AYNO)LESON §6 5102231 N DI REGHT)

BY W. D. MAURER

George Washington University
S.E.AS.

Washington, D.C. 20052

There are two kinds of indirect ad-
dressing on the 6502, both of them with
indexing. Except for JMP, however, indi-
rect addressing without indexing is not
provided. Since indirect addressing seems
to be more useful without indexing than
with it, many people have erroneously
regarded this as a design flaw.

In fact, anything you can do with in-
direct addressing without indexing can be
done, and done faster, with post-indexed
(Y -register) indirect addressing on the
6502. We shall now give several illustra-
tions of this.

Suppose we have two zero-page loca-
tions called IA and IA+1 for holding an
indirect address. We can initialize these
by setting them to AD and AD+I, as fol-
lows:

LDY AD
STY 1A
LDY AD+1
STY IA+1

At this point we may do a JMP (IA),
but not a STA (IA) (for example), since
that instruction does not exist on the
6502. It may be simulated, of course, by
loading the Y register with zero, so that
the full sequence becomes

LDY
STY
LDY
STY
LDY
STA

AD

1A
AD+1
1A+1
#0
(aa),Y

But this is unnecessary. All we have to do
is keep IA (the low-order address) set to
zero at all times, and write

LDY AD+1
STY IA+1
LDY AD
STA (1A),Y

which is a decrease in the number of in-
structions (from 5 to 4), rather than an
increase (from 5 to 6).

Why does this work? Suppose that the

Page 26

ADDRESSING

indirect address is 2345. Then AD con-
tains 45 (hex) and AD+1 contains 23. In-
stead of putting 45 in IA and 23 in [A+1
(giving an indirect address of 2345, with-
out indexing), we put zero in IA and 23
in IA+l, giving an indirect address of
2300. To this we apply indexing, with 45
(hex) in the Y register; 2300 plus 45
makes 2345.

A common use of this capability is in
processing arrays of strings. Suppose we
have an array T of n strings, with n <128.
This is implemented as an array of n ad-
dresses, with T(2k-1) and T(2k) contain-
ing, respectively, the low-order and high-
order parts of the address of the first
character of the k-th string in the string
array T, for 1 < k < n. To get the first
character of the k-th string, we perform

LDA K
ASL
TAY
LDA
STA
LDA
TAY
LDA

T-1Y
IA+1
T-2,Y

(IA),Y

This assumes that T(1) is contained at
T, T(2) at T+1, etc., so that T(2k-1) is
kept at T+2k-2 (= (T-2)+2k), and that
IA contains the constant zero as before.
This time the saving is not quite as great
because we cannot do an LDY T-2,Y di-
rectly (we could not even do an LDY
T-2,X unless T is in page zero). But TAY
is certainly both shorter and faster than
STA IA (which is what we would have
done if indirect addressing without index-
ing had been available). (Note: ASL, in
the above code, shifts the A register left
by one, thus multiplying it by 2. On some
assemblers one writes ASL A instead of
simply ASL for this.)

The same sort of savings accrue if T is
a parallel array rather than a serial array.
That is, suppose we keep two arrays, T1
and T2, where all the low-order bytes are
in T1 and all the high-order bytes are in
T2. That is, what was in T(2k-1) and

Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia, Box E, Menlo Park, CA 94025

T(2k), respectively, is now in T1(k) and
T2(k). There is now no need to multiply
k by 2, and, perhaps more importantly,
we can have n < 256 rather than n <128
as in the preceding example. (The reason
in both cases, of course, is that our
indices into the arrays T, T1, and T2
must, in each case, fit into an eight-bit
register, and must therefore be between
0 and 255, inclusive. Arrays with this
property may be referred to as short ar-
rays.) The code is now
LDY
LDA
STA
LDA
TAY
LDA (IA),Y
under the same assumptions as before.

In either case, incrementing the calcu-
lated indirect address is also speeded up.
Incrementing the 16-bit quantity in IA
and IA+1, if we needed that, would have
been performed by

K
T2-1Y
1A+1
T1-1,Y

INC JA
BNE NXT
INC 1A+1
NXT (next instruction)

In the actual case, the incrementation is
performed by

INY

BNE NXT2

INC IA+1
NXT?2 (next instruction)

which is again both shorter and faster.

It is true that, in this case, if we know
that none of our strings has length greater
than 256, we can do even better by using
straightforward post-indexing rather than
simulated non-indexing. The setup takes
a little longer—we have to write some-
thing like

LDA K
ASL

TAY

LDA T-1,Y

Number 48
333

STA

LDA

STA

LDY #0

LDA (IA2),Y
—but now a simple INY suffices for incre-
menting the indirect address. Note that
we carefully set up two further page-zero
locations here, IA2 and IA2+1, because
IA2, unlike IA, is nor kept at the con-
stant value of zero.

Another, even more common, applica-
tion of these ideas is in indexing long ar-
rays (this is, arrays of more than 256
bytes). Suppose that U is such an array
and we wish to index U(J), where J has
just been calculated. Here both U and J
are 16-bit quantities. Assuming that #U
and /U represent, respectively, the (con-
stant) lower half and upper half of the
address of U, we can add U and J and
store the result af IA2 by the following
code:

1A2+1
T-2,Y
1A2

CLC
LDA
ADC
STA 1A2
LDA /U
ADC J+1
STA 1A2+1

#U
J

and then, if we had indirect addressing
without indexing, we would be ready to
apply it. As it is, all we have to write is

cLC

LDA #U
ADC J
TAY

LDA /U
ADC J+1
STA IA+1

with IA set permanently to zero as
before, and we are ready to use an in-
struction like LDA (IA),Y (again, this
is both shorter and faster than what
preceded it).

If we can set aside another two bytes
in page zero for use only with this partic-
ular array U, we can do even better than
that. Let us call them IA3 and IA3+1; the
permanent contents of IA3 are the low-
order byte of the address of U, rather
than zero. This can be set up with a de-
claration like

IA3 ADR U

which actually sets up both IA3 and
IA3+1, although only IA3 will be needed.
‘We can now save two instructions each by
writing

CLC
LDA [U
ADC J+1
STA IA3+1
LDY I

and now LDA (IA3),Y will load U(J)
into the A register. Why does that work?
Let us make the following abbreviations:

Number 48
334

p — high-order byte of address of U (i.e.,
)

q — low-order byte of address of U (ie.,
#U

r — high-order byte of J (contents of loca-
tion J+1)

§ — low-order byte of J (contents of loca-
tion J)

The 16-bit quantities we are adding are
256p+q and 256r+s. The two bytes IA3
and IA3+1 contain, respectively, ¢ and
p+r, so that this 16-bit quantity is
256(p+r)+q. To this we add s by post-
indexing, so that the computed address is
actually (256(p+r)+q)+s = (256p+q)+
(256r+s), or J plus the address of U.

The above may be extended immedi-
ately to arrays U of two-byte or four-
byte quantities. A curious intermittent er-
ror may arise, however, if three-byte
quantitites are used. We would, of course,
multiply the 16-bit quantity in J and J+1
by 3 before using it, and then we would
increment Y by one (using INY) to get
the second byte set up, and again to get
the third byte set up. This works fine,
99% of the time. However, if J is 85, so
that 3J is 255, then incrementing Y by
one is not enough, since there is carry
into the high-order byte of 3J. We must
test for nonzero after the increment, and
then increment IA3+1 otherwise. (Similar
problems arise for J = 170, 341, 426,
etc.) It should not be hard to see that
there will never be carry of this kind for
an array of n-byte quantities where n is

2,4, 8, or in general any power of 2.

In the above case it was assumed that
U(0), rather than U(1), is contained at
U; if this is not the case, then the address
of U minus 1 must be substituted, in the
above, for the address of U. We assume
throughout, of course, that all 16-bit
quantities are kept with the low-order
byte first, as is customary on the 6502.
The concepts of serial and parallel array
are discussed further in [1]. Finally, users
of the LISA assembler for the 6502
should substitute $0, $1, and $2 for 0, 1,
and 2 respectively, throughout the coding
examples above.

Reference: Maurer, W.D., Programming,
Holden-Day, 1972, pp. 74-75.

About himself, Prof., Maurer has this
to say:

I've worked for CSC, Lockheed, Proj-
ect MAC, UC Berkeley (as an Assistant
Professor) and The George Washington
University, Washington, D.C. (as an
Associate Professor and now a full Profes-
sor). I've written a book called Program-
ming as well as The Programmer’s Intro-
duction to LISP and The Programmer’s
Introduction to SNOBOL. In my spare
time I write songs (My Pet Rock Is In
Love, Dracula’s Mood Ring, etc.) and
have them performed by a group of weird
people called The Hexagon Club.

JPRINT "*

'LOAD PPRS

BLOAD PPRS, A$2000
oX!LIST

1 ORG $12
2 ADR U

3 ORG $0200
4 LDA #L2
5 STA AD

) LDA /L2
7 STA AD+$1
-] LDA #$0
? STA P

10 LDY AD

11 STY IA

12 LDY AD+s$1
13 STY IA+$1
14 JMP (IA)
15 L2 LDA #P

14 STA AD

b g LDA /P

12 STA AD+$1
19 LDY AD
20 STY IA

21 LDY AD+$1
22 STY IA+$1
22 LDY #$0
24 LDA #$37
25 STA (IA),Y
26 JSR TS1
27 LDA #%0

Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia, Box E, Menlo Park, CA 84025

28 STA 1A

29 LDY AD+$1
20 STY TA+$1
31 LDY AD

32 LDA #$37
2 STA (IA), Y
34 JSR TS1

3 LDA #s11
36 STA K

27 LDA #P

28 STA T+$20
29 STA T1+$10
40 LDA /P

41 STA T+$21
42 STA T2+$10
43 LDA K

a4 AasL

a5 TAY

a6 LDA T-$1.Y
47 STA TA+$1
4z LDA T-$2.Y
49 Tay

50 LDA (IA).,Y
=1 CMP #$0

52 BEQ L4

532 BRK

sS4 La LDA #8155
=5 STA P

=13 LDY K

57 LDA T2-%1.Y
58 STA IA+$1
59 LDA T1-81,Y
&0 TAY

&1 LDA (1A}, Y .,

Page 27

vi
T$+d
o=t 2

s
SIsH
A Y1)

A'T$-11
1$+91
A'IS$-ZL
A

d

Sis#

v
Os#
A (YD)

A'Z$-1
T$+91
A'T$-1

A
O1$+ZL
1Z8+1
ds
OT$+1L
OZ$+1
d#

A

Tis#
151
A9l
LESH
av
I$+01
I$+ay
vI

Xaa
vis
van
Hud
o34

van
AYL
vaa
vis
van
AQ7
vis
wai
Hud
v3a
dWd
van
AYL
val
vis
val
AYL
sy
val
vis
vis

vis
vis
val
vis
wai
osr
vis
va
A0
ALS
A0
vis

usr
vis
van
AT
AlS
A0
ALS
Ad7
vlis
van
vis
vail
dhir
ALS
AQ7
AlS

[=n

LAl

1

vi9v
601€0a8s
£66Y
00
1004
S160
viig
av
601668
a1ss
601368
601¥IY
60008
S1sv
00
1004
00637
viig
=
600v68
4158
&01ved
a8y

vo
&01vav
402408
40£908
6089
&0Zvas
4602908
0E6Y
601v0a8
1189
&0ZE0ZT
vitsé
LESY
S04E0Y
aive
60039
viss
006Y
&0ZE0Z
vilé
LEBSY
[alelelo}
amvs
600PIv
vivs
&£04E09
4600t08
606Y
404E08
0ocev
elol-] Su]
aivs
600¥IY
vivs

€680
0680
33880
asso
a880
6880
L8380
9880
£880
1880
3.80
4480
8£80
FLB0
SL80
€480
1L80
3980
3980
49380
6980
9980
S980
980
1980
3580
4580
6580
9580
€680
1580
3v80
80
&v80
L¥BO
S¥80
Zv80
0r30
aeso
ae80
6£80
FEBO
eS80
ZE80
0E80
3Z30
az80
6280
9280
£Z80
1280
3180
2180
6180
4180
180
Z180

av
Os#
T$+0y
v/

%
0080%

8ls

AQ7
vis
van
vis
val
vis
van
940
dav
940

A

A

ZH+#
Q0SS+
0SS+#
0SS+
OSs$+#
T$+%

Jis
vis
=38 3

d
os#
p - |
d
LESH
T$+#
T$+#

Aa
ris#
'(EYI)
r
1$+EYL
18+
ns

»a
visH
A (Y1)
T$+91
TS+
ns

"
L

“Aa
visH
(Zvl1)
Oos#
1$+ZV1

01 &04€2v 4080

& 600£08 3080

8 006Y WOB0

L 600va8 L0OB0

9 806Y S080

S 604€08 ZOBO

v J1év 0080

€ 0080

z vozZe 8100

1 8100

Z 559d 40 ONI#s

T S5Yd 40 ONIwex»
WSY i

an3 91
ayo (i 191
ado n 091
oH0 [A% 651
940 L 8G1
32l 1 LS1
gyo A 951
Hay av ==
243 zv1 vST
Zd3 3 eS1
143 evl FA=)
S1d 1St
vis 0s1
wval &1
3nd =1 A1
WD Lyl
vl 151 1
U0 Zd St1
od0 d 1421
Aua - | (23 24
et | N3 (4 2
L 13-4
dWd or1
va’ &ET
AQ7 8ET
vis LET
aav €1
van SET
I vET
3Ng €1
dWT Zel
val el
uis 0ET
Jav YA
van 8Z1
AYL LZ1
aay 9Z1
val [=TAS
I72 ¥Z1
3nNa b A
dWd zzZ1
val 1z1
AQ7 ozt
vis 611

IS+
ns
[A-3 ¢
r
N

1SES+M
visk
18+

2 2 3

I

1SS#

A4

-1 2
A(ZYI)

g

LS#
A(ZY1)
os#

[A-)
A'TS$-1
T$+2V1
A'T$-1

A

Zd

= 12

d

LS#
ada
=t 4]
A1)
I$+Y1
ZLXN

%
vi

%1
ECSH
A(9I)
Os#
T$+91
L1XN

Jav

vis
Jav
van
ja gy}
vis
val
vis
van
vis
van
3na
dW3
vas
ANI

dWd
val
A0
vis
vas
vis
val
AYL
asv
vai
vis
val
vis

ana
dWd
val
INI
ang
ANI
AQ
X1s
Ada
©3a
dWd
vaa
AdQ7
INI
3Na
ONI
vis
van
vis
van
xan
vis
val
ya
v3a
dW3

ZLXN

7

LXN

S

811
L1t
911
STt
vit
€11
FA
111
011

Number 48

Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia, Box E, Menlo Park, CA 94025

Page 28

335

00s#
4Z60%
0E60%
LESH
ZEGOS
A(YTs)
LESH
00s#
ais
Ors0%
vis
4E60%
[ef 2102 3
&0%#
4E608%
OESH
(Y100%)
ars
oreos
vis
4E608
0Es0%
00s#
Ors0s
S04
JE60%

Jis#

13=5 £€=d 00=A
val 00
13=5 £&€=d 00=A
3NE 74
13=5 £&=d 00=A

dW3 60 0Ot
13=5 1E€=d 00=A
val LE
£€3=5 1€=d 00=A
HsM &0 ZE
€3=S 1€=d 00=A
vis vi
€3=5 1€=d 00=A
val LE
£3=8 €€=d 00=A
AQ7 00
£3=5 1€=d 80=A
AlS at
€3=S 1&=d &0=A
A7 60 OF
€3=S 1€=d 0E=A
AlS vi
£€3=8 1€=d 0€=A
AQ7 60 dE
£€3=5 1€=d 80=A
vis 60 O

val &0
£€3=5 1€=d 80=A
vis 60 d€
€3=5 1E€=d 80=A
vai oe
£€3=5 1&=d 80=A
W 00 Y1

€3=5 1€=d 80=A
AlLS ar
€3=S 1&=d 80=A
A0 60 OF
€3=5 1&=d JI=A

60 dE
€3=5 £€=d IS=A
vis &0 o€
€3=S €E=d IS=A
wal 00
£€3=S 1€=d IS=A
vis 80 Ot
€3=5 1&€=d IS=A
was 80
€3=5 1&=d IS=A
vis 60 dE
£€3=5 1&=d IG=A
van at

00=X 00=¢
&Y -8€60
00=x Le=Y
oa ~-LE60
00=X LE=Y
as -vE£60
00=X LE=Y
&y -ZE60
00=X Lg=Y
oz =9£80
00=X LE=Y
16 -vE£80
00=X LE=Y
-] =Z€80
00=X &0=¢
ov -0€80
00=X &0=%
+8 -3Z80
00=X &0-=
ol -dz80
00=X &0=Y
v8 -6280
00=X &0=y
v -9280
00=X &0=Y
as -£280
00=X &0=Y
&y -1Z80
00=X 0E=Y
as -3180
00=X 0OE=Y
&9 -3J180
00=X 00=¢
29 -6180
00=X 00=Y
e —=L180
00=X 00=¢
e -¥180
00=X 00=¢
ve -Z180
00=X 00=Y¢
v =4080
00=X 00=Y¢
as =2080
00=X 00=¢
&9 -9080
00=X 80=Y¢
as -4080
00=X 80=v¢
&9 -S080
00=X J1=¢
as -Z080
00=X J1=¢
&9 =0080

L0080+

Z£40
2660
J4E60
0260
5980
3880
J100

J01

[

z
3a!

r
IL
av

d
XN
S
91
v

ZeYo n
Zvéo 1
ZESO 1si
4260 A4
Jv80 i
9480 LAl
Y100 vI
207 3@

2360
160
1€60
3Z60
EV80
J180
8100

207

3 3 30 3 336 336 39 08 3036 3 36 36 36 36 96 3

#*

vEH0
Zed0
Zevo
2360
Z660
Zve0
4E60
4E60
4€60
4€60
3E60
ge60
&E60
LESO
veS0
ZeS0
zZes0
1£60
4260
3260
Jzsé0
vZs0
B8Z60
ST&0
£Z60
0Z80
3160
aiso
4160
6160
L1860
S160
Z160
0160
4060
J060
Y060

*
0 1 A -— 37av1 10GWAS
* *
ATTAWISSY H0 ONI s
an3 z9t
Z8+# 9d0 r a9t
00Ss+# OHO n o9l
0S$+% OHO0 Z1 65T
0S$+# QM0 L 8st
0S$+# OHO 1 LSt
1$+# 9H0 A 9ST
27 yav av ssi 8031
J1% Zd3 Zvl #St
Yis Zd3 vl e&st
81¢ Id3 EVI ZSt
S1d st 09
d vis 0S1 400€08
Oos# vwal év1 006Y
24 3Ng 8l 9400
d dWd L¥1 600EA0
LEs# vd1 LET LESY
I$+% OYO Zd Sti1
I$+* OHO d tvrl
ba Aa etl 00
ua N3 Zt1 00
A8 3Ing vl 1000
vis# dWO ovi v160
A'(eYI) wal 6E1 8l1d
" AQ7 8ET JOZEDY
1$+EY] WIS LET 6188
s+ 00y Y€1 40EEQI
ns wai SET vosY
o0 vET 81
Ad 3Nd €eT Z10d
vIis# dWD zel v182
A(YI) wan 133 viiga
1$+91 vls 0E1 aiss
s+ 20y 6Z1 40€ed9y
n/s wa’l 8Z1 vosy
AYL LZT 8v
r 2av 9Z1 H0Zedy
n# va7 SZ1 Pl
ey e} vzl 81

6060

;|

visH
A(ZYI)
Os#
1$+2v1
T8+

ns

vl

r

n#

1SES+N
riss
TS+
3 2

r

TSs#

Ad

(3 2
AevI)

Aa

LS#
A(ZYI)
os#

vl
A‘T$-1
1$+291
A‘lS-1

Zd
L8

ECSH
A VI
T$+91
Z1XN

d#%
vi

)
oS
A(YI)
Os#
1$+91
ALXN
w1
1$+91
d/

Y1
d#

val
AQ1
vis
van
vis
van
AYL
sy
val
vis
vas
vis
van
3Na

van
ONI
3nd
ANI
AQ7
X1s
Aud
03a
dWd
vas
AQ7
ONI
3Ng
ONI
vis
van
vis
van

ZLXN

kA

LXN

€21

900
16D
ata
000
aiss
40ee09
Yosy
J1s8
4009
TEey
ar
ao£sas
18y
d40€e08s
£06Y
40Zeds
1569
Jvoa
6060
J11a
83
£500
L0830
aiia
000y
J1s8
600v64
aiss
&01v48
8y

vo
&01vayY
601208
&06Y
400E08
L0O6&Y
v.o0a
€S60
viig
a193
Z00d
83
ogov
vi98
00
1004
€560
viiga
000Y
a193
Z00d
vi93
arsse
6069
vis8
ozev

LO&0
S060
€060
1060
4480
J480
v480
8480
S480
€480
<480
4380
a3so
Y380
8380
S350
£380
1380
4080
aaso
Jaso
vaso
8aso
9080
+aso
Zaso
4280
aziso
Y380
6380
8380
SI80
£330
02806
agso
ada30
6480
L4880
<480
€480
1480
0ds0
3vs0
aJvs0
avso
4980
LYs0
SY80
£vso
1980
4680
a680
680
6680
1680
S680

Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia, Box E, Menlo Park, CA 94025 Page 29

Number 48
336

1SS#
4Z60%
S0%#

A'(DT1%)

H4Z60%
LOS#H
AKDTS)
00s#
Jis

A ‘Ov60s
ars

A'Ire0s

17608
1€60%
S0%#
0E60%
LOS#
4260%
ESHH
A(YTS)

S880s

[+ 2]
vls
Jvsos

€3=8 1€=d 10=

£3=5 €€=d
dWd &0
€3=S 1€=d 10=A
van at
€3=5 1&£=d 10=

£3=8 0€=d ZZ=A
vis art
£3=5 0f£=d ZZ=A
van &0 1v
€3=5 02=d IZ=A
AvL
£3=S5 0E=d 1€=A
asv
€3=S 1&=d 1E€=A
van 60 1¥
€3=5 1&=d 1&=A
vis 60 1€
£3=5 1&=d 1€=A
van &0
€3=5 1E=d 1&=A
vis 60 Og
€3=S 1€=d 1&€=A
va’ L0
€3=5 €€=d 1€=A
ana VL
€3=5 £&=d 1E€=A
dWd €S
€3=5 1E=d 1E=A
val v
€3=5 1€=d 1E=A
3Ng z0
€3=5 1€=d 1E=A
ANI
€3=5 1€=d 0E=A

€3=S E€=d 00=A
034 10

1S=¢
-£380
&0=¢
-1380
&60=y

ZZ=v
-8380

-S280
80=Y
-Z380
60=4
-0380
LO=Y
-aaso
L0=Y
-8d80
£s=Y
-6480
£8=Y
=4480
£6=Y
-5480
eg=Y
-1d80
ES=¢
-0d80
£S=Y
-3v80
£S=9

EG=Y
-6Y80

ECSH
A(UTS)
O0s#
EVB0%
vis
ais
S0%H
Uis
o124 £ 3
Uis
12608
ESSH
3880%
STsH

A(D1S)

A 16608
ars

A 13608
1re0s
0ce0%
STs#
ILBOS
00s#

A'(DTS)

A 'OP60%

a1s

€3=5 €€=d 00=A

£3=5 £&=d 00=A
AQ7 00
€3=5 1E€=d 0C=A

TI=A
60 16
€3=5 I€=d 11=A

vis at
€3=5 1€=d I1=A

van 60 13
€3=5 I&=d 11I=A

AQ7 &0 1t
£€3=5 1&=d 0c=A

vis 60 0t
€3=5 TE€=d 0c=A
val st
€3=5 £E€=d 0E=A

o3g 10
£3=5 £&=d 0=

JWD 00
€3=5 IC=d 0E=A

00=X

£S=Y
-LY80
£5=Y
-Sys80
60=!
-£Y80

=4680

-8880

-6880
Si=¢
-4880
oe=v
-9880
oe=y
-£880
50=4
-1880
&0=
=3L80
Si=y
=9.80
Si=v
-8480
Si=v
=-9L80
00=Y
-£L80
00=y
-1480
00=Yy
-4980
oc=y
=3980
oe=y
-d9380

-6980

A'TvE0S

Tré0s
Z460%
£9608%

084
Y608
Z960%

OCs#
608

Tis#

0Z60%
00s#
4Z60%
0E60%
LESH
ZEGOS
A'(YTs)
LESH
JES0%
ais
Oveos
vis

[ole} 2]

0E60%

€3=5 0&=d ZIZ=A
vai 60 1¥
€3=S 0E=d ZZ=A
AYL
€3=5 0€=d 0E=A
asv
€3=5 1E€=d 0E=A
val 60 1t
€3=85 1&=d 0€=A
vis 60 Z4
€3=S5 1€=d 0E€=A
vis 60 €9
€3=5 1€=d 0£=A
vai 60
£3=5 le&=d 0E€=A
vis 60 2V
€3=S 1&€=d 0€=A
vis 60 Z9
€3=5 1&=d 0€=A
vai og
€3=5 1f€=d 0E=A
vis 60 1t
£€3=5 1€=d 0E=A
val It
13=5 €&=d 0E=A
Siy
13=5 €€=d 0E=A
vis 60 0E
13=5 €€=d 0E=A
val 00
13=5 €&=d 0E=A
ana 74
13=8 E€&=d 0E€=A
dWd 60 02
13=5 1&=d 0E=A
val LE
€3=5 I€=d 0E=A
usr 60 ZE
€3=S [€=d 0T=A
uis vi
€3=5 [€=d 0E€=A
wvan LE
€3=5 I€=d 0Ec=A
AQ7 60 dJE
€3=8 1&=d &0=A
ALS ar
€3=8 I€=d 60=A

13=5 £E=d 00=A
vis &0 0

60=¢
-9980
=y
-5980
zz=y
-¥980
11=¢

60=Y

-ZE60
LE=Y
-6¥80
LE=Y
=LY80
LE=
-S+80
00=!
-Zv30
00=4
=080
00=y
-aeso
00=v
-4e80

-3€60
00=4Y
-gg60

Number 48

Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia, Box E, Menlo Park, CA 94025

Page 30

337

0BES- 8D 32 OF STA $OF32 090C- 6D 32 OF ADC $0F32

A=51 X=00 Y=01 P=31 S=E3 A=83 X=00 Y=00 P=FO0 S=E3

0SES- A9 03 LDA #8503 090F - A8 TAY

A=02 X=00 Y=01 P=31 S=E3 A=83 X=00 ¥=83 P=F0 S=E3

0BEA- 8D 23 OF STA $OF33 0910~ A% OA LDA #$0A
A=03 X=00 Y=01 P=31 S=E3 A=0A X=00 Y=83 P=70 S=E3

OBED- A? 14 LDA #$14 0912~ &D 33 OF ADC $O0F23
A=14 X=00 Y=01 P=31 S=E3 A=0D X=00 Y=832 P=30 S=E3

O8EF- 8D 83 0D STA $0D23 0915 85 1B STA $1B
A=14 X=00 Y=01 P=31 S=E3 A=0D X= ¥Y=83 P=30 S=E3

08F2- 18 CLC 0917- Bl 1A LDA ($1A), Y
A=14 X=00 Y=01 P=30 S=E3 A=14 X=00 Y=83 P=30 S=E3

08F3— A9 32 LDA #6322 0919- ce 14 CcMP #6514
A=32 X=00 Y=01 P=30 S=E3 A=14 X=00 Y=83 P=33 S=E3

O8F5- &0 32 OF ADC $0F32 091B- DO 12 BNE $092F
A=83 X=00 Y=01 P=FO S=E3 A=14 X=00 Y=832 P=33 S=E2

0BF8- 85 1C sSTA $1C 091D- 18 cLC

A=83 X=00 Y=01 P=FO0 S=E3 A=14 X=00 Y=83 P=32 S=E3

08FA- A9 0A LDA #$0A 091E- A? OA LDA #$0A
=0A X=00 Y=01 P=70 S=E3 A=0A X=00 Y=83 P=30 S=E3

OBFC- 4D 33 OF ADC $O0F33 0920- &D 33 OF ADC $OF232
A=0D X=00 Y¥Y=01 P=30 S=E3 A=0D X=00 Y=82 P=30 S=E2

O08BFF- 85 1D STA $1D 0923~ 85 19 STA %19
A=0D X=00 Y=01 P=30 S=E3 A=0D X=00 Y=83 P=30 S=E3

0901- AOQ 00 LDY #$00 0925~ AC 32 OF LDY $OF22
A=0D X=00 Y= P=32 S=E3 A=0D X=00 Y=51 P=30 S=E3

0903~ B1 1C LDA ($1C). ¥ 0928- Bl 12 LDA ($12), Y
A=14 X=00 Y=00 P=30 S=E2 A-14 X=00 Y=51 P=30 S=E2

0905- C9 14 CMP #$14 09264- C9 14 CMP #$14
A=14 X=00 Y= P=33 S=E3 A=14 X=00 Y=51 P=32 S=E3

0907- DO 246 ENE $092F 092C- DO 0O1 ENE SO092F
A=14 X=00 Y=00 P=33 S=E3 A=14 X=00 Y=51 P=33 S=E3

0909~ 18 CLC 092E- 00 BRK

A=14 X=00 Y=00 P=32 S=E3 092E- A=14 X=00 Y=51 P=332 S=E2

090A- A% 32 LDA #$32 #0800G

A=32 X=00 Y=00 P=20 S=E3 0930- A=14 X=00 Y=51 P=32 S=DF

Number 48 Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia, Box E, Menlo Park, CA 94025 Page 31
338

This interface will allow the USART, package 3A, and the
software which controls it to interface the H-14 at any baud
rate up to and including 4800.

2281 Cobble Stone Court
Dayton, OH 45431

Sincerely,
Robert Rennard

CP/M COMPATIBLE SOFTWARE MARKETING

Dear DDJ:

As the developers of CP/M and MP/M, Digital Research is
preparing a list of vendors of CP/M-compatible software, We
would appreciate the help of readers of your magazine in com-
piling this list for distribution to all interested persons who
contact us.

If any readers are currently marketing CP/M-compatible
software, please send us any or all literature pertaining to your
software which controls it to interface the H-14 at any baud
rate up to and including 4800.

Thank you,
Marilyn Darling

Digital Research
P.O. Box 579
Pacific Grove, CA 93950

AT ODDS WITH DDJ

Dear DDJ:

I have received my copies of Volume 5, Issue 8 of DDJ,
which contains my article (4 Note On 6502 Indirect Addres-
sing), and I am slightly upset.

I have about 70 papers to my credit, in all kinds of journals,
and this is the very first time that I have not had the courtesy
of having galley proofs to review before an article of mine is
printed.

I understand about your policy of quick publication; I want
to see my ideas on programming published as quickly as pos-
sible, too— but not with typists’ mistakes still in them! Typists
are not infallible, nor should they be expected to be. For the
record, the mistakes were as follows:

P. 26 col. 1 line 37: ““is keep’” should be “is to keep”

P. 26 col. 3 line 34: left paren should line up under I

P. 27 col. 1 line 57: “each by” should be *“‘each time by”

P. 27 col. 3 line 11: [1] refers to reference number 1,

which is not marked as such. (I don’t mind if you want to

set up your own conventional notation for references to
journal papers and books, but it has to be consistent with
itself.)

None of these turned out to be really serious, in this case —
which is why I am slightly, rather than considerably, upset.

Sincerely,
Professor W. D. Maurer

George Washington University

S.E.AS.
‘Washington, DC 20052

Prof. Maurer’s objection is well taken and the subject of this
month’s editorial (see p. 1). -JP

SIGNED COMPARISON: ALTERNATE ROUTINE

Dear DDJ:

While scanning the listing of the runtime library for the
Small C compiler in issue #48, I happened to notice the signed
compare routine (“cccmp”). This routine performs a compari-
son of two 16-bit signed numbers (two’s complement) by sub-
tracting one of the numbers from the other and then examin-
ing the sign of the result. This technique works fine as long as
the difference between the numbers being compared is less

Page 52

Dr. Dobb's Journal of Computer Calisthenics & Orthodontia

than or equal to 32767; however, if the numbers differ by
more than 32767, the result of the compare will be incorrect
due to arithmetic overflow during the calculation.

A different way to accomplish a signed comparison is to
invert the sign bits of the two numbers being compared and
then to perform an unsigned compare using the new numbers,
A routine using this technique is shown below:

; Common routine to perform a signed compare of DE & HL.
;> This routine compares DE & HL and sets the conditions:

3 Carry reflects sign of difference (set if DE < HL)

3 Zero/non-zero set according to equality.

cccmp: MOV AH ; invert sign of HL.

XRI 80H

MOV H,A

MOV A,D ; invert sign of DE,
XRI 80H

CMP H ; compare msbs.

JNZ ccompl ;unequal—comparison done.

MOV A,E
CMP L

; equal — compare Isbs.

ccempl: LXI H,1
RET

; (required by Small C).

This new method works by mapping the signed number do-
main into the unsigned number domain, where 16-bit com-
parisons may be easily made, before making the comparison.
A few examples of number mappings are shown below:

Decimal number

Hex number Hex number

before map after map
-32768 8000 0000
-32767 8001 0001
-1 FFFF 7FFF
0000 8000
1 0001 8001
32767 7FFF FFFF

Now, does this solve a problem or just create a new prob-
lem? Consider the two expressions shown below, which appear
to be equivalent:

Expression New 0ld “Correct”
result result result

(-4000 < 30000) True False True

(-4000 - 30000 < 0) False False False

Because of arithmetic overflow in the second expression,
where *“~4000 - 30000 is correctly interpreted as 31536 (not
-34000), the expressions have different values. The new “im-
proved” compare yields the differing results, depending upon
how the expression is formed; whereas the old compare yields
identical (but incorrect in one case) results no matter which
way the expression is formed. Which attibute appeals to you
more: correctness or apparent consistency? I vote for correct-
ness in this case.

Yours truly,
Harry B. Stewart

Neoteric

15816 San Benito Way
Los Gatos, CA 95030
Number 50

445

