An Answer/Originate Modem

Ronald G Parsons 9001 Laurel Grove Dr Austin TX 78758

One of the few and nearly universal methods of exchanging data between diverse microprocessors is by means of data transmission over switched telephone facilities. Most other means of data exchange such as floppy disk or cassette tape are specific to one or a few microcomputers. But data transmission over phone lines is nearly independent of the microprocessors involved and the method or speed of the mass data storage used by either processor.

To transmit data at reasonable speeds over a telephone line, a modem is used to convert digital signals to an analog form for transmission over the telephone network. "Modem" is a hybrid of the words modulator and demodulator. A modem must be used because the telephone network was designed for analog voice transmission and not for digital data. The telephone network has an audio bandwidth of approximately 3000 Hz, so the modem must condition the signals to fit within this bandwidth.

Since communication usually involves data transmission in both directions, a convention has been established so that two sets of data traveling in opposite directions do not interfere with each other. The Bell 103 type of modem uses designated audio frequencies for binary 0 and 1. One of the pair of communicating entities is arbitrarily designated as the originating end and the other the answering end. As the words imply, the originating end usually originates the telephone call and the answering end usually answers, but this is not necessary. All that is necessary is for one of the pair to agree to call itself the answerer and the other the originator.

The originating end transmits a binary 0 (sometimes called a space) as

The telephone network was designed for analog voice transmission, not digital data.

a tone of 1070 Hz and a binary 1 (sometimes called a mark) as a tone of 1270 Hz. The originating end also receives spaces and marks as tones of 2025 Hz and 2225 Hz, respectively. The answering end has the transmit and receive frequencies interchanged. The Bell 103 modem translates serial data from voltage levels to these audio tones capable of being transmitted over standard telephone lines at a data rate from 0 to 300 bps.

A data bit is usually translated first by a terminal or microcomputer to standard voltage levels defined by an Electronic Industries Association (EIA) standard known as RS-232C. This standard defines a space as a voltage level between +5 V and +15 V and a mark as a voltage level between -5 V and -15 V. Voltages between -5 V and +5 V have undefined meaning. These signals are capable of being transmitted over

wire cable for distances of several hundred feet at speeds up to several thousand bits per second.

The modem described in this article uses RS-232C levels between the processor or terminal and the telephone line; it connects to the telephone line through a device called a data access arrangement (DAA). This device has two common types: the CBS data coupler, which uses RS-232C levels to interface with the modem; and the simpler CBT data coupler, which uses contact closures (ie: switches or relavs) for the modem interface. The CBT type is used in this design for simplicity. Motorola's Application Note AN-747 entitled "Low-Speed-Modem System Design using the MC6860" discusses the interface to either coupler.

The most complicated and troublesome parts of a modem are usually the filters used to separate and purify the transmitted and received audio tones. It is not uncommon for filters for the transmit and receive frequencies each to contain several operational amplifiers and many precision resistors and capacitors. The filters used in this design, however, are available as "miniModem" building blocks from Cermetek Microelectronics, 660 National Ave, Mountain View CA 94043. They require no adjustments and few external com-

Two filters are used. One, the CH1262, is a switchable, dual-channel, transmit filter and line hybrid, The center frequency of the filter is chosen to be 1170 Hz or 2125 Hz by changing the DC voltage on the channel-select pins. The other, the CH1267, is a switchable, dual-channel, receive filter and limiter. It is necessary for us to be able to switch the center frequencies of the filters so the modem can be used as an originate or an answer modem.

The functions of modulation, demodulation, and control are performed by a Motorola MC6860 metal-oxide semiconductor/large-scale integration (MOS/LSI) modem chip. After conversion to transistor-

transistor logic (TTL) levels, the modulator section of the 6860 converts serial digital data into analog frequencies. It does this by digitally synthesizing a sine wave at one of the space and mark frequencies. This signal is filtered and amplified by the transmit filter. The demodulator section of the 6860 detects the presence of a mark or space frequency and presents a digital 0 or 1 output to the terminal or computer. The receivesignal input to the 6860 must be a 50% duty-cycle, TTL signal that is filtered and limited (ie: amplified and

clipped).

Several supervisory control functions are provided by the 6860. The 6860 places the modem into answer mode (if a ring indication is detected) or into originate mode (if a handsetoff-hook condition is detected). If the data terminal is ready, the detection of the ring creates an answer phone signal to the DAA. A mode-signal output from the 6860 is used to control the switchable filters to ensure that the correct set of signal pairs are used. A clear-to-send (CTS) signal is also created to indicate to the terminal or computer the establishment of a communication link.

Constructing the Modem

Figure 1 shows the schematic diagram for the modem. The signals from the terminal or computer to and from the modem are first converted from RS-232C levels to TTL levels by the 1488 and 1489A integrated circuits. The request-to-send (RTS) signal is not used by the 6860, but is used by the support circuitry to control pulse dialing and setting the answer/originate mode. The 1458 dual operational amplifier is used to convert the TTL-level mode signal, as possibly modified by the test/normal switch, to a +12 V or -12 V signal sent to switch the filters between originate and answer. The 301A operational amplifier is used to limit the received signal. The 3.9 V zener diode causes the output of the operational amplifier to be TTL compatible and the TTL gate helps square up the limited signal. The 200 k-ohm variable resistor on the CH1262 is used to set the transmit level to 0 dBm (ie: 1 mW at 600 ohms or 0.7 V RMS).

If the modem is powered up with the ready-to-send line active (ie: at +5 V to +12 V), the modem is in originate mode and the answer-phone signal from the 6860 commands the DAA telephone interface to take the phone line off hook. The telephone may then be dialed by pulsing the ready-to-send line off and on under software control. An assembly-language program for an 8080 to do automatic dialing is shown in listing

If the modem is powered up and the ready-to-send line is off (ie: -5 V to -12 V), the modem will wait for a ring indication from the DAA

Text continued on page 34

Eliminate The Data Comm Hassles of Outmoded "DUMB" Modems

BIZCOMP's Intelligent Modem is new. Brand new. It teams a Beii 103-type "dumb" modem with a custom BIZ-080 microcomputer in an attractive desk-top enclosure. RESULT: Incredibly simple data comm for professional users. No more mad dash to get a handset into coupler muffs before being disconnected by the remote. No more exclusion-key telephone needed to do the dialing. No more outboard coupler boxes. And for computer sites, communications software written in high level language like BASIC or COBOL. How's that for simplicity!

The 1030 gives you automatic dial, automatic answer and, unique to the industry, automatic REPEAT dial. The top-of-the-line 1031 adds command-selectable tone or dial pulse dialing for TWX net applications and self-test for ensuring full functionality. Both models are FCC registered for direct connection and feature commates from 110, 134.5, 150, 200 to 300 baud. BIZCOMP's innovative Code-Multiplexed Design enables complete control using a simple 3-wire RS-232 interface. Don't burden your customers with data comm hassles. Install a BIZCOMP Intelligent Modem today.

BIZCOMP Communications... Why not start with the best?

BIZCOMP

P.O. Box 7498 • Menlo Park CA 94025 • 415/854-5434

Suggested prices from \$395.00

Patent Pending

Figure 1: Schematic diagram of the answer/ originate modem. IC1 and IC2 convert the modem RS-232C signal to a digital transistortransistor logic (TTL) level and back. IC3 is the Motorola 6860 modem integrated circuit. IC10 and IC11 are the transmit and receive filters, respectively, used to interface the modem and the telephone line.

Listing 1: DIAL routine to perform automatic dialing by the computer. This listing, which is designed to run as part of a CP/M-based 8080 or Z80 system, performs automatic dialing of a telephone number with the command DIAL <phone number>. If a modem answers, this program causes its computer to act as a "dumb" terminal for the computer connected to the answering modem.

```
; Auto-dial program ; Syntax: DIAL (phone-number)[: <signon-character>] ; <signon-character> sent when CTS is asserted.
                    BDOS
0005 =
E00C =
                               EQU
EQU
                                                     ;BDOS entry point
                                                     Terminal simulation subroutine serial CTS
                    TERM
                                          OEOOCH
                               EQU
                    SCTS
0020 =
                                          32
16
                               EQU
0010 =
                     SRTS
00F8 =
                    SERST
                               EQU
                                          OF8H
                                                     ;serial status port
0100
                               ORG
                                          100H
0100 31FFCB
0103 CDA101
0106 0E64
                                          SP,0CBFFH
OFFHOOK
                    START:
                               LXI
                               CALL
                                          C,100
DELAY
                               MVI
                                                     ;wait 2 seconds for dialtone
0108 CD5C01
                               CALL
010B 0E64
                               MVI
                                          C,100
010D CD5C01
                               CALL
                                          DÉLAY
                                          н,81н
0110 218100
                               LXI
                                                     ;use default buffer area
0113 7E
0114 23
                    NEXT:
                               MOV
                                          A,M
H
                                                     get digit
                               INX
0115 B7
0116 CA3301
                               ORA
                               JZ
                                          TERMINAL
                                          ;; ;signon-character?
0119 FE3A
011B CA2901
                               CPI
                               JZ
011E F5
                               PUSH
                                          PSW
011F CD5301
                               CALL
                                          SOUT
                                                     ;echo number
0122 F1
                               POP
                                          PSW
0123 CD6A01
0126 C31301
                                          DIGIT
                               CALL
                               JMP
                                          NEXT
                    GETSIGNON:
0129 7E
                               MOV
                                          A,M
012A B7
                               ORA
012B C23001
                                          NOTCR
012E 3E0D
                               MVI
                                          A,13
                                                     ;CR if character zero
                    NOTCR:
0130 32AC01
                               STA
                                          SIGNON
                    TERMINAL:
0133 DBF8
0135 E620
                               IN
                                          SERST
                               ANI
                                          SCTS
                                                     ;wait for clear-to-send;set I/O parameters for serial port
0137 C23301
013A CD4A01
                               JNZ
                                          TERMINAL
                               CALL
                                          SETIO
013D 3AAC01
                               LDA
                                          SIGNON
0140 B7
0141 C45301
0144 CD0CE0
0147 C34401
                               ORA
                               CNZ
                                          SOUT
                    TRANS:
                               CALL
                                          TERM
                               JMP
                                          TRANS
014A 3E01
                    SETIO:
                               MVI
                                          A,1
0C806H
0C807H
                                                     ;set Sol/SOLOS I/O parameters serial
c806 =
                               EQU
EQU
                    IPORT:
C806 = C807 = 014C 3206C8 014F 3207C8 0152 C9
                    OPORT:
                               STA
                                          IPORT
                               STA
                                          OPORT
                               RET
```

Listing 1 continued on page 32

```
SOUT:
                               MOV
                                                    ;write character to console
0153 5F
                                         E,A
                                         C,2
H
0154 0E02
                               MVI
0156 E5
0157 CD0500
015A E1
015B C9
                               PUSH
                                         BDOS
                               CALL
                               POP
                                         Н
                               RET
                    DELAY: LXI D,852 ; .01 times (C) seconds ; Adjust DE for different clock periods
015C 115403
015F 0D
0160 F8
                               DCR
                                         C
                               RM
0161 1B
0162 7A
0163 B3
0164 C26101
                    DELA1:
                               DCX
                                         D
                                         A,D
                               MOV
                               ORA
                                         DELAI
                               JNZ
0167 C35C01
                               JMP
                                         DELAY
                                                    ;Call with ASCII digit in A ;skip '-'
016A FE2D
016C C8
                    DIGIT:
                               CPI
                                         1_1
                               RZ
016D FE20
016F C8
                               CPI
                                         . .
                               RZ
                                                    ;skip blanks
                                         101
0170 FE30
                               CPI
0170 FE30
0172 DAA601
0175 FE3A
0177 D2A601
017A E60F
017C C28101
                               JC
                                         DIGERR
                               CPI
                                                    ;not an ASCII digit
                               JNC
                                         DIGERR
                                                    subtract ASCII Bias
                                         OFH
                               ANI
                               JNZ
                                         NOTZERO
017F C60A
                               ADI
                                         10
                                                    ;zero is ten
                    NOTZERO:
                              MOV B,A
;each digit is onhook for 60 ms and offhook for 40 ms
MVI C,6
CALL ONHOOK
0181 47
                    PULSE:
0182 0E06
0184 CD9C01
0187 CD5C01
                               CALL
                                         DELAY
018A 0E04
                               MVI
                                         C,4
018C CDA101
                               CALL
                                         OFFHOOK
018F CD5C01
                               CALL
                                         DELAY
0192 05
0193 C28201
0196 0E64
                               DCR
                               JNZ
                                         PULSE
                               MVI
                                         C,100
DELAY
0198 CD5C01
                               CALL
                                                    ;inter-digit delay
019B C9
                               RET
019C 3E00
019E D3F8
                    ONHOOK: MVI
                                         A,0
SERST
                                                    ;put line on-hook
                               OUT
01A0 C9
                               RET
                    offhook:
                                                    ;take line off-hook
                               MVI
01A1 3E10
01A3 D3F8
                                         A, SRTS
                               OUT
                                         SERST
01A5 C9
                               RET
                    DIGERR:
                                         ;not a digit - go on-hook and reboot \mathtt{ONHOOK}
01A6 CD9C01
                               CALL
01A9 C30000
                               JMP
                                                    ;boot
                                         0
                    ŚIGNON DB
01AC 00
                                         0
                                                    ;store for sign-on character
```


Figure 2: Schematic diagram of the optional power supply. This regulated power supply can be eliminated if the required voltages are available from a nearby computer or terminal.

Text continued from page 26: telephone interface. On receipt of the ring, the 6860 will bring the answerphone line high and begin sending the transmit carrier, which is at 2225 Hz.

If the modem on the other end of the

line responds with its carrier, which is at 1270 Hz, the 6860 will turn clear-to-send on about a half second later. The terminal or computer can detect this and initiate whatever procedure is necessary to communicate with the

originator.

Figure 1 shows four light-emitting diodes (LEDs) that can be used by the operator to monitor the operation of the modem. The functions displayed are power-on, clear-to-send, mode (with the LED on in answer mode), and off-hook.

A power-supply schematic is shown in figure 2; it supplies +5 V, +12 V, and -12 V, regulated. These voltages may be obtained from the terminal or computer if they are available. I chose to make the modem an independent device: it was wirewrapped on a small perforated board and enclosed in a cabinet.

Modem Software

Listing 1 shows a CP/M-based, assembly-language program for an 8080 processor to perform automatic dialing to an answer modem and to initiate communication. The CP/M syntax of the program is:

DIAL < phone number >

or

DIAL <phone number>: <logon character>

The phone number may contain blanks and hyphens that are ignored. If an invalid character is found in the phone number, the program hangs up the telephone and rebootstraps

Text continued on page 40

Listing 2: Remote-access computer routine. This is the software needed by the computer that is connected to the answering modem of figure 1. This routine allows its computer to be controlled by a remote terminal, with the connections made by two modems and a telephone line. This routine runs on a CP/M system.

```
; Remote Access to CP/M
                        using a Sol and SOLOS
                   IOCODE
                                                  ;Temporary storage for I/O code
BFE0 =
                             EQU
                                       OBFEOH
                                                  ;Write to logical output unit (A);Read logical input unit (A);User defined input routine address
                             EQU
EQU
                   AOUT
                                       OCOICH
C01C = C022 =
                   AINP
                                       OC055H
C800 =
                             EQU
                                       OC800H
                   UIPRT
                                                  User defined output routine address
C802 =
                   UOPRT
                             EQU
                                       OC802H
                                                  Standard input unit number
C806 =
                   TPORT
                             EQU
                                       ос806н
                                                  ;Standard output unit number
C807 =
                   OPORT
                             EQU
                                       OC807H
00F8 =
                   SERST
                             EQU
                                        OF8H
                                                  ;Serial status port
00D4 =
                   DCCMD
                             EQU
                                        OD4H
                                                  Tarbell command port
0100
                             ORG
                                       100H
0100 31FFCB
0103 3E00
0105 D3F8
0107 3E06
0109 D3D4
                                       SP,0CBFFH
                   START
                             LXI
                             MVI
                                        SERST
                             OUT
                                                  ;set modem for answer - RTS off
                             MVI
                                        A.6
                                                  ;turn disk motor off
                             OUT
                                        DCCMD
010B DBF8
                   NOTCTS
                                        SERST
                                                  ;CTS?
                             IN
010D E620
                                                  ;wait for modem to answer and get response
                              ANI
                                        20H
010F C20B01
                             JNZ
                                        NOTCTS
                                                  ;no
0112 3E05
0114 D3D4
                                                  turn disk motor on
                             MVI
                                       A,5
DCCMD
                             OUT
0114 D3D4
0116 CD4001
0119 3E03
                             CALL
                                        DELAY
                                                  ;wait one second
;set up SOLOS for
; user defined I/O routines
                             MVI
                                        Α,3
011B 3206C8
011E 3207C8
0121 21E0BF
                             STA
                                        IPORT
                             STA
                                        OPORT
                             LXI
                                        H, IOCODE
                                                            store user defined I/O addresses
0124 2202C8
0127 21EBBF
                              SHLD
                                        UOPRT
                             LXI
                                        H.IOCODE+XIPRT-XOPRT
012A 2200C8
                             SHLD
                                        UÍPRT
                   ; Transfer I/O
                                      code to IOCODE
                                       H, IOCODE
C, XEND-XOPRT
012D 21E0BF
                             LXI
0130 OE11
                             MVI
0132 114A01
                                       D, XOPRT
                             LXI
                   TRANLOOP:
                             LDAX
0135
                                       D
0136 77
                             MOV
                                       M,A
0137 OD
                                        C
                             DCR
0138 23
                                       H
                             INX
0139 13
013A C23501
                             INX
                                       D
                                        TRANLOOP
                             JNZ
013D C30000
                             JMP
                                        0
                                                  :boot
                   DELAY
                             EQU
0140 =
0140 110000
0143 1B
0144 7A
                                       Ď,0
                             LXI
                   DLOP1
                             DCX
                                        D
                              MOV
                                        A,D
0145 B3
0146 C24301
                             ORA
                                        DLOP1
                             JNZ
0149 C9
                             RET
                   Relocatable user defined I/O routines
                    Output routine - output to serial and screen
014A 3E01
014C CD1CC0
                             MVI
                                       A,1
AOUT
                   XOPRT
                             CALL
                                                  ; put on serial
014F 3E00
                                       A,0
                             MVI
                                                                                 Listing 2 continued on page 38
```

```
Listing 2 continued:
                                        AOUT
0151 CD1CC0
                              CALL
                                                  ;put on screen
0154 C9
                             RET
                   ;Input routine XIPRT MVI
                                       - input from serial port
0155 3E01
0157 CD22C0
                                       A,1
AINP
                              CALL
                                                  ;get serial
015A C9
                              RET
                   XEND:
015B 00
                              DB
                                        0
                   ;
```

Listing 3: Remote-user routine. This routine allows a remote user to communicate with the operator of the host computer tied to the answering modern.

```
; Write;
Syntax: W:
ORG
                  ; Write to operator
                              WTO
                                   (message text)
0100
                                      100H
0100 210000
                            LXI
                                      H,0
0103 2B
0104 7D
                  BELOOP:
                                      H
                            MOV
                                      A,L
0105 B4
0106 D3FC
                            ORA
                                      H
                            OUT
                                      OFCH
                                                ;sound alarm port
0108 C20301
                            JNZ
                                     BELOOP
010B C9
                            RET
                                                ;return to CP/M
                  ;
```

Listing 4: Remote-user routine. This routine allows a remote user to communicate with the host computer's operator; it also allows the operator to send a reply to the remote terminal.

```
; Write to operator with reply ;Syntax: WTOR (message text)
0100
                             ORG
                                       100H
                   SOUT
C019 =
C01C =
                             EQU
                                       осо19н
                   AOUT
                             EQU
                                       OCO1 CH
C022 =
                   AINP
                             EQU
                                       OC022H
0100 210000
                   START:
                             LXI
                                       H,0
                   BELLOOP:
0103 2B
0104 7D
                             DCX
                                       H
                             MOV
                                       A,L
0105 B4
0106 D3FC
                             ORA
                                       OFCH
                             OUT
                                                 ;sound alarm port
                                       BELLOOP
0108 C20301
                             JNZ
                   REPLOOP:
010B 3E00
010D CD22C0
                             MVI
                                       A,O
AINP
                                                 ;get keyboard character
                             CALL
                                       REPLOOP
0110 CA0B01
                             JZ
0113 FEOD
0115 C8
0116 47
                             CPI
                                                 ;done?
                                       13
                                                 ;return to CP/M
                             RZ
                             MOV
                                       B,A
SOUT
0117 CD19C0
                             CALL
                                                 ;send to standard output port
                                                    may be user defined port
                                                     such as serial and display
                             JMP
                                       REPLOOP
011A C30B01
                   ;
```

ENTREPRENEURS MORE THAN EVER IN THE MICRO-COMPUTER INDUSTRY,

The shortage of knowledgeable dealers/distributors is the #1 problem of microcomputer manufacturers. Over 300 new systems houses will go into business this year, but the number falls short of the 1200 needed. It is estimated that the nationwide shortage of consultants will be over 3000 by 1981. The HOW TO manuals by Essex Publishing are your best guide to start participating in the continued microcomputer boom.

HOW TO START YOUR OWN SYSTEMS HOUSE 6th edition, March 1980

bit edition, March 1990
Written by the founder of a successful systems house, this factfilled 220-page manual covers virtually all aspects of starting and
operating a small systems company. It is abundant with useful,
real-life samples: contracts, proposals, agreements and a complete
business plan are included in full, and may be used immediately by

Proven, field-tested solutions to the many problems facing the

small systems house are presented.

From the contents:

New Generation of Systems Houses • The SBC Marketplace • Marketing Strategies • Vertical Markets & IAPs • Competetive Position/Plans of Major Vendors • Market Segment Selection & Evaluation • Selection of Equipment & Manufacturer • Make or Buy Decision • Becoming a Distributor • Getting Your Advertising Dollar's Worth • Your Salesmen: Where to Find Them • Product Pricing • The Selling Cycle • Handling the 12 Most Frequent Objections Ralsed by Prospects • Financing for the Customer • Leasing • Questiona You Will Have to Answer Before the Prospect Buys • Producing the System • Installation, Accapitance, Collection • Producing the System • Installation, Accapitance, Collection • Now? • How to Write a Good Business Plan • Ralsing Capital

HOW TO BECOME A SUCCESSFUL COMPUTER CONSULTANT

by Lesile Nelson, May 1980 Independent consultants are becoming a vitally important factor in the microcomputer field, filling the gap between the computer vendors and commercial/industrial users. The rewards of the consultant can be high: freedom, more satisfying work and doubled or tripled income. HOW TO BECOME A SUCCESSFUL COMPUTER CONSULTANT provides comprehensive background information and step-by-step directions for those interested to explore this lucrative field:

this lucrative field:

• Established consulting markets • Howto get started • Itemized start-up costs • Are you qualified? • Beginning on a part-time basis • The Marketing Kit • Should you advertise? • Five marketing tips • Getting free publicity! How much to charge • When do you need a contract? • Sample proposals • Which jobs should be declined • Future markets • The ways to real big money • Avoiding the legal sultants • How others did it: real-life sample cases • and much more.

FREE-LANCE SOFTWARE MARKETING BJ. KORITES KERN PUBLICATIONS FREE-LANCE SOFTWARE MARKETING 3rd edition, June 1980

Writing and selling computer programs as an independent is a business where * you can get started quickly, with little capital investment * you can do it full time or part time * the potential profits are almost limitless. Since the demand for computer software of all kinds is growing at an explosive rate, the conditions for the small entrepreneur are outstanding.

for the small entrepreneur are outstanding.

This manual will show you how to sell your own computer programs using these proven techniques: • direct to Industries • through consulting firms • through manufacturers of computer hardware • in book form • mail order • through computer stores. It will show you how to profitably sell and license all types of software ranging from sophisticated analytical programs selling for thousands of dollars, down to simple accounting routines and games for personal computers.

The book will guide you step by step through the process of marketing, advertising, negotiating a contract, installing software, training users and providing maintenance and support. It also contains sample software cont

285 Bloomfield Order books b pays 4th class	shipping. For rush	twell, N.J. 07006 heck, money order	(U.S.\$), VISA or Master (add \$2.50 per book in USA sales tax.	
□ No. 10	☐ No. 16	□ NO. 32	☐ Check enclosed	□ Credit card
Name				
Address				
Oity			State	Zip ———
Card#				Exp

Text continued from page 34:

CP/M. If a colon follows the phone number, the next character is sent in ASCII form to the answering modem after the clear-to-send signal is received from the answering modem. Such a logon character is often required by timesharing services. After communication is established and any logon character is sent, the program calls a terminal-simulation subroutine (TERM) that will listen for a character which was the serial line, display it on the CP/M display, and send a character of input to the CP/M console. The serial status port and bit configuration is that of a Processor Technology Sol. The subroutine SETIO must configure CP/M to send output to the serial port and receive input from the serial port. The subroutine shown is also for the Sol.

Listing 2 shows a program that will configure the operating system to be remotely accessed. The program, after starting, will wait for the telephone to ring and the modem to answer. If the caller is an originating modem, the program will configure CP/M to use the terminal on the other end of the telephone line as the display console. All data output to the remote terminal and input to CP/M from the remote terminal is echoed to the local display.

Listings 3 and 4 show small programs that can be used by the remote user to communicate with the local operator. The programs can be used only to send a message or to send a message and get a reply from the local operator. These programs are thus named Write To Operator (WTO) and Write To Operator and Reply (WTOR).

Conclusion

Once the modem is constructed and tested, a protocol is still needed to establish two-way communications between processors. Commercial timesharing services set this protocol for their customers. Personal computer users do not have a standard file and message exchange pro-tocol, but groups such as PCNET in the San Francisco Bay area (280 Polaris Ave, Mountain View CA 94303) are working on the problem. The PCNET protocol is based on the use of modems similar to the type described in this article.