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There are two kinds of indirect ad-
dressing on the 6502, both of them with
indexing. Except for JMP, however, indi-
rect addressing without indexing is not
provided. Since indirect addressing seems
to be more useful without indexing than
with it, many people have erroneously
regarded this as a design flaw.

In fact, anything you can do with in-
direct addressing without indexing can be
done, and done faster, with post-indexed
(Y -register) indirect addressing on the
6502. We shall now give several illustra-
tions of this.

Suppose we have two zero-page loca-
tions called IA and IA+1 for holding an
indirect address. We can initialize these
by setting them to AD and AD+I, as fol-
lows:

LDY AD
STY 1A
LDY AD+1
STY IA+1

At this point we may do a JMP (IA),
but not a STA (IA) (for example), since
that instruction does not exist on the
6502. It may be simulated, of course, by
loading the Y register with zero, so that
the full sequence becomes

LDY
STY
LDY
STY
LDY
STA

AD

1A
AD+1
1A+1
#0
(aa),Y

But this is unnecessary. All we have to do
is keep IA (the low-order address) set to
zero at all times, and write

LDY AD+1
STY IA+1
LDY AD
STA (1A),Y

which is a decrease in the number of in-
structions (from 5 to 4), rather than an
increase (from 5 to 6).

Why does this work? Suppose that the
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indirect address is 2345. Then AD con-
tains 45 (hex) and AD+1 contains 23. In-
stead of putting 45 in IA and 23 in [A+1
(giving an indirect address of 2345, with-
out indexing), we put zero in IA and 23
in IA+l, giving an indirect address of
2300. To this we apply indexing, with 45
(hex) in the Y register; 2300 plus 45
makes 2345.

A common use of this capability is in
processing arrays of strings. Suppose we
have an array T of n strings, with n <128.
This is implemented as an array of n ad-
dresses, with T(2k-1) and T(2k) contain-
ing, respectively, the low-order and high-
order parts of the address of the first
character of the k-th string in the string
array T, for 1 < k < n. To get the first
character of the k-th string, we perform

LDA K
ASL
TAY
LDA
STA
LDA
TAY
LDA

T-1Y
IA+1
T-2,Y

(IA),Y

This assumes that T(1) is contained at
T, T(2) at T+1, etc., so that T(2k-1) is
kept at T+2k-2 (= (T-2)+2k), and that
IA contains the constant zero as before.
This time the saving is not quite as great
because we cannot do an LDY T-2,Y di-
rectly (we could not even do an LDY
T-2,X unless T is in page zero). But TAY
is certainly both shorter and faster than
STA IA (which is what we would have
done if indirect addressing without index-
ing had been available). (Note: ASL, in
the above code, shifts the A register left
by one, thus multiplying it by 2. On some
assemblers one writes ASL A instead of
simply ASL for this.)

The same sort of savings accrue if T is
a parallel array rather than a serial array.
That is, suppose we keep two arrays, T1
and T2, where all the low-order bytes are
in T1 and all the high-order bytes are in
T2. That is, what was in T(2k-1) and
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T(2k), respectively, is now in T1(k) and
T2(k). There is now no need to multiply
k by 2, and, perhaps more importantly,
we can have n < 256 rather than n <128
as in the preceding example. (The reason
in both cases, of course, is that our
indices into the arrays T, T1, and T2
must, in each case, fit into an eight-bit
register, and must therefore be between
0 and 255, inclusive. Arrays with this
property may be referred to as short ar-
rays.) The code is now
LDY
LDA
STA
LDA
TAY
LDA (IA),Y
under the same assumptions as before.

In either case, incrementing the calcu-
lated indirect address is also speeded up.
Incrementing the 16-bit quantity in IA
and IA+1, if we needed that, would have
been performed by

K
T2-1Y
1A+1
T1-1,Y

INC JA
BNE NXT
INC  1A+1
NXT (next instruction)

In the actual case, the incrementation is
performed by

INY

BNE NXT2

INC  IA+1
NXT?2 (next instruction)

which is again both shorter and faster.

It is true that, in this case, if we know
that none of our strings has length greater
than 256, we can do even better by using
straightforward post-indexing rather than
simulated non-indexing. The setup takes
a little longer—we have to write some-
thing like

LDA K
ASL

TAY

LDA T-1,Y
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STA

LDA

STA

LDY #0

LDA (IA2),Y
—but now a simple INY suffices for incre-
menting the indirect address. Note that
we carefully set up two further page-zero
locations here, IA2 and IA2+1, because
IA2, unlike IA, is nor kept at the con-
stant value of zero.

Another, even more common, applica-
tion of these ideas is in indexing long ar-
rays (this is, arrays of more than 256
bytes). Suppose that U is such an array
and we wish to index U(J), where J has
just been calculated. Here both U and J
are 16-bit quantities. Assuming that #U
and /U represent, respectively, the (con-
stant) lower half and upper half of the
address of U, we can add U and J and
store the result af IA2 by the following
code:

1A2+1
T-2,Y
1A2

CLC
LDA
ADC
STA 1A2
LDA /U
ADC J+1
STA 1A2+1

#U
J

and then, if we had indirect addressing
without indexing, we would be ready to
apply it. As it is, all we have to write is

cLC

LDA #U
ADC J
TAY

LDA /U
ADC J+1
STA IA+1

with IA set permanently to zero as
before, and we are ready to use an in-
struction like LDA (IA),Y (again, this
is both shorter and faster than what
preceded it).

If we can set aside another two bytes
in page zero for use only with this partic-
ular array U, we can do even better than
that. Let us call them IA3 and IA3+1; the
permanent contents of IA3 are the low-
order byte of the address of U, rather
than zero. This can be set up with a de-
claration like

IA3 ADR U

which actually sets up both IA3 and
IA3+1, although only IA3 will be needed.
‘We can now save two instructions each by
writing

CLC
LDA [U
ADC J+1
STA IA3+1
LDY I

and now LDA (IA3),Y will load U(J)
into the A register. Why does that work?
Let us make the following abbreviations:
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p — high-order byte of address of U (i.e.,
)

q — low-order byte of address of U (ie.,
#U

r — high-order byte of J (contents of loca-
tion J+1)

§ — low-order byte of J (contents of loca-
tion J)

The 16-bit quantities we are adding are
256p+q and 256r+s. The two bytes IA3
and IA3+1 contain, respectively, ¢ and
p+r, so that this 16-bit quantity is
256(p+r)+q. To this we add s by post-
indexing, so that the computed address is
actually (256(p+r)+q)+s = (256p+q)+
(256r+s), or J plus the address of U.

The above may be extended immedi-
ately to arrays U of two-byte or four-
byte quantities. A curious intermittent er-
ror may arise, however, if three-byte
quantitites are used. We would, of course,
multiply the 16-bit quantity in J and J+1
by 3 before using it, and then we would
increment Y by one (using INY) to get
the second byte set up, and again to get
the third byte set up. This works fine,
99% of the time. However, if J is 85, so
that 3J is 255, then incrementing Y by
one is not enough, since there is carry
into the high-order byte of 3J. We must
test for nonzero after the increment, and
then increment IA3+1 otherwise. (Similar
problems arise for J = 170, 341, 426,
etc.) It should not be hard to see that
there will never be carry of this kind for
an array of n-byte quantities where n is

2,4, 8, or in general any power of 2.

In the above case it was assumed that
U(0), rather than U(1), is contained at
U; if this is not the case, then the address
of U minus 1 must be substituted, in the
above, for the address of U. We assume
throughout, of course, that all 16-bit
quantities are kept with the low-order
byte first, as is customary on the 6502.
The concepts of serial and parallel array
are discussed further in [1]. Finally, users
of the LISA assembler for the 6502
should substitute $0, $1, and $2 for 0, 1,
and 2 respectively, throughout the coding
examples above.

Reference: Maurer, W.D., Programming,
Holden-Day, 1972, pp. 74-75.

About himself, Prof., Maurer has this
to say:

I've worked for CSC, Lockheed, Proj-
ect MAC, UC Berkeley (as an Assistant
Professor) and The George Washington
University, Washington, D.C. (as an
Associate Professor and now a full Profes-
sor). I've written a book called Program-
ming as well as The Programmer’s Intro-
duction to LISP and The Programmer’s
Introduction to SNOBOL. In my spare
time I write songs (My Pet Rock Is In
Love, Dracula’s Mood Ring, etc.) and
have them performed by a group of weird
people called The Hexagon Club.

JPRINT "*

'LOAD PPRS

BLOAD PPRS, A$2000
oX!LIST

1 ORG $12
2 ADR U

3 ORG $0200
4 LDA #L2
5 STA AD

) LDA /L2
7 STA AD+$1
-] LDA #$0
? STA P

10 LDY AD

11 STY IA

12 LDY AD+s$1
13 STY IA+$1
14 JMP (IA)
15 L2 LDA #P

14 STA AD

b g LDA /P

12 STA AD+$1
19 LDY AD
20 STY IA

21 LDY AD+$1
22 STY IA+$1
22 LDY #$0
24 LDA #$37
25 STA (IA),Y
26 JSR TS1
27 LDA #%0

Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia, Box E, Menlo Park, CA 84025

28 STA 1A

29 LDY AD+$1
20 STY TA+$1
31 LDY AD

32 LDA #$37
2 STA (IA), Y
34 JSR TS1

3 LDA #s11
36 STA K

27 LDA #P

28 STA T+$20
29 STA T1+$10
40 LDA /P

41 STA T+$21
42 STA T2+$10
43 LDA K

a4 AasL

a5 TAY

a6 LDA T-$1.Y
47 STA TA+$1
4z LDA T-$2.Y
49 Tay

50 LDA (IA).,Y
=1 CMP #$0

52 BEQ L4

532 BRK

sS4 La LDA #8155
=5 STA P

=13 LDY K

57 LDA T2-%1.Y
58 STA IA+$1
59 LDA T1-81,Y
&0 TAY

&1 LDA (1A}, Y .,
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0BES- 8D 32 OF STA $OF32 090C- 6D 32 OF ADC $0F32

A=51 X=00 Y=01 P=31 S=E3 A=83 X=00 Y=00 P=FO0 S=E3

0SES- A9 03 LDA #8503 090F - A8 TAY

A=02 X=00 Y=01 P=31 S=E3 A=83 X=00 ¥=83 P=F0 S=E3

0BEA- 8D 23 OF STA $OF33 0910~ A% OA LDA #$0A
A=03 X=00 Y=01 P=31 S=E3 A=0A X=00 Y=83 P=70 S=E3

OBED- A? 14 LDA #$14 0912~ &D 33 OF ADC $O0F23
A=14 X=00 Y=01 P=31 S=E3 A=0D X=00 Y=832 P=30 S=E3

O8EF- 8D 83 0D STA $0D23 0915 85 1B STA $1B
A=14 X=00 Y=01 P=31 S=E3 A=0D X= ¥Y=83 P=30 S=E3

08F2- 18 CLC 0917- Bl 1A LDA ($1A), Y
A=14 X=00 Y=01 P=30 S=E3 A=14 X=00 Y=83 P=30 S=E3

08F3— A9 32 LDA #6322 0919- ce 14 CcMP #6514
A=32 X=00 Y=01 P=30 S=E3 A=14 X=00 Y=83 P=33 S=E3

O8F5- &0 32 OF ADC $0F32 091B- DO 12 BNE $092F
A=83 X=00 Y=01 P=FO S=E3 A=14 X=00 Y=832 P=33 S=E2

0BF8- 85 1C sSTA $1C 091D- 18 cLC

A=83 X=00 Y=01 P=FO0 S=E3 A=14 X=00 Y=83 P=32 S=E3

08FA- A9 0A LDA #$0A 091E- A? OA LDA #$0A
=0A X=00 Y=01 P=70 S=E3 A=0A X=00 Y=83 P=30 S=E3

OBFC- 4D 33 OF ADC $O0F33 0920- &D 33 OF ADC $OF232
A=0D X=00 Y¥Y=01 P=30 S=E3 A=0D X=00 Y=82 P=30 S=E2

O08BFF- 85 1D STA $1D 0923~ 85 19 STA %19
A=0D X=00 Y=01 P=30 S=E3 A=0D X=00 Y=83 P=30 S=E3

0901- AOQ 00 LDY #$00 0925~ AC 32 OF LDY $OF22
A=0D X=00 Y= P=32 S=E3 A=0D X=00 Y=51 P=30 S=E3

0903~ B1 1C LDA ($1C). ¥ 0928- Bl 12 LDA ($12), Y
A=14 X=00 Y=00 P=30 S=E2 A-14 X=00 Y=51 P=30 S=E2

0905- C9 14 CMP  #$14 09264- C9 14 CMP  #$14
A=14 X=00 Y= P=33 S=E3 A=14 X=00 Y=51 P=32 S=E3

0907- DO 246 ENE $092F 092C- DO 0O1 ENE SO092F
A=14 X=00 Y=00 P=33 S=E3 A=14 X=00 Y=51 P=33 S=E3

0909~ 18 CLC 092E- 00 BRK

A=14 X=00 Y=00 P=32 S=E3 092E- A=14 X=00 Y=51 P=332 S=E2

090A- A% 32 LDA #$32 #0800G

A=32 X=00 Y=00 P=20 S=E3 0930- A=14 X=00 Y=51 P=32 S=DF

Number 48 Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia, Box E, Menlo Park, CA 94025 Page 31
338



This interface will allow the USART, package 3A, and the
software which controls it to interface the H-14 at any baud
rate up to and including 4800.

2281 Cobble Stone Court
Dayton, OH 45431

Sincerely,
Robert Rennard

CP/M COMPATIBLE SOFTWARE MARKETING

Dear DDJ:

As the developers of CP/M and MP/M, Digital Research is
preparing a list of vendors of CP/M-compatible software, We
would appreciate the help of readers of your magazine in com-
piling this list for distribution to all interested persons who
contact us.

If any readers are currently marketing CP/M-compatible
software, please send us any or all literature pertaining to your
software which controls it to interface the H-14 at any baud
rate up to and including 4800.

Thank you,
Marilyn Darling

Digital Research
P.O. Box 579
Pacific Grove, CA 93950

AT ODDS WITH DDJ

Dear DDJ:

I have received my copies of Volume 5, Issue 8 of DDJ,
which contains my article (4 Note On 6502 Indirect Addres-
sing), and I am slightly upset.

I have about 70 papers to my credit, in all kinds of journals,
and this is the very first time that I have not had the courtesy
of having galley proofs to review before an article of mine is
printed.

I understand about your policy of quick publication; I want
to see my ideas on programming published as quickly as pos-
sible, too— but not with typists’ mistakes still in them! Typists
are not infallible, nor should they be expected to be. For the
record, the mistakes were as follows:

P. 26 col. 1 line 37: ““is keep’” should be “is to keep”

P. 26 col. 3 line 34: left paren should line up under I

P. 27 col. 1 line 57: “each by” should be *“‘each time by”

P. 27 col. 3 line 11: [1] refers to reference number 1,

which is not marked as such. (I don’t mind if you want to

set up your own conventional notation for references to
journal papers and books, but it has to be consistent with
itself.)

None of these turned out to be really serious, in this case —
which is why I am slightly, rather than considerably, upset.

Sincerely,
Professor W. D. Maurer

George Washington University

S.E.AS.
‘Washington, DC 20052

Prof. Maurer’s objection is well taken and the subject of this
month’s editorial (see p. 1). -JP

SIGNED COMPARISON: ALTERNATE ROUTINE

Dear DDJ:

While scanning the listing of the runtime library for the
Small C compiler in issue #48, I happened to notice the signed
compare routine (“cccmp”). This routine performs a compari-
son of two 16-bit signed numbers (two’s complement) by sub-
tracting one of the numbers from the other and then examin-
ing the sign of the result. This technique works fine as long as
the difference between the numbers being compared is less
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than or equal to 32767; however, if the numbers differ by
more than 32767, the result of the compare will be incorrect
due to arithmetic overflow during the calculation.

A different way to accomplish a signed comparison is to
invert the sign bits of the two numbers being compared and
then to perform an unsigned compare using the new numbers,
A routine using this technique is shown below:

; Common routine to perform a signed compare of DE & HL.
;> This routine compares DE & HL and sets the conditions:

3 Carry reflects sign of difference (set if DE < HL)

3 Zero/non-zero set according to equality.

cccmp: MOV AH ; invert sign of HL.

XRI 80H

MOV H,A

MOV A,D ; invert sign of DE,
XRI 80H

CMP H ; compare msbs.

JNZ  ccompl ;unequal—comparison done.

MOV A,E
CMP L

; equal — compare Isbs.

ccempl: LXI  H,1
RET

; (required by Small C).

This new method works by mapping the signed number do-
main into the unsigned number domain, where 16-bit com-
parisons may be easily made, before making the comparison.
A few examples of number mappings are shown below:

Decimal number

Hex number Hex number

before map after map
-32768 8000 0000
-32767 8001 0001
-1 FFFF 7FFF
0000 8000
1 0001 8001
32767 7FFF FFFF

Now, does this solve a problem or just create a new prob-
lem? Consider the two expressions shown below, which appear
to be equivalent:

Expression New 0ld “Correct”
result result result

(-4000 < 30000) True False True

(-4000 - 30000 < 0) False False False

Because of arithmetic overflow in the second expression,
where *“~4000 - 30000 is correctly interpreted as 31536 (not
-34000), the expressions have different values. The new “im-
proved” compare yields the differing results, depending upon
how the expression is formed; whereas the old compare yields
identical (but incorrect in one case) results no matter which
way the expression is formed. Which attibute appeals to you
more: correctness or apparent consistency? I vote for correct-
ness in this case.

Yours truly,
Harry B. Stewart

Neoteric

15816 San Benito Way
Los Gatos, CA 95030
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