Hal Chamberlin
29 Mead St
Manchester NH 03104

A Sampling of Techniques for

Computer music is probably once of the
most talked about serious applications for
home computers. By serious | mean an appli-
cation that has a degree of complexity and
open-cndedness which can totally preoccupy
experimenters and funded institutions for
years. Computer performance of music is a
discipline so vast that the final, “best” tech-
nique for its implementation or even a good
definition of such a lechnique may never be
discovered.

At the same lime, compuler music is an
casy field to break into. With only minimal
effort and expenditure a very impressive
(to the uninitiated) music performance
demonstration may be put together. With a
little more work a system may be assembled
which is ol great value to other family mem-
bers, particularly children just starting to
learn music theory. Such a system could, for
example, climinate manual dexterity as a
factor in a child's musical development.
Finally, on the highest level, it is no Jonger
very difficult to break inlo wruly original
rescarch in serious performance of music by
computer. The advances in digital and linear
integrated circuits have made putting to-
gether the hardware system lor supporting
such research largely a matter of clever sys-
tem design rather than brute financial
strength. Programming, tempered with
musical knowledge, is the real key o ob-
taining significant results. Thus, in the
future, hobbyists working with their own
systems will be making important contribu-
tions toward advancement of the computer
music art.

While the scope of one article cannot

62

Computer Performance of Music

fully cover such an extensive topic, it
should serve to acquaint the reader with the
more popular techniques, their implemen-
tation, strengths, weaknesses, and ultimate
potential.

Generally, all computer music perlor-
mance techniques can be classified into two
generic groups. The first includes schemes
in which the computer generates the sound
directly. The second covers systems where
the computer acts as a controller for exter-
nal sound genecration apparatus such as an
electronic organ or sound synthesizer.

Early Techniques

Just as soon as standard commercial com-
puters such as the IBM 709 and, later, the
1401 made their appearance, programmers
started to do frivolous things with them
after hours, such as playing games and
music. Since elementary monotonic (one
nole at a time) music is just a series of tones
with different frequencies and durations,
and since a computer can be a very precise
timing device, it did not take long for
these early tinkerers to figure out how to
get the machine to play such music. The
fundamental concept used was that of a
timed loop.

A timed loop is a series of machine
language instructions which are carelully
chosen for their execution lime as well
as function, and which are organized into a
loop. Some of the instructions implement a
counter that controls the number of passes
through the loop before exiting.

Let’s examine some fundamental

timed loop relationships. If the sum total
execution time of the instructions in the
loop is M microseconds then we have a
loop freguency of

108
M) Hertz {cycles per second).

If the initial value of the decrementing
counter that controls the number of loop
passes is N, then the total execution lime
before exit from the loop is (MxN) micro-
seconds. Thus what we really have is a
“tone" with a frequency of

6
(%‘)Hertz

and a duration of

MxN
106 seconds.

Using different loops with more or fewer in-
structions will give us different Ms and thus
different notes. Using different Ns when
entering these loops gives different durations
for the notes, and so we have satisfied the
definition of elementary monotonic music.

Of course at this point the computer is
mercly humming to itself. Several techni-
ques, some of them quite strange, have
cvolved to make the humming audible to
mortals.

One such method that doesn’t even re-
quire a connection to the computer is to
use an AM portable radio tuned to a quiet
spot on the broadcast band and held closc
to the computer. Viola! /Sic/ The humming
rings forth in loud, relatively clear notes.
As a matter of fact, music programs using
this form of output were very popular in
the “early days™ when most small system
computers had only 256 bytes of memory
and no 10 peripherals except the front
panel.

What is actually happening is that the
internal logic circuitry with its Fast rise
time pulses is spewing harmonics that
extend up into the broadcast band region of
the radio spectrum. Since some logic gates
will undoubtedly switch only once per
loop iteration, the harmonics of the swit-
ching will be separated in frequency by the
switching or loop frequency. Those high
frequency harmonics that fall within the
passband of the radio are treated as a
“carrier” and a bunch of equally spaced
nearly equal amplitude sidebands. The
radio’s detector generates an output fre-
quency equal to the common differences of
all these sidebands, which is the loop fre-
quency and its harmonics. The timbre of the
resulting tones is altered somewhat by the

choice of instructions in the loop, but basfc-
ally has a flat audio spectrum like that of
a narrow pulse waveform. Noise and distor-
tion arise lrom other logic circuitry in the
computer which switches erratically with
respect to the limed loops. One practical
difficulty with this method is there is no
clearly identifiable way to get the com-
puter to ‘“shut up” for rests or space be-
tween identical notes.

The Hammer-Klavier

Other carly methods used some kind of
output peripheral to make sound. In a
demonstration of an IBM 1407 over z de-
cade ago this was literally true: the com-
puter played a line printer! It seems that the
hookup between a 1401 central processing
unit and the 1403 printer was such that
software had control of the printer hammer
timing. Each time a hammer was fired a
puilse of sound was emiited upon impact
with the paper. Using a timed loop program
with a print hammer fire instruction im-
bedded in the loop gave a raspy but accur-
ately pitched buzz. fit alfso tended to cause
{1BM customer engineers great trepid-
ation . . .CH/ This same scheme should also
be possible on some of the small, completely
software controlled dot matrix printers that
are now coming on the market.

A sane approach, however, is to connect
a speaker to an output port bit through an
amplifier. Instructions would then be placed
inside the timed loops to toggle the bit and
thus produce a clean, noise-free rectangular
wave.

Timed Loop Example

Let's look at an exampie of a timed loop
music playing program, not so much for its
musical value (which is negligable), but for
some Insight into what is involved, and also
to introduce some terms. The MOS Techno-
logy 6502 microprocessor will be used for
these examples. These programs are designed
to run on a KIM-1 system, and should run
on most ather 6502-based systems with very
minor modilications. Motorola 6800 users
should be able lo easily convert the pro-
grams into 6800 machine language. 8080
users will benefit most because successiul
conversion indicates a thorough under-
standing of the concepts involved.

DURATION
COUNT =—
DUR. ARG.

FREQUENCY
COUNT =—
FREQ. ARG.

DECREMENT
FREQUENCY
COUNT

PULSE
OuTPUT
PORT BIT

DECREMENT
DURATION
COUNT

RETURN

Figure 1. A basic tone generation subroutine. There are two nested loops in
this routine: the first, or inner loop controls the freguency (or pitch) of the
note to be generated, while the second, outer foop controls the duration of
the note. A train of square waves is generated at the output port bit which is
used to drive the circuit in figure 2 to produce an audible tone.

63

Note Frequency (Hz)
Middle C 261.62
c# 277.18
D 293.66
D# 311.13
E 320.63
F 349.23
F# 369.99
G 391.99
G# 415.30
A 440.00
a# 466.16
B 493.88

Table 1: Equally tempered
scale note frequencies in
Hertz. In order to deter-
mine frequencies of notes
in the higher octaves,
multiply by 2 for each
octave above this one. For
lower octaves, divide by 2
for each lower octave.

3.3K

The heart of the program is the tone gen-
eration subroutine which will be named
TONE. ldeally, such a routine would accept
as inpul two arguments: one related to the
pitch of the note and the other controlling
the duration. With such a subroutine avail-
able, playing a piece of music amounts to
simply fetching the arguments from a
“song" table in memory and calling the
routine for cach note to be played.

As mentioned previously, we could have
a separate, carefully timed loop for each
different tone frequency needed. TONE
would then call the proper one based on the
pitch parameter. Indeced this approach is
very accurate (to within 1 us on the 6502)
but a great deal of memory is consumed for
the 30 or so notes typically required. It also
lacks flexibility. (This will be discussed
later.) A better approach is to embed a
second, waiting loop to control the execu-
tion time of one pass through the outer
loop, and thus the tone’s frequency. Figure
1 is a flowchart illustrating this. When
using this scheme, the frequency argument
directly determines the number of times
through the inner, waiting loop and the
duration parameter directly determines
the number of times through the outer,
tone generation loop.

Now, how are the argument values
determined to get the frequencies and
durations desired? First the execution
time of the nested loops must be
determined. In the KIM-1 with a 1 MHz
clock and a 6502 the tightest inner waiting

33K

OUTPUT PORT BIT >

2N3638
(OR ALMOST ANY PNP
TRANSISTOR)

220
1/2W

ANY KIND
OF SPEAKER

e

10002
VoL

Figure 2: A speaker driver circuit designed to accept square or rectangular
waves and produce audible tones through a loudspeaker. In this particular
application the circuit is driven from an output port bit of a KIM-1 micro-
computer, although the circuit can accept any TTL compatible output port
bit. When the input to the circuit is a logical O level, the transistor turns on
and drives the speaker. When the input is a logical 1, the transistor turns off
and current to the speaker is interrupted.

64

loop that can be written is 5 us, assuming
that the inner loop count (frequency argu-
ment) is 256 or less and that it is held in a
register. The total time spent in the loop
is [(5xM)-1]) microseconds, where M is
the frequency argument and the -1 is due
to the shorter execution time of an un-
successful branch. (The observant reader
will note that the exccution time of some
6502 instructions is altered if they cross
a memory ‘‘page boundary”; thus, an
assumption of no page crossing is made.)
But there is still the time required for a pass
through the outer loop to output a puise and
decrement the duration counter. This is
termed ‘‘loop overhead.” For an example,
let's say that the loop overhead is 25 us.
As a result, the total outer loop time is
[(5xM)-1+25], or [(5xM)+24] microseconds
which is the period of the audio waveform
output. In order to determine the M re-
quired for a particular note, a table of note
frequencies (see table 1) is consulted. Then
the equation,

_ (106 -24)
M= (F_

5

where F is the desired frequency, is solved
for the nearest integer value of M. Lower
frequency notes are preferred so that the
percentage error incurred due to rounding M
is minimized. The duration argument is
actually a count of the number of audio
tone cycles which are to be generated for
the note, and thus its value is dependent on
the tone frequency as well as the duration.
Its value can be determined from the rela-
tion N=DxF, where N is the duration argu-
ment, D is the duration in seconds, and F is
the note frequency in Hertz.

As a complete example, let’s assume that
an cighth note G# an octave above middle
C is to be played, and that the piece is in
4/4 time with a metronome marking of 80
beats per minute. Since an eighth note in
this case is one half of a beat, the duration
will be

0.5x60
80

or 0.375 seconds. The note table shows that
the frequency of G# an octave above middle
C is 830.6 Hz, which vyields a frequency
argument of 236. The duration argument is
311. So if TONE is called with these para-
meters, a nice G# eighth note will be pro-
duced.

Now let's go a step further and look at a
practical “music peripheral” and TONE sub-
routine. Figure 2 shows a circuit for driving
a speaker from any kind of TTL compatible

Wave Harmonics

Duty

Cycle Fund 2 3 4 5 6 7 8 9 10
112 1.00 0 0333 0 0.200 © 0.143 0O 0111 0O

113 1.00 0500 0 0.250 0.200 ©Q 0.143 0125 0 0.100
114 1.00 0.707 0333 0 0.162 0.236 0143 0 0.111 0141
145 1.00 0.841 0561 0289 0 0.173 0.240 0G.210 0.116 0

116 1.00 0.867 0667 0433 0200 0 0.143 0.217 0222 0173

Table 2: Harmonic amplitudes of rectangular waves. Note that, unlike square waves, asymme-
trical rectangular waves contain even numbered harmonics. This simple technique of varying
the duty cycle of such waves can have an appreciable effect on the timbre of the resulting

sound.

output port bit, including those found in the
6530 “combo chips” used in the KIM-1.
When the output port bit is a logic O level,
the transistor turns on and drives a current
determined by the volume control setting
through the speaker. When the bit is a logic
1, the current is interrupted. Larger speakers
or even a high fidelity speaker system will
give a richer timbre to the lower pitched
tones. The AUX input to a sound system
may also be used instead of the transistor
circuit. Using a patch cord, connect the
shield to the common terminal of the power
supply and the center conductor to the
output port bit through a 10 K to 100 K
isolation resistor.

Listing 1 shows an assembled listing of a
practical timed loop tone generation sub-
routine for the 6502 microprocessor. Several
refinements beyond the flowcharted
example have been made to improve tone
quality and flexibility. The inner waiting
loop has been split into two loops. The first
loop determines the length of time that the
output rectangular waveform is to be a
logic 1 and the second loop determines the
0 time. If both loops receive the same
frequency argument (which they do as
written) and the loop time of both loops is
the same, then a symmetrical square wave
output is produced. However, if one or more
“do nothing” instructions is inserted into
one of the two loops, the output waveform
will become nonsymmetrical. The signifi-
cance of this is that the rectangular wave-
form’s duty cycle affects its harmonic
spectrum, and thus its timbre. In particular,
there is a large audible difference between
a 50%-50% duty cycle (square wave) and a
25%-75% duty cycle. Table 2 lists the
harmonic structure of some possible rec-
tangular waves. As a result, some control
aver the timbre can be exercised if a separate
TONE subroutine is written for each “‘voice”
desired. Unfortunately, if this is done the
frequency arguments will have to be recom-

puted since the outer loop time will then be
altered.

Real music also possesses dynamics,
which are the changes in overall volume dur-
ing a perfermance. Furthermore, the ampli-
tude envelope of a tone is an important con-
tributor to its overall subjective timbre. The
latter term refers to rapid changes in volume
during a single note. This is the case with a
piano note, which builds up rapidly at the
beginning and slowly trails off thereafter.
Of course the setup described thus far has
no control over either of these parameters:
the volume level is constant, and the enve-
lope of each note is rectangular with sudden
onset and termination.

TOKE SUBROUTINE FOR 6502

ENTER WITH FREQUENCY PARAMETER IN ACCUMULATOR

DURATION PARAMETER STORED AT LOCATION DUR (LOW PART) AND
DUR+1 (HIGH PART) WHICH IS ASSUMED TO BE IN PAGE ZERO
ROUTINE USES A, X, AND DESTROYS DUR

LOOP TIME = 10%({FREQ PARAMETER)+44 MICROSECONDS

1700 MPORT = X*1700 i ADDRESS OF OUTPUT PORT WITH SPEAKER

00ED bUR = X'E0 3 ARBITRARY PAGE C ADDRESS OF DURATION PARM
0100 A2FF TONE: Lpx #X'FF + SEND ALL 1'S TO THE OUTPUT PORT

0102 8EDO1T STX MPORT

0105 AR X ; TRANSFER FREQ PARAMETER TO INDEX X

0105 Ch WHIGH: DEX ; WAIT LOOP FOR WAVEFORM HIGH TIME

0107 DOFD BNE WHIGH ; TIME IN THIS LOOP = S®FREQ PARAMETER
0109 FOOO BEQ .2 3 WAIT 15 STATES TO MATCH TIME USED TO
010B FOOO BEQ 42 ; DECREMENT AND CHECK DURATION COUNT AFTER
010D FOOD BEQ .+2 i WAVEFORM LOW TIME

010F FOOO BEQ +2

@111 FooO BEQ .2

0113 4200 LDX (1] i SEND ALL 0'S TO THE OQUTPUT PORT

0115 BEGD1?7 STX MPORT

0118 Ak ThX ; TRANSFER FREQ PARAMETER TO INDEX X

0119 ca WLOW: DEX 3 WAIT LOOP FOR WAVEFORM LOW TIME

0114 DOFD BHE WLOW 3 TIME IN THIS LOOP = S®FREQ PARAMETER
011C CHED DEC DUR ; DECREMENT LOW PART OF DURATION COUNT
QV1E DOOS BNE TIMWAS ; BRANCH IF NOT RUN OUT

0120 C6E1 DEC DUR+1 3 DECREMENT HIGH PART OF DURATION COUNT
0122 DODC BNE TONE ; GO DO ANOTHER CYCLE OF THE TONE IF NOT O
024 60 ATS ; RETURN WHEN DURATION COUNT RUNS OUT
0125 FO00 TIMWAS: BEQ .42 3 WASTE 7 CYCLES TO EQUAL TIME THAT WOULD
0127 FOOGO BEQ .42 i HAVE BEEN SPENT IF HIGH PART OF DUR WAS
0129 DODS BKE TONE ; DECREMENTED AND GO DO ANOTHER CYCLE

Listing 1! An assembled listing of a practical timed loop tone generation sub-
routine for the 6502 microprocessor. This routine is an elaboration of the
flowchart shown in figure 1 which allows the user to generate nonsymmetri-
cal rectangular waves. Experimenting with the wave's duty cycle affects the
harmonic content of the resulting tone and creates many interesting aural
effects.

65

By graduating to a more sophisticated
music peripheral, control of dynamics and
amplitude envelopes can be achieved with a
timed loop music program. The secret is to
use a digital to analog converter connected
to all eight bits of the output port. A digital
to analog converter (DAC) does just what
its name implies: it accepts a binary number
from the output port as input and generates
a corresponding DC voltage as its output.

iIcl 4050
3 2 a7k
5 \ a a7k
7 6 47K
3 0 47K
BIT 7 >
{458)
1 12 47K
14 15 a7K
BIT 6 >
| [] J ANALOG
oUTPUT
€2 4050
3 2 47K
BT 5 [> /
5 a 4TK 47K
BIT 4 > {>
7 6 47k ATK 47K 47K
mr 3 [>—
s 0 390K
BIT 2 >
1l 12 820K
BIT | > \
14 15 16M
ar o l\
(LsB) L
+5v

1008

| 8

-
220uF
6V a

NOTE: ABOVE RESISTORS MUST
BE 5% CARBON FILM
TYPES. 47K SHOULD BE
FROM THE SAME BATCH

Figure 3: An 8 bit digital to analog converter (DAC). This circuit accepts an 8
bit binary number from the output port and generates a corresponding DC
voltage as its output. The output voltage from this circuit is equal to ((1{255)-
x5) V, where | is the decimal equivalent of the 8 bit input which can take on
any value from 0 to 225.

66

The circuit in figure 3, which can be used
with any TTL compatible output port,
gives an output voltage

A
V‘(zss\"S

where | is the binary number input between
0 and 255. When working with this kind of
DAC, it is convenient to regard the binary
number, I, as a fraction between 0 and 1
rather than an integer. The henefit of this
will become apparent later when calculations
will be performed to arrive at the valuc of |.
The output of the DAC must be used with a
sound system or the amplifier circuit in
figure 8, not the simple transistor speaker
driver circuit in figure 2.

As written, the TONE subroutine (sec
listing 1) alternately sends O and 255 1o
the output port with the music peripheral.
With a DAC connected to that port, voltages
of 0 and 5 V will be produced for the low
and high portions of the rectangular wave.
If instead 0 and 127 were output, the DAC
would produce only 0 and 2.5 V giving a
rectangular wave with about half the amplit-
ude. This in turn produces a less loud
tone, and so control over dynamics is
possible by altering the byte stored at
hexadecimal 101.

Arbitrary amplitude envelopes are also
made possible by continuously exercising
control over the amplitude during a note.
Simple envelope shapes such as a linear
attack and decay can be computed in line
while the note is being sounded. A more
general method is to build a table in
memory describing the shape. Such a table
can be quickly referenced during note
playing. Great care must be taken, however,
to insure that loop timing is kept stable
when the additional instructions necessary
to implement amplitude envelopes are
added.

More Complex Techniques

Even if all of the improvements men-
tioned above were fully implemented, the
elementary timed loop approach falls far
short of significant musical potential. The
primary limitations are a narrow range of
tone colors and restriction to monotonic
performance. The latter difficulty may be
alleviated through the use of a multitrack
tape recorder to combine separate parts, but
this reguires an investment in noncomputer
hardware and is certainly not automatic.
Also, unpitched percussive sounds such as
drum beats are generally not possible. Musi-
cians, too, will probably notice a host of
other limitations such as lack of vibrato and

T
~
w

e
T T T T

T

CVD VDU DUN=O -~ NWDUD ~N®D OO

|

Figure 4: A sine wave as it would appear at the output from the digital to analog converter
shown in figure 3. Each step in the approximation of this wave is called a sample. This parti-
cular iflustration shows @ 1.2 kHz sine wave sampled at a rate of 25,000 samples per second.
The resulting waveform is only a very rough approximation of the original, but low pass filter-

ing can improve accuracy (see figure 5 and text).

other subtle variations. All of these short-
comings may be overcome by allowing the
computer to compute the eniire sound
waveform in detail al its own speed.

The one fundamental concept that makes
direct waveform computation possible is the
sampling theorem. Any wavelorm, no matler
how simple or complex, can be recon-
structed from a rapid series of discrete vol-
tage values by means of a digilal to analog
converter such as the onc used earlier. As an
example, let's try lo generate an accurate
sine wave using a DAC. If this can be done,
it follows from the Fourier {(harmonic)
theorem that any other wavelorm may also
be synthesized.

Figure 4 shows a sine wave as it would
appear at the DAC oulput, Each step on the
approximalion to the sine wave is termed a
sample, and the frequency with which these
samples emerge from the DAC is the sample
rate. An attempt is being made in the
example to generate a 1.2 klz sine wave at
a sample rate of 25 kHz, or one sample every
40 us. Obviously this is a very poor sine
wave, a fact that can be easily demonstrated
with a distortion analyzer.

Before giving up, let’s look al the fre-
quency spectrum of this staircase-like wave
on a spectrum analyzer. The spectral plot in
figure 5 shows a strong frequency com-
ponent at 1.2 kHz which is the sine wave
we are trying to synthesize. Also present are
the distortion component frequencies due

68

to the sampling process. Since all of the
distortion components are much higher in
frequency than the desired signal, they may
be easily removed with a sharp low pass
filter. After filtering, the distortion analyzer
will confirm that a smooth, pure sine wave
is all that remains.

What will happen if the sine wave fre-
quency is increased but the sampling fre-
quency remains constant? With even fewer
samples on cach sine wave cycle the wave-
form from the DAC will appear even more
distorted. The lowest frequency distortion
product is the one of concern since it is the
most difficult to fifter out. Its frequency
is FD=(FS-f) Hertz, where FD is the lowest
distortion component frequency, FS is the
sampling frequency, and [is the sine wave
signal frequency. Thus as [increases, FD
decreases until they merge at f=F5/2. This
frequency is termed the Nygquist frequency
and is the highest theoretical frequency that
may be synthesized. Any attempt to syn-
thesize a higher frequency will result in the
desired signal being filtered out and the
distortion frequency emerging instead. This
situation is termed aliasing because the
desired signal frequency has been replaced
by a distortion component alias frequency.
Operating close to the Nyquist frequency
requires a very sharp filter to separate the
signal from the distortion. With practical
filters, signal frequencies up to 1/4 to 1/3
of the sampling frequency are realizable.

LOW-PASS FILTER
. » RESPONSE
\

\
1
\

Of rmemmm mmenl

AMPLITUDE (dB)
L
3

b
)
)
'
'
'
'
1
1
1
'
'
[}
\
'
'

1 Il 1 L

Y S S ER S T
[} 5 10 15 20

les;(3

re 238 262

L .
o 35 40 a5 fso} 55 60

488 512

FREQUENCY (XHz)

Figure 5: The spectral plot of the staircase-like sine wave approximation shown in figure 4. This
frequency versus amplitude graph indicates a strong frequency component at 1.2 kHz, the fre-
quency of the sine wave. Normally, this would be the only frequency component to appear on
a plot fike this, but the presence of steeply rising steps in this waveform approximation intro-
duces distortion components at higher frequencies, as shown.

Since any sound, whether it is a pitched
tone or unpitched sound, is actually a
combination of sine waves, it follows that
any possible sound may be produced by a
DAC. The only limitation is the upper fre-
quency response, which may be made as
high as desired by increasing the sample rate.
The low frequency response has no limit,
and extends down to DC,

There is another form of distortion in
DAC generated sounds which cannot be
filtered out, since it is spread throughout the
frequency spectrum. Quantization noise is
due to the fact that a DAC cannot generate
voltages that are exact samples on the de-
sired waveform. An 8 bit converter, for
example, has only 256 possible output vol-
tage values. When a particular voltage is
needed, the nearest available value will have
to be used. The theoretical signal to noise
ratio when using a perfect DAC is related to
the number of bits by the equation S/N=
{6xM)+4 decibels where M is the number of
bits. A practical DAC may be as much as 6
db worse, but a cheap 8 bit unit can yield
nearly 50 db, which is as good as many tape
recorders. When using 12 bits or more, the
DAC will outperform even the best profes-
sional recorders. Thus it is apparent that
computed waveforms can, in theory, be used
to generate very high quality music; so high,
in fact, that conventional audio equipment
is hard pressed to reproduce it.

Now that we have the tools, let’s see how
the limitations of computer music men-
tioned earlier can be overcome. For tones
of definite pitch, the timbre is determined
by the waveshape and the amplitude enve-
lope. Concentrating on the waveshape, it
should be apparent that a waveform table
in memory repeatedly dumped into the DAC

will produce an equivalent sound waveform.
Each table entry becomes a sample, and the
entire table represents one cycle of the wave-
form. The frequency of the resulting tone
will be FS/N where FS is the sampling fre-
quency (rate at which table entries are sent
to the DAC) and N is the number of entries
in the table. To get other frequencies, either
the sample ratc or the number of table
entries must be changed.

There are a number of reasons why the
sample rate should remain constant, so
the answer is to change the effective table
length. If the table dump routine were
modified to skip every other entry, the
result would be an effective halving of
table size and thus doubling of the tone
frequency. If the table is fairly long, such
as 256 entries, a number of frequencies are
possible by skipping an integer number of
entries.

To get musically accurate frequencies, it
is necessary to be able to skip a fractional
number of table entries. At this point the
concept of a table increment is helpful in
dealing with programming such an oper-
ation. First, the table is visualized as a
circle with the first entry conceptually
following the last as in figure 6. A pointer
locates a point along the circular table
which represents the sample last sent to
the DAC. To find what should be sent to
the DAC next, the table pointer is moved
clockwise a distance equal to the table
increment. The frequency of the resulting
tone is now

FSxl
N

where FS and N are as before and [is the
increment.

69

Figure 6: Diagrammatic representation of
the circular table used for storing the wave-
form “‘template.’’ The technique illustrated
here is that of storing a large number of
samples of one cycle of a musical waveform
in memory as a table which wraps around
itself in circular fashion. A pointer is used
to point to the next sample to be extracted.
In order to create a waveform with a given
frequency, the program is designed to skip
a fractional number of table entries to get
the next sample value. This fractional
number is called the table increment value.
The process is continued around the table
for one revolution to create a complete
waveform. The cycle around the table is
repeated until the duration counter decre-
ments to zero.

With integer increments, the pointer
always points squarely to an entry. With
mixed number increments, the pointer also
will take on a (ractional part. The sensible
thing to do is to interpolate between the
table entries on either side of the pointer
to arrive at an accurate value to give to the
DAC. This is indeed necessary to assure
high quality; but simply choosing the nearest
entry may be acceptable in some cases, parti-
cularly if the table is very large.

There is one elusive pitfall in this tech-
nique. The table may contain the tabulation
of any waveform desired, subject to one
limitation: a nonzero harmonic component
of the waveform must not exceed the
Nyquist frequency, FS/2. This can easily
happen with the larger table increments
(higher frequency tones), the result being
aliasing of the upper harmonics. Theoreti-
cally this is a severe limitation. Often a small
amount of aliasing is not objectionable, but

70

a large amount sounds like gross intermodu-
lation distortion. High sample rates reduce
the possibility or magnitude of aliasing, but
of course require more computation. For the
moment, we will ignore this problem and
restrict ourselves to relatively smooth wave-
forms without a ot of high frequency har-
monics.

Now that the DAC is used for generating
the actual waveshape, how is amplitude con-
trol accomplished? If an amplitude para-
meter is defined that ranges between 0 and
1.0 (corresponding to amplitudes between
zero and maximum), the desired resuit is
obtained by simply multiplying each sample
from the table by this amplitude parameter
and sending the product to the DAC. Things
are nice and consistent if the table entries
are also considered as {ractions between -1
and +1 because then the product has a range
between -1 and +1 which is directly com-
patible with the DAC. {Note that the DAC
in figure 3 is unipolar. It can be considered
bipolar if +2.5 V output is the zero reference
and the sign bit is inverted.)

The last major hurdle is the generation of
simultaneous tones. Obviously, two simul-
taneous tones may be generated by going
through two tables, outputting to two
separate DACs, and mixing the results with
an audio mixer. This is relatively simple to
do if the sample rates of the two tones are
the same. Actually, all the audio mixer does
is Lo add the two input voltages together 1o
produce its output, but a very important
realization is that the addition can also be
done in the computer before the output
conversion by the DAC! The two samples
are simply added together with an ADD
instruction, the sum is divided by two (1o
constrain it to the range of -1 to +1), and
the result sent to a single DAC. This holds
true for any number of simultaneous tones!
The only requirement is that the composite
samples not overflow the -1 to +1 range that
the DAC can accept. Rather than dividing
the sum, it is best to adjust the amplitude
factors of the individual “voices” to prevent
overflow. So now we have the tools nece-
sary to generate an ensemble of tones, each
one possibly having its own waveform,
amplitude envelope, and loudness relative
to the others. Indeed, this is all that is
necessary to simulate a typical organ.

Up to this point the timbre (waveform)
of a tone has been determined by the con-
tents of a fixed waveform table. Truly inter-
esting musical notes change their timbre
during the duration of the note. A reason-
able alternative to switching between similar
tables for implementing this is 10 build the
tone from harmonic components. Each
harmonic component of the tone is simply

Listing 2: A program which, in conjunction with tables 3, 4 and 5, generates
four simultaneous musical voices, each with a different waveform and volume
level. The program is designed for use with the 6502 processor coupled to
an 8 bit unsigned digital to analog converter (DAC) like the one shown in
figure 3.

THIS PROGRAM PLAYS MUSIC IN 4-PART HARMONY ON THE KIM-1 OR
OTHER 6502 BASED SYSTEM USING AN B-BIT UNSIGNED
DIGITAL-TO-ANALOG CONVERTER CONNECTED TO AN OUTPUT PORT. TUNED
FOR SYSTEMS WITH A 1 MHZ CRYSTAL CLOCK. DOES NOT USE THE ROR
INSTRUCTION.

SONG TABLE IS AT “SONG*

ENTRY POINT IS AT "MUSIC"

0000 .z o ; ORG AT PAGE O LOCATION O

1700 DAC X'1700 ; OUTPUT PORT ADDRESS WITH DAC

1701 DACDIR X'1701 3 DATA DRIECTION REGISTER FOR DAC PORT

1780 AUXRAM X' 1780 ; ADDRESS OF EXTRA 128 BYTES OF RAM IN 6530

1c22 KIMMON = x'1c22 ; ENTRY POINT TO KIM KEYBOARD MOMITOR

0000 00 VIPT: _BYTE 0 ; VOICE 1 WAVE POINTER, FRACTIONAL PART

0001 0000 LWORD WAVITB ; INTEGER PART AND WAVE TABLE BASE

0003 00 VZPT: LBYTE 0 ; VOICE 2

0004 000D .WORD WAV2TB

0006 00 v3PT: .BYTE 0 i VOICE 3

0007 0000 .WORD WAV3TB

0009 00 VEPT: .BYTE 0 : VOICE U

0004 0000 .WORD WAVUTB

000C 0000 VIIN: JWORD O i VOICE 1 [NCREMENT {FREQUENCY PARAMETER)

ODOE 0000 V2IN: .WORD 0 VOICE 2

0010 6000 V3IN: _WORD © VOICE 3

0012 0000 VAIN: JWORD © ; VOICE @

Q014 00 DUR: .BYTE 0 ; DURATION COUNTER

0015 0000 NOTES: .WORD © NQTES POINTER

0017 0002 SONGA: .WORD SONG ADDRESS OF SONG

0015 0000 INCPT: .WORD 0 ; POTNTER FOR LOADING UP VINT - VANT

0018 0COo0 INCA: LWORD V1IN 3 INITTAL VALUE OF INCPT

601D 5200 TEMPO: .WORD 82 TEMPO CONTROL VALUE, TYPICAL VALUE FOR
3:4 TIME, 100 BEATS PER MINUTE, DUR=6Y
DESIGNATES A QUARTER NOTE

0100 - X' 100 i START PROGRAM CODE AT LOCATION 0100

: MAIN MUSIC PLAYING PROGRAM

0100 ASFF MUSIC: LDA #X'FF ; SET PERIPHERAL 4 DATA DIRECTION

0102 BD0117 STA DACDIR REGISTER TO DUTPUT

0105 D8 CLD ; INSURE BINARY ARITHMETIC

0106 A517 LDA SONGA ; INITIALIZE NOTES POINTER

0108 8515 STA NOTES : TO BEGINNING OF SONG

Q104 A518 LDA SONGA+1

010C 8516 STA NOTESs1

C10E ACOO MUSICY1: LDY #0 i SET UP TO TRANSLATE U ROTE ID NUMBERS

0110 A518 LDA INCA INTO FREQUENCY DETERMINING WAVEFORM TABLE

0112 8519 STA TNCPT INCREMENTS AND STORE [N Y1TH - VNIN

0114 B11S LPA (NOTES) , Y GET DURATION FIAST

0116 FO3C BEQ ENDSNG : BRANCH TF END OF SONG

0118 €901 CMP " + TEST IF END OF SONG TABLE SEGMENT

Q¥1A FO29 BEQ NXTSEG 1 BRANCH IF SO

011C 8514 STA DUR ; OTHERWOSE SAVE BURATION IN DUR

011E E615 MUSIC2: INC NOTES : DOUBLE INCREMENT NOTES TO POINT TO THE

0120 DOO2 BNE MUSIC3 ; NOTE ID OF THE FIRST VOICE

0122 EBI6 INC NOTESs1

0120 B11S MUSIC3: LDA (NOTES) , Y i GET A NOTE [D NUMBER

0126 AA TAX i INTO INDEX X

0127 BS20 LDA FRQTAB+1,X GET LOW BYTE GF CORRESPONDING FREQUENCY

0129 9119 STA (INCPT),Y : STORE INTO LOW BYTE OF VOICE INCREMENT

012B E619 INC INCPT ; INDEX TO HIGH BYTE

012D BSIF LDA FRQTAB,X ;3 GET HIGH BYTE OF FREQUENCY

012F 3119 STA (INCPT),Y i STORE INTQ HIGH BYTE OF VOICE INCREMENT

0131 E615 INC NOTES ; DOUBLE INCREMENT NOTES TO POINT TO THE

0133 poo2 BNE MUSICH 4 NOTE ID OF THE NEXT VOICE

0135 €616 INC NOTES+1

0137 €619 MUSICA: INC INCPT 3 INDEX TO NEXT VOICE INCREMENT

0139 4519 LDA INCPT ; TEST IF 4 VOICE [NCREMENTS DONE

0138 €314 CMP #VUIN+2

013D DOES BNE MUSIC3 3 LOOP IF NOT

O13F 205701 JSR PLAY 3 PLAY THIS GROUP OF HOTES

142 UCOEDY JMP MUSICY i GO LOAD UP NEXT SET OF NOTES

D145 CB NXTSEG: IKY ; END OF SEGMENT, NEXT TWO BYTES POINT TO

D146 BY1S LDA (NQTES) Y ; BEGINNING OF THE MEXT SEGMENT

148 48 PHA

014 CB NY ; GET BOTH SEGMENT ADDRESS BYTES

01LA B11S LDA (NOTES), ¥

oL 8516 STA NOTES+1 ; THEN STORE IN NOTES POINTER

Q14E 68 PLA

O14F 8515 STA NOTES

D151 NCOEQT JMP MUSICY ; GO START INTERPRETING WEW SEGMENTT

0154 he22ic ENDSNG: JMP KIMMON ; ENR OF SONG, RETURN TO MONITOR

3 4 VOICE PLAY SUBROUTINE

72

a sine wave with an amplitude dependent
on the waveform of the resulting tone.
Giving a different amplitude envelope
to each harmonic is equivalent to smoothly
changing the timbre during the note. The
aliasing problem mentioned earlier can also
be solved by simply omitting any harmonics
that become too high in frequency.

Dynamic timbre variation can also be
accomplished by a digital filter which does
the same thing to a sampled waveform that
a real inductance-capacitance filter does to
a normal waveform. A digital filter is simply
a subroutine which accepts a sample value
as an argument and gives back a sample value
which represents the filtered output. The
equations used in the subroutine determine
the filter type, and other arguments deter-
mine the cutoff frequency, Q, etc. This is a
fascinating subject which deserves its own
articie.

What about other, unpitched sounds?
They too can be handled with a few simple
techniques, Most sounds in this category
are based in part on random noise. In
sampled form, random white noise with a
uniform frequency spectrum is simply a
stream of random numbers. For example,
a fairly realistic snare drum sound may be
generated by simply giving the proper ampli-
tude envelope to pure white noise. Other
types of drum sounds may be generated
by using a digital filter to shape the fre-
quency spectrum of the noise. A resonant
type of digital filter would be used for tom-
toms and similar semipitched drums, for
example. A high pass filter is useful for simu-
lating brush and cymbal sounds. An infinite
number of variations are possible. This is
one area where direct computation of sound
waveforms really shines.

The sampling theorem works both ways
also. Any waveform may be converted into
digital samples with an analog to digital
converter (ADC) with no loss of informa-
tion. The only requirement is that the signal
being sampled have no frequency com-
ponents higher than half of the sampling
frequency. This may be accomplished by
passing the signal to be digitized through a
sharp low pass filter prior to presenting
it to the ADC. Once sound is in digitized
form, literally anything may be done to it.
A simple (in concept) application is intri-
cate editing of the sound with a graphic
display, light pen and large capacity disk.
The sound may be analyzed into harmanic
components and the result or a transfor-
mation of it applied to a synthesized sound.
Again, this is an area that deserves its own
article.

Listing 2, continued:

057
0159

Q158
015¢C
0158
0160
0167
0364
0167
0169
0168
216D
016F
0T
073
075
G177
at7g
OB
o
01F
0181
0183
0185
o147
0189
0188
018D
Q18F
Q191

0193 6

0195

0197 -

G198
0194
Q19¢
0198
0140
0142
014k
[<RF.1)
0148
G1A&

O1AB

ADOD
A61D

3
B101
7104
7107
TI0A
8DO0TTY
A500
6500
B500
4501
650D
B501
2503
§50E
8503
A504
650F
B504
A506
6510

PLAY:

PLAYY:

TIMWAS:

ENDKOT:

PAEND

00
TEMPO

(VIPTH1),Y
(V2PTa1),Y
(V3PT+1),Y
(VEPT+1),¥
X'1700
VIPT

Vi

vier
VIPT+1
VNG
VIETe)
vepT

V2IN

vepT
VZPTe1

V2 Ifet
V2PT+1
VIPT

V3N

v3PT

1O TUTAL Lour Like s

i SET Y TO ZERO FU JIHATGHT [NDIRECT
SE

T X 0 TEMPFO COUNI

i CUMPUT= AND GUIPUT A CUMPFUSLLE SAMPLE

i CLEAR CARRY
; ADD UP 4 VYOICE SAMPLES

USING [NDIRECT ADDRESHING THhuUGH VOICE
ATERS INTO WAVLFORM TABLES

i L)

CuhvEhiER

: 5
3 FLRST FRACTIUNAL kaHL

i THEN [RIcGkR |ART
i YOICE 2

i VUICE 3

o VOiCE 4

FU LLCh

BF lioy Rk odl
< LUNA L LOH CUURTER
QUT IF EHD OF Nuik

ORE 1eMPU CUUNT

CONTiNUe PLAUING
TUHH
Tou Lidics = Bifu B2

i DEF (NE BEGINKiING ALLRELG rui THIKD PART
i OF SONG TABLE

Sampled Waveform Example

It should be obvious by now that while

these sampled waveform
completely general

techniques are
and capable of high

quality, there can be a great deal of com-
putation required. kven the most powerful
computers in existence would be hard
pressed to compute samples fur a significant
piece of music with many voices and all
subtleties implemented at a rate fast enough
for direct oulput to a DAC and speaker.
Typically the samples are computed at
whatever rate the program runs and are
saved on a mass storage device. Alter the
piece has been “computed," 4 playback pro-
gram retrieves the samples and sends them to
the DAC at a uniform high rate.

Most microprocessors are last enough to
do a limited amount ol sampled waveform
computation in real time. The 6502 is one
of the best § bit machines in this capacity
due to its indexed and indirect addressing
modes and its overall high speed. The
example program shown in listing 2 has the
inherent capability 1o genwerate four simul-

74

taneous voices, each with a different wave-
form and volume level. In order to make the
whole thing fit in a basic KIM-1, however,
only one waveform table is actually used.

This program could probably be con-
sidered as a variation of the timed loop tech-
nique, since the sample rate is determined by
the execution time of a particular loop. The
major differences are that all of the instruc-
tions in the loop perform an essential func-
tion and that the loop time is constant
regardless of the notes being played. Using
the program as shown on a full speed (1.0
MHz) 6502 gives a sample rate of 8.77 kHz,
which results in a useful upper frequency
limit of 3 kHz. The low pass filter in figure 7
coupled with the DAC in figure 3 and audio
system or amplifier in figure 8 are all the
specialized hardware necessary to run the
program with full 4 part harmony.

The program consists of two major
routines: MUSIC and PLAY. MUSIC steps
through the list of notes in the song table
and sets up DUR and V1IN thru V4IN for
the PLAY routine. PLAY simultaneously
plays the four notes specified by VIIN thru
V4IN for the time period specified by DUR.
Another variable, TEMPO, in page zero con-
trols the overall tempo of the music inde-
pendently of the durations specified in the
song table. The waveform tables for the
four voices are located at WAVITB thru
WAV4TB and require 256 bytes {one
memory page) each. The actual waveform
samples stored in the table have already
been scaled so that when four of them are
added up there is no possibility of overflow.

The song table has an entry for each
musical “‘event” in the piece. An entry
requires five bytes, the first of which is a
duration parameter. By suitable choice
of the TEMPO parameter in page 0, “‘round”
(in the binary sense) numbers may be used
for duration parameters of common note
durations. A duration parameter of O signals
the end of the song, in which case the pro-
gram returns to the monitor. A duration
parameter of 1 is used to specify a break in
the sequential flow of the song table. In this
case the next two bytes point to the con-
tinuation of the table elsewhere in memory.
This feature was necessary to deal with the
fragmented memory of the KIM-1, but has
other uses as well. All other possible dura-
tion values are taken literally and are fol-
lowed by four bytes which identify the
notes Lo be played by each voice. Each note
ID points to a location in the note frequency
table which in turn contains a 2 byte fre-
quency parameter for that note which is
placed in VTIN thru V4IN.

The PLAY routine is optimized for speed,

Figure 7: A sharp low pass filter with 3 kHz cutoff.

This circuit is used to filter out the high frequency distortion illustrated in

figure 5.
56K < 9I0pF l
+2v SIK 1S0pF
+i2v 56K 22pF
51K SiIK | 3 T
Neul - N S1K 56K vy
S Sounce LM3900 - - &
5 56K 82K
IMPEDANCE 2y, LM3300
7
— OUTPUT
+35 T0
Z1= 4700pF *85V
;l\ Issoo;;r OISuF
5V 9IK 91K
1K
v FILTERED
+5V OUT
L 100 F NOTES: ALL RESISTORS /4 WATT S§%
SVF ALL CAPACITORS EXCEPT I00uF
PLASTIC FILM OR NPO CERAMIC
PREFERABLY S%
H NOTE FREQUENCY TABLE FOR 8.772 KHZ SAMPLE RATE
; RANGE FROM €2 (6541 KR e ‘2,323‘5 Tee because its loop time determines the sample
001F 0000 FRQTAB: .BYTE 0,0 ;0 SILENCE rate. Essentially, the routine maintains four
0021 01E9 .BYTE 1,233 B 2 c2 65.405 1.9089 H -
preadidiss BHE 208 L ey ta29e boaan pointers (VIPT thru V4PT). to the four
0025 0225 -BYTE 2,27 : g b2 73.n;5 2.1427 waveform tables. Each pointer consists
0027 G2u5 (BYTE 2, ; D28 77.783 2.2701 N N . C
0029 0268 " BYTE z"g.. Do e 52,.,0,3, 2. 1051 of three bytes in order of increasing signi-
0028 028C .BYTE 2,140 ;12 F2 BT7.308 2.5481 ficance. The first byte is the “‘fractio
002D 0283 .BYTE 2,179 ;oM F24 92.H9B 2.6996 " e first by actional
002F 02DC JBYTE 2,220 i 16 G2 97.998 2.860) part” of the pointer, and the second byte
0031 0308 .BYTE 3,8 ; 18 G2# 103.83 3.0302 H : : :
0033 0336 BYTE 35H D0 xe 1io.08 32108 is the integer part \.JVhICh is also the lower
0035 0367 .BYTE 3,103 ;22 A28 116.54 3.1013 half of an address in the waveform table.
0637 0394 .BYTE 3,154 ; 24 B2 123.47 3.6035 . . 3
0039 03b1 BYTE 3209 P36 c3 10081 3.8178 The third byte is the upper address which
0038 040B (BYTE Ui, 1) ;28 c39 138.59 L.ouu8 normally remains constant. Waveform table
003D 0449 BYTE 4,73 ; 30 D3 146.83 4.2854
D03F 04BA BYTE 4,138 P32 D30 155.67 b.5402 lookup is considerably simplified by using
004y OuCF BYTE 4,207 ;3% E3 164.82 4.8102 H H H
o013 beop A R B e o oses th'e indirect gddressxng mode of the §502
got? gggg BYTE 5"35 ; 38 F30 152.00 5.3992 with these pointers. Note that the fractional
0 .BYTE 1 H 0 G 196.00 .720 H e
0049 060F B el D ue G s0n6s o.ceon part of the pointer is ignored when the table
D04B 066C BYTE 6,108 ;ohno A3 220,00 6.4208 lookup takes place. si i i i
Q04D 06CD .BYTE 6,205 . 46 A30 233,08 6.8026 p ta plac » since m[?rp(ﬂal oq 15
O4F 0735 BYTE 7.53 ; 48 B3 2M6.94 7.2071 much too slow for a real time routine.
0051 0743 .BYTE 7,163 i 50 Cc4 261.62 7.6356 H
0053 o817 .BYTE 8,23 i S2 Che 277.18 8.0897 I)-Urlng eaCh S‘amp’e' Waveform tﬂblc
0055 0892 BYTE 8146 D54 opu 293.66 8.5;01 entries for each voice are fetched, added up,
0057 0915 BYTE 9,21 ; 56 Due 311.13 9.080M n .
0059 099F LBYTE 9,159 ;58 EM 329.63 9.6203 and sent to the digital to analog converter
0058 0A31 .BYTE 10,49 i 60 FM o 349.23 10.1924 output port. Then the increment (VxIN) is
005D 0ACC .BYTE 10,204 ;. 62 Fue 369.99 10.7984 - .
005F 0B71 BYTE 11,113 ;64 Gb 391.39 11.4405 added (double precision) to each pointer
0061 OCIF .BYTE 12,31 ; 66 Gue 415.30 12.1208 .
0063 0CD? .BYTE 12:215 ; 68 Ay 440,00 12.8416 (VXPT)' Wraparound from _Lh? cn.d of a
0065 0DIB BYTE 13,155 ;70 AMP N66.16 13,6052 waveform table to the beginning is auto-
0067 0£6A .BYTE 14,106 ; 72 BM 493,88 14.4142 N o
0063 0FhS BYTE 1569 Doqu o5 sanan 15.2113 matically taken care of due to the fact that
0068 102E .BYTE 16,46 ;76 C58 554.36 16,1794 the table occupies a full memory page.
006D 112k LBYTE 17,36 ;78 DS 587.32 17.1414 n . o
0O6F 1229 BYTE 18,41 i 80 D50 622,26 18.1607 Finally, the tempo counter is decremented
0071 133E LBYTE 19,62 ; 82 E5 659.26 19.2k06 e 2pr
0073 1462 (BYTE 20,98 ; 84 F5 698.46 20.3847 f:md, checked. If the tempo cf’“"‘er 1s LEI(?,
0075 1599 .BYTE 21,153 ; 86 PSP 739.98 21.5969 it is restored and the duration counter is
0077 16E2 .BYTE 22,226 ; 88 ¢G5 783.98 22.8811% P
0079 1838 BYTE 2462 ! %o G50 83060 2m.2u17 decremen%ed'arld checked. If it is also zero
007B 19AF .BYTE 25,175 i 92 A5 BB0.00 25.683) the note is finished and PLAY returns. The
007D 1836 .BYTE 27,3 ;9N ASe 932.32 27.2103 .
007F 1CD4 BYTE 28,212 i 9 B85 987.76 28.8283 net result is that TxD samples are computed
0081 188 BYTE 30,139 i 98 c6b 1046.5 30.5426 i
0083 POEND = N ; DEFINE BEGINNING ADDRESS FOR SECOND PART and sent out for lhe CVen[, Wherc T 15 the

Table 3: Note frequency table used in conjunction with listing 2. This table is
for a sample rate of 8.772 kHz. The range of the notes used is from 65.41

Hz (for C2) to 1046.5 Hz (for C6).

OF SONG TABLE

76

tempo parameter and D is the duration para-
meter. Note that, unlike the earlier timed
loop example, there is no interaction be-
tween the duration parameter and the note
frequencies being played.

+i2v

4TuF
16V
3
SuF
10V 220K
Pyt o—f
5v
PEAK TC PEAK
12y
220K
| Meg 14
voL.
’ 1000uF
A ALE ov .
160K —
![IN914
FILTERED
*ov Figure 8. An inexpensive,
wide band low power
gf} audio amplifier. This cir-
GREATER cuit, when coupled with
SPEAKER the circuits in figures 3
and 7, is all the experi-
menter needs to create
/l music with his or her
microprocessor.

How does it sound? With the waveform
table shown and a reasonably good speaker
system, the result sounds very much like an
electronic organ, such as a Hammond. There
is a noticeable background naise level due to
compromises such as prescaled waveforms
and lack of interpolation in the tables, but it
is not objectionable. The pitches are very 0200 X'200 i START SONG AT 0200
accurate, but there is some beatir!g on ; SONG TABLE FOR THE STAR SPANGLED BANNER BY FRANCIS SCOTT KEY
chords due to compromises mhergnt in the Gﬁ‘é&ioﬁ’éiiﬁ‘?"f?iT?m QUARTER KOTE
standard equally tempered musical scale.

SONG TABLE

EACH MUSICAL EVENT CONSISTS OF 5 BYTES

THE FIRST [S TEE DURATION OF THE EVENT IN UNITS ACCORDING TO
THE VALUE OF "TEMPO", ZERQ DENOTES THE END OF THE SONG.

THE NEXT 4 BYTES CONTAIN THE NOTE ID OF THE 4 VOICES, 1 THROLCH
4. O INDICATES SILENCE FOR THE VOICE.

: H 0200 H04AOD0032 SONG: (BYTE 96,74,0,0,50 i 3/8 c5 chot
AISU there are nC_)UCCAbIe CIleS bElWBen G205 104400002C .BYTE 16,68,0,0,44 HRVAT Ab A3
notes due to the time taken by the MUSIC 0204 4010000024 .BYTE 64,64,0,0,36 ;i Gl f32
. N 020F 4044000024 .BYTE 64,68,0,0,36 RVl AL F3
routine to set up the next set of notes. All in 0214 UOUADD0022 BYTE 64.74.0.0.34 a5 I
Kk ainl 0219 BOSUUEULIE .BYTE 128,81,78,68 30 B Ve F5 D5 A D3 3
fl” the p_rogram ,ma ¢s a gOO(‘:I‘ and‘ cert n,y 021E 305C52441C .BYTE us,gz,se.és,éa ;3716 A5 ES5 At ci3
inexpensive basis for the “‘family music 0223 105800401C BYTE 16,88,0,54,28 P16 G5 ch co3
i PT) . P 0228 40SUO03CIE .BYTE 6Uu,84,0,60,30 HR FS Fi D3 4
application” mentioned earlier. 022D 4OWMOOICIE CBYTE 64,66,0,60,30 Y Al Fi D3
0232 4OUBHO3IC28 (BYTE 64,72,64,60,40 Ry B4] Fia 63
. . 0237 BOWAMO3A3Z .BYTE 128,74,64,58,50 ;172 c5 [} E4 cy 5
Synthesizer Control Techniques 023C 204AD00032 .BYTE 32,74,0,0,50 ;18 5 cu
0241 204A000032 LBYTE 32,74,0,0,50 ;18 s cl
.) R . 0246 HOSCSUNNRY .BYTE 96,92,84,68,36 ; 3/8 A5 F5 Al F3 6
So far we have discussed techniques in 02UB 2058004028 BYTE 32.88,0,6H, 40 D8 G5 Gh 03
. . 0250 5054003C2C .BYTE 64,84,0,60,04 P F5 Fi4 A3
which th? compute‘r '“‘:If. generates the 0255 B0524AU032 JBYTE 128,82,74 64,50 Lz € ¢5 Gh ch T
sound. It is also possible to interface a com- 025A 30UE6002E .BYTE 48,78,70,0,46 ;316 DS BA 863
) s N 025F 10525AN02E .BYTE 16,82,74,64,46 ;W16 E5 S c4 883
puter to specialized sound generation hard- 0264 HDSLLAL2C (BYTE 64,84 ,74,68, 1k o 5 05 A1 A3 B
H 0269 405400003C .BYTE 64,84,0,0,60 174 F5 Fu
ware and thVC It Zl.Ct as ElACOﬂffO/ CIe_menL 026E H0WAD00032 .BYTE 64,74,0,0,50 HRVL] s ch
The most obvious kind of equipment to 0273 4OUKO0002C _BYTE 64.68.0,0, 4 L/ Al a9
. . . ~ . 0278 1403000024 .BYTE 64,60,0,0,36 D Fll F3
control is the standard, modular, voltage 027D 304000032 LBYTE 48.74,0,0,50 P36 o5 ci
controlled sound synthesizer. Since the 0282 10U400002C -BYTE ' P 1/16 M 43
. - P 0287 u03C000024 LBYTE 64,60,0,0,36 s 1/ Fa F3 10
interface characteristics of nearly all synthe- 028C 40LNODO2Y _BYTE 64,68.0.0,36 s A F3
frap H _ 0291 40HADD0022 LBYTE 64,74,0,0,34 s oisk cs £3
stzers ?”d m_OdUIES are Standa‘,dlzed’ a com 0296 BOSUNENUIE .BYTE 128,84,78,68,30 HRVF F5 D5 A PERERE
puter interface to such equipment could 0298 305C52u41C .BYTE 48,92,82,68,28 D316 A5 £5 Ay c#3
be used with nearly any synthesizer in
common use. Table 4: This song table is an encoding of “The Star Spangled Banner’ in
Generally speaking, the function of a 4 part harmony which is used by the program in listing 2. Each musical
voltage controlled module is influenced event in the table consists of five bytes. The first byte represents the dur-
by one or more DC control voltages. These ation of the event in units, according to the value of the “tempo” (0 denotes
are usually assumed to be in the range of 0 the end of the song). The next four bytes contain the note identifications of
to +10 volts, although some modules will the four voices (0 indicates silence for the voice).

77

Table 4, continued:

0240
0245
02488
02AF
0284
0289
02BE
02C3
o2ch
Da2co
ozp2
02D7
o20C
02E}
02E6
02EB
02F0
Q2F5
02FR
D2FB

0083
0083
0088
008D
0092
0097
009
00AT
0046
004B
0080
00BS
00BA
Q0BF
oock
aocy
90CE
00D3
0008
000D
00E2
00E7
OQEC
00ED

014
0148
0180
0185
01BA
G1BF
0icH
01C9
01CE
0103
0108
010D
01E2
0187
O1EC
01F
01F2

1780
1780
1185
1784
178F
1794
1799
179E
1743
1748
17AD
1782
1787
17BC
17
17C6
17¢8
1700

105800401C
4D54003C1E
HOWLODIC1E
40480 3C28
BOUANO3A32
2044000032
204AD00032
£05C5A4L2Y
2058004028
2054003C2C
BD52UALD32
304EN6002E
10521R402E
4054 AUL2C
405400003C
2044000032
4OHU00002C
403c000024
o1

8300

305C540428
1050501428
HosCsuhu2Y
4OSESHAB28
HO6254UA2C
Bo625UbA2C
205E544628
205C54Ak2C
n058524032
hOSC5HUU3C
BOSE524640
BOSES8461A
HOSES2U6 1A
605CHANY2Y
20584A4028
HosuUA3C2C
BO524AN032
204E00362E
2052LA3A2E
4054uA3C2C
4OUY3C0036
01

ABOY

40UB403C28
BONAND3IAIA
401ADDO032
405LAALL2Y
405464028
205443U12C
20524A442C
4OYELE3C2E
4OYEN63C2E
HONEYAIERC
14058464028
205E4H0028
205C44002C
205840002E
0

8017

20543€0030
HQSAUuANL32
HoS2Urko1A
2042000032
264A00002E
60SUUALL2C
2058004032
205C004440
205E004640
8062505444
20544E4436
2058484034
60SC5aUA3Z2
205E5U4E32
4058524632
BOSHNABAIC
oo

.BYTE
LBYTE
.BYTE
.BYTE
.BYTE
.BYTE
«BYTE
.BYTE
.BYTE
-BYTE
-BYTE

have a predictable response to negative
voltages as well. In a voltage controlled
oscillator, for example, the output fre-
quency is determined by a control voltage.
For typical tuning, 0 V would correspond
to 16 Hz (a very low C), and the frequency
would increase one volt per octave for
higher voltages. Thus, +4 V would produce
middle C, and the maximum input of +10 V

16,88,0,64,28 FER VAT -1 ch o ce3
64,84,0,50,30 14 #5 Fu vy oW
64,68,0,60,30 /4 A4 Fu 03
64,72,64,60,40 174 B4 G4 Fh G3
128,74,64,58,50 172 5 G4 EY cuo13
32,74,0,0,50 /8 c5 cu
32,74,0,0,50 1/8 c5 ol
96,92,84,68,36 3 3/8 &S FS Al F3 o th
32,88,0,64,450 3 1/8 G5 Gi G3
32,84,0,60, 44 ; 178 Fb Fis A3
128,82, Th, 64,50 172 E5 C5 Gh cho15
48,78,70,0,46 3/1% D5 B4 883
16,82,74,61 46 116 ES €5 G4 BE3
64,84, 74,68 it s FS €5 AL A3 b
64,84,0,0,60 Hara Fs Fu
64,74,0,0,50 R €5 ch
64,68,0,0,u4 A Al A3 7
64,60,0,0,36 /4 Fh F3
1 DEFINE END OF THIS SEGMENT
POEND i ADDRESS OF BEGINNING OF NEXT

; SEGHENT
POEND ; ORG AT END OF PAGE O CUDE
48,92,84,68,40 i 3/ AS F5 AY Gs
16,92,84,68, 40 ;16 RS F5 M 63
64,92,84,68, 36] A5 F5 M F3 18
64,94 ,84,70,40 174 B85 F5 8@k G3
64,98,84, 74, 4y R 6 F5 Ch A3
128,98 84,74, 44 P2 6 F5 C5 A3 19
32,94,84,70, 40 3 178 BéY FS Beu G3
32,92,84,68 44 3 1/8 AS FS Al A3
64,88 ,82, 64,50] ©5 E5 G4 i 20
64,92 ,84,68,60 ;I AS F5 A4 [}
64,94 ,82,70, 64] B85 £S5 BEW Gl
128,94,88,70,26 y 12 B85 G5 B8 <3 21
64,94,82,70,26 3o 865 E5 Be4 3
96,92,74,68,36 3/8 A5 Ch AW F3 22
32,88,74,64,40 i 18 65 €5 G4 Gs
64,84, 74,60, 44) F5 €5 Fk A3
128,82,74,64,50 ;e €5 €5 G cu 23
32,78,0,54,46 ;18 05 Db B
32,82,74,58 46 3 1/8 ES C5 B4 B3
64,84,74,60, 44 Do F5 €5 F4 A3 2u
64,68,60,0,54 ;I Al Fli DA
1 ; DEFINE END OF THIS SEGMENT
PIEND ADDRESS OF BEGINNING OF NEXT

i SEGMENT
P1END ORG AT END OF PAGE 1 CODE
64,72, 64,60, 40 74 B4 G4 P G3
128,74 ,64,58,26 ;o2 cs G4 B4 C3 25
64,74,0,0,50 174 c5 el
64,84,74,68, 36] F5 C5 A4 F3 26
64,8k,70, 64,40 ;o F5 BE4W G4 G3
32,84,74,68 44 1/8 £S5 c5 Al A3
32,82,74,68 44 1/8 B " -
64,78,70,60,46 /4 D5 BE4 Fu BE3 27
64,78,70,60,46 14 DS B&L Fu 883
64,78,74,62 4y 14 D5 c5 FOU A3
64,88,70, 64,40 174 G5 B84 G4 G328
32,94,70,0,40 18 BES BN G3
32,92,68,0,44 1/8 A5 A A3
32,88,64,0,46 1/8 G5 GH B3
1 i DEFINE END OF THIS SEGMENT
AUXRAM ; ADDRESS OF BEGINNING OF NEXT

7 SEGMENT (IN 6530 RAM)
AUXRAM i ORG AT BEGINNING OF 6530 RAM
32,84,60,0, 48 1/8 F5 Fu B
64 84 T4, 68,50 14 3] 5 Al cy 29
64,82,74,64,26 4 ES €5 G4 C3
32,74,0,0,50 /8 s ch
32,74,0,0,46 1/8 <5 B3
96,84, 74,68, 44 3/8 F5 C5 Ak A3 30
32,BB,0,64,50 1/8 a5 ol ch
32,92,0,68,64 1/8 A5 A GU
32,94,0,70,64 1/8 885 B8N GU
128,98,92,8u,68 172 6 A5 P AN 3
32,84,78,68,54 1/8 F5 D5 A Du
32,88,72, 64,52 178 G5 B4 GN DAM
95,92,84,74,50 3/8 A5 F5 03 o 32
32,94,84,78,50 1/8 BéS F5 D5 CH
64,B8,82,70,50 14 G5 E5 BO4 Cu

128,84,74,68,60
0

;172 F5 €5 Al F4 33
; END OF PIECE

78

would produce a nearly inaudible 16.4 kHz.
A typical oscillator madule has two or three
control inputs and a number of outputs. The
voltages at the inputs are internally summed
to form the effective control value {useful
for injecting vibrata), and the outputs pro-
vide several different waveforms simultane-
ously.

A voltage controlled amplifier has as a
minimum a signal input, a control input, and
a signal output. The voltage at the control
input determines the gain from the signal
input to the signal output. In a typical
setting, +8 V would correspond to unity
(0 db) gain, with lower voltages decreasing
the gain by 10 db per volt.

Many other voltage controlled devices
have been decveloped during the approxi-
mately 12 year history of this field. In order
to play music, the modules are first “pat-
ched"” together with paich cords (like old
style telephone switchboards) according to
the desired sound characteristics. Manually
operated control voltage sources such as
potentiometers, joysticks and specialized
organ-like keyboards are then manipulated
by the player. The music is generally
monotonic due to difficulties in the control
elements (now being largely overcome).
Multitrack tape recorders are universally
utilized to produce the results heard on
recordings such as Walter Carlos's Switched
on Bach.

A useful computer interface to a synthe-
sizer can be accomplished with nothing more
than a handful of digital to analog and
optionally analog to digital converters. The
DACs would be used to generate control
voltages under program control and the
ADCs would allow operator input from the
keyboard, for example, to be stored. Since
control voltages vary slowly compared to the
actual sound waveforms, real time contro!
of a number of synthesizer modules is
possible with the average microprocessor.
Due to the large number of DACs required
and the relatively slow speeds necessary, a
multiplexing scheme using one DAC and a
number of sample and hold amplifiers is
appropriate. The home builder should be
able to achieve costs as low as $2 per
channel! for a 32 channel, 12 bit unit capable
of controlling a fairly large synthesizer.

The routing of patch cords can alse be
computerized. A matrix of reed relays or
possibly CMOS bilateral switches interfaced
to the computer might be used for this task.
The patches used for some contemporary
synthesizer sounds resemble the program
patch boards of early computers and thus
are difficult and time consuming to set up
and verify. With computer controlled
patching, a particular setup may be recalled

and set up in milliseconds, thus enhancing
real time perfarmance as well as reducing the
need for a large number of different mod-
ules.

Other musical instruments may be inter-
faced as well. One well-published feat is an
interface between a PDP-8 computer and a
fair sized pipe organ. There are doubtless

H WAVEFORM TABLE

H EXACTLY ONE PAGE LONG ON A PAGE BOUNDARY

H MAXIMUM VALUE OF AN ENTRY IS 63 DECIMAL OR 3F HEX TO AYOID
H OVERFLOW WHEN & VOICES ARE ADDED UP

NOTE THAT ALL U VOICES USE THIS TABLE DUE

Recently, specialized music peripherals
TG LACK OF RAM IN BASIC KIM-1

have appeared, usually oriented toward the

several interfaces to electronic organs in 0300 X'300 ; START WAVEFORM TABLE AT 0300
existence also. Even piano mechémsn'!s 0300 WAVITE - . VOICE 1 WAYEFORM TABLE
can be activated, as noted elsewhere in this 0300 WAV2TB = i VOICE 2 WAVEFORM TABLE
. 0300 WAV3TB z i VOICE 3 WAVEFORM TABLE
issue. 0300 WAVATB = : VOICE 4 WAVEFORM TABLE

- i i FUNDAMENTAL AMPLITUDE 1.0 (REFERENCE}
51.00 (Allil.ll') bUS. In some cases thESE are H SECOND HARMONIC .5, IN PHASE WITH FUNDAMENTAL
digital equivalents of analog modules of ; THIRD HARMONIC .5, 90 DEGREES LEADING PHASE

3 q
similar functlo_n. For examplg, a variable 0300 3334353636 JBYTE X*'33,X'34,X'35,X"36,X'36,X'37,%" 38,X' 39
frequency oscillator may be implemented gggg %;;iﬁma BYTE X'39,X'3A,X'3A,X'3B,X'38,X 38,01 3¢, X*3C
using a divide-by-N counter driven by a 030D 383C3D ’ PR AR R IR I
crystal clock. The output frequency is 9319 Joaeacaesc LBYTE X'3C,X'3C,X'3C,X"3C,X"3C,X"3C, X' 3¢, X' 3¢
determined by the value of N loaded into a 0318 3C3C3C3IBIB UBYTE X'3C,X'3C,X'3C,X'38,X"3B,X"38,X’36,X'3B

. . . 031D 3B3B3iB
register in the device, much as a conlrgl 0320 3A3A3A3A34 UBYTE X*3A,X'3A,X'3A,X'3A,X'34,X*34,X739,X°39
voltage affects a voltage controlled oscil- gagg 343939 . BYTE £939.439.X139. K139, 139,139, 1130 13
lator. Such an approach bypasses the fre- 0§2D 33;333 ® ’ VI IR TR SRR IR
quency drift problems and interfacing ex- ggg gaga;;wﬂ -BYTE X3A,X'3A,X'3A,X'34,X'34,X'38,X'38,X'38
pense of analog modules. The biggest advan- 0338 3B3C3C3C3P LBYTE X'3B,X*3C,X'3C.X*3C,X'3D,X'3D,X*3D,X* 3D

oar ol 0330 3D3D3D
tage,'howcveu, is avall_ablllty of advanced 0340 JEIEIEIEF BYTE X3E,X*IE,XVIE,XV3E, KV 3F XV 3F X0 3F X 3F

functions not feasible with analog modules. 0345 3F3F3F
N 0348 3F3F3F3F3F .BYTE X'3F,X"3F,X'3F,X'3F,X'3F,X"3F,X'3F X'3F

One of these is a programmable wave- 034D 3F3F3F
form. A small memory in the peripheral gggg ggggggmﬂ -BYTE X'3E,X'3E,X'3E,X'3D,X"3D,X"3C, X'3C,X"38
holds the waveform (either as individual 0358 3834393838 .BYTE X'3B,X'3A,X'39,X'38,X'38,X'37,%"36,X"35

X : L : 035D 373635
sample values or Foune_r ‘cucf.ﬁClenls), which 0360 3U33533130 BYTE X'30,X'33,%032,K731, X130, X'2F, K'ZE, X'2D
can be changed b\/ Wl'ﬂll'lg In-a new wave- gggg 5252522928 BYTE X'2C,X'2B,X'2A,%'29,X'28,X'27,X'26,X'25
form under program control. Another advan- 036D 272626) ' ’ ’ [' '
tage is that time multiplexing of the logic gg;g ggfgﬁz‘?‘ -BYTE X'24,X'23,X'22,K'21,X'21,X'20, X" F X" 1F
is usually possible. This means that one set 0378 1EVE1DIDID JBYTE X'1E,X'1E,X'1D,X’1D,X*1D,X"1D,X* 1C, X" 1C
. . . 037D 1DICIC
D_f !Dg": may 5”'”“'3['9 the function of several 0380 1CICIDIDID UBYTE X'1C,X*1C,X'1D,X'1D,X*1D,X* 1D, X 1D, X" 1E
digital oscillators simultaneously, thus re- 0385 1DIDIE

. . . 0388 YEIF1F2020 LBYTE X'1E,X*1F,X*'1F,X'20,X'20,X'21,X'21,X°22
ducing the per oscillator cost substantially. 038D 212122
Actually, such a digital oscillator may be gggg gggéggzuzs LBYTE X'23,X°23,X'24,X'24,X'25,X'26,X' 26, % 27
nothing more than a hardware implemen- 0398 2828292929 JBYTE X'28,%°28,X'29,X'29,X'29,X'2A,X' 24, %' 2B

. A . 039D 2A242B
tation Of the PLAY routine men[loned Q3A0 2B2B2B2B2B .BYTE X'2B,X'2B,X'2B,X'2B,X'2B,X'2B,X'2B,X'2A
carlier. 03A5 2B2B2A

Digital/analog hybrids are also possible. O3NS 2a2azgass (BYTE X'ZAX'2R,X'29,X°29,X'28,%'27,X'27 X'26
The speech synthesizer module produced g;gg 2524232221 JBYTE X*25,X'24,X123,X'22,X'21,X'20, X" 1F X" 1D
by Computalker Consultants, for example, 0388 1C18191817 LBYTE X*1C,X*1B,X19,X"18,X'17,X15,X" 14,X" 13
~ i i 03BD 151413
combines a programwable oscﬂlgtor, Seve,ral 03C0 11100FODOC LBYTE X'11,X'10,X'OF,X'0D,X'0C,X'0B,X'09,X08
programmable amplifiers and filters, white ocs 080908 . \

X . [. *07,X'06, X105, %04, X' 03,X'03,X°02,X’ 01
noise gencrator, and programmable switch- g;gp g;ggg?‘“‘” BrTE X107 X105, X10, X103, X103, 0102, X
ing on one board. Although designed for gggg g;ggggoooo .BYTE X'01,X'00,X'00,X'00,X*00,X'00,X'00,%'00
praducing speech, its completely program- 03D8 0000010101 LBYTE X'00,X'00,X’'01,X'01,X'01,X'02,X'03,X'04

i it sienifi i 03DD 020304
mabIeAnalure.gnves it significant musical 03E0 0506070809 .BYTE X'05,X'06,X*07,X'08,X'09,X'0B,X*0C,X'0D
potential, particularly in vocals. 03E5 0B0COD

How do these various control technlques gggg ?Z:g:i'm _BYTE X'OF,X'10,X'12,X'13,X"15,X"16,X" 18, X' 14
compare with the direct waveform compu- ggg ;3;252022 -BYTE X'1B,X'1D,X’1F,X'20,K'22,X'23,X'25,%'27

) X X . F
tation techniques discussed earlier? A de- 03F8 28242B2C2E BYTE X'28,X'2A,X'2B,X'2C, X'2E, X' 2F X1 30, X' 31
finite advantage of course is real time play- 03FD 2F3031
ing of the music. Another advantage is LEND
simpler programming, since sound genera-
tion has already been taken care of. How- Table 5: This table is an encoding of the samples of the waveform used by the
ever, the number of voices and complexity program in listing 2. The table is exactly one memory page long on a page
of subtle variations is directly related to the boundary. The maximum value of any entry is decimal 63 or hexadecimal 3F
uantity of synthesizer modules available. to avoid overflow when all four voices are summed.

y Y

79

For example, if more voices are needed,
either more modules must be purchased or a
multitrack tape recording must be made,
which then takes us out of the strict real
time domain. On the other hand, a new
voice in a direct synthesis system is nothing
more than a few bytes added to some tables
and a slightly lengthened execution time.
Additionally, there may be effects that are
simply not possible with currently available
analog modules. With a direct synthesis
system, one merely codes a new subroutine,
assuming that an algorithm to produce the
effect is known.

A separate problem for the experimenter
is that a “critical mass’ exists for serious
work with a direct synthesis system. To
achieve complexity significantly beyond the

* TOCCATA AND FUGUE IN D-MINOR BACH

-

VOICEl 40,0,0,0,0,30,0,0,0,0,0,0,0,60,0 10 30,30
voIce2 37,0,0,0,0,0,0,0,50,0,0,0,0,50,0 10 60,60
VOICE3 0,0,9,0,38,0,0,0,38,19,0,0,0,28,0 15 100,250

TEMPO 1/4=1200

o0z

/-f

1A3,1/64; 2A2,1/64
1A83,1/64; 22€2,1/64
1A3,1/8; 2A2,1/8
R,1/32

1G3,1/647: 262,1/64.
1F3,1/64; 2F2,1/64
1E3,1/64; 2E2,1/64
1D3,1/64; 2D3,1/64
1C#3,1/32; 2C#2,1/32
1D3,1/16; 202,1/16
R,1/4

in2,1/1; R,1/4
2C#3,1F2: R,1/16
1E3,7/16; R,1/16
1G3,7/16;: R,1/16
1B83,5/16; R,1/16
1C#4,4/16; R,1/16
1E4,3/16

/-7

1B&4,1/8; 1G4,1/8; 1E4,1/8;

1E3,1/32
1G3,1/32
1B@3,1/32
1C¥4,1/32
1B84,1/8

1884,1/8; 1G4,1/8; 1E4,1/8;
144,1/8; 1F84,1/8; 1D4,1/8;

‘PEMPO 1/4=950

1D3,1/32

TEMPO 1/4=1050

143,1/32
TEMPC 1/4=1150

1D4,1/32

TEMPO 17421200

14

=

143
END

Listing 3: Bach's ""Toccata and Fugue in D Minor’ as encoded in NOTRAN, a
music language developed by the author (NOTRAN stands for NOte TRAN-

1F§d,1/32
1a4,1/8

1A4,3/8; 1F#4,1/8; 1D4,1/8;
1p4,1/2; 18@3,1/2; 2G3,1/2:

1G4,1/2; 3Be2,1/4

2E3,1/8; 3C#3,1/8

1C#4,1/8; 2E3,1/8; 3C43,1/8
2F#3,1/8; 3C3,1/8

2F$3,1/8; 3C3,1/8
362,1/4

1E4,1/4; 1C#4,1/4: 2B@3,1/4: 3E2,1/4
1rd,1/4; 1D4,2/4; 2A3,1/4; 3F2,1/4
1E4,1/2; 2A3,1/2: 3A2,1/2: R,1/4

1€4,2/74; R, 1/4

1D4,4/2; 2F3,1/4; 3B@2,1/4
28@3,1/4; 2G3,1/4; 3G2,1/4
2R3,3/2; 2F3,3/2; 3D3,3/2:

3Dp2,3/2

slation). The main function of the language is to transcribe organ music,
but it will work equally well with other types of music. Program state-
mentis are used to encode duration, pitch, attack and decay rates, and loud-
rniess of each note.

80

4 voice example program described earlier,
a high speed, large capacity mass storage
system is needed. This means an IBM type
digital tape drive or large hard surface disk
drive; usually at least $3000 for a new
drive less interface. Used 7 track tapes and
2311 type disks (7.5 megabytes) are often
available for $500 and certainly provide
a good start if the user can design his own
interface. Synthesizer modules or peripheral
boards, on the other hand, can be purchased
one at a time as needed.

Music Languages

Ultimately, software for controlling the
sound generation process, whether it be
direct or real time control, is the real fron-
tier. The very generality of computer music
synthesis means that many parameters and
other information must be specified in
order to produce meaningful music. One
function of the software package is to con-
vert “musical units of measure” into phy-
sical sound parameters such as conversion
of tempo into time durations. Another part
is a language for describing music in suffi-
cient detail to realize the control power
available from music synthesis without bur-
dening the user with too much irrelevant or
repetitious detail. With a good language, a
good editor for the language, and real time
(or nearly so) execution of the language, the
music system becomes a powerful compasi-
tion tool much as a text editing system aids
writers in preparing manuscripts.

Music languages can take on two forms.
One is a descriptive form. Music written in
a descriptive language is analogous to a con-
ventional score except that it has been coded
in machine readable form. All information in
the score necessary for proper performance
of the piece is transcribed onto the com-
puter score in a form that is meaningful to
the user yet acceptable to the computer.
Additional information is interspersed for
control of tone color, tempo, subtle varia-
tions, and other parameters available to the
computer synthesist.

A simple example of such a language is
NOTRAN (NOte TRANSslation) which was
developed by the author several years ago
for transcribing organ music. Listing 3 shows
a portion of Bach's “Toccata and Fugue in
D Minor” coded in NOTRAN. The basic
thrust of the language was simplicity of
instruction (to both the user and the inter-
preter program), rather than minimization of
typing effort.

Briefly, the language consists of state-
ments of one line each which are executed
in straight line sequence as the music plays.
If the statement starts with a keyword, it is

a specification statement; otherwise, it is a
note statement. Specification statements
simply set up parameters that influence the
execution of succeeding note statements and
take no time themselves,

A VOICE statement assigns the timbre
described by its parameters to a voice num-
ber which is used in the note statements. In
the example score, the first group of para-
meters describe the waveform in terms that
are implementation dependent, such as
harmonic amplitudes. The next, isolated
parameter specifies the overall loudness of
the voice in relation to other voicer. The last
pair of parameters specifies the atltack and
decay times respectively for notes using this
voice. Depending on the particular imple-
mentation, other parameters may be added
without limit. For example, vibrato might be
described by a set of three additional para-
meters such as vibrato freguency, amplitude,
and a delay from the beginning of a note to
the start of vibrato.

A TEMPO statement relates note dura-
tions in standard fractional terms to real
time in milliseconds. The effect of a tempo
statement lasts until another is encountered.
Although the implementation for which the
example was written required a sequence of
tempo statements to obtain a retard, there is
no reason why an acceleration or a
retard set of parameters could not be added.

Note statements consist of one or more
note specifications and are indented four
spaces (the measure numbers are treated as
comments). Each note specification begins
with a voice number followed by a note
name consisting of a letter, optional sharp
(#) or flat (@) sign, and an octave number.
Thus C#4 is one half step above middle C.
Following the comma separator is a duration
fraction. Any fraction is acceptable, but
conventional musical fractions are normalty
used. Following the duration are two op-
tional modifiers. A period {.) indicates a
“dotted"” note which by convention extends
the note’s duration by 50%. An *'S" specifies
a staccato note which is played as just an
attack and decay (as specified by the corres-
ponding voice statement) without any
steady state. The presence of a semicolon (;)
after a note indicates that additional notes
which are intended to be part of the same
statement are present, possibly extending to
succeeding lines.

The execution sequence of note state-
ments can become a little tricky due to the
fact that note durations in the statement
may not all be equal. The rule is that all
notes in the statement star{ simultaneously.
When the shortest one has ended, the notes
in the next statement are initiated, even
though some in the previous statement may

82

be still sounding. This could continue to
any depth such as the case of a whole note
in the bass against a series of sixteenth notes
in the melody. The actual implementation,
of course, limits the maximum number of
simultaneous tones that may be built up.

Also available is a rest specification which
can be used like a note specification. Its
primary function is to provide silent space
between note statements, but it may also
be used to alter the “shortest note” decision
when a note statement is scanned. If the rest
is the shortest then the notes in the next
statement are started when the rest elapses
even though none of the current notes have
ended. A use of this property may be seen
in the last part of mecasure 2 where an
arpeggio is simulated.

As can be seen, NOTRAN is best suited
for describing conventional organ music,
although it could be extended to cover a
wider area as well. One such extension which
has been experimented with but not fully
implemented is percussion instruments. First
a set of implementation dependent para-
meters was chosen to define a percussive
sound, and then a PRCUS statement similar
to the VOICE statement was added to the
language. To initiate percussive sounds,
specifications such as “P3,1/4" would be
interspersed with the note specifications in
note statements. The “3" would refer to
percussive sound number 3 and the 1/4
would be a “‘duration’” which would be
optional. All percussive sounds in the same
statement would start simultaneously with
the regular notes.

A much more general music language is
the well-known MUSIC V. It was designed to
make maximum use of the flexibility
afforded by direct waveform computation
without overburdening the user. It is a
massive program written in FORTRAN and
clearly oriented toward large computers.
Much significant computer music work has
been done with MUSIC V, and it is indeed
powerful. An excellent book is available
which describes the language in detail and
includes some background material on
digital sound generation (see entry 1 in the
list of references at the end of this article).

A different approach to music languages
is a “generative” language which describes
the structure of the music rather than the
note by note details. In use, the structure is
described by “loops,” “‘subroutines,” and
“conditional branches” much as an algo-
rithm is described by a computer language.
The structure is ‘“‘executed” to produce
detailed statements in a conventional music
language which is then played to produce
sound, The intermediate step need not
necessarily be visible Lo the user. One well

thought out system is described in reference
2. It was actually developed as a musico-
logical analysis tool and so has no provisions
for dynamics, timbre, etc. It could, however,
be extended to include these factors. One
easy way to implement such a language is to
write a set of macros using a good mini-
computer macroassembler.

Conclusion

By now it should be apparent that com-
puter generated music is a broad, multidisci-
plinary field. People with a variety of talents
can make significant contributions, even on
a personal basis. In particular, clever system
designers and language designers or imple-
menters have wide open opportunities in this
field. Finally, imaginative musicians are
needed to realize the potential of the tech-
nique.

As his article was being finished by our
production department, Hal Chamberlin
notified us that he has completed the design
of a board which accomplishes the digital to
analog conversion and filtering functions

described in this article. The board contains
printed circuitry for an 8 bit digital to ana-
log converter, low pass filter and power
amplifier. Without components, the board
may be purchased for $6; completely assem-
bled and tested the price is $35. Orders
should be malled prepaid to Micro Tech-
nology Unlimited, 29 Mead St, Manchester
NH 03104. In addition, a software package
for the KIM-1 computer Is available on
cassette tape (KIM format) for $13 added
to the ptice of the output board, A 7 inch
16 ohm speaker can be ordered for $5 pre-
paid, completing the required parts of a
KIM's music system.m

REFERENCES

1. Mathews, Max, The Technology of Computer
Music, MIT Press, Cambridge MA, 1969. Con-
tains a detailed description of MUSIC V, the
high level music language.

2. Smoliar, Stephen, *A Parallel Processing Model
of Musical Structures,” PhD dissertation,
Massachusetts Institute of Technology, Sep-
tember 1971,

3. Oppenheim, A and Sct . R, Digital Signal
Processing, Prentice-Hall, NJ, 1975.

HOBBY WRAP
MODEL BW 630

ONTY
COMPLETE WIIH 1]
AND SLE

DIP IC INSERTION
TOOL WITH PIN
STRAIGHTENER

MODEL
INS-1416

MODEL

“MINIMUM ORDER $25.00, SHIPFING CHARGE $1.00, N.Y. CITY AND STATE RESIDENTS ADD TAX

WIRE DISPENSER

RIBBON CABLE
ASSEMBLY

PRE-CUT
PRE-STRIPPED WIRE

’;/”/

L
rd

OK MACHINE AND TOOL CORPORATION

3455 CONNER STREET, BRONX. NEW YORK, N.Y. 10475 U.S.A.
PHONE (212) 994-6600 TELEX NO. 125091

83

Circle 224 on inquiry cerd.

