ADD ATRAP VECTOR
FOR UNIMPLEMENTED 6502 OPCODES

BY CARL W. MOSER
3239 Linda Dr.
Winston-Salem, NC 27106

NOTE: Ideas in this article are at the present purely con-
ceptual and have not been implemented. They are
believed to be valid and are presented in this pre-

y stage for feedback to aid in the wltimate

implementation.

One feature the 6502, 6800, 8080, and most other micro-
processors lack is hardware to “trap” unimplemented op-
codes. This can aid in debugging a program in that the pro-
cessor would never “hang up” as can now happen especially
when executing software not fully debugged. In fact there is
at least one unimplemented opcode in the 6800 that requires
a power down procedure to reset the processor. Fortunately
the 6502 does not have to be powered down for any of its
unimplemented opcodes.

What if you could detect those unimplemented opcodes,
what have you gained? Well, you’ve gained in that during de-
bugging you could find out where the execution of the opcode
occurred. This is very beneficial but you could also implement
those opcodes in your own custom extension of the 6502
instruction set. How would you like a multiply or divide
instruction, several one byte calls, auto incrementing and auto
decrementing locations, block transfer, a whole group of 16
bit operations, etc. Before I go on, let’s present the hardware
which could detect an illegal opcode and if detected vector
to high order memory for processing.

Trap Vector Circuitry

Figure 1 outlines the circuitry which will detect if the 6502
is trying to execute an illegal opcode. One characteristic of
the 6502 is that it will output a SYNC pulse (pin 7) every time
it reads the opcode portion of an instruction. The ROM of
figure 1 has its address inputs connected to the 6502 data bus.
This ROM is programmed to output a ‘1’ every time a byte on
the data bus corresponds to an illegal opcode.

Whenever the 6502 inputs an opcode, the SYNC will go to
a ‘I’, and the output from the ROM will be a ‘1’ if the data
on the bus is an unimplemented opcode. If both of these
signals are logic 1, the bus transmitter is disabled, a bus driver
is enabled, which forces 0’s on the data bus. Well this is a
break instruction (hex 00). The microprocessor will execute
it and vector to FFFE for processing. This processing could
obtain the address of the BRK instruction from the stack,
input it, and test if it was actually a BRK instruction or an
unimplemented opcode. You may be asking, why don’t we
get forced zeros again? The answer is that the SYNC pulse

Dr. Dobb’s Journal of C Cali:

& Orthod

only occurs during the inputting of the opcode-—not when
inputting the second or third byte of the instruction or the
loaded or stored data that occurs when executing the
instruction.

A Possible 6502 Extended
Instruction Set

What is the difference between a register and memory?
Nothing except that with today’s hardware technology, a
few locations can economically be made faster than others.
Thus execution is presently faster through a register than in
ordinary memory. The result is to bottleneck data flow by
channeling information through a small set of memory loca-
tions (registers). Also, why do we have a register designated as
an accumulator? The answer is another hardware limitation
dictated by economics.

The extended instruction set I will describe has no accumu-
lators. In fact any memory location is equivalent to an
accumulator. This instruction set has 30 autoincrementing
index locations, and 32 autodecrementing index locations.
The reason for specifying a designated set of index locations
is to make the instruction set easier to implement.

ROM programmed to output a ‘1’ on occurrence

Q an umimplemented op code

Do A 8
g |pata
bus

Aq

Possibly
2708

SYNC

RW Zg;»—m

Bus
transmitter BiL3g%

74L8S00

DATA
Bus

8
L BRK 81
= instruction driver

If an unimplemented op code and sync occurs,
a BRK (hex 00) instruction is forced on the
data bus.

Figure 1. Trap vector detection hardware.

Page 32

30

Box E, Menlo Park, CA 94025 Number 31

In this instruction set extension, any time a memory loca-

0000 no indexing tion from 0002 through OO03F is specified as an index, auto-
0002 incrementing will occur on the index contents. Also, locations
: . 0040 through 007F will provide autodecrementing. If any
aulonerementing area other location is specified as the index, no autoincrementing
firatereniced as any or autodecrementing will occur. Functionally, this is equiva-

index ¥ s A
lent to 30 autoincrementing and 32 autodecrementing index

003F registers. This is illustrated in figure 2.

0040 A possible instruction set extension is listed in table A.
autodecrementing area Fhese i_nstructions provide 16 bit operations and feature
if referenced as an instructions to move a block of memory to another area
index (BLT), multiply (MUL and MUI), divide (DIV and DVI), and

compare (CM and CMI) which sets the N, Z, and C flags plus
007F sets the overflow flag (0) if FFFF (-1) occurs.

0080 A typical instruction is: MOV Dlable (Id), Slabel (Is)

This instruction should assemble as:
. X opcode
no autoincrementing address lo
or autodecrementing source
but. can be used as address hi
an Index Is zero page address of 16 bit source index
address lo
destination
OOFF address hi
Id zero page addrs of 16 bit destination index
Figure 2. Memory map of index locations.
NO. BYTES MNEMONIC DESCRIPTION
BLT TDlabel (#),Slabel Block Transfer
7 MOV Dlabel (Id), Slabel (Is) Move - memory to memory
6 MVI Dlabel (Id), immediate data Move - immediate to memory
7 ADD Add
7 SUB Subtract
7 MUL Multiply
T DIV Dlabel (Id), Slabel (Is) Divide
7 XOR Exclusive or
7 OR Logical or
i AN Logical and
6 ADI Add
6 SUI Subtract
6 MUI Multiply
6 DVI Dlabel (Id), immediate data Divide
6 XRI Exclusive or
6 ORI Logical or
6 ANT Logical and
7 CM Dlabel (Id), Slabel (Is) Compare
6 CMI Dlabel (Id), immediate data Compare immediate
5 SHR Dlabel (Id), # Shift right a number of places
5 SHL Dlabel (Id), # Shift left a number of places
NOTE: Dlabel = Destination address
Slabel = Source address
Id = Destination index
Is = Source index
Table A — Possible extension of the 6502 instruction set. Continued to p. 41
Number 31 Dr. Dobb’s Journal of C Cali &O0rthodontia, Box E, Menlo Park, CA 94025 Page 33

31

