Apple’s Hidden

Floating-Point Routines

Lightning-fast number crunching, HIRES graphics and Integer BASIC—all at once.

John Martellaro
2929 Los Amigos Ct., Apt. B
Las Cruces NM 88001

0 ne of the nice things about
having a microcomputer is
that you can do high-speed
mathematics. An Apple Il, for ex-
ample, does a nine-digit floating
point division in AppleSoft in
about 4 1/2 ms. There may be oc-
casions, however, when you are
either not satisfied with the
speed of AppleSoft or cannot
use it for some reason. If you
owned any other computer, you
would have to start looking for
assembly-language programs
that allowed you to work with
floating point numbers. Not so
with the Apple Il.

A versatile, but little known,
feature of the Apple Il is the set
of floating point routines—ma-
chine-language programs in
ROM (starting at hexadecimal
$F425) that do floating point
arithmetic on four-byte floating
point numbers. These routines
have been given little attention
because (1) little documentation
is supplied with the machine
other than the assembly-lan-
guage listing on page 94 of the
Apple |l reference manual, and
(2) the answer is difficult to deci-
pher—the required normaliza-

tion in a hex format makes the
representation of the number
extremely abstract. It is discon-
certing to find that the number
two is represented as 81 40 00
00.

Nevertheless, these routines
can be extremely useful in at
least two areas: high-speed
number crunching, if you can in-
terpret theresull . . . that's what
this article is about, and high-
speed graphics, which requires
some input, then a high-speed
calculation of floating point
numbers resulting in screen
points that are integers. Then
the Apple HIRES routine can be
used to plot the points.

There is one catch: if your pro-
gram uses assembly |language
only, then you are free to use the
floating point (FP) routines as
they are in ROM. However, if you
wish to mix Integer BASIC and
assembly language, you will
have to reassemble the FP rou-
tines into RAM somewhere and
change the working registers to
somewhere very low in zero
page of memory (for example,
the “sweet 16" area). This is be-
cause Integer BASIC appropri-
ates the area used by the FP rou-
tines ($F4 to SFB).

For high-speed graphics, |
write an assembly-language
subroutine that does all the
number crunching using the
floating point routines. Then |

132 Microcomputing February 1980

use the FIX function (explained
later), which conveniently trans-
forms the floating point number
into a 2 byte signed two's com-
plemented integer (also ex-
plained later), which happens to
be the same format that Integer
BASIC uses. Then, | can shove
those two bytes into a memory
location of some Integer BASIC
variable (just as the HIRES rou-
tines do); | can now plot the
point or print the value using the
BASIC print statements. (See
the Apple Il reference manual,
pp. 34-39, particularly Fig. 3 on
p. 39)

The upshot of all this is that
you can now do high-speed
number crunching with high-
speed HIRES graphics under the
control of a fast Integer BASIC!
The possibilities opened up by
this are unlimited. The capabil-

ity of the Apple for simulation or
real-time applications is en-
hanced considerably.

This article will give you an in-
troduction to these floating
point routines and their use.

The Floating Point Format

What follows contains a lot of
strange-looking numbers. Do
not let that upset you. That you
have read this far means you are
interested. If you read carefully,
you'll find that everything is ex-
plained and that it isn't all that
hard.

Actually, the format of the
floating point numbers is an old
idea; it is just new to today's mi-
crocomputerist. Four bytes are
used to represent a number: one
byte is used for the exponent
and the other three form the
mantissa. Since three bytes

00
01

F

81

FE
FF

Binary Exponent Written in Hex

Decimal Equivalent

-128
-127

+1

+126
+127

Table 1.

01111010 01000000 00000000 0000000 binary

122 84 00 0 decimal
A 40 00 00 hex
Example 1.

contain 24 bits, you have 24 bi-
nary digits of precision.

In order to find out how many
decimal digits this is, we write
224 _ 10N
where N is an unknown to be
found. We next take the log of
both sides (natural or common,
it doesn't matter) and use the
equation log(a®) = b log a.
log (2%%) = log (10N)

24 log2=Nlog 10

just to the right of these two left-
most bits. For example, a posi-
tive number might be
C1XXXXX . ..
where the Xs are any combina-
tion of 1s and 0s. A negative
number would look like
T0.XXXKK . ..
Of course, the binary point isim-
plied and not stored in the bit
string. We keep track of it by the
normalization.

This normalization process is

N = 24log 2 similar to what we do for ordi-
log 10 nary decimal numbers in scien-
=72 tific notation. Given

So we can represent a number
of about seven decimal digits
with 24 binary bits. However,
since we use floating point num-
bers, we can have a number with
about seven digits of precision
times an exponent. This allows
us to store much larger (and
smaller) numbers.

First, let's look at the expo-
nent. With one byte for the expo-
nent, we can represent 2% or
256, different numbers. These
are the powers of 2, and the for-
mat is selected so that there is
no need for a sign bit. Instead,
the exponents are in the range
of —128 to + 127 (decimal) rep-
resented as 00 through FF (hex).
That is, the smallest character-
istic is 2128 (about 10 38) and
the largest is 2 * 27 (again, about
10+). Table 1 should make this
clear.

Next, the mantissa. The num-
ber is normalized so that the
leftmost two bits are 01 for a
positive mantissa and 10 for a
negative mantissa. The binary
point (BP) is considered to be

001x10-3 (base ten)
we can multiply the mantissa by
100 and divide the characteristic
by 100 to keep the number un-
changed:
1.x10-5 (baseten)
Notice that no zeros were filled
in because we really didn’t know
what was after the 1 in the first
number. By convention, we fill in
with trailing zeros.

A binary example of the nor-
malization is
0001yx2-3 (base two)
(This should really be written:
00015 x(10)p - 011
where (10); = 2,5 in order to elim-
inate decimal numbers from the
binary representation. Take
your choice.) Again, we multiply
by a suitable power of the base,
in this case 23, to obtain:
01.0,x2 6 (base two)

The mantissa is properly nor-
malized since it starts with 01.
the exponent is - 6,9, which
converts 7A. For presentation
purposes, we use the conven-
tion that the leftmost byte is the
exponent and the mantissa has

Function Mnemonic Number(s) In Call Location Result In
Negate FCOMPL FP1 Faas FP1
Add FADD FP1+FP2 F46E FP1
Subtract FsuB FP1 - FP2 F468 FP1
Multiply FMUL FP1xFP2 F48C FP1
Divide FDIV FPYFP1 F4B2 FP1
Float FLOAT 16 bit integer F451 FP1
inM1 &MY+
(M1 + 2 cleared)
Integer FIX FP1 F640 16 bit integer
inM1& M1+
Table 3. Floating point arithmetic routines.

the most significant byte on the
left. This number, which is, by
the way, 1/64 base ten, is repre-
sented as shown in Example 1.
So the floating point equiva-
lent of 1/64 is 7A 40 00 00. For
negative numbers, we would
have two's-complemented the
mantissa before normalization.

The Floating Point Routines

Now that you see how the
floating point numbers are rep-

resented, it's time to look at the
routines that operate on them.
The subroutines operate on one
or two registers (depending on
whether the function is monadic
or dyadic) called FP1 and FP2.
These reside in page zero of
memory. Their location and con-
tents are shown in Table 2.

To use the routines, load the
proper registers with the float-
ing point number(s) and call the
proper routine. See Table 3 for

FP1 FP2
248 249 250 251 decimal address 244 245 246 247
F8 F9 FA FB8 hex address F4 FS F6 F7
X1 M1 M1+1 M1+2 assembly X2 M2 M2+1 M24+2
mnemonic
EXP high low contents EXP high low
Mantissa Mantissa

Table 2. Floating point registers.

Absolute Value:

Binary Point:

Characteristic:

Dyadic Function:

Floating Point:

Monadic Function:

Normalization:

Precision:

Two's Complement:

Zero Page:

Glossary

The value of a number without regard to
the sign of the mantissa. ABS(-3)=3.
The analog to the decimal point which
indicates the separation between the
zeroth power of the base and the —1
power. Hence, 10.1,=25,¢

A leftover term from slide rules. It is use-
fulto describe the valueof 10 +Nor2=N,
A function that requires two arguments
(inputs). Addition is a dyadic function.
A number representation that uses an N
bit mantissa presumed to be muitiplied
by a characteristic.

The first multiplier of a number in scien-
tific notation. In 2 x 108, the 2 is the man-
tissa; 10 is the characteristic; and 6 is
the exponent.

A function that requires only one argu-
ment (input). The log is a monadic func-
tion.

The process whereby a number in scien-
tific notation is adjusted so that the
mantissa lies in a certain range. For
decimal numbers, usually 1<M<10; for
binary, 1/2€M<1.

A measure of the number of digits that
can be represented. 1001 has four digits
of precision. It Is another name for sig-
nificant digits.

A method of representing negative
binary numbers. First, all Os are made
1s,andall 1sare made 0s. Then 1is add-
ed. For example, 4 is 00000100. The
two's complement is 11111100.

The first 256 memory locations address-
able by the computer. Used extensively
by the firmware.

Microcomputing February 1980 133

Type Then Hit Comments
F4:83 60 00 00 RETURN Put 12in FP2
FB:82 40 00 00 RETURN Put4inFP1
FaB2G RETURN Execute routing at F4B2
F8FB RETURN Examine contents of FP1
Example 2.

absolute value of N21, shift the
binary point to the left until the
leftmost bits are 10 and add
trailing zeros to make up 24 bits.
The number of place shifts isthe
exponent + E. (Exception: If all
1s are to the left of the decimal,
shift the binary point to the right

one place. Lop off any leading
1s prior to the 1X and add trail-

Ifthe Formatls Then

1} 0.00XXX
2 0.01XXX
3} 0.10XXX
4) D.11IXXX

Example 3.

Mave BP right until you get 01.XXX; E= - RN

Move BP right two places to get 01.XXX: E= -2
Move BP right one place to get 01.0XXX;
Move BP right one place to get 01.1XXX; E= -1
where RN is the number of places moved to the right.

ing zeros to make up 24 bits. The
exponentE= -1

6d. If N is negative and the
absolute value of N<1, then do
one of the operations in Exam-
ple 4.

7. Convert the three groups
of 8 bits to decimal (as an inter-

mediary, if you wish) then to hex,
ignoring the binary point.

the leading O becomes a 1).

Example 4.

If the Formatls Then

1) 1L TIXXX Move BP right until you get 10.XXX; E=
2) 1.10XXX Move BP right two places to get 10.XXX.
3) 1.01XXX Move BP right one place 1o get 10.1XXX
4) 1.00XXX Move BP right one place 1o get 10.0XXX

where RN is the number of places moved to the right
(Mote. Even though the number is less than 1,in two's complement,

-~ RN

sE=-2
iE=-1
CE= -1

8. The exponent is 80, + Eqg.

See Examples 5 and 6.

After you have done this for a
number such as 2.371256 x
1026 you will wish there were a
way to get the Apple itself to do
the work. | thought the same
way myself after | had to do sev-

eral of them, so | wrote an Apple-
Soft program to do it for me.
(Ideally, it would be an assem-
bly-language program, but
that's a lot of work. And the Ap-
pleSoft program gives the an-
swer in a few seconds.)

This program accepts either
decimal input and outputs the
floating point format or accepts
the floating point format and
generates the decimal number.
It runs in 5.8K, so if you only
have AppleSoft Il on cassette,
you'll need a 20K or larger ma-
chine. The program is available
on cassette for $7 ppd.

There is one additional note.
Just as Integer BASIC appropri-
ates zero page for its use, so
does AppleSoft—so you cannot
call these routines from Apple-
Soft. You could shuffle data in
and out of the registers preserv-
ing their status before and after
each call, or, as mentioned be-
fore, you could reassemble the
FP routines into RAM and have

the format.

keep only the leftmost 24 digits.

For example, to divide 12 by 4,
hit RESET. If you have AppleSoft
in ROM, be sure the switch is
down, then hit RESET. Example
2 shows you what to type. You
will then see 81 60 00 00, which
is decimal 3.

The Algorithm

If you wish to write a program
that utilizes these routines, you
will have to have two tools: a
short assembly-language pro-
gram that will move data in and
out of the FP registers and a pre-
cise algorithm for translating
decimal numbers into the float-
ing point format. As you will see,
this is a tedious process for
more than a couple of numbers.
The algorithm is as follows:

1. Write down the number in
decimal; call it N.

2. Convert to binary, ignoring
the sign of the mantissa.

3a. If the absolute value of N
Is less than 1, then keep only the
leftmost 24 significant digits,
that is, ignoring leading zeros.

3b. If the absolute value of N
is greater than 224, record the lo-
cation of the binary point and

4. Eliminate the binary point
after noting its location.

5. If the mantissa is negative,
two’s-complement it.

6a. If N is positive and 21,
shift the binary point to the left
(if necessary) until there is only
one leading zero, that is, the left-
most bits are 01. (If necessary,
add a leading zero.) Lop off any
bits before the 01 and fill out to
the right with zeros to make up
24 bits. The number of place
shifts is the binary exponent
+E.

6b. If N is positive and <1,
then do one of the operations in
Example 3.

6¢. If N is negative and the

Number Floating Point Representation

(Absolute Value) (Positive) (Negative)
0 00 00 00 00 00 00 00 00

10-10 SE 8D F3 7F 5E 92 0C 81

10-5 6F 53 E2 D6 6F AC 1D 2A

o1 79 51 EB 85 79 AE 14 7B

2 7D 66 66 66 70 99 99 9A

25 7E 40 00 00 7D 80 00 00

75 7F 60 00 00 7F AD 00 00

9 7F 333333 7F 8C CC CD

1 80 40 00 00 7F 80 00 00

2 81 40 00 00 80 80 00 00

3 81 60 00 00 81 AD 00 00

4 82 40 00 00 81 B0 00 00

5 82 50 00 00 82 80 00 00

6 82 60 00 00 82 AD 00 00

7 82 70 00 00 82 90 00 00

8 83 40 00 00 82 B0 00 00

9 83 48 00 00 83 B8 00 00

10 83 50 00 00 83 B0 00 00

108 90 61 A8 00 90 9E 58 00
1010 A1 4A BI 7C A1 B5 7E 84

Table 4. Some floating point numbers. Note that the positive and

negative numbers should add to zero, which they do.

Exampie 5. Using + 12.

The number is 83 60 00 00 when converted to hex.

Step Number Result Step Number Result
1 -12
1 +12
2 1100
2 1100.
5. ... 1111111110100
6a. 01.1000000000000000000000
E=3 e 10.1000000000000000000000
)0000 00000000 E=3
1 00000000
’ ’ o 7 01100000 00000000 0COO0000
96 00 00
8. Exponent =83 160 00 00
% 2 8 Exponent = 83

The number is 83 A0 00 00 when converted 1o hex.

Example 6. Using —12.

134 Microcomputing February 1980

them use different zero page
registers. There is room in zero
page to do this with Integer BA-
SIC, but precious little with Ap-
pleSoft. | haven't done it yet.
Also, AppleSoft does not use
these routines for its own arith-
metic. The reason for this is that
Microsoft BASIC uses a five
byte floating point number in
order to obtain nine-digit preci-
sion. This came along after the
FP routines were written. Fur-
thermore, the numbers are
stored in those five bytes in a
ditterent format (ASCIl) than
that used by the FP routines.

Conclusion

The floating point routines
are useful for the assembly-lan-
guage programmer. There are
special occasions when the dif-
ficulty of their use is secondary
to the advantage of an assem-
bly-language program with
seven digits of precision.

This article has shown how to
get the numbers into the re-
quired format. (However, you
should not try to use the rou-

tines extensively without con-
sulting the references on error
branching and index register
use.) Finally, Table 4 lists some
floating point numbers for you
to practice on with the algorithm
and the routines. ®

References

1. Roy Rankin and Stephen
Wozniak, “Floating Point Rou-
tines for the 6502, Interface
Age, No. 12, pp. 103-111 (Nov.
1976).

2. Roy Rankin and Stephen
Wozniak, “Floating Point Rou-
tines for the 6502," Dr. Dobbs
Journal, No. 7, pp. 17-19 (Aug.
1976).

3. Stephen Wozniak, “Floating
Point Package,” The WOZPAK,
ch. 13, Apple Computer, Inc.

4. Don Williams, “Linkage Rou-
tines for the Apple Il Integer BA-
SIC Floating Point Package,”
Peeking at Call A.P.P.L.E., Vol.
1 (Apple Puget Sound Program
Library Exchange, 6708 39th
Ave. SW, Seattle WA 98136).

5. Arpad Barna and Dan Porat,
Introduction to Microcom-
puters and Microprocessors,
John Wiley, 1976, pp. 34-44.

5.25"
FLOPPY DISK
DRIVE

* 40 Track, single or double
density

* Smaller size. Fit 3, 6106
drives into the space of 2

SA 400 drives

* Requires less power,
generates less heat

* Uses ball bearing friction-
free head positioner

* Track to track access
time: 12 MSEC.

* Uses industry standard
interface and power
plugs, and mounting
points.

ALL THE ABOVE FEATURES AND MORE FOR ONLY
$299.00 ea.

FOR MORE INFORMATION CONTACT:

OTTO ELECTRONICS

P.0. BOX 3066, PRINCETON, NJ 08540
~09 orcall 609-448-9165

MC. VISA, COD accepted. NJ residents add 5% sales tax Shipping and insurance extra

