Software Debugging
for Beginners

Sometimes it must seem as though every effort in programming is one big error message.
Aside from reading the supplied documentation, here are some useful tips that you can
follow for avoiding those messages.

John Leslie
10 Souhegan St.
Miiford NH 03055

f it hasn't happened to you

yet, it has surely happened to
someone in your computer
club: After having sent your
check for a $15 program, you
recelved the program, loaded it,
and it didn't work. Then, of
course, you called the people
who sold you the program to
tell them the sad story. In gen-
eral, people selling software to
computer hobbyists do try tobe
helpful.

Qften, though, you can have
serious difficulty finding some-
one famillar enough with the
program to help you. And usual-
ly, you end up waiting several
weeks for a replacement cas-
sette. Most people find this
frustrating. Why can’t you do
something In the meantime?

Well, | am about to tell you
that you can. You might get
scared if | told you to debug the
program, so, instead, | shall
suggest simply that you play

40

around with It. But In truth, you
will be doing much the same
things that a professional pro-
grammer does when he debugs.

Study the Assembly Listing

To start, you should read
through the assembly listing,
with both source code and ob-
ject code. Usually this listing is
supplied with the program.
Qops, | think | lost a few of you
there.

An assembly listing is simply
a listing (printout) produced by
an assembler. Source code Is
what the programmer actually
wrote, and Is used as input to
the assembler. Object codeis a
representation (usually in hexa-
decimal) of the actual bit pat-
terns the computer will use as
its Instructions.

An assembler is a program or
process that puts together a
machine-language program,
given a source program speci-
fying each machine-language
Instruction in detail. Many of
the programs supplied to hob-
byists have been hand assem-
bled, meaning simply that the
programmer, rather than the
computer, assembled the pro-
gram. It's of no consequence.
He will have produced the same

sort of listing.

Don’t worry about under-
standing the listing in detail;
don’t even worry about under-
standing itin general. Your task
is just to gain some familiarity
with it.

First, Read the Comments

What do you look for? Look
at the pictures. Sad to say,
there usually aren’t any. Next,
look at the comments. Assem-
bly code has the following
format:

Label / Op code / Operands /| Commenis

Comments are off to the right,
and are the only things that
remotely resemble English. If
they are written well, com-
ments will tell you why some-
thing Is done, rather than what
Is done. And at this stage, you
aren't much concerned with
what is being done.

The sample assembly listing
(Fig. 1) Is an actual portion of a
program of mine. It performs a
generation change In the game
of Life. Reading the comments,
you should get the idea that the
program tests something about
eight neighbors, and sets a
cell's new state on the basis of
Its previous state and the num-

ber of its neighbors. That is
enough to grasp for now.

Then, the Jump Op Codes

Next, look at the op code col-
umn. You should have a manual
explaining the various op codes
for your computer. You may
have tried reading it, and given
up. But don't worry—it Is not
meant to be read; It Is a refer-
ence book. So now, get it out
and refer to it. You want to
know which of those alphabet-
soup concoctions called op
codes are supposed to cause
the computer to jump to a new
location. Memorize them by
name. Don't worry too much
about what they do.

In Fig. 2, | have outlined the
jump op codes for the 8080,
6800 and 6502 microcomput-
ers. This should enable you to
get through the example of Fig.
1 if you don’t have a 6502.

The point of this is that all
the other instructions will ex-
ecute without a break in se-
quence, so you can safely ig-
nore them; whatever they may
do, the computer will proceed
to the next instruction in
sequence.

The jump op codes, on the
other hand, can bring untold

confusion. They can cause ma-
chine instructions to be ex-
ecuted many times, or not at all.

Qutline the Program Flow

So your next step Is to scan
the op code column for these
jump op codes. This ionger ex-
ercise is going to give you a pic-
ture of the program flow.

In the example of Fig. 1, you
will find eleven uses of JSR,
three uses of BNE and one each
of BVC, BVS and RTS. You
should assume that alil subrou-
tines called wlill usually return
to the next instruction. (This is
not necessarily true, of course;
sometimes it Is spectacularly
faise. But you shouid assume it
anyway.)

So ignore all those JSRs. The
three BNEs turn out to simply
skip the next instruction, so
you can ignore the first two.
The third is a conditional skip
of the return from subroutine
Instruction, so you wiil have to
watch it.

The BVC and BVS instruc-
tions are both conditional
jumps, and if you check the op
code table of Fig. 2, you will see
that they are opposite condi-
tions. Thus, these two instruc-
tions together amount to an un-
conditional jump back to near
the beginning of the exampie.
(Using two conditional jumps
like this is common in 6502
code, since there is no reiative-
addressed unconditional jump
Instruction.)

You now have a picture of the
program fiow ... straight
through until near the bottom,
where there is a conditional
skip followed by a return from
subroutine instruction (this
amounts to a conditional return
instruction). if the return is not
done, then most of the code is

repeated.

A few inferences are in order.
If we execute a return from
subroutine instruction, this
whole thing must have been
called as a subroutine. (True.)
And eventually the conditional
skip must fail, and the return
will be executed. (Also true.)

A Word about Operands

Now, | suppose | should con-
fess to sneaking a few things
by whiie you weren't looking. |

promised that you would be
looking at the op codes col-
umn, but | went right ahead and
checked the next column
(operands) whenever | felt like
it. And since | haven’t toid you
anything about that coiumn,
you feel justifiably confused.

| approach this section with
trepidation, fearing that after |
have told you about the oper-
ands column you will be even
more confused. The plain fact
Is that this column Is used for
all the leftovers. The theory is
that “'obviousiy” some addi-
tional information Is needed to
complete the machine instruc-
tion, and it is “'simply" placed
in the operands column.

The experienced program-
mer never gives this a second
thought. Depending on his
background, he may think of
the items in that column as ad-
dresses or data. The fact re-
mains, however, that they are
leftovers, and no consistent
rule can be made to apply. If
you attack this siowly, how-
ever, and memorize what is put
in that column for each of sev-

eral kinds of op codes, you will
soon enough master it suffi-
ciently.

For right now, you only need
to know about the jump op
codes. For these, obviously the
needed information is where to
jump. So, keeping in mind that
whatever you see must be a
description of where to jump,
look over the entries in the
operands column following the
jump op codes. You will see
BEGIN, TEST, SWAP, GLOOP
and $+2. “What's this $+2
bit?" you may weil ask.

Permit me to digress a mo-
ment. If somebody asks for
directions, you probably wiil
use your hand to point. “Over
there,"” you say, but your point-
Ing is what conveyed the infor-
mation. Computers are not too
good at reading hand motions.
The computer requires exact
latitude and longitude, so to
speak. People, on the other
hand, much prefer to say, “‘over
there,” and point. Clearly, some
compromise needs to be
reached. Several methods have
been tried over the years, with

Label Op Code C
0328 20 1C 02 GENERATION JSR BEGIN Preset to XMIN, YMIN
B A6 D3 GLOOP LDX CQURRX X coordinate
D A D4 LDY CURRY Y coordinate
F A9 00 LDA =0
31 20 14 02 JSR TEST
4 85 D2 STA CURR 1 iff occupied
6 A9 00 LDA =0 Preset no neighbors
8 E8 INX 1st neighbor
9 20 14 02 JSR TEST Count if occupied
C Cs INY 2nd
D 20 14 02 JSR TEST
40 CA DEX 3rd
1 20 14 02 JSR TEST
4 CA DEX 4th
5 20 14 02 JSR TEST
8 88 DEY 5th
9 20 14 02 JSR TEST
C 88 DEY 6th
D 20 14 02 JSR TEST
S0 E8 INX 7th
1 2014 02 JSR TEST
4 E8 INX 8th
S 20 14 02 JSR TEST
8 AD 00 LY =0 Preset dead
A C9 02 MP =2 If two neighbors
C Do 02 ENE §+2
E M D2 DY CQURR Survives
60 C9 03 oMP =3 1f three
Z DO 02 ENE §+2
4 AD 01 Y =1 Grows
6 20 44 02 JSR SWAP Work on new board
9 98 TYA New state
A A6 D3 LDX QURRX
C MM LDY CQURRY
E 20 18 02 JSR SET Store new state
71 20 20 02 JSR STEP Advance to next cell
4 D001 BNE §+2
6 60 RIS Finished board
7 20 44 02 JSR SWAP Back to old board
A 50 AF BVC GLOOP
C 70 AD BVS GLOOP
Fig. 1. Sample assembly listing.

two still being used frequently.

The first is to write notes to
the computer saying, in effect,
“This Is the place | call home;
this Is the place | call school;
and this is the place | call
work.” Later on, the computer,
being suitably programmed,
will know what to do when you
tell it to go to school.

The second method saves
time when you don't feel like
writing a note giving some-
place a name. It Is the
equivalent of saying, ‘‘second
door on your right.” $+2 is
analogous to second door on
your right. Be warned that this
kind of notation is not the same
for all assembly languages.
Some use a dollar sign; some
use an asterisk; some use a
number sign; and goodness on-
ly knows how many different
characters have been used for
the function.

In every case, however, this
special character refers to the
current location. But, sad to
say, not every assembler
means the same thing by cur-
rent location, Some mean the
address of the machine instruc-
tion being assembled; some
mean the contents of the inter-
nal program counter register
when the instruction Is execut-
ed (which usually points to the
instruction after it).

And, as if that weren't bad
enough, not all assemblers
count the same thing when
determining what +2 means.
Some count instructions; some
count bytes;, assemblers for
larger computers may even
count words or half-words. But
at least the plus vs minus dlirec-
tions are standard. Plus refers
to higher addresses (instruc-
tions later in sequence) and
minus refers to lower address-
es (Instructions earlier in
sequence).

“How,” you may ask, “do |
tell what it means?” Waell, if
you're lucky, you may not have
to. If you see $ + 2 and neither
of the next two instructions is a
jump, you can ignore the prob-
lem for a while. When you final-
ly are forced to find out for sure,
i recommend running the com-
puter in single-step mode and
finding out what it thinks. That,
after all, is the only opinion that

a1

Is of any significance.

One of those manuals you re-
celved with your computer will,
no doubt, tell you what the
standard Is, according to the
manufacturer. That is the stan-
dard you should follow; and for
any code run through the as-
sembler, you know it is the con-
vention the assembler followed.

But, as | mentioned before,
many programs supplied to
computer hobbyists have been
hand assembled, and you don't
know what convention that pro-
grammer may have used. Pro-
grammers have a tendency to
use whatever scheme they
were brought up with, until
forced to change. Until you are
quite certain which scheme the
programmer used, don’t as-
sume anything. And, in case of
doubt, check what the com-
puter thinks.

On my way back to the sub-
ject, let me explain the first
scheme—writing notes. The
label field, starting with the
first character of each line, is
reserved for notes assigning
names to places. On the sec-
ond line of Fig. 1, you see a
note: GLOOP. If there Is any-
thing in the label fieild, that
name is assigned to that pro-
gram location. Thus, the name
GLOOP |s assigned to program
location 032B. When, near the
end, you see BVC GLOOP, that
causes a conditlonal jump to
0328 to be assembled.

Now we can get back to busi-
ness. | have told you about the
operands for jump op codes,
and we can get back to analyz-
ing program flow. “Why,” you
may well ask, “make such a
fuss about program flow?”” The
answer Is quite simple, really. It
makes no difference whether
code Is correct if it Is not being
executed ... and, | might add,
being executed the right num-
ber of times.

Set Breakpoints

Consequently, before charg-
ing off to check what a plece of
code does, you should set a
breakpoint to make sure It Is be-
Ing called. Very often, it Isn't.

Some computer systems
have powerful and easy-to-use
methods for setting break-
points. But on your microcom-

42

6800 6502 8080 Jump type
*BRA JMNP I Unconditional
NP eee wee Indexed
BNE BNE MNZ If not equal
BEQ BEQ *JZ If equal
BCC BCC *INC If carry clear
BCS BCS *JC If carry set
BPL BPL “JP If plus
BN BMI UM If minus
BGE --- ==~ If greater than or equal
BGT «ee === If greater than
BHI --- --- If higher
BLE --- === If less than or equal
BLE --- --- If lower or same
BT -e= e If less than
BVC BVC --- If overflow clear
BVS BVS --- If overflow set
=== === JPO If parity odd
== === JPE If parity even
=s= === PQL Load PC from H,L pair
®JSR JSR CALL Subroutine j
see wea glz Conditional 3:— Jumps
wee ae= ONC
e =
- e P
|
--- --- PO
*aSWI BRK **RST Software interrupt
RWHAL --- AT Wait for interrupt / Halt
Kl --- === Return from inte t
RIS RIS RET Return from subrout:
w— m gz Conditional returns
=== == RNC
-== === RC
~e= === RP
cee ee M
-e= === RPO
“es === RPE
Fig. 2. Op codes on the same line are reasonably compatible. A
single asterisk indicates a different addressing mode. A dou-
ble asterisk indicates gross detail incompatibility (but the
functions are similar).

puter, It Is probably pretty
cumbersome. If someone
knowledgeable Is nearby, by all
means ask him what the
easlest way Is. Most likely, It
will involve overwriting the
location where you want a
breakpoint with an instruction
to cause a software Interrupt
(BRK for the 6502, SWI for the
6800, or RST for the 8080), and
assigning a monitor routine to
fieid the interrupt.

To resume after the break-
point, you will probably have to
restore the Instruction you
overwrote, reset the program
counter there and possibly fix
the stack. If this sounds like a
lot of work, you now under-
stand why you keep seeing ar-
ticles about better monitor sys-
tems. Nonetheless, | assure
you, it Is worth the effort.

Having a picture of the pro-
gram flow, and knowing how to
set breakpoints, you can now
start setting breakpoints ali

over the place to prove whether
the program Is actually being
executed according to your plc-
ture of the program flow. Sur-
prisingly often, something has
gotten garbled along the way,
and the computer turns out to
be jumping into some strange
area. If you find such a case, it
is usually easy to fix.

Your first hint of this Is usual-
ly that the computer never
reaches a breakpoint that you
have set. Then proceed to set
breakpoints gradually earller
(restarting the program each
time), until the computer does
stop. By this method, you can
pinpoint where the program
goes astray. Comparing the
machine-language instruction
(in memory) to the assembly
code will quickly show any
case of garbling.

This Program
Wil Self-destruct . . .

You should be warned that

sometimes when a program
goes haywire, It overwrites
itself. You should always
reload the program from cas-
sette (or whatever medium you
use) before setting a new break-
point and restarting. However,
this is so much of a nuisance
that experienced programmers
seldom do it. Nonetheless,
when you're correcting a gar-
bled Instruction, it Is worth the
effort to reload and check
whether it was garbled as load-
ed. If not, you haven't found the
problem yet.

If you find a case in which the
program Is clobbering Itself,
you should set breakpoints pro-
gressively earlier, checking
each time to see whether it has
clobbered itself yet. For this
case, of course, It is necessary
to fix the clobbered code,
usually by reloading from cas-
sette before each restart.

Each time you find and fix a
bug, you should feel free to
remove all breakpoints to see if
the program as a whole now
works. If, on the other hand,
you debug a newly written pro-
gram, you should pause and
spend a few minutes looking
for similar mistakes. The
human mind, once it has made
a mistake, tends to make It
again. It may even be worth
your while to scan for similar
mistakes when debugging a
program that once worked.

Examine Variables

After you have proven that
the program is being executed
according to your understand-
ing of program flow, it makes
some sense to look at the pro-
gram variables to see If they
contain reasonable values at
the strategic points during the
computation.

As an example, it I1s often
helpful to check the value of In-
dex variabies at the beginning
and end of iterative loops to see
whether the loop Is being done
the right number of times. In
the example of Fig. 1, CURRX
and CURRY are index varlables
that represent the X and Y coor-
dinates. Thus, you might rea-
sonably expect them to range
from 1 to 40 and from 1 to 24.
Typically, at the end of Itera-
tion, one index variable wiil be

at the final vaiue or one past it.
The rest should ali be at final
value or at initial vaiue. if not,
you have grounds for suspicion.

if you become suspicious,
you can execute the ioop ex-
haustively and count the num.
ber of times it Is done. If, on the
other hand, an index variable
gets an obviously wrong value,
you shouid suspect it is being
clobbered and proceed to test
where it is being ciobbered.

it is aiso instructive to ex-
amine data areas during sec-
tions of code that are not sup-
posed to change them, to en-
sure that they are, in fact, not
being changed. If they are
being changed, you can use the
standard procedure to zero in

on where the changes are oc-
curring.

Data Structures

If you are particularly iucky
and the program was well de-
signed, there will be a subrou-
tine you can call to display the
status of data areas. When
writing your own programs, you
should be sure to include such
a subroutine, preferably in a
form that changes nothing, so
that it may be called between
any two instructions during the
debugging phase.

it you are that iucky, you can
now run through the section of
code that is supposed to
modify the data, setting break-
points at convenient locations,

and examine the data as
changes are being made. Using
this feature, you can often pin-
point the troubie area, still with-
out having to know what the
code is doing. But more likely,
you won't be that iucky, and
you will have to set out to learn
about the data structure. And
that, | fear, must wait for
another article.

Summary

in debugging, you should
always first establish which
code is being executed. Then
check to see that loops are be-
ing done the right number of
times. After the program flow is
proven correct, check that vari-
ables contain reasonable

values. Only after you have
locaiized a problem do you set
out to understand what the
code is doing.

Postscript—BASIC

To debug BASIC programs,
you usually insert PRINT state-
ments. In keeping with the de-
bugging principles listed
above, your first task is to
establish program flow. So in-
sert the simpiest possibie
PRINT statements, using them
iike breakpoints. After program
flow Is established, then you
should switch to PRINTing the
values of the data. Printing your
data before establishing pro-
gram flow leads to much head-
scratching and little progress.®

