Analysis of the Use
of the 6502’s Opcodes

Despite its remarkably sparce (151)

set of opcodes, the 6502 CPU is con-
sidered to be more powerful than its
cousin, the 6800. This is generally as-
cribed to its ‘“post-indexed” addressing
mode, p d ically by
“LDA (zpg),Y”. This instruction com-

occurs only 72 times. Its complement,
LDA adrlé, is interestingly used only
38 times. Compare this with the zero
page STA and LDA instructions that
are used 511 and 437 times respective-
ly. If we assume there are about 13
subroutines (136 RTS’s), the “aver-
age” subroutine is called five times
(684 JSR’s).

3) The most popular instructions (#3-
20) are described fairly well by:
Frequency=28+1325/X
where X is the ranking, with a cor-
relation coefficient of 0.978. This is
similar to Zipf's law, which states that
the nth most frequent word is encoun-
tered 1/n as frequently as the most
common.

putes the effective address of its op d

by an unsigned addition of the Y register

(8 bits) to a 2-byte zero page pointer (at

zpg & zpg+1).

1 have written a simple program that
analyzes the Commodore PETs usage of
the 6502 opcodes. I was particularly in-
terested in the frequency of usage of the
above type of indirection in this reason-
ably big piece of software. I had noticed
in my own work that the other type of
indirection on the 6502, *“‘pre-indexed”
indirection, was almost never of use and
wondered whether this was just peculiar
to my programming habits, The program
written merely steps through the BASIC
system, from its start at $C000 to its end
at $FFFF, avoiding data tables, messages
and other non-instructional areas, and
counts the number of times each opcode
is used. Here is what [find:

The PET BASIC interpreter occupies
a little less than 14K of instruction mem-
ory. It consists of 6355 instructions, give
or take a few. The “average” instruction
is thus about two bytes long. The 6502
CPU possesses 151 discrete one-byte op-
codes; the remaining 105 are not imple-
mented. Their frequency of use in the
PET ranges from very heavy (the JSR in-
struction itself accounts for more than
10% of the total) to not at all. Table 1
summarizes the situation for those twen-
ty percent of the instructions that are
most frequently used. We see that
1) The 80/20 rule is followed closely.

Thirty opcodes (20% of the total) ac-
count for 5131 (81%) of the total
6355 used.

2) There are only three instructions in
Table 1 that employ 16-bit operands.
Two of these, JSR and JMP, have no
substitute on the 6502. The third is
store accumulator, STA adrl6, but it

by Howard W.
Whitlock, Jr.

Howard W. Whitlock, Jr., 1614 Norman
Way, Madcity, WI 53705.

Table 1

The thirty most-used instructions in PET BASIC and their frequency of use.

FREQUENCY INSTRUCTION

648 JSR adrl6
511 STA zpg
437 LDA zpg
388 BNE loc
320 LDA #data
267 BEQ loc
221 IMP adrl6
197 LDY #data
153 CMP #data
144 ADC #data
136 TRS

135 STY zpg
127 BCC loc
127 PHA

121 INY

FREQUENCY INSTRUCTION

116 STX zpg
110 LDX #data
109 LDA (zpg),Y
96 LDY zpg

92 LDX zpg

75 BPL loc

73 STA adrlé
72 STA (zpg),Y
72 INC zpg

67 BCS loc

60 TAX

56 CLC

55 ADC zpg

55 ADC #data
54 BMI loc

Table 2
The forty-one least-used (i.e., never) instructions, in numerical order.

BRK AND adrl6,X ADC adr16,X
ORA (zpg,X) AND adr16,X ROR adr16,X
ASL adrlé ROL adrl6,X STX zpg,Y
ORA (zpg),Y EOR (zpg,X) LDA (zpg,X)
ORA zpg X EOR adrl6 LDX zpg,Y
ORA adrl6,Y LSR adrl6 CLV
ORA adr16,X EOR (zpg),Y LDY adrl6,X
ASL adr16,X EOR zpg,X CPY adrlé
AND (zpg,X) EOR adrl6,Y CMP zpg,X
AND adrl6 EOR adrl6,X DEC adrl6,X
ROL adrlé6 LSR adrl6,X SBC (zpg,X)
AND (zpg),Y ADC (zpg,X) SED
AND zpg X ROR adrl6 INC adr16,X
ROL zpg X ADC zpg,X

Dr. Dobb’s Journal, Number 53, March 1981
96

Table 3
All used opcodes and frequency; in d ing order. Those opcodes employ-
ing post-indexed addressing are flagged with a *; those using pre-indexing
with a t.
OPCODE: 20 COUNT= 684 OPCODE: 4A COUNT= 19
OPCODE: 85 COUNT= 511 OPCODE: 45 COUNT= 18
OPCODE: A5 COUNT= 437 OPCODE: E4 COUNT= 17
OPCODE: DO COUNT= 388 OPCODE: DI * COUNT= 17
OPCODE: A9 COUNT= 320 OPCODE: CO COUNT= 17
OPCODE: FO COUNT= 267 OPCODE: 66 COUNT= 16
OPCODE: 4C COUNT= 221 OPCODE: 99 COUNT= 15
OPCODE: A0 COUNT= 197 OPCODE: EA COUNT= 14
OPCODE: C9 COUNT= 154 OPCODE: 46 COUNT= 14
OPCODE: 68 COUNT= 144 OPCODE: 58 COUNT= 13
OPCODE: 60 COUNT= 136 OPCODE: 78 COUNT= 12
OPCODE: 84 ~ COUNT= 135 OPCODE: 2A COUNT= 12
OPCODE: 90 COUNT= 127 OPCODE: 26 COUNT= 11
OPCODE: 48 COUNT= 127 OPCODE: 05 COUNT= 11
OPCODE: C8 COUNT= 121 OPCODE: 28 COUNT= 10
OPCODE: 86 COUNT= 116 OPCODE: 9A COUNT=9
OPCODE: A2 COUNT= 110 OPCODE: 08 COUNT=9
OPCODE: Bl * COUNT= 109 OPCODE: B4 COUNT= 8
OPCODE: A4 COUNT= 96 OPCODE: 50 COUNT=8
OPCODE: A6 COUNT= 92 OPCODE: 25 COUNT= 8
OPCODE: 10 COUNT= 75 OPCODE: 06 COUNT= 8
OPCODE: 8D COUNT= 73 OPCODE: DD COUNT= 7
OPCODE: E6 COUNT= 72 OPCODE: BA COUNT= 7
OPCODE: 91 * COUNT= 72 OPCODE: 94 COUNT=7
OPCODE: BO COUNT= 67 OPCODE: 8E COUNT= 7
OPCODE: AA COUNT= 60 OPCODE: 70 COUNT= 6
OPCODE: 18 COUNT= 56 OPCODE: 6C COUNT= 6
OPCODE: 69 COUNT= 55 OPCODE: 76 COUNT= 5
OPCODE: 65 COUNT= 55 OPCODE: F5 COUNT= 4
OPCODE: 30 COUNT= 54 OPCODE: AE COUNT= 4
OPCODE: E8 COUNT= 49 OPCODE: 79 COUNT= 4
OPCODE: C6 COUNT= 48 OPCODE: F1* COUNT=3
OPCODE: 8A COUNT= 48 OPCODE: CD COUNT= 3
OPCODE: 88 COUNT= 48 OPCODE: 8C COUNT= 3
OPCODE: 98 COUNT= 46 OPCODE: F6 COUNT= 2
OPCODE: A8 COUNT= 45 OPCODE: EE COUNT= 2
OPCODE: CA COUNT= 43 OPCODE: D9 COUNT= 2
OPCODE: C5 COUNT= 43 OPCODE: D8 COUNT= 2
OPCODE: 38 COUNT= 40 OPCODE: AC COUNT= 2
OPCODE: 29 COUNT= 40 OPCODE: 71 * COUNT=2
OPCODE: AD COUNT= 38 OPCODE: 56 COUNT= 2
OPCODE: 49 COUNT= 37 OPCODE: 40 COUNT= 2
OPCODE: BD COUNT= 35 OPCODE: 16 COUNT= 2
OPCODE: 09 COUNT= 31 OPCODE: FD COUNT= 1
OPCODE: E5 COUNT= 30 OPCODE: F9 COUNT= 1

(Continued on next page)

An amazing 27% of the 6502’s op-
codes are not used at all! These are con-
tained in Table 2. We see that
1) The not-used instructions are heavily

represented by logical (especially
XOR) instructions.

2) While there are no pre-indexed, indi-
rect memory references in the top
20%, they are fairly common (six of
eight) in the never-used table. The
only ones used at all (see Table 2) are
STA (zpg,X) and CMP (zpg,X). These
are used in conjunction with a zero-
page string descriptor stack.

3) Neither BRK nor SED (set decimal
mode for arithmetic) are used.

4) The only post-indexed instructions
never used are the logical ones, ORA,
AND, and EOR. I have included all
used opcodes as Table 3.

I have also counted all adjacent op-
code pairs drawn from the instructions
of Table 1. The ten most frequently used
doublets are in Table 4. Almost all of the
doublets are encountered more frequent-
ly than expected in a statistical sense
(Fa*Fb/6355). There are some notable
exceptions, however. The two compare-
and-branch pairs, CMP #data: BNE loc,
and CMP #data: BEQ loc, are much
more common than expected. On the
other hand, the doublet BNE loc: JSR loc
is (relatively) uncommon. Rather than
delving into the Freudian implications of
these and related observations, I invite
interested readers to send me a SASE
and $1.00 for the complete printout.

Conclusions

My original suspicions concerning
the worthlessness of the 6502's pre-
indexed instructions seem confirmed. On
the other hand, post-indexed indirection,
although much more common than pre-
indexing, is not nearly as common as I
had assumed. The small number of in-
structions actually used is surprising. The
absence of any “super” two-op con-
structs is apparent from Table 4.

Dr. Dobb’s Journal, Number 53, March 1981
97

Synertek — long dedicated to the 6502 —
has designed a new 6809-based SYM
SBC. Although the brand-new Osborne-1
system is Z80-based, the only possible
rationale for that is the existence of much
complex, tested Z80 software; my guess
is that the Osborne-2 will bypass the
6809 level and upgrade either to the
68000 or the coming 32-bit Intel proces-
sor (again depending on the availability of
software). No older processor can com-
pete in performance with the 6809. Its
problems are lack of software, reluctance
of owners of working systems to upgrade
it (partly because of the software cost),
and the possibility that more powerful
processors may attain a superior price/
performance ratio.

It must be the difficulty of equalling
the performance of the 6809 that has al-
ready aborted the projected 6516 up-
grade of the 6502 (and no doubt other
upgrades or new designs). This leaves the
field wide-open to Japanese designers,
who are unwisely scorned by some nota-
ble Americans. American companies may
be unwilling to gamble, compete with
Motorola (at this level), or learn how to
handle designers of genius. The Japanese
may.
My personal reaction — significant
only to the extent that it may prove typi-
cal of 6502 aficionados — is that there’s
no need for a rush move to the 6809. It
should be 6800 system users who adopt
it first, do the spadework, and prove its
programming speed, efficiency, and ele-
gance. It will surely excel, but by what
margin? Even 6800 users have not stam-
peded to its upgrade, proving that the
machine-code-compatibility (with the
older design) played a major role in the
quick adoption of the Z80 — however
grotesque it may seem to a logical mind.
The Motorola 6809 assembler can ‘“‘trans-
late” 6800 assembly-language into the
6809 equivalents, and similar translators
could be written for other micro assem-
bly-languages. However, this is not likely
to yield optimal code, using the full pow-
er of the 6809. Only the human mind can
do that. Although I do not admire the
6800 set, regret that so much of it was re-
tained, and (as a first impression) feel
that not all the 6809 innovations are
ideal, its overall superiority is so great
that I intend to get the SYM version.

H. T. Gordon
College of Natural Resources
U. C. Berkeley, Berkeley, CA 94702

More on N-Logs
Dear Editor,

The comments of Mr. Mikes in DDJ
#52 regarding my article on N-Logs were
greatly appreciated. His criticisms fall in-
to two groups, the first relating to histo-
ry, the second having to do with the

meaning of words and symbols. I will try
to respond.

His remarks as to the origin of ‘e’,
the base of what are now called ‘Natural’
or ‘Naperian’ logarithms are quite correct.
I was deceived by the all-toocommon

(Continued on page 22)

Our high-quality editorial
and
your high-quality products
are made for each other!
Call (415) 323-3111 to reserve your space
in the next Dr. Dobb’s Journal.

Dr. Dobb’s Journal, Number 57, July 1981

281

