The 6502 Gets
Microprogrammable

Instructions

“Every programmer is part of a col-
lective mind, and progress demands
that he educate and be educated by
others.” So states H T Gordon in a
letter published in the October 1977
issue of Dr Dobbs Journal of Com-
puter Calisthenics and Orthodontia.

In this article [shall attempt to
educate others by detailing a hard-
ware approach to adding sixty-four
user-defined instructions to the MOS
Technology 6502 microprocessor.
The 6502 device is used in the Apple
I, PET, KIM-1, SYM-1, Rockwell,
Ohio Scientific, and Atari microcom-
puters to name a few.

My own research concerning 6502
operation codes (ie: op codes) has
closely paralleled the efforts of Dr
Gordon (see his Technical Forum
article "The XF and X7 Instructions of
the MOS Technology 6502" Decem-
ber 1977 BYTE, page 72). Close in-
vestigation reveals that sixty-four of
the unimplemented op codes can be
detected by a simple circuit such as
that shown in figure 1. Unim-
plemented op codes are any of the op
codes with the two least significant
bits set to 1.

About the Author

Dennette A Harrod is a systems programmer
at Xerox Corp in the Computer Aided Drafting
(CAD) Department.

282 October 1980 © BYTE Publications Inc

Dennette A Harrod
POB 9475
Rochester NY 14604

A similar circuit, by C W Moser
(“Add a Trap Vector for Unimple-
mented Op Codes” Dr Dobbs Journal
of Computer Calisthenics and Ortho-
dontia January 1979, volume 4, issue
1, pages 32 thru 34) can be used to de-
tect all undefined op codes, but it re-
quires a programmable read-only
memory programmer and does not
appear to be as cost-effective in its use
of components. My circuit uses only
three integrated circuits.

Simple Hardware Appendage

The circuit in figure 1 is deceptively
simple. Its purpose is to cause the
6502 to receive an interrupt signal
whenever it attempts to execute one
of the sixty-four undefined op codes
in which the right nybble (ie: 4-bit
segment) has a hexadecimal value of
3, 7, B, or F. (The left nybble can
have any value.) These values corre-
spond to the situation where both of
the two least significant bits are high.

The software interrupt-service
routine then examines the instruction
and jumps to a routine to perform the
operation specified by that code. This
facility enables the user to add in-
structions not available on the 6502
as supplied. With certain added in-
structions, 16-bit arithmetic and
logical operations can be performed,
or string comparison and move oper-
ations may be implemented. These

added instructions are called virtual
operation codes, or v-codes.

When the 6502 is in the op-code-
fetch phase of the instruction cycle,
the normally low SYNC line goes
high. When the processor attempts to
fetch an op code which has both of
the two least significant bits set to 1,
the three-input NAND gate {IC2a,
74L510) output goes low. {(Note: one
of the NAND gates on the 74L510 is
wired as an inverter.) As a result, the
data-bus transceiver (IC4, 7415245} is
disabled, and the 6502 never receives
the op code. Instead, a buffer (IC3,
741.5244) is enabled, forcing all 0
values onto the data-bus lines by pull-
ing them to ground potential.

The net effect is that the 6502
thinks it fetched a BRK (break} in-
struction (hexadecimal 00). The BRK
instruction causes the microprocessor
to go through an interrupt sequence
under program control.

Three things happen when the 6502
executes a BRK instruction.

® The program counter (PC) is in-
cremented by 2 and is pushed onto
the stack (thus the processor treats
BRK as a two-byte instruction}.

® The BREAK bit (B) in the pro-
cessor status word {PSW) is set to
1, and the PSW is pushed onto the
stack.

® The 6502 transfers control to the

Number Type +5V GND
©1 6502 DATA BUS
12 74L810 14 7 i D0 DI D2 D3 D4 D5 D6 D7
IC3 7415244 20 10
tCa 7418245 20 10
icz
781510
11
12 . 12
13
2 |3 Ja s 6 |7 |8 |o
3 Al A2 A3 A4 A5 A6 A7 AB
1 I 5 19)=
s} ic4
J — il Co—tlnrw 7415245
1 |1 74L810 Bl B2 B3 B4 B5 B6 B7 BB
16 26 1 [17 |16 |15 |@ |13 |12 |11
21 e
411a2 1v2 8
511a3 wa 24
8 {1ae 1va |12
L PO an |2
131 2a2 ave |2
151 243 2v3 |5
17{ 2ns ava |2
Veed 33 |32 |31 {30 |29 |28 |27 |26
B DBO DBl DB2 DB3 DB4 DBS DBS DBY

Ic1
6502

Figure 1: Schematic diagram of a circuit that forces all lines on the data bus into a logic 0 (ie: low) condition whenever the 6502
attempts to fetch an operation code with the two least significant bits both set to 1. The low-order hexadecimal digit of such an op
code will be 3, 7, B, or F. When all data bus lines are forced low, the 6502 executes the BRK (break) instruction, for which the op code
is 00, The BRK instruction causes the processor to go through an interrupt sequence under program control.

address stored in the highest loca-
tions in memory (FFFE and FFFF),
the IRQ interrupt vector. This ad-
dress must indicate the starting
location of the interrupt-service
routine.

Software Action

The first thing the interrupt-service
routine must do is determine whether
it was invoked by a hardware or a
software interrupt. This is accom-
plished by examining the B bit in the
processor status word. Having deter-
mined that it was a software interrupt
{B=1), the program uses the stack
pointer as an index to get the return
address off of the stack. This is ac-
complished with the help of the TSX
instruction to transfer the stack point-
er to the X index register. Then it can
load the accumulator using the indi-
rect address mode and examine the
actual instruction that caused the
interrupt. Since the processor is not

fetching the op code for execution,
the circuit of figure 1 does not inter-
fere.

Once the interrupt-service routine
has established that it was not an
actual BRK instruction that caused
the interrupt, the v-code can be used
as an index into a table of addresses
of subroutines. There is one entry in
the table for each of the v-codes. The
subroutine performs the v-code
operation.

By using the byte following the
v-code as an additional instruction
byte to be decoded by the v-code exe-
cuting subroutine, each v-code can
act as a gateway to 256 more virtual
instructions.

Do not be intimidated by the pro-
spect of over 16,000 user-defined in-
structions. Instead, welcome the
ability to microprogram any or all of
your favorite machine architectures
into the wvirtual machine now
available.

Instruction Characteristics

At this point [should probably
clarify a poorly documented fact
about the 6502 BRK instruction. One
reason the processor treats BRK as a
2-byte instruction is that the BRK can
be followed by a 1-byte code to be in-
terpreted by the interrupt-service
routine, much the same way that a
supervisor call (SVC) instruction
works in the IBM 360/370 computers.
Using the circuit of figure 1 enables
you to save one byte of code by
eliminating the BRK instruction itself.
This allows the interrupt-service
routine and v-code subroutine to
access 2 bytes of user data (the v-code
and a data byte) without having to
adjust the return address on the stack.

Taking a tip from Steve Wozniak
(see “SWEET16: The 6502 Dream
Machine” November 1977 BYTE,
page 150), you can reserve 16 bytes
on page 0 of memory to serve as eight
16-bit registers, each of which may be

October 1980 @ BYTE Publications Inc 283

uged to contain either data or the ad-
dress of data. The byte following the
v-code can then be divided into two
4-bit nybbles to specify source and
destination registers for the virtual
operation. The low-order 3 bits of the
nybble contain the register number (0
thru 7), while the high bit indicates
direct or indirect mode. When the
high-order bit has a value of 0, it
means the register contains the data;
a value of 1 means the register con-
tains the address of the data.

If you wish, you can use 2 bytes for
source and destination information,

in which case 1 nybble of each byte
can be used as an index-pointer
(meaning it specifies which register to
use as an index register}, However,
this requires the user to assume
responsibility for fixing up the return
address from the interrupt. On the
other hand, if you use a real BRK in-
struction followed by a v-code and
one or more data-bytes, the return
address has to be manipulated
anyway.

Hardware Interrupt Vectors
If you are truly ambitious, a circuit

Listing 1: Example of an interrupt-service routine. It saves the contents of the 6502
registers on the stack, calls a subroutine (by JSR) to operate the interrupting device,
restores the registers, and finally returns to the interrupted task. Some instruction
mnemonics are from a macro-assembler of the author’s own design. For example, the
PSH X instruction mnemonic causes the macro-assembler to generate two machine in-

structions, TXA and PHA.

ABCD SRVRTN EQU
XX00 ORG

XX00 ENTRY EQU
XX00 48 PSH
XX0l BA 48 PSH
XX03 98 48 PSH
XX05 20 CD AB ISR
XX08 68 AB PUL
XX0A 68 AA PUL
XX0C 68 PUL
XX0D 40 RTI

XXOE END

$ABCD

$XX00
A ;SAVE REGISTERS

;CALL SERVICE ROUTINE
Y {RESTORE REGISTERS

;RETURN FROM INTERRUPT
ENTRY

Listing 2: An interrupt-service routine that uses the soft-coded vector technique of
subroutine calling. To call a subroutine, this routine places a return address on the 6502
stack, and then branches to the subroutine by executing a JMP instruction in the in-
direct addressing mode. The subroutine can return normally to this calling routine by
executing an RTS instruction. This procedure compensates for the inability of the 6502
processor to execute the JSR instruction using the indirect addressing mode.

YYOO ORG
YY00 SRVADR EQU
ABCD SRVRIN EQU
YYoe CD AB ADR
XX00 ORG
XX00 ENTRY EQU
XX00 48 PSH
XX01 8A 48 PSH
XX03 98 48 PSH
XX05 20 8B XX IRS
XX08 4C 00 ZZ IMP
XXOB IMPAT EQU
XX0B 6C 00 YY IMP
XXOE END
2200 ORG
2200 COMRTI EQU
7200 68 A8 PUL
7702 68 AA PUL
7204 68 PUL
205 40 RTI
XX06 END

28B4 Octaber 1980 © BYTE Publications Inc

$YY00
$ABCD
SRVRIN
$XX00
A ;SAVE REGISTERS
X
Y
JMPAT ;SIMULATE ISR @ADDR
COMRTI GOTO REGISTER RESTORE
@SRVADR ;GOTO SERVICE ROUTINE
ENTRY
$2200
. ;COMMON RTI ROUTINE
Y ‘RESTORE REGISTERS
X
A
:RETURN FROM INTERRUPT
COMRTI

based on one by Yogesh M Gupta
(“True Confessions: How I Relate to
KIM” August 1976 BYTE, page 44)
intended for the vectoring of hard-
ware interrupts, which the 6502
lacks, can be modified and added to
the circuit in figure 1 to provide hard-
ware vectoring of the software inter-
rupts, Gupta’s circuit generates vec-
tored addresses that are 4 bytes apart.
This is a compromise. All you really
need is 3 bytes to contain a JMP op
code and a 16-bit destination address,
but hardware-generated addresses are
most conveniently generated in
positive powers of 2.

1 suggest that the addresses from
such a device be 16 bytes apart, so
that the service routines can be
entered with three assumptions:

® The routine was called by a jump
to subroutine (JSR) instruction,
which is not strictly true, but this
will be clarified in a moment.

® All of the 6502 registers are stored
on the stack, directly beneath the
return address, so that any register
may be used with impunity.

® The routine can exit from any-
where by a return from subroutine
(RTS) instruction, and all registers
will be restored to the pre-interrupt
state before a return from inter-
rupt (RTI) instruction is executed.

Interrupt Service Routines

The program of listing 1 is an
example of how to service an inter-
rupt. It first saves the contents of the
6502 registers on the stack. Next, it
calls a subroutine to service the inter-
rupt, restores the registers, and final-
ly returns to the interrupted task. My
example is for a 6502, but the instruc-
tion mnemonics are for a macro-
assembler of my own design; for
example, the push X index register on
stack (PUSH X) mnemonic generates
two instructions: transfer X to
register A (TXA) and push A onto
stack (PHA).

The program in listing 2 also saves
the registers on the stack, but instead
of calling a subroutine in the normal
fashion, this program places a return
address on the stack. It then executes
a jump (JMP) instruction in the in-
direct addressing mode to reach the
subroutine. This means that the pro-
gram in listing 2 will look in a loca-
tion in memory to find the address of
the subroutine to jump to. The impli-

cit assumption is made that the
subroutine will exit with an RTS in-
struction. Thus, the subroutine thinks
it was entered by a JSR instruction,
when actually, the way there was
wormed by a circuitous path.

This method for simulating use of
the JSR instruction in indirect mode
was developed by Tom Pittman, and
I thank him for suggesting this soft-
coded vector technique.

Benefits of Indirect-Mode Entry

There are several good reasons for
entering an interrupt-service routine
(or any monitor-service routine, for
that matter) with a JMP indirect
rather than by a JSR instruction. The
first is that the choice of routine to
service a given interrupt can be easily
changed. Instead of being forced to
use a particular routine in response to
a particular interrupt, you need alter
only the address value contained in
the JMP-indirect vector location,
which can be located in program-
mable memory. Thus, a string of
characters to any of several different
peripheral devices can be output
using the same microcoded v-code,
Simply place the starting address of
the desired device-driver routine in
the appropriate vector location.

Another reason is that if the loca-
tions of service routines are to be
changed (perhaps because of addi-
tions that make a routine too big for
the space it used to occupy), only the
entry in the vector address table need
be updated. The vector address table
can be stored in an inexpensive
256-byte programmable read-only
memory. Should the need arise, it is
much easier to replace the 256-byte
device containing the table than to
find all references to a routine in a
2,048-byte programmable read-only
memory, change them, and burn a
new 2 K-byte device.

The reason for having each routine
utilize a common return sequence is
that the user may desire to have
classes of routines which all need dif-
ferent sets of common operations
done before returning to the calling
routine. Such an operation could be
to transfer the saved register values
from the stack into the registers
before returning. It may also be used
to check if completion of an interrupt
service (or v-code instruction) should
reset a timer/counter or initiate some

other action before truly returning to
the pre-interrupt state.

Other Ideas

A truly innovative approach, and
one that saves software overhead at
the cost of more circuitry, is to latch
the v-code, using the same circuit that
detects the v-code, so that when the
6502 attempts to fetch the IRQ vector
address from hexadecimal locations
FFFE and FFFF, it gets an address that
has been stored in a 128 by 8 pro-
grammable read-only memory. This
approach, while limited in its flexi-
bility, is ideally suited to “black box”
or turnkey systems, where it is
assumed that the end user has no
desire to know (let alone alter) the in-
ternal operations of the machine.

1 have set forth these ideas to
enlighten my fellow computer ex-
perimenters. [owe a debt to the
authors of the other articles 1 have
mentioned; without their work, I
could not have completely developed
the ideas discussed here. I assume that
many of you will improve on my
work. I merely ask that you write to
me and keep me informed of your
progress.®

NO FRILLS!
NO GIMMICKS!
JUST GREAT

DISCOUNTS

MAIL ORDER ONLY

ATARI 800

Personal Computer

System $79900

NORTHSTAR

Horizon 1132K 234900
HorizonllQuad279900
Horizon 164K 299900
Horizon Quad 64K . 339900

TELEVIDEO
912, 74900
90, ...,

HAZELTINE
1420 ..

122900

OKIDATA

Microline 8069900

References

1. Gordon, H T, "*Decoding 650X Op Codes"’
Or Dobbs Journal of Computer
Calisthenics and Orthodontia, Volume 2,
Issue 7, August 1977, pages 20 thru 22.

2. Gordon, H T, "Decoding Efficiency and
Speed Or Dobbs Journal, Volume 3,
Issue 2, February 1978, pages 5 thru 7.

3. Gordon, H T, "Software and Correction”
Dr Dobbs Journal, Volume 2, Issue 9,
October 1977, pages 42 thru 44.

4. Gordon, H T, "“Use of NOP Codes as Exe-
cutable Labels" Or Dobbs Journal,
Volume 3, Issue 8, September 1978, page
29.

5. Gordon, HT, "The XF and X7 Instructions
of the MOS Technology 6502, BYTE,
Volume 2, Number 12, December 1977,
page 72.

6. Gupta, Yogesh M, “True Confessions:
How | Relate to KIM"" BYTE, Volume 1,
Number 12, August 1976, pages 44 thru
48,

7. MCS6500 Microcomputer Family Pro-
gramming Manual, MOS Technology, Nor-
ristown PA, 1976, pages 144 thru 147,
pages 87 thru 92,

8. Moser, C W, "Add a Trap Vector for
Unimplemented Op Codes' Or Dobbs
Journal, Volume 4, Issue 1, January 1979,
pages 32 thru 34.

9. Wozniak, Stephen, “SWEET16: The 6502
Dream Machine' BYTE, Volume 2,
Number 11, November 1977, pages 150
thru 159.

SOROC Technology
120.... ..69900
10140 _. 99900

CROMEMCO

System3 569500
ZeH ... 799500

INTERTEC

Superbrain 32K 249500
Superbrain64K 279500

DECwriter IV

TEXAS INSTRUMENT

810 Multi Copy
Impact Printer 149900
Wa'll meet or beat any advertised prides!
Most items in stock lor immediate detivery
Factory seaied canons Full manulaciurer s guaranieg

DATA DISCOUNT CENTER

Box 100 135-53 Northern Bivd ., Flushing, N.Y. 11354
Visa ¢ Master Chargee N ¥ S tesidents aud Sales Tax
ShippingF OB N ¥

Phone Orders Call 212-465-6608

Oclober 1980 © BYTE Publications Inc ~ 2B5

