
GET & GO
elektor march 1984

P. Barrat

Personal computer users often like to try to change the operating

system of their machines, however slight the changes may be. This,

of course, is a way of personalising the machine and making it more

suitable for the user's own particular needs. The modification

described here is both elegant and efficient. It improves TM

(Tape Monitor) by adding a new function to automatically start

programs read from cassette. This function explains the title of this

article: 'GET' = load the program, and 'GO' = run it!

GET & GO
The software given here lets the
Junior Computer automatically start pro-
grams after transferring them from
magnetic tape via the cassette interface
and TM to random access memory. The
principle is that, during the RDTAPE
routine, the return address saved on the
stack by the JSR-RDTAPE instruction (ex-
ecuted as soon as the user presses the
GET key during TM) is replaced by the
start address (SA) of the program read
from the cassette. After loading, the pro-
cessor leaves the RDTAPE routine by
means of the RTS instruction and finds on
the stack, not the address it left in order
to execute RDTAPE, but rather the start
address of the program it has just read
from cassette. Therefore it goes to this ad-
dress to run the program. This presup-
poses, of course, that the start address of
the block of data transferred to RAM is

also the start address of the program, and
also, that the stack is empty (stack pointer
equal to $FF) when the GET key is
pressed (executing the RDTAPE routine).
This last condition is met when TM is
used 'normally' as we will see later.

DUMPB

In order to achieve the desired effect a
DUMPB routine has been created. This is
simply a modified copy of the DUMP
routine of TM and it registers on cassette
a heading containing three specific items
of data: address $01FE which acts as a
load pointer, the start address of the pro-
gram, which RDTAPE places at addresses
$01FE and $01FF — the top of the stack in
other words — , and byte $20 which
RDTAPE will not accept, so it starts
RDTAPE anew, normally this time. DUMPB
ends by jumping to TM resulting in the
DUMP routine being executed normally.
Comparing the listing of table 1 with the
listing of DUMP (on page 194 of JC book 4),
it is clear that the instructions for initializ-
ing CHKL and CHKH, and also for POINT
and SA ($0A0A 	$0A19), have been omit-
ted and an instruction to initialize the
stack pointer at $0730 (TXS on the listing
in table 1) has been added.
We then see that DUMPB outputs address
$01FE to the tape (which RDTAPE con-
siders as a load vector), and then changes
the start address of the block of data to be
loaded before storing it in its turn on the

tape. This correction is needed to ensure
that the RTS instruction works properly at
the end of RDTAPE. The last character
given by DUMPB is $20. The JMP-TM in-
struction now leads to the normal pro-
cedure during which DUMP loads the pro-
gram from the cassette.

Reading

From the listing of RDTAPE (page 197 of
JC book 4) the sequence of operations
after loading the heading prepared by
DUMPB can easily be followed. Having
read the synchronization characters, the
start character of the file (*), and the
identification number ID, subroutine
RDTAPE reads address $01FE as a load
vector (POINT). It then immediately loads

the two next bytes which it then places in
$01FE and $01FF, thus changing its own
return address on the stack. The new ad-
dress is none other than the start address
of the program that is to be loaded. The
next byte loaded by RDTAPE is the 'space'
character ($20). This, however, does not
get past the BMI instruction at $0B73
(page 198 in book 4) so RDTAPE is started
again and this time it simply reads the
program registered by DUMP after ex-
ecuting DUMPB. At the end of the load,
the RTS instruction at $0B9A leads the pro-
cessor to look for the return address on
the stack.
As we have seen, it finds the start address
of the program it has just loaded and it
then proceeds to run this.

Using DUMPB

In order to avoid having to modify TM, the
author of DUMPB used quite an imagin-
ative solution. The instructions in table 1
should be loaded in memory starting at
$0700 (or whatever address you like) and
the NMI vector ($1A7A, $1A7B) positioned
at the start address of DUMPB ($0700 in
our case).
Then TM is just used normally, except that
the ST/NMI key on the hexadecimal key-
board is now used for the SAVE function
with DUMPB.
Finally we would like to draw your atten-
tion to the fact that while using this auto-
matic start, the configuration of the output
ports is still that of RDTAPE and not that of
the hexadecimal monitor.

automatic

program start

for the Junior

Computer after

loading from

cassette by TM

3-32

Table 1.

PAGE 01

018: 	0700 ORG 	$0700
020:
030:
040: OPROGRAM 	DUMPBO

050:
060:
070: DEFINITIONS
080:
090: 	0708 LOWER 	8 	$1A6D HALF PERIOD BUFFER OF 2400 HZ
100: 	0700 HIGHER X 	LOWER -01 HALF PERIOD BUFFER OF 3600 HZ
110: 	0700 FIRST 	0 	$1A76 3600 CYCLE BUFFER
120: 	0700 SECOND 0 	FIRST +01 2400 HZ CYCLE BUFFER
130: 	0700 GANG 	8 	$1478 I/O TEMP.
140: 	0700 SYNCNT 0 	$1A74 SYNC. COUNTER
150: 	0700 DUTCH 	X 	$0443 OUTPUT CHAR. TO TAPE
160: 	0700 OUTBT 	X 	$0A8B OUTPUT BYTE TO TAPE
170: 	0700 SAL 	3E 	$1470 START ADDRESS
180: 	0700 SAH 	0 	SAL +01
190: 	0700 ID 	0 	$1A79 ID OF FILE
200: 	8700 PAD 	0 	$1480 PORT A
210: 	0700 PADD 	8 	PAD +01
220: 	0700 PBD 	A 	PAD +02 PORT B
230: 	0700 PBDD 	0 	PAD +03
240: 	0700 TM 	8 	$0856 DUMP
250:
260:
270: 	0700 A9 7D DUMPS 	LDAIM $7D HALF PERIOD OF 3600 HZ
280: 	0702 8D 6C IA 	STA 	HIGHER
290: 	0705 AS C3 LDAIM $C3 HALF PERIOD OF 2400 HZ
300: 	0707 8D 6D IA 	STA 	LOWER
310: 	070A A9 03 LDAIM $03 3 HALF PERIODS OF 3600 HZ
320: 	070C BD 76 IA 	STA 	FIRST
330: 	070F A9 02 LDAIM $02 2 HALF PERIODS OF 2400 HZ
340: 	0711 8D 77 IA 	STA 	SECOND
350:
360: 	8714 A9 47 DUMPT 	LDAIM $47 PORT B PATTERN
370: 	0716 A2 FF LDXIM $FF PORT B IS OUTPUT
380: 	0718 8D 82 IA 	STA 	PBD
390: 	0716 8D 78 IA 	STA 	GANG
400: 	07IE BE 83 IA 	STX 	PBDD
410: 	0721 AS 00 LDAIM $00 PORT A PATTERN
420: 	0723 A2 7F LDXIM $7F P46...PAO IS OUTPUT
430: 	0725 8D 80 IA 	STA 	PAD
440: 	0728 8E 81 IA 	STX 	PADD
450: 	0728 A2 FF LDXIM $FF
460: 	072D 8E 74 IA 	STX 	SYNCNT 255 SYNC CHARACTERS
470: 	0730 9A TXS RESET STACK POINTER
480:
490: 	0731 AS 16 SYNCS 	LDAIM $16 SYNC. CHARACTER
500: 	0733 20 A3 0A 	JSR 	OUTCH OUTPUT IT
510: 	0736 CE 74 IA 	DEC 	SYNCNT STILL MORE SYNCs?
520: 	0739 DO F6 BNE 	SYNCS
530: 	0738 A9 2A LDAIM 'X OPEN FILE CHARACTER
540: 	073D 20 A3 0A 	JSR 	OUTCH OUTPUT IT
550: 	0740 AD 79 IA 	LDA 	ID GET CURRENT ID
560: 	0743 20 BB 0A 	JSR 	OUTBT OUTPUT IT

PAGE 02

0570: 	0746 AS FE LDAIM $FE
0588: 	0748 20 88 0A 	JSR 	OUTBT
0590: 	0748 AS 01 LDAIM $01
0600: 	074D 20 88 0A 	JSR 	OUTBT ADDRESS = $01FE
0610: 	0750 AC 70 IA 	LDY 	SAL GET START ADDRESS
0620: 	0753 88 DEY
0630: 	0754 98 TYA
0640: 	0755 20 88 0A 	JSR 	OUTBT OUTPUT ADJUSTED START ADDRESS
0650: 	0758 C8 INY
0660: 0759 98 TYA
0670: 075A 38 SEC
0680: 	0758 E9 01 SBCIM $01
0690: 	075D AD 71 IA 	LDA 	SAH
0700: 	0760 E9 00 SBCIM $00
0710: 	0762 20 88 0A 	JSR 	OUTBT
0720: 	0765 A9 20 LDAIM $20 SPACE
0738: 	0767 20 A3 0A 	JSR 	OUTCH OUTPUT A SPACE
0740: 076A 4C 56 08 	JMP 	TM EXECUTE DUMP
0750:
0760:
-T

SYMBOL TABLE 3400 3472
DUMPB 0700 DUMPT 	0714 	FIRST 1476 	GANG 	1478
HIGHER IA6C ID 	1479 	LOWER IA6D 	OUTBT 	048B
OUTCH OAA3 PADD 	IA81 	PAD 1A80 	PBDD 	1A83
PBD 1482 SAH 	1A71 	SAL 1A70 	SECOND 	IA77
SYNCNT IA74 SYNCS 	0731 	TM 0856

HEX DUMP:
0 1 2 3 4 5 6 7 8 9 	4BCDEF

0700: A9 7D 8D 6C IA A9 C3 8D 60 IA A9 03 8D 76 IA A9
0710: 02 8D 77 IA AS 47 A2 FF 8D 82 IA 8D 78 IA 8E 83 ..w..G x...
0720: IA AS 00 A2 7F BD 80 IA 8E 81 	IA A2 FF SE 74 	IA t.

0730: 9A A9 16 20 A3 0A CE 74 IA DO F6 A9 2A 20 A3 OAt....X
0740: AD 79 IA 20 813 0A AS FE 20 88 0A AS 01 20 8B 0A .y.
0750: AC 70 IA 88 98 20 8B OA C8 98 38 E9 01 AD 71 	IA .p... 8...q.
8760: E9 00 20 88 0A AS 20 20 A3 0A 4C 56 08

GET & GO

elektor march 1984

Table 1. This short pro-

gram is all that is needed

to make the Junior

Computer start programs

automatically after

loading from cassette by

TM (tape monitor).

3-33

	Page 32
	Page 33

