub-
sidized technical journals. These are run by some elite person
or group, whose expertise enables them to detect and exclude
obvious errors. That’s a plus, but the expert human mind also
tends to reject the unfamiliar and the unconventional. Domin-
ation by experts or an establishment tends to crush novel
thought patterns (that will indeed usually be imperfect at
birth). This is not yet a problem for the editors of DDJ
(though they have lots of other problems!), who don’t seem to
know what heresy is. Still, the second law of thermodynamics
is inexorably at work. Fires cool, and (if, as I hope, DDJ sur-
vives) one cannot but wonder into what pattern DDJ will
crystallize. Continued on pg. 41

& Or Page 35
439

Box E, Menlo Park, CA 94025

set = 0 will increment the memory text line number displayed
on the top character line of the screen. The memory text line
formerly at the top of the screen will appear as the bottom
line on the screen. This occurs regardless of the display mode
(20 or 24 line screen).

It is important to note that in the 20 line mode, the highest
four memory text lines (20 through 23) do not participate
in the scrolling, although they are accessible by the CPU.
These lines are used by the “subtext™ command, which is
described below.

Scrolling down is accomplished by scrolling up N-1 times,
where N is the number of character lines displayed on the
screen. Since the scrolling hardware is read internally at the
leading edge of the vertical display signal VDISP, scrolling
should be held off until immediately after this event. VDISP
is made available to the CPU on bit 1 of the status port. The
CPU should store the last value of this bit and test the new
value to detect a change from 0 to 1.

The CPU may reset the scrolling hardware by outputting
to the screen port with bit 5 set = 0. This will override any
data on bit 4 and will cause the top line of the display to be
memory text line 0.

Crawling

The VDM-2 includes the hardware necessary for the move-
ment of the display vertically in increments of one scan.
When synchronized with the scrolling, this feature allows for
smooth text movement up or down the screen as if the screen
were a window gliding over an unbroken column of text.

In such crawling it is ideal if the top displayed line is
gradually eclipsed by the top of the screen while the new
bottom line emerges gradually at the same time. Since in the
24 line mode of the VDM-2 the partially obscured top and
bottom lines are in fact the same text line in memory, this
ideal condition is not realized. Instead, a one-line “preblank”
curtain descends over the top line at such strategic times.

Crawling is controlled by bits 0 through 3 of the screen
port. Bit O sets the direction (0=up, 1 =down), and bits
1 and 2 select one of four crawl rates. Three of these are
generated in the hardware as submultiples of the 60 Hz vertical
rate. One (both bits = 1) provides for an externally generated
crawl clock, which may be, for example, an oscillator whose
frequency is controlled by a joystick. Bit 3 is the ‘“‘go™ bit
which initiates a crawl sequence when set = 0 during a screen
port output.

Upon issuance of a “crawl up” sequence, the display will
wait until the onset of VDISP and will then appear to “jump
down” one character line, The old top line will still appear at
the top of the display, but it will be displaced down by one
character line. The display will gradually crawl back up to
its original state, advancing one scan for each crawl clock.
When the starting point is reached, bit 0 of the status port
(CRAWL DONE) will set=1 (it sets=0 immediately upon
issuance of a crawl sequence command).

It should be obvious that if, immediately following the
issuance of a “crawl up” command and before the onset
of VDISP, the new bottom line is written into the old top
line and the display is scrolled up one line, the result will
be the disappearance of the top line and a slow scroll up,
with the old top line appearing at the bottom of the screen
with its new contents.

When a “crawl down’. sequence is initiated, the sub-
sequent onset of VDISP will cause the display to move down
one scan, with the bottom scan of the bottom line obscured.
This downward movement will continue, one scan for each
crawl clock, until the bottom line has been completely obs-
cured. The CRAWL DONE bit will now return t-o = 1. At this
point the new top line should be written into the old bottom
line and the screen should be scrolled down one line. The
newly written line will not become visible until after a new
“crawl down” sequerce is initiated.

If the newly-written top line is that last of a sequence and
it is desired that the crawling stop, issue the crawl down com-
mand and follow it immediately with an output to the screen
port having the direction bit = 0 (up) and the GO bit = 1.
The new line will appear at the top of the screen and on the
next crawl clock will move up one scan. CRAWL DONE will
then set = 1.

When the external crawl clock is selected it is useful to have
an externally provided *“go request” and “direction request”
set of signals so that text movement may be controlled with-
out use of the standard input channel such as the keyboard.
Bits 4 and 5 of the status port are connected to the external
device connector and are read by the VDM-2 when the status
port is read. These bits are advisory to the CPU and have no
function in the VDM-2 hardware. They will show a default
“1” value when no extemal device is connected.

Subtext

In the section on scrolling it was mentioned that four
memory text lines remain unseen when the VDM-2 is in the
20 line mode. These text lines may still be accessed by the
CPU, and constitute a “subtext” area for information of
secondary utility. Upon command from the CPU these lines
can be made to appear at the bottom of the screen obscuring
one or more of the text lines normally displayed.

Bit 5 of the control register (SUBTEXT 0) will cause the
display of one or more of these lines when set=1, The
number of subtext lines to be displayed is determined by the
binary value of bits 6 and 7 of the control register (SUBTEXT
1 and 2). Taking bit 7 as the most significant bit, values 0,
1, 2, and 3 represent 1, 2, 3, and 4 displayed subtext lines.
These lines always end at the bottom of the screen and the
topmost line is always memory text line 20. The subtext
lines do not respond to crawl or scroll commands.

Subtext lines are intended for uses such as prompting,
system status information display, menus, “jack-in-the-box”
quick comebacks, etc. Use of the subtext should be avoided
in the 24 line mode, since the subtext lines will be duplicates
of lines visible elsewhere on the screen.

Page 40
444

Dr. Dobb’s Journal of Comp Calisthenics & Or

ia, Box E, Menlo Park, CA 94025 Number 40

Interrupts

Interrupts have been left unimplemented in the current
prototype S-100 version of the VDM-2. Since interrupts
are a system consideration and since the VDM-2 is currently
without a system, many configurations are possible.

As a minimum, the CRAWL DONE bit could cause an
interrupt by its onset when interrupts are enabled. This would
allow smooth scrolling with a minimum of CPU attention.

Bit 7 of the screen port has been tentatvely designated as
INTERRUPT ENABLE. Its exact mode of functioning awaits
the final design of the device.

BIT SUMMARY -- OUTEUT PORIS

Gomtrol port

bit no. Name Punetion
0 DISABIE ~ Prevents memory decocer from responding
when set = 1
1 FONT ~ Causes font memory (writeable) to re-
up:nd ga CFU memory references when
set =

2 PAGE

Causes high order four bits of screem
memory character word to respond to

CPU memory references when set = 1

- BLINK ~ Determines whether cursor or video blinks
on characters having page 1 bit 2 met = 1.

0 causes video blink, 1 causes cursor blink,

4 24

Determines number of character lines per

screen, 0 causes 20 lines of 12 scan each.

1 causes 24 line display of 10 scans each,

5 SUBTEXT O =~ Controls display of mubiext lines at
Yottom of screem. 1 = ubtex‘t displayed.

SUBTEXT | - Least significant bis}

SUBTEXT 2 - Most significant bit of pair

Bit pair value deternines number of

subtext lines to be cisplayed. Number of

lines is ome plus binary value of bit pair,

S

Sczeen port

bit ne. Neme Funetion
] DIRECTION - Sets direction of crawl. O = up.
; g eed ? - As & binary pair (bis 1 least significant)
seta one of four crawl speeds:
valie Speed
0 60 scans/ sec,
1 30 scann/sec,
2 15 scann/ sec.
3 externally olocked
3 6o - Intitiates crawl operation when set
4 SCROLL - Increments the number of the memory text

line displayed at the top of the screem,
0 = increment
5 RESET - When set = 0 causes memory text line O
to be displayed at top of soreen.
Overrides effect of hit 4.
k INTERRUPT
ENASLE =~ reserved for use in nterrupt version

BIT SUMMARY -- INPUT PORT

Status port

bit ne. nace function

[} CRAWL DONE Sete = 0 when crawl is in progress.

1 VDISP Seta = 1 during versical display time
(240 scans)

2 CRAWL CLOCE Sets = 1 during crawl clock signal.
Cravl edvances cne scan at onset of
VDISP following leading edge of crawl
elock.

3 unused

4 EXT. CRAWL RGQST Sets = O when external crawl-control

réware 18 reguasting tert movement
5 BXT CRAWL DIRECTION

sets = 0 whea external crawl
control bardiwre reguests crawl

(note- bits 4,5 are set = 1 when n3 external device
is comnected.)

Continued from pg. 35

Copyrights

As usual, I assert the free-diffusion-clause copyright de-
fined in DDJ #32 and earlier articles. I recommend this to
algorithmaniacs of my ilk, since it encourages users to let
you know of unexpected applications they have found for
your creations.

Hal Gordon is 60 years old, has a Ph.D (Biology, Harvard,
1947), and has been at UC — Berkeley since 1947. He is a low-
level programmer in more ways than one, having learned how
to use @ CPU directly on an early KIM-1 and only recently
upgraded to a SYM-1. His (still unrealized) dream is to equip
these boards with sensors and effectors so that they can
control real-time biol I experiments. He sympathizes with
the anti-AI views of Joseph Weizenbaum on the limits of
human-language- oriented programs, believing that it’s more
instructive to interact with books and the right kind of human
mind.

(listing of subroutine MIXSIM, without addresses since
it fs fully relocatabls)

A6 DP MIXSIM LDX MEMEX (load prev. G-index into X)
CA DEX {decrement X for next G)

30 oD BMI RESET (if = $FF, go resst X to 02)
BS E1 LDA RND+1,X (load G+l seed into Acc.)
DO CB BNE SIMRND (if # O, run normal G logic)
BS E2 LDA RND*+2,X (load 032 seed into Acc.%
FO 07 BEQ SIMRND (if = 0, run normal G)

B5 EO LDA RND,X (load G ssed into Acc.)

18 cLe (clear carry for branch)

90 1 BCC DEJUM {output pseudo-3 number)
A2 02 RESET LDX #$02 (reset X to 02)

BS EO SIMRND LDA RND,X (load G seed into Acc.)

OA ASL & (X 2)

oA ASL A (X 4)

38 SEC (set nsrr to add 1)

75 EO ADC RND,X (x5,

95 EO STA RND,X (utm‘e naw seed)

18 CLC (clear carry for addition)
75 E3 ADC RND+3,X (add addend for G variant)
10 o2 BPL STOREX (bypmss DEJUM if bit 7 = 0)
49 TR DEJUM EOR #$7F (complement lowest 7 bits)
86 DF STOREX STX MEMEX (stora G-lndex value)

60 RTS (exit subroutine)

Zero-page locations used (all must be initialized,
cf. text for restrictions):

DF MEMEX (must be 02 or 01 or 00}
EO RND }ssad of G

EL RND+#1 (sead of 'r1;
E2 RND+2 (sesd of Gy)

B3 RND+3 ({addend of Gp, must not be = €O)
EL RND#j (addend of G G4 # AND+3 and # AND+S)
E5 RND*5 (acdend of G, # R¥D+3 and ¥ AND+l)

MNumber 40 Dr. Dobb’s Journal of C C

& Orthod

Box E, Menlo Park, CA 94025 Page 41

445

