
Being able to see what a processor does as it runs a machine code

program is a great aid in understanding the program, in fault finding,

in testing, and in fact in everything a programmer does when

developing some new software. The program given here makes it

possible to do this automatically. At each step the contents of the

CPU registers, the stack and its pointer are displayed for the

corresponding instruction.

6502 tracer

elektor february 1984

J. Ruppert

6502 tracer
program

analysis

software for

Junior

Computer and

other

6502-based

systems

Table 1. 6502 TRACER is

an analysis program that

must run in RAM, but
there is nothing to stop

you from storing it in

some other kind of

memory and simply

transferring it to RAM to

run it.

This program is aimed not only at users of
the Junior Computer but also at the
owners of any 6502-based system. It oc-
cupies about '/2 K of memory and uses
two bytes in page zero. Very few changes

are needed to adapt it to a system other
than the Junior.

How is it used?

The program operates as a sort of 'step by
step monitor'. This means in effect that any
program the user wishes to analyse, or
debug, is executed instruction by instruc-
tion with the contents of registers A, X,
and Y, the status register flags (NV DIZC)

and the stack pointer being displayed
each time. It is notable from the list of
flags (NV DIZC) that the 'break' flag is
not included; the reason is that the
6502 TRACER' program accepts all in-
structions except those which are the
result of, or which result in, an interrupt
(BRK, IRQ and NMI).
As table 3 shows, it is much easier to
analyse a program (the example here con-
tains a lot of register and flag manipu-
lations) with the aid of the information
displayed by the tracer program in the
three right hand columns. The first, at the
extreme right, refers to the stack: $FF is
the least significant byte of the pointer
(the most significant byte is $01). Near the
end of the listing there are a few ad-
dresses stacked during JSR or RTS instruc-
tions. The next column gives the logic
levels of the status register flags
NV DIZC. Finally, beside this the contents
of the A, X, Y and processor registers are
to be found. The step by step tracing of
the program in these columns is followed
in the first two columns by the disassembled
listing of the addresses and instructions.
The fact that all jumps and branches are
included explains why the program returns
from address $020D (DO/FA) to address
$0209 but the Z flag remains low.

How does it work?

The length of this article does not give us
the scope to provide a complete source
listing of this tracer program, so we will
have to be content with the hex dump
shown in table 1. It is, however, quite im-
portant to have some pointers about how
to use the software.
Before a run the start address of the pro-
gram to be tested must be stored at ad-
dresses $00ED and $00EE which act as a
pseudo program counter. The program
under test may be in back-up memory but
the tracer program must be in RAM: as
shown here it starts at address $0500.
Between addresses $0500 and $0523

table 1

JUNIOR

M

HEXDUMP: 500,721

0 1 2 3 4 5 6 7 8 9 A B CD E F

0500: 58 20 95 06 A9 00 A0 OF 99 13 07 88 DO FA B9 CC

0510: 06 20 AS 06 C8 CO 36 DO F5 A9 26 8D 7E 1A A9 05

0520: 8D 7F 1A 4C A2 05 8D 1B 07 68 8D 20 07 68 68 8C

0530: 1C 07 8E 1D 07 BA 8E 14 07 D8 58 A0 03 89 15 07

0540: 20 A0 06 20 A3 06 C8 C0 06 BO 11 AD 16 07 D0 09

0550: 20 A3 06 20 A3 06 4C 43 05 CE 16 07 C0 09 DO DD

0560: AD 20 07 29 CF 8D 13 07 A2 08 0E 13 07 90 04 A9

0570: 31 DO 02 A9 2E 20 AS 06 CA DO EF 20 A3 06 AD 14

0580: 07 20 A0 06 A9 2D 20 AS 06 BA EO FF B0 14 68 8D

0590: 16 07 20 A0 06 EO FE B0 05 68 48 20 AO 06 AD 16

05AO: 07 48 A0 00 20 95 06 AS EE 20 A0 06 AS ED 20 A0

0580: 06 20 A3 06 B1 ED 8C 1A 06 8C 1B 06 8C IA 07 8C

05C0: 19 07 20 A8 06 8C 1E 07 98 BD 16 07 CE 16 07 88

05DO: B1 ED 99 19 06 99 18 07 98 DO F4 E6 ED DO 02 E6

05E0: EE CE 1E 07 DO F5 AD 18 07 29 OF DO 13 AD 18 07

05FO: C9 20 F0 29 C9 40 F0 2E C9 60 F0 2E 29 10 DO 62

0600: AD 18 07 C9 4C F0 2C C9 6C F0 3D AE 1D 07 AC 1C

0610: 07 AD 20 07 48 AD 1B 07 28 DO 00 00 00 AS ED 48

0620: AS EE 48 4C 33 06 68 8D 20 07 68 85 EE 68 85 ED

0630: 4C 3D 06 AD 1A 06 85 ED AD 1B 06 85 EE A9 00 8D

0640: 19 06 20 9A 06 4C 08 06 AD 1A 06 85 ED AD 1B 06

0650: 85 EE A0 00 B1 ED AA C8 B1 ED 85 EE 8A 85 ED 4C

0660: 3D 06 AD 20 07 48 AD 18 07 8D 6D 06 28 DO 03 4C

0670: 82 06 58 D8 AD 1A 06 30 11 18 65 ED 85 ED 90 02

0680: E6 EE A9 00 8D 1A 06 4C 00 06 18 65 ED 85 ED B0

0690: F1 C6 EE 90 ED A9 OD 20 AS 06 A9 0A 20 AS 06 60

06A0: 4C 8F 12 A9 20 4C 34 13 AO 01 C9 00 F0 1A C9 40

06B0: F0 16 C9 60 F0 12 AO 03 C9 20 F0 0C 29 1F C9 19

06C0: F0 06 29 OF AA BC 03 07 8C 21 07 60 36 35 30 32

06D0: 20 2D 20 54 52 41 43 45 52 OD OA 41 44 52 2E 20

06E0: 2D 49 4E 53 54 52 2E 2D 20 3A 41 20 3A 59 20 3A

06FO: 58 20 4E 56 31 31 44 49 SA 43 20 53 54 41 43 4B

0700: 20 0D 0A 02 02 02 01 02 02 02 01 01 02 01 01 03

0710: 03 03 03 80 FB 00 00 00 DO FD 00 04 71 08 00 00

0720: 31 02

2-22

several buffer bytes acting as a pseudo
stack that starts at $0713 (we will return to
this later) are initialized, the column
headings are displayed and the IRQ vec-
tor is positioned (the IRQ routine begins
at address $0526).
The tracing proper starts at $05A2, by
displaying the program counter address,
loading the op-code, filling the op-field
with 00s, and calculating the length of the
instruction (the routine used begins at
$06A8 and is quite similar to the LENACC
routine in the Junior Computer). The op-
field is a four-byte zone ($0619... $061C)
where the analysis program places in turn
each of the instructions of the program
under test in order to execute them. As
these instructions never contain more than
three bytes they are always followed by at
least one 00 and this functions as a BRK.
Immediately after executing an instruction
of the program under test, therefore, this
BRK causes the IRQ routine at $0526 to be
run.

The pseudo program counter ($00ED and
$00EE) is incremented at $05DB. This in-
crementation depends on the format of
the preceding instruction, with the
number of bytes making up the instruction
being stored in address $071E. Any jump
instructions in the program must be
filtered out to be dealt with separately and
this begins at $05E6. From $060B onwards
stacking of registers A, X and Y for the
program under test starts. The op-field,
located at $0619, contains the instruction to
be analysed and because every instruc-
tion is always followed by at least one BRK
it is also followed immediately by the IRQ
routine. As could be expected, this begins
by storing the conditions of the processor
registers. Then it displays their contents
and proceeds to the next instruction.
The special instructions for executing
jump commands are located at $061D. The
addresses for relative jumps are
calculated at $0672 and $068A. The ad-
dresses of the Junior Computer's PRBYT
and PRCHA routines are contained in
$06A1, $06A2, $06A6 and $06A7, so these
must be changed if the program is to be
used with a different 6502 system.
The commands for printing the headings
of the columns are at $06CC to $0702. The
format of each instruction that is to be run
is determined by comparing it to the
values contained in the look-up table
located from $0703 to $0712. There are a
number of buffers between $0713 and
$0721 that are used by the tracer program
to store the stack pointer, the contents of
the top of the stack, the op-code under
test, the number of bytes in the instruc-
tion, and so on .. .
These were the most important points
about this program and the rest is
easily deciphered with the aid of a dis-
assembler. 	 H

table 2
	

6502 tracer

elektor february 1984

JUNIOR

M
HEXDUMP: 200,23A

0 1 2 3 4 5 6 7 8 9 AS CDE F
0200: A9 03 A8 AA A9 09 85 00 F8 18 65 00 CA DO FA 2A
0210: 6A 38 E5 00 88 DO FA E5 00 D8 F0 00 F0 06 F0 02
0220: F0 04 F0 FC F0 F8 20 30 02 38 EA 4C 35 02 EA EA
0230: 20 34 02 60 60 4C 00 03 4C 00 02

JUNIOR

M
HEXDUMP: 2F0,30F

0 1 2 3 4 5 6 7 8 9 A B CDE F
02F0: 00 00 00 00 00 00 00 00 00 00 00 00 B0 06 BO 02
0300: B0 FC BO F8 6C 07 03 00 02 00 00 00 00 00 00 00
0310:

Table 2. These few
table 3 instructions could be

used to test the program

of table 1. The result
ED
00E 27 00. obtained should be the

OOEE 09 02. same as table 3.

00EF 1C 500
0500 58 R
6502 - TRACER
ADR. -INSTR.- :A :Y :X NV11DIZC STACK
0200 A9 03 03 00 00 FF-
0202 A8 03 03 00 FF-
0203 AA 03 03 03 FF-
0204 A9 09 09 03 03 FF-
0206 85 00 09 03 03 FF-
0208 F8 09 03 031... FF-
0209 18 09 03 031... FF-
020A 65 00 18 03 031... FF-
020C CA 18 03 021... FF-
020D DO FA 18 03 021... FF-
0209 18 18 03 021... FF-
020A 65 00 27 03 021... FF-
020C CA 27 03 011... FF-
020D DO FA 27 03 011... FF-
0209 18 27 03 011... FF-
020A 65 00 36 03 011... FF-
020C CA 36 03 001.1. FF-
020D D0 FA 36 03 001.1. FF-
020F 2A 6C 03 001... FF-
0210 6A 36 03 001... FF-
0211 38 36 03 001..1 FF-
0212 E5 00 27 03 001..1 FF-
0214 88 27 02 001..1 FF-
0215 DO FA 27 02 001..1 FF-
0211 38 27 02 001..1 FF-
0212 ES 00 18 02 001..1 FF-
0214 88 18 01 001..1 FF-
0215 DO FA 18 01 001..1 FF-
0211 38 18 01 001..1 FF-
0212 ES 00 09 01 001..1 FF-
0214 88 09 00 001.11 FF-
0215 DO FA 09 00 001.11 FF-
0217 ES 00 00 00 001.11 FF-
0219 D8 00 00 0011 FF-
021A F0 00 00 00 0011 FF-
021C F0 06 00 00 0011 FF-
0224 F0 F8 00 00 0011 FF-
021E F0 02 00 00 0011 FF-
0222 F0 FC 00 00 0011 FF-
0220 F0 04 00 00 0011 FF-
0226

20 30 	02 00 00 0011 FD-0229
0230

20 34 	02 00 00 0011 FB-0233
0234

60 00 00 0011 FD-0229
0233

60 00 00 0011 FF-
0229 38 00 00 0011 FF-
022A EA 00 00 0011 FF-
022B

4C 35 	02 00 00 0011 FF-
0235

4C 00 	03 00 00 00 11 FF- Table 3. This is what
0300 B0 FC 00 00 0011 FF- should appear on the
02FE B0 02 00 00 0011 FF-

B0 06 00 00 0011 FF- screen (or printer) if the 02 F C
0202 B0 06 00 00 0011 FF- program of table 2 is run

0304 with the aid of TRACER.

6C 07 	03 00 00 0011 FF- Before starting the Jatter

X200 A9 03 03 00 001 FF- at $0500 the start address
0202 A8 03 03 00 1 FF- of the program under test
0203 AA ($0200) must be placed in
JUNIOR page zero ($00ED and

$00EE).

	Page 22
	Page 23

