Software Debugging
for Beginners

Sometimes it must seem as though every effort in programming is one big error message.
Aside from reading the supplied documentation, here are some useful tips that you can
follow for avoiding those messages.

John Leslie
10 Souhegan St.
Miiford NH 03055

f it hasn't happened to you

yet, it has surely happened to
someone in your computer
club: After having sent your
check for a $15 program, you
recelved the program, loaded it,
and it didn't work. Then, of
course, you called the people
who sold you the program to
tell them the sad story. In gen-
eral, people selling software to
computer hobbyists do try tobe
helpful.

Qften, though, you can have
serious difficulty finding some-
one famillar enough with the
program to help you. And usual-
ly, you end up waiting several
weeks for a replacement cas-
sette. Most people find this
frustrating. Why can’t you do
something In the meantime?

Well, | am about to tell you
that you can. You might get
scared if | told you to debug the
program, so, instead, | shall
suggest simply that you play

40

around with It. But In truth, you
will be doing much the same
things that a professional pro-
grammer does when he debugs.

Study the Assembly Listing

To start, you should read
through the assembly listing,
with both source code and ob-
ject code. Usually this listing is
supplied with the program.
Qops, | think | lost a few of you
there.

An assembly listing is simply
a listing (printout) produced by
an assembler. Source code Is
what the programmer actually
wrote, and Is used as input to
the assembler. Object codeis a
representation (usually in hexa-
decimal) of the actual bit pat-
terns the computer will use as
its Instructions.

An assembler is a program or
process that puts together a
machine-language program,
given a source program speci-
fying each machine-language
Instruction in detail. Many of
the programs supplied to hob-
byists have been hand assem-
bled, meaning simply that the
programmer, rather than the
computer, assembled the pro-
gram. It's of no consequence.
He will have produced the same

sort of listing.

Don’t worry about under-
standing the listing in detail;
don’t even worry about under-
standing itin general. Your task
is just to gain some familiarity
with it.

First, Read the Comments

What do you look for? Look
at the pictures. Sad to say,
there usually aren’t any. Next,
look at the comments. Assem-
bly code has the following
format:

Label / Op code / Operands /| Commenis

Comments are off to the right,
and are the only things that
remotely resemble English. If
they are written well, com-
ments will tell you why some-
thing Is done, rather than what
Is done. And at this stage, you
aren't much concerned with
what is being done.

The sample assembly listing
(Fig. 1) Is an actual portion of a
program of mine. It performs a
generation change In the game
of Life. Reading the comments,
you should get the idea that the
program tests something about
eight neighbors, and sets a
cell's new state on the basis of
Its previous state and the num-

ber of its neighbors. That is
enough to grasp for now.

Then, the Jump Op Codes

Next, look at the op code col-
umn. You should have a manual
explaining the various op codes
for your computer. You may
have tried reading it, and given
up. But don't worry—it Is not
meant to be read; It Is a refer-
ence book. So now, get it out
and refer to it. You want to
know which of those alphabet-
soup concoctions called op
codes are supposed to cause
the computer to jump to a new
location. Memorize them by
name. Don't worry too much
about what they do.

In Fig. 2, | have outlined the
jump op codes for the 8080,
6800 and 6502 microcomput-
ers. This should enable you to
get through the example of Fig.
1 if you don’t have a 6502.

The point of this is that all
the other instructions will ex-
ecute without a break in se-
quence, so you can safely ig-
nore them; whatever they may
do, the computer will proceed
to the next instruction in
sequence.

The jump op codes, on the
other hand, can bring untold

