An
Unusual

Pseudorandom Number Generator Program

H.T. GORDON

College of Natural Resources
University of California
Berkeley 94720

Many computer programs can generate a sequence of
pseudorandom 8-bit binary numbers. Ideally, such a sequence
requires that any number in the sequence have an equal prob-
ability of being followed by an other number (including it-
self). The ideal of perfect unpredictability of the next number
may be unattainable, since this can always be predicted with
complete certainty if both the generator algorithm and the
numerical “keys™ it will use are known. However, some
algorithms can produce long sequences that satisfy statisti-
cal tests of randomness.

The goal of my work was to devise logic that would create
the illusion of randomness, using a minimum of code and
execution time. The starting point was my reading of the
(13N + 1) algorithm by Daniel Greiser in the Nov 1977 BYTE,
my first encounter with simple, fast algorithms of this kind.
Since then, my conception of the problem has undergone
many sea-changes. I have come to the point where I can no
longer see how more could be done with less. It is time for
fresher, keener minds to look at the problem!

Linear Core Algorithms

One requirement is that (in a long sequence) each of the
256 binary numbers occur at equal frequency. This is met by
many simple algorithms of the form: N;,;=(4a+1) N+c,
where ¢ must be an odd number. If =0, the sequences are
obviously non-random, and can easily be “deciphered” from a
very short sequence. If a=1, the sequence has a much more
random look. This (5N + 1) algorithm is the basis of my new
subroutine SIMRND (650X-coded in the listings). My original
thinking-out of this type of algorithm (in a MS sent to BYTE
a year ago but not yet published) was in error, and caused me
to use the unnecessarily complex (SN +$2B) algorithm,
which works but codes less efficiently.

The SIMRND output is a sequence of the 256 different
binary numbers which endlessly repeat. As with all linear
algorithms, the “randomness” is in the high-order bits. If
one writes the sequence as a 16 x 16 matrix, the low nibbles
show a characteristic pattern: the first row has a sequence of
all 16 possible low nibbles (with alternating odds and evens
which are repeated exactly in each succeeding row (so each
column has 16 identical low nibbles).

Page 14 Dr. Dobb’s Journal of C Cali:

Evaluation of the Degree of Disorder in Short
Numerical Sequences

If any number N; has an equal probability (1/256) of
being followed by amy other number N,, all values of the
difference (N, — Ny) have a probability of 1/256. One way
of analyzing a short sequence uses the concept of hetero-
geneity. The zero-order heterogeneity, Hy, is that of the
sequence itself. It can be defined as the number of different
numbers occurring in a sequence of 256. The maximum H,
is of course 256. The first-order hereogeneity, H,, requires
a sequence of 257 numbers, from which the first-order se-
quence of 256 differences between successive numbers is cal-
culated. The maximum H,; is again 256. The concept and
operation can be extended to H,, Hj, etc. An interesting
theoretical problem is to what extent a large value of H,
is compatible with large values of H;, H,, etc. Another
problem which I lack mathematical skill to solve is what values
of H have the highest probability; although there exist an
incredibly large number of different sequences with H, =256,
there are even more sequences with values of 255 or less,
so it seems unlikely that a truly random sequence will have a
maximum H,.

To test the output of various algorithms, I wrote a KIM-1
program that generates sequences of increasing orders of
heterogenity and calculates the approximate H values. I do
not present the listing here because it is too specialized to be
of general interest, but anyone who sends me an SASE can
have a photocopy of it. The test results for 5 different linear
algorithms are given in Table 1. (This also includes the effect
of various “jumbling” routines, to be described in the next
section of this note). All have an Ho = 256. The simple (N +
$7F) algorithm, of course, has H; = 1, the minimal value
(it must remain so for all higher orders). The more complex
algorithms are much more heterogeneous. The (5N + 1) and
(13N +1) have identical values, declining from 64 at H,
to 1 at Ha, showing a fairly complex kind of order has been
generated. The (9N + 1) is less heterongeneous, and the
(17N + 1) still less. It is clear that the most useful algorithms
are in fact of the type (8 n+5)N + 1, where n is any number
from 0 on up. Nevertheless, there is an underlying orderliness,
quickly unraveled by the test program.

& Orthod

58

Box E, Menlo Park, CA 94025 Number 32

The Creation of Disorder by Jumbling Algorithms

In my (rapidly obsolescing!) BYTE MS, I introduced a
second algorithm to “jumble” the output of the core algo-
rithm. The underlying principle is that one can define subsets
of the set of binary numbers, and operations that uniquely
transform each number in a subset into another number in the
same subset. The effect is to relocate these numbers in an
order different from that in the original sequence.

My first try used the concept of parity to define 2 equal
subsets: one in which bit 7 = bit 6, and one in which bit 7 #
bit 6. Every subset in which 2 (or any even number of) bits
have the same (odd or even) parity has the useful property
that the complement of every number is the number that,
when itself complemented, will be the original number. An
algorithm which recognizes numbers in which bit 7 # bit 6,
and complements all of them, will exchange pairs of comple-
mentary numbers within the original sequence. My original
coding of this algorithm was very inefficient, using the 650X
BIT instruction and the status of the N and V flags to identify
numbers with bit 7 # bit 6. In my new coding (the COMJUM
module in the listings) this is done by a single CMP #$CO in-
struction, that sets the N flag if the number in the accumula-
tor has bit 7 # bit 6. The significance of the “‘sign” flag in
COMPARE instructions is seldom well explained in program-
ming manuals, so it is used less often (and sometimes incor-
rectly) than the carry and zero flags in decision-making. For
any given comparand, the N status subdivides the 256 possi-
ble bit-patterns in the accumulator into 2 equal sets. The
comparand $CO sets the N flag only if the accumulator con-
tains a number in the range from $40 to $BF, which is the
set of all numbers in which bit 7 # bit 6.

When 1 first used the ‘“‘jumbling” concept, I had not
thought it out properly, and so did not realize that the core
algorithm itself defines 2 equal subsets, since the N flag is set
only by the 128 numbers with bit 7 = 1. If one uses an EOR
#37F instruction, to avoid altering bit 7, one can “exchange”
number-pairs in one of these 2 subsets in which the 7 low-
order bits are complementary. This is the simple logic of the
SIMJUM module in the listings. Its effect on the heterogeneity
of the output of various core algorithms is shown in Table 1,
and is identical with the effect of the COMJUM module. Used
with the ultrasimple (N+$7F) algorithm, it gives a remarkably
high value of H;. However, the output of the jumbled algo-
rithm is not all that disorderly, as shown by the rapid decline
in higher-order H values. Most of the high H signifies a more
complex order. Even if one goes to Hy the value does not de-
cline to 1 (and even shows a very gradual, erratic rise).

With the more complex algorithms, SIMJUM creates a simi-
lar large increase in disorder (insofar as H values define it),
most of it persistent in higher-order H analysis. This is obvi-
ously not frue disorder, since a simple “dejumbling” of the
output would allow my H test program to resolve it. However,
it may be a good simulation of true disorder.

Since jumbling based solely on the status of bit 7 had such
an interesting effect, I also explored bit 6 by the JUMSIX algo-
rithm (cf. listings). As shown in Table I, jumbling on the bit 6
status has a very small effect on the (N+$7F) algorithm (how-
ever, it has a much larger one on the (N+ $3F) algorithm, with
an Hy of 65). With the more complex algorithms, JUMSIX
creates less heterogeneity than SIMJUM, especially on the ones
on which SIMJUM is most effective.

Number 32 Dr. Dobb’s Journal of C Calisth

Having at last recognized that each bit defines a pair of
equal subsets which are (in principle) independent, I was able
to see that the CMP #$CO of the CONJUM logic actually
defines four subsets. One way of defining these and causing
some exchange of complementary pairs in all four of them is
shown as module TETJUM in the listings. The operands of the
3 EOR instructions can be altered, but the effects are minor.
However, the effect on heterogeneity is not markedly different
from that of SIMJUM.

A quite different way of defining and altering the original
sequence is module ROLJUM (cf. listings). Again there is no
greater heterogeneity than with SIMJUM. The jumbling infor-
mation in bits 7 and 6 seems not to be independent.

The Hy value of 187 differences (in Table 1 for the (SN+1)
algorithm with SIMJUM) is not the possible maximum. The
RISJUM module (cf. listings) gives an H| of 205 differences
with (SN+1), but successive values decline to 64, 63, 16, 16,
4, 4, and 2 (the stable value), again proving that a high H; may
simply indicate very complex order. If the SIMJUM module is
used first, to introduce “stable disorder”, then followed by
RISJUM, there is usually a small enhancement of the H values.
Note that the SIMJUM EOR operand, however, must be
changed from $7F to $7E, so as not to alter either bit 7 or
bit O; the reason is that RISJUM is jumbling on the status of
bit 0 (moved into the carry flag by the LSR A instruction). It
is vital (to retain an Hy of 256) that the bit or bits on which
jumbling is based not be changed by the operation. The reason
why RISJUM alone cannot introduce significant stable disor-
der is that bit 0 is the least disorderly bit in the zero-order
sequence, alternating between 0 and 1. However, I now doubt
that any multiple-jumbling will be worth the cost.

A friend pointed out to me that the sequence: N, N+1,
N=I,N+2.N=-2: N+8$80 will contain all 256 different
numbers and 255 of the possible differences (except 0); since
the 257th number will be equal to the 256th, Hl must be 256.
1 generated and tested this sequence and found successive H
values of 256, 64, 64, 16, 16,4, 4, and 1. The extreme orderli-
ness of this sequence is revealed by adding SIMJUM to the gen-
erator. Hy) is 256, but Hy crashes into 3 (and eventually to a
stable value of 2). A very high H; value is compatible with
(and may well indicate) extreme orderliness! So the higher
orders of H seem to be a better criterion.

I have emphasized the concept of orders of heterogeneity
because it can (and will) be used to resolve the underlying
order in pseudorandom sequences. Dejumbling tools will be
needed as well. Whatever has been raveled by rigid logic can
be unraveled (though it may take a vastly more complex pro-
gram to do so). I have dealt only with the simplest logic which
can be unlocked with keys of very few bits. With more elabor-
ate logic and keys, an infinite variety of pseudorandom se-
quences can be generated. While a deciphering program could
soon recognize the pseudorandomness, recreating the genera-
tor logic might be extremely difficult!

Creating Sequences Longer than 256 Numbers

In my original design, I used 2 more zero-page “working
registers” (in addition to the RND seed location): one worked
as a “same-sequence-of-256" counter, incremented at every
call to the subroutine, while the other was an “addend”, incre-
mented only when the counter became zero (i.e., at the start
of each new sequence). The content of the “addend” location

& Orthod

Box E, Menlo Park, CA 94025 Page 15

59

was added to the output of the core algorithm before jumbling
of the accumulator content, to give the final output number.
This added 9 program bytes and 15 microseconds execution
time per number generated. Since the primitive version was
both code-efficient and time-inefficient, this seemed trivial.
The new SIMRND-SIMJUM coding needs only 14 program
bytes and executes in 31 microseconds, so that the simpler
INCRND module (cf. listings) seems preferable since it adds
only 6 program bytes and 8 microseconds. It also lengthens
the non-repeating sequence to 65K. Both the slower “addend”
operation and the INCRND operation would be easily deci-
pherable. The former has the desirable feature that every one
of the 190-odd “differences” follows every possible binary
number (a good “randomy” touch), but a good deciphering
program would soon recognize output (N+256) is generally
output (N)+1. While the INCRND operation does not have
this flaw, the decipherer would soon see every output number
is usually (not always, because of jumbling) followed by a
completely predictable number. In both, the fact that many
first-order differences never occur, while many others occur at
twice the expected frequency, would let a lot of cats out of
the bag!

Both of the surface flaws (but not the deeper one of low
heterogeneity) are corrected fairly simply in subroutine
DUBRND (cf. listings), at the cost of 5 program bytes and
5 microseconds execution time. This can be viewed as a se-
quence of 4 modules: DUBRND, a minor complication of
INCRND which decrements a new zero-page ‘“addend”
working register (in addition to incrementing the RND seed) at
the start of each new sequence; SIMRND; ADDRND, which
starts the “variation” of the output by adding the sequence
addend; and SIMJUM. While there are still only 256 different
sequences before exact repetition occurs, every one has a dif-
ferent initial seed and a different addend. The decipherer
might need a bit more time to figure out what was going on,
since the addend operation produces (when the addend is an
odd number) sequences that no linear core algorithm could
yield.

Nothing would be easier than to produce greater complex-
ity and much longer non-repeating sequences. But why?
Unless one could correct the heterogeneity flaw, this would
not create a puzzle of genuine interest to cryptologists. This is
a good point to argue the value of speed and aperiodicity in
pseudorandom generators (code efficiency, always nice if you
can get it, seems less important here). If used with a fast D/A
converter to simulate “white noise”, SIMRND alone would
cause output fluctuations at frequencies near 60,000 Hz, but
its short non-repeating sequence means periodicity near
400 Hz. The INCRND-SIMRND combination would lower the
peak frequency to near 40,000 Hz, but would have an exact-
repetition frequency of less than 1 Hz. (Some added coding
might be needed to equalize the timing of each operation; this
would lower these values slightly.) A repeating sequence of
256 may be too short, while one greater than 65K may be too
long.

Improved heterogeneity, not length of the non-repeating
sequence, is the challenge to theoretical minds of a higher
order than my own!). Given enough complex logic, I have no
doubt that a much closer approximation to true randomness
than that achieved by my simple logic is attainable, especially
if the keys are initialized (something not required by my
logic). But if this involves a large increase in execution time, it
will be useful only to the few who possess superfast machines.

Page 16 Dr. Dobb’s Journal of C Cali:

It seems to me that mere statistical tests are not searching
enough to reveal the orderliness in short sequences; many rou-
tines that (with long sequences) pass such tests with flying
colors would fail the heterogeneity test.

Decimalizing the Pseudorandom Sequence

This can be done simply by a module like SELDEC (cf.
listings), which allows only the 100 “natural” decimal num-
bers (00 to 99) to be output, while rejecting the 156 numbers
that have a hex value in either high or low nibble. Although
SELDEC needs only 13 program bytes, the mean execution
time per decimal number output is (2.56 T+32.6) micro-
seconds, where T is the mean execution time of the binary
generator being used. Even if the binary generator is SIMRND
alone, the execution time per decimal number output is over
70 microseconds, and the timing penalty rises quickly as the
binary generator becomes more complex. Also, the length of
the non-repeating sequence is only 25K.

The more complex (25 program byte) module DECRND is
much faster, with a mean execution time per decimal number
output of (1.28 T+24.4) microseconds. Even with SIMRND
alone, where its advantage is minimal, the mean time is less
than 45 microseconds, and increases only to 65 microseconds
with the complex DUBRND/SIMRND/ADDRND/SIMJUM
generator logic (that with SELDEC requires over 110 micro-
seconds per decimal output).

The operation of DECRND outputs 200 decimal numbers
(each repeated once, but in a non-repeating sequence of 200)
for every 256 binary numbers output by the basic generator. It
first detects the 160 binary numbers that have a decimal value
in the high nibble and passes these through a decimal-adjust
module. All the “natural” decimals emerge unaltered. The
“unnaturals”, 60 numbers of the type (0-9)(A-F) emerge
“adjusted” to duplicates of type (0-9)(0-5). The task of the
SPECOP module, to which the 96 numbers of type (A-F)(0-
F) were sent, is to reject 56 and convert the other 40 into the
“missing” duplicates of type (0-9)(6-9).

SPECOP clears the carry and does 2 left-rotates through
the carry. It can now reject the 32 numbers of the original
type (A,B)(0-F), that have cleared the carry. With 2 more left-
rotates, the previously low nibble (0-F) is now the high, and
the low nibble is (6,7) with carry either set or clear. One of
the (6,7) sets is accepted, the other is converted to (8,9) by an
EOR #$0E. Finally it uses a CMP #$A0 to reject the 24 num-
bers with a hex high nibble and allows the 40 of type (0-9)(6-
9) to exit.

DECRND does not output all the 100 different decimals in
any sequence of 100 consecutive numbers (HO is near 50).
Some numbers occur once, others are duplicated, and many
are absent; this is corrected in the next 100 numbers. It is not
only much faster than SELDEC, but (with a 65K binary gener-
ator) yields a non-repeating sequence of 51K decimals. One
can concatenate successive outputs to form large numbers of
2n decimal digits; if » is odd, wraparound allows generation of
S1K different large numbers before exact repetition. The
degree of “stable disorder” is probably higher than that with
SELDEC, and perhaps even higher (as a percentage of the max-
imum) than that of the binary generator since decimalizing is a
kind of jumbling. I have not tested this because I am not much

& Or

60

Box E, Menlo Park, CA 94025 Number 32

interested in decimals. For the many who are, DECRND may
be useful. For me, the interest lies in the unusual (less easily
decipherable) conversion of hex to decimal numbers, a process
far more complex than my hex-jumbling modules, which hints
to really elaborate jumbling operations being able to create
higher levels of heterogeneity.

Modules, Superinstructions, and Macros

All are blocks of code, goal-oriented to produce a desired
effect, and insertable into programs that require the effect.
Insertion saves the time lost by a subroutine call and return.
The word “module” is quite general. Macros tend to be rather
big modules. I view my simpler modules as “‘superinstruc-
tions”. In fact, the idea for the RISJUM module came from an
earlier exploration of the emulation in 650X code of useful
instructions missing in the set. The ancestor ot RISJUM used
an EOR #880, and emulated a rotate-right-without-carry
operation. I presume that emulator programs use this kind of
thing to convert code from one kind of instruction set to
another.

The creation and recognition of modular structure in pro-
grams allows many variants of an operation, each fitting the
particular need for speed, code-efficiency, or complexity in
the unending game of trade-offs. Many programs contain
well-written (and well-hidden) modules to do various tasks,
whose value as optimized superinstructions usable in other
programs is given no emphasis. Similar tasks in other programs
are often badly coded (unless the programmer re-invents
the optimal coding). A rich module/subroutine library would
make programming both easier and more efficient.

Copyrights

I am copyrighting the listed modules (and their combina-
tions) with the same “free-diffusion” clause used for my
program EDITHA (DDJ #25). Note that the f-d-c allows
totally unrestricted use in association with all f-d-c software,
but does not forbid its use in programs protected by the usual
copyright. However, in such programs, f-d-c software is en-
titled to protection equal to that of the associated software
(use only by prior permission). I am aware that a lot of un-
acknowledged use of software is going on. As an advocate of
diffusion, I do not disapprove of this. I would object to a
“double-standard” in which “borrowers” incorporated f-d-c
software into their programs without permission, then made
waves if someone else “borrowed” their work. This raises the
question: what about coding of these algorithms for other
micros than the 650X? You cannot copyright an algorithm.
Thousands of people could easily code them for the 8080
etc.—who, if anyone, can then claim an exclusive copyright?

Q?%%

Number 32 Dr. Dobb’s Journal of C Cali

Table 1,

Heterogeneity Numbers (H; -Hu)

for Linear Core (+ Jumbling) Algorithms

SIMIUM
alone SIMJUM RISJUM pr#&yyy JUMSIX TETJUM ROLJUM

CORE
(N + $7F) 1 129 129 E 3 132 bg
s o8 7§ op 2
1 20 r{g 10 5 2
(5N + 1) 18 20 187 119 U8 161
. ff% 1 6 18; 100 157 143
L 63 12 90 163 piiA
1 146 16 145 96 166 147
(9% + 1) 32 137 199 163 105 138 135
L 118 6 161 86 136 12,
A e ¢ 6l 150 79 118 140
11 1 162 63 142 125
(138 + 1) ng 175 198 179 127 158 162
1 160 6l 182 10 158 1Lt
L 162 63 158 70 159 150
1 160 16 in 98 171 L7
(178 +1) 16 107 193 151 89 12, 121
1 130 6, 1Lo %0 122 121
1 123 8l 132 131 134
1 133 1 1Lo 95 181 130
A5 C1 SIMRND LDA RND (load seed)
2a ASL A (X 2)
"IN ASL & (X)
38 SEC (to add 1)
65 Cl ADC RND (X S + 1)
85 c1 STA RND (next seed)
c9 cg COMJUM CMP #$Cg@ Ebit 7 = bit 6?)
19 g2 BPL NEXT (yes, retain #)
49 FF EOR #$FF (no, complement)
NEXT
19 @2 SIMJUM BPL NEXT (bit 7 = @, retain #)
49 7F EOR #$7F (complement all but 7)
NEXT
LA RISJUM LSR A (bit @ to carry, zero bT)
9@ g2 BCC NEXT (bit @ = @, retain #)
49 FF EOR #$FF (bit @ = 1, complement)
NEXT
19 g2 SIMJUM BPL RISJUM (for 2 jumblings)
L9 7E EOR #$7E a &
2l c1 JUMSIX BIT RND (bit 6 to V flag)
5@ @2 BVC NEXT (if = @, retain #)
49 BF EOR #$BF (complement all but 6)
NEXT
c9 c@ TETJUM CMP #$C@ (quad jumbling)
19 g2 BPL OMIT
49 FE EOR #;ZE
L9 a1 OMIT EOR #$@1
1¢ g2 BPL NEXT
9 21 EOR #$21
b NEXT "
c9 cg ROLJUM CMP #$C¢ (quad jumbling)
1@ @5 BPL ROLOP (half have set carry)
49 FF EOR F (sets N for half)
14 21 BPL ROLOP (N and carry clear)
3 SEC (N and carry both set)
24 ROLOP ROL A (all numbers new)
NEXT
E6 C2 INCRND INC COUNT
D@ g2 BNE SIMRND
E6 Cl INC RND (next sequence of 256)
SIMRND
E6 C2 DUBRND INC COUNT
og 4l BNE SIMRND
E6 C1 INC RND
cé6 C3 DEC ADDEND Continued on pg. 19
& Or Box E, Menlo Park, CA 94025

Page 17

61

