A Block-Structured Language
for Microcomputers

You think that there’s no viable alternative

to BASIC? You haven’'t heard about XPLO.

Larry Fish
123 E. Arkansas
Denver CO 80210

ver since BASIC was intro-

duced as a microcomputer
language, there has been con-
siderable discussion about an
alternative high-level language.
A number of languages have
been suggested as alterna-
tives; however, none of these
languages is really suited to
the needs of small systems.
XPLO is the first viable alterna-
tive language for microcom-
puters.

Briefly, XPLO is a block-
structured high-level language
designed specifically for eight-
bit microprocessors. It is five to
ten times faster than the fast-
est BASIC. It is a compiled lan-
guage and yet requires only
16K to 24K of memory, without
a disk. But most important of
all, it is available now.

Why Block Structured?

Block-structured languages
were designed to solve prob-
lems that develop in conven-
tional languages. If you have
ever written a long BASIC pro-
gram, you have probably en-
countered these problems.

"BEGIN’
MAKEANUMBER §

“END”

‘WHILE’ GUESS=INCORRECT ‘DO’
‘BEGIN

TEND

Program A.

INFUTGUESS$
TESTGUESS§

"FPROCEDURE "
‘BEGIN”

TEND G

NUMRER ¢ =RANUOM(100) 3

Program B.

MAKEANUMEBER »

‘PROCEDURE
“BEGIN

CEND G

GUESSE=1NPUT(0) 3

Program C.

INPUTGUESS $

24

1. Complexity. As a program
grows in length, its complexity
grows geometrically. In lan-
guages where any routine can
call any other routine, pro-
grams tend to become complex
webs of subroutine calls. Block
structure solves this problem
by organizing the program into
clean, logical blocks. As a
block-structured program grows,
it becomes longer but not more
complex.

Block structure helps the
programmer deal with com-
plexity in another way. The
human mind can only grasp a
certain amount of information
at one time. The easiest way to
deal with any program is to
break it down into simple, easy-
to-understand steps. Even a
complex program can be writ-
ten easily by breaking it down
into small modules. Here again,
block structure naturally orga-
nizes programs into small,
easily understood blocks.

2. Collision of Variables. As
a program grows in size, more
and more variables are used to
store data or carry information.
With more variables, it be-
comes easy for the pro-
grammer to lose track of what
each variable is doing in each
subroutine. Eventually, vari-
ables collide and you find that
your Star Trek program is going
out to lunch because the vari-
able that holds the Enterprise’s
shield power is being eaten by
the Klingon navigation routine.

In block-structured lan-
guages, the programmer has
complete control of each vari-
able. Block-structured lan-
guages allow each variable to
be defined either locally or

globally. This means that vari-
ables can be set up to be active
only inside certain routines or
active for all routines.

To make things clearer, let's
write a small program in XPLO.
Because of the structure of the
language, we can begin by de-
scribing the task in plain
English. The program we will
write is a simple guessing
game in which the computer
selects a number between 1
and 100 and we try to guess the
number. After each guess, the
program will tell us whether we
are high or low. Here are the
steps the program goes
through:

1. Think of a number.

2. Get a guess from the key-

board.

3. Test the guess against

the computer's number.

4. Do steps 2and 3 until the

guess is correct.

The steps translated into
XPLO are shown in Program A.
Notice that the program is al-
most word-for-word the same
as the step-by-step description
of the task. First we MAKEA-
NUMBER, and WHILE the
GUESSES are INCORRECT we
INPUT a GUESS and TEST the
GUESS. BEGINs and ENDs are
used to divide the program up
into logical blocks. This part of
the program has two logical
blocks, one inside the other.

Obviously, there must be
more to this program, since
XPLO doesn't yet know how to
make a number, input a guess
or test the guess. Each of these
operations is a subroutine to
the main program. In XPLO,
subroutines are called proce-
dures. We are now going to

‘PROCEDURE "

TESTGUESS §

"BEGIN’
Z1F 7 MUMBER=GUESS “ THEN’
"BEGIN’
TEXTCOs "CORRECT! 1") 5
TRY!=13
‘END’
‘ELSE”
“IF‘ NUMBER-<GUESS ‘THEN-
TEXTCOs " TOD HIGH")
ELSE‘ TEXTCOy*T00 LOW*)5
CRLF €O
TEND §
Program D.

write each procedure as a com-
plete program block (see Pro-
gram B).

This procedure generates a
random number and puts that
number in the variable NUM-
BER. Program C gets a number
from input device number zero
and stores it in the variable
GUESS. In XPLO, as many as
ten different input and output
devices can be called directly
from the program. This allows
XPLO to read and write data
directly to disks, printers, CRTs,
etc.

Program D is a bit more com-
plicated, but it is still easy to
understand. If the computer's
NUMBER is equal to our
GUESS, then we execute one
block of code; if they are not
equal, then we execute another
block. If the numbers are equal,
we tell the user that the guess
is correct; if they are not equal,
we test if the guess is high or
low and tell the user.

The Program

There are two new constructs
in the final version of the pro-
gram (see program listing).
CODE allows the programmer
to assign names to XPLO func-
tions. For example, the word
RANDOM calls the random
number function. The pro-
grammer need only use those
functions necessary to the task
and can assign names that add
clarity and readability to the
program.

INTEGER assigns a name
and memory space for each of
the variables. Because of the
way in which the variables have
been set up in this program,
each of the variables can be
used by any procedure. If we
had defined the variables in-

side a procedure block, the
variables would have been ac-
tive only within the procedure.

Block-structured programs
can be thought of as a series of
boxes. Each box has only one
entrance and only one exit. The
program enters at BEGIN and
exits through END. Each box
can contain sub-boxes, execut-
able statements or calls to pro-
cedures (see Fig. 1).

QOur program consists of four
boxes: three subroutines and a
main program box. Each block
is a simple, complete opera-
tion. Programs are built a brick
at a time from these elementary
blocks. Even the most compli-
cated programs, such as as-
semblers and compilers, can be
constructed from simple
blocks.

Notice that the main proce-
dure is the last block in the pro-
gram. Reading an XPLO pro-
gram starts at the bottom to get
the main sweep of the program
and works up to the details in
the subroutines.

MAKE NUMBER

INPUTGUESS

TESTGUESS

MAIN PROGRAM
WHILE 8O

Fig. 1.

Now we can go back and fill
in some of the details of the lan-
guage. One of the most impor-
tant qualities of a computer
language is the way in which it
deals with data. XPLO uses
three techniques for efficiently
dealing with data. These tech-
niques are scope, dynamic core
allocation and parameter
passing.

Scope

Scope defines the area in
which a variable is active. In
many languages, the user has
no control over the scope of a
variable's activity. For exam-
ple, in BASIC once a variable is
created, it remains active for
the entire program. In XPLO the
scope of a variable is controlled
by where the variable is de-
fined. Variables are active only
within their own block or within
procedures nested inside that
block.

In this way, some varizbles
can be active in only one or two
procedures, while others are
active for all procedures. It is
even possible to have several
different variables with the
same name and different areas
of activity. If more than one
variable with the same name is
active, the most local variable
has precedence.

Dynamic Core Allocation

Dynamic core allocation is a
logical extension of the idea of
scope. Whenever XPLO com-
pletes the execution of a sub-
routine block, certain variables
local to that block are no longer
needed by the program. When a
variable is no longer active,
XPLOreturns the unused space
to the user's memory pool for
use by other routines.

In contrast, variables created
in BASIC take up memory
space throughout a program'’s

INCORRECT {=0%

TEND

CRLF=9sKANDOM=1» INFUT=10» TEXT=127%

GUESS s NUMBER » INCORRECT » TRY 3

TEXT(O» "TOO LOW")

‘ConeE”
INTEGER”
"FROCEDURE © MARKEAMUMERER
"BEGINY
NUMEBER D =RANDOMC100) 5
TEND"F
TFROCEDURE " INFUTGUESSS
“REGIN”
GUES INFUT (0D 3
TEND G
FROCERURE © TESTGUESSS
‘BEGIN
“1F 7 NUMBRER=GUESS “THEN”
"HEGIN®
TEXT(Oy "CORRECT ! ") 3§
TRY =13
CEND
B .
IF" NUMERER<GUESS
TEXTCO»"TOD HIGH")
‘ELSE "
CRLF(O) ¢
END 5
‘BEGIN

Y=INCORRECT /D07
‘BEGIN'
TEXT(O, "GUESS: ")
INFUTGUESS §
TESTGUESS §
TENID R

Program listing.

"THEN’

25

execution. The variable space
in a BASIC program is always
the sum total of all of the vari-
ables used in the program.
XPLO programs use an abso-
lute minimum of variable
space.

Passing Parameters

Passing parameters is the
way in which one routine com-
municates data to another. In
many conventional languages,
the data is sent from one rou-
tine to another by placingitina
variable and calling the routine.
The programmer must know in
advance which variable names
are used by the receiving rou-
tine.

In XPLO, information being
sent to another routine is sim-
ply tacked on to the end of the
call. For example,

TEST(X,Y.Z);

calls a procedure named TEST
and sends the variables X, Y
and Z. When the call reaches
the procedure, the values of X,
Y and Z are placed into the first
three variable names defined in
that procedure. If the first three
variables defined in TEST are A,
B and C, then the value of X will
be passed to A; Y will go into B
and Z into C. This technique
makes each subroutine a clean
and completely independent
operation.

Booleans
The Boolean operators AND,

OR and NOT are available in
XPLO. The Booleans are set up
so that they operate upon in-
dividual bits. For example, the
statement “'X: = Y&4"” indicates
that Y is ANDed with the numer-
ical value 4, Since 4 is the bi-
nary number 0100, this opera-
tion masks off all bits except
bit three.

The ability to operate on in-
dividual bits gives XPLO the
flexibility to link directly with
machine-level operations. This
enables the programmer to
blast PROMs, read 110 ports
and operate joysticks directly
from the high-level language.

XPLO in XPLO

One of the most interesting
things about XPLO is that the
compiler is written in XPLO.
This means that the compiler
can compile itself and that new
features can be added to the
language by editing XPLO and
compiling the new compiler.
Thus each new version of the
language is brought to life by
the old version. Where did the
first version of the compiler
come from? The first version of
the compiler was written in
ALGOL.

Portability

The XPLO compiler trans-
lates the source program into
an intermediate language
called I12L. The I12L code is inter-
preted and executed in an 2L

interpreter written in machine
language. 12L is very close to
machine language. It contains
28 op codes that are easily im-
plemented in any machine lan-
guage. Thus, XPLO can be run
on any machine by writing the
relatively simple interpreter for
the particular CPU.

12L interpreters run about 2K
in length. Since all device-spe-
cific IO is contained within the
interpreter, the exact same
compiler can run on all ma-
chines. Once an interpreter is
written for a particular CPU, the
user need only load the com-
piler to have the complete
XPLO language running on his
system.

XPLO is ideally suited to
high-speed tasks such as real-
time graphics. Arcade-type
video games complete with
sound effects are easily gen-
erated in XPLO. Assemblers,
editors and operating systems
can also be written in XPLO.
XPLO could even be used to
father a new language in the
same way ALGOL fathered
XPLO. A compiler for the new
language could be written in
XPLO and then each new com-
piler would be written in the
new language.

Availability

XPLO was written specitical-
ly for microprocessor systems
by Peter Boyle. At the present
time, I2L interpreters exist for
the 6502, Z-80 and the PDP-10.

A complete program develop-
ment system is available for
Apple I, KIM-1 and TIM sys-
tems. The basic package is $45
for KIM and TIM versions and
$35 for the Apple Il version. A
detailed user's manual is also
available for $17.25. Packages
for other processors will be
available in the near future. The
packages operate in 16K to 32K
of memory depending on the
system. They include a com-
pact, versatile editor that allows
program creation and compila-
tion to be entirely core resident.

The basic package consists
of a memory image cassette or
paper tape of the interpreter,
compiler and editor. The user's
manual is a detailed, step-by-
step introduction to the lan-
guage. It contains over 60
pages of concise description
and example programs. It is
clearly written so thal even a
novice can master XPLO.

The Apple Il package con-
tains a complete set of func-
tions to drive the high and iow
resolution graphics, the game
paddles and the speaker. A
cross-referenced assembly list-
ing for the interpreter and edi-
tor is available as a separate
package.

KIM and TIM packages are
available from The 6502 Pro-
gram Exchange, 2920 Moana,
Reno NV 89509. The Apple Il
package is available from P. J.
R. Boyle, 1337 Adams, Denver
CO 80220.m

COMPUTER BOARDS
\‘ CPU WITH SERIAL PORT

t 8080A * * * §-100
A\ SINGLE BOARD
Now it's easy — with a CPU Board which
includes an on-board serial port. This 2 MHz
CPU Board talks directly to your terminal
by 20 ma current loop or RS-232. Baud rate
selectable from 110 to 9600.

ASSEMBLED AND TESTED ... ONLY - $195

\ AUDIO CASSETTE INTERFACE

*WITH 3 PARALLEL 1/0 PORTS
‘0 S-100 * * * SINGLE BOARD
Your best choice for mass storage. This
board includes 3 parallel 8 bit ports, a tape
motar control {(on-off) and a driver for ex
ternal data 1/0 monitor lamp. The 3 PIO
port common handshake signal lines are
independent of data lines,

ASSEMBLED AND TESTED ... ONLY - $195
OUR 20th YEAR OF ELECTRONIC EXCELLENCE

» N13
ucleus?

The BEST of

MIBRQ -

Volume 1

contains most of the articles from the
first year of

VIIlIC

Since back issues are no longer available,
this is the only way for you to obtain
this important material about the KIM,
APPLE, PET and other 6502 based
systems.

the 6502 journal.

“The BESTof MICRO Volume 1™
(Oct/Nov 1977 through Aug/Sep 1978)
$6.00 at your local computer store.
By mail: $7.00 surface, $10.00 air.

PO Box 3 » Chelmsford, Mass 01824 = 617/256- 3649
S $6.00 for six issues in U.S.A. Foreign,

461 Laboratory Road
Oak Ridge, TN 37830
6154824041

26

write for rates.

¥ Reader Service—see page 179

: PET and TRS-80 .

“Just LOAD and GO' Softwar

Pre.recorded Business Programs
USEFUL-PRACTICALLOW-COST!
NO PROGRAMMING EXPERIENCE REQUIRED"

@ GENERAL LEDGER For home businesses, soiu propri
10r3hips, small corporations —$19.95 plus $150 sAh, ra
quires 8K min. user memory

@ CHECKING ACCOUNT For personal bank accounts
$1395 plus §1 50 34N, requires BK min_ Jse: memory

@ RENT ACCOUNTS- Records on rental propertes - $1695
plus $150 s&n

@ LEGAL DIARY -For Atlomays (Clisnt Accounis] $16 95
plus $150 s&n

@ TRUST ACCOUNTS--Far Attoreys (Client Accounts)
$16.95 plus §150 380

Programs include 2 PerCom “Pilon 30" record cas-
settes—money back guarantee
HUSTLER Series 1 for PET(tm) are now available in
Britain and Europe through
FT
PO Box 9, Newbury Berks. RG13 1PB, England

Specity which computer is used.

All mail orders must be pre-paid

peate’ COMPUTERS ONE .- ca1
"‘qniﬂ" #306 Kahals Office Tower
““uoﬂ 4211 Waialae Ave

Hanolulu, HI %816 (808)737-2933

