Elsewhere in this issue we described the theory behind Basicode-2 so it is
only natural that we should show how the Junior Computer can use it. Here
we give the Basicode software and everything else that is necessary to allow
the Junior Computer to use Basicode-2. This means that the Junior Computer
can now easily exchange BASIC programs stored on cassette tape with other
computers. Moreover, ‘received’ programs can run directly on the JC, so that
BASIC in combination with Basicode is a universal, completely exchangeable

computer language.

basicode-2

interface for the
Junior Computer

As we have already described all the various
facets of Basicode, we will simply begin here
by talking about the Junior with Basicode.
The Basicode translation programs for the
expanded Junior and the DOS Junior are
not the same as they use different BASICs
and handle their memory in different ways.
To use Basicode, either an expanded Junior
with KB-9-BASIC and Elekterminal or a
DOS Junior and Elekterminal are needed.

The translation programs

The translation programs for both Junior
versions are written in machine code. The
complete source listing is given in table 1,
complete with explanatory text. This is
for the expanded Junior with KB-9-BASIC.
The source listing for the DOS Junior is
not given as it is almost the same as this
listing, only a few of the addresses are
different. The hexdumps are shown in
table 2 (Junior with KB-9-BASIC) and
table 3 (DOS Junior).

In the expanded Junior with KB-9-BASIC
the translation program is at addresses
$0200 . . . $059B, and in the DOS Junior
‘it is at $EQQP . . . $E39B. These ranges are
selected because there is generally RAM
there, and the programs really have to be
in RAM to work properly (so they cannot
be placed in an EPROM). Once the program
is typed in, it can simply be written to a
cassette or floppy disk, so that the next
time it is to be used it can easily be read in.
The program consists of a write and a read
section. We will concentrate on the ex-
panded Junior in order to describe how the
program is used, but at any point where the
DOS Junior differs, this is indicated by the
comments in brackets.

Reading

First the Basicode translation program is
typed in (or read in, if it is already stored on
cassette). Both read and write programs can
be stored in one file on cassette: SA = 0209,
EA = @59C (DOS Junior: SA = E@PQ, EA =

E39C). Next the KB-9-BASIC is read in from
cassette (see Elektor April 1982), or from a
floppy in the case of the DOS Junior. Then
the BASIC can be started in the usual way.
At this stage a Basicode program can be
loaded. This requires the small interface
described at the end of this article. A pro-
gram is loaded as follows:

First type NEW to erase any old programs.
Then type:

POKE 8256,0 : POKE 8257,4 : X = USR(X)
(POKE 574,0 : POKE 575,226 : X =
USR(X))

followed by a (carriage) return.

The sign = now appears on the hex display
of the Junior and indicates that there is no
synchronization. The cassette recorder can
then be started. If the program receives any
signals the = sign jumps back and forth on
the two right-hand displays. If the 2400 Hz
header is now received, a slowly jumping
sign appears on the right-hand displays. This
shows that the program is working on
synchronizing. This jumping display lasts
about 2 seconds, then the sign is stationary
on both displays for the rest of the leader.
At the end of the leader when the actual
program begins, both displays show //, and
as long as the data is properly received this
sign lights evenly on both displays. When the
complete program is received, the computer
automatically gives a listing of it on the
screen or printer. After doing this, the
computer gives an ‘OK’.

If an error has appeared while reading in
the program, the message ‘CHECKSUM
ERROR' is given after the listing. In this
case the program must be checked or it
could be read in again in the hope of a
better result. On no account must the
listing be interrupted by pressing a key.
If this is done, there is a chance that both
BASIC and Basicode programs will have
to be read again (or retyped!). Even if
faults are seen in the listing, such as lines
being written over one another (that can
happen if there is sudden interference on
the tape), you must still wait until the

Basicode-2 interface for

the Junior Computer
elektor october 1983

Junior

communicates

with other
computers

10-51

Basicode-2 interface
in the J.C.
elektor october 1983

felD:
eaze:
2030
LLET B
LLET B
LU R
feTe: eze0
teEE
B090:
LALLE
e1le: e200
@1ip: mew
8130: ezen
el4v: aiee
#158: p2en
L60:
a7
@lge:
@l9@a: azow
arew: proe
8218: ola0
@2lo: a2ea
023d: pren
g24@: pre0
w250 elue
N26@:
[ExH
ez8d:
025@: Bzoe
figa: pz2ee
CESTH
0320:
LEX]H
fiqa: 2o
Ri50: 20w
016@8: P29
017a: e2ee
BlBR: e200
Q3ga: proR
aaga:
edle:
[LFLH
@430 p2aw
LEEDH
M450:
0460
pava:
LT R
0490
2500: P29 AD
8510: @203 AC
8520: 8206 BD
8530: 2209 BC
0540: B2OC A9
U5508: D20E AR
B56@: @219 8O
8570: 8213 8C
856@8: 9216 AS
P590: B218 A4
P600: @21A 8D
P61@: 0210 &C
2628 220 A9
2 A0
85
6 B4
A5
a4
L1
ac
&0
BC
A
RO
8D
g
ca
Fe
0
8D
40
L1+)
EE
oe
EE
AS
co
oa
AS
o
e
A
&0
AS
8D
A5
80
o
48
@278 98
@279 48
@27H AT
113e;: 027C @

10-52

"
42

83
°3

82

Table 1

BASICODE WRITE PROGRAM FOR JUNIDR COMPUTER :;;f ;:
ITH KB-¥ BASIC
WITH KB-% BASIC gz61 28
BATE: 14-6-"8] 2287 29
028A AY
ORG 50709 W28C BD
WZEBF AT
POINTERS [N 2 SIC @291 ED
ERS [N PAGE ZERO (BASIC) faaL s
INTER * se004 U;;: s:
BERSPL * SROTE REGINNING OF FREE SPACE POINTER & 29
BFRSPH * S007F :g;g in
HIMEML * 50084 END OF AAM POINTER
HIMEMH * 50085 BERT AR
VAl 4n
6522-1C REGISTERS B2A5 48
#2h6 BD
TOCL * 51804 TIMER ONE COUNTER w2A8 2@
TOCH i S1ERS BinE @
TOLL ¢ 51826 TIMER ONE LATCH 2Iab 2@
TOLH * 107 0280 68
ACH . 51808 AUXILIARY CONTROL REGISTER 0281 B8
IFR L 51880 INTERRUPT FLAG REGISTE @282 DO
1ER - S1BRE INTERRUPT ENABLE REGISTER @24 20
287 20
OUTPUT VECTOR (BASIC 02BA EE
! ! @IBD DD
ouTvL = $3A52 OLTPUT VECTOH :g?l; :E‘
ouTVH * h53
: ¥ B2CH AE
EMPORA UFFERS ace c4
TEHFPORARY. DATA BUFFER fach oy
S0VL . SRIFE @ce Ed
so0vH * SRIF1 :;g: iisé
. S83F2
x SRIFI a0y BD
' SRIE4 ﬂg:s AS
< SR3FDR 9207 8D
@2oa CoC
EXTERNAL SUBROUTINE 2200 bR
WZDF EC
MESSY * 50559 @2EZ DO
#2EQ 20
: QZET B
: INITIALISE POINTERS OZEA AD
: TAGLE ROUTINE STARTADDRESS TO OUTPUT VECTOR @ZED AC
t 92ZFD B5
BIF: B4
SAVE LDA DUTVL 0IF4 AD
LOY OUTVH Q2F7 AC
E: S0VL RIFA BD
SOVH SAVE OUTPUT VECTOR Q2FD BC
TAHLE 0i00 AD
TABLE /256 [ELER L
ouTvL @Iah AL
QUTVH NEW OUTPUT VECTOR 2307 85
INTER 23049 B5
INTER +@1 ©i0e 85
SAVINL 30D A4
SAVINN SAVE INTER VECTOR @I0F CE
SVECAS 03l ce
SVECAS /256 0311 c8
INTER @312 84
INTER +#1 NEW INTER VECTOR 2314 84
BFRSPL @316 84
BERSPH 2318 A9
STTABL +21 BEGINNING FREE SPACE POINTER B3LA AB
STTABL +92 TO INDIRECT ADDRESSES STTABL AND 23ip 91
LDTABL +@1 LOTARL { TABLE PUINTERS) g3lD c8
LOTABL #22 Q31E 51
00 9320 AP
CHSUM CLEAR CHECKSUM 2322 20
DESTEL CLEAR DESTROY FLAG 2325 68
LOAIM 502 START OF TEXT CHARACTER 8326 A8
@327 €8
: 9328 ac
© THIS ROUTINE IS5 CALLED BY BASIC ANWD PUTS THE
: LISTING OF THE PROGRAM IN A TABLE
TABLE CMPIM SOA
BEQ DK SKIP LF'S 2328 A2
ORATH 580 P320 AQ
STTABL STA SFFFF CHARACTER TO TABLE pI2F 20
EOR CHSUM p3iz CA
STA CHSUM URDATE CHECKSUW 0333 p@
INC STTABL +01 INCREMENT TABLE POINTER 2335 88
BNE OUTOFM 0316 DO
INC STTABL +82 BIIE 60
OUTOFM LOA HIMEMH
CMP STTABL +#2
BNE UK NOT END OF RAM? THEN BRANCH
LOA MIMEML
CHP STTABL +81
BNE 0K
LU -EE 2339 A9
STA DESTFL SET DESTROY FLAG 2138 BD
LDA $ROTE GO ON AT BEGINNING OF BASIC WORKSPACE DIIE A
STA STTABL +P1 AND REWRITE BASIC PROGRAM BY TABLE 2188 ED
LA 50AT79 2343 4C
STA STTABL +02 @346 20
L] RTS 0349 A9
#34B 6D
& 34E AS
PROGRAM TO TAPE 9350 BD
3 @353 AD
#8356 2C
SVECAS PHA 8155 59
TYA #358 AD
PHA BISE IC
LOAIM SO0 0361 58
JSR TABLE CARRIAGE RETURN TO TABLE 2250: @363 69

83
43

48
¥
oE
ce
B
a1
s
8
FF
08

[}

3

LOAIM 503
02 JSR TABLE END OF TEXT TO TABLE
03 LDA CHSUM
[F] J5R STTABL CHECKSUM TO TABLE [(WITHOUT SETTING BITT)
LOAIM STF
18 STA . IER SET INTERRUPT DISABLE MODE
LOAIM 5CO
18 STA ACH SET SUUARE WAVE OUTPUT (PBT)
LDAIM S@1
e ST TOCH START TIMER ONE
@3 JSR HEADER
23 LOADTA J5R ZERD STARTBIT=@
FF LDTABL LDA SFFFF
LDYIM $08 BITCOUNTER=B
CUTCHA LSRA OME BIT TO CARRY
PHA
BCS HIGH
03 JSR ZERO OWE PERIOD OF 1200HZ (=0)
BVS NEXT BRANCH ALWAYS
@3 HIGH JSR ONE TWO PERIODS OF 2408HE (=1}
NEXT PLA
DEY
BNE OUTCHA BITCOUNTER MOT ZERO? THEN BRANCH
LE} JSR O OME STOPBIT=1
CE] JER OME STOPBIT=1
[+ INC LOTABL +@1 INCREMENT TABLE FOINTER
BNE LOT
a2 INC LDTABL +8%
@2 LoT LDY LOTABL +@2
[LOX% LDTABL +81
CEY HIMEMHA
BNE CMPARE NOT END OF RAM? THEN BRANCH
CPX HIMEML
BNE CMPARE
LDA Se078
w2 S5TA LDTABL +81 GO ON AT BEGINMING OF BASIC WORKSPACE
LDA Sea79
[+ STA LOTABL +@2
82 CHPARE CPY STTABL +02
BNE LOADTA NOT END OF TABLE? THEN BRANCH
0z CPX STTABL +01
BNE LOADTA
03 J5H HEADER
18 5TY ACH DISABLE PBT
LE] LDA SAVINL
03 LDY SAVINH
STA INTER RESET INTER VECTOR
S5TY INTER +@1
(5] LDA SOVL
03 LOY SOVH
i STA OUTVL HESET OUTPUT VECTOR
N STY OUTVH
a3 LDA DESTFL
BEQ HRTHN DESTROY FLAG NOT SET? THEN BRANCH
LOA 5007% UDESTROY BASIC PROGRAM IF DESTFL 1S SET
S5TA SR07B
STA SP07D
STA SROTF
LDY seeTs
INY
INY
INY
STY SRRTA
STY SRRTC
STY SPRTE
LOAIM $00
TAY
STAIY SPRTE
INY
STAIY 50078
LDYIM S2C
05 J5R MESSY “NEW® MESSAGE
RTRE PLA
TAY
PLA
L JMP INTER ~-@1 RETURN TO BASIC
T 5 BEC 74R0HI
HEADER LDXIM 570 SET X- AND Y-REGISTER FOR
LoYIM 517 12000 PERIODS OF 2400HZ (=5 SEC 2400MI)
®3 HOR JSR ONE TWO PERIOUS OF 2400H2
DEX
BNE WDR
DEY
BNE NDR
RTS
TERO=ONE PERIOD OF 1200MZ
ONE =TWC PERIODS OF 2408MT
ZERD LDAIH SOF
18 STA TOLL
LOAIM 591
18 STA TOLH . SET TIMER ONE FOR 417 HICRO SEC.
@3 JMP PERIOU
@3 ONE JSR SUBONE
SUBONE LDAIM SCE
18 STA TOLL
LDAIM 580
18 STA TOLH SET TIMER OME FOR 208 MICRO SEC.
18 PERIOD LDA TOCL CLEAR TIMER ONE INTERRUPT FLAG
18 PER BIT IFR
BVC PER HOT TIME-OFF?
18 LDA TOCL
14 pRE BIT IFR
BVC PRD
ATS

computer is finished with the listing and
gives the ‘OK’' or ‘CHECKSUM ERROR'
message. Then by simply working in BASIC,
you can check the program and correct it.
There is also a possibility that the computer
may not recognize the end of the program
and carries on as if it were reading the
program, and the hex display remains
lighting. In this case the RST key could be
pressed, but then the BASIC would have
to be read in again. That is not the ideal
situation. A better solution is to look for
the end of another Basicode program on
the tape and play this out. The computer
will then recognize this end and will report
back on the screen. Of course, the last
part of the program read in will no longer
be correct but at least you can examine the

part of the program that is correct and in
this case the BASIC does not have to be
read in again.

If the program that must be read in is too
large for the available memory space, the
computer returns with ‘OUT OF MEMORY’,
and no listing appears. If a listing of the
part that is written in is required it can
be obtained as follows:

POKE 8256,156 : POKE 8257,4: X =
USR(X)

(POKE 574,156 : POKE 575,226 : X =
USR (X))

followed by a (carriage) return.

Writing
A BASIC program is written out in the
following manner using Basicode:

Basicode-2 interface
for the J.C.
elektor october 1983

1478: P4CD AD 66 @4 INCPNT LDA STAIND +02
2020 BASICODE IEAD PROGRAM FOR JUNIOR COMPUTER 1480: 24D CD CO 04 CMP LDIND +82
o0p30: WITH KB=§ BASIC L490: 94p3 DO 26 BME RETBAS NOT END OF TABLE? THEN BRANCH
0048 s 1580: @4D5 AD 65 @4 LOA STAIND +21
[T DATE: 14-6-" 151@: 94D €D BF 24 CMP LDIND +81
006D 15201 @4DB DP 1E BNE RETBAS
POTR: 040 ORG:. SR480 1530: 04DD AD F§ £3 LA SIVL
2RER: SR 1549: 04EQ BD 57 24 STA INVECL RESET INPUT VECTOR
290 POINTERS [N PAGE 4 1550: R4E3 AD FA 03 LDA SIVH
2100: = 1560: P4E6 8D S8 24 STA INVECH
BllB: @4a0 BFRSPL * SPR7E BEGINNING OF FREE SPACE POINTER 1570: B4ES AD F4 03 LDA CHSUM
o1ze: p400 BFRSPH * SRRTE 1580: Q4EC FO @5 BEQ RETURN NO CHECKSUM ERROR? THEN BRANCH
0130: w4RR HIMEML * ::::; END OF RAM POINTER 1590: Q4EE AR :3 LDYIM 512 e
Dl40: paRR HIMEMH * 1608: @4F@ 28 59 @5 JSR MESSY "CHECKS %
1618: @4F3 AR 25 RETURN LDYIM £25
6522-1C REGISTERS 1628: @4F5 20 59 05 JSR MESSY "OK™ MESSAGE
1630: 04F8 A9 D LOAIM $0D CARRIAGE RETURM
FCR . 5180C PERIPHERAL CONTROL REGISTER 1640; B4FR €0 RTS
IFR . 51600 INTERRUPT FLAG REGISTER 1650: B4FB 98 RETBAS TYA
IER . $180E INTERRUPT ENABLE REGISTER 1660: D4FC 60 RTS
1670:
6532-1¢ REGISTERS 1680 : .
: : MENSURE ONE PERIODTIME
PAD * S1AB0 DATA REGISTER OF PORT A :g::’ 2
PED * 5182 DATA REGISTER OF PORT B 1710
cNTE * $1AFS CLKET (INTERRUPT DISABLE} 1720: @4FD 20 00 @5 PERIOD JSR HLFPER
1730: 2500 A9 02 HLEPER LDAIM 502
INFUT VECTOR (BASIC) 174@: @582 2C @0 18 F BIT IFR
1758: @505 F@ FB BEQ HLF NO ACTIVE EDGE ON CAL-INPUT? THEN BRANCH
INVECL * $2457 IWPUT VECTOR 1760: @507 ED oD 18 STA IFR CLEAR CAl FLAG
S eniton i gman, e
1789
TEMPORARY DATA BUFFERS 179@: @50F BD BC 18 STA :cn OPPOSITE ACTIVE CAl EDGE DETECT
1880: @512 A9 FF LOAIM $EF
CHSUM * $83F4 CHECKSUM 1810: 0514 AA TAK
PRONTL * $03PS PERICD: COURTER 1820: @515 4D F6 1A EOR $IAFE GET ELAPSED TIME IN ACCU
PRCNTH * sears S 183: @518 BE F5 1A STX CNTB RESET TIMER
ZERQ ¢ S03FT 1842: 0518 AA TAX
HLEPTH * S03FE HALF PERIODTIME 18%9: @sic 18 cLe
sty - §02r9 186@: 0510 €0 FB 3 ADC HLFPTM FULL PERIODTIME IN ACCU
SIve *® $03FM 1870: 9520 BE FB 23 ST HLFPTM SAVE LAST MALF PERICDTIME
1880: 0523 60 RTS
EXTERNAL SUBROUTINE 1898:
H 1908 3
0450: 0400 PRCHA * 51334 PRINT CHARACTER ROUTINE 1sie: © READ ONE BYTE
: 192e: 3
: 1938:
1 INITIALISE AND RECEIVE 1946: 0524 A9 55 HEYT LDAIM $55
2 1950: @526 20 4D @5 JSR NOSYNC
1968: 2529 AD 28 LDYIM $88 SET BITCOUNTER
READ LDAIM S7F 1978: 0528 46 RE FHA SAVE ACCU
STA 1ER SET INTERRUPT DISAHLE MODE 190; os3c 20 FD 04 JSR PERIOD
LOAIN: 300 1999: @52F CD F7 83 CMF IERQ
RER FER CHER AL MEGATLVE RDGEDRRELS 2008: 9532 B 86 BCS FNDIRO 1200MZ PERIOD? THEN BRANCH
5TA CHSUM CLEAR CHECKSUM 2018: 9534 20 FD @4 ;gg PERIOD SECOND 24@@HMZ PERIOD
LDAIM $73 2020: 9537 38
STA PBD 2010: P538 8O 01 BCS SHIFT BRANCH ALWAYS
LDA BFRSPL BEGINNING OF FREE SPACE POINTER 2040: B53A 18 FNDZRO CLC
STA STAIND +@1 TO INDIRECT ADDRESS STAIND 2050: B53B 68 SHIFT PLA
LDX BFRSPH I060: PSIC 6A AORA NEXT BIT TO ACCU
INX 256 BYTE FOR EXPANSION i:;: :ng gg e g:; s R
CPX HIMEMH E ?
BCS STOP 2000: PS40 4B PHA
STH STAIND +22 2100: 9541 4D F4 23 EOR CHSUM
2118: 9544 8D F4 03 STA CHSUM UPDATE CHECKSUM
HEADER LDAIM 510 2120: 0547 68 PLA
STA PACNTH SET PERIOD COUNTER 2130: 0548 29 7F ANDIH $TF CLEAR BIT 7
LOAIM $36 214@: P54m 6@ R
JSR NOSYNC DISPLAY NOSYNC CHMARACTER 2158:
RIOD a: :
iy gasukun gzl 3{?., : DISPLAY SYNC-CHARACTER ON 7-SEGH.DISPLAY
BCC HEADER PERIODTIME << 2480HZ PERIODTIME 2180: ¥
CMPIN S4E 2190:
BCS HEADER PERIODTIME >> 24@0HI FERIODTIME 2ze0: ﬂs:g :9 :: i igiw ls.gilh :::
INC PRCNTL 2218: @540 ED
BNE HDR NOT 256 PERIODS? THEN BRANCH zzga-, a::: :I; tu2 1 :g:m gg:;
TAY 2230: 8 2
JSR SY¥YNC DISPLAY SYNC CHARACTER 224@: 8555 BD BI 1A aTh PRD
TYA 2250: P55 60 RTS
DEC PRCNTH 2260
BNE HDR NOT 164256 PERIODS OF 2400HZ? THEM BRANCH 2278 f
ASLA PERIODTIME X 2 (=120@HZ PERICDTIME | §§:= . OUTPUT MESSAGE (MESS+Y)
SEC T
SECIM S0 1200HZ PERIODTIME - 1ROUS = ZERO 2380:
STA ZERO 2310: 8559 B9 68 @5 MESSY LDAY MESS LOAD CHARACTER
STABIT JSR SYNC 2328: 855C €9 03 CMPIM $B3
JSR HLFPER FIND STARTBIT gg::: ez:z Fe g: i ggg ::g::n END OF TEXT CHARACTER?
CHP 2ERO : @560 2a
BCC STABIT NC 1280HZ PERIOD? THEN BRAKCH 2358: 9563 C8 Y
BCS READBY BRANCH ALWAYS 21601 8564 4C 59 8% JMP MESSY
ETRTBT JSR HLFPER FIND STARTBIT 2378: 09567 60 MESEND RTS
CMP ZERO 2388
BCC STRTBT 2398: P56E a0 MESS = 580
READBY JSR RBYT READ ONE BYTE i:i’: ::;gg :; s;n
H H
STAIND STA SFFFF CHARACTER TO TABLE 2428: 0568 55 - W
CMPIM $03 2430: B56C 54 - T
BEQ ECT END DF TEXT CHARACTER? THEN BRANCH 2440: 956D 20 - '
INC STAIND s8] INCREMENT POINTER 2450 l::t :i - 'g
BNE ECRAM 2460: Q56F - '
INC STAIND +02 2470: 9570 28 = '
EORAM LDA HIMEMH 2480: 9571 4D = M
CMP STAIND +02 2490; 8572 45 - ‘E
BNE STRTBT NOT END OF RAM? THEN BRANCH 2304 8873 4D = e
LDA HIMEML 2510: @574 4F - ‘0
SN Staner 3530 037 3 -
BNE STRTBT - "y
STOP LDYIM 500 2548: 8577 OA = SEA
JSR MESSY “OUT OF MEMORY™ MESSAGE 2558: 0578 9D = S9D
LOAIM $E67 2568: 0579 43 - 503
STA PBD 2570: @57A €D = sen
RTS RETURN TO BASIC 2588 ng;a s; = 50A
2590: @57C 4 = e
oo e s e 4 ;i
Bee gt 2620: @57F 43 = '
JER RBYT READ CHECKSUM 2639: 9580 48 = ®
st 2 xR
STA PBD -
LOA BFASPL TABLE STARTADDRESS TO LDIND 2:3: :::‘3 n: * ™
Ik o, Al -
2698: 0586 52 - 'R
INX .
aney : 2
tg; :::ﬁz: 2728: 2589 52 = ‘R
STA SIVL SAVE INPUT VECTOR ;;32 :gg: :; # ::;
L 2750: £58C 031 - 503
L 2760 258D @D = s
LDYIM LDIND /256 + 85 3 o
STA INVECL NEW INPUT VECTCR g;;:: :::E :: : <§"
STY INVECH
2798: 2590 4B = "
i 2800: @591 A - $0A —
: 18 8240 80 - Table 1. This is the source
: THIS ROUTINE 1S CALLED BY BASIC AND TRANSFERS 2820: 859 - g
: EVERY CHARACTER FROM THE TABLE TO BASIC 2B19: 9584 @0] sen listing for the complete
: 1T ALSO GIVES A LISTING OF THE PHOGRAM gg;:z ::;2 o 2 f:n transistion prograe. This
1 : .
2BEB: 8597 45 - 'E
FF LDIND LDA SFFFF CHARACTER FROM TABLE 323:‘ :::: 3:\ = ;:l pﬂticlllll' axamplo is for
AY z = % .
13 ISR eRcEA z850: 3598 0 :om the expanded Junior with
o4 INC LDIND +@1 INCREMENT POINTER 2908: B e = 03 . ia
BNE INCENT KB-9-BASIC. The listing
o4 INC LDIND +02

for the DOS Junior is
almost identical to the
one shown here, with the
exception of a few address
locations.

R 1) 2] b R

Basicode-2 interface for
the Junior Computer
elektor october 1983

Table 2. The hexdump for
the translation program for
the Junior with KB-9-
BASIC.

Table 3. Hexdump for the
translation program for the
DOS Junior.

10-54

Table 2

M
HEXDUMP:

2]
B2o@: AD
g219: 8D
B220: AY
B230: 4
@249: A9
pz25e: 83
B260: AS
gz7g: 82

p288: 93 2

B29@: C@
B2p0: FF
@z2B@: 68
B2ch: Al
0208: AS
B2ED: 49
B2FB: 85
@3ga: AD
B3ld: C8
B3za: Ap
B33@: 46
@34@: BD
@35@: 8D
@36@: 18

JUNIOR

M
HEXDUMF:
8 1

BapE: AS
#41@: 82
Bazo: @4
B430: 9@
g44e: CE
#458: @@
Q468: FB
#478: EE
@488: DE

JUNIOR

B208,08363
1 2 3 4

7F 8D PE 18
1A AS 7E 8D
A9 18 BD F6
EF C9 4E BP
F6 @3 D@ E6

Table 3

HEXDUMP:
@
ER@D: AD
ERl@: 8D
E@2@: A9
ER3D: 4A
E@4@: A9
EQSe: El
E@6@: AS
E@T@: E@
E880: @3
E@9Q: C@
E@ad: FF
E@BB: &8
E#C8: Al
E@D@: AS
EGE@: 49
EQF@: B85
E188: AD
Ell9: CB
El28: A®
E13@: 46
El4@: 8D
E158: 8D
E16@8: F8

JUNIOR

]
HEXDUMP:
e 1

EZ08: A9
E2l@: 82
E228: E2
E238: 90
E248: CE
E258: @@
E268: FB
E270: EE
EZB@: D8
E29@: F7
E2nD: E2
E2B@: BC
E2CB: FF
EZ2D8: CD
EZE@: 8D
EZF@: 20
E3@@: A9
E3l@: @C
E328: BE
E330: F7
E34@: 48
E358: AD
E360: 28
E37@: 20
E3B@: 4B
E39@: 4B

JUNIOR

E008,E163

1 2 3 &
11 23 AC 12
11 23 8C 12
77 A® E® 8BS
EC BD AP E@
82 C9 @r FO
EE 49 EP D@
84 CD 49 E@
A5 79 BD 4A
20 42 E@ AD
8D @B FB A9
FF A @8 4A
88 DO FO 20
E@ AC Al EB
78 BD AQ E@
E@ D8 B8 20
94 B4 85 AD
FB E1 F@ 2@
CB 84 TA 84
2C 2@ 59 E3
El CA DB FA
87 F8 4C 53
87 F8 AD 04
58 FB 60

7F BD 8E F8
FA A5 7E 8D
AS 1@ BD F6
EF C9 4E B#@
F6 E1 D@ E6
E3 CD F7 El
28 24 E3 BD
66 E2 AS BS
AR @0 20 59
El 9@ FB8 20
Ab TF EB EE
FA E1 AS BD
AB BD 63 23
Cceé E2 DB 26
#1 23 AD FA
59 E3 AD 25
82 2C 8D F8
FB A9 FF AA
F8 E1 68 A9
El BO® 86 2@

4D F4 El1 8D F

B2 FA 49 B2
43 23 C8 4C
4D 45 4D 4F
53 55 4D 2@
@A 08D @3 @D

POKE 8256,p : POKE 8257,2: X =
USR(X) : LIST

(POKE 574,0 : POKE 575,224 : X =
USR(X) : LIST)

The recorder is then set to record and
started. Only then is the (carriage) return
given. The whole program is then saved on
the tape in Basicode form. After the com-
puter gives the ‘OK’ signal the recorder can
be stopped. It is also possible to save only

a part of the program on tape (for example,
lines 1000-1090):

POKE 8256,p : POKE 8257,2: X =
USR(X) : LIST 1000-1090

(POKE 574,0 : POKE 575,224 : X =
USR(X) : LIST 1000-1090).

Before the BASIC program is stored on tape,
the computer ‘translates’ the program first
into ‘LIST’ format and places that in a
table which appears above the BASIC
program in the RAM range. With large
programs, the RAM range may not be
big enough to store both of these so after
the program is stored on tape the computer
returns the ‘NEW’ message. This means
that the original BASIC program is erased
from the memory. As it is in Basicode form
on the tape anyway, it can also be read in
again.

Details of the translation program

This next section is a description of the
write and read routines (more details are
given in the listing of table 1).

The write program

When this routine is called by means of

X = USR(X), the OUTPUT vector (of the
BASIC Junior) is changed for the start
address of a machine code routine (TABLE
in the write program). This routine stores
an ASCII character from ACCU into RAM.
After giving a LIST command (with
POKE...:POKE...: X=USR(X):
LIST), the computer will list the program on
the screen (or on the printer). Because the
OUTPUT vector is changed (it normally
points to the ‘print character’ routine), the
TABLE routine is used to store the listing
in RAM above the original BASIC program.
The program is then stored in this table

in LIST format.

After the BASIC Junior notes the end of
the program and is therefore finished listing,
it jumps via the JMP command at addresses
0003 . . . P05 to SVECAS. This routine sets
the whole table onto cassette with 1200 and
2400 Hz tones. When that is done the
OUTPUT vector and the JMP at address
PPP3 are reset and the computer returns to
BASIC.

The read program

After this program is called by X = USR(X),
the Basicode program is read from cassette
and stored in the form of a table in RAM.
Again the program is in LIST format. When
the ‘end of text’ character and the checksum
are read in, the whole program is located in
this table, the INPUT vector (in the BASIC
Junior) is changed for the start address of
the LDIND routine, and the computer
returns to normal BASIC.

The computer should now really wait for an
input from the terminal (the INPUT vector
normally points to the receive character
routine), but because the INPUT vector
points to the LDIND routine the characters
are called one by one from the table by the
BASIC Junior (and printed at the same
time). This makes it seem as if a program is
being typed in at high speed. The program
thus read out of the table is then processed
and stored in the normal way.

Finally, the INPUT vector is reset and the
computer returns with ‘OK’. The user can
then work with the program as usual.

BASIC subroutines

Apart from the translation program there is
also a need for some subroutines, written in
Basicode-2 protocol. These are dealt with in
depth in the descriptive article, ‘Basicode-2’,
in this issue.

Three of these subroutines are not usable
with the Junior/Elekterminal combination.
These are routines 120, 200 and 250.
Subroutine 120 relates to the position of
the cursor on the screen and subroutine
200 checks whether at a specific moment
akey is pressed. Neither is possible because
of the arrangement of the Elekterminal.
Subroutine 250 just gives a bleep, but the
Elekterminal is mute.

If the main BASIC program calls subroutine
120 or 250 nothing happens because in the
Junior these subroutines consist of the
‘RETURN’ command. For subroutine 200
IN$ is an empty string so that it seems as
if no key is pressed at that moment.

The standard subroutines for the expanded
Junior and the DOS Junior, both with
the Elekterminal, are given in tables 4
and 5 respectively. Subroutines 350 and
360 should really refer to a printer but in
our case they refer to the terminal.

The subroutines can be read in either before
or after the Basicode program. That makes
no difference as long as they are present
when the program is RUN. If, for example,
the Basicode program has already been
read in, the subroutines can simply be
added by reading them in using POKE . . . :
POKE .. .: X = USR(X).

Two program sections can be added to form
one program by reading them both in
separately. The only prerequisite is that the
two parts have no identical line numbers.

Practical points

After reading in a Basicode programme it is
only common sense to check it through
carefully. Often there are some details that
have a different meaning on your computer
to what they meant to the computer on
which the program was developed. This
is a common reason for programs not to
work.

Consider this case, for example: we have
a Basicode program that draws a maze, and
it contains the necessary PRINT statements.
If part of the maze is now drawn on the
screen and the program wants to PRINT
something in the middle of the maze, a
carriage return and line feed are automati-
cally generated after the print statement.
With the Elekterminal a carriage return

Table 4

LIST

1@ GOTO leee
20 GOTO lele
188 PRINT
181 POKE6745,200:PRINT CHR$(12);
102 POKEBT45,3
183 RETURN
118 IF HO>63 THEN RETURN
111 IF VE>15 THEN RETURN
112 POKE6745,200:PRINT CHRS(28);
113 POKEG745,1
114 PRINT
115 IF HO=@ GOTO 117
116 FOR OD=l TO HO:PRINT CHRS$(9); :NEXT
117 FOR OF==1 TO 15-VE:PRINT CHRS(11); :NEXT
118 RETURN
120 RETURN
200 IN$="":RETURN
210 OS=PEEK(8256):0T=PEEK (B257)
211 POKEB256, (1@8*16+14):POKEB257, (1%16+2)
212 0=USR (0)
213 POKEB256,05: POKEB257,0T
214 OX=(PEEK(6754) AND 127)
215 INS=CHRS$(0X)
216 RETURN
258 RETURN
26@ AV=RND (1) :RETURN
278 FR=FRE (@) :RETURN
389 IF SR<.@1 AND SR>-.01 THEN SR=0
381 IF SGN (SR)=-1 THEN SR$=STR$(SR):RETURN
382 SR$=MIDS(STR$(SR),2) :RETURN
319 0S5=ABS (SR)+.5%10"=CN:0I=INT (05):0D=05-01+1
311 SRS=""
312 IF 05>=1E9 THEN 321
313 IF CN=@ THEN OD$="":GOTO 317
314 IF OD=1 THEM OD$=",":GOTO 316
315 ODS=MIDS (STRS(0D),3,CN+1)
316 IF LEN(ODS)<CN+l1 THEN OD$=0D$+"0":GOTO 316
317 SR$=MIDS(STR$(01),2)+0D$§
318 IF SR<@ AND VAL (SR$)<>0 THEN SR$="-"+SR$
319 IF LEN(SR$)<CT THEN SRS=" "+SR$:GOTO 319
320 IF LEN(SR5)>CT THEN SR§=""
321 IF LEN(SRS$)<CT THEN SR$=SRS$+"*":GOTO 321
322 RETURN
35¢ PRINT SR$; :RETURN
360 PRINT :RETURN
OK

Table 5

LIST

18 GOTO 1080
28 GOTO 1@le

168 PRINT

1@l POKEG4©89,200:PRINT CHRS(12);

182 POKEG4BBY,3

183 RETURN

11¢ IF HO>63 THEN RETURN

111 IF VE>15 THEN RETURN

112 POKEG4@B89,200:PRINT CHRS5(2B);

113 POKE648B9,3

114 PRINT

115 IF HO=@ GOTO 117

116 FOR OD=1 TO HO:PRINT CHR$(9);:NEXT

117 FOR OF=-1 TO 15-VE:PRINT CHRS(11);:NEXT
118 RETURN

12@ RETURN

2080 INS="":RETURN

218 OS=PEEK({574):0T=PEEK(575)

211 POKEST4,(1*16+11):POKES7S, (15%16+14)

212 0=USR (0}

213 POKES574,05:POKESTS,0T

214 OX=PEEK(9@59)

215 INS$=CHRS{0X)

216 RETURN

258 RETURN

26@ RV=RND (1) :RETURN

278 FR=FRE (@) :RETURN

3@ IF SR<.Bl AND SR>-.81 THEN SR=@

381 IF 5SGN(SR}=-1 THEN SR$=STRS(SR):RETURN
302 SRS=MIDS (STRS (SR),2) : RETURN

318 OS=ABS (SR)+.5%18°-CN:0I=1INT (0S) : OD=05-01+1
311 SRS=""

312 IF 05>=1E9 THEN 321

313 IF CN=0 THEN OD$="":GOTO 317

314 IF 0D=1 THEN ODS=".":GOTO 316

315 OD$=MIDS (STRS(OD),3,CN+1)

316 IF LEN[OD$)<CN+1 THEN OD5=0DS5+"@":GOTO 316
317 SR$=MIDS (STRS(0I),2)+0D§

318 IF SH<P AND VAL(SRS)<>@ THEN SR$="-"+SRS§
319 IF LEN(SR$)<CT THEN SR$=" "+5R5:GOTO 319
320 IF LEN(5R$)>CT THEN SRS§=""

321 IF LEM(SR$)<CT THEN SR$=SRS$+"*":GOTO 321
322 RETURN

358 PRINT SR$; :RETURN

36@ PRINT :RETURM

ok

Basicode-2 interface for

the Junior Computer
elektor october 1983

Table 4. The standard sub-
routines for the expanded
Junior with KB-9-BASIC.

Table 5. The standard sub-.

routines for the DOS
Junior.

10-55

Basicode-2 interface for
the Junior Computer
elektor october 1983

Figure 1. The circuit
diagram for the interface
circuit that must be
connected between a
cassette recorder and
the Junior Computer.

Parts list

Resistors:
R1=4k7
R2R4,R7=1k
R3=10k
R5=1M
R6 = 56 k
P1 = 25 k preset

Capacitors:
C1=220n
cC2=10u/10V
C3=56n
C4=100n

Semiconductors:
IC1=23140

Figure 2. The printed
circuit board layout for
the interface circuit.

Figure 3. This shows the
wiring layout that must be
used if both the normal
Junior cassette interface
and the Basicode interface
are to be used together.

Transmitter

30031

Junior
interface

Transmit
ILsh

p,
cassette-
recorder

Basicode
interface

Bascode /M o~ =
o O Nl evie s

10-56

'
'

i

in

1) Pickup
1 imic]
'

]

'

B83101-2-3

means that everything after the print state-
ment on this line is erased. In this example
the program can easily be adapted by
following the PRINTS in question with a ;.
The CR and LF are not produced then and
the program runs properly.

A program could, of course, also call a
subroutine that the Junior/Elekterminal
does not recognize (120, 200 and 250).
Subroutines 200 and 250 are no real prob-
lem and can easily be avoided, but is is some-
times more difficult to do without routine
120. If sub 120 is used, for example, in a
game to define the position of the cursor on
the screen, it can be very difficult to adapt
the program. Subroutine 120 is also quite
often used to define the screen size. This can
also be done by leaving out the appropriate
lines and stating on the free lines how large
the screen is (16 lines of 64 characters on
the Elekterminal). In the case where, for
example, the screen format is defined for
a section of a program, and after leaving
this section, variables VV and HH must
contain the height and width of the screen.
In our case this program section is simply
changed by VV = 15 : HH =63 (remember
that the first position has always number
zero).

A final note about the @sign in KB-9-
BASIC. If the computer sees this sign the
whole line is erased and CR and LF are
given.

The hardware

The hardware for the Basicode interface
consists of a small adapter circuit which
is connected between the cassette recorder
and the Junior Computer. The circuit
diagram is shown in figure 1. It consists
of a transmitter and a receiver section. The
receiver contains only one IC (3140) which
is connected as a schmitt trigger/level
adapter. Using P1, the trigger level can be
set between certain limits, but normally the
circuit works correctly if the pot is roughly
in mid position. The transmitter section
simply reduces the output signal from the
Junior and filters out the higher harmonics
from the signal.

The printed circuit board for the interface
(figure 2) is designed so that two phono
plugs (for input and output) can be soldered
directly onto the board using some wire
links. Points CAl and PB7 are connected
to the corresponding points on the VIA
connector on the interface board.

If the normal Junior cassette interface and
the Basicode interface are to be connected
at the same time (the former is needed to
read in machine code programs), care must
be taken when wiring the interfaces. The
wiring diagram for connecting both inter-
faces is given in figure 3. Any deviation from
this layout is likely to result in earth losses
occurring and the possibility of oscillation
is greater. This same diagram also shows a
block called signal cleaner! This circuit,
which is also described in this issue, is
only needed if the signal from the recorder
(or radio) is of very poor quality. It is easy
to try without this interface first and if this
does not work, the circuit could always be
added. |

	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56

