Stephen Wozniak

Apple Computer

20863 Stevens Creek Blvd, B3C
Cupertino CA 95014

SWEET16: The 6502 Dream Machine

While writing Apple BASIC for a 6502
microprocessor | repeatedly encountered a
variant of Murphy’s Law. Briefly stated, any
routine operating on 16 bit data will require
at least twice the code that it should. Pro-
grams making extensive use of 16 bit
pointers (such as compilers, editors and
assemblers) are included in this category. In
my case, even the addition of a few double
byte instructions to the 6502 would have
only slightly alleviated the problem. What |
really needed was a hybrid of the MOS Tech-
nology 6502 and RCA 1800 architectures, a
powerful 8 bit data handler complemented
by an easy to use processor with an abun-
dance of 16 bit registers and excellent
pointer capability. My solution was to imple-
ment a nonexistent 16 bit ‘“metaprocessor’’
in software, interpreter style, which | call
SWEET16. This metaprocessor was sketched
at the end of my article in May 1977 BYTE,
and the purpose of this article is to fill in
the details of SWEET16.

SWEET16 is based around sixteen 16 bit

SWEET16

300 B9 00 02 LDA IN,Y Get a char.

303 C9 CD CMP “"M"” “M" for move?

305 D009 No, skip move.

307 20 Yes, call SWEET16.

310 C9 C5 NOMOVE CMP "E “E" char?
312 D013 BEQ EXIT Yes, exit.
314 C8 INY No, continue.

. R1 holds source address.
R2 holds dest. address.
Decrement length.

Loop until done.

~ Return to 6502 mode.

Note: Registers A, X, Y, P and S are not disturbed by SWEET16.

Listing 1: Use of SWEETI16 within an assembly language program is accom-
plished by executing a subroutine call to the SWEETI16 entry point (address
307 here). This call preserves the processor registers at the time of entry and
begins interpretive execution. End of interpretive execution is signaled by a
RTN operation code of SWEETI6, at which point all the processor registers

will be restored.

150 BYTE November 1977

registers called RO to R15, actually imple-
mented as 32 memory locations. RO doubles
as the SWEET16 accumulator (ACC), R15 as
the program counter (PC), and R14 as the
status register. R13 holds compare instruc-
tion results and R12 is the subroutine return
stack pointer if SWEET16 subroutines are
used. All other SWEET16 registers are at the
user’s unrestricted disposal.

SWEET16 instructions fall into register
and nonregister categories. The register oper-
ations specify one of the 16 registers to be
used as either a data element or a pointer to
data in memory depending on the specific
instruction. For example, the instruction
INR R5 uses R5 as data and ST @R7 uses
R7 as a pointer to data in memory. Except
for the SET instruction, register operations
only require one byte. The nonregister oper-
ations are primarily 6502 style branches
with the second byte specifying a 127 byte
displacement relative to the address of the
following instruction. If a prior register
operation result meets a specified branch
condition, the displacement is added to
SWEET16’s program counter, effecting a
branch.

SWEETT16 is intended as a 6502 enhance-
ment package, not a stand alone processor.
A 6502 program switches to SWEET16
mode with a subroutine call, and subsequent
code is interpreted as SWEET16 instruc-
tions. The nonregister operation RTN re-
turns the user program to the 6502’s direct
execution mode after restoring the internal
register contents (A, X, Y, P and S). The
example of listing 1 illustrates how to use
SWEET16 in some program segment.

Instruction Descriptions

The SWEET16 op code list is short and
uncomplicated. Excepting relative branch
displacements, hand assembly is trivial. All
register op codes are formed by combining
two hexadecimal digits, one for the op code
and one to specify a register. For example,

op codes 15 and 45 both specify register RS
while codes 23, 27 and 29 are all ST (store)
operations. Most register operations of
SWEET16 are assigned to numerically adja-
cent pairs to facilitate remembering them.
Thus LD and ST are op codes 2n and 3n
respectively, while LD @ and ST @ are codes
4n and 5n.

Operation codes 00 to 0C (hexadecimal)
are assigned to the 13 nonregister opera-
tions. Except for RTN (op code 0), BK
(0A), and RS (B), the nonregister operations
are 6502 style relative branches. The second
byte of a branch instruction contains a
+127 byte displacement value (in two’s
complement form) relative to the address of
the instruction immediately following the
branch. If a specified branch condition is
met by the prior register operation result,
the displacement is added to the program
counter effecting a branch. Except for BR
(Branch always) and BS (Branch to Sub-
routine), the branch operation codes are
assigned in complementary pairs, rendering
them easily remembered for hand coding.
For example, Branch if Plus and Branch
if Minus are op codes 04 and 05, while
Branch if Zero and Branch if NonZero are
op codes 06 and 07.

Theory of Operation

SWEET16 execution mode begins with a
subroutine call to SW16 (see listing 2, an
assembly of SWEET16). The user must in-
sure that the 6502 is in hexadecimal mode
upon entry. |For those unfamiliar with the
6502, arithmetic is either decimal or hexa-
decimal (binary) depending on a program-
mable flag. . .CH] All 6502 registers are
saved at this time, to be restored when a
SWEET16 RTN instruction returns control
to the 6502. If you can tolerate indefinite
6502 register contents upon exit, approxi-
mately 30 us may be saved by entering
SWEET16 at location SW16 + 3. Because
this might cause an inadvertent switch from
hexadecimal to decimal mode, it is advisable
to enter at SW16 the first time through.

After saving the 6502 registers, SWEET16
initializes its program counter (R15) with
the subroutine return address off the 6502
stack. SWEET16’s program counter points
to the location preceding the next instruc-
tion to be executed. Following the subrou-
tine call are 1 byte, 2 byte, or 3 byte long
SWEET16 instructions, stored in ascending

Listing 2: SWEETI16 assembly. The SWEET16 program, assembled to reside
at location 800 hexadecimal, is presented by this listing. The primary entry
point is at the beginning, location SW16. An alternate entry point if there
is no need to save processor registers is at location 803 in this assembly,
SWI16+3.

SWEET16 INTERPRETER
112 18 A«M., THIL MAY 12, 1977

BOOB L * ks ahkd A KRR AR R R RN
=

20002 *

©0003 * APPLE-11 PSEUDO =
00004 * MACHINE INTERPRETER &
20005 * *
00006 * 0ZNIAK *
80807 * APPLE COMPUTER INC =
o008 * *

GO0 * AT EERRERARE KRR R
20018 TITLE "SVEET16 INTERPRETER"
1 ROL EPZ $0

eeol
20e12 ReH EP7 $1
80013 R14H EPZ 81D
00014 RISL EPZ $IE
2ee15 RiSH EPZ SIF
@@B16 S16PAG EQU $F7
20017 ORG $800
0800: 20 T4 09 @0@18 SVi6 JSR SAVE PRESERVE 6502 REG CONTENTS
2803: 68 eee1s PLA
2804: 8S 1E eoe2e STA RISL INIT SWEET16 PC
2806: 68 eeo21 PLA FROM RETURN
2807: 85 IF 8ep22 STA RISH ADDRESS
9809: 29 OF @8 00023 SW16B JSR Swl6C INTERPRET AND EYECUTE
@86C: 4C @9 @8 00024 JMP SW16B ONE SWEET16 INSTR.
@8OF: E6 IE 2@e25 SW16C INC RISL
2811: D@ @2 00026 BNE SWi6D INCR SWEET16 PC FOR FETCH
2813: E6 IF 20027 INC RISH
@815: A9 F7 @@e28 SswieD LDA #S16PAG
2817: 48 86029 PHA PUSH ON STACK FOR RTS
2818: A0 00 eee3e LDY #s5e
281A: Bl IE 280831 LDA (RISL)»Y FETCH INSTR
@81C: 29 @F 20032 AND #SF MASK REG SPECIFICATION
@B1E: @A 000233 ASL A DOUBLE FOR 2-BYTE REG'S
@81F: AA 00034 TAX TO X-REG FOR INDEXING
08208: 4A 22035 LSR A
es21: 51 1E 00036 EOR (RISL).Y NOW HAVE OPCODE
2823: Fo 0B 20037 BEQ TOBR 1F ZERO THEN NON-REG OP
2825: 86 1D 200838 STX RI4H INDICATE'PRIOR RESULT REG'
0827: 4A 28039 LSR A
2828: 4A 20040 LSR A OPCODE*2 TO LSB'S
2829: 4A soest LSR A
@82A: A8 80042 TAY TO Y-PEG FOR INDEXING
82B: B9 58 08 80843 LDA OPTBL-2,Y LOW-ORDER ADR BYTE
@82E: 48 20044 PHA ONTO STACK
082F: 60 @004s RTS GOTO REG-0P ROUTINE
8830: E6 1E 80046 TOBR INC RISL
8832: Do @2 ee0a7 BNE TOBR2 INCR ®C
@834: E6 IF 20048 INC RISH
2836: BD SB @8 00049 TOBR2 LDA BRTBL,X LOW-ORDER ADR BYTE
9839: 48 eeese PHA ONTO STACK FOR NON-REG OP
@83A: AS 1D 20051 LDA RI4H *PRIOR RESULT REG' INDEX
283C: 4A eens2 LSR A PREPARE CARRY FOR BC, BNC.
@83D: 60 20053 RTS GOTO NON-REG OP ROUTINE
@83E: 68 800854 RTNZ PLA POP RETURN ADDRESS
B83F: 68 20955 PLA
98401 20 7F @9 Q0056 JSR RESTORE RESTORE 6582 REG CONTENTS
@843: 6C IE 00 00057 JMP (RISL) RETURN TO 6582 CODE VIA PC
88461 Bl 1E 08058 SETZ LDA (RISL)»Y HIGH-ORDER BYTE OF CONST
8848: 95 @1 208059 STA REH,X
BB4aA: 88 00068 DEY
884B: Bl IE 80061 LDA (RISL),Y LOW-ORDER BYTE OF CONSTANT
284D: 95 00 sees62 STA ROL,X
@84F: 98 080663 TYA Y-REG CONTAINS 1|
2850s 38 28064 SEC
@851: 65 1E 00065 ADC RISL ADD 2 TO PC
28531 85 IE 00866 STA RISL
885S5: 90 @2 eae67 BCC SET2
8857: E6 IF 20068 INC RISH
2859: 60 28069 SET2 RTS
285A: 79 20070 OPTBL DFB SET-1 €1X)
@8SB: 70 208871 BRTBL DFB RTN-1 @)
885C: 7B Boe72 DFB LD-1 2x)
885D 14 80073 DFB BR-1)
@BSE: 84 808074 DFB ST-1 €3%)
B8S5F: 15 @ee7s DFB BNC-1 (2>
2868: 9C 20076 DFB LDAT-1 cax)
#861: 26 8ear1 DFB BC-1 (3>
8862t 8D 2ee78 DFE STAT-1 (5X)
2863: 29 20879 DFB BP-1 <4y
@864: BE 20680 DFB LDDAT-1 (6X)
8865: 30 e8e81 DFB BM-1 <5)
28661 C8 00082 DFB STDAT-1 ¢7X)
88671 37 00083 DFB BZ-1 6)
2868: A6 00084 DFB POP-1 <8X)
2869: 40 0Qe8s DFB BNZ-1 7>
@86A: D2 200886 DFB STPAT-1 (9%X)
886B: 49 eoe87 DFB BMI1-1 <8
286C: FC 20088 DFB ADD-1 CAX)
286D: 54 eoe89 DFB BNMI-1 9
@86E: ES 00090 DFB SUB-1 <BX)
@86F: 7C 8ae91 DFB BK-1 <A
28781 AA vee92 DFB POPD- 1 <Cx)
@871: SF 20093 DFB RS-1 (B)
#872: E7 eeesa DFB CPR- <DX)
88731 @A 20e9s DFB BS-1 <C)
8874: 95 20096 DFB INR-1 CEX)
2875: SE 80097 DFB NUL-1 D)

BYTE November 1977 151

Listing 2, continued:

@876: DC
@877: SE

152 BYTE November 1977

ceo
e1
D8
eo
el
CF

20
el

80185
20186

ee209
eezle

80216
28217

SET

BK

STAT
STAT2

STAT3

INR
9

]
INR2

LDAT

POPD

PoP2
3

POP3
7

LDDAT

2
STDAT

STPAT

DCR2

SUB
CPR

fuB2

BR
BNC
BRI

BNG2
BC

ROL
(ROL.X)
#50
ROLs X
INR2
R@H» X
(ROL,X)
ROL

250

ROH
STAT3
50
POP2

DCR
(ROL,X)

BNC2
(RISL),Y
BR2

RISL
RISL

RISH
R1SH

BR
A

P@H, X
BRI

ROH. X
BRI

ROL, X
ROH, X
BR1

ROL, X
R@H, X
BRI

ROL» X
ROH, X

CFX)

CE)
CUNUSED)
F)

ALWAYS TAKEN
MOVE RX TO RO

MOVE R@ TO RX

STORE BYTE INDIRECT
INDLCATE R@ 15 RESULT REG
INCR RX

LOAD INDIRECT (RX)
TO0 RO

ZERO HIGH-ORDER R@ BYTE

POP HIGH-ORDER BYTE @RX
SAVE IN Y-REG

DECR RX

LOW-ORDER BYTE

TO RO

INDICATE RP AS LAST
RESULT REG

LOV BYTE TO R@, INCR RX
HIGH-ORDER BYTE TO R@

INCR RX

STORE INDIRECT LOW-ORDER
BYTE AND INCR RX. THEN
STORE HI1GH-ORDER BYTE.
INCR RX AND RETURN

DECR RX

STORE R@ LOW BYTE €RX

INDICATE R@ AS LAST
RESULT REG

DECR RX

RESULT TO R@
NOTE Y-REG = 13%2 FOR CPR

R@-RX TO RY

LAST RESULT REG#2
CARRY TO LSB

RO+RX TO R@

R@ FOR RESULT

FINISH ADD

NOTE X-REG 1S 12#2!
PUSH LOW PC BYTE VIA RI2

PUSH HIGH-ORDE®R PC BYTE

NO CARRY TEST
DISPLACEMENT BYTE

ADD TO PC

DOUBLE RESULT-REG INDEX
TO X-REG FOR INDEXING
TEST FOR PLUS

BRANCH IF SO

DOUBLE RESULT-REG INDEX

TEST FOR MINUS

DOUBLE RESULT-REG INDEX
TEST FOR 7ZERO
(BOTH BYTES)
BRANCH 1F SO
DOUBLE RESULT-REG INDEX
TEST FOR NONZE®O
(BOTH BYTES)
BRANCH IF SO
DOUBLE RESULT-PEG 1NDEX
CHECK BOTH BYTES

FOR 3FF (MINUS 1>

memory locations like 6502 instructions.
The main loop at SW16B repeatedly calls
the “‘execute instruction” routine at SW16C
which examines one op code for type and
branches to the appropriate subroutine to
execute it.

Subroutine SW16C increments the pro-
gram counter (R15) and fetches the next op
code which is either a register operation of
the form OP REG (2 hexadecimal digits)
with OP between hexadecimal 1 and F, or
a nonregister operation of the form 0 OP
with OP between hexadecimal 0 and D.
Assuming a register operation, the register
specification is doubled to account for the
2 byte SWEET16 registers and placed in the
X register for indexing. Then the instruc-
tion type is determined. Register operations
place the doubled register specification in
the high order byte of R14 indicating the
“prior result register” to subsequent branch
instructions. Nonregister operations treat the
register specification (right-hand half-byte)
as their op code, increment the SWEET16
PC to point at the displacement byte of
branch instructions, load the A-Reg with the
“prior result register” index for branch
condition testing, and clear the Y-Reg.

When Is an RTS Really a JSR?

Each instruction type has a corresponding
subroutine. The subroutine entry points are
stored in a table which is directly indexed by
the op code. By assigning all the entries to a
common page, only a single byte of address
need be stored per routine. The 6502 in-
direct jJump might have been used as follows

to transfer control to the appropriate
subroutine:
LDA #ADRH High order address byte
STA IND+1

LDA OPTBL,X Low order byte
STA IND
JMP (IND)

To save code the subroutine entry address
(minus 1) is pushed onto the stack, high
order byte first. A 6502 RTS (ReTurn from
Subroutine) is used to pop the address off
the stack and into the 6502 program counter
(after incrementing by 1). The net result is
that the desired subroutine is reached by
executing a subroutine return instruction!
[This ironic situation is an example of what
is commonly referred to as ‘‘cleverness.”]

Op Code Subroutines

The register operation routines make use
of the 6502 “zero page indexed by X" and
“indexed by X indirect” addressing modes
to access the specified registers and indirect
data. The “result” of most register ops is left

Listing 2, continued.:

0950: 49 FF 20218 EOR #SFF

9952: F@ Ca4 20219 BEQ BR1 BRANCH IF SO
2954: 60 00220 RTS 7
2955: @A ©@221 BNMI ASL A DOUBLE RESULT-REG INDEX
29561 AA 08222 TAX
@957: BS @@ 00223 LDA ROL.,X
8959: 35 @1 se224 AND R@H,X CHK BOTH BYTES FOR NO SFF
@95B: 49 FF @ee22s EOR #SFF
@95D: D@ B9 e@226 BNE BRI BRANCH IF NOT MINUS 1|
B95F: 60 20227 NUL RTS
09608: A2 18 00228 RS LDx #$18 122 FOR P12 AS STK PNTR
@962: 20 DD 08 0@229 JSR DCR DECR STACK POINTER
8965: Al 08 00230 LDA (R@L,X) POP HIGH RETURN ADR TO PC
2967: 85 IF @e231 STA RISH
©969: 20 DD @8 @@232 JSR DCR SAME FOR LOW-ORDER BYTE
896C: Al 00 2233 LDA (R@EL,X)
@96E: B85 1E 08234 STA RISL
@970: 60 80235 RTS
©971: 4C 3E @8 ©@236 RTN JMP RTNZ

20237 *

00238 * REG SAVE/RESTORE ROUTINES
80239 * FOR NON-APPLE-I1 SYSTEMS

80240 *
20241 ASAYV EPZ 345
80242 XSAV EPZ $46
20243 YSAV EPZ 347
20244 PSAV EPZ 548
2974: 85 45 00245 SAVE STA ASAV
29761 86 46 Bo246 STX XSAV SAVE 6502 REG CONTENTS.
2578: 84 47 20247 STY YSAV
0974 08 20248 PHP
@97B: 68 00249 PLA
@97Ct 85 48 20250 STA PSAv
897E: 60 20251 RTS
297F: AS 48 80252 RESTORE LDA PSAV
0981: 48 00253 PHA
2982: AS 45 00254 LDA ASAV
2984: A6 46 20255 LDX XSAV RESTORE 6502 REG CONTENTS.
#9861 A4 47 00256 LDY YSAV
2988: 28 00257 PLP
2989: 68 20258 RTS
Table 1:
SWEET16 OP CODE SUMMARY
Register Ops Nonregister Ops
00 RTN (Return to 6502 mode)
1n SET Rn Constant (Set) 01 BRea (Branch always)
2n LD Rn (Load) 02 BNCea (Branch if No Carry)
3n ST Rn (Store) 03 BCea (Branch if Carry)
4n LD @Rn (Load indirect) 04 BPea (Branch if Plus)
5n ST @Rn (Store indirect) 05 BMea (Branch if Minus)

6n LDD @Rn (Load double indirect) 06 BZea (Branch if Zero)
7n STD @Rn (Store double indirect) 07 BNZea (Branch if NonZero)

8n POP @Rn (Pop indirect) 08 BM1ea (Branch if Minus 1)

9n STP @Rn (Store pop indirect) 09 BNM1 ea (Branch if Not Minus 1)
An ADD Rn (Add) OA BKea (Break)

Bn SUB Rn (Sub) 0B RS (Return from Subroutine)
Cn POPD @Rn (Pop double indirect) 0C BSea (Branch to Subroutine)
Dn CPR Rn (Compare) oD (Unassigned)

En INR Rn (Increment) 0E (Unassigned)

Fn DCR Rn (Decrement) OF {Unassigned)

SWEET16 Operation Code Summary: Table 1 summarizes the list of SWEET 16 opera-
tion codes, which are explained in further detail one by one in the descriptions which
follow the table. The program of listing 2 implements the execution of these interpretive
codes after a call to the entry point SW16. Return to the calling program and normal
noninterpretive operation is accomplished with the RTN mnemonic of SWEET16.

SWEET16 — REGISTER OPERATIONS

SET Rn, Constant [T nl [Iole | hilgh I (Set)
e

constant
The 2 byte constant is loaded into Rn (n = 0 to F, hexadecimal) and branch condi-
tions set accordingly. The carry is cleared.
Example:
15 34 A0 SET R5, A034 R5 now contains A034

LDRn (Load)

The ACC (RO) is loaded from Rn and branch conditions set according to the data
transferred. The carry is cleared and the contents of Rn are not disturbed.

Example:
15 34 AO SET R5, A034
25 LD R5 ACC now contains A034

154 BYTE November 1977

in the specified register and can be sensed by
subsequent branch instructions since the
register specification is saved in the high
order byte of R14. This specification is
changed to indicate RO (ACC) for ADD and
SUB instructions and R13 for the CPR
(compare) instruction.

Normally the high order R14 byte holds
the “prior result register’” index times 2 to
account for the 2 byte SWEET16 registers,
and thus the least significant bit is zero. If
ADD, SUB or CPR instructions generate
carries, then this index is incremented, set-
ting the least significant bit, which becomes
a carry flag.

The SET instruction increments the pro-
gram counter twice, picking up data bytes
for the specified register. In accordance with
6502 convention, the low order data byte
precedes the high order byte.

Most SWEET16 nonregister operations
are relative branches. The corresponding
subroutines determine whether or not the
“prior result” meets the specified branch
condition and if so update the SWEET16
program counter by adding the displacement
value (—128 to +127 bytes).

The RTN operation restores the 6502
register contents, pops the subroutine return
stack and jumps indirect through the
SWEET16 program counter register. This
transfers control to the 6502 at the instruc-
tion immediately following the RTN in-
struction.

The BK operation actually executes a
6502 break instruction (BRK), transferring
control to the interrupt handler.

Any number of subroutine levels may be
implemented within SWEET16 code via the
BS (Branch to Subroutine) and RS (Return
from Subroutine) instructions. The user
must initialize and otherwise not disturb
R12 if the SWEET16 subroutine capability
is used since it is utilized as the automatic
subroutine return stack pointer.

Memory Allocation and User Modifications

The only storage that must be allocated
for SWEET16 variables are 32 consecutive
locations in page zero for the SWEET16
registers, four locations to save the 6502
register contents, and a few levels of the
6502 subroutine return address stack. If you
don’t need to preserve the 6502 register
contents, delete the SAVE and RESTORE
subroutines and the corresponding sub-
routine calls. This will free the four page
zero locations ASAV, XSAV, YSAV and
PSAV.

You may wish to add some of your own

Text continued on page 159

ST Rn (Store)

The ACC (RO) is stored into Rn and branch conditions set according to the data
transferred. The carry is cleared and the ACC contents are not disturbed.

Example:
25 LD R5 Copy the contents
36 ST R6 of R5 to R6.

The low order ACC byte is loaded from the memory location whose address resides
in Rn, and the high order ACC byte is cleared. Branch conditions reflect the final
ACC contents which will always be positive and never minus 1. The carry is cleared.
After the transfer, Rn is incremented by 1.

(Load indirect)

Example:
15 34 A0 SET R5, A034
45 LD @RS ACC is loaded from

memory location A034
and R5 is incremented
to A035.

ST @Rn Iﬂ (Store indirect)
The low order ACC byte is stored into the memory location whose address resides in
Rn. Branch conditions reflect the 2 byte ACC contents. The carry is cleared. After
the transfer, Rn is incremented by 1.

Example:
15 34 A0 SET R5, A034 Load pointers R5 and R6
16 22 90 SET R6, 9022 with A034 and 9022.
45 LD @R5 Move a byte from location
56 ST @R6 A034 to location 9022. Both

pointers are incremented.

LDD @Rn (Load double byte indirect)
The low order ACC byte is loaded from the memory location whose address resides
in Rn, and Rn is then incremented by 1. The high order ACC byte is loaded from the
memory location whose address resides in the (incremented) Rn and Rn is again
incremented by 1. Branch conditions reflect the final ACC contents. The carry is
cleared.

Example:

15 34 A0 SET R5, A034

65 LDD @R5 The low order ACC byte is
loaded from location A034,
the high order by te from
location A035. R5 is incre-
mented to A036.

STD @Rn (Store double by te indirect)

The low order ACC byte is stored into the memory location whose address resides in
Rn, and Rn is then incremented by 1. The high order ACC byte is stored into the
memory location whose address resides in (the incremented) Rn and Rn is again
incremented by 1. Branch conditions reflect the ACC contents which are not dis-
turbed. The carry is cleared.

Example:
15 34 A0 SET R5, A034 Load pointers R5 and R6
16 22 90 SET R6, 9022 with A034 and 9022. Move
65 LDD @R5 double byte from locations
76 STD @R6 A034 and A035 to locations

9022 and 9023. Both pointers
are incremented by 2.

Circle 81 on inquiry card.

FINALLY.

A State-of-the-Art
Tool For
Software Design.

And at an affordable price. The
Modu-Learn™ home study course
from Logical Services.

Now you can learn microcomputer
programming in ten comprehensible
lessons. At home. In your own time. At
your own pace.

You learn to solve complex problems
by breaking them down into easily
programmed modules. Prepared by
professional design engineers, the
Modu-Learn™ course presents sys-
tematic software design techniques,
structured program design, and prac-
tical examples from real 8080A
micro-computer applications. All in a
modular sequence of 10 lessons . . .
more than 500 pages, bound into one
practical notebook for easy reference.
You get diverse examples, problems,
and solutions. With thorough back-
ground material on micro-computer
architecture, hardware/software trade-
offs, and useful reference tables. All
for only $49.95.

For $49.95 you learn design tech-
niques that make software work for
you. Modu-Learn™ starts with the
basics. Our problem-solution ap-
proach enables you to “graduate’ as
a programmer.

See Modu-Learn™ at your local com-
puter store or order now using the

[}

= Please send the Modu-Learmn™ course fo
= me to examine.Enclosed is $49.95 (plus
=$2.00 postage and handling) or my =
E Mastercharge/Bankamericard authonzaE
= tion. -

= Name:

= Address:
= City: State:
-

= Card #
-

= Expiration date:

[4)
Q
e}
5
£
o

=711 Stierlin Road

= Mountain View, CA 94043
5(415) 965-8365 =
= GREEEEENN NN ER NN AR NRN -

LOGICAL

SERVICES INCORPORATED

BYTE November 1977 155

IT ALL ADDS UP TO
EDUCATIONAL

h tors of the original Pocket
Calculator Game Book now present two
fun-filled new. game hook

place in ¢

THE KIDS’ POCKET CALCULATOR

GAME BOOK

by Edwin Schiossberg and

John Brockman

A quick trip through elementary mathe-
matics — fun and games with real purpose
The first book of its kind for kids from
kindergarten through college Hllustrated
with line drawings and cartoons

$6.95 hardcover $3.95 paperbound

THE POCKET CALCULATOR

GAME BOOK #2

by Edwin Schiossberg and

John Brockman

Even more popular in approach than its
famous predecessor, this book is
simpler, more accessible, and its games
are more mathematically basic
lilustrated with line drawings and
cartoons

$6.95 hardcover $3.95 paperbound

FAWILLIAM MORROW

156 BYTE November 1977

POP @Rn (Pop indirect)

The low order ACC byte is loaded from the memory location whose address resides
in Rn after Rn is decremented by 1 and the high order ACC byte is cleared. Branch
conditions reflect the final 2 byte ACC contents which will always be positive and
never minus 1. The carry is cleared. Because Rn is decremented prior to loading the
ACC, single byte stacks may be implemented with the ST @Rn and POP @Rn opera-
tions (Rn is the stack pointer).

Example:
15 34 A0 SET R5, A034 Init stack pointer.
10 04 00 SET RO, 4 Load 4 into ACC.
35 ST @RS Push 4 onto stack.
10 05 00 SET RO, 5 Load 5 into ACC.
35 ST @R5 Push 5 onto stack.
10 06 00 SET RO, 6 Load 6 into ACC.
35 ST @R5 Push 6 onto stack.
85 POP @R5 Pop 6 off stack into ACC.
85 POP @R5 Pop 5 off stack.
85 POP @RS Pop 4 off stack.

STP @Rn (Store pop indirect)

The low order ACC byte is stored into the memory location whose address resides in
Rn after Rn is decremented by 1. Then the high order ACC byte is stored into the
memory location whose address resides in Rn after Rn is again decremented by 1.
Branch conditions will reflect the 2 byte ACC contents which are not modified. STP
@Rn and PLA @Rn are used together to move data blocks beginning at the greatest
address and working down. Additionally, single byte stacks may be implemented
with the STP @Rn and LDA @Rn ops.

Example:
14 34 A0 SET R4, A034 Init pointers.
15 22 90 SET R5, 9022
84 POP @R4 Move byte from A033
95 STP @R5 to 9021,
84 POP @R4 Move byte from A032
95 STP @R5 t0 9020

ADD Rn (Add)

The contents of Rn are added to the contents of the ACC (RO) and the low order
16 bits of the sum restored in ACC. The 17th sum bit becomes the carry and other
branch conditions reflect the final ACC contents.

Example:
10 34 76 SET RO, 7634 Init RO (ACC)
11 27 42 SET R1, 4227 and R1.
A1l ADD R1 Add R1 (sum = B85B,
carry clear)
A0 ADD RO Double ACC (R0) to 70B6

with carry set.

SUB Rn (Subtract)

The contents of Rn are subtracted from the ACC contents by performing a two’s
complement addition:

ACC ACC+Rn+1
The low order 16 bits of the subtraction are restored in the ACC. The 17th sum bit
becomes the carry and other branch conditions reflect the final ACC contents. If the

16 bit unsigned ACC contents are greater than or equal to the 16 bit unsigned Rn
contents then the carry is set, otherwise it is cleared. Rn is not disturbed.

Example:
10 34 76 SET RO, 7634 Init RO (ACC)
11 27 42 SET R1, 4227 and R1.
Al suB R1 Subtract R1 (diff = 340D
with carry set)
A0 SuB RO Clears ACC (RO)

Circle 16 on inquiry card.

POPD @Rn (POP Double byte indirect)

Rn is decremented by 1 and the high order ACC byte is loaded from the memory
location whose address now resides in Rn. Then Rn is again decremented by 1 and
the low order ACC byte is loaded from the corresponding memory location. Branch ¥ 3 "
conditions reflect the final ACC contents. The carry is cleared. Because Rn is decre- &
mented prior to loading each of the ACC halves, double byte stacks may be imple- Sh()pplng f()r a compute]‘
mented with the STD @ Rn and POPD @ Rn operations. (Rn is the stack pointer).

at the ByteShop

Example:

15 34 AQ SET RG, A034 Init stack pointer. isalmost as

10 12 AA SET RO, AA12 Load AA12 into ACC. b 4

75 STD @RS5 Push AA12 onto stack. much funas bulldlng one.
10 34 BB SET RO, BB34 Load BB34 into ACC. c - ; And atford

75 STD @RS Push BB34 onto stack. OmpUters arE (. And aflord.

10 56 CC SET RO, CC56 Load CC56 into ACC able. Thousands of people are

75 STD @RS’ * already using personal computers

c5 POPD @R5 Pop CCB6 off stack for TV games, video color

c5 POPD @R5 Pop BB34 off stack- graphics, digital music and lots of

c5 POPD @R5 Pog AN offsack things nobody ever dreamed of

— till now.

Until we came along the

toughest part about getting started
CPR Rn (Compare) with computers was shopping for

one. Now you can visit a Byte Shop
and put your hands on a wide
variety of personal, hobby and
business computers.

The ACC (RO) contents are compared to Rn by performing the 16 bit binary sub-
traction ACC-Rn and storing the low order 16 difference bits in R13 for subsequent
branch tests. If the 16 bit unsigned ACC contents are greater than or equal to the 16

bit unsigned Rn contents then the carry is set, otherwise it is cleared. No other Arizona Boulder
registers, including ACC and Rn, are disturbed. Phoeniy - Last 2040 30th St
813 N. Scotisdale Rd. Florida

Example: Waat e Suite 4
54 N. 28t Ve 225 N. Atlantic Ave.; dSuite
15 34 A0 SET: R5, A034 Pointer to memory. TFupson Lk It Lauderdale ‘
16 BF A0 SET R6, AOBF Limit address. 2612 . Brouadway 1044 £ Oukland Park
10 00 00 LOOP SET RO, 0 Zero data. f;”_";"j[’f‘f“ TR Ko
75 STD @R5 Clear 2 locs, incr R5 by 2. vl Todiins
25 LD R5 Compare pointer R5 Burbank Indiunapolis Notth
D6 CPR R6 to limit R6. 1812 W. Burbank Blvd :(“’)47} 82nd St
02 F8 BNC LOOP Loop if carry clear. S il

Diablo Valle 5815 Johnson Drive
2989 N. M St. Minnesota

Fairfield Puagan

119 Oak Strect 1434 Yankes Doodle Rd
INR Rn {Increment) Lresno Montana
3139 L. McKinley Ave Billings
i

The contents of Rn are incremented by 1. The carry is cleared and other branch ',‘i"“‘ 4 1UTCang Avc; Sinie 3

e o 22B* Strect New Y.
conditions reflect the incremented value. Los Angeles ?‘:\,,‘\.:\"'t
3030 W. Olympic Bivd 7 e §
Example: Iawndule - ;’{j}i:y‘!\l‘:i\p 1ead Turnpik
16 34 A0 SET R5, A034 Init R5 (pointer) bl et
ong Beac i
10 00 00 SET RO, 0 Zero to RO. S433 £ Steams St. b
55 ST @R5 Clears loc A034 and incrs 3'@"5;“1‘; Del Rey 19524 Center Ridge Rd
R5 to AO35. Admiralty Way :::f%:’,"m"
E5 INR R5 Incr RS to A036 Mountain View 3482 SW Cedar Hills Bivd.
55 ST @R5 Clears loc A036 (not A035) 1063 W. kI Camino Real. - b, 1j0ng
Pulo Alto 2033 SW 4ih
2233 Fl Camino Real Verwsylvinia
Pasadena ;
Bryn Mawt
CEN ko 1045 W. Lancaster Ave
acentis Rl
DCR Rn - (Decrement) S bt North Carolina
; SaeHim el o lsboroueh Street
The contents of Rn are decremented by 1. The carry is cleared and other branch 6041 Greenback Line G
conditions reflect the decremented value. pur iR Columbia
250 Vickers-
. B 4 2018 Green St
Example: (Clear nine bytes beginning at loc A034) ?):';Z';'\',‘k‘::::’”";:'v*d‘ Utah il
15 34 A0 SET R5, A034 Init pointer. San L rancisco ?6"" Hild oy
14 09 00 SET R4, 9 Init count. 321 Pusific Ave. Wl
10 00 00 SET RO, 0 Zero ACC. Bellevue
55 LOOP ST @R5 Clear a mem byte. Stoekton 14701 NI 20th Ave.
F4 DCR R4 Decr count, 7910 N. Eldorado St ‘vﬂ"uda
: Thousand Ouks ancouver
07 FC BNZ LOOP Loop until zero. 2707 Thousand Oaks Blvd. 2151 Burrurd St
Vetitari Winnipes
1555 Morse Ave. 665 Century St.
SWEET 16 Nonregister Instructions Westminster Japan
14300 Beach Blvd. Tokyo

Yoioes swa Bldg., 145+
RTN (Return to 6502 mode) (A‘;II‘}:ridI:t: County é:“:"k::g:" .
3464 S. Acoma St
Control is returned to the 6502 and program execution continues at the location
immediately following the RTN instruction. The 6502 registers and status conditions BVTE S D
are restored to their original contents (prior entering SWEET16 mode). i

the affordable computer store

BYTE November 1977 157

Circle 135 on inquiry card.

(WARBLE ALARM

CAR-VAN CLOCK
WITH HEADLIGHT ALARM

ELAPSED TIMER

SECONDS DISPLAY SWITCH

9MINUTE SNOOZE ALARM

SIMPLE 4 WIRE HOOK-UP

JUMBO %" LED DISPLAY

17059 MINUTE COUNTDOWN
TIME™ “INS SIMULTANEOUSLY
WITH CLOCK!

RUGGED ABS CASE
COMPLETE KIT $35.95 . quanrzcavstac
ASSEMBLED $45.95 ACCURACY

DIGITAL AUTO INSTRUMENTS
#1 TAcHOMETER SEVEN MODELS!
%2 WATER TEMP KIT INCLUDES
#3 FUEL LEVEL CASE & ALL HARDWARE
#0 SPEEDOMETER®
#5 OIL PRESSURE
%6 OIL TEMP.
7 BATTERY MONITOR

FEATURES:
4 ORANGE LED'S

AW x4 2" ABS CASE
“ADD $10 FOR REQUIRED SPEED SENDER . $15 FOR SPEED SENDER ALONE

KIT: $49.95. ASSEMBLED: $59.95

BR ea (Branch Always)
An effective address (ea) is calculated by adding the signed displacement byte (dd)
to the program counter. The program counter contains the address of the instruction
immediately fo/lowing the BR, or the address of the BR operation plus 2. The dis-
placement is a signed two's complement value from —128 to +127. Branch conditions
are not changed. Note that effective address calculation is identical to that for 6502
relative branches.
Some examples:
dd = $80 ea=PC+2—128
dd = $81 ea=PC+2-127
dd=8$FF ea=PC+2 -1
dd = $00 ea=PC+2+0
dd = $01 ea=PC+2+1
dd = $7E ea=PC+2+126
dd = $7F ea=PC+2+127
Example:
$300: 01 50 BR $352

ELECTRONIC ‘PENDULUNM’ CLOCK

* SWING PENDULUM

* 7" HOURS AND MINUTES DISPLAY
* TIME SET PUSH BUTTONS

* ALARM FEATURE

KIT-UNFINISHEDCASE
ASSEMBLED-STAINED CASE .

QUARTZ DIGITAL AUTO CLOCK

OR ELAPSED TIMER!
ELAPSED TIMER: HRS, MINS & SECS
SIMPLE PUSHBUTTON RESET &
HOLD TOGGLE SWITCH

KIT INCLUDES EVERYTHING,
NOTHING ELSE TO BUY! 4" LEDS!

NON POLAR INPUT!
12 OR 24 HR MODE
DIMENSIONS: 4%7 x 4 x 2

KIT: $27.95.

NOW WITH
ELAPSED

E!
o 3% DIGITAL CLOCK
« aoicirxr . $89.95 . 4o assemsren. $59.95
o 6DIGITKIT $ﬁg_95 * 6DIGIT ASSEMBLED $7g'g5

117 VAC - 12 0R 24 HR MODE KIT COMES COMPLETE!
6.DIGIT VERSION: 27" x 5" x 14", 4 DIGIT VERSION: 18" x 5 x 1%”

TV-WALL CLOCK . wrvac

+ 25" VIEWING DISTANCE

+ 6" HOURS & MINUTES
+ .3"SECONDS
« COMPLETE WITH WOOD CASE

KIT: $34.95. ASSEMBLED: $39.95
ECONOMY CAR CLOCK

« %" LEDMODULE! i i

+ COMPLETE WITH CASE,
BRACKET & TIME SET
PUSHBUTTONS

« ALARM OPTION

KIT: $19.95..

BNC ea (Branch if No Carry)
A branch to the effective address is taken only if the carry is clear, otherwise execu-
tion resumes as normal with the next instruction. Branch conditions are not changed.

BC ea (Branch if Carry set)

A branch is effected only if the carry is set. Branch conditions are not changed.

(Branch if Plus)

A branch is effected only if the prior "result’’ (or most recently transferred data) was
positive. Branch conditions are not changed.

Example: (Clear mem from loc A034 to AO3F)

15 34 A0 SET R5, A034 Init pointer.

14 3F A0 SET R4, AO3F Init limit.

10 00 00 LOOP SET RO, 0

55 ST @R5 Clear mem byte, incr R5.

24 LD R4 Compare limit to
D5 CPR R5 pointer.
04 F8 BP LOOP Loop until done.

BM ea (Branch if Minus)
A branch is effected only if the prior “'result’” was minus (negative, MSB = 1). Branch
conditions are not changed.

(Branch if Zero)

A branch is effected only if the prior “result’” was zero. Branch conditions are not
changed.

PENDU TG A G 06 it miT

SIMPLE HOOK UP TO ANY CLOCK

case withsracker $3.75

BNZ ea ‘ (Branch if NonZero)
A branch is effected only if the prior “‘result’’ was nonzero. Branch conditions are
not changed.

MARK FOSKETS'
SOLID STATE TIME

P.O. BOX 2159

DUBLIN, CALIF. 94866

s ORDERS (415) 828-1923
precgerey 24 HR
Ry oLonE

(Branch if Minus 1)

i

A branch is effected only if the prior “result’” was minus 1 ($§FFFF hexadecimal).
Branch conditions are not changed.

BNM1 ea (Branch if Not Minus 1)
A branch is effected only if the prior "‘result’” was not minus 1 ($FFFF hexa-
decimal). Branch conditions are not changed.

__ CALIFORNIA RESIDENTS - ADD 6% SALES TAX)

168 BYTE November 1977

Text continued from page 154

instructions to this implementation of
SWEETI16. If you use the unassigned op
codes $OE and $OF, remember that
SWEET16 treats these as 2 byte instructions.
You may wish to handle the break instruc-
tion as a SWEET16 call, saving two bytes of
code each time you transfer into SWEET16
mode. Or you may wish to use the
SWEET16 BK (Break) operation as a
“CHAROUT” call in the interrupt handler.
You can perform absolute jumps within
SWEET16 by loading the ACC (RO) with the
address you wish to jump to (minus 1) and
executing a ST R15 instruction.

And as a final thought, the ultimate
modification for those who do not use the
6502 processor would be to implement a
version of SWEET16 for some other micro-
processor design. The idea of a low level
interpretive processor can be fruitfully
implemented for a number of purposes, and
achieves a limited sort of machine inde-
pendence for the interpretive execution
strings. | found this technique most useful
for the implementation of much of the
software of the Apple Il computer; | leave it
to readers to explore further possibilities for
SWEET16.m

BRK (Break)

A 6502 BRK (break) instruction is executed. SWEET16 may be reentered non-
destructively at SW16D after correcting the stack pointer to its value prior to
executing the BRK.

(Return from
RS SWEET16 Subroutine)
RS terminates execution of a SWEET16 subroutine and returns to the SWEET16
calling program which resumes execution (in SWEET16 mode). R12, which is the
SWEET16 subroutine return stack pointer, is decremented twice. Branch conditions
are not changed.

Branch to

BSea SWEET 16 Subroutine

A branch to the effective address (PC + 2 + d) is taken and execution is resumed in
SWEET16 mode. The current PC is pushed onto a 'SWEET16 subroutine return
address’’ stack whose pointer is R12, and R12 is incremented by 2. The carry is
cleared and branch conditions set to indicate the current ACC contents.

Example: (Calling a ‘‘'memory move'’ subroutine to move A034—A03B
to 3000—3007)

300: 15 34 A0 SET R5, A034 Init pointer 1.

303: 14 3B A0 SET R4, A03B Init limit 1.

306: 16 00 30 SET R6, 3000 Init pointer 2.

309: 0C 15 BS MOVE Call move subroutine.
320: 45 MOVE LD @RS Move one

321: 56 ST @R6 byte.

322: 24 LD R4

B23-D8 CPR R5 Testif done.

324: 04 FA BP MOVE

326: 0B RS Return.

~

Send now to:

BYTE Interface Technical Services, Inc.
70 Main St
Peterborough NH 03458

The Best of BYTE, Volume 1

7

The volume we have all been waiting for! The answer to those unavailable early issues of
BYTE. Best of BYTE, edited by Carl Helmers Jr and David Ahl. This 384 page book is
packed with a majority of material from the first 12 issues. Included are 146 pages
devoted to ““Hardware’’ and how-to articles ranging from TV displays to joysticks to
cassette interfaces, along with a section devoted to kit building which describes seven
major kits. “Software and Applications’ is the other side of the coin: on-line debuggers
to games to a complete small business accounting system is included in this 125 page
section. A section on ““Theory’ examines the how and why behind the circuits and
programs. “‘Opinion” closes the book with a look ahead, as to where this new hobby is
heading. It is now available through BITS Inc for only $11.95 and 50 cents postage.

VT SEETE TSR R R S e e |

| Address

City State

Zip

|
|
|
|
{ The Best of BYTE, Volume 1
|
|
|

Price of Book $

Postage, 50 cents $

Total $
O Check enclosed
| @ 0 Bill MC # Exp. Date
| m‘ O Bill BA # Exp. Date
I Signature

All orders must be prepaid.

= You may photocopy this page if you wish to leave your BYTE intact.

Circle 12 on inquiry card.

BYTE November 1977

159

