ynertek
yste

rporatlon

I
S
S
C

RAE-1
REFERENCE MANUAL

RAE-1
REFERENCE

MANUAL

Copyright © by Synertek Systems Corporation
All rights reserved. No part of this publication may be re-
produced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopy-

ing, recording or otherwise, without the prior written con-
sent of Synertek Systems Corporation.

SSC Pub MAN-A-260027-C

Third Printing: October, 1980

Synertek Systems Corporation

PO BOX 552 SANTA CLARA, CALIFORNIA 85052 TEL. (4081 988-5689 TWX 910-338-0135

TABLE OF CONTENTS

SECTION TITLE PAGE
1.0 INTRODUCTION TORAE. « « v « v v v v+ 1=l
2.0 GETTING STARTED WITHRAE 2-1

20 CGENEREL: s wwmas s @ hes s o6 =@ 29 e 2ol
2.2 HARDWARE PREPARATION 2-2
224 RAE ROM ADDRESSING 2-2

2.2.2 AUDIO CASSETTE /O 22

2.3 STEP-BY-STEP EXAMPLE. 23

3.0 TEXTEDITOR (TED). S e G B 3-1
3.1 TEXT EDITOR COMMANDS. G nw e w Bl
ASSEMBLER, AUTO, BREAK, CLEAR 3-l

COPY, DELETE, DUPLICATE, FORMAT, GET . 3-2

HARD, LABELS, MANUSCRIPT, MOVE,
nrmnn/ S i 3-3

NUMBER, OFF, ON, OUTPUT, PASS,

PRINTPUT..... . e e s 2o
BUN.SET, USER: » % 2 ¢ ¢ oon § 5 8 3 & 5.6 35

3.2 EDIT AND FIND COMMANDS. 36

33 HOW TO USE EDIT AND FIND 3-8

3.4 ENTRY/DELETION OF TEXT 39

40 ASSEMBLER (ASM). o« .« . .. W]
4.1 ASSEMBLER (ASM) FEATURES 4-1

4,2 SOURCE STATEMENT SYNTAX 4-1

4.3 LABEL FILE (OR SYMBOL TABLE) 4-8

TABLE OF CONTENTS (CONT)

SECTION TITLE

5.0

6.0

7.0

8.0

9.0

10.0

4.4 ASSEMBLING FROM MEMORY

4.5 ASSEMBLING FROM TAPE , .,

4.6 CREATING A RELOCATABLE OBJECT FILE .

4.7 MACROS

4.8 CONDITIONAL ASSEAIBLY. ,

IFE, IFN, IFP, IFM, ***, SET . .

4.9 ASSEMBLER DEFAULT PARAMETERS .

RELOCATING LOADER. . . .,

FILE NUMBERS

ERROR CODES

CONTROL CODES .

SPECIAL NOTES .

SPECIFIC APPLICATION NOTES.

PAGE

5-1

6-1

7-1

8-1

9-1

10-1

TABLE

APPENDIX

A

LIST OF TABLES

TITLE

6502 MNEMONICS . . + « « « + . . .

PSEUDO OPS . v & v & & & & & “ v

BA, BY, €D, CT, DE, DI, DS, EL, EJ . + »

EN, ES, LC, LS, !, MC, ME, OC, OS, RC. . .

BB B w s b amw @ s ne A &aE

EXPRESSIONS .

ADDRESSING MODE FORMAT EXAMPLES . .

APPENDICES

TITLE

ASCII CHARACTER CODES.

RAE [/O LINKAGES

CONVERTING OTHER 6502 ASSEMBLER
LANGUAGE PROGRAMS .

RELOCATABLE LOADER SOURCE/OBJECT
CODE LISTING. « » + « & « s a3 & 3 «

ili

PAGE

4-2

4-5

46

4-7

PAGE

B-1

SECTION 1.0
INTRODUCTION TO RAE

This 6502 resident relocating macro assembler and text editor reside
simultaneously in 8K bytes of ROM memory. Sufficient memory must be
provided for a text file and label file (svmbol table). Approximately 2K
is sufficient memory for the text file for small programs or larger programs
if assembled from tape., A good rule of thumb is one byte of memory
for the label file for each byte of object code. [f ar executable object
code file is to be stored in mermory during assembly, sufficient memorv
must be provided for it also. On cold start entrv, the RAE will set the
file boundaries as follows.

e Text file = 0200-0BFC

e Label file = 0CO0-0EFC

o Relocatable object buffer = 0F00
The label file and text file that RAE generates are position independent
and may be located practically anywhere in RAM memory. The object
code file location is dependent on the beginning of assembly (.BA) and the
move code (.MC) pseudo ops.
RAE was designed such that records in the label file and text file are
variable in length and directly dependent on the number of characters to
be stored. This results in efficient utilization of memory.
Some major features of RAE are:

e Macro and conditional assembly support

¢ Labels up to 10 characters in length

e Auto line numbering for ease of text entry.

e Creates either executable code in memory or relocatable object
code on tape

e Manuscript feature for composing letters and other text
e Loading and storing of text on tape

[Supports up to two tape decks, terminal with keyboard, anc
printer

e String search and replace capability, plus other powerful editing
commands

e Upper and lower case accepted
Throughout this document, output generated by RAE is underlinec

necessary to distinguish it from user input.

1-1

Initial entry (cold start) to RAE is at address B00O. Warm start is at
address B003. If the break command (=BR) is executed, one may return
to the address following the break. Initial entry provides the following
default parameters:
FOR TED

e Format - set

L] Manuscript - clear

e Auto line numbering - 0 or clear

o Text file - clear

e Tape units - off

e Hardcopy - clear

FOR ASSEMBLER

e Assumes assembling from memory (otherwise use .CT)

e Does not store object code in memory (otherwise use .OS)

e Begins assembly at 30200 (otherwise use .BA)

e OQutput listing clear (otherwise use .LS or =ASSEMBLE LIST)
e Stops assembly on errors (otherwise use .CE)

e Stores object code beginning at 50200 unless a .BA or .MC is
encountered and if .OS is present

e Generates relocatable addresses
e Macro object code is not output (otherwise use .ES)

The RAE is designed to operate with a cassette record unit and a play

unit. A single record/play unit may be used but one will not be able to

create relocatable object files when assembling from tape.
When inputting to RAE the following control codes are useful:
CONTROL H (hex 08), Backspaces over previous charac-
Rubout or Delete (hex 7F) ter. More than one of these may
be entered to delete a number of
characters. A backslash is echoed
if rubout is depressed.

CONTROL X (hex 18) Deletes the entire line.

Break Key Halts outputting, and waits for
input of appropriate control code.

For a more detailed list see Section 8.

1-2

SECTION 2.0
GETTING STARTED WITH RAE

2.1 GENERAL

An assembler is a program which allows the user to compose and enter
programs at the machine language level in a form that is much more
convenient than actual machine code. The assemblsr accepts mnemonic
names for individual instructions, allows symbolic names to be assigned to
memory locations and data, provides for address arithrietic in terms of
symbolic names, and certain other features, depending on the sophistication
of the assembler in question.

The Synertek System's Resident Assembler/Editor (RAE) is a full features
assembler. Other major features include: macros with nesting capability,
conditional assembly, creation of relocatable object code supported by a
relocating loader, string search/replace and line editing, automatic contro)
of two I/O tape units, and assemble directly from tape.

It is commonly thought that the primary feature offered by an assembler
is that of writing machine instructions in a more convenient form. However,
this is only one aspect of the advantage of an assembler, and perhaps not
even the most significant, The use of symbolic names to represent numbers
makes variables of what most likely would have been considered constants,
The very presence of symbols bestows a generality and flexibility to a
program which otherwise might have seemed quite rigid. This encourages
the programmer to abstract the immediate problem and perhaps develop
a more adaptable program. Also, since the actual calculation or assignment
of a value to a symbol can be deferred, the development of logically
separate modules can proceed freely. Programs so organized become much
more readable and managable, both in their maintenance and amenability
to revision.

The purpose of an assembler is to translate a program written in assembly
language into machine language. Machine language refers to that represen-
tation of instructions which are immediately interpretable by the machine
being considered. For all intents and purposes, the machine language of
the 6502 consists of hexadecimal opcodes and data. An assembly language
is a symbolic representation of machine language instructions; e.g., LDA #
is used to represent the instruction A9, LoaD the Accumulator with the
value following the # sign.

The program written in assembly language is called the source code, the

machine language program produced by the assembler is called the object
code.

With or without an assembler, it should be realized that programs are

usually written in assembly language. The assembler simply saves us the
tedious and error-prone task of translating our program into machine code.

2-1

The assembler accomplishes the conversion of the source code to machine
code in two passes; that is, the source program is scanned twice. During
the first pass all symbols and their associated values are collected into a
label file (also called a symbol table). During the second pass the assembler
converts the program to machine language (also called object code), using
the definitions collected in the first pass.

One important feature that all assemblers share is that of assembler
directives, or pseudo ops. These are special orders to the assembler itself
about the way it is to deal with the source program, or for the definition
and manipulation of symbols and allocation of storage. The distinction
between operations (machine instructions) and psuedo operations is similar
to that between a manuscript to be typed and the author's marginal notes
to the typist. For example, directives are used to tell the assembler to
set aside 100 memory locations to be used for an array, or to tell it where
the object code is to be stored in memory.

2.2 HARDWARE PREPARATION

2.2.1 RAE ROM ADDRESSING

Your RAE is contained in one (RAE-!) or two (RAE-1/2) ROMs.
These ROMs are designed to run under the SYM-1 SUPERMON
monitor or the MDT-1000 system monitor.

Before you install the ROMs into your system, refer to your system
reference manual to locate or "strap" the desired ROM socket at
the correct memory address as shown below.

RAE-1 RAE-1/2

e Single 8K byte chip (2364) e Two 4K byte chips (2332's)

¢ P/N 02-0053A e P/N's 02-0023A and
02-0024A

e Chip select pin 20

e Chip select pin 20
e Address BOOO-BFFF,
E000-EFFF e Address

BO00-BFFF (02-0023A)
EQ00-EFFF (02-0024A)

For detailed discussion of jumper configurations for SYM-1, see Section
10.0, paragraph 4.

2.2.2 AUDIO CASSETTE /O

RAE is designed to work with a dual audio cassette system using
Synertek Systems' high speed recording format. Cassette unit #0
is designated the record unit and unit #1 is designated the play unit.
A single cassette player may be used for most operations except
where the user wishes to assemble source from tape and store object
code back onto tape.

2-2

Refer to your particular system's reference manual for details on
I/O addressing, remote control and adjustments. The following is a
summary of each of these:

ADDRESSING (IN, OUT, REMOTE CONTROL)

REMOTE REMOTE

CONTROL CONTROL

(RECORD) (PLAY)
SYSTEM AUDIO IN AUDIO OUT # 0 # 1

SYM-1 AOQ0-BIT 6 A400 (SYM A00C-CBR2 AGOQ-BIT 7
ref. manual)

MDT1000 9600-BIT 7 9600-BIT 6 9703-CB2 9701-cAz

AUDIO CASSETTE RECORDER ADJUSTMENTS

TONE High or treble
VOLUME* 2V peak-to-peak or saturation (max volume)
from recorder (suggested for most recorders)
TAPE Data tape or high quality, low noise audic
tape
Short lengths (30 min or less) works best
SUGGESTED
RECORDER Sanyo M2544A or equivalent

* Each recorder type will require a volume adjustment in order to
obtain maximum reliability, 2vp-p or saturation (max volume) works
well on most recorders.

STEP-BY-STEP EXAMPLE

To access the Resident Assembler/Editor (RAE), power up your system and
log-on to your terminal, then type "G B000"; this is the cold start entry
point. (The warm start entry point is B003).

RAE will respond with:

RAE V1.0
COFYRIGHT 1979 SYNERTEK SYSTEMS CORF.

0200-0BFC OCO0-QEFC OF00Q
0200 0Co00

NOTE: TEXT FILE 0200-0BFC
LABEL FILE 0C00-0EFC
RELOCATABLE OBJECT BUFFER 0F00
CURRENT END OF TEXT BUFFER 0200
CURRENT END OF LABEL BUFFER 0C00

2-3

If you inadvertently stop RAE log-on printout before the first prompt
character (>) is displayed, RAE will double echo each character typed and
also ignore any commands. To exit this mode, type CONTROL O.

The ">" is the prompt symbol from RAE, indicating it is ready to accept
commands., In the following procedures the ">" is not shown. Only the
most commonly used commands and the major features of RAE will be
discussed in the following section. Several examples will be used to
illustrate their use and action.

NOTE

ALL COMMANDS MUST BE ENDED
WITH A CARRIAGE RETURN. If you
make a typing error, enter a CONTROL
H or a RUBOUT to delete the last
character. Several CONTROL H's can
be entered to remove more than one
character. A CONTROL X will
eliminate the entire line. Processing
can be suspended by pressing the
BREAK key and resumed with a
CONTROL Q.

We will begin by entering a program segment which fills page 3 (0300-03FF)
of memory with zeros. Each line of text must be preceeded by a line
number, so that RAE can order them properly, as well as process any
changes we may wish to make as we go along.

Type in the following lines exactly as they appear, immediately following
the prompt symbol:

10 LDX #0

20 TXA

30LOOP STA $300,X
40 DEX

50 BNE LOOP

Note that the instruction mnemonics and addressing mode formats are
those defined and described in the SY 6500 Programming Manual (MNA-2).

Now type in:
PRINT

RAE will respond with:

0010 L.OX #0

0020 TXA

0030 L.OOF S5TA $300.X

0040 DEX

0050 BNE 1LOOF
Sl

Notice that RAE automatically lines up the label, instruction, and operand
fields, and that if the first character is a blank the label field is skipped.

To examine lines 20 through 40 only, type in:
PRINT 20 40

RAE will reply with:

0020 TXA
0030 L.OOF 5TA $300+X
0040 HEX

4

Notice that the line numbers in the PRINT command are separated by
blanks, not commas. This is the convention used by RAE in specifying all
command parameters,
Let us now try to assemble our program,
Type in:

ASSEMBLE LIST

RAE will print:
0050 ENE LOOF
107 AT LINE 00%50/44

This is an error message, telling us that the .EN (end of program) pseudo
op is missing. It is required to indicate to RAE the end of the source
program. Let us put it in and try again.

Type in the following:

60 .EN
ASSEMBLE LIST

RAE will respond with:

0200~ A2 00 00190 LIOX #0

0202~ BA 0020 TXA

0203~ 9I' 00 03 0030 LOOP 8TA $300sX

0206— CA Q040 DEX

0207~ 0 FaA 0050 ENE LOOF
0060 +EN

LABEL FILE: [/ = EXTERNAL I

LOOF=0203
/7000002090209

This time assembly of our program was successful. The listing producec
shows us the object code as well as the source code. The leftmost column
contains the address of the first byte of each instruction. As can be seen.
the default beginning address is $200. The .BA (begin assembly) pseuda
op is used when we wish RAE to assemble beginning at some other address,
say $500.

2-5

Type in:

5 BA $500
ASSEMBLE LIST

RAE will respond with:

Q009 CBA O $E00
0500~ A2 00 0010 LOxX #0
D02~ BA 0020 TXA
0503~ 90 00 03 0030 LOOF GTA $300rX
0506- Ca 0040 NEX
0507~ 0O FA Q050 BNE LOOF
Q06O N
LAREL FILEY [/7 = EXTERNAL

LODF=0503
4000008090509

Up to this point everything RAE has done has been "on paper". If we
want the object code generated by RAE to be actually stored in memory
at the address specified, we need to include the .OS (object store) pseudo
op. Type in the following:

6 .0S
ASSEMBLE

Notice that the LIST option was omitted from the ASSEMBLE command.
This time RAE will simply print:
SAO000y 0E0R,0H09

Let us exit RAE momentarily to examine some memory locations. To exit
to the system monitor type:

BREAK {or CONTROL C)
The system monitor will print:

BROAL O
Now type:

V 0500
The system monitor will reply:

0500 A2 00 8A YL 00 03 CA NOr6b
03866

This is the object code of our program, stored by RAE. To continue where
we left off type either: ‘

G B0O0O3 or G

B003 jis the warm start entry point to RAE. If the cold entry point were
used our text file would be lost.

RAE will print:
Q200-0BFI OCOO-0EFT OFO0O0

0248 000«

In order to execute our program without exiting RAE, we need to make
the last executable instruction an RTS so that control will be returned to
RAE.

Type in:

55 RTS
ASSEMBLE

RAE will print:

A70000y 0EOAyOLOA
Now enter:

RUN $500

RAE will come back with the prompt sign, "5". Let us exit RAE again
to verify that the program ran.,

Type:
BREAK
System monitor will print:

ROAL O

Now type:
V 0300
System monitor will print:

0300 00 00 00 Gu DO 00 00 OOy GO
0000

.

Apparently our program worked as intended. Get back into RAE. Recall
that the warm entry point is B003.

Let us begin a new example. This time we will change the starting
boundary of the text file to allow room for object code to be stored in
memory at the RAE default origin. Type the following:

SET $300

2-7

RAE will respond with:

0300-0BFC O0CO0-0QEFC OFOQ0
024E 0CO04&

We must now clear the text file because its starting boundary has been
changed. Failure to do so is catastrophic. To do this type:

CLEAR
If you now type PRINT, RAE will simply print //, which is the end-of-text
indicator. The following code is for a pseudo-random number generator.
To make the entering of the text easier, first type in:

AUTO 10

This command enables the automatic line numbering option. The 10 will
be used as the line number increment. AUTO goes into effect after a
line is referenced.

Type in:
100RND SEC

RAE will now respond with:
0110>

which is the next line number. Now enter the following lines after each
line number, remembering to leave a space if there is no label:

LDA TABLE+l

ADC TABLE+4
ADC TABLE+5

STA TABLE

LDX #4

MOVE LDA TABLE,X
STA TABLE+l,X
DEX

BPL MOVE

RTS

To exit AUTO, type:
/1

We must be sure to include the .EN (end of program) pseudo op, so enter:
9299 .EN

RAE will respond with:

1009

2-8

This is because the AUTO mode is still enabled. Type // to exit AUTO,
then, to turn off the AUTO option, type:

AUTO 0

Let's now try to assemble our code. Enter:
ASSEMBLE LIST

RAE will reply:

0200~ 38 G100 RND Gl
o110 LIw TARLE+L
108 AT LLINE 0110700

This error message tells us that there is an undefined label in line 110,
The problem is, of course, that RAE has no way of knowing what the
symbol TABLE represents. TABLE is meant to be the name of an array
of six elements. The pseudo op .DS (define storage) is used to tell RAE
to set aside a specified number of memory locations,

Type in:

90TABLE .DS 6
ASSEMBLE LIST

RAE will print:

0200~ QOYC TERLE L5 4
D206~ 38 QLOO RND GEL

0207~ b 01 02 0110
Q204 &S0 04 02 0120
Q200 &0 0% 02 0130
Q210- 8 00 02 0140
Q213 A2 04 G150

TABRLE+L
Takl b
TARLL
TARLE
+4

0215~ B 00 02 0140 MOUE TABLF » X

0216~ 90 01 02 0170 TABLL 415 X

0218~ CA 0180

021C~ 10 F7 MOVE

OZ1E~ 40

LABEL FILE: [/ = EXTERNAL 1

TABLE=0200 RNp=0206 MOVE=021%

A/0000yQ21F Q211

Notice that TABLE has been assigned the address 200 (hex), and that the
first byte of code is at location 206. Thus locations 200 - 205 have been
reserved; TABLE+1 is memory location 201, TABLE+2 is 202, etc.

To test this routine we will add some code which will call RND as a
subroutine and print out the pseudo random numbers generated. To aid us
in the output we will call on two subroutines in the system monitor:
OUTBYT and CRLF. OUTBYT outputs the contents of the accumulator
as two hex digits, and CRLF outputs a carriage return and a line feed.

2-9

In order to use them, we must tell RAE where they are located.

This is

done using the .DE (define external) pseudo op, which tells RAE that the
addresses specified are external to our program.

SOUTRYT=82FA
FND=0206
NEXT=0221

Type in the following

output looks exactly as follows:

08
« DE
JIE
I
SEC
LLIA
AL
ALC
STh
L2

QUTEYT
CRLF
TARLE
RND

MOV

STakRT
NEXT

$HLFA
$8340
&

TABLE+1
TABLE+4
TABLE+S
TABLE

*4
TARLE» X
TARLEALy X

MOVE

- &8

RN
TARLE
QUTEYT
CRELF

s NEXT

= EXTERNAL 1

lines:
40 .0S
500UTBYT .DE $82FA
60CRLF .DE $834D
300START LDY #38
310NEXT JSR RND
320 LDA TABLE
330 JSR OUTBYT
340 JSR CRLF
350 DEY
360 BNE NEXT
370 RTS
Assemble, and check that your
0040
0080
00&0
Q200 Q0?0
Q206~ 38 0100
0207~ A0 01 02 0110
[02 0120
02 0130
02 0140
QLSS0
02 0140
02 0170
0180
1< 0190
: 0200
N0 0300
2 02 0310
3 [02 0320
- 20 Fa 82 0330
A22a- 20 40 83 0340
Q221 88 0350
Q22E~- DO 1 0360
T 0230~ 60 0370
0999
LAREL FILES: E 7

SA0000,0231,0231

JURLF=8341
MOVE=021%

TARLE
START=0

Since the .OS (object store) pseudo op was present, the object code was

stored in memory, so we can now run the program.

RUN START

2-10

Type in:

0200

21F

The output you get will depend on what values happened to be in memory
at locations 200-205. With 20 (hex) in each location, the output will be:

ol
AR
E3
nE
F< 9
Al
33
3

It is common practice to place all subroutines after the main body of the
program. Thus, in the above example, we would like to place lines 100
through 200 after line 370, The MOVE command allows this to be done
very easily. Type in:

MOVE 370 100 200

To see what has been done, enter:
PRINT 360 999

RAE will print:

03460

0370

0370 RN
0370

0370

0370

0370

0370

0370 MOVE
0370

0370 !
0370 BFL MOVE
0370 RTH

R N

Tkl E e 2
TABLELX

If you type PRINT 100 200 you will see that lines 100 through 200 no
longer exist. Since all the moved lines have been given the same number,
we would like to renumber the text file. That is the purpose of the
NUMBER command.

Type in:
NUMBER 90 10
The 90 specifies the line to begin the renumbering, and the 10 specifies

the increment to use. If you now PRINT out the entire file you will see
that each line number is again unique.

NOTE

The following example will utilize the audio
cassette storage unit. If your cassette unit
is not connected or adjusted refer to your
system reference manual.

The next example is a routine which multiplies the contents of memory
location MLTPLR times the contents of location MLTPND. The product
will be two bytes long; the high part will be in the accumulator and the
low part in location RESLO. OUTBYT will again be used to output the
result. Type in:

CLEAR
AUTO 10
100MULT LDA #0

RAE will respond with:
0110>
Now enter the following lines after each line number:

STA RESLO
LDX #8
LOOP LSR MLTPLR
BCC NOADD
CcLC

ADC MLTPND
NOADD LSR A
ROR RESLO
DEX

BNE LOOP
;LINE 210

ISR OUTBYT
LDA RESLO
JSR OUTBYT
RTS

Line 210 is a comment line. A comment line begins with a semicolon and
may contain any characters after that, as comment lines are ignored by
RAE. In this case, it is used to separate the multiplication routine from
the output section for better readability, Comments may also appear on
any text line by simply separating the text and comment by at least one
space. As an example, retype lines 100 and 110 as follows:

100MULT LDA #0 ZERO RESULT HI
110 STA RESLO ZERO RESULT LOW

Before this routine will assemble we need to define the symbols OUTBYT,
RESLO, MLTPLR and MLTPND. Type in:

400OUTBYT .DE S$82FA
50RESLO .DS 1
60MLTPLR .BY 2
70MLTPND .BY 3

The .BY (store bytes of data) pseudo op directs RAE to store the following
value in the next memory location. MLTPLR and MLTPND will thus
contain the numbers 2 and 3, respectively.

Finally, we need to add the .0S (object store) pseudo op, and let us also
put in the .LS (print source listing on pass 2) pseudo op which enables
the list option on assembly. Enter:

10 .08

20 .LS
ASSEMBLE

RAE will print:

Q010 5

Q020)

Q040 B FE2FG
D200 0050 NG L
Q201- 02 0060 ML CEYO2
Q202+ 03 QO70 MLTIND JBYO3

$0 ZERD ROSULT H1
RESULT LOW

Q203 A% 00 G100 MULT
Q205 80 00 02 0110
D208~ A2 08 il

O20a~ 4E 01 02 0130 Loor LGSR MLTPLE
Q200- 90 04 0140 BEC NOADD
OLOF - 18 oLno Gl

Q2L0- &0 02 02 0140 ADC ML TEFND
0213~ 4 OL70 NOALD L5 A
0214~ 6FE Q0 02 0180 ROR RESBLD
V217~ CA 0190 DE %

0218~ Do FO 0200 ' ENE LOOF

FLINE 210

SRODUTEY T
RESL.O
COOUTEYT

021h- 20 Fa 82
Q210 Al 00 02
0220~ 20 FA 82
Q223 80

LAREL FILE: [7/ = EXTERNAL 3

AOUTEY RESLO=0200 ML TFLR=0201
MLTEND MULT=0203 LOOF=0204

NOADD=03
/0000 D224,0224

If your output looks exactly as the above, the program is ready to be run.

Type in:
RUN MULT
The output will be:
0006

Now change the values in lines 60 and 70, assemble the new program and
run it. For example the product of 4 and 9 is 0024 (hex), and that of 45
and 68 is OBF4 (hex).

One of the most important and fundamental features of RAE is the ability
to read and write to the cassette unit. We will save on tape and then
retrieve the current program. Place a blank tape in your recorder, advance
tape beyond blank leader and put the recorder in record mode. Now type:

PUT F1

After the file has been recorded RAE will return with the prompt. Repeat
this procedure twice more to ensure a good recording. We will now read
in the text file just recorded. Rewind the tape.

Now put the tape unit in the play mode, and type in:

GET F!
When the file has been read in successfully, RAE will print:

FOl 0llF 0200-031F
If you now type PRINT, you can verify that the file was read in correctly.
If an error occurs, retype GET Fl and start the tape again.
Now that you are acquainted with the basic features offered by RAE, you
are encouraged to read Sections 3 and 4 in order to become familiar with
the many other commands, pseudo ops, and editing features available to
you. By far the most effective, efficient and enjoyable way to do this is
to construct examples to try out each feature. Learning by doing will

show you exactly how each feature works, and will enable you to utilize
the full potential of the Synertek System's Resident Assembler/Editor.

SECTION 3.0

TEXT EDITOR (TED)

3.1 TEXT EDITOR COMMANDS

The TED provides 27 command functions. When entered, a command is
not executed until a carriage return is given. Although a command
mnemonic such as xPR may be several non-space characters in length, the
ASM/TED considers only the first two. For example, 2PR, 2PRI, 2PRINT,
and ZPRETTY will be interpreted as the print command,

Some commands can be entered with various parameters. For example,
2PRINT 10 200 will print out the text in the text file with line numbers
between 10 and 200. One must separate the mnemonic and the parameters
from one another by at least one space, Do not use commas. For
alphabetic parameters, only the first character is considered. For example
"FORMAT CLEAR" is the same as "FO C."

NAME EXAMPLE PURPOSE/USE

2ASSEMBLE w x

v

A
A
A

Pt

L Clear the label file and then assem-

N ble source in the text file starting

L 200 at line number x or 0 if x is not
entered. If w = LIST then a listing
will be generated. If w = NOLIST
or not entered then an errors only
output will be generated,

wnwnw

IV v

2AUTO x =AU Lo Automatic line numbering occurs
zAU when an x value not equal to zero
ZAUTO 20 is entered. x specifies the increment
to be added to each line number.
Auto line numbering starts after
entering the first line. To prevent
auto line numbering from reoccur-
ring, enter =AU or 2AU 0, after first
exiting with //.

ZBREAK 2BR Break to system monitor (executes
=BRK BRK inmstruction). A return to the
TED can be performed at the address
immediately after the break instruc-
tion, has the same effect as
CONTROL €.

=2CLEAR zCL Clear text file and turn off tape
units,

3-1

NAME

>COPY x y z

=zDELETE x y

‘DUPLICATE Fw

“FORMAT w

>GET Fx y

EXAMPLE

2CO 110 10 40

PURPOSE/USE

=CO 300 100 200

=DE 40
zDE 100 301

=pyupP
=DUP F10
=pU F

2FO §

zFO £

2FQ SET
zFORMAT §

=GE

=2GET Fl13 100
zGET APPEND
>GET FZ A

Copy lines y thru z in the text file
to just after line number x. The
copied lines will all have line
numbers equal x. At completion,
there will be two copies of this
data - one at x and the original at
y.

Delete entries in text file between
line nuinbers x and y inclusive. [f
only x is entered, only the first
occurence of that line is deleted.

Duplicate files from tape unit | to
tape unit 0 until file w, This com-
mand starts by reading the next file
on tape 1 and if that file is file w
or an end of file mark then it stops.
If not, the file just read will be
written to tape O and then tape |
is read again. This continues until
file w or an end of file record is
encountered.

Format the text file (where w = SET)
or clear the format feature (where
w = CLEAR). Format set tabulates
the text file when outputted. This
lines up the various source statement
fields. This feature, set or clear,
does not require extra memory.
Assembly output is dependent on the
state of the format feature.

Get text file with data associated
with file number x from tape. The
data will be loaded at line number
y, or will be appended to end of the
text file if the key-word APPEND
is entered for y. Defaults are x =
00 and y = 0.

3-2

NAME EXAMPLE PURPOSE/USE

*HARD w x zHA § | Control output to hard copy output
zHARD C device (printer), Turn on outputting
>HA P (w = SET) or turn off (w = CLEAR).

The starting page number is x. This
command s designed to leave a
small margin at top and bottom, and
provide a page number heading at
the top of each page. It is designed
to work with 66 line pages. An entry
of 2HA PAGE results in the printer
advancing to the top of the next
page. =HA set will cause output to
go through the printer vector in
addition to OUTVEC.

2L ABELS zLA Print out the label file generated by
> LAB the previous ASSEMBLE,

=MANUSCRIPT w =MA S If w = SET, line numbers are not
=MA C outputted when executing the =PR

command, If w = CLEAR, line
numbers are outputted when the >PR
command is executed. Assembly
output ignores the =MA command.
If manuscript is to be generated with
RAE, manuscript should be set and
format clear (=MA SET, =2FO
CLEAR). Since the TED considers
a blank line a deletion, one must
enter a non-printable control char-
acter to "trick" the TED into inser-
ting a blank line, e.g.,, 'TAB'
(CONTROL 1).

2MOVE x y z =MO 110 10 40
=MO 300 109G 200

Move lines y thru z in the text file
to just after line number x. The
moved lines will all have line num-
bers equal to x. The original lines
y thru z are deleted,

=n =10 Any entry beginning with one or
=100 more decimal digits is considered an
entry/deletion of text. See Section
3.4,
=nnnn// =2000// Used to exit temporarily from auto

line number mode so that commands
may be entered., Entry of a line
number rather than a command will
cause return to auto line number
mode,

3-3

NAME

=NUMBER x y

~OFF n

iON n

~OUTPUT Fw

~PASS

>PRINT x y

>PUT Fw x ¥

EXAMPLE

=NU 0 10
ZNU 100 10

~OF 0
OF 1
_OFF

SON 0
ZON 1
SON

>OU F
-0U Fl4
=0UT

~PA
=PASS

>PR
SPRINT 10

>PRINT 100 301

>PU F13

PURPOSE/USE

Renumber the text file starting at
line x in text file and expanding by
constant y. For example to re-
number the entire text file by 10,
enter =NU 0 10,

Turn off tape unit n, where n is 0
(record unit), or 1 (play unit). If an
n is not entered, 0 is assumed.

Turn on tape unit n, where n is 0
(record unit), or 1 (play unit). If an
n is not entered, 0 is assumed.

Create a relocatable object file on
tape unit 0 and assign file number
w to the recorded data. If w is not
entered 00 will be assumed. This
command uses the 256 byte relocat-
able buffer that can be relocated
via the >SET command.

Execute the second pass of assembly.
Not required if source is all in inter-
nal memory and the .CT pseudo op
is not encountered.

Print the text file data between line
number x and y on the terminal. If
only x is entered, only that line is
printed. I no x and y, the entire
file is outputted.

>PU F13 200 300

>PUT F
>PUT

Put text file between lines x and y
inclusive to tape, and assign the
recorded data file number w. If w
is not entered, 00 will be assumed.
If x and y are not entered, the entire
text file is recorded. If the letter
'X' is entered as the parameter such
as »>PU X an end of file mark is
recorded.

3-4

NAME

EXAMPLE

=RUN label expression

=S5ET ts te Is le bs

=USER

>RU START
>RU $1000
>RUN TEST+5

=5E

PURPOSE/USE

Run (execute) a previously assemblad
program. If a symbolic label is
entered, the label file is searched
for its value. The called program
should contain a IJMP warm start
(4CO3B0) as the last executable
instruction.

2SE $1000 $2000 $200 $3FF $400

ESET

zUS
=USR

If no parameters are given, the text
file, label file, and relocatable buf-
fer boundaries (addresses indicating
text file start, end, label file start,
end, and relocatable buffer start)
will be output on first line, then on
the second line the output consists
of the present end of data in the
text file followed with the present
end of data in the label file. If
parameters are entered, the first
two are text file start (ts) and end
(te) addresses, then the label file
start (Is) and end (le) addresses, and
finally the relocatable buffer start
address (bs). Parameters may be
entered either in decima! form, or
if preceded by a S, in hex form.

User defined commmand., The RAE
will transfer control to location
$0003. The user routine can re-enter
RAE via a JMP warm start (4C03B0),

3-5

3.2 EDIT AND FIND COMMANDS

STRING SEARCH AND REPLACE (EDIT) COMMAND

=EDIT string or 2EDIT n

A powerful string search and replace, and line edit capability is
provided via the zEDIT command to easily make changes in the text
file. Use form ! to string search and replace, and form 2 to edit

a particular line.

FORM |

#
*

=EDIT tSitS2t %d & x ¥y

where:

Sl
52

#

X

b

is any non-numeric terminator, e.g., """, "/"
is string to search for
is string to replace Sl

is "don't care" character. Precede with %
character to change the don't care; this character
used within Sl indicates which position to ignore
for a search "match" condition

indicates to interact with user via subcommands
before replacing Sl (see below)

(a space character) indicates to alter and print
all lines altered

indicates to alter but provide no printout
line number start in text file

line number end in text file

Asterisk (*) prompted subcommands:

m X v £ 0

CONTROL

Default:

s

> <

alter field accordingly

delete entire line

move to next field - don't alter
skip this line - don't alter

exit =ED command

enter form 2

%
0
9999

(space) print all lines altered

3-6

For example, to replace all occurences of the label LOOP with the
label START between lines 100 and 600, enter:

=EDIT /LOOP/START/ 100 600

To simply delete all occurences of LOOP, enter:
=EDIT /LOOP// 100 600

Use the * and # as described.

The slash was used in the above examples as the terminator but
any non-numeric character may be used,

At the end of the 2EDIT operation, the number of occurences of
the string will be output as //xxxx where xxxx is a decimal quantity,

FORM 2
=EDIT n
where:

n is line number (0-9999) of line to be edited.

Subcommands:
CONTROL F Find user specified character
CR {carriage return) - Retain any re-
maining part of a line
CONTROL D Delete any remaining part of line
CONTROL H Delete a character

For example, to change LDA to LDY in the following line,
LOOP1I LDA #L,CRTBUFFER LOAD FROM BUFFER

type CONTROL F followed with A, then CONTROL H, then Y, and
then terminate line with a carriage return.

The corrected line will be outputted and entered in the text file.

FIND STRING S1 COMMAND

Used to find certain occurences of a particular string. It's forin is:
#

*
2FIND tSlt %d A x y
where:

t, S1, %, d, x, y are as defined in the EDIT cormmand,

FORM .
*, & indicates to print all lines containing occurences
of Sl

indicates no printout

3-7

At the end of the =FIND operation, the number of occurences
of the string will be output as //xxxx where xxxx is a decimal
quantity.

A unique use of this command is to count the number of
characters in the text file (excluding line numbers). The form
for this is:

>FIND /%/#

3.3 HOW TO USE EDIT AND FIND

We will show with a simple example, how to use some of the EDIT features
of RAE. Other features, such as the use of a "don't care" character in
string searching, and the control of the degree of user interaction, are
described elsewhere in this manual. FIND is used to search for, but not
alter, strings. It is particularly useful in finding cross-references in a
source code; its use is like that of the form of EDIT which does not use
a line number.

Let the text to be edited be manuscript, rather than source code. SET
FORMAT CLEAR, AUTO 10, and enter the manuscript. After entry, print
and examine, and make the desired corrections.
For example, let the manuscript read:

"10 Now is the time for all good men"
and let it be corrected to read:

10 Now is the best time for most good women"

The procedure is as follows:

2
¢d19 MNow 15 the tin=z for all gqoo0d nen

red 19

MHow iz the tise for all goo0d #aen

M reNow iz the beshtF ol time for al AP 11N st
6818 How 15 ihe best time for Mozt 3604 asn

Ced SRENSWOMEDSE

g818 Now is the best time For wost joaod men

#7
1 pow 15 the besl time for Mozt 9009 Wwanes
Sidgpt
.-”p}"
§81d MHow 15 the best time for Aost go0d women

Ty
{

3-8

%1l underlined characters and symbols are RAE outputs,

For insertions, find the starting point and enter a new material, ending
~ith RETURN.

For deletions, find the end of the string, and delete with either DELETE,
RUBOUT or CONTROL H, depending on the type of terminal. New material
may then be added if desired; if not hit RETURN.

Tre CONTROL Fe was entered to find the "e" in "The".
Tne CONTROL Fl was enterd twice to find the second "|" in "all",

The "#" was used to permit interaction in case the string being searched
for had multiple occurences, and replacement was to be on a selective
dasis, The "23" is the count (in hex) to the start of the string /man/ in
‘ne 0010. The "a" is user approval to alter; entry of "s" would skip the
ziteration.

A nen editing is completed, enter MANUSCRIPT SET, to inhibit line number
orinting, and print the final copy. The process is less complicated than
.= would appear from the example, and will soon become almost automatic;
the user will see, almost at once, simpler, though less illustrative, means
ior accomplishing the editing above,

I is good operating procedure to have a backup copy of the material which

‘s being edited on tape, in case of operator errors with the MO, CO, DE,
21¢. commands.

3.4 ENTRY/DELETION OF TEXT

Source is entered in the text file by entering a line number (0-9999)
iollowed by the text to be entered. The line number string can be one
o n digits in length. If the string is greater than 4 digits in length, only
tne right-most 4 are considered. Text may be entered in any order but
«ill be inserted in the text file in numerical order. This provides for
assembling, printing, and recording in numerical order. Any entry consisting
21 a line number with no text or just spaces results in a deletion of any
entry in the text file with the same number. If text is entered and a
corresponding line number already exists in the text file, the text with
the corresponding number is deleted and the entered text is inserted.

TO DELETE THE ENTIRE FILE, use the =CL command.
TO DELETE A RANGE OF LINES, use the >DE command.

TO EDIT AN EXISTING LINE or lines having similar characteristics,
use the zED command.

TO FIND A STRING, use the =FI command.
TO MOVE OR COPY LINES use the =MO or zCO commands.

TO COPY FROM INPUT TAPE TO OUTPUT TAPE until a specific
file, use the zDU command.

3-9

The terminal input buffer is 80 characters in length. There are 9 tab
paints preset at 8 character intervals. Thus, the first tab point is at the
8th column, the second at the 16th column, etc. Entry of TAB or CONTROL
I will result in a movement to the next tab point. When inputting, the
cursor may not position exactly at the tab point but will position properly
when the text file is outputted via the zPR command.

Text may be entered more easily by use of the auto line numbering feature
(>AU command). Any =AU x where x does not equal 0 puts the TED in
the auto line number mode. To exit from this mode, type =//.

When entering source for the assembler, one need not space over to line
up the various fields. Labels are entered immediately after the line number
or > when in auto line numbering. Separate each source field with one
or more spaces. If the format feature is set (see =FO command), the
TED will automatically line up the fields. Note: If a space is entered
before the label, the TED will line up the label in the next field. This
should result in an assembler error when assembled. If a control I (tab)
is entered, a tab to the 8th column is formed. These tabs are preset and
can not be changed. Commands, mnemonics, and pseudo ops may be
entered as upper case or lower case characters. Assembly labels may also
be entered in upper or lower case but a label entered as upper case will
be different from the same label entered as lower case.

3-10

SECTION 4.0

ASSEMBLER (ASM)

4.1 ASSEMBLER FEATURES

The ASM scans the source program in the text file, This requires at least
two passes (or scans). On the first pass, the ASM generates a label file
(or symbol table) and outputs any errors that may occur. On the second

pass the ASM creates a listing and/or object file using the label file and
various other internal labels.

A third pass (via 20U) may be performed in order to generate a relocatable
object file of the program in the text file. This file is recorded on tape

unit 0 and may be reloaded into the memory using the relocating loader
at practically any location.

4.2 SOURCE STATEMENT SYNTAX

Each source statement consists of five fields as described below:
line number label mnemonic operand comment
Label

The first character of a label may be formed from the following characters:
@ A thru Z [\]1

while the remaining characters which forin the label may be constructed
from the above set plus the following characters:

o4 Bthry 9 55 5 5 2

The label is entered immediately after the line number or prompt () if
in the auto line numbering mode,

Mnemonic or
Pseudo Op

Separated from the label by one or more spaces and consists of a standard
6502 mnemonic from Table A or pseudo op from Table B.

Operand
Separated from mnemonic or pseudo op by one or more spaces and may

consist of a label expression from Table C and symbols which indicate the
desired addressing mode from Table D.

4-1

Comment

Separated from operand field by one or more spaces or tabs and is free
format. A comment field begins one or more spaces past the mnemonic
or pseudo op if the nature of such does not require an operand field. A
free format comment may be entered if a semicolon (;) follows the line
number or = if in auto line numbering mode.

For converting 6502 assembly language programs written on the System 65
or on MOS Technology Timesharing Cross Assembler, refer to Appendex
e

TABLE A - 6502 MNEMONICS

(For a description of each mnemonic, consult the MNA-2
SY6500 Programming Manual)

ADC CLD ISR RTS
AND CLI LDA SBC
ASL cMP LDX SEC
BCC CLV LDY SED
BCS CPX LSR SEI

BEQ cPY NOP STA
BIT DEC ORA oI
BMI DEX PHA STY
BNE DEY PHP TAX
BPL EOR PLA TAY
BRK INC PLP TSX
BVC INX ROL TXA
BVS INY ROR TXS
CLE IMP RTI TYA

4-2

NAME

.BA expression

BY

.CE

ET

label .DE expression

IN

label .DI expression

.DS expression

EC

E1

ASCII

TABLE B - PSEUDO OPS

EXAMPLE

.BA %200

.CE

SET

.DE INDEV
.DE INDEV

.DI TABLE
.DI TABLE

.DS 20
.DS S00F0

EC

Ed

PURPOSE/USE

Begin assembly at the address
calculated from the label expression.
This address must be defined on the
first pass or an error will result and
the assembly will halt.

BY 00 'ABCD' 47 69 'Z' $FC %1101

Store bytes of data. Each hex,
decimal, or binary byte must be
separated by at least one space. An
ASCII string may entered by begin-
ning and ending with apostrophes ('),

Continue assembly if errors other
than 107, 104, or !17 occur, All error
messages will be printed.

Indicates that the source program
continues to tape.

Assign the address calculated from
the expression to the label. Desig-
nate as external and put in label
file. An error will result if the label
is omitted.

Assign the address calculated from
the expression to the label. Desig-
nate as internal and put in label file.
An error will result if the label is
omitted.

Define a block of storage. For
example, if expression equated to 4,
then ASM will skip over 4 bytes.
Note: The initial contents of the
block of storage are undefined.

Suppress output of macro generated
object code on source listing., See
Section #4.7. This is the default
condition,

Eject to top of next page if =HA
SET was previously entered,

4-3

NAME

EN

LES

LG

.LS

TABLE B - PSEUDO OPS (CONT)

EXAMPLE

.EN

.ES

LC

Mlabel .MD (pl p2 p3...)

.MC expression

ME

£

L35

.RC

MC $700
.MC CAT

PURPOSE/USE

Indicates the end of the source
program.

Output macro generated object code
on source listing. See Section 4.7,

Clear the list option so that the
assernbly terminates printing the
source listing after the .LC on pass
2.

Set the list option so that the
assembly begins printing out the
source listing after the .LS on pass
2,

Macro definition. See Section 4.7.

.MC ORIGIN+$10060

ME

0C

.RC

When storing object code, move code
to the address calculated from the
expression but assemble in relation
to that specified by the .BA pseudo
op. An undefined address results in
an immediate assembly halt,

Macro end. See Section 4.7.

Clear the object store option so that
object code after the ,O0C is not
stored in memory, This is the default
option,

Set the object store option so that
object code after the .OS is stored
in memory on pass 2.

Provide directive to relocating load-
er to resolve address information in
the object code per relocation re-
quirements but store code at the
pre-relocated address. This condition
remains in effect until a .RS pseudo
op is encountered. The purpose of
the .RC op is to provide the capabil-
ity to store an address at a fixed
location (via .SI pseudo op) which
links the relocatable object code
module to a fixed module.

4y

TABLE B - PSEUDO OPS (CONT)

NAME EXAMPLE PURPOSE/USE

.RS .RS Provide directive to relocating load-
er to resolve address information in
the object code per relocation, and
store the code at the proper reloca-
ted address. This is the default

condition,
.SE expression SE BASIC Store the address calculated from
.SE $C000 the expression in the next two

memory locations. Consider this ad-
dress as being an external address.
Note: If a label is assigned to the
SE, it will be considered as internal.

ST expression SI START Store the address calculated from
.SI TABLE the expression in the next two
SIo=+b memory locations. Consider this ad-

dress as being an internal address.

NOTE

Labels may be entered with any of the pseudo
ops, but are mandatory where indicated.

4-5

TABLE C - EXPRESSIONS

An expression must not contain embedded spaces and is constructed from
the following:

Symbolic Labels:

One to ten characters consisting of the ASCII characters as previously
defined.

Constants:

Decimal, hex, or binary values may be entered. If no special symbol
precedes the numerials then the RAE assumes decimal (example: 147). If
$ precedes then hex is assumed (example: SF3). Only the last four hex
digits are used. If % precedes then binary is assumed (example: %11001).
Leading zeros do not have to be entered. All numbers greater than 65,536
are reduced modulo 2'¢.

Program Counter:

To indicate the current location of the program counter use the symbol

Arithmetic Operators:

Used to separate the above label representations:
+ addition, - subtraction

Examples of some valid expressions follow:

LDA #%1101 load immediate 00001101

STA *TEMP+S01 store at byte following TEMP (Zero
page)

LDA S471E36 load from $1E36 (47 is ignored)

JIMP LOOP+C-$461

BNE =+8 branch to current PC plus 8 bytes
(current PC is first byte of next
instruction)

One reserved symbol is A, as in ASL A. The letter A followed with a
space in the operand field indicates accumulator addressing mode.

ASL A+500 does not result in accumulator addressing but instead references
a memory location.

4-6

TABLE D - ADDRESSING MODE FORMAT

Immediate

LDA #%1101

LDA #SF3

LDA #F3

LDA #'A

LDA #H,expression

LDA #L,expression
Absolute

LDA expression

Zero Page

LDA *expression

Absolute Indexed
LDA expression,X
LDA expression,Y

Zero Page Indexed

LDA *expression,X

LDX *expression,Y
Indexed Indirect

LDA (expression,X)
Indirect Indexed

LDA (expression),Y
Indirect

IMP (expression)

binary 00001101, the pound sign (#)
indicates immediate addressing

hex F3

load value of label F3

ASCII A

hi part of the value of the expression

lo part of the value of the expression

the asterisk (¥) indicates zero page
addressing

TABLE D - ADDRESSING MODE FORMAT (CONT)

Accumulator

ASL A letter A indicates accumulator
addressing mode

Implied

TAX operand field ignored
CLC

Relative

BEQ expression

4.3 LABEL FILE (OR SYMBOL TABLE)

A label file is constructed by the assembler and may be outputted at the
end of assembly (if an .LC pseudo op was not encountered) or via the =LA
command. The output consists of each label encountered in the assembly
and its hex address. A label in the label file which begins with a slash (/)
indicates that it was defined as an external label. All others are considered
as being internal labels. When a relocatable object file is generated (via
>QU command), any instruction which referenced an internal label or a
label expression which consisted of at least one internal label will be
tagged with special information within the relocatable object file. The
relocating loader uses this information to determine if an address needs
to be resolved when the program is moved to another part of memory.

Conversely, instructions which referenced an external label or a label
expression consisting of all external references will not be altered by the
relocating loader.

At the end of the label file the number of errors which occurred in the
assembly will be outputted in the following format:

[xxxx,yyyy,zzzz
where xxxx is the number of errors found in decimal representation, yyyy

is last address in relation to .BA, and zzzz is last address in relation to
MC.

4.4 ASSEMBLING FROM MEMORY

With the source program in the text file area, simply type 2AS x. Assembly
will begin starting at line number x. If a .CT pseudo is not encountered,
both passes will be accomplished automatically. If a .CT pseudo op is
encountered, the 2PA command would have to be executed to perform the
second pass.

4.8

4.5 ASSEMBLING FROM TAPE

Source for a large program may be div.ded into modules, entered into the
text file one at a time and recorded (:PLi) on tape.

At assembly, the assembler can load and assemble each module until the
entire program has been assembled. This would require two passes for a
complete assembly. When assembling from tape, the file identification
numbers assigned to the modules are ignored. NOTE: SYM users should
refer to Section 10.0, paragraph 4, before assembling from tape.

Source statements within a module will be assembled in numerical order
but the modules will be assembled in the order in which they are encoun-
tered. Source statement numbering is restarted for each module. If a
line number is specified in the >AS command indicating the start of
assembly, it applies for all modules.

The ASM assumes that if an end of file condition is encountered before
the .EN pseudo op and a .CT pseudo op had not been encountered, an error
is present (107 AT LINE xxxx).

When assembling from tape, the assembler should encounter a .CT pseudo
op before the end of the first module. Two ways to accomplish this are:

l. a) Load the first module via the ~GE command.
b) This module should contain a .CT pseudo op.

or

2. a) Clear the text file via the >CL command.

b) Enter -9999 .CT.
9999 is entered since one may have requested any as-
sembly beginning with a line number. This insures that
the .CT gets executed.

Next ready the play unit and type >AS x. Either way the ASM will start
and stop tape unit 1 until the .EN pseudo op is encountered. At that
point tape unit 1 is turned off, and the message RDY. FOR PASS 2 is
outputted.

RAE is now in the TED mode. Rewind the tape unit (~ON] and >OFF
1 accordingly). Perform 1 or 2 as described above and type >PASS to
perforin the second pass. Again tape unit 1 will be turned on and off
accordingly under control of the ASM software.

4.6 CREATING A RELOCATABLE OBJECT FILE

In order to create a relocatable object file, the programmer should define
those labels whose address should not be altered by the relocating loader.
This is done via the .DE pseudo op. Constants (example: $0169) are also
considered as being external. All other labels (including those defined via
the .DI pseudo op) are considered as internal. Addresses associated with
internal labels are altered by an offset when the program is loaded via
the relocating loader.

4-9

Also .SE stores a two byte external address and .SI stores a two byte
internal address. Similarily the relocating loader will alter the internal
address and not the external address.

An example of an external address would be the calls to the system monitor
or any location whose address remains the same no matter where the
program is located. Locations in zero page are usually defined as external
addresses. Expressions consisting of internal and external labels will be
combined and considered an internal address. A label expression consisting
entirely of external labels will be combined and considered as external.
T2 record a relocatable object file, insert a blank tape in tape unit 0 and
ready. If the entire source program is in memory, simply type =OU.

If the source program is on tape type =zOU, the ASM will turn both tape
units on and off until the end of assembly. The relocatable object file
will be recorded on the tape in unit O.

After the relocatble object file has been recorded, record an end of file
mark via the zPU X command.

4.7 MACROS

RAE provides macro capability. A macro is essentially a facility in which
one line of source code can represent a function consisting of many
instruction sequences. For example, the 6502 instruction set does not have
an instruction to increment a double byte memory location. A macro
could be written to perform this operation and represented as INCD
(VALUE.1). This macro would appear in your assembly language listing in
the mnemonic field similar to the following:

BNE SKIP
NOP

H\IJCD (VALUE.1} ; INCREMENT DOUBLE
LDA TEMP

Before a macro can be used, it must be defined in order for ASM to
process it. A macro is defined via the .MD (macro definition) pseudo op.
Its form is :

Mlabel .MD (1l 12 ... In)

Where label is the name of the macro (!!! must precede the label), and
11, 12,..., In are dummy variables used for replacement with the expansion
variables. These variables should be separated using spaces, do not use
commas.

To terminate the definition of a macro. use the .ME (macro end) pseudo
op.

For example, the definition of the INCD (increinent double byte) macro
could be as follows:

HINCD MD (LOC) ; INCREMENT DOUBLE
INC LOC
BNE SKIP
INC LOC+1

SKIP ME

This is a possible definition for INCD. The assembler will not produce
object code until there is a call for expansion. Note that a call for

expansion occurs when you enter the macro name along with its parameters
in the mnemonic field as:

INCD (TEMP) or INCD (COUNT) or INCD (COUN+2)
or any other labels or expressions you may choose.
NOTE

In the expansion of INCD the code to
increment the variable LOC is not being
generated; instead the code to incre-
ment the associated variable in the call
for expansion. Also parentheses must
be used with the parameter labels both
in the definition and in the call.

If you tried to expand INCD as described above more than once, you will
get a 106 error message. This is a duplicate label error and it would
result because of the label SKIP occurring in the first expansion and again
in the second expansion.

There is a way to get around this and it has to do with making the label
SKIP appear unique with each expansion. This is accomplished by rewriting
the INCD macro as follows:

NINCD MD (LOC) 3 INCREMENT DOUBLE
INC LOC
BND ..SKIP
INC LOC+1

«..SKIP ME

The only difference is ...SKIP is substituted for SKIP. What the ASM does
is to assign each macro expansion a unique macro sequence number (216
maximum macros in each file). If the label begins with ... the ASM will
assign the macro sequence number to the label. Thus, since each expansion
of this macro gets a unique sequence number, the labels will be unique
and the 106 error will not occur.

If the label ...SKIP also occurred in another macro definition, no 106 error
will occur in its expansion if they are not nested. If you nest macros
(i.e., one macro expands another), you may get a !06 error if each definition
uses the ...SKIP label].

4-11

The reason this may occur is that as one macrc expands another in a nest,
they are each sequentially assigned macro sequence numbers. As the
nacros work out of the nest, the macro sequence numbers are decremented
until the top of the nest. Then as further macros are expanded, the
sequence numbers are again incremented. The end result is that it is
possible for a nested macro to have the same sequence number as one not
nested. Therefore if you nest macros, it is suggested that you use different
labels in each macro definition.

Some further notes on macros are:
1. The macro definition must occur before the expansion.

2. The macro definition must occur in each file that references
it. Each file is assigned a unique file sequence number (g1
maximum files in each assembly) which is assigned to each
macro name. Thus the same macro definition can appear in
more than one file without causing a !06 error. If a macro
with the same name is defined twice in the same file, then
the 106 error will occur.

3. Macros may be nested up to 32 levels. This is a limitation
because there is only so much memory left for use in the stack.

4. If a macro has more than one parameter, the parameters should
be separated using spaces - do not use commas.

5. The number of dummy parameters in the macro definition must
match exactly the number of parameters in the call for expan-
sion.

6. The dummy parameters in the macre definition must be symbolic
labels. The parameters in the expansion may be symbolic or
non-symbolic label expressions.

7. 1f the .ES pseudo op is entered, object code generated by the
macro expansion will be output in the source listing. Also,
comment lines within the macro definition will be output as
blank lines during expansion. If .EC was entered, only the line
which contained the macro call will be output in the source
listing.

4.3 CONDITIONAL ASSEMBLY

ASM also provides a conditional assembly facility to conditionally direct
the assembler to assemble certain portions of your program and not other
portions. For example, assume you have written a CRT controller program
which can provide either 40, 64 or 80 characters per line. Instead of
having to keep 3 different copies of the program you could use the ASM
conditional assembly feature to assemble code concerned with one of the

character densities.

Before we continue with this example, let us describe the conditional

assembly operators:

IFE expression

IFN expression

IFP expression

IFM expression

¥k #

SET symbol = expression

If the expression equates to a zero
quantity, then assemble to end of
control block,

If the expression equates to a non-
zero quantity then assemble to end
of control block.

If the expression equates to a
positive quantity (or 0000), then
assemble to end of control block.

If the expression equates to a
negative (minus) quantity, then
assemble to end of control block,

Three asterisks in the mnemonic
field indicates the end of the control
block.

Set the previously defined symbol to
the quantity calculated from the
expression.

NOTE

All expressions are evaluated using 16-
bit precision arithmetic.

Going back to the CRT controller software example, a possible arrangement
of the program is as follows:

CHAR.LINE .DE 40

IFE CHAR.LINE-40
:CODE FOR 40 CHAR./LINE

*% %

IFE CHAR.LINE-64
;CODE FOR 6% CHAR./LINE

-'I-*-!—
IFE CHAR.LINE-80
;CODE FOR 80 CHAR./LINE

* %

;COMMON CODE

Shown is the arrangement which would assemble code associated with 40
characters per tine since CHAR.LINE is defined as equal 40, If you wanted
to assemble for 80 characters, simply define CHAR.LINE as equal 80, with
SET CHAR.LINE = 80,

Conditional assembly can also be incorporated within macro definitions. A
very powerful use is with a macro you don't want completely expanded
each time it is referenced. For example, assume you wrote a macro to
do a sort on some data. It could be defined as follows:

EXPAND .DE 0
MSORT MD
IFN EXPAND
ISR SORT.CALL ;CALL SORT
* %%
IFE EXPAND
ISR SORT.CALL
IMP .. SKIP
;SORT CODE FOLLOWS
SORT.CALL
RTS
...SKIP SET EXPAND = 1
kL
ME

[this example, EXPAND is initially set to 0. When the macro is expanded
for the first time, EXPAND equals 0 and the code at SORT.CALL will be
zssembled. Also the first expansion sets EXPAND to 1. On each succeeding
expansion, only a JSR instruction will be assembled since EXPAND equals
.. Using conditional assembly in this example resulted in more efficient

memory utilization over an equivalent macro expansion without conditional
assembly,

4.9

ASSEMBLER DEFAULT PARAMETERS

Assumes assembling from memory (otherwise use .CT)

Does not store object code in memory (otherwise use .0S)
Begins assembly at $0200 (otherwise use .BA)

Output listing clear (otherwise use .LS OR >ASSEMBLE LIST)
Stops assembly on errors (otherwise use .CE)

Stores object code beginning at 30200 unless a .BA or .MC is
encountered and if .OS is present,

Generates relocatable address

Macro object code is not output (otherwise use .ES)

SECTION 5.0

RELOCATING LOADER

A source listing of the relocating loader (Appendix D) is provided. The
relocating loader is not part of the RAE program body, and the user will
Jave to enter it via the listing.

If you prefer to have the loader reside in some other part of memory,
vou should enter the source into the text file, assemble, and then create
z relocatable object file on tape.

To record a program in relocatable format, first assemble (without an .OS
pseudo op) the program at location 0000 (.BA $0). Next create a relocatable
object file via the =QU command, Terminate the relocatable object file
with an end of file mark via the 2PU X command. To reload a program
in relocatable format, first enter the address where you want the program
1o reside in memory locations $O0EQ (lo) and $SO0EL (hi), the object file
number into 0110, the relocatable buffer address in 0GCS (lo) and 00C9
(hi) and then start execution at $0200.

When executing the relocating loader, if an error or an end of file mark
is detected, a break (BRK) instruction will be executed so as to return to
the system monitor. The contents of register A indicates the following:

00 good load
EE error in loading

All programs to be created in relocatable format should be assembled at
$0000. This is because the offset put in SO0EQ and $00E! before execution
is added to each internal address by the loader in order to resolve addresses
while relocating the program. If the program was originated at say $1000,
then one would have to enter F200 as the offset in order to relocate to
$0200 (i.e., F200+1000 = 0200). This is somewhat more confusing than an
assembly beginning $0000,

In addition to the program memory space, the relocating loader uses the
following mernory locations:

00C8-00C9, 00DC-00E]
0110, O11E-0121, G17A-D184

plus other stack area for subroutine control.

5-1

SECTION 6.0
FILE NUMBERS

Information to be recorded on or read from tape via the =PU, »GE, and
20U commands may be assigned a file identification number to distinguish
between files. A file number is a decimal number between 0 and 99. To
enter a file number as a parameter in the =zPU, =OU, or 2GE commands,
begin with the letter 'F' followed by the file number. Examples are FO,
Fl7, F6, etc. If no file number is entered with the >PU =GE, and =0U
commands, file number 0 will be assigned by default.

When loading, all files encountered will result in the outputting of their
associated file numbers and file length in bytes. The loaded file has, in
addition, the memory range of the location of the loaded data.

Example: =2GET F17
FOO 01A3
F67 0847
F17 OF93 02060-1193

>

An end of file mark may be recorded via the =PU X command to indicate
the end of a group of files. If an end of file mark is encountered when
loading, FEE will be outputted and a return to the command mode will be
performed.

an
U
—

SECTION 7.0

ERROR CODES

An error message of the form Ixx AT LINE yyyy/zz where xx is the error
code, yyyy is the line number, and zz is the file number will be outputted
if an error occurs. Sometimes an error message will output an invalid

line number.

This occurs when the error is on a non-existent line such

as an illegal command input.

The following is a list of error codes not specifically related to macros:

17
16
15
14

11

OF
OE
on
0c
0B
0A
09
08
07
06
05
04
03
02
01
00
ED

Checksum error on tape load
Illegal tape unit number
Syntax error in ZED command

Cannot generate relocatable cbject tape with errors or no
previous assembly

Missing parameter in =zNU command

Overflow in line # renumbering

CAUTION: You must properly renumber the text file or
part of the file may be deleted by subsequent operations.
Overflow in text file - line not inserted

Overflow in label file - label not inserted

Expected hex characters, found none

Illegal character in label

Unimplemented addressing mode

Error in or no operand

Found illegal character in decimal string

Undefined label (may be illegal label)

.EN pseudo op missing

Duplicate label

Label missing in .DE or .DI pseudo op

BA or .MC operand undefined

Illegal pseudo op

Illegal mnemonic

Branch out of range

Not a zero page address

Error in command input

7-1

The following is a list of error codes that are specifically related to

macros:

2F
2E
2B
2A
29
27
26
25

24
23
22
21
20

Overflow in file sequence count (216 max.)
Overflow in number of macros (216 max.)
.ME without associated .MD

Non-symbolic label in SET

Illegal nested definition

Macro definition overlaps file boundary
Duplicate macro definition

Number of macro reference parameters is different from the
number of macro dummy parameters or illegal characters

Too many nested racros (32 max.)
lacro definition not complete at .EN
Conditiona! suppress set at .EN
Macro in expand state at .EN

Attempted expansion before definition

7-2

SECTION 9.0
SPECIAL NOTES

In addition to the program memory space the RAE uses the
following memory locations:

0100 - up depending on type of function
00B6 - OOFF reserved for RAE and system monitor

plus other stack area for subroutine control. The terminal input
buffer is in locations 0135 - 0185,

Keep the cover closed on the tape unit as this keeps the cassette
cartridge stable.

When entering source modules (without .EN) you can perform a
short test on the module by assembling the module while in the
text file and looking for the 107 error. If other error messages
occur, you have errors in the module. This short test is not a
complete test but does check to make sure you have lined up
the fields properly, not entered duplicate labels within the
module, or entered illegal mnemonics or addressing modes.

A 64 character/line (or greater) output device should be used
with this program when outputting an assembly listing in order
to provide a neat printout.

Any keyboard input greater than 80 characters in length will
be automatically inserted in the text file without the user having
to enter a carriage return.

Locations $00D5 (lo) and $00D6 (hi) contain the address of the
present end of the label file. These locations contain invalid
data until after the first assembly. This address +2 should
contain a zero (a forward pointer),

Locations $00D3 (lo) and $00D4 (hi) contain the address of the
present end of the text file. This address +2 should contain a
zero (a forward pointer).

To find the address of an entry in the text file, output the line
via the PR command, issue the BR command, and then get the
contents of memory location 00DD, 00DE. This is an address
which points to the end of the outputted line.

9-1

SECTION 10.0
SPECIFIC APPLICATION NOTES

The default file boundaries for RAE are: test file = 0200-0BFC,
label file = 0C00-0EFC, and relocatable buffer = 0F00. When entering
the file boundary via the SET command, enter the end address minus 3.

Example: If the end = OBFF, then enter OBFC.

RAE provides software for controlling two tape motors. RAE assumes
the record unit (unit 0) is connected to the SYM motor control. If
the user implements motor control hardware for the play unit (unit
1), RAE can control it via APB7, pin A-15 ("I" = off, "0" = on).

MDTI000 has both unit 0 and unit | remote motor control hardware
as standard hardware.

The following must exist for installation of RAE-1/2 (two 4K ROMs)
into SYM.

RAE P/N 02-0023 inserted into socket U22 and
RAE P/N 02-0024 inserted into socket 23

The jumpers must be configured as follows:

C-1 H-3
D-1 L-46, 46*
G-2 M-15, 16

The following must exist for installation of RAE-1 (one 8K ROM)
into SYM.
RAE-1 (P/N 02-0053A) in socket U23
The jumpers must be configured as follows:
D-1
M-15, 16, 46, 47*
Add the following:

Jumper & to U2-1
Jumper H to U2-2

(U2 is an inverter located to the right of logo)
RAE-1 (P/N 02-0053B) in socket U23
The jumpers must be configured as follows:
D-1

H-4
M-15, 16, 46, 47*

For both versions, remove jumper from D to 3 and also jumper from
H to 6.

A manually-entered patch is required for RAE-1 V1.0 when used on
SYM for assembly from cassette tape. The user must enter a flag
and a vector into zero page. The patch may be stored any place in
RAM which does not conflict with RAE-1, SYM-I, or application
software. Since RAE-l cold start entry clears the flag to zero, the
patch must be entered after first transferring control to RAE-l and
then exiting RAE-1.

In early versions of SYM-1, jumper points 46 and 47 are not labelled.
For these boards, jumper points 46 and 47 are identical to Ul0-7 and
Ul10-9, respectively.

10-1

The patch shown below is placed at the end of the default label file.

LOCATICN CONTENT COMMENT
EE 01 Enter flag
Fé F5 Enter vector to
F7 OE . . .patch
EF5 AD Patch is 3
EFé6 L1 . . .nstructions
EF7 01
EF8 DO
EF9 03
EFA &D Store 0 into
EFB 10 location 3110
EFC 01
ERD 4C Jump back into
EFE 68 RAE-1
EFF EF

To install the patch, perform the following:

I. Enter RAE-1 Type: G BO{in
2. Exit RAE Type: B,R/
3. Use M command three times to

modify EE, F6-F7, and EF8-EFF

4. Return to RAE warm entry Type: C"x/

10-2

CoRRRCT

The patch shown below is placed at the end of the default label file,

To install the patch, perform the following:

l.
2,
3.

..

LOCATION CONTENT *
EE (]}
Fé A0
F7 - 00
A0 A9
Al 00
A2 8D
A3 10
A4 ol
A5 4C
A6 68

A B
)
[T §

ey

A7 EF

COMMENT

Enter flag

Enter vector to >Q_$“' "‘
. « .patch veooR

Patch is 3
. .instructions
Store 0 into
location $110

Jump back into
RAE-1

Enter RAE-1 Type: G BOOBJ
Exit RAE Type: BBJ
Use M command three times to
modify EE, Fé-F7, and j.z!-_‘EF_P’
Return to RAE warm entry ’ Type: 9
EE
Fo, ¥ 7
A4 oo
&0 lo o]
e (8 EF Ime
kAL tahidhxe: B7 Yo 6O
CE 4> 00 oF
P3 +e 6062 o0 oC
, : P8 v p)
CLN U ST .4 1£E}A47 _‘;g o ——
1) . A ‘ :
l,.\' nald "’w'*"\ ' - €E fho 0 00

) .’,-{" viem .U‘/ Q 10-2

Appendices

APPENDIX A

ASCII CHARACTER CODES

DEC HEX CHAR DEC HEX CHAR| DEC HEX CHAR
560 000 NUL-t@| 043 02B i 086 056 v
71 001 SOH-tA | 044 02C 087 057 W
502 002 STX-1B | 045 02D = 088 058 X
693 003 ETX-{C | 046 02E ; 089 059 Y
T04 004 EOT-{D | 047 02F / 090 05A Z
505 005 ENG-1E | 048 030 0 091 058 [
506 006 ACK-tF | 049 031 1 092 05C \
507 007 BEL-1G | 050 032 2 093 05D]
008 008 BS- {H| 051 033 3 094 05E {
509 009 HT- tI | 052 034 4 095 05F -—
510 G0A LF- 13| 053 035 5 096 060

311 00B VT- 1K | 054 036 6 097 061 g
o2 00C FF- fL | 055 037 7 098 062 b
713 00D CR- tM| 056 0338 8 099 063 c
Dl4 00E SO- tN | 057 039 9 100 064 d
315 0OF SI- tOo | 058 03A : 101 065 e
516 010 DLE-1tP | 059 038 ; 102 066 f
017 0ll DCI-tQ | 060 03C < 113 067 g
018 012 DC2-{R | 061 03D = 104 068 h
319 013 DC3-14S | 062 03E > 105 069 i
020 0l DC4-tT | 063 03F ? 106 06A j
521 015 NAK-tU | 064 040 @ 107 06B k
022 016 SYN-tV | 065 04l A 108 06C l
923 017 ETB- tw | 066 ou2 B 109 06D m
024 018 CAN-tX | 067 043 C 110 06E n
025 019 EM- tY | 068 44 D 111 06F o
026 OIA SUB-tZ | 069 045 E 112 070 P
027 OlB ESC-t[| 070 046 F 113 071 q
028 0lC FS- 1\ | 071 047 G 114 072 r
029 0lD GS- 11| 072 0u8 H 115 073 s
030 OIE RS- tt | 073 049 I 116 074 t
031 0lF VS- t=—| 074 04A J 117 075 u
032 020 SPC- 075 04B K 118 076 v
033 021 ! 076 04C L 119 077 w
034 022 n 077 04D M 120 078 X
035 023 # 078 O4E N 121 079 y
036 024 § 079 Q4F 0 122 07A Z
037 025 % 080 050 P 123 078

038 026 & 081 051 Q 124 07¢C '
039 027 082 052 R 125 07D

040 028 083 053 S 126 07E 4
041 029) 084 054 T 127 07F DEL
042 02A * 085 055 U

LF = Line Feed FF = Form Feed CR = Carriage Return
DEL = Rubout t = Control Key

APPENDIX B

RAE 1/O LINKAGES

The following describes user I/O linkages and page 0 (zero) vectors.
Functions described include CRT, keyboard, break key, printer, CONTROL
Y, and user. Page 0 (zero) locations SEC - S$F7 are reserved for future

RAE extensions.
BREAK KEY

CONTROL Y

CRT

KEYBOARD

PRINTER

USER

RAE vectors thru INSVEC (3A666) in system RAM for
testing for the break key being depressed. This 3-byte
location contains a JMP instruction. If you wish to
substitute another routine to detect if the break key
is depressed, change the 2-byte address part of the
JMP instruction to point to the alternate break key
processing routine.

When a CONTROL Y (tY) is entered, RAE "JUMPS"
to location $0000 for execution of user supplied instruc-
tions. RAE does not enter any default code at this
location. The user supplied routine can reenter RAE
via a JMP to the warm start address (SB003). None
of the registers need be preserved.

RAE vectors thru OUTVEC ($A663) in system RAM for
outputting to the CRT. This 3-byte location contains
a JMP instruction. If you wish to redirect output to
another device such as a printer, change the 2-byte
address part of the JMP instruction to point to the
alternate devices software driver.

RAE vectors thru INVEC ($A660) in system RAM for
inputting from the keyboard. This 3-byte location
contains a JMP instruction. If you wish to redirect
output to another device such as a TTY, change the
2-byte address part of the JMP instruction to point to
the alternate devices software driver.

RAE reserves 3-bytes starting at S00B6 which the user
can use to vector to a routine which drives an alternate
output device. On cold start, RAE enters an RTS
instruction at this vector. When an -HA SET command
is initiated, program control is transferred thru this
vector for driving an alternate output device while
outputting to the CRT at the same time. Register A
will contain the ASCII character to be output. Registers
X and Y should be preserved and the decimal mode bit
in the PSR should be left cleared. OQutputting thru
this vector is terminated via >HA CLEAR.

When a user command is entered, RAE "JUMPS" to
location $0003 for execution of user supplied instruc-
tions. RAE does not enter any default code at this
location. The user supplied routine can reenter RAE
via a JMP to the warm start address ($B003). None
of the registers need be preserved.

B-1

APPENDIX C

CONVERTING MOS TECHNOLOGY/SYSTEM 65
ASSEMBLY LANGUAGE PROGRAMS TO RAE

~-is table shows by example, how to translate from MOS Technology/System
=5 syntax to RAE syntax.

LINE
NO.

MOS TECHNOLOGY/

SCPBUF
RAM
RC
PADA

ASCMI
STDVAL

SYSTEM 65

* = SA600

* = %4520

= %

= SCRD

= $A400

BYT S$FF,SFF,SFF
BNE *+5

STX SFF

= *_.]

JDBY $D54C,$2410
.WORD $C000
WORD TTY

.END

.LDA #>EXPRESSION
.LDA #<EXPRESSION

SCPBUF
RAM
RC
PADA

ASCMI
STDVAL

RAE

.BA $A600

.DS 520

DI = jor just RAM
.DI SCRD

.DE $A400

.BY $FF SFF SFF
BNE = 45

STX *SFF

DI = -1

BY $D5 $4C

.SE $C000

SITTY

.EN

LDA #H,EXPRESSION
LDA #L,EXPRESSION

The following RAE directives do not have equivalent functions in the
MOS Technology/System 65 assembler:

.LS, .LC, .0S, .0C, .RC, .MD, .ME, .EC, .ES, .RS

The following RAE directives have similar functions in the System 65
assembler:

.CE is an intrinsic attribute of the System 65 assembler.
.EJ is ".PAG" in the System 65 assembler,

MC is implemented in a constrained fashion on System 65 i.e.,
the "entire" object program may be assembled into a different
memory space than the one specified for execution.

.CT is available on System 65 for source stored in multiple disk
files via the FILE directive.

gale
2826
0830
aa4a
alui=te]
BeEn
20708
[alatsta]
@a3a
a1v6
@Lia
airzae
Bi38
@aL4e
8158
eiee
al7e
Bige
@190
azee
ezlia
B22e8
B236
B248
8258
BzZea
8278
BZRa
©ez5a
a3e4a
B31a
a32e
B338
8348
8358
a36a
B37a
@a38a
B398
8408
8419
B4z6
8438
2448
B45@
a468
B47a
@488
@430
@a50a
8519
B52@
as3a
B854a
B5ea
asge
as7e
8580

APPEDIX D

¥ #4SRELOCATING LOADER FOR SYNERTEK SYSTEMS RAE-1

»

H

H
.05
5
;¥ 4COPYRIGHT 1979 BY SYNERTEK SYSTEMS CORP. %%
TEES ALL RIGHTS RESERVED. e
H
b
H
prEdb++ USER INPUTTED VARIABLES BEFORE EXECUTION ++++++
FILE/NO .DE ®%811@ sFILE NUMBER (B-93)
OFFSET .DE SEB@ sRELOCATOR OFFSET (Z BYTES)
BUFFER .DE #C8 sADDRS. OF R.L. BUFFER
i
H
H RELOCARTOR DIRECTIVES
3
i DIRECTIVE DESCRIFPTION
H ar EXTERNAL 2 BYTE ADDRS. PRECEEDS,
i DON' T RELOCATE. OTHERWISE RELOCATE.
H 1F #L. DATA PRECEEDS.
3
H 2F #H, DATA PRECEEDS, LO PART FOLLOWS.
3
B 3F .AS OR .HS BYTE FOLLOWS.
H
H 4F .SE OR .SI 2 BYTE ARDRS. FOLLOWS.
H 5F TURN RELOCATCR ON (UIAR .RS).
H ({RESOLVE ADDRESSES AND RELOCATE CODE)
3 6F TURN QELOCRTDR OFF (VIR .RC)H.
5 (RESOLVE ADDRESSES BUT DO NOT
5 RELOCARTE CODE?
3 7F ,0S - 2 BYTE BLOCK VALUE FMLLMUS,
5
.BR $Bzea
3
1 TAPE INFPUT PARMS
LOAD MO .DE #8188 B8: NO STORE; 1: STORE
TSTART .DE #RB64C LOAD BEGIMMNING AT TSTART
TEND .DE #AE4A STOFP LORDING AT TEND
sHEADER INFUT DATA
HFEILE/NO .0E $817A HEADER FILE HUMEBER
HSTART .DE #817E HERDER START
HEMD -DE 8817YD HERDER EMND

D-1

PAS9@ ; UARIABLES
a6RQ SCRAT .DE %11F SCRATCH AREA
G168 TEMPL .DE $11F SCRATCH AREA
REZ@ TEMPZ .DE $120 SCRATCH ARER
Q636G SAUE .DE $121 SCRATCH ARERA
@648 ADDRS .DE $DC 4 BYTES OF ADDRESS INFO.
PESE BUFF.END .DE $B123 END OF 256 BEYTEC BUFFER
@66@ BUFF.INDEX .DE $@124 PRESENT ACCESSED DATA FROM BUFFER
2678 ;
Basea ;)
PESE ;R(X)=BA: RELOCATOR ON
@780 ;R(X)=GE2: RELGCATOR OFF
ariv ;
#4728 ;BEGIN EXECUTION AT LABEL START
arse ;
i20B- AZ FF @748 START LDY REFF
2202~ SR aTsn TXS INITIALIZE STACK
2203- £8 B7Ed INX R(X)=EB: SET RELOCATOR INITIALLY TO OF
J2@4- ZB BE BB @770 JSR ACCESS
@za7- ns aren LD
@P@E- BE 21 Bl B799 STX SAVE R{X)1=08
G2PR- 2@ EG 92 0508 ISR LOADCBUFF
AZUE- 4C 14 92 ©91a IMP ENMTY
2@ 74 B3 ©820 LOOPL JSR GET4DATA
5938 3
ca 7F B248 ENTY CHMP BE7F 1CKG. FOR .D5
Da a3 BEsa ENE FRC.SF
4C AR B2 BEED JMP PRO.TF 1 JUMTO PROCESS DIR. 7F
€9 aF @878 PRO.GF CHMP #$3F CYG. FOR RELOCATOR DIRECTIVE
n@ oF B2es BHE OF<CKG
26 74 @2 po9a ISR GETCOATA
81 DC Zani STR (ADDRS . %)
20 £8 82 8318 ISR INC{ADDRS
4C 11 Bz 097@ IMF LOOPL
9 4F V538 OPLCKSG CHP #§4F COKG. FOR .SE, .81
De @3 G946 BHE W:
4C AD B2 BASY JMP TWOCBYT<AD
Y o BECH W: CHP #85F CkG. FOR RELOCATOR oM
ng 94 BI7e BNE CKNX
fi2 Ba @960 LDX #%0@
F@ Da @998 BEO LODFL
1060 ;
pZ39- C9 BF 1818 CRMY CMP #%6F CKG. FOR RELOCATOR OFF
@23B- DB @4 1@2a BNE MO{REL
Dz3an- A2 87 1636 LA #8012
@z3F- DA DR 1842 BME LOOF}
g241- 81 DC 1958 NOCREL STA (ADORS,X) STORE OF CODE
gz4z- 28 82 @3 1068 JSR INCZADDRS
CZ4E- €9 @B 1870 CME #8800 TKG.
T24B- FB C7 108w BEQ LOOFL
Bz4e - £9 26 1o CMP 4328 OKG. FOR JSR INSTR.
£Z4C- FB SF 1160 BEQ TWOCEYTLAD
274E- B0 Z1 @ 1118 STA SAUE SAVE RiA), IT CONTRING OF CULE
BPSI- 29 OF 1ize AND #$9F
@253~ Fe BC 1134 BEQ LOOPL
2255~ AD 21 B1 1140 LLDA SAVE RESTORE OP CODE
@252~ 23 1D 1156 AND #8100
22SA- 09 @8 1160 CMF #8PE CKG. FOR ONE BYTE IMSTR.

D-2

B25C-
Bz25E-
8z6a-

8262~
8265~
B2E7 -
B268-
B2EB-~
B26D-
Bz2er -
8271 -

B8z73-
8276~
8278~
8278~
A27E-
az2ea-
8z282-
az284-

B28E-
8283~
az28A-
B28c~
B28E -
az98-
Bz293-

Bz296-
8295~
BZ9R-
8zac-
B23p-
BzZra-
B2A1-
az2A3-
B2AS-
BZA7 -
B2ARA[-

azAaAp-
BZAF -
BZBO-
gZB1-
azp4a-
BZ2BE-

Fia
ca
Fa

A0
29
c9
Fa
c9
Fa

Fa

28
ig
Al
ES
81
28
4C

=
=}

18
AF

74
ile
88
74
2F
14
IF
8E

nc
EB
nc
88
11

74

Ee

a5

DCc
El
Dc
[=1=]
11

74
nc
as

a1

a3
a3

a3

a3
6z

a3

a3
62

a3

23

1178
1186
1198
1zea
121@
1228

1238
1248
1258

1z6@
1278
1288
1250
1368
13189
1228
133ae
13489

1358
1368

137@

1388
1288
1466
1416
14260
1438
1446
1458
146@
147@
l48a@

1498

1506
1518
1528
1538
1540
1558
1568
157@a
1568
159@

1680

1618

828
1638

16848
1658
16608
1678
16568
169@
1788
1718
1728
173a
174a

i

5 MOW,

BEQ LOOPL
CMF #818 CKG., FOR ONE BYTE INSTR.
BEQ LOOP1

TEST FOR INSTR. CONTAINING Z BYTES

iOF ADDRESS INFORMATION

5

sTHE R

LDA SAVE RESTORE OF CODE
AND #81C

CMP #81C

BEQ TWOCBYT<AD

CHMP #%18

BEQ TWO{BYT<RD

CMF #88C

BEQ TWO<KBYT<AD

EMAINING CONTRIN ONE BYTE OF

s ADDRESS INFORMATION

s PROCESSING OF ONE BYTE ADDRESSES AND IMMEDIATE DATA

¥

ONE<BYT<AD JSR GET<DATR

3

STA (ADDRS,X)

JSR INC<ADDRS

JSR GET<DATAR

CMP #%2F CKG. FOR RELCCATOR DIRECTIUE
BEQ IMMCHI CKG. FOR #H,

CMP #81F CKG. FOR RELOCATOR DIRECTIVE
BNE ENTY

sPROCESS #L, DATA FOR RELOCATION

IMM<Lo

BACKLT

JSKE DEC<ADDRS
cLe
LDA (ADDRS, X}
ADC *$OFFSET+@® ADD OFFSET 10K PART FOR £,
ST (ADDRS, X))
JSR INC<ADDRS
O<L1 JIMP LOOPL

iFPROCESS #H, DATR FOR RELOCATICN

IMMCHI

5

i PROCE
THO< BY
“xX

JSR GET<DATA LOW BYTE FOLLOWS REL. DIR.
CLC

ADC #OFFSET FROM THE LD ADDRS. PART
PHP

JSR DECK ADDRS

PLP

LDA (ADDRS, %)

ADC *OFFSET+$1 NOW FORM THE EFFECTIVE #H,
STA (RDDRS,X)

JSR INC<ADDRS

JMP LOOPL

SSING OF TWO BYTE ADDRESSES
T<AD LDY #8#@2

TYA

PHA SAUE R(Y)

JOR GET<DATAH

STA (ADDRS,X)

JSR INC{ADDRS

D-3

32CF -
BzIL-
82Dz -
B204 -
BZDE -
azpg-
B2DE-
820D~
BZDF -
ezE2-
PzEZ-

a2es-
azeEg-
AzZEB-
a2eDn-
QazZra-
gz2F2-
B2FE~
a2Fe-
azre-

azZFE -

B3ea-

238z -
a3 -
a386-

jalelsis
23ac -
P38 -
8312-
B314-
A3liE~
8313~

Al
12
65
a1
za
Al
B
81
20
68
4C

5 =)
=il

2D
Ag
80
an
en
29

Da

Az

AD
38

En

8D
AD
ED
na
AS
en
16

DC

£a
nc
88
nc
EL
nc
=5

14

=

4C
7F
46
a1
40
4B
aa
s

40

aa

n

TE

23
TE
7C
39
ca
4C

a2

az

> @3

a3

a3

RE
Ak
ae
A
aL

=

at

@l

Bl
a1
81

AB

1758
1768
177a
1788
1794
1806
iele
1829
1838
1848
1856
1868
18Y9
1888
1eaa
1968
191@
1926
1938
134@
185@
1868
i97e
1380
19398
2004
zele
2820
2430
2e4e
2msn
el ol
207a
288
2098
ziae

2118a
2126
2138
Z14@
2158
zZle@
2178
2186

zl9e
2288
ZZ10
2228
z223a
2248
Zzt®m
2260
2276
2280
22498
23eR
2314
23z@

PLA
TRY
DEY
ENE
JER
cMP
BNE
Imp

xY PHA

3
'

JSR
JSR

RESTORE R(Y)

XX

GET<DATA

#$8F CKG. FOR RELOCATOR DIRECTIVE
Y

LOOP1

DEC<ADDRS
DEC{ADDRS

DECREMEMT BACK TO ADDRESS START

LDA
CLC
ALC
STA
JSR
L.DA
ADC
sTA
JSR
PLA
Jmp

(RDORS, X}

*OFFSET AMND OFFSET LO
CADDRS, X)

INC{ADDRS

(ADDRS, X))

*#OFFSET+81 ADD OFFSET HI
CADDRS, X))

INC<ADDRS

ENTY

3
5 SUBROUTING LORD BUFFER WITH DATA FROM TAPE

LORDCBUFF LDA

STA
LoA
STA
LDA
STA
STA
STAR
ISR

#¥7A ADDLC OF START OF HEADER

TSTART+¥0Q

#®7F ADDLD OF END OF HEADER
TEND+3$03

#8481 HI ADLRS

TSTART+$E1

TEND+8G1

LOAD/-HO B21: INDICATE TO LOAD
USER/LORD USER LDATED FROM

TRFE FEOUTINE

iTHE ABOVE SETS UP AMD LOADS HEADER INFORMATION
FROM TAPE. THE HEADER CONTAINS THE MODULE FILE
FNUMBER, AND STARTING AND ENDING ADDRESSES OF
yFOLLOWING DATA.

v

3

3

BNE
LD
LDR

SEC
SBC

ERROR IF Z-BIT FALSE. THEN
ERROR IN LoADING
#2080 ’
HEND+$4R
HETART+860

CALCULATE MUMBER OF BYTES IN FOLLOWING DATE

STA
LDA
SBC
BNE
LDA
STR
cLc

D-4

BUFF.END INITIALIZE BUFFER END

HEND+$@1 POINTER
HSTART+$B1
EPROR ONLY 256 EYTE BUFFER AILOWCD

*BUFFER
TSTART

B31A-
a31n-
8320~
B322-
@325~
B#327-

B3z2Aa-
#32D-
B32F -

0332-
B334-
8337~

a33A-
a33C-
B33k -
8341~
8343~
8345-
B347 -~
@348~
B349-
B34R-
834D~
B34F -

8351~
8354~
8356~
@359~
B35B-
e3s5D-
B35F -
8366 -
B36Z -
a364-

367 -
8368~
B836A-
B3BC-
B3BE -
a37B-
a3rz2-

a374-
@377~

AD
Fa
ch

8E
20

jul=]

AS
i8
65
85
AS

85

8E
EE

23
4R
cs
40
e

18
ne
A

az
8@
s

11
a8
A
EE
ac
i)

aa
EE
FB

88
ga
21
Ba
cs
DE

cs
DF
24

DE

EB
jules
El
DF
jijs]

21
24

a1
AB

AB

a1

g1

a1
az

al

a2z

a1

a1

a1

a1
al

233a
2348
2358
2268
2378a
23286
2396
2408
2418
2428a
2438
2448

2458
2468
2478
248@
24880
2588
2518
2528
2538
2548
2558
2560
2578
2586
2538
2600
2618
2620
2630
2648
2656
2668
2870
2688
2698
2768
2v1@
2728
2738
27408
2758
27606
2778
2780
2794
2800
2818
2820
28308
2848
2858
2860
2878
28808
28908
2906

AOC BUFF.END # BYTES
STA TEND
LDA *«BUFFER+BL
STA TSTART+$81
ADC #%00
STA TEND+$81
sNOW THE START AND END ADDRESS PARMS HAUE BEEN
3SET UP TO LOAD FROM TAPE INTO THE BUFFER.
H
LDA FILE/MO USER ENTERED FILE MNUMBER
BEGQ STORE.DATA IF F# = 8@, LOAD ANYWAY
CMP HFILE/NO CMP WITH USER UVERSUS THAT

OM TRPE
BEGQ STORE.DATH

STX LOAD/NO R(X)=B; NO STORE
STORE.DATA JSR USER~LDAD

H
s THE ABOVE LOADS IM DATA INTO BUFFER DEPENDING
;ON THE STATE OF LOAD/NO
H
BME ERROR Z-BIT = FALSE THEN ERROR
LDX #$60
LIDA HFILE/NC
CHP #SEE COMFPARE IF END OF FILE
BNE BUFFLCADED
LDA #$8@ INDICATE GOOD LOARD
B BRK
NOP
NOP
IMP START
ERROR LDA #$EE INDICATE ERROR IN L.OAD
BNE B
H
sNOW GET ADDRS. INFO AND PUT IMN ADDRS+$2. +83
sADDRS. INFO. IS IN FIRST TWO BYTES OF BUFFER
BUFFLOADED LDA LOAD/NC CKG. IF PROFER DATA

BEQ LOADCBUFF

LDX SAVE RESTORE R(X)

LDY +#%2

LDA (BUFFER),Y

STA *ADDRS+$2

INY

LDA (BUFFER),Y

STA *ADDRS+$3

STY BUFF.INDEX SET BUFFER DATA POINTER
H
;SET RELOCATION ADDRS. IN ADDRS+$0, +§1

LDA #ADDRS+§2

CLC

ADC *OFFSET

5TA *ADDRS

LDA #0FFSET+$1

ADC *ADDRS+$3

STR *ROUDRS+H1
GET<DATA STX SAVE X IN CARSE WE BR. TO LOADIBUFF

INC BUFF.INDEX INC. 256 BYTE BUFFER

D-5 POINTER

a37R-
asvp-
536~

a382-
a385-
B387~

2388-
a3sn-
a3ec-
B38E-
B3sa-
838z~
8384~

a39s5-
BIgF~
A2353-
@396~
a39n-
S9F -
93A1-
a3A3-
B3R5~
A5R7 -
B83A9-

G2AAR-
G3AL-
A3RE -
B3BL -
g3pz-
B3ES-
AZET -
azBS -
B3EA-
B3IEEB-
BZBC-
A3FE -
B3CH-
B3C1i-
A3C3-
a3

GBACE-

M3CT -

i o

Lo

cc
96

4C
El
68

EE&
baja]
EE
EG
Da
EE
EQ

(=Y
[R5
s =
e
CE
CE
AS
ok=
ne
CE
B

4
48

28

OO WIDN A DODD
A I O A T o o O 1 o B 0

5

24 @1

3
B3

EE
cg

nc
0z
CD
0E
az
OF

74

74

24

(=
=

18

oc
nc

oD
julsl

DE
DE

OF

al

238
3

1
2
)

Woww Mo

o)W W
4}

N 00 N@

W wWwwww
=
= [

LDOY BUFF.INDEX
CPY BUFF.END
BCC WX BR. IF NOT AT END OF
DATA IN BUFFER
JMP LOADKBUFF RELOAD BUFFER
Sk LDA (BUFFER),Y
RTS

s INMCREMENT RDDRS+8@,

INC<ADDRS INC
BENE
INC
INC
ENE
INC
RTS8

SHIPCINCL

SKIPCINCZ

sDECREMENT ADDRS+H$@, +1 AND ADDRS+32, +%2

GEC{ADDRS DEC
LDA
cmMpP
ENE
DEC
DEC
LGA
CME
BHE
DEC
SKIPCDECZ RTS

k]

SKIF{DEC]

3

*ANDRS

SKIP<INCL
*AODRS+E 1
*ADDRS+42Z
SKIFCINCZ
*AODREGY 87

*ADLRS
*ANDRS
#BFF
SKIP/DECL
*ADDRS+4 1
+ADDRS+&2
*ADDRS+$Z
$HFF
SKIP{DEC2
*ADIRS+E3

$PF L0 HI -- PCL PCH 7F LO HI

FRO.7F JER
FHA
JER
TRY
LA
CMP
BCC
CLE.
PLA
PHA
ADC
STA
TYA
ADC
STA
FLA
PHA
BRE
Aanc
STA
TVR
ADLC

D-6

FROC. DS

GET<DARTA

iSAVE LO
CET<DATA

i SAVE HI IN ROY3:
BUFF . INDEX
p #:3uls i
NG . FPROC

PROC, 1IF

SGET Lo

*#ADDRS
*ADDRS
iBET HI
*ADDRSH 1
*ADDRS+1

sGET LG

*ADDRS+Z
*ADDRE+ZD

sGET HI
#*ADDRS+3

+%1 AND ADDRS+§2,

83CF ~
B201 -
Banz -

@3D5-
a3ne-
B3DAR-
@300~
a3nF -
@3-
@3E3-
B3EE-
B83E9-
B3EC-
B3EF -
BaFa-
azaFz-
a3r4-

BaFB-

=
€8
4

2a
Ag
80
AB
g4
RS
29
20
2@
2@
D8
Ag
1a)
AS

oF

11

a8
FF
4E
B
FD
B9
As
ZE
ac
7B
oo
ez
a1

BE

B0z

81

an

L W
3
w
i)

[T o

SR O o o B T B)

N
o

Ao

S

g ul @ a
[R B IR

W oo w o
i

o m
p -
®®

1]
)

J
i}

26368
3648
3658
SEE@
3674
2680
2698
27eR
37ig
3rze
arze
3748

TR #ADDRES+3
Mo FROC FLR
JME LOOF1
b
¥ +HEEYSTEM MONITOR CRSSETTE INTERFACE #%%
3
b
3 DEFINITIONS:
SAVER LJE g8les
RCCESS .DE ®8E3E
In .DE $AB4E
MODE .DE $FD
CONFIG LOE $83R5
ZERCK -.DE $332E
FeS5CR LDE $823C
LORDT .DE ®8C7E
HRCCESS .DE $8BSC
RESXAF .[E ®B1lBE
1
USER/LOAD JSR SAVER SAVE REGISTERS
LD #BFF :1D=FF FOR USER RANGE
STR 1O
LDY #8g8@
STY *MODE TBIT 7=1 FOR H.%.
LDA #8845
JSR CONFIG
JSR ZERCK
JER PZECR
JER LOADT+E3 FENTRY I TAPE LOAD
cLD
LDR #%bo 3Z-BIYT = 7
BCC SKPERRUCL
LER #8901 $EZ<BIT = ¥
SKPERRU-L
JMP RESKAF ;RESTORE REGS. EXCERT A,PSE
i
ENIL. PGM +EH

D-7

LABEL FILE: L

SFILE-NO=QA118
/LOAD/ND=@188
ZHFILE/ZNO=@G1T7TH
SSCRAT=011E
SSAVE=@121
SBUFF . INDEX=0124
ENTY=8214
W:=B2z31
ONE<EYT(RD=VBZ73
IMMCHI=0Z39E
Xr=02C8

B=0247
GET<DATA=A3T4
SKIPL INC1=832E
SKIP{DECL1=@33F
FRGC . DE=WU3E9
ARACCESS=8BER
SCONFIG=83A%
ALORDT=8C78
USER-LOAN=G3DS

SoRaaE, 85F9, 82k g

EXTERMAL 1

/OFFSET=00EQ
STSTART=RE4C
SHSTART=@17B
STEMP1=011F
SADDRS=B80C
START=BZ6B&
PRO.SF=32218B
CKNX=8239
IMMLLO=B286
TWOCBYT<AD=@2RD
LOADIBUFF=B2EE
ERROR=8B34D
WH=9385
SKIP{INCZ=B294
SKIF<{DECZ=G3AI
NO.PROC=82D1
<10=AB4E
~ZERCK=832t
/HACCESS=8E%9C
SKPERRU/L=B3F6

BUFF ER=868(CB
/TEND=RE4A
SHEND=B17D
STEMPZ=0128
/BUFF .END=0B123
LOOP1=0B211
OPCCKG=BZZR
MOCREL=8241
BACKLTOCL1=8293
R¥=B2AF

STORE. DRTA=8237
BUFFLOADED=@351
INC<RADDRS=B3E68
DEC{ADDRS=@039%
PRO.7F=8B3AAR
SSAUVER=2188
“MODE=88BFD
/P2SCR=BZ3C
sRESKAF=B1B8
END.PGM=0G3F9

USER’S NOTES

150 South Wolfe Road
Sunnyvale, CA 94086

