Adding a Virtual Tape Loop

Tom O'Haver

Dept of Chemistry
University of Maryland
College Park MD 20742

166 June 1978 BYTL Publicatens Ing

Audio Processing

with a Microprocessor

There is a lot of talk about digital audio
processing, but talk is not the same as
practical action. As the prices of micro-
processor systems and interface devices
continue to drop, such applications are sure
to become quite common, even among
amateurs. This article describes a few of the
possibilities of the use of a small low cost
microprocessor system for digital processing
of audio signals. The effects described in-
volve echo, reverb, fuzz, time delay, phase
phlanging, mono-to-enhanced-stereo conver-
sion, and frequency multiplication. These
effects could also be quite useful for the
experimentally inclined audio enthusiast or
music group.

Hardware Requirements

To run the programs given here, you will
need a 6502 (or equivalent) processor with
from 1 K to 5 K bytes of programmable
memory, an 8 bit input port connccted to
a fast 8 bit analog to digital converter
(ADC), and a latched 8 bit output port
connected to an 8 bit digital to analog con-
verter (DAC). An additional output port and
digital to analog converter are required for
stereo applications. The basic hookup for
a simple monaural system is shown in figure
1. The signal from the preamp is amplified,
low pass filtered, converted to digital by the
analog to digital converter, processed in the
microcomputer, converted back intoranalog
by the digital to analog converter, and then
filtered some more before going to the
power amp. The success of such a system in
audio processing depends upon its ability to
operate at ultrasonic speeds; that is, the rate
at which the audio signal is digitized,

processed, and output must (or should)
be as far above the upper limit of the audio
spectrum as possible. Thus the speed of each
of these steps is critical. We'll consider cach
step individually.

Next to the microcomputer itself, the
analog to digital converter is really the most
critical component. It must be a fast one; a
conversion time of 50 us or fess is necessary
to allow sufficiently high sampling rates.
| have been using a Datel Model ESHBI,
an 8 bit successive approximation analog to
digital converter with a 4 us conversion
time (available from Datel Systems Inc,
1020G Turnpike St, Building S, Canton
MA 02021, for $85 in unit quantities}. |
recommend this unit. Its conversion time s
probably faster than you will need, but at
Jeast you won't have to buy a new one when
microsystems get faster (as they certainiy
will). In addition to speed, the Datel analog
to digital converter has two other features
you should lock for in a converter. First, it
is bipolar, which means it is capable of
accepting both the positive and the negative
excursions of the audio waveform. Other-
wise, you would have to add some offset to
the incoming signal. {(The programs in this
article assume offsct binary coding.) Sccond,
it ¢/ips on overload rather than wrapping
around. That is, if the input audio signal
exceeds the dynamic range of the analog to
digital converter, the digital output simply
stops at full scale rather than wrapping
around or folding back to zero. The reason
this is a useful feature is the fact that an
audio signal contains many peaks and
transients which greatly exceed the average
signal amplitude. With only an 8 bit system,
there is really no way to keep these transients

from exceeding the range of the converter,
at least occasionally; if you try to prevent it
by adjusting the average amplitude to a very
low level, you'll get too much quantization
noise. Clipping the peaks may offend the
audio purist, but ['ll guarantee you that it
sounds a /ot better than wrapping around.
Of course, a better solution would be to
use 12 bit converters and a 12 or 16 bit (or
faster 8 bit) computer. Sufficiently fast 12
bit analog to digital converters are available
for about $150, and 12 bit digital to analog
converters are typically about $30. But
without a 12 or 16 bit processor, all proc-
essing would have to be done in double
precision, which might slow things down too
much {unless you have a 4 MHz 6502, which
| do not). Anyway, an 8 bit converter which
clips is good enough for the time being.

Selection of a digital to analog converter
is much easier, since several fast, low cost
8 bit units are available. The digital to analog
converter needn't be bipolar, since a DC
blocking capacitor can be added easily. The
Hybrid Systems 371-8 at $10 is a good
choice, as is the Motorola MC 1408L8 at
about $5. I've used both successfully. The
Hybrid Systems unit is more convenient
because it has a built-in reference supply,
while you will have to supply an external
{2 V) reference for the Motorola unit. This
must be very well filtered but not necessarily
well regulated for audio applications. {An
advantage of the Motorola units is that they
can be used as multiplying digital to analog
converters. If you drive the reference input
of one converter from the output of another
converter, then the output of the first con-
verter will be the product of the digital
inputs to the two converters. This allows
you to obtain automatic level control,
compression, expansion, fading, and ampli-
tude modulation effects without relying on
much slower software multiplication rou-
tines and without getting into trouble with
quantization noise.)

As for the processor itself, almost any
6502 system should do with the examples
I've included in this article: KIM-1, jolt,
Ebka, OSI, PAIA, Apple-il, PET 2001, etc.
I've used both the Ebka and the OSI systems
with good results. OSIl has a particularly
convenient analog 10 board (Model 430)
which can be populated with two MC1408L8
8 bit digital to analog converters, an 8 bit
analog to digital converter, and their associ-
ated latches and address decoding logic. The
0S| Model 430 analog to digital converter
circuit is of the synchronous tracking (up-
down counter) type. Be warned, however,
that this analog to digital converter wraps
around on overrange. It also requires some
individual tweaking of component values to

get it to work. If you want to use the OSI
430 board, | strongly recommend that you
replace their analog to digital circuit with a
better one, such as the Datel ESHB1. Other
than that, the OS} board is just fine.

One very importantl concept which you
must understand is the relation between
sample rate, aliasing, and low pass filter-
ing. If you don't understand these terms
and their significance, then before you
go on you should read the article by Hal
Chamberlin on page 62 of the September
1977 issue of BYTE. For the programs
presented in this article, the sampling rate
will fall between 20 and 40 kHz with a 1
MHz processor clock frequency, assuming
you are using a sufficiently fast analog to
digital converter {less than 50 us sampling
time). To control aliasing, you have to roll
off the high frequency response of the input
signal to the analog to digital converter at a
frequency no higher than about 1/4 of the
sampling frequency, ie: about 5 kHz for a
20 kHz sampling rate. This may not sound
much like “hi-fi,”" but actually it sounds
better than you might think. For better
highs, you need faster processing and may-
be 2 faster input converter. The 6502 is
pretty good in this respect; it’s available in
versions at least up to 4 MHz. This would
give you a sampling rate of 80 to 160 kHz
for the programs given here and would ex-
tend the highs to the 20 to 40 kHz range.
Now, that's a high fidelity computer!

The sampling rate therefore determines
the frequency at which the response of the
system must be rolled off {by means of
appropriate low pass filters) in order to re-
duce aliasing to a tolerable level. In the
simple circuit of figure 1, the only roll off
is that provided by the capacitors in the
feedback loops of the two op amps. Al-
though this circuit is satisfactory for ex-
perimental purposes, the cutoff rate of the
high frequency rolloff is not sharp enough
for first class results. If you're really serious,
you'll want more sophisticated, sharp cutoff
filters. Hal Chamberlin gives the circuit of
an excellent filter in his article in Sep-
tember 1977 BYTE, mentioned pre-
viously. The unpopulated printed circuit
board, as well as an assembled and tested
unit, is available from Hal. The cutoff fre-
quency of this filter is 3 kHz, probably too
low if you have a reasonably fast processor,
50 you might want to modify it or roll your
own based on the designs in Don Lancaster’s
Active Filter Cookbook or other reference
sources. Only one sharp cut filter is needed,
between the preamplifier and the input ana-
log to digital converter, to reduce aliasing.
The filter on the output, between the digi-
tal to analeg converter and the power

fune 1978 BYTE Publications Inc

167

Figure 1: The system design of an audio processing test bed requires two simple peripheral devices and a computer. The input
device is an analog to digital converter (ADC in this diagram) preceded by a filter. The output device is a digital to analog
converter (DAC in this diagram) driving another filter. Source material from (for example) a broadcast program is input through
the ADC, processed in real time by the program in the computer, then output in real time to the DAC where it (for example)
goes to your audio power amplifier and speaker system. The program in the computer can be as simple as an unprocessed trans-
fer from input to output, or as complex a transfer function as the constraints of real time will alfow, given the speed of the

)

QUTPUT

MICROCOMPUTER

TO POWER
AMP

computer.
[
Ayl
il
R
INPUT 2
FROM
PREAMP
i R
O AN -
+
INPUT

168

fune 1978 € BYTE Publications Inc

osc Hl—j?

QUTPUT

INPUT QUTPUT
ADC PORT PORT
|
?smose |
J

amplifier, needn't have as sharp a cutoff,
but it should have the same cutoff frequency
as the input filter. For the simple filters
in figure 1, the cutoff frequency is equal
to 1/2nRC, where R and C are the values
of the feedback resistor and capacitor,
respectively.

One last thing to consider about the hard-
ware is the level (amplitude) of the audio sig-
nal. In order to avoid excessive quantiza-
tion noise, the input signal must be amplified
enough to utilize the whole dynamic range
of the input analog to digital converter. In
figure 1, the first op amp provides gain in
addition to filtering. The gain of this ampli-
fier, which is equal to Ro/Rq, will have to
be adjusted for your particular system.
Given choices of R and C for filter cutoff,
R can be chosen given a desired gain level.
For example, if your preamp provides a
maximum output signal of 0.2 or 1 V peak-
to-peak, and your input converter has an
input voltage range of *5 V (10 V peak-to-
peak), then a gain of 10 V/1 V = 10 is
appropriate. Also, the maximum output sig-
nal of the digital to analog converter must
not be allowed to overload the power ampli-
fier. This will dictate the selection of the
feedback resistor R of the output op amp
in figure 1; the output voltage is directly
proportional to the value of this resistor.

Software Considerations

So what about the software? First, let’s
see how to get data in from the input con-
verter and out to the output converter
without any processing at all. If your analog
to digital conversion device (which | reference
symbolically as CONV) is connected to an
input port whose address is F800, then to
load one sample of the audio signal into the

For each amplifier, pick R and C such that
1
fo= ———
¢ (2rRC)
where
fo is cutoff frequency (kHz)
R is kilohms

C is microfarads

accumulator (A) register of a 6502 requires
one instruction, thus:

LDA CONV

This is all you need if you're using a
tracking converter such as that on the 0S)
board, but if you're using a strobed con-
verter, you'll have to give the converter a
strobe pulse first, allow it time to convert,
then load the A register., The fastest way
to do this is to assign the input conversion
strobe to an unused address, decode that
address, and use the address select line
(address “‘strobe," as it is sometimes called)
as the pulse which strobes the converter.
| have used the latter approach for my
strobed analog to digital converter and have
(arbitrarily) assigned address ECO0 {which [
call STROBE symboalically) to the address
strobe. With this arrangement the converter
is strobed by any instruction which refer-
ences that address; for example an STA as
shown here:

STA STROBE

several instructions executed
while conversion occurs.

LDA CONV

The above routine strobes the converter and
then loads the data into the A register. The
dashes represent intervening instructions
which take up enough time to allow the

analog to digital converter to complete its
conversion. This will always be a useful
code, rather than just no operation in-
structions (NOPs) or a wait loop. Conversion
times of commercial analog to digital con-
verters vary all over the place. As | men-
tioned before, for audio processing you'll
need a fast one which converts in a time of
50 us or better. Just make sure there are
enough instructions between referencing
STROBE and the loading from CONV to
give the input converter time to convert.

To output one sample to the digital to
analog converter (called DAC symbolically)
is quite simple. For example, if the converter
is connected to an output port whose ad-
dress is F900, then all | have to do is store
the sample:

8D 00 F9 STADAC

To test the proper operation of the in-
put and output converters we can write a
“straight wire’ program which simply trans-
fers the data from the input to the output
without change. Listing 1 shows 6502 posi-
tion independent code for such a program.

Note that the input conversion strobe in-
struction is placed right after the load CONV
instruction. This may seem backwards but
it gives the analog to digital converter a
total of seven machine cycles (an STA and
a JMP) to convert before it will load into A,
On a 1 MHz machine, this means the con-
version time could be as long as 7 us. If your
converter is slower than this, put some NOP
instructions or a wait loop right before the
CLC instruction. The other programs in this
article execute much more code between
strobing and loading the input analog to
digital converter and will usually allow you
to get by with no additional instructions
intended specifically to slow down
execution.

The program of listing 1 is good for test-
ing out the hookup to your audio system.
The sound quality of music played “‘through
your computer" this way may be better than
you would expect, considering that the
audio waveforms are being sliced up into dis-
crete samples, converted into binary num-
bers, and then converted back into an analog
audio waveform!

So what kind of audio processing can you
do? I'll resist the temptation to say that the
applications are limited only by your imag-
ination. They are not. They are limited by
your programming skill, your processor
speed, and your system’s programmable
memory capacity. You can never have too
much of these. I'll not claim to have even
scratched the surface of potential applica-
tions in this article. I'll just tell you about a

AD 00 F8 START LDA CONV

get new data from converter

8D 00 EC STA STROBE strobe input conversion
8D 00 F9 STA DAC output to DAC

18 CLC unconditional

90 F4 BCC START branch to START

Listing 1: A 6502 “straight wire” program loop. In order to simply listen
to the Input data on the output channel without any processing, we must
enter a tight machine coded loop which reads the input converter, then stores
the input data into the output converter. This 6502 program assumes an in-
put digital to analog converter at address space location F800 (CONV), an
input conversion strobe which occurs on reference to address space location
EC00 (STROBE) and an output digital to analog converter at location FO00
in address space (DAC). These same assumptions about 10 apply to listings
2 thru 6 as well. With hardware like figure 1, try running this program using
an audlo signal from your favorite record album. The results will probably
be of higher quality than you might have expected.

few things I've done, mostly because they
were easy to program. If you don’t come
up with better ideas than these I'll be
disappointed.

Waveform Modification

A very easy class of audio processing
functions are those which are intended to
distort the audio waveform. Believe it or
not, distortion is actually considered desir-
able by musicians in some cases for obtain-

Art-by-Computer, is here!

File |
of computer generated designs

order. 2 prints.

$2,08 postage and handling.
in US. dollars
sales tax Send check or money

Lelond C Sheppard
PO Box 60051, Dept B

Sunnyvale, California

© LCS, 1978.

File 3

Black-on-white, 9 3/4H by 12 3/4W reproductions

See Jan 78 Byte

or phone or write for a brochure.

Set of 12: $20.80; singles $2.00 each.
Orders less then $10.080 and
all orders from outside continental U.S. add
Payment must be
California residents add 6%

Minimum

order to

94086.

Also available at selected retail outlets.

June 1978 © BYTE Publications Inc

169

AE 00 F8 STARTLDX CONV Put converter data into x register

8D 00 EC STA STROBE Strobe converter.

BD 00 03 LDA TABLE, X Look up xth byte of TABLE
8Db 00 F9 STA DAC OCutput to DAC

18 CLC Repeat

90 F1 BCC START

Listing 2: Waveform modification. This 6502 program, obtained by modify-
ing the program of listing 1 slightly, uses the input sample from the analog
to digital converter (value 0 to 255} to look up the output sample in @ ‘trans-
fer function” table located ar 0300 in memory and referenced with the name
TABLE. The key to what the distorted output sounds like relative to the
input is the data stored in TABLE (see text and figure 2).

ing special cffects (such as “fuzz'} with
clectric guitars and other electronic instru-
ments. The computer can perform a rather
elegant general purpose distortion function
by utilizing a stored transfer function as
illustrated in the program of listing 2.

To use this algorithm, you must set up a
table in memory (on page 03 in this ex-
ample) which serves as the transfer function.
Each sample of the input waveform obtained
from the input converter is used as an index
to look up a corresponding byte in the
table, which is then used as the output
value. In this example the table is just 256
bytes long and is indexed by the 6502 proc-
essor's X register. Depending upon what we
store in the table we can get any kind of
distortion effect we want. A trivial case
would be to use a straight line function,
ie: put 00 in 0300, 01 in 0301, 02 in

FF FF FF
<
P
<
a
00 ADDRESS FF o0 FF Qo FF
A a c
FF FF FF
o¢ FF o FF 00 13
D E F

Figure 2: Examples of transfer functions for use with the waveform modifi-
cation technigue of listing 2. These curves are produced by platting the data
at an address versus the address within the table, with both values having a
range of 00 to FF hexadecimal {eight bits worth). {A) is the simple linear
transfer function. (B) is a transfer function which is equivalent to a saturated
clipping amplifier: it puts out a square wave. (C) represents a slight distortion
of the finear response of (A). (D} is a transfer function which effectively
doubles the frequency of the input waveform, while (E) quadruples the input
frequency and (F) multipliies the frequency by a factor of 8 (ie: three octaves
higher).

170 junc 19782 BYTE Publications Inc

0302. . .and FF in O3FF as shown in figure
2a. This would yield no effect at all; the out-
put would be identical to the input as was
the case with the program of listing 1. But
if we use anything other than a straight line,
we'll get distortion. Several possibilities are
shown in figure 2. Figure 2b would give a
square wave output while 2¢c would yield a
somewhat less strongly distorted output.
With the function shown in figure 2d, we
would get a frequency doubling effect;
that is, if the input were a sine wave of one
frequency, the output would be an approxi-
mate sine wave of twice that frequency {one
octave higher). With figure 2e, we'd get an
output two octaves higher. This can be ex-
tended even further with the appropriate
transfer function {eg: figure 2f). The effect
on the sound of an electric guitar is quite
remarkable, particularly as the frequency
multiplication factor is a function of the
amplitude of the input signal and changes
at the input decays.

Quite apart from its potential uses in
music recording or performance, the above
technique is a neat way to teach {or learn)
about the effect of transfer characteristic
nonlinearity on audio distortion. Just put
in the characteristic under consideration and
fisten to the effect it has on the audio.

Time Delay, Phase Shift and Reverb Effects

If we store digitized audio in an array in
programmable memory, and read it out to
the digital to analog converter at a later
time, we have a time delay effect which can
be used for phase shift and reverb. The max-
imum time delay you can achieve depends
on the sampling rate and the amount of
available memory; but even with only 256
bytes you can get some pretty good phase
shift and phase “phlanging” effects. With
4 K bytes you can get a good reverb.

The essential programming technique
behind all of these effects is quite simple:
output a byte from the data buffer to the
digital to analog converter; input a new sam-
ple from the analog te digital converter and
put it in the same location in the data buffer
as the byte just output; increment the point-
er modulo the length of the buffer and re-
peat. {Thus, when you get to the end of the
data buffer you reset the pointer to the be-
ginning and continue.) By scaling and adding
the new data from the input converter to the
old data from the data buffer, we can gener-
ate a range of effects depending on the
length of the time deiay.

The routine of listing 3 adds the audio
signal to a slightly delayed version of itself
and outputs the scaled sum to the digital to
analog converter. In this routine, page 03

serves as the data buffer and x as the point-
er. The pointer is initialized to DELAY, dec-
remented until it gets to zero, and then re-
set to DELAY. This results in a sort of circu-
lar data buffer which acts as a first in last
out shift register. The new and old (delayed)
data arc added and sent to the output con-
verter. (Note that to prevent overflow, the
data are divided by two before adding.) The
time delay, determined by DELAY, can be
adjusted from 1 to 225 samples. Such short
delays do not result in a perceptible echo.
The cfiect is rather that of a *‘comb filter”
with multiple peaks and dips distributed
throughout the audio spectrum. This is due
Lo the fact thal there will be a cancellation
at every frequency whose period is an inte-
gral multiple of twice the time delay and a
reinforcement at every frequency whose
period is an integral multiple of the time
delay. This rearranges the amplitude and
phase relationships of the harmonics of
music and speech and has a quite noticeable
effect on the sound, variously described as a
“resonant” or “twangy” effect. {If you have
a hum problem in your audio setup, you
might try to find the value of DELAY which
puts a dip right at the hum frequency.)

The above idea can be extended and the
cffect made much stronger by causing
DELAY to change continuously in real time.
This would cause the peaks and dips to
sweep Lhrough the audio spectrum. This
effect is called “phase phlanging” by some
people. An easy way lo do it (not neces-
sarily the best way, however) is shown in
listing 4. This is the same as the previous
program except that the DEC DELAY in-
struction has been added to reset the buffer
pointer to a different value each cycle
through the buffer. The effect of this
routine on voice and music is quite dramatic.
With specch and solo singing it gives a kind
of voice doubling effect, as if two people
were speaking or singing in synchroniza-
tion. 1t makes a 6 string guitar sound re-
miniscent of a 12 string guitar. A concert
piano comes out distinctly like a question-
ably tuned honky tonk piano. The effect
on organ music is unreal and unpleasant.
If you play the guitar and sing, or think you
do, try processing a tape recording of your-
self this way. It will sound better, or at
least different {which in my case is the
same Lhing).

If you have two outpul ports and two
digital to analog converters, you can gen-
erate lwo channels of audio output. For
example, you can convert a monaural
source to “pseudosterco” with a further

A6 10 RESET LDX DELAY initialize pointer to buffer length
BD 00 03 NEXT LDA BUFFER, X get oldest data

4A LSR A divide by 2

85 11 STA TEMP keep

AD 00 F8 LDA CONV get new data

8D 00 EC STA STROBE (strobe converter)

9D 00 03 STA BUFFER, X replace old data with new
4A LSR A divide by 2

18 CLC

65 11 ADC TEMP

8D 00 F9 STA DAC output to DAC

CA DEX advance the buffer

DO EF BNE NEXT pointer and repeat

18 CLC

90 E2 BCC RESET

Listing 3: Time deluys are possible with a buffer. Using the memory located
at hexadecimal 300 to 3FF as a 256 byte delay buifer, a number of interest-
ing effects can be achieved. This program supports a delay of up to 255 inner
loop periods, too short to be perceptible as a delay per se, but it does truns-
form signals by adding the delayed sumple’s points to the new inpul samples,
producing an interesting filtered result. The delay buffer length is set by the
value loaded into the X index register from focation DELAY in the first in-
struction of the program. As in all the examples of this article, this 6502
progrum is position independent and can be loaded at any arbitrary place in
memory address space which contains progrummable memory not conflict-
ing with 10 or datu storage locations.

A6 10 RESET LDX DELAY

BD Q0 LDA BUFFER, X
4A LSR A

85 11 STA TEMP

AD 00 F8 LDA CONV

8D 00 EC STA STROBE
9D 00 03 STA BUFFER, X
4A LSRA

18 CLC

65 11 ADC TEMP

8D 00 F9 STA DAC

CA DEX

DO E7 BNE NEXT

C6 10 DEC DELAY

18 CLC

90 EO BCC RESET

Listing 4: Modifying the processing done by the delay program of listing 3
to sweep the time delay value resulls in this ‘phase phianging’’ program. The
difference between this program and that of listing 3 is the DEC instruction
which changes the value of the delay parameter DELAY each time it is re-
loaded. The effects must be heard to be believed.

A6 10 RESET LDX

BD 00 03 NEXT LDA BUFFER, X

8D 00 E STA DAC2 delayed sound to one channel
AD 00 F8 LDA CONV

8D 00 EC STA STROBE

9D 00 03 STA BUFFER, X

8D 00 F9 STA DAC 1 direct sound to other channel
CA DEX

DO EB BNE NEXT

cé6 10 DEC DELAY

18 CLC

90 E4 BCC RESET

Listing 5: Modifving the program of listing 4 to turn it into a pseudostereo
processor. Here, the delayed data is sent to a second channel, with the
amount of deluy swept as it wuas with the phase phlanger approach. But
instead of adding the two channels together, they are kept separate and sent
to the left and right stereo speakers.

June 1978 BY TE Publicaons Ine 171

F800
EC00
F%00
0009
0010
00A0
00AL
0011

C5 Al
DO EO

90 DA

EC

Fa

F9

modification of the program in listing 3
(sec listing 5).

In this example the additional DAC is
connected to an output port whose address
is EF00. Instead of being added together,
the direct and delayed signals are simply
sent to the two different channels. The re-
sult is a sort of stereo phase phlanging
effect which sounds much like a “rechan-
neled for stereo’ disk recording. Try this
through stereo headphones. So now you
can have a stereo electric guitar, Would
anyone like to extend it to quadraphonic?

If you have at least 4 K bytes of memory
available in your system for your buffer,
then you can obtain echo and reverberation
effects quite readily. The idea is basically

a carmna nc tha mhaca chiftar rmiitimar oot
the same as the phase shifter routines just

AUDIO REVERB SIMULATION

LABELS
CONV Address of 8 bit analog to digital converter
STROBE Converter strobe line
DAC Address of 8 bit digital to analog converter
FIRST Lowest page number in data buffer
LAST 1 + highest page number in data buffer
PNTRL Low half of data buffer pointer
PNTRH High half of data buffer pointer
TEMP Temporary storage
PROGRAM CODE
LDY #0 Set pointer to zeroth byte of page
) “FIRST".
LDA #0
STA PNTRL
RESET LDA FIRST
STA PNTRH
NEXT STA STROBE Strobe converter.
LDA (PNTR),Y Get oldest byte.
LSR A Divide by 2.
STA TEMP Save.
LDA CONV Get new byte.
LSR A Divide by 2.
CLC Add to oldest byte, and return to
data buffer.
ADC TEMP
STA (PNTR), Y
STA DAC Output.
INY Go to next point.
BNE NEXT Increment pointer (double
precision).
INC PNTRH
LDA LAST When end of data buffer is reached,
reset pointer to FIRST and
continue.
CMP PNTRH
BNE NEXT
CLC
BCC RESET

Listing 6: The use of large amounts of memory can lead to interesting effects,
for example this reverberation program. Here a 4 K byte buffer from address
space focations 2000 to 2FFF is used to store delayed samples obtained from
the input converter at location CONV. This code for the 6502 processor is
position independent, provided it is not loaded in the same region us the de-
lay buffer, the page rero constants, or the 10 device addresses.

172

June 1978 BYTL Publications Inc

discussed, except that a much larger data
buffer is used. Here we can use the indirect
form of the LDA and STA instruction, and
we maintain a 16 bit pointer in page zero
(unlike the 6800, the 6502 has only 8 bit
index registers). The routine of listing &
yields a reverberation time which is adjust-
able up to about 0.5 seconds. The data buft-
er is assumed to be the 4 K byte block
from addresses 2000 to 2FFF. On cach
cycle through the buffer, the old data is
divided by two, added to the new data oul-
put, and returned to the buffer. Thus, the
old signals (ie: the echo} die off by a factor
of two each time they are heard. You can
hear about five or six echos before they drop
below audibility.

1I£ CTADT
I STAR

is set to 20, using the whole
4 K buffer, the effect is something like that
of a large hall or perhaps an old railroad
terminal. The difference is that the com-
puter produces a clear, clean echo at very
precisely timed intervals and with a precisely
controlled decay rate. Compare this with
either a natural reverberation situation or a
mechanical unit: the result is a more me-
chanical sound, much like a tape loop reverb
device, without the false resonances of a
spring type device. The advantage over a
tape loop device is, of course, that it will
never wear oul or get out of alignment.

Several useful modifications of this pro-
gram can be made. For example, you could
utilize a second digital to analog output and
a stereophonic sound system to achieve
spacial separation between the direct and
“reflected” sound. You could then apply
some filtering Lo the reflected sound channel
to simulate selective absorption by the room
furnishings. You could also improve the real-
ism of this effect by writing the routine to
provide more than one delay time, for
example by maintaining two or more buffer
pointers which would allow the incoming
data to be added to several peints in the
data buffer. You'll need a fast processor to
keep the sampling frequency up, however.
Finally, by simply dropping the LSR and
ADC instructions in the program of list-
ing 6, you can get a simple time delay
effect; say a word and it is repeated immedi-
ately. Great for language study; listen Lo
and critique your pronunciation without
wearing out your tape recorder. Or if you
have lots of memory (at least 32 K), you
can get delays long enough to allow you to
sing a round with yourself! | won't com-
ment on the frightening social significance
of this.

GLOSSARY

Analog to digital converter (often abbreviated
ADC): Integrated circuit ar hybrid module which
converts an analog voltage into a parallel digital
number, usually in a binary or binary coded deci-
mal format; characterized principally by the
number of bits of parallel binary output (the more
the better) and the conversion time (the shorter
the better]. Most commercially available analog to
digital converters have from six to 14 bits, convert
in 0.5 us to 200 ms, and cost from $12 to $300
each.

Address decoding: Logic circuitry present in all
microcomputer systems which looks for certain
addresses on the address bus and outputs a pulse
{address strobe} whenever those addresses occur.
Used to select individual 10 ports, sections of
memory , and devices tied to the data bus.

Address strabe: A pulse or logic level generated
by the address decade lagic in response to the
occurrence of a particular address or a range of
addresses in a microcomputer.

Aliasing: An instrumental artifact, caused by
sampling a periodic waveform less than twice per
period, which results in an apparent reduction in
the frequency of the waveform. (The effect is quite
analogous to the use of a stroboscope to “slow
down” the action of periodic mechanical motion.)
In audio processing, aliasing sounds like a gross
distortion.

Canversion time: The time it takes an analog to
digital converter to convert an analog voltage to a
binary number. Specifically, it is defined as the
time between the strobe pulse and the instant that
the digital output is valid.

Cut off frequency: The frequency at which a low
or high pass filter begins to cut off a signal (which
means to reduce its amplitude).

Cut off rate: Also called attenuation rate. The rate
at which the response of a low or high pass filter
increases attenuation as vou go to higher or lower
frequencies. The response of a simple single section
low pass RC filter drops off only at the rate of a
factor of two for every factor of two increase in
frequency (called —6 dB per octave in engineering
jargon). More sophisticated "“active” filters employ-
ing operational amplifiers can have much faster cut
off rates. These have the advantage of extending
the high frequency response as far as possible while
still reducing aliasing to an acceptable level.

Digital to analog converter (frequently abbreviated
DAC}: An integrated circuit or hybrid module
which converts a parallel binary or binary coded
decimal number to an analog voltage or current
proportional to the number. Commercially avail-
able digita!l to analog converters have resolutions
from eight to 16 bits and cost from $5 to $100.
Data buffer: A section of programmable memory
used to store data, usually temporarily.

Fuzz: A kind of distortion occasionally used by
electric guitarists for special effect.

Offset binary coding: An arrangement for opera-
tion of a bipolar analog to digital converter in
which a 2ero input voltage corresponds to a mid-
scale digital output. For an 8 bit converter with a
15 V input range, an input of 0 V would be con-
verted to hexadecimal 80, -5 V to hexadecimal
00, and +4.96 V to hexadecimal FF. (This differs
from twa's complement coding.)

Peak-to-peak: The voltage difference between the
average positive excursion and the average negative
excursion of an AC signal.

Phase shift: A (usually small} time delay between
two similar periodic waveforms.

Phlanging: An audio effect originally produced by
playing duplicate tape or disk recardings in almost,
but not quite exact, synchronization.

Quantization noise: The noise caused by the
conversion of a smooth, continuous analog wave-
form into a “'stair step’’ approximation in the
process of digitization. It adds a “hiss’’ to audio
signals, technically called “white noise.”” Like any
other type of hiss, it can only be partially removed
by filtering. The smaller the steps, the less the
noise. Thus an 8 bit digitization, vielding 256
discrete steps or '‘quantization levels,’” results in a
slightly noticeable quantization noise, but ina 12
bit conversion (4096 steps), the effect is quite
negligible.

Sample rate: The rate at which the signal waveform
is digitized. The larger the number of samples per
period of the waveform, the closer the digitized
waveform will be to the original analog waveform.
The sample rate must be at /east twice the highest
frequency to be digitized in order to prevent
aliasing. In this article, the sampling rates are
determined by the execution times of the inner
loops of the programs.

Strobe: In general, a pulse used for time synchroni-
zation of some event. In the context of an analog
to digital converter, the term refers to the “start
conversion’’ pulse applied to the converter to
initiate the conversion process. in this article, the
input conversion strobe is supplied by the micro-
computer under software control.

Successive approximation: A popular type of
analog to digital converter. Most fast converters are
of this type. It perfarms the conversian bit by bit,
starting with the most significant bitand progressing
to the least significant bit. Although generally fine
for audio processing applications, this type of
converter can exhibit nonlinearity {and therefore
distortion) if the input signal changes appreciably
during conversion. To prevent this, a sample-and-
hold circuit can be used ahead of the converter, or,
as in this article, one can reduce the problem to
insignificance by using a converter with a conver-
sion time much less than. the period of the highest
frequency passed by the input low pass filter.
Tracking analog to digital converter: A low cost
type of converter which uses an up-down binary
counter to track or follow the analog input. Its
advantage is that it requires no strobe pulse, as its
output is always trying to keep up with the output.
This type is often implemented in software when
canversion time is not particularly important.
Transfer function {or characteristicl: The func-
tional relationship between the output and the
input of a device.

Wrap around: What happens to your car’s mileage
indicatar after you've driven 99999.9 miles. It
“‘wraps around'’ to 00000.0. The same thing occurs
in electronic counters; in an 8 bit device, the next
count after hexadecimal FF wraps it around to 00.
Some analog to digital converters do this when the
input voltage exceeds full scale. It must be pre-
vented in audio processing. ®

June 1978

BYTE Publicatians Inc

173

